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First-order dipolar phase transition in the Dicke model with infinitely coordinated
frustrating interaction
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We found analytically a first-order quantum phase transition in a Cooper pair box array of N low-capacitance
Josephson junctions capacitively coupled to resonant photons in a microwave cavity. The Hamiltonian of the
system maps on the extended Dicke Hamiltonian of N spins 1/2 with infinitely coordinated antiferromagnetic
(frustrating) interaction. This interaction arises from the gauge-invariant coupling of the Josephson-junction
phases to the vector potential of the resonant photons field. In the N � 1 semiclassical limit, we found a critical
coupling at which the ground state of the system switches to one with a net collective electric dipole moment
of the Cooper pair boxes coupled to a super-radiant equilibrium photonic condensate. This phase transition
changes from the first to second order if the frustrating interaction is switched off. A self-consistently “rotating”
Holstein-Primakoff representation for the Cartesian components of the total superspin is proposed, that enables
one to trace both the first- and the second-order quantum phase transitions in the extended and standard Dicke
models, respectively.
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I. INTRODUCTION

Realization of the equilibrium photonic condensates is of
great interest for a fundamental study of new states of light
strongly coupled to quantum metamaterials [1–6]. In partic-
ular, quantum electrodynamics of superconducting qubits in
a cavity is crucial for the quantum computation perspectives
[7–10]. In quantum optics (see, e.g., cavity QED described by
the famous Dicke model [11]), the “no-go” theorems made
perspectives of equilibrium photonic condensates gloomy
[12–14], and only dynamically driven condensates are consid-
ered [15–20]. Nevertheless, it was found that in the equilibrium
circuit QED systems the no-go theorems may not hold [4,5]. In
particular, an array of capacitively coupled Cooper pair boxes
to a resonant cavity was proven to disobey the no-go theorem
for an equilibrium super-radiant quantum phase transition [5].
Nevertheless, another complication was found in this case, i.e.,
it was demonstrated [6,21,22] that allowance for the gauge
invariance with respect to the electromagnetic vector potential
of the photon field causes the Hamiltonian of the system to map
on the extended Dicke model Hamiltonian of (pseudo)spins
1/2, adding to the standard Dicke model a frustrating infinitely
coordinated antiferromagnetic interaction between the spins.
Lately, numerical diagonalization results for small clusters
with N spins were reported [6] to behave differently depending
on the parity of the number of spins N .

Motivated by the above history of exploration of the
extended Dicke model, we present in this paper analytic
description of the super-radiant equilibrium quantum phase
transition in the array of N � 1 Cooper pair boxes strongly
coupled to a resonant cavity. The plan of the present paper is
as follows.

First, we reproduce derivation [6,21] of the extended Dicke
Hamiltonian with an infinitely coordinated antiferromagnetic
(frustrating) term. Next, we confirm the absence of the zero

modes in the spectrum of the bosonic excitations, as was found
in [6]. Then, we introduce a representation for the operators
of Cartesian components of the total spin (“superspin”) of
N spins 1/2: a self-consistently rotating Holstein-Primakoff
(RHP) representation. After that, we demonstrate that RHP
method applied to the extended Dicke Hamiltonian reveals
the first-order quantum phase transition, that sets the system
into a double degenerate dipolar ordered super-radiant state
with a coherent photonic condensate emerging in the cavity.
Also, in Appendix B we show that the RHP approach also
reproduces the second-order quantum phase transition for the
Dicke Hamiltonian without the frustrating interaction term,
found earlier by another method [23,24]. We discuss a drastic
difference between the critical values of the coupling strength
gc in the N → ∞ limit for the first- and second-order phase
transitions, respectively. In the Conclusions we present some
evaluations of the parameters of a Cooper pair boxes array
in a microwave cavity for an experimental validation of our
theoretical predictions.

II. DICKE HAMILTONIAN OF A COOPER PAIR
BOXES ARRAY

In this section we present a derivation of the extended Dicke
model Hamiltonian. We consider a single mode electromag-
netic resonant cavity of a linear dimension L coupled to an
array of N independent dissipationless Josephson junctions
(JJs). It is assumed that the wavelength λ of the cavity’s
resonant photon is much greater than the interjunction distance:
λ � L/N . The vector potential of the electromagnetic field
related with the photon is expressed in the second quantized
form

�A =
√

c2h

ωV
(â† + â)�ε , (1)
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where h is Planck’s constant, ω is the bare photon frequency,
the photon creation and annihilation bosonic operators are
â† and â, �ε is a unit vector of polarization of electric field,
c is velocity of light, and V is the volume of a cavity.

