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Abstract
Themapping of fermionic states onto qubit states, as well as themapping of fermionicHamiltonian
into quantumgates enables us to simulate electronic systemswith a quantumcomputer. Benefiting
the understanding ofmany-body systems in chemistry and physics, quantum simulation is one of the
great promises of the coming age of quantum computers. Interestingly, theminimal requirement of
qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other
symmetries. This leads to qubit requirements that are well above theminimal requirements as
suggested by combinatorial considerations. In this work, we developmethods that allow us to trade-
off qubit requirements against the complexity of the resulting quantum circuit.Wefirst show that any
classical code used tomap the state of a fermionic Fock space to qubits gives rise to amapping of
fermionicmodels to quantum gates. As an illustrative example, we present amapping based on a
nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense
of additional quantum gates.We proceed to use this framework to present a number of simpler
mappings that lead to qubit savings with amoremodest increase in gate difficulty.We discuss the role
of symmetries such as particle conservation, and savings that could be obtained if an experimental
platform could easily realizemulti-controlled gates.

1. Introduction

Simulating quantum systems on a quantum computer is one of themost promising applications of small scale
quantum computers [1]. Significant efforts have gone into the theoretical development of simulation algorithms
[2–6], and their experimental demonstrations [7–12]. Resource estimates [13–15], such as for example for
FeMoCo, amodel for the nitrogenase enzyme, indicate that simulations of relevant chemical systemsmay be
achievedwith relativelymodest quantum computing resources [16] in comparison tomany standard quantum
algorithms [17, 18].

One essential component in realizing simulations of fermionicmodels on quantum computers is the
representation of suchmodels in terms of qubits and quantum gates. Following initial simulation schemes for
fermions hopping on a lattice [19], more recent proposals used the Jordan–Wigner [20] transform [3, 7, 21, 22],
the Verstraete-Ciracmapping [23], or the Bravyi–Kitaev transform [2] tofind a suitable representation.
Specifically, the task of all such representations is two-fold. First, we seek amapping from states in the fermionic
Fock space ofN sites to the space of n qubits. The fermionic Fock space is spanned by 2N basis vectors , , N1n n¼ ñ∣
where νjä{0, 1} indicates the presence (νj=1) or absence (νj=0) of a spinless fermionic particle at orbital j3.
Such amapping e: N n

2 2 Ä Ä is also called an encoding [24]. An example of such an encoding is the trivial one
inwhich n=N and qubits are used to represent the binary string ,..., N1

n n n= ( ) . That is
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e , 1
j

n

j
1

w n wñ = ñ = ñ
=

∣ ∣ ( ) ⨂∣ ( )

whereωj=νj in the standard basis 0 , 1ñ ñ{∣ ∣ }.
Second, we need away to simulate the dynamics of Fermions on theseN orbitals. These dynamics can be

modeled entirely in terms of the annihilation and creation operators cj and cj
† that satisfy the anticommutation

relations

c c c c c c, 0, , 0, , , 2i j i j i j ijd= = =+ + +[ ] [ ] [ ] ( )† † †

with [A,B]+=AB+BA. Following these relations, the operators act on the fermionic Fock space as

c c c c c c... ... 0, 3i i i i i im m m m M1 1 1
Qñ =

- +
∣ ( )† † † † † †

c c c c c... ... 0, 4i i i i im m m M1 1 1
Qñ =

- +
∣ ( )† † † †

c c c c c c c c c c... ... 1 ... ... , 5i i i i i i
m

i i i i
1

m m m m M m m M1 1 1 1 1 1
Qñ = - Qñ-

- + - +
∣ ( ) ∣ ( )† † † † † † † † †

c c c c c c c c c c... ... 1 ... ... , 6i i i i i
m

i i i i i
1

m m m M m m m M1 1 1 1 1 1
Qñ = - Qñ-

- + - +
∣ ( ) ∣ ( )† † † † † † † † † †

where Qñ∣ is the fermionic vacuumand i i N,..., 1,...,M1 Í{ } { }.Mappings of the operators cj to qubits typically
use the PaulimatricesX,Z, andY acting on one qubit, characterized by their anticommutation relations
P P, 2i j ij d=+[ ] for all P X Z Y, ,i Î = { }. An example of such amapping is the Jordan–Wigner transform
[20] given by

c Z , 7j
j n j1 s= Ä ÄÄ - - Ä -ˆ ( )

c Z , 8j
j n j1 s= Ä ÄÄ - + Ä -ˆ ( )†

where

X Y0 1
1

2
i , 9s = ñá = +- ∣ ∣ ( ) ( )

X Y1 0
1

2
i . 10s = ñá = -+ ∣ ∣ ( ) ( )

It is easily verified that together with the trivial encoding(1) this transformation satisfies the desired
properties(2)–(6) and can hence be used to represent fermionicmodels with qubit systems.

In order to assess the suitability of an encoding scheme for the simulation of fermionicmodels on a quantum
computer, a number of parameters are of interest. Thefirst is the total number of qubits nneeded in the
simulation. Second, wemay care about the gate size of the operators cj and cj

† whenmapped to qubits. In its
simplest form, this problem concerns the total number of qubits onwhich these operators do not act trivially,
that is, the number of qubits L, onwhich an operator acts as Pj Î instead of the identity , sometimes called
the Pauli length.Different transformations can lead to dramatically different performancewith respect to these
parameters. For both the Jordan–Wigner as well as the Bravyi–Kitaev transform n=N, but we have L=O(n)
for thefirst, while L O nlog= ( ) for the second.We remark that in experimental implementations we typically
do not only care about the absolute number L, but rather the specific gate size and individual difficulty of the
qubit gates each of whichmay be easier or harder to realize in a specific experimental architecture. For error-
corrected quantum simulation, the cost in T-gates is as important to optimize as the circuit depth [25], and
quantumdevices with restricted connectivity even requiremappings tailored to them [26, 27]. Finally, we
remark that instead of looking for amapping for individual operators cj

(†) wemay instead opt tomap pairs (or
higher order terms) of such operators at once, or even look to represent sums of such operators.

1.1. Results
Here, we propose a general family ofmappings of fermionicmodels to qubit systems and quantumgates that
allowus to trade-off the necessary number of qubits n against the difficulty of implementation as parametrized
by L, ormore complicated quantumgates such as CPHASE. Ideally, onewould of course like both the number of
qubits, as well as the the gate size to be small.We show that ourmappings can lead to significant savings in qubits
for a variety of examples (see table 1) as compared to the Jordan–Wigner transform for instance, at the expense
of greater complexity in realizing the required gates. The lattermay lead to an increased time required for the
simulation depending onwhich gates are easy to realize in a particular quantum computing architecture.

2
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At the heart of our efforts is an entirely general construction of the creation and annihilation operators in(3)
given an arbitrary encoding e and the corresponding decoding d. As onemight expect, this construction is not
efficient for every choice of encoding e or decoding d. However, for linear encodings e, but possibly nonlinear
decodings d, they can take on a very nice form.While in principle any classical codewith the same properties can
be shown to yield suchmappings, we provide an appealing example of how a classical code offixedHamming
weight [28] can be used to give an interestingmapping.

Two other approaches allow us to bemoremodest with the algorithmic depth in either accepting a qubit
saving that is linear withN, or just saving afixed amount of qubits for hardly any cost at all.

In previous works, trading quantum resources has been addressed for general algorithms [29], and quantum
simulations [30–32]. In the twoworks ofMoll et al andBravyi et al, qubit requirements are reducedwith a
scheme that is different fromours. A qubitHamiltonian isfirst obtainedwith e.g. the Jordan–Wigner transform,
then unitary operations are applied to it in order taper qubits off successively. The paper byMoll et al provides a
straight-forwardmethod to calculate theHamiltonian, that can be used to reduce the amount of qubits to a
minimum, but the number ofHamiltonian terms scales exponentially with the particle number. The notion that
ourwork is based on, wasfirst introduced in [31] by Bravyi et al, for linear en- and decodings.With the
generalization of thismethod, we hope tomake the goal of qubit reductionmore attainable in reducing the effort
to do so. The reductionmethod ismediated by nonlinear codes, of whichwe provide different types to choose
from. The transformof theHamiltonian is straight-forward from there on, andwe give explicit recipes for
arbitrary codes.We can summarize our contributions as follows.

• We show that for any encoding e : N n
2 2 Ä Ä there exists amapping of fermionicmodels to quantum gates.

For the special case that this encoding is linear, our procedure can be understood as a slightlymodified version
of the perspective taken in [24]. This gives a systematic way to employ classical codes for obtaining such
mappings.

• Using particle conservation symmetry, we develop 3 types of codes that save a constant, linear and exponential
amount of qubits (see table 1 and sections 3.1.1–3.1.3). An example from classical coding theory [28] is used to
obtain significant qubit savings (here called the binary addressing code), at the expense of increased gate
difficulty (unless the architecture would easily supportmulti-controlled gates).

• The codes developed are demonstrated on two examples fromquantum chemistry and physics.

1. TheHamiltonian of thewell-studied hydrogenmolecule inminimal basis is re-shaped into a
two-qubit problem, using a simple code.

2. A Fermi–Hubbardmodel on a 2×5 lattice and periodic boundary conditions in the lateral direction is
considered.We parametrize and compare the sizes of the resultingHamiltonians, as we employ
different codes to save various amounts of qubits. In this way, the trade-off between qubit savings and
gate complexity is illustrated (see table 2).

2. Background

To illustrate the general use of (possibly non linear) encodings to represent fermionicmodels, let us first briefly
generalize how existingmappings can be phrased in terms of linear encodings in the spirit of [24]. Under
consideration in representing the dynamics is amapping for second-quantizedHamiltonians of the form

Table 1.Overview ofmappings presented in this paper, listed by the complexity of their code functions, their qubit savings, qubit
requirements (n), properties of the resulting gates and first appearance.Mappings can be comparedwith respect to the size of plainwords
(N) and their targetedHammingweightK.We also refer to differentmethods that are not listed, as they do not rely on codes in any
way [30, 31].

Mapping En-/decoding type Qubits saved n(N,K ) Resulting gates Origin

Jordan–Wigner ∣Parity transform Linear/linear None N Length-O(n)Pauli strings [20, 24]
Bravyi–Kitaev transform Linear/linear None N Length-O(log n)Pauli strings [2]
Checksumcodes Linear/ affine linear O(1) N−1 Length-O(n)Pauli strings Here

Binary addressing codes Nonlinear/nonlinear O(2n/K) N Klog K( !) O n( ( ))-controlled gates Here

Segment codes Linear/nonlinear O n K( ) N 1
K

1

2
+( ) O K( ( ))-controlled gates Here
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where hab are complex coefficients, chosen in away as to renderHHermitian.We illustrate the use of such a
mapping in the context of quantum simulation in appendix A. For our convenience, we use length-l N-ary
vectors a a a N,..., l

l
1

= Î Ä( ) [ ] to parametrize the orbitals onwhich a term hab
ˆ is acting, andwrite

N N1,...,=[ ] { }. A similar notationwill be employed for binary vectors of length l, with
b b b,..., , 0, 1l

l
1 2 2

  = Î =Ä( ) { }, decidingwhether an operator is a creator or annihilator by the rules
c ci i

1 =( )(†) (†) and c 1i
0 =( )(†) .

