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Abstract

Recent experiments by Gutiérrez et al (2016 Nat. Phys. 12 950) on a graphene—copper superlattice
have revealed an unusual Kekulé bond texture in the honeycomb lattice—a Y-shaped modulation of
weak and strong bonds with a wave vector connecting two Dirac points. We show that this so-called
‘Kek-Y’ texture produces two species of massless Dirac fermions, with valley isospin locked parallel or
antiparallel to the direction of motion. In a magnetic field B, the valley degeneracy of the B-dependent
Landau levels is removed by the valley-momentum locking but a B-independent and valley-degenerate
zero-mode remains.

1. Introduction

The coupling of orbital and spin degrees of freedom is a promising new direction in nano-electronics, referred to
as ‘spin-orbitronics’, that aims at non-magnetic control of information carried by charge-neutral spin currents
[1-3]. Graphene offers a rich platform for this research [4, 5], because the conduction electrons have three
distinct spin quantum numbers: in addition to the spin magnetic moments = +1/2, there is the sublattice
pseudospin o = A, Band the valley isospin 7 = K, K’. While the coupling of the electron spin s to its
momentum p is a relativistic effect, and very weak in graphene, the coupling of o to p is so strong that one has a
pseudospin-momentum locking: the pseudospin points in the direction of motion, as a result of the helicity
operator p - 0 = p.0; + p,0yin the Dirac Hamiltonian of graphene.

The purpose of this paper is to propose a way to obtain a similar handle on the valley isospin, by adding a
term p - T to the Dirac Hamiltonian, which commutes with the pseudospin helicity and locks the valley to the
direction of motion. We find that this valley-momentum locking should appear in a superlattice that has
recently been realized experimentally by Gutiérrez et al [6, 7]: a superlattice of graphene grown epitaxially onto
Cu(111), with the copper atoms in registry with the carbon atoms. One of six carbon atoms in each superlattice
unitcell (/3 x /3 larger than the original graphene unit cell) have no copper atoms below them and acquire a
shorter nearest-neighbor bond. The resulting Y-shaped periodic alternation of weak and strong bonds (see
figure 1) is called a Kekulé-Y (Kek-Y) ordering, with reference to the Kekulé dimerization in a benzene ring
(called Kek-O in this context) [7].

The Kek-O and KeK-Y superlattices have the same Brillouin zone, with the Kand K’ valleys of graphene
folded on top of each other. The Kek-O ordering couples the valleys by opening a gap in the Dirac cone [8—12],
and it was assumed by Gutiérrez et al that the same applies to the Kek-Y ordering [6, 7]. While it is certainly
possible that the graphene layer in the experiment is gapped by the epitaxial substrate (for example, by a
sublattice-symmetry breaking ionic potential [13—15]), we find that the Y-shaped Kekulé bond ordering by itself
does not impose a mass on the Dirac fermions”. Instead, the valley degeneracy is broken by the helicity operator

* That the Kek-Y bond ordering by itself preserves the massless nature of the Dirac fermions in graphene could already have been deduced
from [15] (it is a limiting case of their equation (4)), although it was not noticed in the experiment [6]. We thank Dr Gutiérrez for pointing
this out to us.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Honeycomb lattices with a Kek-O or Kek-Y bond texture, all three sharing the same superlattice Brillouin zone (yellow
hexagon, with reciprocal lattice vectors K ). Black and white dots label A and B sublattices, black and red lines distinguish different
bond strengths. The lattices are parametrized according to equation (4) (with ¢ = 0) and distinguished by theindexv =1 4+ q — p
modulo 3 asindicated. The Kand K’ valleys (at the green Dirac points) are coupled by the wave vector G = K — K_ of the Kekulé
bond texture and folded onto the center of the superlattice Brillouin zone (blue point).

p - 7, which preserves the gapless Dirac point while locking the valley degree of freedom to the momentum. Ina
magnetic field the valley-momentum locking splits all Landau levels except for the zeroth Landau level, which
remains pinned to zero energy.

