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REVIEW

Bundling arrows: improving translational CNS drug development by integrated PK/
PD-metabolomics
W. J. van den Brink a, T. Hankemeiera, P. H. van der Graafa,b and E. C. M. de Langea

aDivision of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands;
bCertara QSP, Canterbury Innovation House, Canterbury, United Kingdom

ABSTRACT
Introduction: Diseases of the Central Nervous System (CNS) affect millions of people worldwide, with
the number of people affected quickly growing. Unfortunately, the successful development of CNS-
acting drugs is less than 10%, and this is attributed to the complexity of the CNS, unexpected side
effects, difficulties in penetrating the blood-brain barrier and lack of biomarkers.
Areas covered: Herein, the authors first review how pharmacokinetic/pharmacodynamic (PK/PD)
models are designed to predict the dose-dependent time course of effect, and how they are used to
translate drug effects from animal to man. Then, the authors discuss how pharmacometabolomics gives
insight into system-wide pharmacological effects and why it is a promising method to study inter-
species differences. Finally, the authors advocate the application of PK/PD-metabolomics modeling to
advance translational CNS drug development by discussing its opportunities and challenges.
Expert opinion: It is envisioned that PK/PD-metabolomics will increase our understanding of CNS drug
effects and improve translational CNS drug development, thereby increasing success rates. The success-
ful future development of this concept will require multi-level and longitudinal biomarker evaluation
over a large dose range, multi-tissue biomarker evaluation, and the generation of a proof of principle by
application to multiple CNS drugs in multiple species.
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1. Introduction

Central nervous system (CNS) diseases affect millions of peo-
ple worldwide, and the number of people with such disease is
quickly growing [1]. They are characterized by their high
complexity as multiple neurotransmitter systems and bio-
chemical pathways are involved [2–4]. It is therefore not sur-
prising that CNS drug development suffers from low success
rates (<10%) and long duration (~12.6 years) [5,6]. Moreover, it
is hampered by CNS-mediated side effects (e.g. nausea, dizzi-
ness), the presence of the blood–brain barrier (BBB), lack of
effective animal models and/or lack of integrative investiga-
tions in animals to investigate the mechanisms of CNS pathol-
ogy and pharmacology, and the lack of biomarkers
representing these mechanisms [6–9]. In particular, the trans-
lation from preclinical to early clinical studies is difficult.

Clearly, there is a need to improve the current methodologies
within CNS drug development. Two promising methods in this
regard are pharmacokinetic/pharmacodynamic (PK/PD) model-
ing and pharmacometabolomics [10–12]. PK/PDmodeling allows
to ‘characterize and predict the time course of drug effects under
(patho)physiological conditions’ [13]. Pharmacometabolomics
involves the ‘determination of the metabolic state to define
signatures before and after drug exposure that might inform
treatment outcomes’ [14]. This review discusses how transla-
tional CNS drug development can be improved by the integrated
application of PK/PD modeling and pharmacometabolomics. An
overview will be provided of the role of both fields in

translational CNS drug development, after which the opportu-
nities and challenges of an integrated approach will be
discussed.

2. Biomarker-driven development of CNS drugs

Current translational CNS drug development highly relies on
behavioral endpoints, such as the 5-choice serial reaction time
task. While these end points may provide reasonable construct
validity, their predictive validity is low [15,16]. Predictive valid-
ity, which includes a mechanistic rationale between the drug
effect and the end point, is important to translate the precli-
nical to the clinical pharmacology [17]. It is therefore that
biomarkers are increasingly recognized as an essential ele-
ment of CNS drug development [7,18–20]. Indeed, biomarkers
have been defined as indicators of specific pharmacological or
physiological processes [21,22]. Current biomarker strategies
include receptor occupancy [23–25], functional imaging
[26,27], biochemical measures in CSF [20], EEG [28,29], or
physiological measures such as hormone release [30].
Biomarkers have been classified into multiple pharmacological
levels following the causal relation of the drug dose to the
clinical effect [31]. These are (i) genotype or phenotype, (ii)
drug exposure, (iii) target occupancy, (iv) target activation, (v)
physiological/laboratory measures, (vi) disease processes, (vii)
clinical scales. Such classification provides a framework for
rational drug development. In particular, as depicted in
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Figure 1, confidence in the drug exposure, target binding, and
target activation are key components to guarantee successful
translational drug development [12].