Every term hab
ˆ is a linear operation N N  , with N being the Fock space restricted onN orbitals, the

direct sumof all possible antisymmetrizedM-particleHilbert spaces :N
M

N m
N

N
m

0  = =⨁ . Conventional
mappings transform states of the Fock space N into states onN qubits, carrying over all linear operations as
well N

N2    Ä( ) (( ) ).
Before we start presenting conventional transformation schemes, we need tomake a few remarks on

transformedHamiltonians and notations pertaining to them. First of all, we identify the set of gates
X Y Z, , , ,n n  =Ä Ä{ } { } with the termPauli strings (on n qubits). The previouslymentioned Jordan–Wigner

transform, obviously has the power to transform (11) into aHamiltonian that is a weighted sumof Pauli strings
onN qubits. General transforms, however,might involve other types of gates.We however have the choice to
decompose these into Pauli strings. Onemight want to do sowhen using standard techniques forHamiltonian
simulation. In the following, wewill denote the correspondence of second-quantized operators or statesB to
their qubit counterpartsC by: B C=̂ . For convenience, wewill also omit identities in Pauli strings and rather
introduce qubit labels, e.g. X X X X Xi i1 3 1,3Ä Ä = Ä = Î(⨂ ){ } andwrite n =Ä . A complete table of
notations can be found in appendixG.

Consider a linear encoding ofN fermionic sites into n=N qubits given by a binarymatrixA such that

A ce mod 2 12
j

N

j
1

jw n nñ = ñ = ñ = Qñn

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ( ) ∣ ˆ ( ) ∣ ( )†

andA is invertible, i.e. AA mod 21 =-( ) . Note that in this case, the decoding given by
Ad mod 21n w w= = -( ) ( ) is also linear. It is known that any suchmatrixA, subsequently also yields a

mapping of the fermionic creation and annihilation operators to qubit gates [24]. To see how these are
constructed, let us start by noting that theymust fulfill the properties given in(3)–(6) and(2), whichmotivates
the definition of a parity, aflip and an update set below:

1. cim

(†) anticommutes with the first m 1- operators and thus acquires phase 1 m 1- -( ) .

2. A creation operator cim

† might be absent (present) in between cim 1-

† and cim 1+

† , leading the rightmost operator

cim

(†) tomap the entire state to zero since c 0im
Qñ =∣ c c 0i im m

=( )† † .

3. Given that the state was not annihilated, the occupation of site im has to be changed. This means a creation
operator cim

† has to be added or removed between cim 1-

† and cim 1+

† .

These rules tell us what the transformof an operator cj
(†) has to inflict on a basis state (12). In order to implement

the phase shift of the first rule, a series of Pauli-Z operators is applied on qubits, whose numbers are in the parity

Table 2.Relaxing the qubit requirements for theHamiltonian (48), where
variousmappings trade different amounts of qubits. The notation⊕is
used as two codes for different graphs are appended.We compare different
mappings by the amount of qubits.Wemake comparrisons by the number
ofHamiltonian terms and the total weight of the resulting Pauli strings.

Mapping Qubits Gates Terms

Jordan–Wigner transform 20 232 74

Bravyi–Kitaev transform 20 278 74

Checksum code⊕Checksum code  18 260 74

Checksum code⊕Segment code 17 4425 876

Segment code⊕Segment code 16 9366 1838
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set (with respect to jä[N]),P( j)⊆[N]. Following the second rule we project onto the±1 subspace of the
Z-string on qubits indexed by another [N] subset, the so-called flip set of j, F( j). The update set of j,U( j)⊆[N]
labels the qubits to beflipped completing the third rule using anX-string

c c

X Z Z
1

2
1 , 13

j
b

j
b

k U j
k

b

l F j
l

m P j
m

1 mod 2

= - -

+

Î Î Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )

ˆ ⨂ ( ) ⨂ ⨂ ( )

†

( ) ( ) ( )

with b 2Î .P( j), F( j) andU( j) depend on thematricesA andA−1 as well as the paritymatrixR. The latter is a
(N×N) binarymatrix which has its lower triangle filledwith ones, but not its diagonal. For thematrix entries
thismeansRij=θij, with θij as the discrete version of theHeaviside function

i j

i j

0

1 .
14ij


q =

>

⎧⎨⎩ ( )

The setmembers are obtained in the following fashion:

1.P( j) contains all columnnumbers inwhich the jth row ofmatrix RA mod 21-( ) has non-zero entries.

2. F( j) contains the column labels of non-zero entries in the jth row ofA−1.

3.U( j) contains all rownumbers inwhich the jth columnofA has non-zero entries.

Note that this definition of the sets differs from their original appearance in [24, 33], where diagonal
elements are not included. In this way, our sets are not disjoint, which leads toZ-cancellations and appearance of
Pauli-Y operators, butwe have generalized the sets for arbitrary invertiblematrices, and provided a pattern for
other transforms later. In fact, we recover these linear transforms from the general case in appendix F. Therewe
also show explicitly that these operators abide by(2)–(6).

2.1. Jordan–Wigner, parity andBravyi–Kitaev transform
As an illustration, we present popular examples of these linear transformations, note again that all of thesewill
have n=N. The Jordan–Wigner transform is a special case for A = , leading to the directmapping. The
operator transform gives L=O(N)Pauli strings as

c c X i Y Z
1

2
1 . 15j

b
j

b
j

b
j

m j
m

1 mod 2 = + -+

<
( ) ( ) ˆ ( ( ) ) ⨂ ( )†

In the parity transform [24], we have L=O(N)X-strings:

A A

1
1 1

1 1

,

1
1 1

1 1 1

, 161 = =-
    



⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )

c c

Z X i Y X
1

2
1 . 17

j
b

j
b

j j
b

j
m j

N

m

1 mod 2

1
1

= Ä - -

+

-
= +

( ) ( )

ˆ ( ( ) ) ⨂ ( )

†

The Bravyi–Kitaev transform [2] is defined by amatrixA [24, 33] that has non-zero entries according to a certain
binary tree rule, achieving L O Nlog= ( ).

2.2. Saving qubits by exploiting symmetries
Our goal is to be able to trade quantum resources, which is done by reducing degrees of freedomby exploiting
symmetries. For that purpose, we provide a theoretical foundation to characterize the latter.

Parity, Jordan–Wigner andBravyi–Kitaev transforms encode all N states and providemappings for every

N ( ) operator. Unfortunately,they require us to own aN-qubit quantum computer, whichmight be
unnecessary. In fact, the only operator wewant to simulate is theHamiltonian, which usually has certain
symmetries. Taking these symmetries into account enables us to perform the same taskwith n�N qubits
instead. Symmetries usually divide the N into subspaces, and the idea is to encode only one of those. Let  be a
basis spanning a subspace span N Í( ) be associatedwith aHamiltonian (11), where for every a bl, , ;

h : span spanab  ˆ ( ) ( ). Usually, Hamiltonian symmetries generatemany such (distinct) subspaces. Under
consideration of additional information about our problem, like particle number, parity or spin polarization,we
select the correct subspace. Note that particle number conservation is by far themost prominent symmetry to
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take into account. It is generated byHamiltonians that are linear combinations of products of c c i j N,i j Î∣ [ ]† .
TheseHamiltonians, originating fromfirst principles, only exhibit terms conserving the total particle
number;h :ab N

M
N
M ˆ . From all theHilbert spaces N

M , one considers the space with the particle number
matching the problemdescription.

These symmetries will be utilized in the next section: we develop a language that allows for encodings e that
reduce the length of the binary vectors e n( ) as compared to n . Thismeans that the state n will be encoded in
n N qubits, since each digit saved corresponds to a qubit eliminated. As suggested by Bravyi et al [31], qubit
savings can be achieved under the consideration of non-square, invertiblematricesA. However, wewill see
below that using transformations based on nonlinear encodings and decodings d (the inverse transformdefined
byA−1 before), we can eliminate a number of qubits that scales with the system size. For linear codes on the other
hand, wefind amere constant saving.

3.General transformations

Wehere showhow second-quantized operators and states, Hamiltonian symmetries and the fermionic basis 
are fused into a simple description of occupation basis states.While in this section all general ideas are presented,
wewould like to refer the reader to the appendices for details: to appendix B in particular, which holds the proof
of the underlying techniques. Fermionic basis states are represented by binary vectors N

2n Î Ä , with its
components implicating the occupation of the corresponding orbitals. Basis states inside the quantum
computer, on the other hand, are represented by binary vectors on a smaller space n

2w Î Ä . These vectors are
codewords of the former n , where the binary code connecting all n and w is possibly nonlinear. In the end, an
instance of such a codewill be sufficient to describe states and operators, in a similar way than thematrix pair
(A,A−1) governs the conventional transforms already presented.We now start by defining such codes and
connect them to the statemappings.

Let span ( ) be a subspace of N , as defined previously. For n log  ∣ ∣, we define two binary vector
functions d e: , :n N N n

2 2 2 2    Ä Ä Ä Ä , wherewe regard each component as a binary function
d d d d, ..., :N i

n
1 2 2

  = Ä( ) ∣ . Furthermorewe introduce the binary basis set N
2 Í Ä , with

c, only if . 18
i

N

i
1

i n Î Qñ În

=

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ( )†

All elements in  shall be represented in  . If for all n Î the binary functions e and d satisfy d e n n=( ( )) ,
and for all d:n

2 w wÎ ÎÄ ( ) , thenwe call the two functions encoding and decoding, respectively. An
encoding-decoding pair (e d, ) forms a code.

We thus have obtained a general formof encoding, inwhich qubit states only represent the subspace
span ( ). The decoding, on the other hand, translates the qubit basis back to the fermionic one:

c . 19
j

n

j
i

N

i
d

1 1

iw wñ ñ = Qñw

= =

⎛
⎝⎜

⎞
⎠⎟∣ ≔ ⨂∣ ˆ ( ) ∣ ( )† ( )

We intentionally keep the description of these functions abstract, as the code usedmight be nonlinear, i.e. it
cannot be describedwithmatrices A A, 1- . Nonlinearity is thereby predominantly encountered in decoding
rather than in encoding functions, as wewill see in the examples obtained later.

For any code (e d, ), wewill nowpresent the transformof fermionic operators into qubit gates. Before we can
do so however, two issues are to be addressed. Firstly, one observes that we cannot hope tofind a transformation
recipe for a singular fermionic operator cj

(†). The reason for this is that the latter operator changes the occupation

of the jth orbital. As a consequence, a statewith the occupation vector n ismapped to u mod 2jn +( ), where uj

is the unit vector of component j; uj i ijd=( ) . The problem is that sincewe have trimmed the basis,

u mod 2jn +( )will probably not be in  , whichmeans this state is not encoded4. The action of cj
(†) is, thus, not

defined.We can however obtain a recipe for the non-vanishingHamiltonian terms hab
ˆ as they do not escape the

encoded space being span span ( ( ) ( ))-operators. Note that this issue is never encountered in the
conventional transforms, as they encode the entire Fock space.

