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Abstract

The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian
into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting
the understanding of many-body systems in chemistry and physics, quantum simulation is one of the
great promises of the coming age of quantum computers. Interestingly, the minimal requirement of
qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other
symmetries. This leads to qubit requirements that are well above the minimal requirements as
suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-
off qubit requirements against the complexity of the resulting quantum circuit. We first show that any
classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of
fermionic models to quantum gates. As an illustrative example, we present a mapping based on a
nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense
of additional quantum gates. We proceed to use this framework to present a number of simpler
mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role
of symmetries such as particle conservation, and savings that could be obtained if an experimental
platform could easily realize multi-controlled gates.

1. Introduction

Simulating quantum systems on a quantum computer is one of the most promising applications of small scale
quantum computers [1]. Significant efforts have gone into the theoretical development of simulation algorithms
[2-6], and their experimental demonstrations [7—12]. Resource estimates [ 13—15], such as for example for
FeMoCo, a model for the nitrogenase enzyme, indicate that simulations of relevant chemical systems may be
achieved with relatively modest quantum computing resources [16] in comparison to many standard quantum
algorithms[17, 18].

One essential component in realizing simulations of fermionic models on quantum computers is the
representation of such models in terms of qubits and quantum gates. Following initial simulation schemes for
fermions hopping on a lattice [19], more recent proposals used the Jordan—Wigner [20] transform [3, 7, 21, 22],
the Verstraete-Cirac mapping [23], or the Bravyi—Kitaev transform [2] to find a suitable representation.
Specifically, the task of all such representations is two-fold. First, we seek a mapping from states in the fermionic
Fock space of N'sites to the space of 1 qubits. The fermionic Fock space is spanned by 2™ basis vectors |v, ..., vy)
wherev; € {0, 1} indicates the presence (v; = 1) or absence (1; = 0) of a spinless fermionic particle at orbital i
Such amapping e: Z3N — Z5" is also called an encoding [24]. An example of such an encoding is the trivial one
inwhich n = Nand qubits are used to represent the binary string v = (v1,..., vy). Thatis

’ We slightly abuse the nomenclature of quantum chemistry and molecular physics in merging spatial and spin quantum numbers into one
index j, and use it as a label for what we call now the jth orbital.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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|w) = le@)) = @lwj), 1)
j=1

where w; = vjin the standard basis {|0), [1)}.

Second, we need a way to simulate the dynamics of Fermions on these N orbitals. These dynamics can be
modeled entirely in terms of the annihilation and creation operators ¢jand ch that satisfy the anticommutation
relations

[Ci) Cj]+ == O) [C,T) C]T]+ - 0: [Ci> C}']+ = 61]: (2)

with [A, B]; =AB + BA. Following these relations, the operators act on the fermionic Fock space as

cof efcl e Lcl1e) =0, 3)

¢, € il cf1O) =0, 4)

PCi ci’;ilc;ﬂcgm... el 1) = (="l ci’;ilcilﬂ... ¢l 10), ©)
ol el c};ilc;{m... ch1e) = (-t Citnqcilcilﬂ"' cl10), (6)

where |©) is the fermionic vacuum and {i,..., iy} € {1,..., N}. Mappings of the operators ¢; to qubits typically
use the Pauli matrices X, Z, and Yacting on one qubit, characterized by their anticommutation relations

[P, P, = 26l forall B, € P = {X, Z, Y}. An example of such a mapping is the Jordan—Wigner transform
[20] given by

¢ =Z91@ o ®I%", (7)
¢f =797 @ ot © 1%, ®)
where
1 .
om=0)(1] = E(X + 1Y), ©)]
ot =1)(0] = %(X — iY). (10)

Itis easily verified that together with the trivial encoding (1) this transformation satisfies the desired
properties (2)—(6) and can hence be used to represent fermionic models with qubit systems.

In order to assess the suitability of an encoding scheme for the simulation of fermionic models on a quantum
computer, a number of parameters are of interest. The first is the total number of qubits # needed in the
simulation. Second, we may care about the gate size of the operators ¢jand c; when mapped to qubits. In its
simplest form, this problem concerns the total number of qubits on which these operators do not act trivially,
that is, the number of qubits L, on which an operator acts as PeP instead of the identity I, sometimes called
the Pauli length. Different transformations can lead to dramatically different performance with respect to these
parameters. For both the Jordan—Wigner as well as the Bravyi—Kitaev transform # = N, butwe have L = O(n)
for the first, while L = O(logn) for the second. We remark that in experimental implementations we typically
do not only care about the absolute number L, but rather the specific gate size and individual difficulty of the
qubit gates each of which may be easier or harder to realize in a specific experimental architecture. For error-
corrected quantum simulation, the cost in T-gates is as important to optimize as the circuit depth [25], and
quantum devices with restricted connectivity even require mappings tailored to them [26, 27]. Finally, we
remark that instead of looking for a mapping for individual operators CJ(T) we may instead opt to map pairs (or
higher order terms) of such operators at once, or even look to represent sums of such operators.

1.1. Results

Here, we propose a general family of mappings of fermionic models to qubit systems and quantum gates that
allow us to trade-off the necessary number of qubits # against the difficulty of implementation as parametrized
by L, or more complicated quantum gates such as CPHASE. Ideally, one would of course like both the number of
qubits, as well as the the gate size to be small. We show that our mappings can lead to significant savings in qubits
for a variety of examples (see table 1) as compared to the Jordan—-Wigner transform for instance, at the expense
of greater complexity in realizing the required gates. The latter may lead to an increased time required for the
simulation depending on which gates are easy to realize in a particular quantum computing architecture.
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Table 1. Overview of mappings presented in this paper, listed by the complexity of their code functions, their qubit savings, qubit
requirements (1), properties of the resulting gates and first appearance. Mappings can be compared with respect to the size of plain words
(N) and their targeted Hamming weight K. We also refer to different methods that are not listed, as they do not rely on codes in any

way [30, 31].

Mapping En-/decoding type Qubits saved n(N, K) Resulting gates Origin
Jordan—Wigner | Parity transform Linear/linear None N Length-O(n) Pauli strings [20,24]
Bravyi—Kitaev transform Linear/linear None N Length-O(log n) Pauli strings [2]
Checksum codes Linear/ affine linear o(1) N-1 Length-O(n) Pauli strings Here
Binary addressing codes Nonlinear/nonlinear 0" log(NX/K!) (O(n))-controlled gates Here
Segment codes Linear/nonlinear O(n/K) N / (1 + ﬁ) (O(K))-controlled gates Here

At the heart of our efforts is an entirely general construction of the creation and annihilation operators in (3)
given an arbitrary encoding e and the corresponding decoding d. As one might expect, this construction is not
efficient for every choice of encoding e or decoding d. However, for linear encodings e, but possibly nonlinear
decodings d, they can take on a very nice form. While in principle any classical code with the same properties can
be shown to yield such mappings, we provide an appealing example of how a classical code of fixed Hamming
weight [28] can be used to give an interesting mapping.

Two other approaches allow us to be more modest with the algorithmic depth in either accepting a qubit
saving that is linear with N, or just saving a fixed amount of qubits for hardly any cost at all.

In previous works, trading quantum resources has been addressed for general algorithms [29], and quantum
simulations [30—-32]. In the two works of Moll et al and Bravyi et al, qubit requirements are reduced with a
scheme that is different from ours. A qubit Hamiltonian is first obtained with e.g. the Jordan—Wigner transform,
then unitary operations are applied to it in order taper qubits off successively. The paper by Moll et al provides a
straight-forward method to calculate the Hamiltonian, that can be used to reduce the amount of qubitsto a
minimum, but the number of Hamiltonian terms scales exponentially with the particle number. The notion that
our work is based on, was first introduced in [31] by Bravyi et al, for linear en- and decodings. With the
generalization of this method, we hope to make the goal of qubit reduction more attainable in reducing the effort
to do so. The reduction method is mediated by nonlinear codes, of which we provide different types to choose
from. The transform of the Hamiltonian is straight-forward from there on, and we give explicit recipes for
arbitrary codes. We can summarize our contributions as follows.

* Weshow that for any encoding e : Z3N — 75" there exists a mapping of fermionic models to quantum gates.
For the special case that this encoding is linear, our procedure can be understood as a slightly modified version
of the perspective taken in [24]. This gives a systematic way to employ classical codes for obtaining such
mappings.

+ Using particle conservation symmetry, we develop 3 types of codes that save a constant, linear and exponential
amount of qubits (see table 1 and sections 3.1.1-3.1.3). An example from classical coding theory [28] is used to
obtain significant qubit savings (here called the binary addressing code), at the expense of increased gate
difficulty (unless the architecture would easily support multi-controlled gates).

+ The codes developed are demonstrated on two examples from quantum chemistry and physics.

1. The Hamiltonian of the well-studied hydrogen molecule in minimal basis is re-shaped into a
two-qubit problem, using a simple code.

2. A Fermi—Hubbard model ona2 x 5 lattice and periodic boundary conditions in the lateral direction is
considered. We parametrize and compare the sizes of the resulting Hamiltonians, as we employ
different codes to save various amounts of qubits. In this way, the trade-off between qubit savings and
gate complexity is illustrated (see table 2).

2.Background

To illustrate the general use of (possibly non linear) encodings to represent fermionic models, let us first briefly
generalize how existing mappings can be phrased in terms of linear encodings in the spirit of [24]. Under
consideration in representing the dynamics is a mapping for second-quantized Hamiltonians of the form
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Table 2. Relaxing the qubit requirements for the Hamiltonian (48), where
various mappings trade different amounts of qubits. The notation @ is
used as two codes for different graphs are appended. We compare different
mappings by the amount of qubits. We make comparrisons by the number
of Hamiltonian terms and the total weight of the resulting Pauli strings.

Mapping Qubits Gates Terms
Jordan—Wigner transform 20 232 74
Bravyi—Kitaev transform 20 278 74
Checksum code @ Checksum code 18 260 74
Checksum code @ Segment code 17 4425 876
Segment code @ Segment code 16 9366 1838

00 1
H=3" > ha [T (€d)"(c,)" "™
1=0 a€[N]”! i=1
bezs!