3. PK/PD modeling in biomarker-driven CNS drug
development

Not only the measurement of biomarkers is important for
prediction of the dose–effect relation. It is also important to
quantify the nonlinear and time-dependent relations
between the biomarkers to obtain insight into the dynamics
of the pharmacological processes. PK/PD modeling is used
to mathematically describe these processes in terms of PK
and PD parameters, for example, clearance, volume of dis-
tribution, maximal drug effect or in vivo potency.
Biomarkers thus enable the quantitative characterization of
the processes that are on the causal path between dose and
effect. More specifically, biomarker data give insight into

pharmacokinetic (PK) parameters such as clearance and
volume of distribution, or pharmacodynamic (PD) para-
meters such as maximal effect and in vivo potency. As
such, PK/PD parameters provide a quantitative and scalable
perspective on interspecies differences, thereby allowing
the prediction of the first-in-human dose [17,30,32]. The
components of a PK/PD model are the (i) PK model that
describes the exposure of the drug in the body; (ii) the PD
model that captures the relation between the drug concen-
tration and the effect; and (iii) the link model that accounts
for the possible delay between the concentration-time and
the effect-time profile [13]. These components are further
described in the next section.

3.1. PK/PD models

3.1.1. PK models
A crucial aspect of successful CNS drug development is the
understanding of the distribution of the drug into the brain
[33–35]. The intensity, onset, and duration of CNS drug effects
depend on the concentration-time profile at the site of drug
action. This brain is separated from the plasma by the BBB,
which often influences the rate and extent of drug distribution
into the brain. The transport over this barrier may be passive
(driven by concentration gradient) and active (driven by trans-
porters). In addition to the BBB, other factors, such as plasma
protein binding, brain tissue binding, cellular uptake, brain
metabolism, CSF flow, and physicochemical properties of the
drug influence the drug exposure profile in the brain (for
reviews and key research on this topic see references [36–
41]). Although classical PK modeling still often is used, phy-
siology-based PK (PBPK) modeling is increasingly applied to
predict the time course of drug concentrations at the site of
drug action.

Article highlights

(1) Translational CNS drug development is shifting from an empirical to
a mechanistic approach

(2) PK/PD modeling in conjunction with scaling principles enables the
interspecies translation of pharmacological CNS effects

(3) Pharmacometabolomics provides a mean to compare the system-
wide pharmacological CNS effects in multiple species

(4) An integrated PK/PD-metabolomics is envisioned to increase under-
standing of CNS drug effects and improve translational CNS drug
development

(5) To achieve an integrated PK/PD-metabolomics approach, we need
multi-level biomarker evaluations, to study a large dose range, and
longitudinal sampling from the brain, plasma, and CSF.

This box summarizes key points contained in the article.

Figure 1. The conceptualization of an integrative approach. The plasma and brain drug exposure profile are determined by the pharmacokinetics, to drive the target
binding and activation of potentially multiple targets. The activation (or inhibition) of these targets elicits multiple downstream biochemical effects, which can be
evaluated by proteomics or metabolomics. These processes are described by mathematical expressions as developed in the field of PK/PD modeling.
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3.1.2. PD models
Whereas the understanding of the drug exposure at the target
site is a crucial aspect in CNS drug development, the subse-
quent linkage to the PD (i.e. target binding and activation, and
downstream physiological responses) is equally important for
understanding drug effects [11,12]. Among others, receptor
occupancy [23,25], EEG measures [28,42], hormone release
[30] have been used to characterize the pharmacodynamic
response of CNS drugs. The mathematical linkage of PD
responses to the drug exposure has been extensively reviewed
by Danhof et al. [43]. Still, in practice, an integrative approach
including PK and PD in one study is often lacking. A widely
used equation to link PK to PD is the empirical sigmoid Emax

equation:

E ¼ Emax � C
EC50 þ C

; (1)

where Emax is the maximal observed drug effect, EC50 is the in
vivo potency and C is the concentration around the target (e.g.
brainECF).