Secondly, we are yet to introduce a tool to transform fermionic operators into quantum gates. The structure
of the latter has to be similar to the linear case, as theymimic the same dynamics as presented in section 2. In
general, a gate sequencewill commencewith some kind of projectors into the subspacewith the correct
occupation, as well as operators implementing parity phase shifts. The sequence should close with bit flips to
update the state. The task is now to determine the formof these operators. The issue boils down tofinding

4
‘Unencoded state’ is actually a slightlymisleading term:whenwe say a state N

2l Î Ä is not encoded, we actuallymean that it cannot be
encoded and correctly decoded, so d e l l¹( ( )) .
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operators that extract binary information fromqubit states, andmap it onto their phase. In other words, we need
tofind linear operators associatedwith e.g. the binary function dj, such that itmaps basis states

1 djw wñ  - ñw∣ ( ) ∣( ) . In any case, wemust recover the case of Pauli strings on their respective sets when
considering linear codes. For our example, thismeans the linear case yields the operator Zm F j mÎ(⨂ )( ) . Using
general codes, we are lead to define the extraction superoperation X, whichmaps binary functions to quantum
gates on n qubits:

: . 20n n
2 2

2   Ä Ä( ) (( ) ) ( )X

The extraction superoperator is defined for all binary vectors n
2w Î Ä andbinary functions f g, : n

2 2 Ä as:

f 1

Extraction property , 21

fw wñ = - ñw[ ]∣ ( ) ∣
( ) ( )

( )X

f g f gmod 2

Exponentiation identity , 22

w w w + =[ ( ) ( ) ] [ ] [ ]
( ) ( )

X X X

b b1

Extracting constant functions , 23

b
2 w  = - Î[ ] ( ) ∣

( ) ( )
X

Z j n

Extracting linear functions , 24

j jw w = Î[ ] ∣ [ ]
( ) ( )
X

i i

i n k n

C PHASE , ...,

with , 1

Extracting non linear functions . 25

j
j

k
k

s s
k

1 1

1
1


w w =

= Í Î -
-

Î
+

=
+

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

{ } [ ] [ ]
( ) ( )

X

Note that thefirst two properties imply that the operators f g,[ ] [ ]X X commute and all operators are diagonal in
the computational basis. Given that binary functions have a polynomial form,we are now able to construct
operators by extracting every binary function possible, for example

1 mod 2
1 26

1 1 2

1 1 2

w
w w w

w w w
w w w

 + +
=   

[ ]
[ ] [ ] [ ] ( )

X

X X X

Z CPHASE 1, 2 . 271=- ( ) ( )
Wefirstly we have used (22) to arrive at (26), and then reach (27) by applying the properties (23)–(25) to the
respective sub-terms. Thismight however not be thefinalHamiltonian, since the simulation algorithmmight
require us to reformulate theHamiltonian as a sumofweighted Pauli strings [4, 5]. In that case, need to
decompose all controlled gates. The cost for this decomposition is an increase in the number ofHamiltonian
terms, for instancewe find i j Z Z Z ZCPHASE , i j i j

1

2
= + + - Ä( ) ( ). In general, (24) and (25) can be

replaced by an adjusted definition:

Z n2
1

2

Extracting non constant functions . 28

j
j

j
j 

 

  w w = - - Í
Î Î

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( ) [ ]

( ‐ ) ( )

X

Wewill be able to define the operatormappings introducing the parity and update functions, p and qe :

p p d: , mod 2, 29n N
j

i

j

i2 2
1

1

  åw w =Ä Ä

=

-

( ) ( ) ( )

q

e d q

: , with

mod 2 mod 2. 30

q

q

n n N
2 2 2  e

e w w w
 Î

= + +

Ä Ä Ä

( ) ( ( ) ) ( )

Finally, we have collected all themeans to obtain the operatormapping forweight-l operator sequences as they
occur in (11):

c c

d p

1

1

2
1 1 , 31

a

i

l

a
b

a
b

v

l

w v

l

x

l

y x

l
b

a a

1

1 mod 2

1

1

1

1 1

i
i

i
i av aw

ax ay x
x x





  

 

= -

´ - - -

q

d

=

+

=

-

= +

= = +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

( ) ( ) ˆ ( )

( ) ( ) [ ] [ ] ( )

†

X X
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where θij is defined in (14) and δij is the Kronecker delta. In this expression, wefind various projectors, parity
operators with corrections for occupations that have changed before the update operator is applied. The update
operator a , is characterized by the N

2Ä -vector q u mod 2ai
l

1 i
= å =

X
1

2
1 . 32a

t

q

i

n

i
t

j

n
t

j
1 1n

i j

2

 

å  e= + -
Î = =Ä

⎡
⎣⎢

⎤
⎦⎥⨂( ) ( ( ) [ ]) ( )X

This is a problem:when summing over the entire n
2Ä , one has to expect an exponential number of terms. As a

remedy, one can arrange the resulting operations into controlled gates, or rely on codes with a linear encoding. If
the encoding can be defined using a binary (n×N)-matrixA, e A mod 2n n=( ) ( ), the update operator
reduces to

X . 33a

i

n

i

A q

1

mod 2
j

ij j
 =

å

=
⨂( ) ( )

In appendix B, we show that (31)–(33) satisfy the conditions(2)–(6). Note that the update operator is also
important for state preparation: let us assume that our qubits are initialized all in their zero state, 0i n ñÎ(⨂ ∣ )[ ] ,
then the fermionic basis state associatedwith the vector n is obtained by applying the update operator a . Here
the vector a contains all occupied orbitals, such that q n= . Even for nonlinear encodings the state preparation
can donewith Pauli strings: as the initial state is a product state of all zeros, we can replace operators

i n iw w  Î Í[ ][ ]X by .
In the followingwewill turn our attention to themost fruitful symmetry to take into account: particle

conservation symmetry.While code families accounting for this symmetry are explored in the next subsection,
alternatives to themapping of entireHamiltonian terms are discussed for such codes in appendix C.

3.1. Particle-number conserving codes
In the following, wewill present three types of codes that save qubits by exploiting particle number conservation
symmetry, and possibly the conservation of the total spin polarization. Particle-number conserving
Hamiltonians are highly relevant for quantum chemistry and problems posed fromfirst principles.We therefore
set out tofind codes inwhich n Î have a constantHammingweight KwH n =( ) . Since theHammingweight
is defined as w m mH n n= å( ) , it yields the total occupation number for the vectors n . In order to simulate
systemswith afixed particle number, we are thus interested tofind codes that implement codewords of constant
Hammingweight. Note that thefixedHammingweightK does not necessarily need to coincide with the total
particle numberM. A codewith the latter propertymight also be interesting for systemswith additional
symmetries.Most importantly, we have not taken into account the spin-multiplicity yet. As the particles in our
system are fermions, every spatial site will typically have an even number of spin configurations associatedwith
it. Orbitals with the same spin configurations naturally denote subsets of the total amount of orbitals,much like
the suits in a card deck. An absence ofmagnetic terms aswell as spin–orbit interactions leaves theHamiltonian
to conserve the number of particles inside all those suits. Consequently, we can append several constant-weight
codes to each other. Each of those subcodes encodes thereby the orbitals inside one suit. In electronic system
with only Coulomb interactions for instance, we can use two subcodes (e à,d à) and (e ª,d ª), to encode all
spin-up, and spin-down orbitals, respectively. The global code (e d, ), encoding the entire system, is obtained by
appending the subcode functions e.g. d d d .1 2 1 2w w w wÅ = Åà ª( ) ( ) ( ) Appending codes like this will help
us to achieve higher savings at a lower gate cost.

The codes that we now introduce (see also again table 1), fulfill the task of encoding only constant-weight
words differently well. The larger  , the less qubits will be eliminated, butwe expect the resulting gate sequences
to bemore simple. Although not just words of thatweight are encoded, we treatK as a parameter—the targeted
weight.

3.1.1. Checksum codes
A slim, constant amount of qubits can be savedwith the following n=N−1, affine linear codes. Checksum
codes encode all thewordswith either even or oddHammingweight. As this corresponds to exactly half of the
Fock space, one qubit is eliminated. Thismeanswe disregard the last component whenwe encode n intowords
with one digit less. The decoding function then adds themissing component depending on the parity of the code
words. The code forK odd is defined as

d

1

1
1 1

0

0
1

mod 2, 34w w= +




⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟( ) ( )
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e
1 0

1 0
mod 2. 35n n=  

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

In the even-K version, the affine vector uN , added in the decoding, is removed. Since encoding and decoding
function are both atmost affine linear, the extracted operators will all be Pauli strings, with atmost aminus sign.
The advantage of the checksum codes is that they do not depend onK. They can be used even in cases of smaller
saving opportunities, like K N 2» .We can employ these codes even forHamiltonians that conserve only the
Fermion parity. Thismakes them important for effective descriptions of superconductors [34].

3.1.2. Codes with binary addressing
Wepresent a concept for heavily nonlinear codes for large qubit savings, n N Klog K= ⌈ ( !)⌉, [28]. In order to
conserve themaximumamount of qubits possible, we choose to encode particle coordinates as binary numbers
in w. To keep it simple, we here consider the example of weight-one binary addressing codes, and refer the
reader to appendixD forK>1. InK=1, we recognize the qubit savings to be exponential, so considerN=2n.
Encoding and decoding functions are defined bymeans of the binary enumerator, bin : n

2 Ä , with
bin 2j

n j
j1

1w w= å =
-( )

d q1 mod 2, 36j
i

n

i i
j

1
w w= + +
=

( ) ( ) ( )

e q q q mod 2, 371 2
n2n n= ( ) [ ∣ ∣ ∣ ] ( )

where q j n
2Î Ä is implicitly defined by q jbin 1j + =( ) . An input w will by construction render only the jth

component of (36)non-zero, when q j w= 5.
The exponential qubit saving comes at a high cost: the product over each component of w impliesmulti-

controlled gates on the entire register. This is likely to cause connectivity problems.Note that decomposing the
controlled gates will in general be practically prohibited by the sheer amount of resulting terms. On top of those
drawbacks, we also expect the encoding function to be nonlinear forK>1.

3.1.3. Segment codes

We introduce a type of scaleable n N 1
K

1

2
= +⎡⎢ ⎤⎥( ) codes to eliminate a linear amount of qubits. The idea of

segment codes is to cut the vectors n into smaller, constant-size vectors i N
2n Î Äˆ ˆ

, such that i
in n= ⨁ ˆ . Each

such segment in̂ is encoded by a subcode. Althoughwe have introduced the concept already, this segmentation
is independent fromour treatment of spin ‘suits’. In order to construct aweightK global code, we append several
instances of the same subcode. Each of these subcodes codes is defined on n̂ qubits, encoding N n 1= +ˆ ˆ
orbitals.We deliberately have chosen to only save one qubit per segment in order to keep the segment size N Kˆ ( )
small.

We now turn our attention to the construction of these segment codes. As shown in appendix E, the segment
sizes can be set to n K2=ˆ and N K2 1= +ˆ . As the global code is supposed to encode all N

2n Î Ä with
HammingweightK, each segmentmust encode all vectors fromHammingweight zero up toweightK. In this
way, we guarantee that the encoded space contains the relevant, weightK subspace. This construction follows
from the idea that each block contains equal or less thanK particles, butmight as well be empty. For each

segment, the following de- and encoding functions are found for ,n N
2 2 w nÎ ÎÄ Äˆ ˆˆ ˆ

:

d f

1

1
0 ... 0

1

1

mod 2, 38w w w= + 


⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ˆ ( ˆ ) ˆ ( ˆ ) ( )

e
1 1

1 1
mod 2, 39n n=  

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ˆ ( ˆ ) ˆ ( )

where f : n
2 2 Ä ˆ is a binary switch. The switch is the source of nonlinearity in these codes. On an input ŵ

with KwH w >( ˆ ) , it yields one, and zero otherwise.
There is just one problem: segment codes are not suitable for particle-number conservingHamiltonians,

according to the definition of the basis  , that wewould have for segment codes. The reason for this is that we
have not encoded all states with KwH n >( ) . In this way,Hamiltonian terms hab

ˆ that exchange occupation
numbers between two segments, canmap into unencoded space.We can, however, adjust these terms, such that

5
For better or worsewe have used the binary representation of the orbital indexes.We could however employ any other countingmethod,

i.e. any injectivemapping that relates a binary vector representing a qubit basis state to an integer labeling an orbital.
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they only act non-destructively on states with atmostK particles between the involved segment. This does not
change themodel, but aligns theHamiltonianwith the necessary condition that we have on h, : spanab  ˆ ( )
span ( ). This is discussed in detail appendix E, wherewe also provide an explicit description of the binary switch
mentioned earlier.