The Hamiltonian of a Cooper pair boxes array in a cavity
then reads

Ĥ = Ĥph + ĤJJ, (2)

Ĥph = 1
2 (p̂2 + ω2q̂2), (3)

ĤJJ = EC

N∑
i=1

n̂2
i − EJ

N∑
i=1

cos

(
φ̂i − g

h̄
q̂

)
, (4)

where the coupling constant is g = 2el
√

4π/
√

V , and l is
of the order of a penetration depth of electric field into
the superconducting islands constituting a given Josephson
junction, thus giving an effective thickness across the junction
[22]. For simplicity, we consider all the junctions being
identical, with electric-field polarization �ε aligned across each
Josephson junction. Here the two mutually commuting sets of
conjugate variables are introduced: [p̂,q̂] = −ih̄ and [n̂i ,φ̂i] =
−i. The second quantized (harmonic oscillator) variables of the
photonic field are

p̂ = i

√
h̄ω

2
(â† − â) and q̂ =

√
h̄

2ω
(â† + â), (5)

where [â,â†] = 1. An operator 2en̂i = 2e(n̂R
i − n̂L

i )/2 stands
for half of the charge difference at the ith junction, and equals
half the difference of the number of Cooper pairs populating
left and right islands of the Josephson junction accordingly,
multiplied by the elementary charge 2e of the Cooper pair.
The quantum of charging energy of a single junction is EC =
(2e)2/2C.

Following [21] we make a canonical transformation:

φ̂′
i = φ̂i − g

h̄
q̂ and n̂′

i = n̂i (6)

for the JJ variables and

p̂′ = p̂ + g

N∑
i=1

n̂i and q̂ ′ = q̂ (7)

for photonic variables, so that [p̂′,φ̂′
i] = 0 and the other

commutation relations between all the operators remain intact.
The Hamiltonian (2) becomes

Ĥ = 1

2
(p̂2 + ω2q̂2) − gp̂

N∑
i=1

n̂i + g2

2

(
N∑

i=1

n̂i

)2

+
N∑

i=1

(
EC n̂2

i − EJ cos φ̂i

)
, (8)

where primes identifying the new variables are omitted for
brevity. Thus, the infinitely coordinated interaction term ∝ g2

has appeared in (8) after the canonical transformation of the
Hamiltonian (2).

We restrict ourselves to the Cooper pair box limit [25], when
charging energy EC is large in comparison with Josephson
coupling EJ and the eigenstates of the Hamiltonian (4) in the

zeroth-order approximation can be chosen as the eigenstates of
the charge difference operators n̂i . The lowest bare energy level
corresponding to the quantum states |ni = − 1

2 〉 and |ni = 1
2 〉

is thus twofold degenerate with respect to the direction of a
Cooper pair box dipole moment �di = 2eln̂i�ε (l is effective
thickness of the ith JJ). This double degenerate level is
separated from the levels with the greater charge differences
by the EC gap. The Josephson tunneling term ∼ EJ lifts the
degeneracy and opens a gap between the energy levels of the
two states that differ by the wave-function parity ±1 with
respect to inversion of dipole direction of the Cooper pair box.
The thus formed two-level system is naturally described by
the Pauli matrices σ̂ α

i . On the subset of these lowest-energy
states the initial Hamiltonian (4) of the array of N Josephson
junctions that couple Cooper pair boxes is represented by a
Hamiltonian of N interacting spins 1/2:

ĤJJ =
N∑

i=1

(
EC n̂2

i − EJ cos φ̂i

)
≈ EC

4

N∑
i=1

(∣∣∣∣1

2

〉〈
1

2

∣∣∣∣ +
∣∣∣∣−1

2

〉〈
−1

2

∣∣∣∣)
i

− EJ

2

N∑
i=1

(∣∣∣∣1

2

〉〈
−1

2

∣∣∣∣ +
∣∣∣∣−1

2

〉〈
1

2

∣∣∣∣)
i

= NEC

4
1̂ − EJ

2

N∑
i=1

σ̂ x
i . (9)

Here charge and phase difference operators n̂i and cos φ̂i are
projected on ŝz

i and ŝx
i correspondingly, where ŝα

i = 1
2 σ̂ α

i are
spin-1/2 operators expressed via the Pauli matrices. As a result,
initial Hamiltonian (8) reduces to the following spin-boson
Hamiltonian, modulo energy shift NEC/4:

Ĥ = 1

2
(p̂2 + ω2q̂2) − gp̂

N∑
i=1

ŝz
i

− EJ

N∑
i=1

ŝx
i + g2

2

(
N∑

i=1

ŝz
i

)2

. (10)

It is important to clarify here the meaning of the spin-boson
interaction term in (10), that had emerged when canonical
transformation (6) and (7) of the initial gauge-invariant Hamil-
tonian (2) was performed:

−gp̂ ŝz
i = − i

√
h̄ω

2V
(â† − â) 2el

√
4πŝz

i = − �̂E �̂di, (11)

which represents the energy of the dipole in the electric field.
The electric-field operator in (11) is given by

�̂E = i

√
hω

V
(â† − â)�ε (12)

and the dipole moment of the single junction is

�̂di = 2eŝz
i l�ε. (13)
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The total dipole moment is then

�̂d =
N∑

i=1

�̂di = 2e l�ε
N∑

i=1

ŝz
i . (14)

For convenience of further calculations we perform a

unitary transformation U †ĤU , where U = 1√
2
(1 i
1 −i

) inter-

changes operators of the Cartesian components of spin 1/2:
ŝz
i → −ŝ

y

i , ŝ
y

i → −ŝx
i , and ŝx

i → ŝz
i .