2. Tight-binding model

2.1. Real-space formulation
A monolayer of carbon atoms has the tight-binding Hamiltonian

3
H=->>"t,a/b, ., + Hc, (1)
r =1

describing the hopping with amplitude ¢, , between an atom at site r = na; + ma, (n, m € Z)onthe A
sublattice (annihilation operator a,) and each of its three nearest neighbors at r + s, on the B sublattice
(annihilation operator b, ;,). The lattice vectors are defined by s; = %(\/? , —1),8, = —%(\/g , 1),s3 = (0, 1),
a; = s3 — 5, 4y = s3 — ;. Alllengths are measured in units of the unperturbed C-C bond length a, = 1.

For the uniform lattice, with ¢, » = t;, the band structure is given by [16]

3
E(k) = £le(k)], k) =ty Y elks. *
=1

There is a conical singularity at the Dirac points Ky = %W\/g (£1, v/3), where E(K,) = 0. For later use we
note the identities

e(k) = e(k + 3Ky) = e¥™/3¢(k + K, + K_). 3)
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The bond-density wave that describes the Kek-O and Kek-Y textures has the form

tre/to= 1+ 2 Re [AelPKitaK)s +iGr]
=1+ 28gcos[¢ + 2n(m — n + N |, (4a)
N=—-—q No=—-p, Ns = p+4q, p,qE€ Zs. (4b)
The Kekulé wave vector
GEK+—K_:§W§(1,0) 5)

couples the Dirac points. The coupling amplitude A = Aje!® may be complex, but the hopping amplitudes ¢, -
are real in order to preserve time-reversal symmetry. (We note that our definition of A differs by a factor 3 from
that of [8].)

As illustrated in figure 1, the index

v=1+4q— pmod3 (6)

distinguishes the Kek-O texture (v = 0) from the Kek-Y texture (v = +1). Each Kekulé superlattice hasa 27/3
rotational symmetry, reduced from the 27w/6 symmetry of the graphene lattice. The two v = 41 Kek-Y textures
are each others mirror image”.

2.2. Transformation to momentum space
The Kek-O and Kek-Y superlattices have the same hexagonal Brillouin zone, with reciprocal lattice vectors
K,—smaller byafactor 1/+/3 and rotated over 30° with respect to the original Brillouin zone of graphene (see
figure 1). The Dirac points of unperturbed graphene are folded from the corner to the center of the Brillouin
zone and coupled by the bond-density wave.

To study the coupling we Fourier transform the tight-binding Hamiltonian (1),

H(k) = —e(k)a b, — Ae(k + pKy + qK_)aj, ¢ by
— Nfe(k — pK, — qK,)a,LGbk + H.c. 7)
The momentum k still varies over the original Brillouin zone. In order to restrict it to the superlattice Brillouin

zone we collect the annihilation operators at k and k £+ G in the column vector
& = (k> k—G> W+6> bk bk—g> bk ) and write the Hamiltonianina6 x 6 matrix form:

= —¢C Cks a
et o )™
=) A51/+1 A*8711*1
&= A*&l,y €1 AEV > (8b)
Aé‘,,_] A*E—y 61
A = et 0/3A, ¢, = e(k + nG), (8¢)

where we used equation (3).

3. Low-energy Hamiltonian

3.1. Gapless spectrum

The low-energy spectrum is governed by the four modes 1y = (ax_g> ak+6> bk—> bi+c), which for small k lie
near the Dirac points at +G. (We identify the K valley with 4G and the K’ valley with —G.) Projection onto this
subspace reduces the six-band Hamiltonian (8) to an effective four-band Hamiltonian,

0 h, 1 Ae,
Hef = _u’j(}ﬁ 0 )Uk» h, = [Ai ! = ] 9
v E_y &

Corrections to the low-energy spectrum from virtual transitions to the higher bands are of order AZ. We will
include these corrections later, but for now assume Ay < 1 and neglect them.

> There are three sets of integers p, q € Zsforagivenindex v = 1 + q — p mod 3, corresponding to textures on the honeycomb lattice
that are translated by one hexagon, or equivalently related by a £27/3 phase shift of A.