3.1.3. Link models
The effect-time profile is often delayed as compared to the
drug concentration-time profile. If only plasma drug con-
centrations are known, one may assume that the delay is
caused by slow distribution from plasma to the site of drug
action. In such case, an effect compartment model is used
to account for the delay [44]. Slow target-binding kinetics
may also cause a delay between PK and PD, and in such
case, these can be explicitly included in the model [45].
Finally, downstream signal transduction may be relatively
slow compared to the plasma PK, drug distribution, and
the target binding kinetics, being responsible for the delay
of the effect-time profile. This is often accounted for by a
turnover model [46]. It assumes a continuous process of
production and degradation (turnover) that drives the
basal biomarker levels. The drug effect influences either
the production or the degradation rates through inhibition
or stimulation, thereby causing an increase or a decrease of
the biomarkers levels.

3.2. Interspecies scaling

PK/PD modeling enables the rational extrapolation of drug
effects between animal and men [47]. It does so by expli-
citly distinguishing the drug- and system-specific para-
meters [17,32]. Typical drug-specific parameters are plasma
protein binding, target-binding affinity, and intrinsic effi-
cacy, while examples of system-specific parameters are tis-
sue volumes, clearances, receptor expression, and turnover
rate constants. While drug-specific parameters can be
obtained from in vitro experiments, system-specific para-
meters can only be estimated from in vivo data and may
be species-dependent. The interspecies scaling of these
parameters follows two principles: allometric scaling and
physiology-based scaling. With allometric scaling, it is
assumed that the parameters are dependent on bodyweight
following a power function [48,49]:

Phum ¼ Panimal � BWhuman

BWanimal

� �b

; (2)

where P is the mathematical model parameter, BW is the
bodyweight, and b is the species-independent scaling expo-
nent. Typically, allometric scaling is applied to clearance,
volume of distribution, and turnover rate constants. The
scaling exponent generally is 0.75 for the clearance, 1 for
the drug distribution volume and −0.25 for the turnover rate
constant [50,51]. As an illustrative example, the acetamino-
phen clearance extrapolates over a large range of species,
including zebrafish larvae, rat and human, using allometric
scaling [52]. In another study, the prolactin effects of remox-
ipride were successfully scaled from rat to man, by applying
allometric scaling on the turnover rate of prolactin in
plasma [30].

The principle of physiology-based scaling is to replace the
animal parameters by the human parameters [53]. While the
physiology-based scaling of CNS PK is well developed, for
example to predict the human CSF drug concentrations of
acetaminophen and morphine [37,39,54,55], it has only started
to emerge for PD. Some studies have shown that PD para-
meters such as Emax and EC50 may be similar across species for
a series of drugs, for example for opioids and their effect on
electrocardiogram output [29,56]. In contrast, other studies
showed species-dependent PD parameters. A recent evalua-
tion of a Transient Receptor Potential Melastatin-8 blocker
showed threefold cross-species (mouse versus dog) differ-
ences in its potency, resulting in clinically important differ-
ences in core body temperature predictions [57]. In another
study, the Emax and EC50 for prolonging the QT-interval were
found to differ between humans and dogs [58]. A third pub-
lication showed that the affinity of psychoactive drugs differed
significantly between, for example, the D1rat and 5HT2rat, and
D1human and 5HT2human receptors [9]. Also, the Emax and the
EC50 of prolactin to control its own release was found different
between rats and humans [30].

Overall, these examples show that the interspecies trans-
lation of CNS drug effects needs to be driven by the
mechanistic understanding of drug- and system-specific
properties at the level of PK and PD. Both allometric scaling
and physiology-based scaling of PK/PD parameters can be
used to support interspecies translation on basis of in vitro
(drug-specific) and in vivo (system-specific) parameters. If
clinical data are not available from same-in-class drugs,
multiple species can be evaluated for these properties and
simulations of worst-to-best case scenarios can be used to
guide the dosing strategies during early clinical develop-
ment [57].

