
Primordial Black Holes from Sound Speed Resonance during Inflation

Yi-Fu Cai,1, 2, ∗ Xi Tong,1, 2, 3, † Dong-Gang Wang,4, 5, ‡ and Sheng-Feng Yan1, 2, §

1CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy,
University of Science and Technology of China, Hefei, Anhui 230026, China

2School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China
3Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

4Lorentz Institute for Theoretical Physics, Leiden University, 2333 CA Leiden, The Netherlands
5Leiden Observatory, Leiden University, 2300 RA Leiden, The Netherlands

We report on a novel phenomenon of the resonance effect of primordial density perturbations
arisen from a sound speed parameter with an oscillatory behavior, which can generically lead to
the formation of primordial black holes in the early Universe. For a general inflaton field, it can
seed primordial density fluctuations and their propagation is governed by a parameter of sound
speed square. Once if this parameter achieves an oscillatory feature for a while during inflation, a
significant non-perturbative resonance effect on the inflaton field fluctuations takes place around a
critical length scale, which results in significant peaks in the primordial power spectrum. By virtue
of this robust mechanism, primordial black holes with specific mass function can be produced with
a sufficient abundance for dark matter in sizable parameter ranges.

PACS numbers: 98.80.Cq, 11.25.Tq, 74.20.-z, 04.50.Gh

Introduction. – Investigations on primodrial black
holes (PBHs) offer an inspiring possibility to probe
physics in the early Universe [1–3]. In recent years, the
cosmological implications of PBHs have been extensively
studied, especially since they could be a potential candi-
date for dark matter (DM) [4–10]. Moreover, the PBHs
can also be responsible for some gravitational wave (GW)
events [11–14], for instance, the first direct detection of
the GW event announced by the LIGO collaboration [15].
In the literature, many theoretical mechanisms producing
PBHs rely on a spectrum of primordial density fluctua-
tions with extra enhancement on certain length scales,
which are usually accomplished by a particularly tuned
background dynamics of the quantum fields in the early
Universe (e.g. see [16–27] for various analyses within in-
flationary cosmology, see [28, 29] for the investigations
within bounce cosmology, and see [30, 31] for compre-
hensive reviews).

Primordial density fluctuations, that seeded the large-
scale structure (LSS) of our Universe, are usually thought
to arise from quantum fluctuations during a dramatic
phase of expansion at early times, as described by infla-
tionary cosmology, from which a nearly scale-invariant
power spectrum with a standard dispersion relation is
obtained [32]. This prediction was confirmed by vari-
ous cosmological measurements such as the cosmic mi-
crowave background (CMB) radiation and LSS surveys
at extremely high precision. It is interesting to note that,
however, as advocated by the theoretical developments of
quantum gravity, modifications of the dispersion relation
of the primordial density fluctuations are naturally ex-
pected [33–36], which could have non-trivial phenomeno-
logical consequences, as we will illustrate in this work.

Sound speed resonance. – We begin with a gen-
eral discussion on the dynamical evolutions of primor-

dial cosmological perturbations in the framework of the
standard inflationary paradigm. The causal mechanism
of generating primordial power spectrum suggests that,
cosmological fluctuations should initially emerge inside
a Hubble radius, and then leave it in the primordial
epoch, and finally re-enter at late times. One often
uses a gauge-invariant variable ζ, the curvature pertur-
bation in comoving gauge, to characterize the primor-
dial inhomogeneities. For the general case with a non-
trivial sound speed cs [37, 38], one can make use of a
canonical variable v ≡ zζ, where z ≡

√
2εa/cs with

ε ≡ −Ḣ/H2. The perturbation equation for a Fourier
mode vk(τ) in the context of General Relativity is given

by: v′′k +
(
c2sk

2− z′′

z

)
vk = 0, where the prime denotes the

derivative w.r.t. the conformal time τ .