Hence, the final Hamiltonian of the Cooper pair boxes, that
we are going to explore, becomes

Ĥ = 1

2
(p̂2 + ω2q̂2) + gp̂ Ŝy − EJ Ŝz + g2

2
(Ŝy)2, (15)

where we have introduced operators Ŝα = ∑
i ŝ

α
i of the total

spin components. The total spin Ŝ2 is conserved, because it
commutes with (15): [Ŝ2,Ĥ ] = 0. Cooper pairs tunneling is
represented by the −EJ Ŝz term, gp̂ Ŝy is a dipole coupling
strength of a Cooper pair box to the photonic field, and
(g2/2)(Ŝy)

2
stands for the infinitely coordinated “antiferro-

magnetic” frustrating term.

III. DIAGONALIZATION OF THE FRUSTRATED
DICKE MODEL

A. Tunneling regime

In this section, we consider the frustrated Dicke Hamil-
tonian (15) and first assume that at small coupling strength
g the Josephson tunneling term −EJ Ŝz dominates at zero
temperature. Then the superspin is in the large S sector and
hence one is allowed to use the Holstein-Primakoff (HP)
transformation [26] in the form

Ŝz = S − b̂†b̂, (16)

Ŝy = i

√
S

2

⎛⎝b̂†

√
1 − b̂†b̂

2S
−

√
1 − b̂†b̂

2S
b̂

⎞⎠ � i

√
S

2
(b̂† − b̂),

(17)

Ŝx =
√

S

2

⎛⎝b̂†

√
1 − b̂†b̂

2S
+

√
1 − b̂†b̂

2S
b̂

⎞⎠ �
√

S

2
(b̂† + b̂),

(18)

where [b̂,b̂†] = 1. The substitution of (16) and (17) into (15)
gives the Hamiltonian of the two linearly coupled harmonic
oscillators:

Ĥ = ω

(
â†â + 1

2

)
− EJ (S − b̂†b̂)

− g
√

Sω

2
(â† − â)(b̂† − b̂) − g2S

4
(b̂† − b̂)2. (19)

This model also arises in the case of the ultrastrong light-matter
coupling regime with polariton dots [27]. Here and in what
follows we set h̄ = 1. With the help of the usual linear Bo-
goliubov transformation of the creation/annihilation operators

(see Appendix A) we obtain the diagonalized Hamiltonian

Ĥ = − EJ

(
S + 1

2

)
+ 1

2
(ε1 + ε2)

+ ε1 ĉ
†
1ĉ1 + ε2 ĉ

†
2ĉ2 (20)

with the excitations spectrum described by the new oscillator
frequencies

2ε2
1,2 = EJ (EJ + g2S) + ω2

±
√

(EJ (EJ + g2S) − ω2)2 + 4ω2g2SEJ , (21)

where the frequencies ε1,2 have to be chosen positive to keep
the Hermiticity of the initial operators p̂, q̂, and Ŝy . In contrast
with the Dicke model without frustration [23] both energy
branches are real in the whole range of the coupling constants
g, but with a caveat. Namely, the ground-state energy equals

E0(S) = −EJ

(
S + 1

2

)
+ 1

2
(ε1 + ε2). (22)

This ground state is stable as long as the ground-state en-
ergy E0(S) (22) has a global minimum as a function of the
superspin S at the end of the interval [0, N/2]. One can
find the value of the coupling strength g = g̃, at which the
minimum becomes double degenerate, via solving equation
E0(S = N/2,g = g̃) = E0(S = 0,g = g̃) = ω/2:

g̃ �
√

2EJ N + (EJ + ω)

√
2

NEJ

, (23)

which can be easily derived from large g asymptotic expression
of E0(S):

E0 � −EJ

(
S + 1

2

)
+ g

2

√
EJ S. (24)

For g > g̃ the minimum of E0(S) migrates from S = N/2 to
0 (see Fig. 1). This “jump” of the minimum obviously makes
ground state S = N/2 unstable and leads to an inapplicability
of the quasiclassical HP approximation. Thus, our large S

ground-state description (22) is justified for g < g̃.

B. Rotating Holstein-Primakoff representation

In order to continue the theory into the strong-coupling
regime, i.e., outside the interval g < g̃, we substitute in the

FIG. 1. Ground-state energy as a function of the superspin S

at fixed dimensionless coupling constant λ = g
√

N/2EJ . The blue
dashed line shows the double degenerate minima of the ground state
at the coupling strength λ = λ̃ (23).
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Hamiltonian (15) the y and z components of the total spin op-
erators with a generalized expression of the Holstein-Primakoff
representation in a coordinate frame rotated by an angle θ in
the z-y plane:

Ŝz = Ĵ z cos θ − Ĵ y sin θ,
(25)

Ŝy = Ĵ z sin θ + Ĵ y cos θ.

Here the set of operators of the Cartesian projections of the
total spin Ĵ x,y,z is

Ĵ z = S − b̂†b̂,

Ĵ y � i

√
S

2
(b̂† − b̂), (26)

Ĵ x �
√

S

2
(b̂† + b̂).