4. Pharmacometabolomics in biomarker-driven CNS
drug development

Although PK/PD modeling aims to predict single biomarker time
courses, it appears that CNS drugs typically affect multiple bio-
chemical pathways [59,60]. For example, risperidone affected
multiple pathways including energy metabolism, antioxidant
defense systems, neurotransmitter metabolism, fatty acid
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biosynthesis, and phospholipid metabolism [61]. In fact, many
successful CNS drugs were identified by serendipity on basis of
phenotypic changes in vivo [62]. Indeed, the efficacy of neurolo-
gical drugs is associated with multi-target affinity [63–65]. As an
example, antipsychotics typically have interactions with multiple
targets (up to 26 for clozapine and quetiapine) [63,64]. A compar-
ison of haloperidol and clozapine showed that they caused a
different biochemical phenotype, that of clozapine close to that
of the 5-HT2A antagonist M100907 [66]. However, althoughmulti-
target pharmacology may be related to the efficacy of e.g. cloza-
pine, it is also associated with unwanted effects, for example
cardiovascular disease [63]. Good insight into the systems beha-
vior of multi-target drugs is essential to anticipate the (post-)
clinical benefit-risk balance of drugs during early development.
As such, pharmacometabolomics is suggested as an important
method in drug development to biochemically understand in
vivo neuropharmacological effects [67–69]. For example, using
lipidomics, the underlying pathways were identified that may
explain antipsychotic-induced weight gain [70]. Metabolomics
analyzes hundreds of biochemical molecules in biological sam-
ples, and as such, it can provide system-wide pharmacological
biomarkers [14]. By measuring the biochemical end-products of
cellular reactions, it provides an intermediate metabolic pheno-
type betweengene expression anddrug effects ononehand, and
clinical outcome on the other hand. In other words, it fulfills the
definition of a type 4 biomarker [31] and can provide insights into
the pharmacological pathways relevant to the clinical outcome.
For example, a urinarymetabolomics fingerprint could be used to
predict the Kellgren–Lawrence grade as a clinical end point for
osteoarthritis [71]. As compared to other biomarker types, such as
functional imaging, pharmacometabolomics is relatively cheap
and easy to apply in preclinical and early clinical studies.
Moreover, biochemical pathways are relatively similar across
mammalian species, suggesting potential for applying pharma-
cometabolomics in translational drug development [72,73]. The
main analytical tools that are used for metabolomics are nuclear
magnetic resonance (NMR) technology and liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS). Both technologies
have the advantage that they can identify a wide range of small
molecules, providing a comprehensive picture of the metabo-
lome. The metabolome contains more than 40,000 molecules,
which typically have a molecular weight below 2 kD [74].

Of interest for the CNS-pharmacology are the energy sub-
strates, neurotransmitters, amino acids, and structural lipids,
all of which are involved in cell viability, signaling, and cell
membrane function [2]. It was specifically observed that the
corresponding pathways were overlapping among CNS drugs
and diseases, indicating that multi-biomarker approaches are
important for the evaluation of drug effects [2,59]. Several
clinical studies have been performed utilizing pharmacome-
tabolomics for the study of CNS drug effects, although the
main focus has been on the disease rather than on the
treatment [75]. These studies showed that pharmacometabo-
lomics has the potential to reveal new insights into lipid-
related side effects of antipsychotics [61,70], enable the
early prediction of antidepressant effects on multiple bio-
chemical pathways [76], or identify systems biomarkers of
motor neuron disease treatment [77] and anti-Parkinson
drugs [78].

4.1. Multivariate analysis of pharmacometabolomics
data

The endogenous metabolites are members of biologically highly
connected pathways. Pharmacometabolomics data are therefore
often evaluated by multivariate data analysis, which takes into
account the connectivity among the individual metabolites. The
purpose is to identify biomarkers that classify subgroups (e.g.
treated vs. nontreated), and to elucidate the biochemical path-
ways that are perturbed with drug treatment. There are roughly
three types of multivariate analyses: descriptive analyses (e.g.
correlations), unsupervised methods, and supervised methods
(for review, see [79]). An example of descriptive analysis is corre-
lations between metabolite levels. These can be used to define a
network with metabolites as nodes, while edges are drawn if the
correlation coefficient exceeds a certain threshold (e.g. 0.8). In
addition to correlation-based networks, more sophisticated
methods have been developed, such as Gaussian graphical net-
works. These networks eliminate the direct correlations that are
explained by indirect correlations, providing a much cleaner
network [80,81]. The power of network analysis is that it shows
a clear picture of the multifactorial changes under particular
conditions, for example, treated vs. nontreated. In particular, it
can identify the key metabolite pathways that underlie the phar-
macological effects [82], as well as their synergistic or resilient
characteristics [83]. A network approach was, for example, used
to understand the systems-wide effects of sertraline, showing
that the tricarboxylic acid and the urea cycle, fatty acids and
intermediates of lipid biosynthesis, amino acids, sugars and gut-
derived metabolites were changed with four-week treatment
[76]. A well-known unsupervised method is cluster analysis,
which classifies samples or metabolites on basis of the proximity
to each other with regard to, for example, the metabolite levels
or the chemical similarity. This can reveal interesting patterns in
the data, such as clusters of genes or metabolites that have
similar biological functions [84]. Another well-known unsuper-
vised method is principal component analysis (PCA), which iden-
tifies the latent variables (principal components) underlying
pharmacometabolomics data [85]. These latent variables then
represent the ‘overall’ effect of a treatment in case of a pharma-
cometabolomics study. Closely related to PCA is the supervised
partial least squares regression (PLS). This method optimizes a
model to predict a certain output variable, for example, disease
status or dose [77]. Both PCA and PLS elucidate which metabo-
lites are most influential in explaining the variation between the
subgroups.