3
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Figure 2. Dispersion relation near the center of the superlattice Brillouin zone, for the Kek-O texture (blue dashed curves) and for the
Kek-Y texture (black solid). The curves are calculated from the full Hamiltonian (8) for |[A] = Ay = 0.1.

The k-dependence of €, may be linearized near k = 0,
g9 = 3ty, €41 = /wo(Fky + ik)) + order (k?), (10)

with Fermi velocity vy = %to ag / /. The corresponding 4-component Dirac equation has the form

! U ° A v
H(\IJK) = E(\IIK ) T o (11a)

Uk RS A QJ Vop - O

_wBK/ wAK
o= | PN we= [, 11b
3 ( (NG ) 2 (wB,K) (o)
_ E":V 0 _ St()O'Z if v= 0)

Q= ( 0 _ey) = {VO(Vpx —ip)oy if Y] = L. (11e)

The spinor W contains the wave amplitudes on the A and B sublattices in valley K and similarly Wy for valley K,
but note the different ordering of the components [17]°. We have defined the momentum operator
p = —i%2d/0r,withp - o = p.o, + p,0y. The Pauli matrices o, 0y, 0, with 0 the unit matrix, act on the
sublattice degree of freedom.

For the Kek-O texture we recover the gapped spectrum of Kekulé dimerized graphene [8],

E2 = v3|p|* + (BtoA)? for v = 0. (12)
The Kek-Y texture, instead, has a gapless spectrum,
EZ = vi(1 + Ao pl?, for |1 =1, (13)

consisting of a pair of linearly dispersing modes with different velocities v, (1 £ Ay). The two qualitatively
different dispersions are contrasted in figure 2.

3.2. Valley-momentum locking

The two gapless modes in the Kek-Y superlattice are helical, with both the sublattice pseudospin and the valley
isospin locked to the direction of motion. To see this, we consider the v = 1 Kek-Y texture withareal A = A,.
(Complex Aandv = — 1are equivalent upon a unitary transformation.) The Dirac Hamiltonian (11) can be
written in the compact form

H=v%(p - o)nm+v0& (P 1), (14)

with the help of a second set of Pauli matrices 7, 7,, 7, and unit matrix 7 acting on the valley degree of freedom”.
The two velocities are defined by v, = vgand v, = v,A,.

The ordering of the spinor components in equation (11b) is the so-called valley-isotropic representation of Dirac fermions.

7For reference, we note that the unitary transformation from ¥ = (—¢p ', Yu x> Yax> ¥B,x)to V' = (g Yax> Yax> UBk)
transforms H=v,(p - 0) @ o+ % 0o @ (p - T)into H = =5, (p - o) @ T, + v, 0, @ (p - T).

4
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Figure 3. Landau levels in the Kek-Y superlattice (Ag = 0.1, ¢ = 0, = 1). The data points are calculated numerically [22] from the
tight-binding Hamiltonian (1) with bond modulation (4). The lines are the analytical result from equations (18) and (19) for the first
few Landau levels. Lines of the same color identify the valley-split Landau level, the zeroth Landau level (red line) is not split.

An eigenstate of the current operator
j(x = 8H/apa = Vo O b2y To + Vr 0o X Ta (15)

with eigenvalue v, + v, is an eigenstate of o,, with eigenvalue +1 and an eigenstate of 7, with eigenvalue 1.
(The two Pauli matrices act on different degrees of freedom, so they commute and can be diagonalized
independently.) This valley-momentum locking does not violate time-reversal symmetry, since the time-
reversal operation in the superlattice inverts all three vectors p, o, and 7, and hence leaves H unaffected®:

(0, ® T)H*(0, @ 7,) = H. (16)

The valley-momentum locking does break the sublattice symmetry, since H no longer anticommutes with
0, but another chiral symmetry involving both sublattice and valley degrees of freedom remains:

(0, @ T H = —H(o, ® T). (17)

3.3. Landau level quantization
A perpendicular magnetic field Bin the z-direction (vector potential A in the x—y plane), breaks the time-reversal
symmetry (16) via the substitution p — —i%20/0r + eA(r) = II. The chiral symmetry (17) is preserved, so the
Landau levels are still symmetrically arranged around E = 0, as in unperturbed graphene. Because the two
helicity operators IT - o and IT - 7 do not commute for A = 0, they can no longer be diagonalized
independently. In particular, this means the Landau level spectrum is not simply a superposition of two spectra
of Dirac fermions with different velocities.