To find the θ = 0 solution that diagonalizes (15) we introduce
a shift, i

√
α, of the photon creation/annihilation operators,

similar to [23], in the following way:

â† = ĉ† − i
√

α,
(27)

â = ĉ + i
√

α,

thus envisaging formation of a super-radiant state. After we
substitute (25)–(27) into (15), the Hamiltonian, quadratic in
operators c,c†, b, and b†, becomes

Ĥ = ω

(
ĉ†ĉ + 1

2

)
− EJ cos θ (S − b̂†b̂)

− g cos θ
√

Sω

2
(ĉ† − ĉ)(b̂† − b̂) − g2 cos2 θ S

4
(b̂† − b̂)2,

(28)

where an elimination of the linear in (ĉ† − ĉ) and (b̂† − b̂) terms
in the Hamiltonian introduces a system of the two equations:

√
2ωα + g sin θ (S − 〈b̂†b̂〉) = 0 , (29)

EJ sin θ+g cos θ
√

2ωα+g2 cos θ sin θ
(
S−〈b̂†b̂〉− 1

2

) = 0.

(30)

We have also made in (28) a mean-field decoupling of
the products that are higher than quadratic in b and b†

operators: b̂†b̂ b̂†b̂ = 2〈b̂†b̂〉b̂†b̂ − 〈b̂†b̂〉2
and b̂†b̂(b̂† − b̂) +

(b̂† − b̂)b̂†b̂ = (b̂† − b̂)(1 + 2〈b̂†b̂〉).
Nontrivial solutions α = 0 and θ = 0 of the system of

equations (29) and (30) emerge when g � √
2EJ :

cos θ = 2EJ

g2
, (31)

√
α = − gS√

2ω

(
1 − 〈b̂†b̂〉

S

)
sin θ � − gS√

2ω
sin θ

= gS√
2ω

√
1 − 4E2

J

g4
, (32)

and
√

α → −√
α; θ → −θ. (33)

Under the solutions (31)–(33), the energy of the photonic
condensate = ωα exactly cancels with the sum of the rest of
the c-number terms in the Hamiltonian (28):

ωα + gS sin θ
√

2ωα + g2 sin2 θ

2
(S2 − 〈b̂†b̂〉2)

= g2 sin2 θ

2
(S2 − 2S〈b̂†b̂〉 + 〈b̂†b̂〉2 − 2S2

+ 2S〈b̂†b̂〉 + S2 − 〈b̂†b̂〉2) = 0. (34)

The c-number terms in the first line of (34) have the following
meaning: the photonic condensate energy ∼ ωα, the (negative)
contribution of the dipole-photon coupling energy∼ g〈p̂〉〈Ŝy〉,
and the zero-point oscillations energy of the frustrating term
∼ g2〈(Ŝy)2〉/2. The total of these three terms proves to be
zero. This α-independent cancellation, actually, stems from
the degeneracy of the energy minima of the diagonal in the
spin operators part of the extended Dicke Hamiltonian (15)
with respect to 2S + 1 different Ŝy projections and classical
part ∼ √

α of the photonic operator p̂.

C. Super-radiant dipolar regime

The structure of (28) is the same as (19), though with coeffi-
cients renormalized with prefactor cos θ due to RHP rotation by
an angle θ . Hence, after a Bogoliubov transformation similar to
the one already described in the Appendix A, the diagonalized
Hamiltonian expressed via new second quantized operators
ê
†
1,2 and ê1,2 acquires the form

Ĥ = − g2 cos2 θ

2

(
S + 1

2

)
+ 1

2
(ε̃1 + ε̃2)

+ ε̃1 ê
†
1ê1 + ε̃2 ê

†
2ê2 (35)

with the positive eigenvalues ε̃1,2,

2ε̃ 2
1,2 = g4 cos4 θ

2

(
S + 1

2

)
+ ω2

±
√[

g4 cos4 θ

2

(
S + 1

2

)
− ω2

]2

+ 2S ω2g4 cos4 θ,

(36)

and the ground-state energy

Ẽ0(S) = −g2 cos2 θ

2

(
S + 1

2

)
+ 1

2
(ε̃1 + ε̃2). (37)

The stability of the large S state in this regime is provided by
the negative slope of Ẽ0(S) as a function of S (see Fig. 2) in
the strong-coupling limit:

Ẽ0(S)
∣∣
g→+∞ � ω

2
− 2E2

J

g2

(
S + 1

2

)
. (38)

The interval g � √
2EJ is characterized with an emergent

dipole moment of the Cooper pair boxes array and the super-
radiant photonic condensate either as a metastable state for√

2EJ � g < gc or as the ground state for g � gc (the critical
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FIG. 2. Ground-state energy Ẽ0 as a function of the superspin S

at fixed dimensionless coupling constant λ = g
√

N/2EJ .

strength gc is found below). To see this explicitly, we express
electromagnetic field operators via a new set of Bose operators
found after the Bogoliubov transformation:

p̂ =
√

2ωα + i
ω cos δ√

2ε̃1
(ê†1 − ê1) + i

ω sin δ√
2ε̃2

(ê†2 − ê2), (39)

q̂ = cos δ√
2ε̃1

(ê†1 + ê1) + sin δ√
2ε̃2

(ê†2 + ê2). (40)

In turn, the spin operators are expressed via êi , ê
†
i , i = 1,2 as

well:

Ĵz = S

(
1 − 〈b̂†b̂〉

S

)
� S, (41)

Ĵy = −i
EJ

√
S sin δ

g
√

ε̃1
(ê†1 − ê1) + i

EJ

√
S cos δ

g
√

ε̃2
(ê†2 − ê2),

(42)

Ĵx = −EJ

√
S sin δ

g
√

ε̃1
(ê†1 + ê1) + EJ

√
S cos δ

g
√

ε̃2
(ê†2 + ê2).