4.2. Translational pharmacometabolomics to study CNS
drug effects

The specific application of metabolomics in translational drug
development has gained attention more than 10 years ago
[72]. Metabolomics has an advantage over other ‘omics’
approaches with regard to interspecies translation. Indeed,
endogenous metabolite pathways are highly identical among
mammalian species. A recent study thoroughly compared the
biochemical reaction network of rat and human, showing a
strong overlap [73]. There are, however, only a few studies
that applied metabolomics in vivo to compare different
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species. Some studies showed how the metabolic phenotype
of animal disease models for osteoarthritis and multiple sclero-
sis overlapped with the patients’ metabolic phenotype, indi-
cating the potential of metabolomics for interspecies
translation [71,72,86,87]. Although no efforts have yet been
made to compare the animal and human metabolic pheno-
types after drug treatment in vivo, the rat and mouse meta-
bolic phenotypes were compared to study their differential
sensitivity to cocaine [88]. It was found that the aryl hydro-
xylation pathway was dominant in rats, causing increased
excretion of cocaine, which was not the case in mice.
Interestingly, when comparing microsomes of humans versus
these two species, the human cocaine metabolism showed a
closer resemblance to the mice cocaine metabolism, indicat-
ing that the mouse is a better animal model for evaluation of
cocaine sensitivity in humans. This study shows how pharma-
cometabolomics could be used to guide interspecies transla-
tion of CNS drug effects. Nevertheless, care should be taken
with regard to the assumption that the biochemical reaction
networks are species independent. The bile acid, carbohy-
drate, glycine-serine-threonine, purine and ascorbic acid path-
ways were found to have reactions specific for rats, while the
glycan and sphingolipid pathways included human-specific
reactions, as measured in hepatic cells. These species differ-
ences may result in large differences in even opposite effects
on certain endogenous metabolites [73]. In such case, further
information on the pathway is important to extrapolate the
preclinical findings. The ascorbic acid change in rats, for

example, reflects a change in the glucuronic acid metabolism,
which is also present in humans [89]. This information can
then be used for the interspecies translation.

5. The integration of pharmacometabolomics and
PK/PD modeling in translational CNS drug
development

Translational CNS drug development can thus potentially
profit from both PK/PD modeling and pharmacometabolo-
mics; both are envisioned to contribute to biomarker-driven
development. An integration of PK/PD modeling and pharma-
cometabolomics is envisioned to provide scalable system-spe-
cific parameters for multiple biochemical pathways that are
potentially relevant for the clinical drug effects. A conceptual
workflow of such translational approach is depicted in
Figure 2. Recent suggestions have been made to use pharma-
cometabolomics in PK/PD frameworks as static or dynamic
markers [90,91]. While static metabolic phenotypes can be
used as a predictor for treatment responses, dynamic meta-
bolic phenotypes allow to follow the treatment effect over
time to evaluate the system-wide dynamics [90,92,93].