Itis still possible to calculate the spectrum analytically (see appendix A). We find Landau levels at energies
El, E,;, —E;, —E,,n=0,1,2,..,givenby

EFf = FEg2n + 1 + 1 + n(n + D(4v)20 *]/2, (18)

with the definitions 7 = \/v? + v and Ez = 7+//B.

In unperturbed graphene all Landau levels have a twofold valley degeneracy”: E,” = E,. ; for v, = 0. This
includes the zeroth Landau level: E; = 0 = —E . A nonzero v, breaks the valley degeneracy of all Landau levels
at E = 0, buta valley-degenerate zero-mode E; = 0 remains, see figure 3.

The absence of a splitting of the zeroth Landau level can be understood as a topological protection in the
context of an index theorem [18-21], which requires that either I, = II, + ill, or II_ = II, — ill, hasazero-
mode. Ifwe decompose H = I1,.S_ + II_S,,with S, = v, (0 £ ioy) + v (7 £ i7), wesee that both S, and

8 The time-reversal operation 7 = (0, ® T7,)C from equation (16) (with C complex conjugation) squares to +1 because the electron spin is
not explicitly included. If we do include it, we would have 7= (s, ® o, ® 7,)C, which squares to —1 as expected for a fermionic
quasiparticle. The combination of the time-reversal symmetry (16) and the chiral symmetry (17) places the superlattice in the BDI symmetry
classification of topological states of matter.

? The Landau levels also have a twofold spin degeneracy, which could be resolved by the Zeeman energy but is not considered here.
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S_ have a rank-two null space'’, spanned by the spinors 1/ and /2. Soif I1.. f, = 0,a twofold degenerate
zero-mode of H is formed by the states f, 1/ and f, 1.

All of this is distinctive for the Kek-Y bond order: for the Kek-O texture it is the other way around—the
Landau levels have a twofold valley degeneracy except for the nondegenerate Landau level at the edge of the band

gapl 1 .
4. Effect of virtual transitions to higher bands

So far we have assumed Ay < 1, and one might ask how robust our findings are to finite- A, corrections,
involving virtual transitions from the €41 bands near E = 0 to the £ band near E = 3#,. We have been able to
include these to all orders in A (see appendix B), and find that the entire effect is a renormalization of the
velocities v, and v, in the Hamiltonian (14), which retains its form as a sum of two helicity operators. For real
A = Ajtherenormalization is given by v, = vop, v, = vop_ with

1+ 2A
pp=~(1 — Ay 0

? J1+ 242

For complex A = Ayel? the nonlinear renormalization introduces a dependence on the phase ¢ modulo 27/3.

What this renormalization shows is that, as expected for a topological protection, the robustness of the
zeroth Landau level to the Kek-Y texture is not limited to perturbation theory—also strong modulations of the
bond strength cannot split it away from E = 0.

+ 1) (19)

5. Pseudospin-valley coupling

In zero magnetic field the low-energy Hamiltonian (14) does not couple the pseudospin o and valley 7 degrees of
freedom. A o ® T couplingis introduced in the Kek-Y superlattice by an ionic potential 1ty on the carbon atoms
that line up with the carbon vacancies—the atoms located at each center of ared Y in figure 1. We consider this
effect for the v = 1 Kek-Y texture withareal A = A,.