(43)

The Bogoliubov “angle” δ can be found from the consistency
relation

tan 2δ = 2
√

2S ω g2 cos2 θ

g4 cos4 θ
(
S + 1

2

) − 2ω2
. (44)

We find for g � √
2EJ the following nonzero expectation

values in the ground state of Hamiltonian (35). For the electric

field �̂E ,

〈 �̂E · �ε〉
√

V

4π
= 〈p̂〉 =

√
2ωα � −gS sin θ

= ∓gS

√
1 − 4E2

J

g4
; (45)

for the modulus of the Josephson tunneling energy of the
Cooper pairs (it decreases),

−EJ 〈Ŝz〉 = −EJ 〈Ĵ z〉 cos θ � −S
2E2

J

g2
; (46)

 d=0, θ=0                              d=el, θ=π/2                          d=-el, θ=-π/2

FIG. 3. Schematic layout of the amplitude distributions of the
Cooper pair’s wave function in the adjacent islands of a single JJ and
corresponding dipole moment values depending on the rotation angle
θ [see text and Eqs. (25)].

and, for the emergent finite mean value of the dipole moment,

〈d̂〉 = 2el〈Ŝy〉 = 2el〈Ĵ z〉 sin θ � ±2elS

√
1 − 4E2

J

g4
. (47)

Hence, results (45) and (47) indicate that upon an increase
of the coupling strength g >

√
2EJ there is a state with the

energy given in (37), which is characterized by an emergent
super-radiant electromagnetic field 〈p̂〉 = 0 in the cavity to-
gether with a finite dipole moment of the Cooper pair boxes:
〈d̂〉 = 0. The latter means that rotation angle θ introduced
in (25) regulates an extent of a Cooper pair wave function
between the superconducting islands forming each Josephson
junction in the Josephson-junction array (see Fig. 3). Namely,
when θ progressively deviates from zero, the Cooper pairs
become localized in one of the two superconducting islands
constituting a given Josephson junction, and as a result the
latter acquires a dipole moment.

IV. FIRST-ORDER DIPOLAR PHASE TRANSITION

In this section we calculate a critical coupling gc, at which a
first-order phase transition between the tunneling and dipolar
states described in Secs. III A and III C takes place.

In Fig. 4 we plotted ground-state energies calculated for
tunneling and dipolar states as functions of coupling g: E0(S)
and Ẽ0(S) [see (22) and (37) correspondingly]. A dimen-
sionless coupling constant λ = g

√
N/2EJ is used. In the

strong-coupling limit, g � √
2EJ , the g dependence of both

branches of energy is very well approximated by (24) and (38).

FIG. 4. Ground-state energy as a function of dimensionless cou-
pling constant λ = g

√
N/2EJ . The blue line is for the Josephson

tunneling state in the interval λ < λc ≈ N . The red line is for the
dipolar ordered state. The red dashed line shows the dipolar state in
the metastable region preceding the first-order phase transition at λc.
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FIG. 5. Photon field 〈p̂〉 emerging in the cavity as a function
of dimensionless coupling constant λ = g

√
N/2EJ . The first-order

transition to a state with macroscopic photon occupation number
〈â†â〉 = 0 occurs at a critical coupling λc � N + ω/EJ . The blue
dotted line shows a metastable solution for 〈p̂〉, that first appears at
λ = √

N .

Hence, in the thermodynamic limit N → ∞, the solution
of E0 = Ẽ0 gives the critical value gc of the coupling constant:

gc �
√

2EJ N + ω

√
2

NEJ

. (48)

Here a crucial difference with respect to [23] is that the
critical point corresponds to λc ≈ N and not 1 as in the standard
Dicke model without frustration. Hence, transition now is size
dependent, where the “size” of the system is the total number
N of Cooper pair boxes inside the microwave cavity.

At λ = √
N , i.e., g = √

2EJ , the ground state becomes
degenerate and a dipolar branch Ẽ0(S) first appears. For√

N < λ < N , i.e.,
√

2EJ < g < gc, the dipolar state minimal
energy Ẽ0(S) is higher than the tunneling ground-state energy
E0(S). Hence, the system remains in the tunneling state (i.e.,
dipolar disordered). At λ = λc the ground-state energy E0(S)
crosses the dipole state energy branch Ẽ0(S) for the second
time and goes above Ẽ0(S). At the critical coupling g = gc (i.e.,
λ = λc) the first-order phase transition from the tunneling state
to dipolar ordered state takes place. It is, indeed, a first-order
transition, since at g = gc the dipole moment in the dipolar
state is already finite: 〈d̂〉 ≈ ±2elS [see (47)], while in the
tunneling state it equals zero. Namely, the first-order phase
transition results in

〈p̂〉 = −Sg sin θ =
{

0 , g < gc

∓Sg

√
1 − 4E2

J /g4, g � gc
(49)

(see Fig. 5) and

−EJ 〈Ŝz〉 = −SEJ cos θ =
{−SEJ , g < gc

−E2
J 2S/g2, g � gc

, (50)

〈d̂〉 = 2elS sin θ =
{

0 , g < gc

±2elS

√
1 − 4E2

J /g4, g � gc
. (51)

The collective dipole moment (51) is defined by the angle θ ,
which is shown in Fig. 6.