5.1. Longitudinal analysis of pharmacometabolomics
responses

A longitudinal multivariate evaluation of pharmacometabolo-
mics data was performed by Rasmussen and colleagues, who

Figure 2. The integrative approach of metabolomics and PK/PD modeling as applied to interspecies scaling in CNS drug development. Such approach starts with
animal experiments to collect longitudinal brainECF and plasma samples during treatment with a CNS drug. These samples are analyzed for drug concentrations and
metabolomics to subsequently develop a multivariate PK/PD model. By applying the principles of interspecies scaling a humanized model is defined to select doses
for the clinical study. Plasma drug concentrations and metabolomics data of the clinical study will be used to recalibrate the model and increase the understanding
of interspecies differences.
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were one of the firsts doing that in the field of clinical phar-
macology [94]. This multivariate fingerprint was suitable for
guiding dose selection of recombinant interleukin-21 in
patients with metastatic melanoma.

5.2. PK/PD-based analysis of pharmacometabolomics
responses

In addition to longitudinal evaluation of the pharmacometa-
bolomics response, the integration with PK/PD modeling has
been shown in a few studies. Clustering of longitudinal tran-
scriptomics data formed the basis for the 6 turnover models in
one study. Together, these turnover models formed a complex
PK/PD model that described the gene-expression signaling
cascade in the rat liver after corticosteroid treatment [84]. In
another study, clustering was applied to the PK/PD parameters
identified from pharmacometabolomics data in rats after
remoxipride treatment [95]. This analysis revealed 6 unique
PK/PD relations, 18 potential biomarkers and two perturbed
pathways (Figure 3). It has the potential to define a therapeu-
tic window on basis of multiple biomarkers, provides a list of
biomarkers to take into account in additional studies, and
gives insight into biological effects of remoxipride. The appli-
cation of such analysis in multiple species will give insights
into species differences on the PK/PD parameters that
describe the longitudinal pharmacometabolomics response.
Depending on the differences in parameters, dosing strategies
can be defined following simulation of worst-to-best case
scenarios as was performed by Gosset et al. [57] for the effect
of a Transient Receptor Potential Melastatin-8 (TRPM8) blocker

on a single marker (core body temperature). Eventually, phar-
macometabolomics data analysis methods can aid the devel-
opment of quantitative systems pharmacology (QSP) models
which aim to mathematically describe the interactions
between multiple elements of the biological system (e.g. bio-
molecules, cells, tissues) in order to understand the impact of
drugs on the system as a whole [91,96,97]. Quantitative meta-
bolic networks can provide a topological basis of QSP models
to be integrated with organ-level networks, receptor binding
kinetics and PK [91,97]. QSP models are promising for inter-
species translation by humanizing the animal-based model
parameters [9,98,99].

5.3. Prediction of the human brain
pharmacometabolomics responses

In vivo pharmacometabolomics studies typically use plasma
samples to characterize the system-wide drug effects. The
plasma metabolic phenotype is a composite extraction of all
individual tissue metabolic phenotypes. Although this pro-
vides the opportunity to evaluate whole-body treatment
effects in an easily accessible body fluid, it can limit the
quantitative interpretation of the treatment response that
originates in a specific tissue. This is particularly true for CNS
treatments, for which the metabolic biomarkers have to dis-
tribute over the BBB (Figure 4). This was illustrated by the fact
that plasma monoamine levels were decreased with CNS drug
treatment, whereas CSF levels were not affected [20,78]. Likely,
the effects were caused in the periphery, and did not provide
information on the central brain effects of these drugs.

Figure 3. A metabolomics study combined with multivariate PK/PD modeling revealed 6 diverse response patterns (middle) for remoxipride in rats. These response
patterns were represented by 18 metabolites that could potentially function as biomarker (right), rendering further validation. The response clusters were associated
with 2 known biological pathways (left). Modified from reference [95] with permission of Elsevier.
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A useful technique that has been used to study CNS drug
PK and PD is intracerebral microdialysis [100–103]. It allows
longitudinal sampling within a single individual to follow
the treatment response over time. Moreover, since micro-
dialysis allows the collection of molecules with a molecular
weight below 20 kD, it is highly suitable for pharmacome-
tabolomics analysis [104,105]. Notably, microdialysis, for
ethical reasons, is limited in humans. Animals are therefore
typically used to characterize the relation between the
brain-the CSF-and the plasma metabolic phenotypes.
Following the translation PK/PD-metabolomics workflow
depicted in Figure 2, the human brain metabolic phenotype
can subsequently be predicted using the principles of inter-
species scaling and calibrated with the human plasma and
CSF metabolic phenotypes.