To generate PBHs within inflationary cosmology, one
needs to consider how to amplify the primordial curva-
ture perturbations for certain ranges of modes. In the
literature, most studies focuses on non-conventional be-
haviors of the inflationary background, such as a sudden
change of the slow-roll parameter ε caused by an inflec-
tion point in the inflaton potential [17]. Soon it was real-
ized that, a fine-tuning of model parameters is inevitable
in this type of mechanism to obtain a sufficient large en-
hancement of ζ to generate PBHs in abundance [39]. In
this Letter, we explore a novel possibility – a paramet-
ric amplification of curvature perturbations caused by
resonance with oscillations in the sound speed of their
propagation, which, as we will show, provides a much
more efficient way to enhance the primordial power spec-
trum around the astrophysical scales where PBHs could
account for DM in the current experimental bounds.

The sound speed parameter cs can deviate from unity
during the primordial era, namely, in a general single-
field model with a non-canonical kinetic term. This arises

ar
X

iv
:1

80
5.

03
63

9v
1 

 [
as

tr
o-

ph
.C

O
] 

 9
 M

ay
 2

01
8



2

when inflation models are embodied in UV-complete the-
ories, such as D-brane dynamics in string theory [40, 41],
or, from the effective field theory viewpoint, when heavy
modes are integrated out [42, 43]. How variation of the
primordial sound speed affects curvature perturbations
has already been extensively studied, but mainly in the
context of primordial features on CMB scales [44, 45].

In this Letter, we put aside the theoretical construc-
tions, and take a phenomenological approach to study
the effects of an oscillating sound speed on the power
spectrum at much smaller scales. As a starting point,
we consider the following parametrization for the sound
speed:

c2s = 1− 2ξ
[
1− cos(2k∗τ)

]
, τ > τ0 , (1)

where ξ is the amplitude of the oscillation and k∗ is the
oscillation frequency. We note that, ξ < 1/4 is required
such that cs is positively definite. The oscillation begins
at τ0, where k∗ is deep inside the Hubble radius, i.e.
|k∗τ0| � 1. To simplify the analysis we set cs = 1 before
τ0, and then it transits to oscillation smoothly.

We are interested in the behavior of the perturbation
modes on sub-Hubble scales, where some of the terms
from z′′/z in the perturbation equation becomes negli-
gible. Thus, the perturbation equation can be approxi-
mately written as:

d2vk
dx2

+
(
Ak − 2q cos 2x

)
vk = 0 , (2)

where x ≡ −k∗τ , Ak = k2/k2
∗ + 2q − 4ξ and q = 2ξ −

(k2/k2
∗)ξ. This is the Mathieu equation, which presents

a parametric instability for certain ranges of k. This
equation has been widely applied in the preheating stage
after inflation, where excitations of an additional particle
can be resonantly amplified, leading to an efficient energy
transfer from the inflaton into other particles (see [46–
48] for early studies and see [49, 50] for comprehensive
reviews). For the process of preheating, the parametric
resonance of fluctuations is driven by oscillations of the
inflaton field, leaving the possibility of an amplification
of the perturbation modes in the whole infrared regime.

In our case, the parametric resonance is seeded by an
oscillatory contribution in the sound speed during in-
flation. In addition, since ξ is always small and thus
|q| � 1, resonance bands are located in narrow ranges
around harmonic frequencies k ' nk∗ of the oscillating
sound speed. Since the first band (n = 1) is significantly
more enhanced than the subsequent harmonic bands, in
the following analysis we focus on the resonance of modes
around the frequency k∗. By setting the mode function
at the beginning of the resonance to the Bunch-Davies
vacuum vk(τ0) = e−ikτ0/