=> > ha (11)
i a,b
with hap=0
where h,p, are complex coefficients, chosen in a way as to render H Hermitian. We illustrate the use of such a
mapping in the context of quantum simulation in appendix A. For our convenience, we use length-I N-ary
vectors a = (..., d) € [N]® to parametrize the orbitals on which a term ﬁab is acting, and write
[N] = {1,..., N}. Asimilar notation will be employed for binary vectors of length I, with
b=(b,.b) € Z?l, Z, = {0, 1}, deciding whether an operator is a creator or annihilator by the rules
€ = cPand (P = 1.

Every term ftab is alinear operation Fy — Fy, with Fy being the Fock space restricted on N orbitals, the
direct sum of all possible antisymmetrized M-particle Hilbert spaces Hy : Fy = @N_, H 1. Conventional
mappings transform states of the Fock space Fyy into states on N qubits, carrying over all linear operations as
well L(Fy) — L(C*=N).

Before we start presenting conventional transformation schemes, we need to make a few remarks on
transformed Hamiltonians and notations pertaining to them. First of all, we identify the set of gates
{P, I}¥" = {X, Y, Z, 1}¥" with the term Pauli strings (on n qubits). The previously mentioned Jordan—Wigner
transform, obviously has the power to transform (11) into a Hamiltonian that is a weighted sum of Pauli strings
on N qubits. General transforms, however, might involve other types of gates. We however have the choice to
decompose these into Pauli strings. One might want to do so when using standard techniques for Hamiltonian
simulation. In the following, we will denote the correspondence of second-quantized operators or states B to
their qubit counterparts Cby: B = C. For convenience, we will also omit identities in Pauli strings and rather
introduce qubitlabels,e.g. X @ I @ X = X; ® X5 = (Qic(1,5)X;) and write " = 1. A complete table of
notations can be found in appendix G.

Consider alinear encoding of N fermionic sites into n = N qubits given by a binary matrix A such that

N

|w) = le(rv)) = |Av mod 2) = H (c]T)”J' |©) (12)

=1

and A isinvertible, i.e. (AA~! mod 2) = I. Note thatin this case, the decoding given by
v = d(w) = (A~'w mod 2)isalso linear. It is known that any such matrix A, subsequently also yields a
mapping of the fermionic creation and annihilation operators to qubit gates [24]. To see how these are
constructed, let us start by noting that they must fulfill the properties given in (3)—(6) and (2), which motivates
the definition of a parity, a flip and an update set below:

1. /" anticommutes with the first m — 1 operators and thus acquires phase (—1)" .

2. A creation operator Ciz, might be absent (present) in between c; (and ¢ » leading the rightmost operator

Ly—

ci(:) to map the entire state to zero since ¢; |©) = 0 (¢ ¢/ = 0).

Im “lm
3. Given that the state was not annihilated, the occupation of site i,, has to be changed. This means a creation
operator c;f” has to be added or removed between Cij—nfl and ¢,/ T
These rules tell us what the transform of an operator C}T) has to inflict on a basis state (12). In order to implement
the phase shift of the first rule, a series of Pauli-Z operators is applied on qubits, whose numbers are in the parity
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set (with respecttoj € [N]), P(j) C [N]. Following the second rule we project onto the &1 subspace of the
Z-string on qubits indexed by another [N] subset, the so-called flip set of j, F(j). The update set of j, U(j) C [N]
labels the qubits to be flipped completing the third rule using an X-string

\b( - \b+1 mod 2
(chh(c)

Al( ® Xk](]l ) ® z,] Q® Zum (13)

2\keu(j IeF(j) ) meP()

with b € Z,. P(j), F(j) and U( j) depend on the matrices A and A~ as well as the parity matrix R. The latter is a
(N x N)binary matrix which has its lower triangle filled with ones, but not its diagonal. For the matrix entries
this means R;; = 0;;, with 0;; as the discrete version of the Heaviside function

0 i<
;=4 7 (14)
1 1>

The set members are obtained in the following fashion:

1. P(j) contains all column numbers in which the jth row of matrix (RA~! mod 2) has non-zero entries.
2. F(j) contains the column labels of non-zero entries in the jth row of A,

3. U(j) contains all row numbers in which the jth column of A has non-zero entries.

Note that this definition of the sets differs from their original appearance in [24, 33], where diagonal
elements are not included. In this way, our sets are not disjoint, which leads to Z-cancellations and appearance of
Pauli-Y operators, but we have generalized the sets for arbitrary invertible matrices, and provided a pattern for
other transforms later. In fact, we recover these linear transforms from the general case in appendix F. There we
also show explicitly that these operators abide by (2)—(6).

2.1. Jordan—Wigner, parity and Bravyi—Kitaev transform

As an illustration, we present popular examples of these linear transformations, note again that all of these will
haven = N.The Jordan—-Wigner transform is a special case for A = I, leading to the direct mapping. The
operator transform gives L = O(N) Pauli strings as

(606 ™42 2 0 4 i1 ) @ Zo (1s)

m<j

In the parity transform [24], we have L = O(N) X-strings:

1 1
ar=tE L ast | (16)
11 111

(C}')h(cj)bJrl mod 2
1 o N
222 ® X = i)' Y) ® X (17)
m=j+1

The Bravyi—Kitaev transform [2] is defined by a matrix A [24, 33] that has non-zero entries according to a certain
binary tree rule, achieving L = O(log N).

2.2. Saving qubits by exploiting symmetries
Our goal is to be able to trade quantum resources, which is done by reducing degrees of freedom by exploiting
symmetries. For that purpose, we provide a theoretical foundation to characterize the latter.

Parity, Jordan—Wigner and Bravyi—Kitaev transforms encode all Fy states and provide mappings for every
L(Fy) operator. Unfortunately,they require us to own a N-qubit quantum computer, which might be
unnecessary. In fact, the only operator we want to simulate is the Hamiltonian, which usually has certain
symmetries. Taking these symmetries into account enables us to perform the same task with n < N qubits
instead. Symmetries usually divide the Fy into subspaces, and the idea is to encode only one of those. Let 13 be a
basis spanning a subspace span(3) C Fy be associated with a Hamiltonian (11), where for every I, a, b;
flab : span(B) — span(B). Usually, Hamiltonian symmetries generate many such (distinct) subspaces. Under
consideration of additional information about our problem, like particle number, parity or spin polarization,we
select the correct subspace. Note that particle number conservation is by far the most prominent symmetry to
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take into account. It is generated by Hamiltonians that are linear combinations of products of ¢; ¢ li,j€[N]
These Hamiltonians, originating from first principles, only exhibit terms conserving the total particle
number; Ay : HN — HA. From all the Hilbert spaces X', one considers the space with the particle number
matching the problem description.

These symmetries will be utilized in the next section: we develop a language that allows for encodings e that
reduce the length of the binary vectors e (/) as compared to V. This means that the state 2 will be encoded in
n < N qubits, since each digit saved corresponds to a qubit eliminated. As suggested by Bravyi et al [31], qubit
savings can be achieved under the consideration of non-square, invertible matrices A. However, we will see
below that using transformations based on nonlinear encodings and decodings d (the inverse transform defined
by A™! before), we can eliminate a number of qubits that scales with the system size. For linear codes on the other
hand, we find a mere constant saving.

3. General transformations

We here show how second-quantized operators and states, Hamiltonian symmetries and the fermionic basis B
are fused into a simple description of occupation basis states. While in this section all general ideas are presented,
we would like to refer the reader to the appendices for details: to appendix B in particular, which holds the proof
of the underlying techniques. Fermionic basis states are represented by binary vectors v € Z5, with its
components implicating the occupation of the corresponding orbitals. Basis states inside the quantum
computer, on the other hand, are represented by binary vectors on a smaller space w € Z3". These vectors are
code words of the former 2/, where the binary code connecting all ~ and w is possibly nonlinear. In the end, an
instance of such a code will be sufficient to describe states and operators, in a similar way than the matrix pair
(A, A~") governs the conventional transforms already presented. We now start by defining such codes and
connect them to the state mappings.

Let span(B) be a subspace of Fy, as defined previously. For n > log|B|, we define two binary vector
functions d : Z5" — Z5N, e : Z§N — Z5", where we regard each component as a binary function
d = (dy,....dy) | di: Z5" — 7. Furthermore we introduce the binary basis set V C Z5N, with

N
veV, onlyif (H (cj)"f)|@> € B. (18)

i=1

All elements in B shall be represented in V. If forall v € V the binary functions e and d satisfy d (e (v)) = v,
andforallw € Zy": d(w) € V,thenwe call the two functions encoding and decoding, respectively. An
encoding-decoding pair (e, d) formsa code.

We thus have obtained a general form of encoding, in which qubit states only represent the subspace
span(B). The decoding, on the other hand, translates the qubit basis back to the fermionic one:

n N
|(.d> = ®|wj> = (H (CiT)di(w))|@>. (19)
j=1

i=1

We intentionally keep the description of these functions abstract, as the code used might be nonlinear, i.e. it
cannot be described with matrices A, A~!. Nonlinearity is thereby predominantly encountered in decoding
rather than in encoding functions, as we will see in the examples obtained later.

For any code (e, d), we will now present the transform of fermionic operators into qubit gates. Before we can
do so however, two issues are to be addressed. Firstly, one observes that we cannot hope to find a transformation
recipe for a singular fermionic operator c]ﬁ). The reason for this is that the latter operator changes the occupation
of the jth orbital. Asa consequence, a state with the occupation vector ¥ is mapped to (v + u; mod 2), where u;
is the unit vector of component j; (1;); = ;. The problem is that since we have trimmed the basis,

(¥ + uj mod 2) will probably not be in V, which means this state is not encoded”. The action of C}T) is, thus, not

defined. We can however obtain a recipe for the non-vanishing Hamiltonian terms Fap as they do not escape the
encoded space being (span(B) — span([3))-operators. Note that this issue is never encountered in the
conventional transforms, as they encode the entire Fock space.