5.4. Disease-dependent PK/PD metabolomics approach

This review has mainly focused on the treatment, rather than
on the disease. Here, we would like to spend a few words on
the influence of pathology on the pharmacology; a patient may
respond differently to a treatment than a healthy individual.
Both the CNS drug PK and PD can be affected by the disease,
and this influence is drug specific. For example, the morphine
PK changed with traumatic brain injury [39], and the rate of
dopamine metabolism was higher in a rotenone rat model of
Parkinson’s Disease as compared to control [103]. Thus, the
understanding of the two-way interaction between pathology
and pharmacology in the context of translational CNS drug
development is important. Metabolomics was found useful to
understand species differences with regard to pathology [72].
As such, it has potential to translate the pathology-dependent
pharmacology from animal to men [106].

6. Conclusion

This review discussed the merits of PK/PD modeling and phar-
macometabolomics in the field of translational CNS drug
development. PK/PD models can predict human biomarker
time courses on the basis of animal data using the principles
of interspecies scaling. Pharmacometabolomics can measure
the biochemical responses to evaluate the system-wide CNS
drug effects among species. The integration of PK/PD model-
ing and pharmacometabolomics studies is envisioned to
enable the prediction of longitudinal, dose-dependent sys-
tem-wide responses, and has begun to receive attention
[90,91,95]. The opportunities and challenges of such integra-
tion were discussed with regard to translational CNS drug
development. Although we are still at the stage of early con-
ceptual development, such integration is envisioned to
increase understanding of system-wide pharmacology and to
improve the interspecies translation of CNS drug effects.

7. Expert opinion

7.1 The potential of integrated PK/PD and
pharmacometabolomics in translational CNS drug
development

CNS drug development is suffering from low success rates,
which, for a large part, can be attributed to the empirical
approach in translational development [6,12]. This led to the
realization to shift toward mechanism-based prediction of
clinical on basis of preclinical pharmacology. In particular,
PBPK and PK/PD modeling are increasingly applied in drug
development to guide dosing strategies for early clinical stu-
dies [39,47,57,107]. The strength of these models is that they
describe the dynamics of pharmacological processes, which

Figure 4. Brain metabolic phenotypes are reflected in the periphery via three mechanisms: i) individual metabolites distribute to CSF, plasma and urine, and become
integrated in the peripheral metabolic phenotype; ii) the brain metabolic phenotype affects the peripheral nervous signaling, thereby controlling the release of
peripheral metabolites, such as acetylcholine or norepinephrine; iii) the brain metabolic phenotype influences the neuroendocrine system via the hypothalamus,
modifying the pituitary hormone release. Modified from reference [59] with permission of Springer.
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can be scaled from animals to humans. While the PD models
typically describe the drug effect on a single biological path-
way, pharmacometabolomics provides a means to evaluate
multiple pathways obtaining a comprehensive insight into
the system-wide pharmacology of a CNS drug [69,108].
Interestingly, the metabolome is structurally very similar
among mammalian species, enabling a direct comparison of
their metabolic phenotypes, although there are a few differ-
ences that need caution (e.g. ascorbic acid production in rats,
but not in humans) [72,73]. At this moment, only very few
studies have been performed to investigate the interspecies
correlations of metabolic phenotypes. Moreover, pharmaco-
metabolomics is mostly applied in a static manner, although
dynamic approaches are emerging [90,94,95].

PK/PD modeling and pharmacometabolomics are thus
complementary to each other. Since both fields have a poten-
tial for translational CNS drug development, their integration
is promising. It has the potential to identify the pharmacolo-
gically relevant parameters of the system-wide drug effects
[95]. Using the principles of interspecies scaling, these para-
meters can be humanized, and predict the clinical on basis of
the preclinical pharmacology. The model can subsequently be
validated on basis of the clinical metabolic phenotype
(Figure 2).

7.2. Challenges and recommendations for the
integration of PK/PD modeling and
pharmacometabolomics

Several aspects of study design and data analysis need con-
sideration to achieve an integration of PK/PD modeling and
pharmacometabolomics.

7.2.1. Multilevel biomarker evaluation
To achieve an integrative understanding of the pharmacolo-
gical action, multilevel biomarker data need to be collected,
for example, plasma drug concentrations, brain drug concen-
trations, (multiple) target occupancies, biochemical biomar-
kers. Eventually, these biomarkers will be linked to
physiological measures and clinical outcome during clinical
development.