The ionic potential acts on one-third of the A sublattice sites, labeled ry. (For v = —1 it would act on one-
third of the B sublattice sites.) Fourier transformation of the on-site contribution piy3,, a, a,, tothetight-
binding Hamiltonian (1) gives with the help of the lattice sum

S ek oc 5(k) + 6k — G) + 6k + G) (20)

ry

the momentum-space Hamiltonian

H (k) = —c,i( ;ﬁ) 51(()k))ck, (la)
1
111
MY = — My 111} (Zlb)
111

The & block is still given by equation (8). The additional My-block breaks the chiral symmetry.
Projection onto the subspace spanned by ux = (ax_g, dk+6> bk—c> b+ ) gives the effective Hamiltonian

my ]’11 11
Hee = M;j( N )Mk, my = *NY< ) (22)
hi 0 11

The corresponding Dirac Hamiltonian has the form (11) with an additional o ® T coupling,
H=v%(p - 0) @m0+ 0@ (p-T)+ Sy
+ 3y (O @ T+ 0,0 T — 0, @ 7). (23)

10Ifwedeﬁnetheeigenstates lo, BYby arla, B) = ala, B), Tla, B) = Bla, B), then S, annihilates ¢V = |1, 1) and

VP = v|-1, 1) — |1, —1), while S_ annihilates ¥ = |—1, —1)and ¥® = v |1, —1) — y| — 1, 1).

1 InaKek-O superlattice the Landau levels are given by E? = (3t,Ag)? + 2n/eBvd,n = 0,1,2, ..., witha twofold valley degeneracy for
n > 1andanondegenerate zeroth Landau level at 31 A,.

6
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Figure 4. Effect of an on-site potential /1, on the Kek-Y band structure of figure 2. The three bands that intersect linearly and

quadratically at the center of the superlattice Brillouin zone form the ‘spin-one Dirac cone’ of [14, 15]. The curves are calculated from
the full Hamiltonian (21) for Ay = 0.1 = f1y.

Figure 5. Orientation of the expectation value of the pseudospin = (o, 0,) (left panel) and valley isospin 7 = (7, ) (right panel)
in the two bands (24) at E > 0. The pseudospin points in the direction of motion in both bands, while the valley isospin is locked
parallel to the direction of motion in one band (red arrows) and antiparallel in the other band (blue arrows).

The energy spectrum,

EL =+, — w)Ipl,
E? = py £ 0 + v 2IpP + 412, (24)

has two bands that cross linearly in p at E = 0, while the other two bands have a quadratic p-dependence (see
figure 4). The pseudospin and valley isospin orientation for the two bands is illustrated in figure 5.

The three bands Ef), EW, E@ thatintersectat p = 0 are reminiscent of a spin-one Dirac one. Such a
dispersion is a known feature of a potential modulation that involves only one-third of the atoms on one
sublattice [14, 15]. The spectrum remains gapless even though the chiral symmetry is broken. This is in contrast
to the usual staggered potential between A and B sublattices, which opensagap viaa 0, ® 7, term [16].

6. Discussion

In summary, we have shown that the Y-shaped Kekulé bond texture (Kek-Y superlattice) in graphene preserves
the massless character of the Dirac fermions. This is fundamentally different from the gapped band structure
resulting from the original Kekulé dimerization [8—11] (Kek-O superlattice), and contrary to expectations from
its experimental realization [6, 7].

The gapless low-energy Hamiltonian H = v,p - o + vp - T is the sum of two helicity operators, with the
momentum p coupled independently to both the sublattice pseudospin o and the valley isospin 7. This valley-
momentum locking is distinct from the coupling of the valley to a pseudo-magnetic field that has been explored
as an enabler for valleytronics [23], and offers a way for a momentum-controlled valley precession. The broken
valley degeneracy would also remove a major obstacle for spin qubits in graphene [24].

Akey experimental test of our theoretical predictions would be a confirmation that the Kek-Y superlattice
has a gapless spectrum, in stark contrast to the gapped Kek-O spectrum. In the experiment by Gutiérrez et al on
agraphene/Cu heterostructure the Kek-Y superlattice is formed by copper vacancies that are in registry with one
out of six carbon atoms [6, 7]. These introduce the Y-shaped hopping modulations shown in figure 1, butin
addition will modify the ionic potential felt by the carbon atom at the center of the Y. Unlike the usual staggered

7
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potential between A and B sublattices, this potential modulation in an enlarged unit cell does not open a gap
[14, 15]. We have also checked that the Dirac cone remains gapless if we include hoppings beyond nearest
neighbor. All of this gives confidence that the gapless spectrum will survive in a realistic situation.