Secondly, we are yet to introduce a tool to transform fermionic operators into quantum gates. The structure
of the latter has to be similar to the linear case, as they mimic the same dynamics as presented in section 2. In
general, a gate sequence will commence with some kind of projectors into the subspace with the correct
occupation, as well as operators implementing parity phase shifts. The sequence should close with bit flips to
update the state. The task is now to determine the form of these operators. The issue boils down to finding

4 ‘Unencoded state’ is actually a slightly misleading term: when we say astate A € Z3™ is not encoded, we actually mean that it cannot be
encoded and correctly decoded, so d(e(X)) = A.
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operators that extract binary information from qubit states, and map it onto their phase. In other words, we need
to find linear operators associated with e.g. the binary function dj, such that it maps basis states

|w) — (—1)%|w). In any case, we must recover the case of Pauli strings on their respective sets when
considering linear codes. For our example, this means the linear case yields the operator (&Qmer(j)Zm). Using
general codes, we are lead to define the extraction superoperation X, which maps binary functions to quantum
gates on n qubits:

X (Z5" — L) — L(CH®M. (20)
The extraction superoperator is defined for all binary vectors w € Z5" and binary functions f, g : Z5" — Z,as:

X[ fllw) = (1))@ |w)

(Extraction property), 21)
Xlw — f(w)+ g(w) mod 2] = X[ f] X[g]
(Exponentiation identity), (22)
X[w—=bl=(-D'T |beZ,
(Extracting constant functions), (23)

X[w—wl=2 |jeln]

(Extracting linear functions), (24)

X|w — [] wj|= C*PHASE(1,... ix+1)
jeS
with S= {i}] C[n), ken-1]
(Extracting non—linear functions). (25)
Note that the first two properties imply that the operators X[ ], X[g] commute and all operators are diagonal in
the computational basis. Given that binary functions have a polynomial form, we are now able to construct
operators by extracting every binary function possible, for example
X[w — 1 4 w; + wiw; mod 2]
=X[w — 1] X[w — wi] X[w — wiw;] (26)
=—7; CPHASE(1, 2). (27)

We firstly we have used (22) to arrive at (26), and then reach (27) by applying the properties (23)—(25) to the
respective sub-terms. This might however not be the final Hamiltonian, since the simulation algorithm might
require us to reformulate the Hamiltonian as a sum of weighted Pauli strings [4, 5]. In that case, need to
decompose all controlled gates. The cost for this decomposition is an increase in the number of Hamiltonian
terms, for instance we find CPHASE(, j) = %(H + Zi+ Zj — Z; ® Zj).Ingeneral, (24) and (25) can be
replaced by an adjusted definition:

xleHWj]:H—ZH%(H—Zj) Sg[n]

jeS jeS
(Extracting non-constant functions). (28)

We will be able to define the operator mappings introducing the parity and update functions, p and € 4:
i1
p: 75" — 7SN, pi(w) = > di(w) mod 2, (29)
i=1
€1: 75" — 75", with q € Z5N
e1(w) =e(d(w) + q mod 2) + w mod 2. (30)

Finally, we have collected all the means to obtain the operator mapping for weight-/ operator sequences as they
occurin (11):

! -1 I
H (C;i)b;(cai)1+bl mod2 2 7/ u[H H (— l)eav”w]

i=1 v=1 w=v+1

1 1
X H %(H — l H (—]_)5nxuy](—1)bx x[dux]Jx[pax], (31)
x=1

y=x+1
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where 0;;is defined in (14) and 6;;is the Kronecker delta. In this expression, we find various projectors, parity
operators with corrections for occupations that have changed before the update operator is applied. The update
operator U 4, is characterized by the Z5N -vector q = 25:1 u,, mod 2

Ui= 3 [@(X,»)ff] I1 %(H + (=15 X[ D). (32)

t €zZy"Li=1 j=1

This is a problem: when summing over the entire Z5", one has to expect an exponential number of terms. As a
remedy, one can arrange the resulting operations into controlled gates, or rely on codes with a linear encoding. If
the encoding can be defined usinga binary (n x N)-matrix A, e(v) = (Av mod 2), the update operator
reduces to

n Z A;jqj mod 2

U= Q)5 : (33)
i=1

In appendix B, we show that (31)—(33) satisfy the conditions (2)—(6). Note that the update operator is also
important for state preparation: let us assume that our qubits are initialized all in their zero state, (Q)ic[n110))s
then the fermionic basis state associated with the vector v is obtained by applying the update operator {/*. Here
the vector a contains all occupied orbitals, such that g = v. Even for nonlinear encodings the state preparation
can done with Pauli strings: as the initial state is a product state of all zeros, we can replace operators
Xlw — Ilicscpy wilby L.

In the following we will turn our attention to the most fruitful symmetry to take into account: particle
conservation symmetry. While code families accounting for this symmetry are explored in the next subsection,
alternatives to the mapping of entire Hamiltonian terms are discussed for such codes in appendix C.

3.1. Particle-number conserving codes

In the following, we will present three types of codes that save qubits by exploiting particle number conservation
symmetry, and possibly the conservation of the total spin polarization. Particle-number conserving
Hamiltonians are highly relevant for quantum chemistry and problems posed from first principles. We therefore
set out to find codes in which v € V have a constant Hamming weight wy(v) = K. Since the Hamming weight
is defined as wy(v) = Y, Ui, it yields the total occupation number for the vectors V. In order to simulate
systems with a fixed particle number, we are thus interested to find codes that implement code words of constant
Hamming weight. Note that the fixed Hamming weight K does not necessarily need to coincide with the total
particle number M. A code with the latter property might also be interesting for systems with additional
symmetries. Most importantly, we have not taken into account the spin-multiplicity yet. As the particles in our
system are fermions, every spatial site will typically have an even number of spin configurations associated with
it. Orbitals with the same spin configurations naturally denote subsets of the total amount of orbitals, much like
the suitsin a card deck. An absence of magnetic terms as well as spin—orbit interactions leaves the Hamiltonian
to conserve the number of particles inside all those suits. Consequently, we can append several constant-weight
codes to each other. Each of those subcodes encodes thereby the orbitals inside one suit. In electronic system
with only Coulomb interactions for instance, we can use two subcodes (e 0, d¥)and (e ®, d*),toencodeall
spin-up, and spin-down orbitals, respectively. The global code (e, d), encoding the entire system, is obtained by
appending the subcode functions e.g. d(w' © w?) = d %(w"') & d *(w?). Appending codes like this will help
us to achieve higher savings at a lower gate cost.

The codes that we now introduce (see also again table 1), fulfill the task of encoding only constant-weight
words differently well. The larger V), the less qubits will be eliminated, but we expect the resulting gate sequences
to be more simple. Although not just words of that weight are encoded, we treat K as a parameter—the targeted
weight.

3.1.1. Checksum codes

A slim, constant amount of qubits can be saved with the followingn = N — 1, affine linear codes. Checksum
codes encode all the words with either even or odd Hamming weight. As this corresponds to exactly half of the
Fock space, one qubit is eliminated. This means we disregard the last component when we encode ¥ into words

with one digit less. The decoding function then adds the missing component depending on the parity of the code
words. The code for K odd is defined as

1 0
d(w) = E e+ 0 mod 2, (34)
1 -1 1
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1 0
e(v) = : lv mod 2. (35)
10

In the even-K version, the affine vector uy, added in the decoding, is removed. Since encoding and decoding
function are both at most affine linear, the extracted operators will all be Pauli strings, with at most a minus sign.
The advantage of the checksum codes is that they do not depend on K. They can be used even in cases of smaller
saving opportunities, like K &~ N /2. We can employ these codes even for Hamiltonians that conserve only the
Fermion parity. This makes them important for effective descriptions of superconductors [34].

3.1.2. Codes with binary addressing

We present a concept for heavily nonlinear codes for large qubit savings, n = [ log(NX/K!)], [28]. In order to
conserve the maximum amount of qubits possible, we choose to encode particle coordinates as binary numbers
in w. To keep it simple, we here consider the example of weight-one binary addressing codes, and refer the
reader to appendix D for K > 1.InK = 1, we recognize the qubit savings to be exponential, so consider N = 2".
Encoding and decoding functions are defined by means of the binary enumerator, bin : Z5" — Z, with

bin(w) = 3%, 271w

dj(w) = f[ (wi + 1 + q) mod 2, (36)

i=1

e() = [q'1¢% - |q2"]u mod 2, (37)

where g7 € 75" is implicitly defined by bin(g’) + 1 = j. An input w will by construction render only the jth
component of (36) non-zero, when g/ = w .

The exponential qubit saving comes at a high cost: the product over each component of w implies multi-
controlled gates on the entire register. This is likely to cause connectivity problems. Note that decomposing the
controlled gates will in general be practically prohibited by the sheer amount of resulting terms. On top of those
drawbacks, we also expect the encoding function to be nonlinear for K > 1.

3.1.3. Segment codes
We introduce a type of scaleable n = [ N/ (1 + i)—l codes to eliminate a linear amount of qubits. The idea of

segment codes is to cut the vectors ¥ into smaller, constant-size vectors & € Z?N ,suchthat v = @); &. Each
such segment &' is encoded by a subcode. Although we have introduced the concept already, this segmentation
is independent from our treatment of spin ‘suits’. In order to construct a weight K global code, we append several
instances of the same subcode. Each of these subcodes codes is defined on i qubits, encoding N=#A+1
orbitals. We deliberately have chosen to only save one qubit per segment in order to keep the segment size N (K)
small.

We now turn our attention to the construction of these segment codes. As shown in appendix E, the segment
sizes canbesetto i = 2K and N = 2K + 1. As the global code is supposed to encode all v € Z$N with
Hamming weight K, each segment must encode all vectors from Hamming weight zero up to weight K. In this
way, we guarantee that the encoded space contains the relevant, weight K subspace. This construction follows
from the idea that each block contains equal or less than K particles, but might as well be empty. For each
segment, the following de- and encoding functions are found for & € Z3"%, » € Z$N:

1 1
day=| - e+ r@ | mod 2, (38)
0 .. 0 1
1 1
e() = 2| mod 2, (39)
11

where f : Z5" — 7, is abinary switch. The switch is the source of nonlinearity in these codes. On an input &
with wy(@) > K, ityields one, and zero otherwise.

There is just one problem: segment codes are not suitable for particle-number conserving Hamiltonians,
according to the definition of the basis 13, that we would have for segment codes. The reason for this is that we
have not encoded all states with wi(~) > K. In this way, Hamiltonian terms ﬁub that exchange occupation
numbers between two segments, can map into unencoded space. We can, however, adjust these terms, such that

5 . . e 1s .
For better or worse we have used the binary representation of the orbital indexes. We could however employ any other counting method,
i.e. any injective mapping that relates a binary vector representing a qubit basis state to an integer labeling an orbital.
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they only act non-destructively on states with at most K particles between the involved segment. This does not
change the model, but aligns the Hamiltonian with the necessary condition that we have on B, Frap span(B) —
span(B). This is discussed in detail appendix E, where we also provide an explicit description of the binary switch
mentioned earlier.