It is important to mention here that comparison of (48)
with (23) gives g̃ − gc = √

2EJ /N > 0. Hence, we have

FIG. 6. The angle θ , that characterizes rotation of HP, as a
function of dimensionless coupling constant λ = g

√
N/2EJ . The

color scheme is chosen the same as for Fig. 5.

found the first-order phase transition in the region of validity
(i.e., g < g̃) of the large superspin limit S = N/2 � 1, that
justifies the use of the HP approach. In the limit g → +∞
the dipolar ordered ground-state energy Ẽ0 approaches from
below the ground-state energy of a free resonant photon, ω/2.
Simultaneously, at g = gc the ground-state energy Ẽ0(S) =
0 < ω/2. Hence, our semiclassical description indicates that
after the dipole transition the system gradually approaches
the “decoupled state” Ẽ0(S) = ω/2, but with saturated values
of the collective dipole moment ∝ 〈Ŝy〉 → N/2 and photon
occupation number α ∝ 〈p̂〉2 → N2g2/ω. It is not possible to
decide in the framework of our semiclassical approach whether
a crossover to a state 〈Ŝy〉 = 0 happens in the g → +∞ limit.
The latter state was predicted numerically in finite or even N

spin-1/2 cluster realization of the extended Dicke model [6].
The excitation branches (36) of the diagonalized Hamilto-

nian are shown in Figs. 7 and 8.
The branch ε1, that grows with the increase of the coupling,

goes to the initial photon’s frequency ω after the first-order
transition. The branch ε2 approaches zero in the strong-
coupling limit.

Combining together (48) and expression g =
2el

√
4π/(

√
V ), one may formulate a condition for an

FIG. 7. Excitation branches ε1 and ε̃1 [Eqs. (21) and (36)] as the
functions of dimensionless coupling constant λ = g

√
N/2EJ . The

vertical axis is shown in the logarithmic scale. At the critical coupling
λc ≈ N the frequency ε1 falls down to ε̃1 ≈ ω. The color scheme is
the same as in Fig. 4.
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FIG. 8. Excitation branches ε2 and ε̃2 [Eqs. (21) and (36)] as a
function of dimensionless coupling constant λ = g

√
N/2EJ . The

frequencies ε2 and ε̃2 asymptotically approach zero in the strong-
coupling limit. The color scheme is the same as in Fig. 4.

occurrence of the dipolar quantum phase transition:

4el
√

π/V =
√

2NEJ , (52)

where l is a penetration depth of electric field into the Cooper
pair box superconducting island, and V is the volume of the
microwave cavity. Taking into account that charging energy
EC = (2e)2/2C is of order EC = 2e2/l, one may rewrite (52)
in the following form:

L ≈ l
ECl2

EJ N�
, (53)

where � and L are waveguide (microwave cavity) cross-
section area and length, respectively. Assuming L ≈ Nl we
finally find the following condition:

N2 ≈ ECl2

EJ �
. (54)

Hence, we come to a similar conclusion (see Fig. 9) as was
already made in [7], that in order to achieve strong-coupling
limitg � gc for a Cooper pair boxes array of a “thermodynamic
size” N ≈ 102 inside a microwave resonator a coplanar geom-
etry with one-dimensional superconducting transmission line

FIG. 9. Schematic layout of a Cooper pair boxes array inside
a microwave resonator of coplanar geometry with one-dimensional
superconducting transmission line (stripline resonator), similar to that
proposed in [7] for achieving of a strong coupling g between two-level
systems and resonant photons in a model with the frustrated Dicke
Hamiltonian.

FIG. 10. The angle θ as a function of dimensionless coupling
constant λ = g

√
N/2EJ in the Dicke model without the frustrating

interaction term.

(stripline resonator) should be used, thus providing inequality
�/l2 � 1, and the Cooper pair box should have charging
energy much greater than Josephson coupling energy: EC �
EJ .

V. CONCLUSIONS

In summary, we have demonstrated that strong enough
capacitive coupling of the Cooper pair boxes array of low-
capacitance Josephson junctions to microwave resonant pho-
tons may lead to a first-order quantum phase transition. As
a result, a dipolar ordered state of Cooper pairs is formed,
coupled to the emerged coherent photonic condensate. The
phase transition is of the first order due to infinitely coordinated
antiferromagnetic (frustrating) interaction, that arises between
Cooper pair dipoles of different Cooper pair boxes. This
frustrating interaction is induced by a gauge-invariant coupling
of the Josephson junctions to a vector potential of the resonant
photons in the microwave cavity. The strength of the coherent
electromagnetic radiation field that emerges under the phase
transition is proportional to the number N of the Cooper pair
boxes in the array and is reminiscent of the super-radiant state
of the Dicke model without frustrating term found previously
[23]. Nevertheless, the phase transition into the latter state is
of second order [23] (see also Fig. 10 and Appendix B).