Further research in other directions could involve the Landau level spectrum, to search for the unique
feature of a broken valley degeneracy coexisting with a valley-degenerate zero-mode. The graphene analogs in
optics and acoustics [25] could also provide an interesting platform for a Kek-Y superlattice with a much
stronger amplitude modulation than can be realized with electrons.
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Appendix A. Calculation of the Landau level spectrum in a Kek-Y superlattice
We calculate the spectrum in a perpendicular magnetic field of a graphene sheet with a Kekulé-Y bond texture.
We start by rewriting the Hamiltonian (14), with II = p + eA, in the form
H =TS + 118, + po. @ 7, (A1)
in terms of the raising and lowering operators
I =1L, £ill,, or= 0 Loy, 7 =7 LTy,

St =% 0L ® T+ vy 0g @ T (A2)

The chiral-symmetry breaking term po, ® 7, that we have added will serve a purpose later on.

We know that the Hermitian operator 2 = II, II_ haseigenvalues w, = 2n/%eB,n = 0, 1,2, ...,in view of
the commutator [II_, II,] = 2/eB. So the strategy is to express the secular equation det(E — H) = Oinaform
that involves only the mixed products IT, IT_,and no IT% or IT2. This is achieved by means of a unitary
transformation, as follows.

We define the unitary matrix

U = exp Biﬂ (00 + 0z) @ T),:I (A3)
and reduce the determinant ofa4 X 4 matrix to thatofa2 x 2 matrix:

det(H — E)y=detU'(H — E)U

:det(_E+ H R )

R —E—pu
E?— 1?2 — i if E S
_ det( u* — RR") .1 Z= I (Ad)
det(E? — 42> — R'R) if E= —p,
. —v, II_ y,II_
with R = (V”H+ VTH+)' (A5)
The matrix product RR"is not of the desired form, but R'R is,
2 2
RTR _ 1/0.1_[,1_,[4r + VT H+H, _VZVT(H,H+ —z H+H7) i (A6)
_VUVT(H7H+ + H+H,) VO.H+H7 —+ VT H7H+

involvingonly IT.II_ = Qand I[I_IT, = © + wj. Hence the determinant is readily evaluated for E = —p,

, ] (A7)

Vovyr Quy, + wi) E? — 12 — V2w, — viw

00 E2 2 — 72 — 2 2
det(H — E) = det(E> — 1> — R'R) = [] det( W — P, — viw Vovr Ry, + wy)
n=0

where we have abbreviated 7 = /v + v7.

Equating the determinant to zero and solving for E we find four sets of energy eigenvalues
El, E,, —E;, —E, ,givenby
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(EH? — 2 = (w,, + %wl)vz + %\/wfv“ + (4 v ) wypwyr = Ej[2n + 1 + \/1 + n(n + 1) (dvv)* 2]
(A8)

In the second equation we introduced the energy scale Eg = /#/1,,, with [, = /72 /eB the magnetic length. The
B-independent level E;” = p becomes a zero-mode in the limit y — 0.

As a check on the calculation, we note that for i = 0, v, = 0 we recover the valley-degenerate Landau level
spectrum of graphene [16],

E, = (/w,/l,)\2n, Ef=E,,,. (A9)

Another special case of interestis &« = 0, 1, = 1, = vy, when the two modes of Dirac fermions have
velocities 1, + v, equal to 0 and 2v,. From equation (A8) we find the Landau level spectrum

E, =0, El=2(/wy/lL)J2n + 1. (A10)

The mode with zero velocity remains B-independent, while the mode with velocity 2v, produces a sequence of
Landau levels with a 1/2 offset in the n-dependence.

Appendix B. Calculation of the low-energy Hamiltonian to all orders in the Kek-Y bond
modulation

We seek to reduce the six-band Hamiltonian (8) to an effective4 x 4 Hamiltonian that describes the low-energy
spectrum near k = 0. For Ay < 1we can simply project onto the 2 x 2 lower-right subblock of &, which for
the |v| = 1Kek-Y bond modulation vanishes linearly in k. This subblock is coupled to the £y band near E = 3¢,
by matrix elements of order A, so virtual transitions to this higher band contribute to the low-energy spectrum
in order A3. We will now show how to include these effects to all order in A,.