Using segment codes, the operator transforms will have multi-controlled gates as well: the binary switch is
nonlinear. However, gates are controlled on at most an entire segment, which means there is no gate that acts on
more than 2K qubits. This an improvement in gate locality, as compared to binary addressing codes.

4. Examples

4.1. Hydrogen molecule

In this subsection, we will demonstrate the Hamiltonian transformation on a simple problem. Choosing a standard
example, we draw comparison with other methods for qubit reduction. As one of the simplest problems, the minimal
electronic structure of the hydrogen molecule has been studied extensively for quantum simulation [3, 4] already.

We describe the system as two electrons on 2 spatial sites. Because of the spin-multiplicity, we require 4 qubits to
simulate the Hamiltonian in conventional ways. Using the particle conservation symmetry of the Hamiltonian, this
number can be reduced. The Hamiltonian also lacks terms that mix spin-up and -down states, with the total spin
polarization known to be zero. Taking into account these symmetries, one finds a total of 4 fermionic basis states:
V={(0,1,0,1),(,1,1,0), (1,0, 0, 1), (1, 0, 1, 0)}. These can be encoded into two qubits by appending two
instancesofa (N = 2,n = 1,K = 1)-code. The global code is defined as :

1 1
dw) = 1 ] w+ (1) mod 2, (40)
1 0
101 00
e(v) = [0 00 1]1/ mod 2. (41)

The physical Hamiltonian
H=—hj(c/ e, + cics) — hn(cje, + ¢fcy)
+ Mzt of ¢ cs0p 4 s ¢f ¢ cycy
+ hioi(e cf cye; + i cdeyey)
+ (hiaar — o) (e e a6y + ¢icfeyes)

+ h1212(ClTC4TC352 + C;C;rczlcl)

+ hlzn(cfc;gcz + czTcIc3cl), (42)
is transformed into the qubit Hamiltonian

g+ XX +gZi+g, 20+ 8 249 2. (43)

The real coefficients g; are formed by the coefficients h; of (42). After performing the transformation, we find
&= —hi—hp+ %h1221 + ih1331 + ih2442> (44)
& = o, (45)
& =8 = %hu - %hzz + _ih1331 + ihz442, (46)
& = _lh1221 + lhlss] + lhz442- (47)

2 4 4

In previous works, conventional transforms have been applied to that problem Hamiltonian. Afterwards, the
resulting 4-qubit-Hamiltonian has been reduced by hand in some way. In [11], the actions on two qubits are
replaced with their expectation values after inspection of the Hamiltonian. In [30], on the other hand, the
Hamiltonian is reduced to two qubits in a systematic fashion. Finally, the case is revisited in [31], where the
problem is reduced below the combinatorical limit to one qubit. The latter two attempts have used Jordan—
Wigner, the former the Bravyi—Kitaev transform first.

4.2. Fermi-Hubbard model

We present another example to illustrate the trade-off between qubit number and gate cost as well as circuit
depth. For that purpose, we consider a simple toy Hamiltonian and demonstrate that a reduction of qubit
requirements is theoretically possible. Although we do not want to claim that this scenario is realistic, we present

10
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Figure 1. Left: illustration of the Fermi—Hubbard model considered. Lines between two sites, like 1 and 2, indicate the appearance of

theterm (¢, ¢, + ¢J ¢, ) in the Hamiltonian (48). Periodic boundary conditions link sites 1 and 5 as well as 6 and 10. Sites 11-20
follow the same graph. Right: segmenting of the system; the two blocks are infringed. The gray links are to be adjusted.

asimple cost model with it, that hints the potential up-scaling of circuit depth and simulation cost, as the number
of qubits decreases: we therefore consider the total sum of Pauli lengths of every term, which gives us an idea of
the number of two-qubit gates required, and the number of Hamiltonian terms, as we decompose controlled
gates (28), which should give us an idea of possible T-gate requirements and simulation depth. Let us start now to
describe the model. We consider a small lattice with periodic boundary conditions in the lateral direction. The
system shall contain 10 spatial sites, doubled by the spin-multiplicity. The problem Hamiltonian is

H=—t 3 (¢f¢j+cfc)
(i,j)€E

10
+ UE C;C]‘ C1%+j610+j’ (48)
j=1

with its real coefficients t, U. It exhibits hopping terms along the edges E of the graph in figure 1. The sketch on
the left of this figure shows the connection graph of the first 10 orbitals. The other 10 orbitals are connected in
the same fashion, and each such site is interacting with its counterpart from the other graph. We aim to populate
this model with four Fermions, where the total spin polarization is zero. Two conventional transforms and two
transforms based on our codes are compared by the amount of qubits necessary, as well as the size of the
transformed Hamiltonian. Note that besides eigenenergies, one might also be interested in obtaining the values
of correlation functions, e.g. (c; G ), which is done by measuring (qubit) operators obtained with the transform
(48). The only difference is that if a correlator maps into unencoded space, it is to be set to zero. As benchmarks,
we decompose controlled gates and count the number of resulting Pauli strings. The sum of their total weight
constitutes the gate count. Having these two disconnected graphs is an invitation to us to append two codes
acting on sites 1-10 and 11-20 respectively. for this example, we consider the following codes:

1. Jordan—Wigner and Bravyi—Kitaev transform: for comparison, we employ these conventional transforms
on our system, with which we do not save qubits. The resulting terms are best obtained by the transforming
every Fermion operator in (48) by (13), where the flip, parity and update sets, F(j), P(j), U(j) are determined
by the choice of matrices A and A~', which are binary tree matrices in the the case of the Bravyi-Kitev
transform, and identity matrices for the Jordan—Wigner transform.

2. Checksum code @ checksum code: knowing that the particle number is conserved, and that spin cannot be
flipped, we are free to save 2 qubits in constraining the parity of both, spin-up and -down particles, alike.
This is done in appending two (N = 10) checksum codes, where each that acts on only spin-up (spin-down)
orbitals, so indices 1-10 (11-20). The code resulting from appending two even checksum codes is linear,
and encoding and decoding function feature the matrices

1

(49)

However, as not the entire Fock space is encoded, we need to perform the operator transform according to
(31), where the update operator is defined by (33), where A refers here to the first matrix.

3. Segment code @ segment code: knowing the particle number in one ‘spin suite’ to be 2, we can for both,
spin-up and -down orbitals, append two K = 2 segment codes to each other. This equals a total of 4 segment
codes, saving 4 qubits. The resulting global code (e, d) is defined by

11
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4 . 4 .
e|@ii| = @e), (50)

dw) = ® ‘| |w mod 2, (51)
11

where & are the encodings of the subcodes (39), and &% are occupations on the segements of the total orbital
vector v = @); I'. These segments are formed as suggested by the right-hand side of figure 1. For details on
the decoding functions and Hamiltonian adjustments, please consider appendix E. The Hamiltonian
transform is in the end carried out again by (31) and (33).

4. Checksum code @ segment code: a compromise between the above, in which the spin-up orbitals are
transformed via a checksum code, and the spin-down orbitals are transformed via two segment codes. The
global code used for the Hamiltonian transformation is the appendage of an (even-weight, N = 10)
checksum code and two (K = 2) segment codes, including Hamiltonian adjustments on the spin-down
orbitals.

Note that from the combinatorial perspective, we could encode the problem with 11 qubits. However, if we
append two K = 2 binary addressing codes to each other, the resulting Hamiltonian is on 14 qubits already. The
problem is that the resulting Hamiltonian for this case cannot be expressed with decomposed controlled gates
due to the high number of resulting terms.

Indeed, table 2 suggests that decomposing the controlling gates might easily lead to very large Hamiltonians
with a multitude of very small terms. The gate decomposition appears therefore undesirable. We in general
recommend to rather decompose large controlled gates as shown in [35]. However, one also notices that an
elimination of up to two qubits comes at a low cost: the amount of gates is not higher than in the Bravyi—Kitaev
transform. As soon as we employ segment codes on the other hand, the Hamiltonian complexity rises with the
amount of qubits eliminated.

5. Conclusion and future work

In this work, we have introduced new methods to reduce the number of qubits required for simulating
fermionic systems in second quantization. We see the virtue of the introduced concepts in the fact that it takes
into account symmetries on a simple but non-abstract level. We merely concern ourselves with objects as simple
as binary vectors, but attribute the physical interpretation of orbital occupations to them. At this level, the
mentioned symmetries are easy to apply and exploit. The accounting for the complicated antisymmetrization of
the many-body wave function on the other hand is done in the fermionic operators, which to transform we have
provided recipes for. In these operator transforms we see room for improvement: we for instance lack a proper
gate composition for update operators of nonlinear encodings at this point. We on the other hand have the
extraction superoperator X return only conventional (multi)-controlled phase gates. Nonlinear codes would on
the other hand benefit from a gate set that includes gates with negative control, i.e. with the (—1) eigenvalue
conditioned on |0) eigenspaces of certain qubits involved. We consider our work to be relevant for quantum
simulation with near-term devices, with a limited number of qubits at disposal. Remarks about asymptotic
scaling are thus missing in this work, but would be interesting. Also, we have centered our investigations around
quantum computers with qubits. The idea behind the generalized operator transforms, however, can possibly be
adapted to multi-level systems (qudits). The operator transforms of segment and binary addressing codes, for
instance, might simplify in such a setup, if generalized Pauli operators are available in some form.

Apart from the codes presented, we have laid the foundation for the reader to invent their own. As
supplementary material, we include a program to transform arbitrary Hamiltonians from a second-quantized
form into Pauli string form, using user-defined codes. In this way we hope that in the long term, many more
entries will be added to table 1. The extension of this work to a more general setting for symmetries, in which the
latter are generated by groups or sets of operators that commute with the Hamiltonian, is an open task.
Furthermore, we are certain that table 1 can be extended into another way: gate relaxations for transforms with
n > Nhavealready been shown [2, 23, 26, 36], and we are currently working in that direction.
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Appendix A. On quantum simulation

At this point, we discuss quantum simulation in the context of our transformations. Amongst other things, we
describe the most simple algorithm for Hamiltonian simulation, and proceed by investigating feasibility issues
with our transforms Let us start by explaining how this work fits into the larger frame.