7.2.2. Longitudinal sampling over a large dose range
To capture the dynamics of the PK/PD response, longitudinal
data are essential. Serial plasma sampling and intracerebral
microdialysis are useful methods to obtain time courses of
CNS drug concentrations, as well as biochemical markers, in
plasma and brain. Of interest, isotope-labeling-based metabo-
lomics (also called flux-based metabolomics) is an emerging
discipline that enables the capturing of network dynamics
when applied in combination with longitudinal sampling
[109,110]. Additionally, a large drug concentration range is
needed to have information on all parts of the nonlinear
concentration-response curve. This is particularly important
with a comprehensive pharmacometabolomics evaluation,
since individual metabolites may have a different position on
the concentration-response curve [95].

7.2.3. Integrated PK/PD-metabolomics analysis
Longitudinal pharmacometabolomics data in conjunction with
drug concentration data need to be described using PK/PD
modeling in order to identify a fingerprint of pharmacologically
relevant parameters such as the in vivo potencies, the maximal
drug effects or the turnover rates [90,95] (Figures 2 and 3).

7.2.4. Multi-tissue biomarker evaluation
Drug concentrations and endogenous metabolites must be
analyzed in multiple biofluids, such as plasma, brainECF, and
CSF to understand how the plasma metabolic phenotype
relates to the target site effect (Figure 4).

7.2.5. Generate proof of principle for an integrated PK/PD-
metabolomics approach in translational CNS drug
development
A primary challenge will be the generation of proof of princi-
ple for the integrated PK/PD-metabolomics approach.

First of all, multiple same-in-class drugs are to be compared
biochemically using a pharmacometabolomics approach.
Haloperidol and clozapine showed different efficacy on the
basis of a multivariate analysis with 58 different components
of movement, as well as a multivariate evaluation with mono-
amines [66]. Although both analyses marked the fact that
haloperidol and clozapine showed different efficacy, the pat-
tern was not similar for the behavioral and the monoamine
analysis. This indicates two things: (1) a multivariate biochem-
ical is promising with regard to understanding differences
between same-in-class drugs. (2) The abovementioned analy-
sis showed that the monoamine-based evaluation, although
recognizing the pharmacological complexity, still is oversim-
plified to explain the behavioral outcome.

A second aspect that needs to be included to provide proof
of principle is the application of longitudinal metabolomics in
multiple species, including humans. Taking into account the
known species differences, the interspecies metabolomes
should be compared to understand and map species differ-
ences and evaluate applicability of pharmacometabolomics in
translational CNS drug development [73]. In particular, it will
be important to validate the scaled PK/PD models in humans.

A third aspect is to relate the metabolic fingerprint to rele-
vant clinical (side) effects. Kaddurah-Daouk et al. [70] nicely
showed this for risperidone, olanzapine, and aripiprazole, com-
paring their lipidomic profiles. Interestingly, aripiprazole showed
less impact on lipids, which was associated with the absence of
weight gain as a side effect. Further studies will indicate whether
such approach is generally applicable in drug development.

7.3. The future of translational CNS drug development
with an integrated PK/PD metabolomics approach

It is envisioned that the integration of PK/PD and pharmacometa-
bolomics will increase the understanding of system-wide pharma-
cology and improve the interspecies translation of CNS drugs.
Specifically, it is envisioned to enable the extraction of system-
wide pharmacologically relevant parameters that can be scaled to
humans. Additionally, information on biomarkers and pathways is
obtained. This advancement must be seen together with the
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developments in the field of QSP [91,96,97]. The integrated PK/PD-
metabolomics approach reveals a PK/PD fingerprint biomarker
representing the dynamics of known and unknown pathways.
QSP aims to connect the cellular pathway response with the
organ- or system-level response. On one hand, the integrated
PK/PD-metabolomics approach can thus inform QSP models on
relevant pharmacological pathways. On the other hand, QSP
models can identify the mechanistic relationship between the
single metabolites described by an integrated PK/PD metabolo-
mics model.

Altogether, an integrated PK/PD metabolomics approach is
envisioned to have a promising role in translational CNS drug
development by providing a method to scale system-wide
effects from animal to men (Figure 2).
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