√
2k, we get full numerical so-

lutions of vk(τ), which is plotted in Fig. 1. We see that,
for modes k 6= k∗ that are not resonating, vk(τ) ∼ const.
inside the Hubble radius, and ∼ 1/τ after Hubble-exit:

they evolve as usual in their Bunch-Davies state. Mean-
while, the k∗ mode enters in resonance. On sub-Hubble
scales, its exponential growth can be captured by:

vk(τ) ∝ exp(ξk∗τ/2) , (3)

as shown by the green line in the figure. This amplifica-
tion stops around the Hubble-exit, since the friction term
z′′/z becomes important on super-Hubble scales.
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FIG. 1. Parametric amplification of the resonating k∗ mode.
Here the conformal time evolves from right to left. The full
numerical solution is given by the blue line, the green line is
the analytical profile, Eq. (3), and the orange line represents
modes k 6= k∗ that do not enter in resonance. The vertical
dashed gray line gives the time of Hubble-crossing for the k∗
mode.

In terms of curvature perturbations, be-
fore Hubble-crossing, the k∗ mode evolves as
ζk∗(τ) ' ζk∗(τ0)eξk∗(τ−τ0)/2 (τ/τ0). It freezes at
Hubble-exit, τ∗ = −1/k∗, with an enhanced amplitude:

ζk∗ ' ζk∗(τ0)

(
−1

k∗τ0

)
e−ξk∗τ0/2 ' H√

4εk3
∗
e−ξk∗τ0/2 ,

where, in the second equality, we have used ζk∗(τ0) =
−Hτ0√

4k∗ε
, as given by the Bunch-Davies vacuum. The result-

ing primordial power spectrum Pζ ≡ k3|ζk|2/(2π2) thus
presents the following feature: while for modes k 6= k∗,

we get the standard scale-invariant result, Pζ = H2

8π2ε ,
there is a significant peak from the exponential amplifi-

cation at the resonance frequency k∗, Pζ = H2

8π2εe
−ξk∗τ0 ,

as shown in Fig. 2. The enhancement factor e−ξk∗τ0

arises from the interplay of two effects: the oscilla-
tion in the sound speed, controlled by its amplitude
ξ, and the expansion of the Universe from the begin-
ning of the resonance to Hubble-crossing of the k∗-mode:
−k∗τ0 = τ0/τ∗ ' e∆N , where ∆N is the e-folding num-
ber for this period of inflation. By a rough estimate, even
for very small oscillation amplitudes ξ ∼ 10−4, a few e-
folds ∆N ' 12 is enough to get a peak of order 1 in the
power spectrum. Fig. 2 also shows peaks for harmonic
frequencies 2k∗, 3k∗, 4k∗, ..., with relatively much lower
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amplitudes. For simplicity, we keep the discussion only
on the k∗ mode, and parametrize the power spectrum
using a δ-function:

Pζ(k) ' As
( k
kp

)ns−1[
1 +

ξk∗
2
e−ξk∗τ0δ(k − k∗)

]
, (4)

where As = H2

8π2ε is the amplitude of the power spectrum
as in standard Inflation and ns is the spectral index at
pivot scale kp ' 0.05 Mpc−1 [51]. The coefficient in front
of the δ-function is determined by estimating the area of
the peak using a triangle approximation.
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FIG. 2. The power spectrum of primordial curvature pertur-
bations with sharp peaks caused by sound speed resonance,
and the comparison with various observational windows [52].
The first peak around the resonating mode k∗ (here given by
the Schwarzschild radius of PBHs with one solar mass) is the
most significant one, while others at subsequent harmonics
2k∗, 3k∗, 4k∗ ... are sub-dominant by at least two orders of
magnitude.

The PBHs formation. – We now study the forma-
tion of PBHs due to the enhancement in the primordial
power spectrum. As we see, the width of the peak in the
power spectrum being very narrow (∼ ξk∗), only modes
very close to the resonance frequency k∗ may have suffi-
ciently large amplitude to collapse into black holes. Af-
ter Hubble-exit, if the density perturbations produced
by these modes are larger than a critical value δc, then,
after re-entering the Hubble radius, they could collapse
into black holes due to gravitational attraction. The
Schwarzschild radius of PBHs with mass M is related
to the physical wavelength of the mode kM at Hubble

re-entry, kM,ph = kM/aM ' R−1
S =

(
M

4πM2
p

)−1
. Accord-

ingly, the PBH mass can be expressed as a function of
kM via:

M ' γ
4πM2

p

H(texit(kM ))
e∆N(kM ) , (5)

where ∆N(kM ) = ln[a(tre-entry(kM ))/a(texit(kM ))] is the
the e-folding number from the Hubble-exit time of the
mode kM to its re-entry. The correction factor γ rep-
resents the fraction of the horizon mass responsible for

PBH formation, which can be simply taken as γ ' 0.2
[53]. Given the sharpness of the peak in the power spec-
trum, the PBHs formed in this context are likely to pos-
sess a rather narrow range of masses, as we will discuss
now.

To estimate the abundance of PBHs with mass M ,
one usually defines β(M) as the mass fraction of PBHs
against the total energy density at the formation, which
can be expressed as an integration of the Gaussian dis-
tribution of the perturbations:

β(M) ≡ ρPBH(M)

ρtot
=
γ

2
Erfc[

δc√
2σM

] , (6)

where Erfc denotes the complementary error func-
tion. Here σM is the standard deviation of
the density perturbations at the scale associated
to the PBH mass M , which can be expressed as

σ2
M =

∫∞
0

dk
k W (k/kM )2 16

81

(
k
kM

)4

Pζ(k), where W (x) =

exp(−x2/2) is a Gaussian window function. Since the
scale-invariant part of the power spectrum is smaller
than the critical density, no black holes will form ex-
cept at scales around the resonance peak. Consider-
ing that we are working in the perturbative regime,
the height of the peak in

√
Pζ(k) should be no more

than 1, corresponding to a maximal variance of σ2
M .

8
81ξ
(
k∗
kp

)ns−1 (
k∗
kM

)4

e−(k∗/kM )2 , within which our anal-

ysis is restricted 1.

FIG. 3. Estimations for the fraction of PBHs against the
total DM density, fPBH, Eq. (7), produced by sound speed
resonance, for different values of k∗. Constraints from a num-
ber of astronomical experiments are also shown (see main text
for refs.): their observational sensitivities are given by colored
shadow areas. We choose the oscillation amplitude ξ = 0.15
and take a group of typical values for the other parameters:
γ = 0.2, gform ' 100, δc = 0.3, ns = 0.968.

PBHs formed by sound speed resonance can account
for dark matter in wide parameter ranges and easily sat-

1 The non-perturbative regime can be easily reached in the sound
speed resonance (see Fig. 4), which is also interesting for PBHs
formation, but is beyond the scope of the current paper.
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isfy experimental bounds. To see this, we consider the
fraction of PBHs against the total dark matter compo-
nent at present [31]:

fPBH(M) ≡ ΩPBH

ΩDM
(7)

= 2.7× 108
( γ

0.2

)1/2(g∗,form

10.75

)−1/4( M

M�

)−1/2

β(M) ,

where g∗,form is the total relativistic degrees of freedom
at the PBH formation time.

We plot estimations of fPBH in Fig. 3, for γ = 0.2,
gform ' 100 [54] and δc = 0.3 [31], representative of the
physics of a typical PBHs formation, as well as adopting
the Planck result for ns = 0.968 [51], and choose the oscil-
lation amplitude ξ = 0.15. We also show current bounds
of various astronomical experiments including EGB (ex-
tragalactic γ-ray background), microlensing of Kepler,
HSC (Hyper Suprime-Cam), MACHO (massive astro-
physical compact halo object), EROS (Exprience pour la
Recherche d’Objets Sombres), FIRAS (The Far Infrared
Absolute Spectrophotometer) and Planck [5]. In this fig-
ure, the red dashed curves correspond to the predictions
of fPBH with different choices for the resonance frequency
k∗. The PBH mass distribution is given by a narrow peak
around k∗: this is a distinctive feature of PBHs formed by
sound speed resonance from PBHs formed by other pro-
cesses, for which the mass distribution is usually more
spread out. By varying the value of k∗, the peaks form a
one-parameter family enveloped by a yellow solid curve
that mainly depends on the amplitude parameter ξ. One
can see from Fig. 3 that, for the specific case we chose
to plot, resonance frequencies k∗ & 1016Mpc−1 corre-
sponding to PBH masses M & 103M�, are excluded by
observations.