The transformations we have developed are going to be useful to trade quantum resources for quantum
simulation of fermionic systems, independent from the concrete quantum algorithms chosen for simulation of
the problem. For those problems from quantum chemistry and many-body physics we are usually given a
fermionic system and its Hamiltonian. One is then to determine the system’s ground state and ground state
energy, sometimes parts of its spectrum. Where classical computation is infeasible, we simulate the system inside
aquantum computer, on which the problem can be solved with existing algorithms. With either transform (see
table 1), the fermionic system is therefore mapped to a system of n qubits. With the operator transform, H turns
into H, a sum of weighted £((C?)®") gates, Pauli strings at best. We then apply algorithms like quantum phase
estimation [3, 37—39], variational quantum eigensolvers [9, 11, 12, 40], or adiabatic simulations [6]. All of those
algorithms receive ansatz states as inputs and in some way prepare (eigen-) states, while also outputting their
energy. The ground state is the state with the lowest energy, and can be then manipulated as it is inside the
quantum registers after the simulation. For the remainder of this appendix, we discuss implications of the
simulation algorithms onto our transforms Thus we outline some principles, these algorithms rely on:
algorithms might require us to simulate the time evolution of our encoded system according to H. For that
purpose, we need to know how to transform the time evolution operator exp (iHt), where t is a time step, into
gate sequences. Maybe we even need to apply those evolution conditionally, means as an operation controlled on
an auxiliary qubit (register). We thus need to embed H into an algorithm for Hamiltonian simulation.

Let us now be a bit more concrete, and select such an algorithm. Despite the wide range of theoretical
proposals for Hamiltonian simulation algorithms [41-43], only the perhaps simplest scheme appears to be
experimentally feasible for digital quantum simulation at the moment. Note that it can only be applied to
Hamiltonians that are a sum of Pauli strings with real weights

H= Z 0, X o withall 6, € R. (A1)
cE(X,Y,Z,T}E"

The idea is to approximate exp(iHt), by sequences of the exponentiated Pauli strings exp(ifl, s o), where sisa
time slice of t. This method is commonly referred to as Trotterization. The numbers, signs and values of the time
slices s, as well as the ordering of the exponentiated strings, govern the error of the simulation—strategies to
minimize that error can be learned from the works of Suzuki [44, 45]. Note that we do not specify whether the
Hamiltonian simulation is performed in an analog or digital fashion, however, not all strings o are feasible to be
implemented in an analog fashion. The digital gadget for the exponentiation of Pauli strings, on the other hand,
is well known [46]. See figure A1 for an example. We are therefore able to approximately perform a (conditional)
simulated time evolution with H of the form (A1). Using algorithms like variational eigensolvers, where we do
not simulate the time evolution but estimate the Hamiltonian expectation value by measuring its terms, we are
in principle not tied to the structure of (A1). However, it is more convenient. Equation (A1) gives us two
constraints on how to transform (11).

The first constraint is that we need to decompose every fermionic operator into Pauli strings, using (28). The
total number of Pauli strings resulting can be a problematically high when the underlying codes are highly
nonlinear. For Trotterization that means a tremendous increase in length due to the abundance of sequenced
Pauli string gadgets, many of them with very small rotation angles (¢ in figure A1).

13
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The second constraint seems trivial at first: in order to simulate a Hamiltonian, it has to be hermitian. More
precisely, it has to be hermitian on the entire (C?)®", so the coefficient 6, have to be real. We on the other hand
might not even need the entire (C?)®" to encode our physical system. Non-hermicities, meaning complex
coefficients ,,, can occur whenever one is careless with the remainder of the qubit space, when the code space is
left or states are encoded in an ambiguous way. We here list a few pitfalls that can cause non-hermitian terms to
occur after the transform and discuss how to avoid them.

+ Issues may be caused by codes that are not one-to-one. A one-to-one code (e, d) has the property:
e(d(w)) = wforall w € Z5". Although we have excluded the one-to-one property from the definition of the
codes (taing into account the next item), it assures the hermiticity of the transformed Hamiltonian.

+ The encoded basis 13 has a size that is in between 2" and 2", so 1 qubits provide too much Hilbert space by
default. However, we can always add a state to the basis that is mapped to zero by all terms ﬁab. This state,
represented by v, can have several partners on the code space w, for which d (w) = v (i.e. not be mapped
one-to-one). For example for particle-number conserving Hamiltonians, we can balance these dimensional
mismatches using the vacuum state in such a way, since ¢; ¢1©) = 0.

+ Weencounter this problem when using a code with a Hamiltonian, that is not feasible with it. The segment
codes for instance are feasible only for certain adjusted particle-number-conserving Hamiltonians, as we shall
seein appendix E.

Appendix B. General operator mappings

The goal of this appendix is to verify that the fermionic mode is accurately represented by our qubit system. This
is divided into three steps: step one is to analyze the action of Hamiltonian terms on the fermionic basis. In the
second step, we verify parity and projector parts of (31) to work like the original operators in step one,
disregarding the occupational update for a moment. Conditions for this state update are subsequently derived.
The update operator (32) is shown to fulfill these conditions in the third step, thus concluding the proof.

B.1. Hamiltonian dynamics

In order to verify that the gate sequences (31) are mimicking the Hamiltonian dynamics adequately, we verify
that the resulting terms have the same effect on the Hamiltonian basis. This is done on the level of second
quantization with respect to the notation (18): no transition into a qubit system is made. This step serves the sole
purpose to quantify the effect of the Hamiltonian terms on the states. To that end, we begin by studying the effect
of a singular fermionic operator c]("') on a pure state, before considering an entire term h,, on astate in 3. Asa
preliminary, we note that (3)—(6) follow directly from (2), when considering that

— T = _
cicj = ¢jc] = ¢jl®) = o. (B1)

The relations (3)—(6) indicate how singular operators act on pure states in general. We now become more specific
and apply these rules to a state ([T, (c,")")|©), that is not necessarily in 3, but is described by an occupation
vector v € Z5N. The effect of an annihilation operator on such a state is considered first:

N
cj[H (cf>w]|@> =11 (=" | ¢h [TT «hr|1e) (B2)
i=1 i<j k>j
1T e | o= o [TT @ |ie) (B3)
i<j 2 k>
1 N
=T 7| S =7 [H (cb"k*%m(’“]|®>. (B4)
i<j 2 k=1

A short explanation on what has happened: in (B2), ¢;has anticommuted with all creation operator ¢;' that have
indexes i < j. Depending on the component v, a creation operator c]'-" might now be to the right of the
annihilator ¢;. If the creation operator is not encountered, we may continue the anticommutations of ¢; until it
meets the vacuum and annihilates the state by ¢;|©) = 0. Using the anticommutation relations (2), we therefore
replace G (C]T)Vf with %[1 — (—1)%] when going from (B2) to (B3). Finally, the terms are rearranged in (B4):
conditional sign changes of the anticommutations are factored out of the new state with an occupation that is
now described by the binary vector (v + u; mod 2) rather than ©. When considering to apply a creation
operator c; on the former state, the result is similar. Alone at step (B3), we have to replace c]fr (c;)”f by
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0 111 4 (=1)¥]instead, as now the case of appearance of the creation operator leads to annihilation: cj cj = 0.
We thus find

N
1
[H (CT)"]l@ [T (=vv| =01+ (=1 [H (cf )it i mod 2]|9>- (B3)
i<j 2 k=1
We now turn our attention to the actual goal, effect of a Hamiltonian term from (11) on a state in B (this means
its occupation vector v isin V). We therefore consider a generic operator sequence Hi:l (c;i )i (cal)1 +bimod 2
parametrized by some N-ary vector a € [N]*! and a binary vector b € Z3", for some length I. With (B4) and
(B5), we now have the means to consider the effect such a sequence of annihilation and creation operators. The
two relations will be repeatedly utilized in an inductive procedure, as every single operator (c,, )bi(cul)1 +bimod 2 of
Hi:l (C;,- )i (cal)1 *+bi mod 2yl act on a basis state, one after another. The state’s occupation is updated after every
such operation. For convenience, we define:

vIeZIN  |ie (o, .., 1}, (B6)
v =pey, (B7)
v = p® 4+ 4, mod 2. (B8)

Now, the procedure starts:

1
|: H (C;‘i)h,v(cai)ler,- mod 2] [ H (CT)Vk:| (B9)
i=1

[ H (C )b (C )1+b mod 2:| 2[ (— l)b’( 1)Va](— 1)2,<a,” [H (CT)Vkera,k mod 2:||@> (B10)
i=1 k=1
:[l[l _ (_l)bl(_1)1,21;](_1)2]_@’”51)] lﬁ (cYbi(c, )l +bimod 2 ﬁ A" o) (B11)
2 pirE e
L 0] S0 N 1,0
I1 Z1 - (—Dbi(—=1)"a (=i’ | | T] ) [1©). (B12)
=1 parity signs k=1
projector eigenvalues updated state

We again explain what has happened: first, the rightmost operator, which is either ¢, or cjl depending on the
parameter by, acts on the state according to either (B4) or (B5). We therefore combine the two relations for the
absorption of this operator (CJ’ )bl(cal)1 +bimod 245 (B10). In the same fashion, all the remaining operators of

the sequence are one-after-another absorbed into the state. The new state is described by the vector v~V after
the update. And the cycle begins anew with (cilfl)b’fl(calfl)Hb’*l mod 2 Erom (B11) on, we use the notations
(B6)—(B8) to describe partially updated occupations. By the end of this iteration, the occupation of the state is
changedto v©® = v + q mod 2 , with the total change q = 3", u,, mod 2. Also, the coefficients of (B12)
take into account sign changes from anticommutations (‘parity signs’ in (B12)) and the eigenvalues of the
applied projections. In its entirety, (B12) denotes the resulting state, and is the main ingredient for the next step.