Using segment codes, the operator transformswill havemulti-controlled gates as well: the binary switch is
nonlinear. However, gates are controlled on atmost an entire segment, whichmeans there is no gate that acts on
more than K2 qubits. This an improvement in gate locality, as compared to binary addressing codes.

4. Examples

4.1.Hydrogenmolecule
In this subsection,wewill demonstrate theHamiltonian transformationon a simple problem.Choosing a standard
example,wedrawcomparisonwithothermethods for qubit reduction.Asoneof the simplest problems, theminimal
electronic structure of thehydrogenmolecule has been studied extensively for quantumsimulation [3, 4] already.
Wedescribe the systemas twoelectronson2 spatial sites. Because of the spin-multiplicity,we require 4qubits to
simulate theHamiltonian in conventionalways.Using theparticle conservation symmetryof theHamiltonian, this
number canbe reduced.TheHamiltonian also lacks terms thatmix spin-up and -downstates,with the total spin
polarizationknown tobe zero.Taking into account these symmetries, onefinds a total of 4 fermionic basis states:

0, 1, 0, 1 , 0, 1, 1, 0 , 1, 0, 0, 1 , 1, 0, 1, 0 = {( ) ( ) ( ) ( )}. These canbe encoded into twoqubits by appending two
instances of a (N=2,n=1,K=1)-code.The global code is defined as :

d

1
1

1
1

1
0
1
0

mod 2, 40w w= +

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( ) ( )

e 0 1 0 0
0 0 0 1

mod 2. 41n n=
⎡
⎣⎢

⎤
⎦⎥( ) ( )

The physicalHamiltonian

H h c c c c h c c c c

h c c c c h c c c c

h c c c c c c c c

h h c c c c c c c c

h c c c c c c c c

h c c c c c c c c , 42

11 1 1 3 3 22 2 2 4 4

1331 1 3 3 1 2442 2 4 4 2

1221 1 4 4 1 3 2 2 3

1221 1212 1 2 2 1 3 4 4 3

1212 1 4 3 2 2 3 4 1

1212 1 3 4 2 2 4 3 1

=- + - +

+ +

+ +

+ - +

+ +

+ +

( ) ( )

( )
( )( )

( )
( ) ( )

† † † †

† † † †

† † † †

† † † †

† † † †

† † † †

is transformed into the qubitHamiltonian

g g X X g Z g Z g Z Z . 431 2 1 2 3 1 4 2 5 1 2 + Ä + + + Ä ( )

The real coefficients gi are formed by the coefficients hijkl of (42). After performing the transformation, wefind

g h h h h h
1

2

1

4

1

4
, 441 11 22 1221 1331 2442= - - + + + ( )

g h , 452 1212= ( )

g g h h h h
1

2

1

2

1

4

1

4
, 463 4 11 22 1331 2442= = - + - + ( )

g h h h
1

2

1

4

1

4
. 475 1221 1331 2442= - + + ( )

In previousworks, conventional transforms have been applied to that problemHamiltonian. Afterwards, the
resulting 4-qubit-Hamiltonian has been reduced by hand in someway. In [11], the actions on two qubits are
replacedwith their expectation values after inspection of theHamiltonian. In [30], on the other hand, the
Hamiltonian is reduced to two qubits in a systematic fashion. Finally, the case is revisited in [31], where the
problem is reduced below the combinatorical limit to one qubit. The latter two attempts have used Jordan–
Wigner, the former the Bravyi–Kitaev transform first.

4.2. Fermi–Hubbardmodel
Wepresent another example to illustrate the trade-off between qubit number and gate cost as well as circuit
depth. For that purpose, we consider a simple toyHamiltonian and demonstrate that a reduction of qubit
requirements is theoretically possible. Althoughwe do notwant to claim that this scenario is realistic, we present
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a simple costmodel with it, that hints the potential up-scaling of circuit depth and simulation cost, as the number
of qubits decreases: we therefore consider the total sumof Pauli lengths of every term,which gives us an idea of
the number of two-qubit gates required, and the number ofHamiltonian terms, aswe decompose controlled
gates (28), which should give us an idea of possible T-gate requirements and simulation depth. Let us start now to
describe themodel.We consider a small latticewith periodic boundary conditions in the lateral direction. The
system shall contain 10 spatial sites, doubled by the spin-multiplicity. The problemHamiltonian is

H t c c c c

U c c c c , 48

i j E
i j j i

j
j j j j

,

1

10

10 10

å

å

=- +

+

á ñÎ

=
+ +

( )

( )

† †

† †

with its real coefficients t,U. It exhibits hopping terms along the edges E of the graph infigure 1. The sketch on
the left of this figure shows the connection graph of the first 10 orbitals. The other 10 orbitals are connected in
the same fashion, and each such site is interacting with its counterpart from the other graph.We aim to populate
thismodel with four Fermions, where the total spin polarization is zero. Two conventional transforms and two
transforms based on our codes are compared by the amount of qubits necessary, as well as the size of the
transformedHamiltonian.Note that besides eigenenergies, onemight also be interested in obtaining the values
of correlation functions, e.g. c ci já ñ† , which is done bymeasuring (qubit) operators obtainedwith the transform
(48). The only difference is that if a correlatormaps into unencoded space, it is to be set to zero. As benchmarks,
we decompose controlled gates and count the number of resulting Pauli strings. The sumof their total weight
constitutes the gate count. Having these two disconnected graphs is an invitation to us to append two codes
acting on sites 1–10 and 11–20 respectively. for this example, we consider the following codes:

1. Jordan–Wigner and Bravyi–Kitaev transform: for comparison, we employ these conventional transforms
on our system, withwhichwe do not save qubits. The resulting terms are best obtained by the transforming
every Fermion operator in (48) by (13), where the flip, parity and update sets, F( j),P( j),U( j) are determined
by the choice ofmatricesA andA−1, which are binary treematrices in the the case of the Bravyi-Kitev
transform, and identitymatrices for the Jordan–Wigner transform.

2. Checksum code⊕checksum code: knowing that the particle number is conserved, and that spin cannot be
flipped, we are free to save 2 qubits in constraining the parity of both, spin-up and -downparticles, alike.
This is done in appending two (N=10) checksum codes, where each that acts on only spin-up (spin-down)
orbitals, so indices 1–10 (11–20). The code resulting from appending two even checksum codes is linear,
and encoding and decoding function feature thematrices

1 0

1 0
1 0

1 0

,

1

1
1 1

1

1
1 1

. 49

 

 









⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

( )

However, as not the entire Fock space is encoded, we need to perform the operator transform according to
(31), where the update operator is defined by (33), whereA refers here to the firstmatrix.

3. Segment code ⊕segment code: knowing the particle number in one ‘spin suite’ to be 2, we can for both,
spin-up and -downorbitals, append twoK=2 segment codes to each other. This equals a total of 4 segment
codes, saving 4 qubits. The resulting global code e d,( ) is defined by

Figure 1. Left: illustration of the Fermi–Hubbardmodel considered. Lines between two sites, like 1 and 2, indicate the appearance of
the term t c c c c1 2 2 1+( )† † in theHamiltonian (48). Periodic boundary conditions link sites 1 and 5 aswell as 6 and 10. Sites 11–20
follow the same graph. Right: segmenting of the system; the two blocks are infringed. The gray links are to be adjusted.
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e e , 50i i

i i1

4

1

4

n n=
= =

⎛
⎝⎜

⎞
⎠⎟⨁ ˆ ⨁ ˆ( ˆ ) ( )

d

1
1

1
1

1 1

1 1
mod 2, 51w w= Ä  

⎛

⎝

⎜⎜⎜

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞

⎠

⎟⎟⎟
( ) ( )

where ê are the encodings of the subcodes (39), and in̂ are occupations on the segements of the total orbital
vector i

in n= ⨁ ˆ . These segments are formed as suggested by the right-hand side offigure 1. For details on
the decoding functions andHamiltonian adjustments, please consider appendix E. TheHamiltonian
transform is in the end carried out again by (31) and (33).

4. Checksum code Å segment code: a compromise between the above, in which the spin-up orbitals are
transformed via a checksum code, and the spin-down orbitals are transformed via two segment codes. The
global code used for theHamiltonian transformation is the appendage of an (even-weight,N=10)
checksum code and two (K=2) segment codes, includingHamiltonian adjustments on the spin-down
orbitals.

Note that from the combinatorial perspective, we could encode the problemwith 11 qubits. However, if we
append twoK=2 binary addressing codes to each other, the resultingHamiltonian is on 14 qubits already. The
problem is that the resultingHamiltonian for this case cannot be expressedwith decomposed controlled gates
due to the high number of resulting terms.

Indeed, table 2 suggests that decomposing the controlling gatesmight easily lead to very largeHamiltonians
with amultitude of very small terms. The gate decomposition appears therefore undesirable.We in general
recommend to rather decompose large controlled gates as shown in [35]. However, one also notices that an
elimination of up to two qubits comes at a low cost: the amount of gates is not higher than in the Bravyi–Kitaev
transform. As soon as we employ segment codes on the other hand, theHamiltonian complexity rises with the
amount of qubits eliminated.

5. Conclusion and futurework

In this work, we have introduced newmethods to reduce the number of qubits required for simulating
fermionic systems in second quantization.We see the virtue of the introduced concepts in the fact that it takes
into account symmetries on a simple but non-abstract level.Wemerely concern ourselves with objects as simple
as binary vectors, but attribute the physical interpretation of orbital occupations to them.At this level, the
mentioned symmetries are easy to apply and exploit. The accounting for the complicated antisymmetrization of
themany-bodywave function on the other hand is done in the fermionic operators, which to transformwe have
provided recipes for. In these operator transformswe see room for improvement: we for instance lack a proper
gate composition for update operators of nonlinear encodings at this point.We on the other hand have the
extraction superoperator X return only conventional (multi)-controlled phase gates. Nonlinear codes would on
the other hand benefit from a gate set that includes gates with negative control, i.e. with the (−1) eigenvalue
conditioned on 0ñ∣ eigenspaces of certain qubits involved.We consider ourwork to be relevant for quantum
simulationwith near-termdevices, with a limited number of qubits at disposal. Remarks about asymptotic
scaling are thusmissing in this work, butwould be interesting. Also, we have centered our investigations around
quantum computers with qubits. The idea behind the generalized operator transforms, however, can possibly be
adapted tomulti-level systems (qudits). The operator transforms of segment and binary addressing codes, for
instance,might simplify in such a setup, if generalized Pauli operators are available in some form.