Because the PBHs formed by sound speed resonance
possess a very narrow mass distribution, no particular
tuning of the background is needed to generate PBHs
in abundance, consistently with current experimental
bounds. From previous discussion, we know that the
resonance frequency k∗ provides the median of the PHBs
mass distribution M , while fPHB is mainly determined
by the oscillation amplitude ξ, and the e-folding num-
bers ∆N from τ0 to the horizon-exit time of k∗ mode.
Through fPBH in Eq. (7), these model parameters can be
bounded by various astronomical constraints. In Fig. 4,
we plot contours for different ∆N , above which the pa-
rameter space is excluded by various astronomical con-
straints. One can see that, even within the scope of the
perturbative treatment we followed, the sound speed res-
onance has a large parameter space, left to be probed by
future observations.

Conclusions.– In this Letter we proposed a novel mech-
anism generating PBHs from resonating primordial den-
sity perturbations in inflationary cosmology with an os-
cillatory feature in the sound speed of their propagation.

FIG. 4. Constraint contours on the parametric resonance
parameters space by the various astronomical experiments
shown in Fig. 3. The white regime is beyond our consid-
eration since the enhancement there yields ζ(k∗) > 1 which
invalidates the perturbative treatment in this paper.

This scenario may be realized in the context of the ef-
fective field theory of inflation or by non-canonical mod-
els inspired by string theory. Using a parametrization
of the oscillating part of the sound speed, our analy-
sis demonstrates that primordial curvature perturbations
could be resonantly enhanced in a narrow band of comov-
ing wavenumbers around the oscillation frequency of the
sound speed. As a result, the power spectrum of primor-
dial density fluctuations presents a sharp peak around
this resonance frequency, while remains nearly scale-
invariant on large scales as predicted by standard infla-
tionary cosmology. Accordingly, a considerable amount
of PBHs could eventually form when these amplified
modes re-enter the Hubble radius, that may be testable
in various forthcoming astronomical observations. Note
that, with this mechanism, enhancement of primordial
density fluctuations on specific small scales can be ex-
tremely efficient in comparison with other existing mech-
anisms for PBHs formation. Besides, PBHs generated
by sound speed resonance can easily account for DM in
current experimental bounds, especially since their mass
distribution is very narrow.

We end by highlighting the implications of the pro-
posed mechanism that could initiate future studies from
several perspectives. First of all, in this work we mainly
study the first peak in the power spectrum, but as dis-
cussed, the parametric resonance effect also gives rise to
discrete peaks on smaller scales. Although they are not as
significant as the first one, it is still possible to have PBHs
formation on these higher harmonic scales, therefore our
model may yield a distinct feature for PBHs mass distri-
bution. Phenomenologically, an important lesson from
our study is that, as we started with small oscillations in
the sound speed of the propagation of primordial curva-
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ture fluctuations in Inflation, and ended up with a dra-
matic production of PBHs, the observational windows on
the early universe are no longer limited within the CMB
and LSS surveys, but also include other astronomical in-
struments probing at much smaller scales. On one hand,
this motivates theoretical investigations on the possible
inflation models from fundamental theories or effective
field theories, which could yield oscillating behaviors in
the sound speed. Moreover, it is important to further ex-
plore how a general time-varying sound speed may affect
the evolutions of primordial density fluctuations nonlin-
early. On the other hand, in the era of multi-messenger
astronomy, PBHs are becoming more and more testable,
making for a more and more serious DM candidate, which
may inspire designs for future experiments. In particular,
detection of GWs produced in black holes merger events
could provide great insights on the black holes distribu-
tion and their masses.
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