B.2. Parity operators and projectors

We are given the operator transform (31) and the state transform (19). We want to show the that the Fermion
system is adequately simulated, which means to show that the effect (B12) is replicated by (31) acting on |e (v/)).
This is the goal of the next two steps. We start by evaluating the application of (31) on that state, up to the update
operator U “. This means that the operators applied implement two things only: the parity signs of (B12), and
the projection onto the correct occupational state. Note that these parity operators and projectors are applied
before the update operator in (31):

. 1-1 1 1 1 1
U (H I1 (—1>9uvaw]r[ EH‘[H (—1)6%@](—1)%36[:1%] Xlp,] . (BI3)

v=1 w=v+1 x=1 =x+1 _
update operator v parity operators

parity operators projectors

We now commence our evaluation:

l\)|>—t

ffit 1ot 2f

v=1 w=v+1

I
lH (—1)5“x“y](—1)bx Xldo ] | X[, 1| le@)) (B14)

y=x+1
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I-1 ! ! !
=y (H H (_1)9MW] H %[ — [ H (_1)5axay](_1)bx (_1)dax(2(u))](_1)Pax(8(z/)) le(v))

v=1 w=v+1 x=1 y=x+1

(B15)

-1 1 1 1
—W[H I1 (—l)f’waH %[ —l I1 (—1)%](—1)”x (=1 (=2’ | le@))  (Bl6)

v=1 w=v+1 x=1 y=x+1
' i |
u“[H 5(1 — (=D (1)"ﬂx+2yx+15ﬂw)(1)Zj<w+2yx+19«xur] le(v)) (B17)
1
— l]‘[ —(1 = (=1 (= 1)) (= 1) oicas J] U le(w)). (B18)
x=1

Let us describe what has happened: in (B15), the extraction property (21) is used, and we arrive at (B16) after
using the property d (e(v)) = v and the definition of the parity function. From there we go to (B17) when we
merge the two products and perform rearrangements that make it easy to cast all delta and theta functions into
the components of the partially updated occupations @, (B18).

Comparing (B18) to (B12), we notice to have successfully mimicked the same sign changes and and
projections, as the coefficients in both relations match. Now it is only left to show that the state update is
executed correctly. Naively, one would think that we would need to show that

U le(w)) = [ IT T)”“”]|6> (B19)

k=1
but this is too strong a statement. It is in fact sufficient to demand
U%Ne)) = lew?)) = |e(r + q mod 2)). (B20)

For v©® ¢ V, (B19)and (B20) is equivalent. However, it might be the case that /® & V), so ® is not encoded.
This mean that (B19) is not fulfilled, since d (e (?)) = v(©. Itis however not necessary to include 2% in the
encodmg, as for v©® ¢ V), the state will vanish anyways: we know from hab span(BB) — span(B), that in this
case h,,b must act destructively on that basis state, 5 (T]; (¢ )”k) |©) = 0. This detail is implemented by the
projector part of the transformed sequence (31). These pro;ectors are, as we have just shown, working faithfully
like (B12), for the transformed sequence acting on every |v) with v € V. Hence (B20) is a sufficient condition
for the updated state. The proof is completed once we have verified that (B20) is satisfied with the update
operator defined as in (32). This is done during the next step.

B.3. Update operator

The missing piece of the proofis to check that (32) and (33) fulfill the condition (B20). We start by verifying the
condition (B20) for (33), which we have presented as special case of (32) for linear encoding functions:

e(v + v mod 2) = e(v) + e(v') mod 2. Using that property, one can in fact derive (33) from (32) directly.
We now apply (33) to |e(v)), but firstly we note that

Xjlw) = |w + uj mod 2), (B21)
where u; is the jth unit vector of Z3". Using (B21) and the linearity of e, we find:
U lew)) = [@(X,»)E#‘ff% mod 2:||e(1/)) (B22)
i=1
=[®(Xi)“(‘1)]le(1/)> (B23)
i=1
=le(v) + e(g) mod 2) (B24)
=le(v + q mod 2)), (B25)

which shows (B20) for linear encodings.
We now turn our attention to general encodings and prove the same expression for update operators as
defined in (32):

U%Ne(v)) = ( Z [@(Xi)t*] H %(H + (=14 .’{[Ej"])] le(@)) (B26)

tez75"Li=1 j=1
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= 2 [é(Xf)“] [T 21+ (—1ytefew) fleq)) (B27)
t eZ5"Li=1 j=1 2
O ewy
:(é(xiff’(e("”) le()) (B28)
i=1
=le(v) + € (e(v)) mod 2) (B29)
=le(v) + e(v) + e(d(e(v)) + q mod 2) mod 2) (B30)
=le(v + q mod 2)), (B31)

which completes the proof. We swiftly recap what has happened: in (B26), we have plugged the definition of (32)
into the left-hand side of (B20). In between this equation and (B27), we have evaluated the expectation values of
the extracted operators X [g?]. From that line to the next, the Z5"-sum is collapsed over the condition

t = e1(e(v)). We go from (B28) to (B29) by applying (B21). Once we insert the definition (30) into (B29), it
becomes obvious that the condition (B20) is fulfilled. Thus, the entire operator transform is now proven.

Appendix C. Transforming particle-number conserving Hamiltonians

In this appendix, we examine the richest symmetry to exploit for qubit savings: particle conservation. We begin
by introducing the most relevant class of Hamiltonians that exhibit this symmetry, but ultimately the main goal
of this appendix is to simplify the operator transform for all such Hamiltonians. Motivated by the
compartmentalized recipes of the conventional mappings, (13), we suggest alternatives to the transform (31),
that do not depend on the sequence length I.

Let us start by noting how easy it is to state that a Hamiltonian the total number of particles: a Hamiltonian
like (11), conserves the total number of particles when every term ﬁab has as many creation operators as it has
annihilation operators. The lengths [, implicit in the sequences /1,5, that occur in the Hamiltonian, are thereby
determined by the field theory or model, that underlies the problem. The coefficients 4,5, on the other hand, are
determined by the set of basis functions used. For first-principle problems in quantum chemistry and solid state
physics, we usually encounter particle-number-conserving Hamiltonians with terms of weight that is at most
I=4:

H=3 tjc/c;+ > Upclcgq, (C1)

ij ijkl
where Uy, tijare complex coefficients of the interaction and single particle terms, respectively. In the notation of
(11), these coefficients correspond to h; j k, n1,1,0,0)and K ja,0)- The (I = 4) interaction terms usually originate
from either magnetism and/or the Coulomb interaction. Even for these (I = 4)-terms, the operator transform
(31) is quite bulky, and we in general would like to have a transform that is independent of /. Before we begin to
discuss such transform recipes however, we need to set up some preliminaries. First of all, we need to find a
suitable code (e, d), as discussed in the main part. Ideally, we would encode only the Hilbert space with the
correct number of particles, M, but Hilbert spaces of other particle numbers can also be included. Assuming that
the Hamiltonian visits every state with the same particle number, we must encode entire Hilbert spaces H'y only.
Secondly, we need to reorder the fermionic operators inside the Hamiltonian terms fzab. The reason for this is,
that our goal can only be achieved by finding recipes for smaller sequences of constant length. In order to
transform the Hamiltonian terms then, we need to invoke the anticommutation relations (2) to introduce an
order in A, such that these small sequences appear as consecutive, distinct blocks. As we shall see, these blocks
will have the shape ¢/’ ¢;. Soevery hap needs to be reordered, such that every even operator is a creation operator,
and every odd operator an annihilator. For the (/ = 4)-terms in (C1), this reordering
means c; c]" GG — g c]I a — 6 ¢l .
Let us quickly sketch the idea behind that reordering and introduce some nomenclature: instead of

considering Hamiltonian terms, we realize that also the terms cf G also conserve the particle number:

N — HY. Letusactwith ciT ¢; onan encoded state. We consider a state that is not annihilated by ciT ¢j-Its

particle number is reduced by one through c;, but then immediately restored by ¢ Infact, for a general sequence
of that arrangement, every even operator restores the particle number in this way and every odd reduces it. We
therefore call the subspace, in which we find the state after an even (odd) number of operators, the even (odd)
subspace. Since all /must be even for the Hamiltonian to have particle conservation symmetry, the even subspace
is the one encoded. The odd subspace, on the other hand, has one particle less, so it is ()~ ), if the even one

is HAY.
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C.1. Encoding the two spaces separately

In this ordering, one can find a recipe for a singular creation or annihilation operator. The strategy is to consider
asecond code for the odd subspace. As before (e, d) denotes the code for the even subspace, and now (e’, d') is
encoding the odd subspace. The idea is that after an odd operator (which in this ordering is an annihilation
operator), the state is updated into the odd subspace. With every even operator (which is a creation operator),
the state is updated from the odd subspace back into the even one. We find:

of = % 09 @ + xX1d) X(p,), (€2)
1 .
6 = > U @~ XD ©
In (C3), U P is defined as in (32), but its counterpart from (C2) is defined by
_ . n "1 u;
uYy = Z |:®(Xi)ti:| H —@ + (=1 :{[5;{ D, (C4)
teZy"Li=1 iz1 2

with the primed functions €’4, p’ defined like (30) and (29), but with (e’, d”)in place of (e, d).

This method relies on # qubits being feasible to simulate the odd subspace in. That is, however, not always
the case. The basis set of Hx ' is in general larger than A/, when M > N/2.In this way, the odd subspace can
also be larger and even be infeasible to simulate with just # qubits. As a solution, one changes the ordering into
odd operators being creation operators, and even ones being annihilators, like ¢.c,” ¢ c]i". This causes the odd
subspace to become H(f,“ D, which has a smaller basis set than ’H%I . For that case (e, d)become the code for the
odd subspace, and (e’, d")will be associated to the even subspace in (C2) and (C3).

The obvious disadvantage is that two codes have to be employed at once. However, the checksum code for
instance (section 3.1.1 in the main part), comes in two different flavors already, which can be used as codes for
even and odd subspaces, respectively.

C.2. Encoding the building blocks

The building blocks c;' ¢; are guaranteed to conserve the particle number, so the even subspace is conserved. Asa
consequence, one may consider the possibility to transform the operators as the pairs we have rearranged them
into. In this way, we still have a certain compartmentalization of (31). Two special cases are to be taken into
account: when7 > j, an additional minus sign has to be added, as compared to the i < jcase. Also, wheni = j,
all parity operators cancel and the projectors coincide. We find:

S (=15 U X(p] X[p] (I + XA — X[dj]) i = j

¢ ¢ = .
~(1 = X[d}]) i=j

(C5)
with /%) being the [ = 2 version of (32), and p and €4 defined as usual by (29) and (30).

Appendix D. Multi-weight binary addressing codes based on dissections

With binary addressing codes, that is codes that are similar to the one presented in section 3.1.2 in the main part,
even an exponential amount of qubits can be saved for systems with low particle number, but at the expense of
complicated gates. For this appendix, we firstly recap the situation of section 3.1.2 and clarify what binary
addressing means. Firstly, some nomenclature is introduced. We then generalize the concept of binary
addressing codes to weight K codes, using results from [28]. As an example, we explicitly obtain the K = 2 code.