The analytical description of the first-order quantum phase
transition in the Dicke model with infinitely coordinated
antiferromagnetic frustrating interaction is made possible by an
analytic tool: self-consistently “rotating” Holstein-Primakoff
representation for the Cartesian components of the total spin,
which is described in this paper. Our approach enables, as a
byproduct, a description of the second-order quantum phase
transition in the Dicke model without frustrating antiferro-
magnetic interaction, explored previously by other authors
[23]. Nevertheless, rotating Holstein-Primakoff representation
remains semiclassical (S → ∞). Therefore, the region of “spin
liquid” with S ∼ 1 is not attainable within this method.
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APPENDIX A: BOGOLIUBOV’S TRANSFORMATION FOR
THE FRUSTRATED HAMILTONIAN

Below we show in detail a diagonalization procedure of the
Hamiltonian (19). Let us introduce

p̂x = i
1√
2ω

(â† − â) and x̂ =
√

ω

2
(â† + â) (A1)

together with

p̂y = i
1√
2EJ

(b̂† − b̂) and ŷ =
√

EJ

2
(b̂† + b̂) (A2)

and rewrite (19) in terms of (A1) and (A2):

Ĥ = − EJ

(
S + 1

2

)
+ 1

2

(
x̂2 + ω2 p̂2

x

) + 1

2

(
ŷ2 + E2

J p̂2
y

)
+ ωg

√
SEJ p̂xp̂y + g2SEJ

2
p̂2

y

= − EJ

(
S + 1

2

)
+ 1

2
K̂xy + 1

2
K̂pxpy

, (A3)

where

K̂xy = x̂2 + ŷ2, (A4)

K̂pxpy
= ω2p̂2

x + EJ (EJ + g2S)p̂2
y + 2 ωg

√
SEJ p̂xp̂y.

(A5)

We diagonalize (A3) by performing a linear transformation of
the quantum operators:(

p̂x

p̂y

)
=

(
cos γ sin γ

− sin γ cos γ

)(
p̂1

p̂2

)
and(

x̂

ŷ

)
=

(
cos γ sin γ

− sin γ cos γ

)(
q̂1

q̂2

)
. (A6)

Then

K̂xy = q̂2
1 + q̂2

2 , (A7)

and

K̂pxpy
= [ω2 cos2 γ + EJ (EJ + g2S) sin2 γ

− 2ωg
√

SEJ sin γ cos γ ]p̂2
1

+ [ω2 sin2 γ + EJ (EJ + g2S) cos2 γ

+ 2ωg
√

SEJ sin γ cos γ ]p̂2
2

+ {[ω2 − EJ (EJ + g2S)] sin 2γ

+ 2ωg
√

SEJ cos 2γ }p̂1p̂2. (A8)

The diagonalization condition that eliminates the cross-term
∼ p̂1p̂2 is

tan 2γ = 2ωg
√

SEJ

EJ (EJ + g2S) − ω2
. (A9)

So, diagonalized operator K̂pxpy
becomes

K̂pxpy
= ε2

1 p̂2
1 + ε2

2 p̂2
2, (A10)

where

2ε2
1 = EJ (EJ + g2S) + ω2 − [EJ (EJ + g2S) − ω2] cos 2γ

− 2ωg
√

SEJ sin 2γ, (A11)

2ε2
2 = EJ (EJ + g2S) + ω2 + [EJ (EJ + g2S) − ω2] cos 2γ

+ 2ωg
√

SEJ sin 2γ. (A12)

Substitution of (A9) into (A11) and (A12) gives the eigenvalues

2ε2
1,2 = EJ (EJ + g2S) + ω2

±
√

[EJ (EJ + g2S) − ω2]2 + 4ω2g2SEJ . (A13)

The transformation

p̂1,2 = i
1√

2ε1,2
(ĉ†1,2 − ĉ1,2) and q̂1,2 =

√
ε1,2

2
(ĉ†1,2 + ĉ1,2)

(A14)

finally gives the diagonal Hamiltonian (20).
The initial operators â and b̂ are expressed via the new

operators ĉ
†
1,2 as

a =
√

ω

ε1
cos γ ĉ1 +

√
ω

ε2
sin γ ĉ2 (A15)

and

b̂ = −
√

EJ

ε1
sin γ ĉ1 +

√
EJ

ε2
cos γ ĉ2, (A16)

where γ is defined in (A9).