Apart from the codes presented, we have laid the foundation for the reader to invent their own. As
supplementarymaterial, we include a program to transform arbitraryHamiltonians from a second-quantized
form into Pauli string form, using user-defined codes. In this waywe hope that in the long term,manymore
entries will be added to table 1. The extension of this work to amore general setting for symmetries, inwhich the
latter are generated by groups or sets of operators that commutewith theHamiltonian, is an open task.
Furthermore, we are certain that table 1 can be extended into another way: gate relaxations for transformswith
n>N have already been shown [2, 23, 26, 36], andwe are currently working in that direction.
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AppendixA.Onquantum simulation

At this point, we discuss quantum simulation in the context of our transformations. Amongst other things, we
describe themost simple algorithm forHamiltonian simulation, and proceed by investigating feasibility issues
with our transforms Let us start by explaining how this workfits into the larger frame.

The transformations we have developed are going to be useful to trade quantum resources for quantum
simulation of fermionic systems, independent from the concrete quantumalgorithms chosen for simulation of
the problem. For those problems fromquantum chemistry andmany-body physics we are usually given a
fermionic system and itsHamiltonian.One is then to determine the systemʼs ground state and ground state
energy, sometimes parts of its spectrum.Where classical computation is infeasible, we simulate the system inside
a quantum computer, onwhich the problem can be solvedwith existing algorithms.With either transform (see
table 1), the fermionic system is thereforemapped to a systemof n qubits.With the operator transform,H turns
intoH, a sumofweighted n2  Ä(( ) ) gates, Pauli strings at best.We then apply algorithms like quantumphase
estimation [3, 37–39], variational quantum eigensolvers [9, 11, 12, 40] , or adiabatic simulations [6]. All of those
algorithms receive ansatz states as inputs and in someway prepare (eigen-) states, while also outputting their
energy. The ground state is the state with the lowest energy, and can be thenmanipulated as it is inside the
quantum registers after the simulation. For the remainder of this appendix, we discuss implications of the
simulation algorithms onto our transforms Thuswe outline some principles, these algorithms rely on:
algorithmsmight require us to simulate the time evolution of our encoded system according toH. For that
purpose, we need to knowhow to transform the time evolution operator exp iHt( ), where t is a time step, into
gate sequences.Maybewe even need to apply those evolution conditionally,means as an operation controlled on
an auxiliary qubit (register).We thus need to embedH into an algorithm forHamiltonian simulation.

Let us nowbe a bitmore concrete, and select such an algorithm.Despite thewide range of theoretical
proposals forHamiltonian simulation algorithms [41–43], only the perhaps simplest scheme appears to be
experimentally feasible for digital quantum simulation at themoment.Note that it can only be applied to
Hamiltonians that are a sumof Pauli strings with real weights

with all . A1
X Y Z, , , n

H 


å q s q= ´ Î
s

s s
Î Ä

( )
{ }

The idea is to approximate exp iHt( ), by sequences of the exponentiated Pauli strings exp i sq ss( ), where s is a
time slice of t. Thismethod is commonly referred to as Trotterization. The numbers, signs and values of the time
slices s, as well as the ordering of the exponentiated strings, govern the error of the simulation—strategies to
minimize that error can be learned from theworks of Suzuki [44, 45]. Note that we do not specify whether the
Hamiltonian simulation is performed in an analog or digital fashion, however, not all stringsσ are feasible to be
implemented in an analog fashion. The digital gadget for the exponentiation of Pauli strings, on the other hand,
is well known [46]. See figure A1 for an example.We are therefore able to approximately perform a (conditional)
simulated time evolutionwithHof the form (A1). Using algorithms like variational eigensolvers, wherewe do
not simulate the time evolution but estimate theHamiltonian expectation value bymeasuring its terms, we are
in principle not tied to the structure of (A1). However, it ismore convenient. Equation (A1) gives us two
constraints on how to transform (11).

Thefirst constraint is that we need to decompose every fermionic operator into Pauli strings, using (28). The
total number of Pauli strings resulting can be a problematically highwhen the underlying codes are highly
nonlinear. For Trotterization thatmeans a tremendous increase in length due to the abundance of sequenced
Pauli string gadgets,many of themwith very small rotation angles (f infigure A1).

Figure A1. Implementing X X Z Zexp i j k l mf Ä Ä Ä( ), conditional on qubit ‘phase’. Xj Xk Zl Zm
sf q= Ä Ä Ä is a real rotation angle,

where s, is a time slice, and Xj Xk Zl Zm
q Ä Ä Ä is theHamiltonianweight of the string X X Z Zj k l mÄ Ä Ä , as in (A1).
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The second constraint seems trivial atfirst: in order to simulate aHamiltonian, it has to be hermitian.More
precisely, it has to be hermitian on the entire n2 Ä( ) , so the coefficient θσhave to be real.We on the other hand
might not even need the entire n2 Ä( ) to encode our physical system.Non-hermicities, meaning complex
coefficients θσ, can occurwhenever one is careless with the remainder of the qubit space, when the code space is
left or states are encoded in an ambiguousway.We here list a few pitfalls that can cause non-hermitian terms to
occur after the transform and discuss how to avoid them.

• Issuesmay be caused by codes that are not one-to-one. A one-to-one code e d,( ) has the property:
e d w w=( ( )) for all n

2w Î Ä . Althoughwe have excluded the one-to-one property from the definition of the
codes (taing into account the next item), it assures the hermiticity of the transformedHamiltonian.

• The encoded basis  has a size that is in between 2n and 2n−1, so n qubits provide toomuchHilbert space by
default. However, we can always add a state to the basis that ismapped to zero by all terms hab

ˆ . This state,
represented byν, can have several partners on the code space w, for which d w n=( ) (i.e. not bemapped
one-to-one). For example for particle-number conservingHamiltonians, we can balance these dimensional
mismatches using the vacuum state in such away, since c c 0i j Qñ =∣† .

• Weencounter this problemwhen using a codewith aHamiltonian, that is not feasible with it. The segment
codes for instance are feasible only for certain adjusted particle-number-conservingHamiltonians, as we shall
see in appendix E.

Appendix B.General operatormappings

The goal of this appendix is to verify that the fermionicmode is accurately represented by our qubit system. This
is divided into three steps: step one is to analyze the action ofHamiltonian terms on the fermionic basis. In the
second step, we verify parity and projector parts of (31) towork like the original operators in step one,
disregarding the occupational update for amoment. Conditions for this state update are subsequently derived.
The update operator (32) is shown to fulfill these conditions in the third step, thus concluding the proof.

B.1.Hamiltonian dynamics
In order to verify that the gate sequences (31) aremimicking theHamiltonian dynamics adequately, we verify
that the resulting terms have the same effect on theHamiltonian basis. This is done on the level of second
quantizationwith respect to the notation (18): no transition into a qubit system ismade. This step serves the sole
purpose to quantify the effect of theHamiltonian terms on the states. To that end, we begin by studying the effect
of a singular fermionic operator cj

(†) on a pure state, before considering an entire term hab
ˆ on a state in  . As a

preliminary, we note that (3)–(6) followdirectly from (2), when considering that

c c c c c 0. B1j j j j j= = Qñ =∣ ( )† †

The relations (3)–(6) indicate how singular operators act on pure states in general.Wenowbecomemore specific
and apply these rules to a state ci i

i Qñn( ( ) )∣† , that is not necessarily in  , but is described by an occupation
vector N

2n Î Ä . The effect of an annihilation operator on such a state is considered first:

c c c c c c B2j
i

N

i
i j

i j j
k j

k
1

i i j k  Qñ = - Qñn n n n

= < >

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ∣ ( ) ( ) ( ) ∣ ( )† † † †

c c
1

2
1 1 B3

i j
i

k j
k

i j k = - - - Qñn n n

< >

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) [ ( ) ] ( ) ∣ ( )† †

c1
1

2
1 1 . B4

i j k

N

k
1

mod 2i j k jk = - - - Qñn n n d

< =

+
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥( ) [ ( ) ] ( ) ∣ ( )†

A short explanation onwhat has happened: in (B2), cj has anticommutedwith all creation operator ci
† that have

indexes i<j. Depending on the component νj, a creation operator cj
† might nowbe to the right of the

annihilator cj. If the creation operator is not encountered, wemay continue the anticommutations of cj until it
meets the vacuumand annihilates the state by c 0j Qñ =∣ . Using the anticommutation relations (2), we therefore
replace c cj j

jn( )† with 1 11

2
j- - n[ ( ) ]when going from (B2) to (B3). Finally, the terms are rearranged in (B4):

conditional sign changes of the anticommutations are factored out of the new state with an occupation that is
nowdescribed by the binary vector u mod 2jn +( ) rather than n .When considering to apply a creation
operator cj

† on the former state, the result is similar. Alone at step (B3), we have to replace c cj j
jn( )† † by
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1 11

2
j+ - n[ ( ) ] instead, as now the case of appearance of the creation operator leads to annihilation: c c 0j j =† † .

We thusfind

c c c1
1

2
1 1 . B5j

i

N

i
i j k

N

k
1 1

mod 2j i j k jk  Qñ = - + - Qñn n n n d

= < =

+
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥( ) ∣ ( ) [ ( ) ] ( ) ∣ ( )† † †

Wenow turn our attention to the actual goal, effect of aHamiltonian term from (11) on a state in  (thismeans
its occupation vector n is in  ).We therefore consider a generic operator sequence c ci

l
a

b
a

b
1

1 mod 2
i

i
i

i =
+( ) ( )† ,

parametrized by someN-ary vector a N lÎ Ä[ ] and a binary vector b l
2Î Ä , for some length l.With (B4) and

(B5), we nowhave themeans to consider the effect such a sequence of annihilation and creation operators. The
two relationswill be repeatedly utilized in an inductive procedure, as every single operator c ca

b
a

b1 mod 2
i

i
i

i+( ) ( )† of

c ci
l

a
b

a
b

1
1 mod 2

i
i

i
i =

+( ) ( )† will act on a basis state, one after another. The stateʼs occupation is updated after every
such operation. For convenience, we define:

i l0, ..., , B6i N
2n Î ÎÄ ∣ { } ( )( )

, B7l n n= Î ( )( )

u mod 2. B8i i
a

1
in n= +- ( )( ) ( )

Now, the procedure starts:

c c c B9
i

l

a
b

a
b

k

N

k
1

1 mod 2

1
i

i
i

i k  Qñn

=

+

=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ∣ ( )† †

c c c
1

2
1 1 1 1 B10

i

l

a
b

a
b b

k

N

k
1

1
1 mod 2

1

mod 2
i

i
i

i l al j al
j k al k = - - - - Qñån n n d

=

-
+

=

+<

⎡
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⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) [ ( ) ( ) ]( ) ( ) ∣ ( )† †

c c c
1

2
1 1 1 1 B11b

i

l

a
b

a
b

k

N

k
1

1
1 mod 2

1

l al

l
j al j

l

i
i

i
i k

l 1

 = - - - - Qñån n n

=

-
+

=

<
-⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢
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⎤
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c
1

2
1 1 1 1 . B12

i

l
b

k

N

k
1

projector eigenvalues

parity signs 1

updated state

i ai

i
j ai j

i
k
0

 = - - - - Qñån n n

= =

<

  
  

  

⎡

⎣

⎢⎢⎢⎢
⎡
⎣⎢

⎤
⎦⎥

⎤

⎦

⎥⎥⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ∣ ( )†( ) ( ) ( )

Weagain explainwhat has happened: first, the rightmost operator, which is either cal
or cal

† depending on the
parameter bl, acts on the state according to either (B4) or (B5).We therefore combine the two relations for the
absorption of this operator c ca

b
a

b1 mod 2
l

l
l

l+( ) ( )† in (B10). In the same fashion, all the remaining operators of

the sequence are one-after-another absorbed into the state. The new state is described by the vector l 1n -( ) after
the update. And the cycle begins anewwith c ca

b
a

b1 mod 2
l

l
l

l
1

1
1

1+
-

-
-

-( ) ( )† . From (B11) on, we use the notations
(B6)–(B8) to describe partially updated occupations. By the end of this iteration, the occupation of the state is
changed to q mod 20n n= +( ) , with the total change q u mod 2ai i

= å . Also, the coefficients of (B12)
take into account sign changes from anticommutations (‘parity signs’ in (B12)) and the eigenvalues of the
applied projections. In its entirety, (B12) denotes the resulting state, and is themain ingredient for the next step.