Suppose we have a system with N = 2" orbitals, and one particle in it. Our goal is to encode the basis state,
where the particle is on orbital y € [2'], as abinary number in r qubits. In this way, the state with occupational
vector u, is encoded as |q”""), with " € Z5" and y = bin(¢”") + 1.Probingan unknown basis state, a
decoding will now have components of the form

w — H (wi +q”" + 1) mod 2. (D1)
i€[r]
Such binary functions output 1 only when w = ¢”". In our nomenclature, we say that in the basis state |q”""),
the particle has the coordinate y. We refer to codes that store particle coordinates in binary form, as binary
addressing codes.

Inthe K = 1 case from the main part, the code words just contain the binary representation of one
coordinate. The question is now how to generalize the binary addressing codes. For multi-weight codes, we have
to have K sub-registers to store the addresses of K particles. Naively, one would want to store the coordinate of
each particle in its respective sub-register in binary form, as we have done for K = 1. This however, holds a
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problem. As the particles are indistinguishable, the stored coordinates would be interchangeable, the code would
not be one-to-one. For the binary numbers w' and w?, that represent a coordinate each, this would mean

d(w' ® w?) = d(w? ® w'). That strategy not only complicates the operator transform, it also leads to a certain
qubit overhead, as each plain word has as many code words as there are permutations of K items. Since this naive
idealeaves us unconvinced, we abandon it and search for one-to-one codes instead. The key is to consider the
coordinates to be in a certain format and this is where [28] comes into play. We proceed by using some relevant
concepts of that paper.

Let us consider the coordinates of K particles to be given in the N-ary vector x = (xi,..., g ). Between those
coordinates, we have imposed an ordering x; > x;jasi > j. Particles cannot share the same orbital, so we are
excluding the cases where two coordinates are equal. Using results from [28], we transform the latter into
coordinates that lack such an ordering, and where each component is an integer from a different range:

K
X = y=0py)  with ye ®Hﬁ” (D2)

m=1L1 M

Through that transform, each vector y corresponds to a valid vector x, and there is no duplication. We now

represent the y-coordinates by binary numbers in the code words w € Z3", where n = > X _ 1[log %1

K N .. . ..
w= qym’[ﬁ] with ¢* € Z5/ and bin(g™) + 1 = i. (D3)
m=1

A geometric interpretation of the process portrays the vector x as a set of coordinates in a K-dimensional,
discrete vector space. The vectors allowed by the ordering form thereby a multi-dimensional tetrahedron. The
states outside the tetrahedron do not correspond to a valid V vector, so encoding each coordinate x;in [ log N']
qubits would be redundant. We therefore dissect the tetrahedron, and rearrange it into a brick, as it is referred to
in [28]. What is actually done is to apply symmetry operations (like point-reflections) on the vector space until
the tetrahedron is deformed into the desired shape a K-dimensional, rectangular volume. The fact that the
vectors to encode are now all inside a hyper-rectangle is what we wanted to achieve. We can now clip the ranges
of the coordinate axes (to [[ log %1]) to exclude vectors the vectors outside the brick. As the values on the axes
correspond to non-binary addresses, this means that the qubit space is trimmed as well, and we have eliminated
all states based on not-allowed coordinates. This is where we now reconnect to our task of finding a code: the e-
and d-functions have to take into account the reshaping process, as only the coordinates x have a physical
interpretation and can be decoded. The binary addresses in the code words, on the other hand, are
representatives of y. With with binarylogic, the two coordinates have to be reconnected. We illustrate this
abstract process on the example of the (K = 2)-code.

D.1. Weight-two binary addressing code
As an example, we present the weight-two binary addressing code on N = 2" orbitals. The integer r will
determine the size of the entire qubit system n = 2r — 1, with two registers of sizerandr — 1.

With the two registers, a binary vector w = o @ Bwith a € Z5" and 3 € Z5"~V is defining the qubit
basis. In two-dimensions, the brick turns into a rectangle and the tetrahedron into triangle. The decoding
function takes binary addresses of the rectangular y, and transforms them into coordinates in the triangle x. The
ordering condition implies hereby where to dissect the rectangle: figure D1 may serve as a visual aid, disregarding
the excluded cases of y; = y,, wefindfor y, € [N], y, € [N/2]and x € [N]*%

(> NJ/2 + py) for y» <N/2+y,
(1, %) = (D4)
N2 =p+ 1) for 3 >N/2+p,

This decoding is translated into a binary functions as follows: the coordinate y; is represented by the binary
vector aand y, by 3. For each component defined by the binary vector b € Z3", we have

dia ® B) = S(a, B) [] (@i + /" + 1)+ 1+ S(e, BY(A + T(e, B) [] (i + g/
i=1 i=1

r—1 r—1
+ (1 + S(a, B + T, B) [] B+ qP) + S(a, B) [] B+ g7 + 1) mod2,
k=1 k=1

(D5)

with g /" = (qu’r, qzj”, . qu’r) as defined in (D3) and we have employed two binary functions S and
T: (Z§", Z5"~ V) — 7Z,. Here, S compares the binary numbers to determine if the coordinates are left of the
dissection (a black tile in figure D1)
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Figure D1. Visualization of the two-dimensional vector space: a valid vector is represented as a colored tile. The left gray tiles and the
black ones constitute the triangle, defining all valid vectors x = (x;, )" . The marked diagonal tiles are to be excluded from the
encoded space. The black tiles and the gray ones on the right of this diagonal form the brick, containingall y = (y;, y,) vectors.

r—1

Sta, B =,y | ] @+Bi+D|Ad+ )b+ 1+ o mod?2. (D6)

j=1 r—12i>j

The binary function T, on the other hand, is checking whether a set of coordinates is on a diagonal position
(diagonally marked tiles). These excluded cases are mapped to (0)®" altogether

T(a, B) = []. (i + B;) mod 2. (D7)

This concludes the decoding function. Unfortunately, the amount of logic elements in the decoding will
complicate the weight-two codes quite a bit, and the encoding function is hardly better. The reason for this is to
find in the ordering condition: the update operations are conditional on whether we change the ordering of the
coordinates represented by c and 3. This is reflected in a nonlinear encoding function: we remind us that the
encoding function isamap e: Z5* — Z5@ Y, and with v € Z5% we find

2r—l j*l
e)=>> (q" +1"mod 2) & (""" + I""! mod 2)v;
j=2 i=1
or o1 . . 1
+ E Z(q”’ + I" mod 2) @ (qJ*Z" ”’1)1/,'1/]»
j=2"141i=1

j=1 ) .
+ Z Z (q"") @ (q’_z l’r_l)V,‘Vj mod 2,
j=2r"12 =2
with g* as defined in (D3),and I/ = (1)% = g%
The dissecting of tetrahedrons can be generalized for codes of weight larger than two (see again [28]), but as
one increases the number of dissections, the code functions are complicated even further.

Appendix E. Segment codes

In this appendix, we provide detailed information on the segment codes. We firstly concern ourselves with the
segmentation of the global code, including a derivation of the segment sizes. In another subsection we construct
the segment codes themselves. The last subsection is dedicated to the adjustments one has to make to
Hamiltonian, such that segment codes become feasible to use.

E.1. Segment sizes
At this point we want to sketch the idea behind the segment sizes (N, #) stated during section 3.1.3 in the main
part, but first of all we would like to clearly set up the situation.

We consider vectors v € Z$™ to consist of 7 smaller vectors & oflength /i + 1, such that v = @ | .
We call those vectors £ segments of V. The goal is now to find a code (e, d) to encode a basis V which contains
all vectors  with Hamming weight K. For that purpose we relate the segment £ to a segment of the code space,
w’ foralli € [N]. The code space segrnents constitute the code words in a fashlon similar to the previous
segmentation of : w = @ | w'. However, the length of those binary vectors Wi is i, such that with n = min
and N = #i(#i + 1), the problem is reduced by #1 qubits as compared to conventional transforms. We now

introduce the subcodes (6: Z$"D — 787, d: 75" — 757 D), with which we encode the ith segment & as w’
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Figure E1. Visualization of (E1) for 71 = 4. The global code (e, d) relates the occupation vectors to the global code words v «+ w. The
an instance of the subcode (¢, d) relates ith block in v, &, to the ith segment in the code words, w'.

(see figure E1). Note that we require the subcodes to inherit all the code properties. In this way we guarantee the
code properties of the global code (e, d) when appending 7z instances of the same subcode:

R . i i
d[@wi] = Pdw), e(EBDi) = Pé@h). (E1)
i=1 i=1 i=1 i=1

The orbital number being an integer multiple of the block size is of course an idealized scenario. One will
probably have to add a few other components in order to compensate for dimensional mismatches.

We now set out to find the smallest segment size 7i. It should be clear that 7 is a function of the targeted
Hamming weight K: this means K determines which segment codes are suitable for the system. The reason for
this is that we need to encode all vectors with weight 0 to K inside every segment, taking into account for the up to
K particles on the orbitals inside one segment. In order to include weight K vectors, the size of each segment
must be at least K. If the segment size would be exactly K, on the other hand, we end up encoding the entire Fock
space again. In doing so, we are not making any qubit savings. The segments must thus be larger than K. In other
words, we look for an integer 7 > K, where the sum of all combinations & € Z5"* with wy(#) < K is
smaller equal 2"

K A
v =y (E2)
i\ k
In the case 71 = 2K, the condition is fulfilled as identity, since exactly half of all 27+1 combinations are included

in the sum.

E.2. Subcodes
This subsection offers a closer look at the construction of the segment subcodes (&, d). Let us start by
considering the decoding d in order to explore the nature of the binary switch f (&), that occurs in (38). One
observes the two (affine) linear (Z$" — Z5@*)-maps
1 1 1
@—| - |omod2, @& — C @] med 2 (E3)
0 ... 0 0 .. 0 1

to produce together all the vectors with weight equal or smaller than K, if we input all & with wy(&) < K into
the first, and the remaining cases with wiy (&) > K into the second one. Note that the last component is always
zero in outputs of the first function and one in the second. Therefore, the inverse of both maps is always a linear
map with the matrix [ I | I"]. We take this inverse as encoding (39), and the two maps (E3) are merged into the
decoding (38). In order to switch between these two maps we define the binary function f (&) : Z5" — Z, such
that

. 1 for w(®) > K
f@) {0 otherwise. (E4)

In general, one can define this binary switch in a brute-force way by

2K 2K
f@= > > ] @uw+1+t,) mod2. (E5)
k=K+1 teZ5* m=1
wy(t)=k

Forthecase K = 1 (i = 2), the switch equals f (w) = wjw,, and for the code we recover a version of binary
addressing codes, where the vector (0, 0, 0) is encoded.
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Figure E2. (Filled) circles represent (occupied) fermionic orbitals, where K = 2 segment codes are used in the indicated blocks. This
occupational case is problematic for the codes, as the operator ¢, ¢; acting on this state leaves the encoded space.