APPENDIX B: QUANTUM PHASE TRANSITION
OF SECOND ORDER IN THE DICKE MODEL WITHIN

THE RHP METHOD

We consider the standard Dicke Hamiltonian [11,23] (mod-
ulo our notations)

Ĥ = 1
2 (p̂2 + ω2q̂2) + gp̂ Ŝy − EJ Ŝz (B1)

at small coupling g. We apply (16) and (17) to (B1):

Ĥ = − EJ

(
S + 1

2

)
+ ω

(
â†â + 1

2

)
+ EJ

(
b̂†b̂ + 1

2

)
− g

√
Sω

2
(â† − â)(b̂† − b̂). (B2)

The Bogoliubov transformation, similar to those in Appendix
A, gives

Ĥ = −EJ

(
S + 1

2

)
+ ε1

(
1

2
+ ĉ

†
1ĉ1

)
+ ε2

(
1

2
+ ĉ

†
2ĉ2

)
,

(B3)
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with the excitations spectrum described by the new oscillator
frequencies:

2ε2
1,2 = E2

J + ω2 ±
√(

E2
J − ω2

)2 + 4ω2g2SEJ . (B4)

The ground-state energy equals

E0(S) = −EJ

(
S + 1

2

)
+ 1

2
(ε1 + ε2). (B5)

One can check that as a function of S the energy E0(S) has
a minimum at S = N/2, i.e., at the end of the interval of all
possible total spin values 0 � S � N/2. This fact justifies the
Holstein-Primakoff approach (16)–(18) valid in the large spin
limit.

However, the lowest branch of excitations becomes imagi-
nary when g > gc = √

EJ /S:

ε2 =

√√√√E2
J + ω2

2
−

√(
E2

J − ω2
)2 + 4ω2g2SEJ

2
. (B6)

Thus, the ground state described above is unstable in the
interval g > gc (compare [23]). The method described in
Sec. III B [(25)–(27)] transforms the Hamiltonian (B2) into

Ĥ = ω

[
ĉ†ĉ + i

√
α(ĉ† − ĉ) + α + 1

2

]
− EJ cos θ (S − b̂†b̂)

+ EJ sin θ i

√
S

2
(b̂† − b̂)− g cos θ

√
Sω

2
(ĉ† − ĉ)(b̂† − b̂)

+ g cos θ
√

2ωα i

√
S

2
(b̂† − b̂) + g sin θ i

√
ω

2
(ĉ† − ĉ)

× (S − 〈b̂†b̂〉) + g sin θ
√

2ωα(S − b̂†b̂). (B7)

Here we have decoupled cubic in ĉ and b̂ operators terms in
a mean-field approximation. Conditions for vanishing of the
linear terms ∝ (ĉ† − ĉ) and (b̂† − b̂) in the Hamiltonian (B7)
are

√
2ωα + g sin θ (S − 〈b̂†b̂〉) = 0, (B8)

EJ sin θ + g cos θ
√

2ωα = 0. (B9)

Solving the system of Equations (B8) and (B9) we find

cos θ = EJ

Sg2

(
1 − 〈b̂†b̂〉

S

)−1

� EJ

Sg2
≡ g2

c

g2
, (B10)

√
α = − gS√

2ω

(
1 − 〈b̂†b̂〉

S

)
sin θ � gS√

2ω

√
1 − g4

c

g4
, (B11)

where both the shift
√

α and rotation angle θ are nonzero
when g > gc. Thus, using solutions (B10) and (B11) we obtain
the initial Hamiltonian (B7) in a form similar to (B2), but

renormalized with cos θ coefficients:

Ĥ = EJ S

2 cos θ
(1 − cos2 θ ) − EJ

cos θ

(
S + 1

2

)
+ ω

(
ĉ†ĉ + 1

2

)
+ EJ

cos θ

(
b̂†b̂ + 1

2

)
− g cos θ

√
Sω

2
(ĉ† − ĉ)(b̂† − b̂).

(B12)

Next, we perform Bogoliubov’s transformation that diagonal-
izes (B12), by performing a linear transform of Bose-operators
ĉ and b̂ into Bose operators ê1,2, and obtain

Ĥ = EJ S

2 cos θ
(1 − cos2 θ ) − EJ

cos θ

(
S + 1

2

)
+ ε̃1

(
1

2
+ ê

†
1ê1

)
+ ε̃2

(
1

2
+ ê

†
2ê2

)
(B13)

with the eigenvalues

2ε̃2
1,2 = E2

J

cos2 θ
+ ω2 ±

√(
E2

J

cos2 θ
− ω2

)2

+ 4ω2E2
J ,

(B14)

where both branches are now real for g > gc = √
EJ /S due to

renormalization of the coefficients with cos θ factors. We have
expressed in (B14) the coupling constant g via cos θ using the
self-consistency relation (B10). As is obvious from (B10) and
(B11), both the shift

√
α and rotation angle θ progressively

deviate from zero with increasing coupling strength g in the
interval g > gc, thus providing a description of the new stable
phase of the system.

The ground-state energy of the system is now

Ẽ0(S) = − EJ

2 cos θ
(S + 1) − EJ S

2
cos θ + 1

2
(ε̃1 + ε̃2),

(B15)

which always has a minimum at the end of the spin interval, at
S = N/2, thus justifying the Holstein-Primakoff approxima-
tion at finite angles θ .

Thus, we found the second-order phase transition that is
manifested by a gradual rotation of the total spin expectation
value in the y-z plane by an angle θ :

〈p̂〉 = −Sg sin θ =
{

0, g < gc

∓Sg
√

1 − g4
c /g

4, g � gc
(B16)

and

〈d̂〉 = 2eSl sin θ =
{

0 , g < gc

±2elS
√

1 − g4
c /g

4, g � gc
(B17)

where gc = √
2EJ /N and S = N/2. The angle θ that de-

scribes the transition is plotted in Fig. 10.
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