B.2. Parity operators and projectors
Weare given the operator transform (31) and the state transform (19).Wewant to show the that the Fermion
system is adequately simulated, whichmeans to show that the effect (B12) is replicated by (31) acting on e n ñ∣ ( ) .
This is the goal of the next two steps.We start by evaluating the application of (31) on that state, up to the update
operator a . Thismeans that the operators applied implement two things only: the parity signs of (B12), and
the projection onto the correct occupational state. Note that these parity operators and projectors are applied
before the update operator in (31):

d p1
1

2
1 1 . B13a

v

l

w v

l

x

l

y x

l
b

a a
update operator 1

1

1

parity operators

1 1

projectors

parity operators

av aw ax ay x
x x

    - - - -q d

=

-

= + = = +


     
  

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟( ) ( ) ( ) [ ] [ ] ( )X X

Wenow commence our evaluation:

ed p1
1

2
1 1 B14a

v

l

w v

l

x

l

y x

l
b

a a
1

1

1 1 1

av aw ax ay x
x x
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=
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Let us describe what has happened: in (B15), the extraction property (21) is used, andwe arrive at (B16) after
using the property d e n n=( ( )) and the definition of the parity function. From therewe go to (B17)whenwe
merge the two products and perform rearrangements thatmake it easy to cast all delta and theta functions into
the components of the partially updated occupations in( ), (B18).

Comparing (B18) to (B12), we notice to have successfullymimicked the same sign changes and and
projections, as the coefficients in both relationsmatch.Now it is only left to show that the state update is
executed correctly. Naively, onewould think thatwewould need to show that

e c , B19a

k

N

k
1

k
0

 n ñ = Qñn

=

⎡
⎣⎢

⎤
⎦⎥∣ ( ) ˆ ( ) ∣ ( )† ( )

but this is too strong a statement. It is in fact sufficient to demand

e e e q mod 2 . B20a 0 n n nñ = ñ = + ñ∣ ( ) ∣ ( ) ∣ ( ) ( )( )

For 0 n Î( ) , (B19) and (B20) is equivalent. However, itmight be the case that 0 n Ï( ) , so 0n( ) is not encoded.
Thismean that (B19) is not fulfilled, since d e 0 0n n¹( ( ))( ) ( ). It is however not necessary to include 0n( ) in the
encoding, as for 0 n Ï( ) , the state will vanish anyways: we know from h : span spanab  ˆ ( ) ( ), that in this
case hab

ˆ must act destructively on that basis state, h c 0ab k k
k Qñ =nˆ ( ( ) )∣† . This detail is implemented by the

projector part of the transformed sequence (31). These projectors are, as we have just shown, working faithfully
like (B12), for the transformed sequence acting on every nñ∣ with n Î . Hence (B20) is a sufficient condition
for the updated state. The proof is completed oncewe have verified that (B20) is satisfiedwith the update
operator defined as in (32). This is done during the next step.

B.3. Update operator
Themissing piece of the proof is to check that (32) and (33) fulfill the condition (B20).We start by verifying the
condition (B20) for (33), whichwe have presented as special case of (32) for linear encoding functions:
e e emod 2 mod 2n n n n+ ¢ = + ¢( ) ( ) ( ) . Using that property, one can in fact derive (33) from (32) directly.
We now apply (33) to e n ñ∣ ( ) , butfirstly we note that

uX mod 2 , B21jj w wñ = + ñ∣ ∣ ( )

where uj is the jth unit vector of
n

2Ä . Using (B21) and the linearity of e, wefind:

e eX B22a
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e e q mod 2 B24n= + ñ∣ ( ) ( ) ( )

e q mod 2 , B25n= + ñ∣ ( ) ( )

which shows (B20) for linear encodings.
We now turn our attention to general encodings and prove the same expression for update operators as

defined in (32):

e eX
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e e e d e q mod 2 mod 2 B30n n n= + + + ñ∣ ( ) ( ) ( ( ( )) ) ( )

e q mod 2 , B31n= + ñ∣ ( ) ( )

which completes the proof.We swiftly recapwhat has happened: in (B26), we have plugged the definition of(32)
into the left-hand side of (B20). In between this equation and (B27), we have evaluated the expectation values of
the extracted operators q

je[ ]X . From that line to the next, the n
2Ä -sum is collapsed over the condition

t eqe n= ( ( )).We go from (B28) to (B29) by applying (B21). Oncewe insert the definition (30) into (B29), it
becomes obvious that the condition (B20) is fulfilled. Thus, the entire operator transform is nowproven.

AppendixC. Transforming particle-number conservingHamiltonians

In this appendix, we examine the richest symmetry to exploit for qubit savings: particle conservation.We begin
by introducing themost relevant class ofHamiltonians that exhibit this symmetry, but ultimately themain goal
of this appendix is to simplify the operator transform for all suchHamiltonians.Motivated by the
compartmentalized recipes of the conventionalmappings, (13), we suggest alternatives to the transform (31),
that do not depend on the sequence length l.

Let us start by noting how easy it is to state that aHamiltonian the total number of particles: aHamiltonian
like (11), conserves the total number of particles when every term hab

ˆ has asmany creation operators as it has
annihilation operators. The lengths l, implicit in the sequences hab

ˆ that occur in theHamiltonian, are thereby
determined by thefield theory ormodel, that underlies the problem. The coefficients hab, on the other hand, are
determined by the set of basis functions used. For first-principle problems in quantum chemistry and solid state
physics, we usually encounter particle-number-conservingHamiltonianswith terms of weight that is atmost
l=4:

H t c c U c c c c , C1
ij

ij i j
ijkl

ijkl i j k lå å= + ( )† † †

whereUijkl, tij are complex coefficients of the interaction and single particle terms, respectively. In the notation of
(11), these coefficients correspond to h(i, j, k, l)(1,1,0,0) and h(i, j)(1,0). The (l=4) interaction terms usually originate
from eithermagnetism and/or theCoulomb interaction. Even for these (l=4)-terms, the operator transform
(31) is quite bulky, andwe in general would like to have a transform that is independent of l. Before we begin to
discuss such transform recipes however, we need to set up some preliminaries. First of all, we need tofind a
suitable code (e d, ), as discussed in themain part. Ideally, wewould encode only theHilbert spacewith the
correct number of particles,M, butHilbert spaces of other particle numbers can also be included. Assuming that
theHamiltonian visits every state with the same particle number, wemust encode entireHilbert spaces N

m only.

Secondly, we need to reorder the fermionic operators inside theHamiltonian terms hab
ˆ . The reason for this is,

that our goal can only be achieved byfinding recipes for smaller sequences of constant length. In order to
transform theHamiltonian terms then, we need to invoke the anticommutation relations (2) to introduce an
order in hab

ˆ , such that these small sequences appear as consecutive, distinct blocks. Aswe shall see, these blocks
will have the shape c ci j

† . So every hab
ˆ needs to be reordered, such that every even operator is a creation operator,

and every odd operator an annihilator. For the (l=4)-terms in (C1), this reordering
means c c c c c c c c c ci j k l i l j k jl i kd -† † † † † .

Let us quickly sketch the idea behind that reordering and introduce some nomenclature: instead of
consideringHamiltonian terms, we realize that also the terms c ci j

† also conserve the particle number:

N
m

N
m  . Let us act with c ci j

† on an encoded state.We consider a state that is not annihilated by c ci j
† . Its

particle number is reduced by one through cj, but then immediately restored by ci
†. In fact, for a general sequence

of that arrangement, every even operator restores the particle number in this way and every odd reduces it.We
therefore call the subspace, inwhichwefind the state after an even (odd)number of operators, the even (odd)
subspace. Since all lmust be even for theHamiltonian to have particle conservation symmetry, the even subspace
is the one encoded. The odd subspace, on the other hand, has one particle less, so it is N

M 1 -( ), if the even one
is N

M .
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C.1. Encoding the two spaces separately
In this ordering, one canfind a recipe for a singular creation or annihilation operator. The strategy is to consider
a second code for the odd subspace. As before (e d, ) denotes the code for the even subspace, and now (e d,¢ ¢) is
encoding the odd subspace. The idea is that after an odd operator (which in this ordering is an annihilation
operator), the state is updated into the odd subspace.With every even operator (which is a creation operator),
the state is updated from the odd subspace back into the even one.Wefind:

c d p
1

2
, C2j

j
j j = +ˆ ¯ ( [ ]) [ ] ( )† ( ) X X

c d p
1

2
. C3j

j
j j

 = - ¢ ¢ˆ ( [ ]) [ ] ( )( ) X X

In (C3), j ( ) is defined as in (32), but its counterpart from (C2) is defined by

X
1

2
1 , C4

t

uj

i

n

i
t

i

n
t

k
1 1

j

n

i i

2

 

å  e= + - ¢
Î = =Ä

⎡
⎣⎢

⎤
⎦⎥

¯ ⨂( ) ( ( ) [ ]) ( )( ) X

with the primed functions p,qe¢ ¢ defined like (30) and (29), but with (e¢,d¢) in place of (e,d).
Thismethod relies on n qubits being feasible to simulate the odd subspace in. That is, however, not always

the case. The basis set of N
M 1 - is in general larger than N

M , whenM>N/2. In this way, the odd subspace can
also be larger and even be infeasible to simulate with just n qubits. As a solution, one changes the ordering into
odd operators being creation operators, and even ones being annihilators, like c c c ck i l j

† †. This causes the odd

subspace to become N
M 1 +( ), which has a smaller basis set than N

M . For that case (e,d) become the code for the
odd subspace, and (e¢,d¢)will be associated to the even subspace in (C2) and (C3).

The obvious disadvantage is that two codes have to be employed at once.However, the checksum code for
instance (section 3.1.1 in themain part), comes in two different flavors already, which can be used as codes for
even and odd subspaces, respectively.

C.2. Encoding the building blocks
The building blocks c ci j

† are guaranteed to conserve the particle number, so the even subspace is conserved. As a
consequence, onemay consider the possibility to transform the operators as the pairs we have rearranged them
into. In this way, we still have a certain compartmentalization of (31). Two special cases are to be taken into
account: when i>j, an additionalminus sign has to be added, as compared to the i<j case. Also, when i=j,
all parity operators cancel and the projectors coincide.Wefind:

c c
p p d d i j

d i j

1

1 ,
C5i j

i j
i j i j

j

1

4
,

1

2

ij   
=

- + - ¹

- =

q⎧
⎨⎪
⎩⎪

ˆ
( ) [ ] [ ] ( [ ])( [ ])

( [ ])
( )†

( ) X X X X

X

with i j, ( ) being the l=2 version of (32), and p and qe defined as usual by (29) and (30).