One complication when we go beyond the small- A, regime is that the phase ¢ of the modulation amplitude
can no longer be removed by a unitary transformation. As we will see, the low-energy Hamiltonian depends on ¢
modulo 27/3—so we do not need to distinguish between the phase of A = e27i(?+49)/3A and the phase of A.
The choice between v = +1still does not matter, the two Kek-Y modulations being related by a mirror
symmetry. For definiteness we take v = +1.

We define the unitary matrix

® 0\(V O b 00
V= , D= —ig ,
(o <I>)(0 Il) =00 (Bla)
0 0 e
0 2 =27, —2A,
V= BTN 2A¢g 14+ Dy 1 — Dgf, (B1b)
24 1 =Dy 1+ Dy
with Dy = /1 + 2A} and evaluate
0 & 0 &
Vi s V=1 _+ , (B2a)
51 0 51 0
Dogy pre-1 po&i
(Ef‘lsz(c/’]: 0 Pr€-1 pff;'] 5 (BZb)
0 pe,y pj&l
Py = %[1 — 2A% £ Dy + e 3 Ao(1 F Do), (B2¢)
o
0o ﬂ(2+e3i%0). (B2d)
Dy

The matrix elements that couple the lower-right 2 x 2 subblock of &, to g are now of order k, so the effect on
the low-energy spectrum is of order k* and can be neglected—to all orders in /.
The resulting effective low-energy Hamiltonian has the 4 x 4 form (9), with h; replaced by

*

E_ &

h1: PrE-1 p;l ) (B3)
pP-E-1 pia

The phases of p, = |p,|e!’ can be eliminated by one more unitary transformation, with the 4 x 4 diagonal
matrix
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Figure B1. Velocities v; = v, + v and v, = v, — 1, of the two gapless modes in the Kek-Y superlattice, as a function of the bond
modulation amplitude A for two values of the modulation phase ¢. The ¢-dependence modulo 27r/3 appears to second order in A.
The curves are calculated from equation (B7). Note that positive and negative values of v, v, are equivalent.

Figure B2. Kek-Y superlattice with a complex bond amplitude A = €l?/\,, according to equation (4) with v = 1. The three colors of
the bonds refer to three different bond strengths, adding up to 3#,. For ¢ = 0 two of the bond strengths are equal to #y(1 — A,) and
the third equals #,(1 4+ 2A). This is the case shown in figure 1. For ¢ = 7/6 the bond strengths are equidistant: t,(1 — Ag+/3), to,
and fo(1 + Ag~/3). The value of A, where a bond strength vanishes shows up in figure B1 as a point of vanishing velocity.

O = diag(e'®, e, e+l 1), (B4)
which results in
0 h 0 i) - 1 lp s
o e 1 o— > 1 = |P+| 1 |p|1‘ (B5)
h' 0 A lole-r lpla

Finally, we arrive at the effective Hamiltonian (14), with renormalized velocities:

H=v%Pp o)@m+vo (@ -1) v%=Iplve v:=I|p|vo (B6)
lpu? = ﬁu + 345 £ Dy(1 — 3A%) + 2A3(£Dy — 2)cos 3¢)). (B7)
0

To third order in Ay we have

Vo /Vo=1— %Ag — %Agcos3¢, v /vg = Ay — %Agcos3¢ + %Ag(l — 9c0s6¢) + O(AY). (B8)

10
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For real A, when ¢ = 0and p.. is real, equation (B7) simplifies to

1+ 2A
pr=~(1 — Ay) d

? J1+ 2A2

The velocities of the two Dirac modes are then given by
(I — Ag)(1 + 2Ap)
Vo

Jitoaz

vy = — vy = 1o(1 — Ay). (B10)

+ 1) (B9)

Vi=Vy + V=

More generally, for complex A = Age' both v, and v, become ¢-dependent to second order in Ay, see
figure B1.

Note that the asymmetry in £ A vanishes for ¢ = 7/6. For this phase the superlattice has three different
bond strengths (see figure B2) that are symmetrically arranged around the unperturbed value .
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