) &1 @2 + 1) Do
d@) =@+ 1) &, |mod2,  é@) = [0 X l]fj mod 2. (E6)
0w;
Inthe K = 2 (i = 4) case, this binary switch is found to
be f((:)) == &11&\12&)3 + @1&2@4 + &11&13@4 + (:(\)2(:(\)3@4 + (:(\)1@2(:}3(:)4 mod 2.

E.3. Hamiltonian adjustments

As mentioned in section 3.1.3, in the main part, segment codes are not automatically compatible with all
particle-number-conserving Hamiltonians. We show here, how certain adjustments can be made to these
Hamiltonians, such that their action on the space Hf, is not changed, but segment codes become feasible to
describe them with. In order to understand this issue, we begin by examining the encoded space. For that
purpose we reprise the situation of (E1), where we have append iz instances of the same subcode. With segment
codes, the basis V contains vectors with Hamming weights from 0 to #1K. We have encoded all possible vectors
v with 0 < wy(v) < K, butalthough we have some, not all vectors with wy(r) > K are encoded. We can
illustrate that point rather quickly: each segment has length 2K + 1, but the subcode encodes vectors & with
only wi(#) < K. The (global) basis V is thus deprived of vectors v = (€P); ©*) where for any

segment i, wy(&%) > K.

We now turn our attention to terms, which, when present in a Hamiltonian, make segment codes infeasible
to use. Note, that V-vectors with wy(/) = K, are not corresponding to fermionic states we are interested in. In
particular it is a certain subset of states with wyy (1) > K, which can lead out of the encoded space (into the states
previously mentioned) when acted upon with certain fermionic operators. Let us consider the operator ¢; ¢j as
an example, where i and jare in different segments (let us call these segments A and B). Now a basis state as
depicted in figure E2, is not annihilated by ¢; ¢;»and leads into a state with 3 particles in segment A. The problem
is that the initial state is encoded in the (K = 2) segment codes, whereas the updated state (with the 3 particles in
A)isnot. In general, operators ﬁab, that change occupations in between segments, will cause some basis states

. . n ~!
with wy(/) > K toleave the encoded space. We can however adjust these terms g, — hgy,, such that
Al

hay: span(B) — span(B3), where B is the basis encoded by the segment codes. We now sketch the idea behind
those adjustments, before we reconsider the situation of figure E2. Note that after these adjustments have been
made to all Hamiltonian terms in question, the segment codes are compatible with the new Hamiltonian. The
idea is to switch those terms off for states, that already have K particles inside the segments, to which particles will
be added. We have to take care to do this in a way that leaves the Hamiltonian hermitian on the level of second
quantization, i.e. we have to adjust the terms ﬁub and ﬁulh into l;a/b and (ﬁ,jh)’ ,such that ﬁu/b + (ﬁ,jb)’ is hermitian.
For the K = 2 code of figure E2, we can make the following adjustments:

cjcj — [1 — Z C;Ckcfcl]cfcj(l — Z cleche, | (E7)

Lk<le B w,v<w € A

Appendix F. Conventional mappings

We now revisit the conventional transforms from section 2 in the main part, and discuss all notations that have
been introduced to express it close to the appealing nomenclature of [24, 33]. In particular, we show that the
relation (13) is recovered as a special case from (31) and (33). After that, we verify that such constructions satisfy
the fermionic anticommutation relations. For now, however, we would like to restate the situation: a linear

n = N code, encoding the entire Fock space, is mediated by the quadratic matrices A and A}, such that

e(r) = (Av mod 2)and d(w) = (A~'w mod 2). The matrices are required to be each others inverses, so

N
Z A,j (Afl)jk mod 2 = j. (F1)
=1

22



10P Publishing

New J. Phys. 20 (2018) 063010 M Steudtner and S Wehner

We now explain the form of the parity, update and flip sets. As the code is linear, the extraction operator is
retrieving only Pauli strings following (22) and (24). One finds:

X[d] = %lw — S (A );w; mod 2] = @i = ® z, (F2)
j JEIN] JEF@)
X[pl=%w— Y S A Dpwrmod2[= ® Z)*™ k= @ Z (F3)
j<i k ke[N] keP (i)

where P(i) and F(i) are the parity and flip sets with respect to 7, as we defined them in section 2. The update sets U
(i) are obtained from update operators of linear encodings:

Ut = QX))@ = ®(X )Z Aijg; — H QR XA = H X X. (F4)
i kell] i€[N] kelll i€U(a)

In order to derive (13), we would like to point out the commutation relations between Pauli strings
(QucuiXu)s (Qver(jZy) and (Quwepk)Zw)- These will prove useful in verifying the fermionic commutation
relations later. For commutations of update- and flip set strings we find:

( ® Xu)[ ® ZV] = ® (XW)A,-W(ZW)(A*‘)W,' — ® (_1)A,'W(A”)w,v(ZW)(A*)M(XW)AM (F5)
ue U veF(j) wel[N] we[N]
Do Au(A Ny 5
_(_I)W ® Zv ® Xu = (_1) 4 ® Zv ® Xu . (F6)
veF(j) ueU (i) veF(j) ueU (i)

We have used the relation (F1) for the above. Similarly, for commutations of update and parity strings we have:

( X Xu][ X ZW] = (—1)0’7[ ® Zw]( (%9 Xu)- (¥F7)
ueU(>i) weP(j) weP(j) ueU(i)

Finally, we combine (F2)—(F4) with the operator from (31). Using (F5) and (F7) to move every update string
(®ucvayXu) inbetween the projectors and parity strings of a;and a;. , we get

-1 1 1 1
U“[H I1 (—l)eﬂv“w) I1 %[H—[ I1 (—D‘SW](—I)”* 36[da,c]]%[l%,xl (F8)

v=1 w=v+1 x=1 y=x+1

!
-11 ( ](H—(—l)bx ® zv) ® Zu| ()
=1 \2\uev@y veF(ay) ) weP(ay)

which is a sequence of the operators (13). The transform of a singular operator is CJ ) is thus derived from (31).
Although we have already shown that (31) satisfies (3)—(6), but we now want to show that (13) fulfills the
anticommutation relations (2) in particular. In doing so, we generally distinguish the cases i = jand i = j. For
[c]ﬁ'), cj("')h, we consult (F5) and find

. 1
¢/ c]-T =cjc; = Z[H - X ZV](H + & ZW] =0. (F10)
vEF(j) weF(j)

Wenotice that for i = j, the gate transform of ¢; ¢; (c/ c]T) properly differs by a minus sign from the transform of
GG ((:]7r ¢) due to (F7). We want to make this observation explicit for the i = j case of [c;, cj]p

Gel = 1( ® Xu](]l— ® z][ ® zw)[ ® Xuf][}H— ® z][ ® zw/] (F11)
4\ucvi veF() weP(i) W'eU(j) VEE()) w'eP(j)
-
Qx| @ xl1- 2zl @ z.ll1+ @ z|| ® 2. (F12)
4 ucU(i) u'eU(j) veEF(i) weP(i) v'eF(j) w/€P(j)

N0
_ED ( ® xu/][]u ® zJ[ ® ZW/][ ® Xu](ﬂ— ® Z]( ® zw] (F13)
4 Weu(j) VIER()) w'eP(j) wev (i) veF (i) weP(i)

= — cj' C;. (F14)
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Atlast, we find by explicit construction :

13

1 - 1
c;cj = - |1- & Z| cjc} 3 I+ & Z,| (F15)
veF(j) vEF(j)

Thus, we find [¢;, c]T]Jr = ¢;1,and our construction (13) is in compliance with all relations in (2).

Appendix G. Notations

Symbol Type Informal definition

[...] Set of integers from 1 to argument

= Correspondence between fermionic operators/states to qubit counterparts
a [N]® Length-I N-ary vector describing orbitals in Frap

AD (N x N) binary matrix defining a conventional encoding (decoding)

b 73 Length-/binary vector determining operator types in Frab

B Basis of a space of Fermions on N orbitals, smaller than the Fock space
c]m L(FN) Fermionic annihilation (creation) operator

(CH®n Vector space of n-qubit states

d z5" — ZZN Decoding function

e N — 75" Encoding function

el Z5" — 75" Update function important for nonlinear encodings, see (30)

FN Fock space restricted on N orbitals

F(j) subset of [11] Flip set with respect to orbital j, see (13)

;;uh span(B) — span(B3) Term in a fermionic Hamiltonian, see (11)

HA Antisymmetrized Hilbert space of M indistinguishable particles on N orbitals
I Identity operator on arbitrary spaces

K [N] Targeted Hamming weight of a code

1 Length of a sequence of fermionic operators in Frap

L [n] Weight of a Pauli string

L(...) Linear operators on argument vector space

M [N] Total particle number in a system of N orbitals

n Number of qubits

N Number of orbitals

v yczgN N-orbital occupation vector representing a fermionic basis state, see (18)
w 75" Binary vector representing a product state in the n-qubit basis, see (19)

p 75" — SN Parity function, implementing signs for parity operators

P(j) subset of [1] Parity set of orbital j, see (13)

P Set of single-qubit Pauli operators {X, Y, Z}

q Z$N Change ofa vector v bya term Frap

R Binary (N x N) matrix, with the lower triangle (including diagonal) filled with ones
0 [N]®? — Z, Discrete version of the Heaviside function, see (14)

u; Z5" or Z5" Binary unit vector, just component jis one

Uy subset of [1] Update set of orbital j, see (13)

us L((C?)Emy Update operator with respect to an occupation of a, see (32) and (33)

1% subset of Z5N Defines the occupation vectors v implementing the basis 13, see (18)
wi(...) 73N — [N U {0} Hamming weight of a binary vector, sum of its components

X (Z5" — Zy) — L((CHE™) Extraction superoperator, maps binary functions into quantum gates, see (20)—(28)
Z, Binary digits {0, 1}
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