AppendixD.Multi-weight binary addressing codes based ondissections

With binary addressing codes, that is codes that are similar to the one presented in section 3.1.2 in themain part,
even an exponential amount of qubits can be saved for systemswith lowparticle number, but at the expense of
complicated gates. For this appendix, wefirstly recap the situation of section 3.1.2 and clarify what binary
addressingmeans. Firstly, some nomenclature is introduced.We then generalize the concept of binary
addressing codes toweightK codes, using results from [28]. As an example, we explicitly obtain theK=2 code.

Supposewe have a systemwithN=2r orbitals, and one particle in it. Our goal is to encode the basis state,
where the particle is on orbital yä[2r], as a binary number in r qubits. In this way, the state with occupational
vector uy is encoded as qy r, ñ∣ , with qy r r,

2Î Ä and qy bin 1y r,= +( ) . Probing an unknownbasis state, a
decodingwill nowhave components of the form

q 1 mod 2. D1
i r

i i
y r,w w + +

Î

( ) ( )
[ ]

Such binary functions output 1 onlywhen qy r,w = . In our nomenclature, we say that in the basis state qy r, ñ∣ ,
the particle has the coordinate y.We refer to codes that store particle coordinates in binary form, as binary
addressing codes.

In theK=1 case from themain part, the codewords just contain the binary representation of one
coordinate. The question is nowhow to generalize the binary addressing codes. Formulti-weight codes, we have
to haveK sub-registers to store the addresses ofK particles. Naively, onewouldwant to store the coordinate of
each particle in its respective sub-register in binary form, aswe have done forK=1. This however, holds a
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problem. As the particles are indistinguishable, the stored coordinates would be interchangeable, the codewould
not be one-to-one. For the binary numbers 1w and 2w , that represent a coordinate each, this wouldmean
d d1 2 2 1w w w wÅ = Å( ) ( ). That strategy not only complicates the operator transform, it also leads to a certain
qubit overhead, as each plainword has asmany codewords as there are permutations ofK items. Since this naive
idea leaves us unconvinced, we abandon it and search for one-to-one codes instead. The key is to consider the
coordinates to be in a certain format and this is where [28] comes into play.We proceed by using some relevant
concepts of that paper.

Let us consider the coordinates ofK particles to be given in theN-ary vector x x x, ..., K1= ( ). Between those
coordinates, we have imposed an ordering xi>xj as i>j. Particles cannot share the same orbital, sowe are
excluding the cases where two coordinates are equal. Using results from [28], we transform the latter into
coordinates that lack such an ordering, andwhere each component is an integer from a different range:

x y yy y
N

m
, ..., with . D2K

m

K

1
1

 = Î
=

⎡
⎣⎢
⎡
⎢⎢

⎤
⎥⎥

⎤
⎦⎥( ) ⨂ ( )

Through that transform, each vector y corresponds to a valid vector x, and there is no duplication.Wenow

represent the y-coordinates by binary numbers in the codewords n
2w Î Ä , where n logm

K N

m1= å =
⎡⎢ ⎤⎥:

q q q iwith and bin 1 . D3y i j i j

m

K N
m j

1

, ,
2

,m w = Î + =
=

Ä⎡⎢ ⎤⎥⨁ ( ) ( )

Ageometric interpretation of the process portrays the vector x as a set of coordinates in aK-dimensional,
discrete vector space. The vectors allowed by the ordering form thereby amulti-dimensional tetrahedron. The
states outside the tetrahedron do not correspond to a valid  vector, so encoding each coordinate xi in Nlog⌈ ⌉
qubits would be redundant.We therefore dissect the tetrahedron, and rearrange it into a brick, as it is referred to
in [28].What is actually done is to apply symmetry operations (like point-reflections) on the vector space until
the tetrahedron is deformed into the desired shape aK-dimensional, rectangular volume. The fact that the
vectors to encode are now all inside a hyper-rectangle is whatwewanted to achieve.We can now clip the ranges

of the coordinate axes (to log N

m
⎡⎢ ⎤⎥[ ]) to exclude vectors the vectors outside the brick. As the values on the axes

correspond to non-binary addresses, thismeans that the qubit space is trimmed aswell, andwe have eliminated
all states based on not-allowed coordinates. This is wherewe now reconnect to our task offinding a code: the e-
and d-functions have to take into account the reshaping process, as only the coordinates x have a physical
interpretation and can be decoded. The binary addresses in the codewords, on the other hand, are
representatives of y .Withwith binary logic, the two coordinates have to be reconnected.We illustrate this
abstract process on the example of the K 2=( )-code.

D.1.Weight-two binary addressing code
As an example, we present theweight-two binary addressing code onN=2r orbitals. The integer rwill
determine the size of the entire qubit system n r2 1= - , with two registers of size r and r−1.

With the two registers, a binary vector w a b= Å with r
2a Î Ä and r

2
1b Î Ä -( ) is defining the qubit

basis. In two-dimensions, the brick turns into a rectangle and the tetrahedron into triangle. The decoding
function takes binary addresses of the rectangular y , and transforms them into coordinates in the triangle x. The
ordering condition implies herebywhere to dissect the rectangle: figureD1may serve as a visual aid, disregarding
the excluded cases of y y1 2= , we find for y N y N, 21 2Î Î[ ] [ ] and x N 2Î Ä[ ] :

x x
y N y y N y

y N y y N y
,

, 2 for 2

, 2 1 for 2 .
D41 2

1 2 1 2

1 2 1 2

=
+ < +
- + > +

⎧⎨⎩( )
( )
( )

( )

This decoding is translated into a binary functions as follows: the coordinate y1 is represented by the binary
vectora and y2 by b. For each component defined by the binary vector b r

2Î Ä , we have

d S q S T q

S T q S q

, 1 1 , 1 ,

1 , 1 , , 1 mod 2,

D5

j
i

r

i i
j r

i

r

i i
j r

k

r

k k
j r

k

r

k k
j r

1

,

1

,

1

1
,

1

1
,

 

 

a b a b a b a b

a b a b a b

a a

b b

Å = + + + + + +

+ + + + + + +

= =

=

-

=

-

( ) ( ) ( ) ( ( ))( ( )) ( )

( ( ))( ( )) ( ) ( ) ( )

( )

with q q q q, , ...,j r j r j r j r,
1

,
2

,
2

,
r= ( ) as defined in (D3) andwe have employed two binary functions S and

T : ,r r
2 2

1
2  Ä Ä -( )( ) . Here, S compares the binary numbers to determine if the coordinates are left of the

dissection (a black tile infigureD1)
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S , 1 1 1 mod 2. D6r
j

r

r i j
i i j j r

1

1

1
å a b a a b a b a= + + + + +
=

-

- >

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( ) ( )

The binary functionT, on the other hand, is checkingwhether a set of coordinates is on a diagonal position
(diagonallymarked tiles). These excluded cases aremapped to 0 rÄ( ) altogether

T , mod 2. D7
i i ia b a b= +( ) ( ) ( )

This concludes the decoding function. Unfortunately, the amount of logic elements in the decodingwill
complicate theweight-two codes quite a bit, and the encoding function is hardly better. The reason for this is to
find in the ordering condition: the update operations are conditional onwhether we change the ordering of the
coordinates represented bya and b. This is reflected in a nonlinear encoding function: we remind us that the
encoding function is amap e: r

2
2

2
2 1r Ä Ä -( ), andwith 2

2rn Î Ä wefind

e q I q I

q I q

q q

mod 2 mod 2

mod 2

mod 2,

i r r j r r

i r r j r

i r j r

j i

j

i j

j i
i j

j i

j

i j

1 1

2 1

2 1

2

2

1

1
, ,

2 1

2

1

2
, ,

2 2

2

2 1

1
, ,

r

r

r

r

r r

r

r

r

1

1

1

1

1

1 1

å å

å å

å å

n n n

n n

n n

= + Å +

+ + Å

+ Å

= =

-
- -

= + =

- -

= + = +

-
- -

-

-

-

-

- -

-

( ) ( ) ( )

( ) ( )

( ) ( )

with qi j, as defined in (D3), and I q1j jj 2 ,j= =Ä( ) .
The dissecting of tetrahedrons can be generalized for codes of weight larger than two (see again [28]), but as

one increases the number of dissections, the code functions are complicated even further.

Appendix E. Segment codes

In this appendix, we provide detailed information on the segment codes.Wefirstly concern ourselves with the
segmentation of the global code, including a derivation of the segment sizes. In another subsectionwe construct
the segment codes themselves. The last subsection is dedicated to the adjustments one has tomake to
Hamiltonian, such that segment codes become feasible to use.

E.1. Segment sizes
At this point wewant to sketch the idea behind the segment sizes (N n,ˆ ˆ) stated during section 3.1.3 in themain
part, butfirst of all wewould like to clearly set up the situation.

We consider vectors N
2n Î Ä to consist of m̂ smaller vectors in̂ of length n 1+ˆ , such that i

i
m

1n n= =⨁ ˆˆ .
We call those vectors in̂ segments of n . The goal is now tofind a code (e d, ) to encode a basis  which contains
all vectors n withHammingweightK. For that purpose we relate the segment in̂ to a segment of the code space,

iŵ , for all iä[N]. The code space segments constitute the codewords in a fashion similar to the previous

segmentation of n : i
m i

1w w= =⨁ ˆˆ . However, the length of those binary vectors iŵ is n̂, such that with n mn= ˆ ˆ
and N m n 1= +ˆ ( ˆ ), the problem is reduced by m̂ qubits as compared to conventional transforms.We now

introduce the subcodes (e d: , :n n n n
2

1
2 2 2

1    Ä + Ä Ä Ä +ˆ ˆ( ˆ ) ˆ ˆ ( ˆ )), withwhichwe encode the ith segment in̂ as iŵ

FigureD1.Visualization of the two-dimensional vector space: a valid vector is represented as a colored tile. The left gray tiles and the
black ones constitute the triangle, defining all valid vectors x x x,1 2

= ( ) . Themarked diagonal tiles are to be excluded from the
encoded space. The black tiles and the gray ones on the right of this diagonal form the brick, containing all y y y,1 2

= ( ) vectors.
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(see figure E1). Note that we require the subcodes to inherit all the code properties. In this waywe guarantee the
code properties of the global code (e d, )when appending m̂ instances of the same subcode:

d d e e, . E1i i

i

m
i

i

m
i

i

m

i

m

1 1 1 1

w w n n= =
= = = =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟⨁ ˆ ⨁ ˆ( ˆ ) ⨁ ˆ ⨁ ˆ( ˆ ) ( )

ˆ ˆ ˆ ˆ

The orbital number being an integermultiple of the block size is of course an idealized scenario. Onewill
probably have to add a few other components in order to compensate for dimensionalmismatches.

We now set out tofind the smallest segment size n̂. It should be clear that n̂ is a function of the targeted
HammingweightK: thismeansK determines which segment codes are suitable for the system. The reason for
this is that we need to encode all vectors withweight 0 toK inside every segment, taking into account for the up to
K particles on the orbitals inside one segment. In order to includeweightK vectors, the size of each segment
must be at leastK. If the segment size would be exactlyK, on the other hand, we end up encoding the entire Fock
space again. In doing so, we are notmaking any qubit savings. The segmentsmust thus be larger thanK. In other
words, we look for an integer n K>ˆ , where the sumof all combinations n

2
1n Î Ä +ˆ ( ˆ ) with KwH n( ˆ ) is

smaller equal 2n̂

n

k
2

1
. E2n

k

K

0

 å +

=

⎜ ⎟⎛
⎝

⎞
⎠

ˆ ( )ˆ

In the case n K2=ˆ , the condition is fulfilled as identity, since exactly half of all 2n 1+ˆ combinations are included
in the sum.

E.2. Subcodes
This subsection offers a closer look at the construction of the segment subcodes (e d,ˆ ˆ). Let us start by
considering the decoding d̂ in order to explore the nature of the binary switch f w( ˆ ), that occurs in (38). One
observes the two (affine) linear n n

2 2
1 Ä Ä +( )ˆ ( ˆ ) -maps

1

1
0 ... 0

mod 2,

1

1
0 ... 0

1

1

mod 2. E3w w w w  +  


⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ˆ ˆ ˆ ˆ ( )

to produce together all the vectors withweight equal or smaller thanK, if we input all ŵ with KwH w( ˆ ) into
thefirst, and the remaining cases with KwH w >( ˆ ) into the second one.Note that the last component is always
zero in outputs of thefirst function and one in the second. Therefore, the inverse of bothmaps is always a linear
mapwith thematrix I n[ ∣ ]ˆ .We take this inverse as encoding (39), and the twomaps (E3) aremerged into the
decoding (38). In order to switch between these twomapswe define the binary function f : n

2 2 w Ä( ˆ ) ˆ such
that

f
K1 for w

0 otherwise.
E4Hw w= >⎧⎨⎩( ˆ ) ( ˆ ) ( )

In general, one can define this binary switch in a brute-force way by

f t1 mod 2. E5
t

t
k K

K

k
m

K

m m
1

2

w
1

2

K
2

2

H


å å w w= + +
= + Î

=
=Ä

( ˆ ) ( ˆ ) ( )

( )

For the caseK=1 (n 2=ˆ ), the switch equals f 1 2w w w=( ) , and for the codewe recover a version of binary
addressing codes, where the vector (0, 0, 0) is encoded.

Figure E1.Visualization of (E1) for n 4=ˆ . The global code (e d, ) relates the occupation vectors to the global codewords n w« . The

an instance of the subcode (e d,ˆ ˆ) relates ith block in , in n̂ , to the ith segment in the codewords, iŵ .
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d e
1

1 mod 2, 1 0 1
0 1 1

mod 2. E6
1 2

1 2

1 2
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⎛

⎝
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⎠
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In theK=2 (n 4=ˆ ) case, this binary switch is found to
be f mod 21 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4w w w w w w w w w w w w w w w w w= + + + +( ˆ ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

E.3.Hamiltonian adjustments
Asmentioned in section 3.1.3, in themain part, segment codes are not automatically compatible with all
particle-number-conservingHamiltonians.We showhere, how certain adjustments can bemade to these
Hamiltonians, such that their action on the space N

K is not changed, but segment codes become feasible to
describe themwith. In order to understand this issue, we begin by examining the encoded space. For that
purposewe reprise the situation of (E1), wherewe have append m̂ instances of the same subcode.With segment
codes, the basis  contains vectors withHammingweights from0 to mKˆ .We have encoded all possible vectors
n with K0 wH n( ) , but althoughwe have some, not all vectors with KwH n >( ) are encoded.We can
illustrate that point rather quickly: each segment has length K2 1+ , but the subcode encodes vectors n̂ with
only KwH n( ˆ ) . The (global) basis  is thus deprived of vectors i

in n= (⨁ ˆ )where for any
segment i K, w i

H n >( ˆ ) .
We now turn our attention to terms, which, when present in aHamiltonian,make segment codes infeasible

to use. Note, that  -vectors with KwH n ¹( ) , are not corresponding to fermionic states we are interested in. In
particular it is a certain subset of states with KwH n >( ) , which can lead out of the encoded space (into the states
previouslymentioned)when acted uponwith certain fermionic operators. Let us consider the operator c ci j

† as
an example, where i and j are in different segments (let us call these segments A andB). Now a basis state as
depicted infigure E2, is not annihilated by c ci j

† , and leads into a state with 3 particles in segment A. The problem
is that the initial state is encoded in the K 2=( ) segment codes, whereas the updated state (with the 3 particles in
A) is not. In general, operators hab

ˆ , that change occupations in between segments, will cause some basis states

with KwH n >( ) to leave the encoded space.We can however adjust these terms h hab ab ¢ˆ ˆ , such that

h : span spanab  ¢ ˆ ( ) ( ), where  is the basis encoded by the segment codes.We now sketch the idea behind
those adjustments, beforewe reconsider the situation offigure E2.Note that after these adjustments have been
made to all Hamiltonian terms in question, the segment codes are compatible with the newHamiltonian. The
idea is to switch those terms off for states, that already haveK particles inside the segments, towhich particles will
be added.We have to take care to do this in away that leaves theHamiltonian hermitian on the level of second

quantization, i.e. we have to adjust the terms hab
ˆ and hab

ˆ †
into hab

¢ˆ and hab ¢( ˆ )
†

, such that h hab ab
¢ + ¢ˆ ( ˆ )

†
is hermitian.

For theK=2 code offigure E2, we canmake the following adjustments:

c c c c c c c c c c c c1 1 . E7i j
l k l

k k l l i j
w v w

v v w w
, B , A
å å - -
< Î < Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )† † † † † †

Appendix F. Conventionalmappings

Wenow revisit the conventional transforms from section 2 in themain part, and discuss all notations that have
been introduced to express it close to the appealing nomenclature of [24, 33]. In particular, we show that the
relation (13) is recovered as a special case from (31) and (33). After that, we verify that such constructions satisfy
the fermionic anticommutation relations. For now, however, wewould like to restate the situation: a linear
n=N code, encoding the entire Fock space, ismediated by the quadraticmatricesA and A 1- , such that
e A mod 2n n=( ) ( ) and d A mod 21w w= -( ) ( ). Thematrices are required to be each others inverses, so

A A mod 2 . F1
j

N

ij jk ik
1

1å d=
=

-( ) ( )

Figure E2. (Filled) circles represent (occupied) fermionic orbitals, whereK=2 segment codes are used in the indicated blocks. This
occupational case is problematic for the codes, as the operator c ci j

† acting on this state leaves the encoded space.
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Wenow explain the formof the parity, update and flip sets. As the code is linear, the extraction operator is
retrieving only Pauli strings following (22) and (24). One finds:

d A Z Zmod 2 , F2i
j

ij j
j N

j
A

j F i
j

1 ij
1åw w=  = =-

Î Î
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⎡
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j i k
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1 ik
1ååw w=  = =

<

-

Î Î

-
⎡
⎣
⎢⎢

⎤
⎦
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[ ]

( )
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X X

where P(i) and F(i) are the parity andflip sets with respect to i, as we defined them in section 2. The update setsU
(i) are obtained fromupdate operators of linear encodings:

X X X X . F4a q

i
i

e
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A q

k l i N
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i j ij j iak
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  = = = =å
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[ ] [ ] [ ] ( )

In order to derive (13), wewould like to point out the commutation relations between Pauli strings
X Z,u U i u v F j vÎ Î(⨂ ) (⨂ )( ) ( ) and Zw P k wÎ(⨂ )( ) . Thesewill prove useful in verifying the fermionic commutation

relations later. For commutations of update- and flip set stringswe find:
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Wehave used the relation (F1) for the above. Similarly, for commutations of update and parity strings we have:
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u
w P j

w
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w
u U i

uij= - q

Î Î Î Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⨂ ⨂ ( ) ⨂ ⨂ ( )

( ) ( ) ( ) ( )

Finally, we combine (F2)–(F4)with the operator from (31). Using (F5) and (F7) tomove every update string
Xu U a ujÎ(⨂ )( ) in between the projectors and parity strings of aj and aj+1, we get
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which is a sequence of the operators (13). The transformof a singular operator is cj
(†) is thus derived from (31).

Althoughwe have already shown that (31) satisfies (3)–(6), but we nowwant to show that (13) fulfills the
anticommutation relations (2) in particular. In doing so, we generally distinguish the cases i=j and i j¹ . For
c c,j j +[ ](†) (†) , we consult (F5) andfind
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Wenotice that for i j¹ , the gate transformof c ci j c ci j( )† † properly differs by aminus sign from the transformof

c cj i c cj i( )† † due to (F7).Wewant tomake this observation explicit for the i j¹ case of c c,i j +[ ]† :
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At last, wefind by explicit construction :

c c Z c c Z
1

2
,
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. F15j j
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Thus, wefind c c,i j ij d=+[ ] ˆ† , and our construction (13) is in compliance with all relations in (2).

AppendixG.Notations

Symbol Type Informal definition

...[ ] Set of integers from1 to argument

=̂ Correspondence between fermionic operators/states to qubit counterparts

a N lÄ[ ] Length-l N-ary vector describing orbitals in hab
ˆ

A 1-( ) N N´( ) binarymatrix defining a conventional encoding (decoding)
b l

2Ä Length-l binary vector determining operator types in hab
ˆ

 Basis of a space of Fermions onN orbitals, smaller than the Fock space

cj
(†) N ( ) Fermionic annihilation (creation) operator

n2 Ä( ) Vector space of n-qubit states

d n N
2 2 Ä Ä Decoding function

e N n
2 2 Ä Ä Encoding function

qe n n
2 2 Ä Ä Update function important for nonlinear encodings, see (30)

N Fock space restricted onN orbitals

F j( ) subset of [n] Flip set with respect to orbital j, see (13)
hab
ˆ span span ( ) ( ) Term in a fermionicHamiltonian, see (11)

N
M AntisymmetrizedHilbert space ofM indistinguishable particles onN orbitals

 Identity operator on arbitrary spaces

K [N] TargetedHammingweight of a code

l Length of a sequence of fermionic operators in hab
ˆ

L [n] Weight of a Pauli string

...( ) Linear operators on argument vector space

M [N] Total particle number in a system ofN orbitals

n Number of qubits

N Number of orbitals

n N
2 Í Ä N-orbital occupation vector representing a fermionic basis state, see (18)

w n
2Ä Binary vector representing a product state in the n-qubit basis, see (19)

p n N
2 2 Ä Ä Parity function, implementing signs for parity operators

P j( ) subset of [n] Parity set of orbital j, see (13)
 Set of single-qubit Pauli operators X Y Z, ,{ }
q N

2Ä Change of a vector n by a term hab
ˆ

R Binary N N´( ) matrix, with the lower triangle (including diagonal)filledwith ones
θij N 2

2Ä[ ] Discrete version of theHeaviside function, see (14)
uj

N
2Ä or n

2Ä
Binary unit vector, just component j is one

U( j) subset of [n] Update set of orbital j, see (13)
a n2  Ä(( ) ) Update operator with respect to an occupation of a, see (32) and (33)
 subset of N

2Ä Defines the occupation vectors n implementing the basis  , see (18)
w ...H( ) N 0N

2 ÈÄ [ ] { } Hammingweight of a binary vector, sumof its components

X n n
2 2

2   Ä Ä( ) (( ) ) Extraction superoperator,maps binary functions into quantumgates, see (20)–(28)

2 Binary digits 0, 1{ }
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