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Abstract

Centimeter continuum emission from protostars offers insight into the innermost part of the outflows, as shock-ionized
gas produces free–free emission. We observed a complete population of Class 0 and I protostars in the Perseus molecular
cloud at 4.1 and 6.4 cm with resolution and sensitivity superior to previous surveys. From a total of 71 detections, eight
sources exhibit resolved emission at 4.1 cm and/or 6.4 cm. In this paper, we focus on this subsample, analyzing their
spectral indices along the jet and their alignment with respect to the large-scale molecular outflow. Spectral indices for
fluxes integrated toward the position of the protostar are consistent with free–free thermal emission. The value of the
spectral index along a radio jet decreases with distance from the protostar. For six sources, emission is well aligned with
the outflow central axis, showing that we observe the ionized base of the jet. This is not the case for two sources, where
we note misalignment of the emission with respect to the large-scale outflow. This might indicate that the emission does
not originate in the radio jet, but rather in an ionized outflow cavity wall or disk surface. For five of the sources, the
spectral indices along the jet decrease well below the thermal free–free limit of −0.1 with 2s> significance. This is
indicative of synchrotron emission, meaning that high-energy electrons are being produced in the outflows close to the
disk. This result can have far-reaching implications for the chemical composition of the embedded disks.

Key words: radio continuum: stars – stars: formation – stars: jets – stars: protostars – stars: winds, outflows –
techniques: interferometric

1. Introduction

Outflows and jets are ubiquitous phenomena in star formation.
The youngest and most embedded Class 0 and Class I protostars
are known to drive some of the most powerful outflows
(Bontemps et al. 1996; Caratti o Garatti et al. 2012). Outflows
can be observed across the electromagnetic spectrum as a Herbig–
Haro jet in the visible regime (e.g., Reipurth & Cernicharo 1995;
Bally et al. 1996); hot molecular and atomic gas in the near- and
mid-infrared (e.g., Nisini et al. 2002); and cold entrained gas in the
millimeter (e.g., Plunkett et al. 2013; Lee et al. 2015). At
centimeter wavelengths, we are able to trace the free–free
emission arising from the ionized gas in the outflows
(Reynolds 1986; Anglada et al. 1998). Centimeter emission from
protostars, if resolved, often appears extended, matching well with
directions of the large-scale outflow (e.g., Rodríguez et al. 1986;
Marti et al. 1993; Rodríguez 1994; Anglada 1995). Thus, it is
inferred that radio jets trace regions that constitute the base of the
outflow, and the correlation of radio emission with outflow force
provides strong evidence for this link (Cabrit & Bertout 1992;
Anglada 1995; Wu et al. 2004; Shirley et al. 2007)

With the spectral index at centimeter wavelengths, we can
discriminate between mechanisms responsible for the observed
emission. Thermal free–free emission is expected to have flat or
positive spectral index ( 0.1 2.0; a- < Panagia & Felli 1975;
Rodríguez et al. 1993) varying with the optical depth. Similar

or steeper indices are expected for thermal dust emission, but it
does not contribute significantly to the radio emission above
4 cm because for typical dust masses and opacities in the low-
mass, star-forming regions, especially for the youngest
protostars, the emission is ∼10× below the sensitivity limit
(Tobin et al. 2015). That emission becomes significant as the
protostellar disk evolves and the grain growth proceeds (e.g.,
Wilner et al. 2005). Negative spectral indices (α<−0.1) are a
manifestation of a non-thermal emission.
Positive spectral indices are most frequently observed from

young Class 0/I protostars, while for more evolved Class II/III
young stellar objects, coronal activity commonly produces non-
thermal radiation (e.g., Dzib et al. 2013; Pech et al. 2016).
However, there are a growing number of sources with observed
negative spectral indices in the outflow positions of young
protostars. Since first observed in the protostellar outflows,
negative spectral indices were explained by synchrotron emission,
with shocks as a mechanism to accelerate electrons (Rodríguez
et al. 1989). Curiel et al. (1993) observed significant variations of
the spectral index along the jet of the Serpens SMM1 protostar,
also known as a Serpens triple radio source (e.g., Snell &
Bally 1986), and suggested that both free–free and synchrotron
emission mechanisms can simultaneously operate in outflows.
Direct confirmation of synchrotron emission contributing to at least
a part of the radio flux from protostars was provided by detecting
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linear polarization in the HH 80-81 outflows of a massive protostar
IRAS 18162-2048 (Carrasco-González et al. 2010). Ainsworth
et al. (2014) also observed synchrotron emission at the bow shock
position in the jet from DG Tau, a solar-mass, pre-main sequence
star, suggesting that synchrotron emission phenomenon can be
observed even in the outflows of low-mass stars.

Resolved radio jets were observed in many protostars;
however, the sample of the low-mass sources with luminosities
∼1L☉ is still sparse. One of the rare cases is SVS 13C
(Rodríguez et al. 1997), with bolometric luminosity of 1.5 L☉,
which we also present in this paper. Centimeter radio emission is
correlated with the bolometric luminosity (Cabrit & Bert-
out 1992; Anglada 1995; Shirley et al. 2007); thus, ∼1L☉
sources require higher sensitivity than massive protostars to have
their radio emission detected. Also, if we want to observe the
region closest to the protostar, we must resolve where the jet is
being collimated, so resolution well below arcsecond is
necessary. Most previous radio observations found extended
radio jets only toward higher luminosity sources, and there have
only been a few surveys with high sensitivity, but not sub-
arcsecond resolution, or probing a selected sample of protostars
in different regions, instead of surveying complete population in
one cloud. Rodríguez et al. (1999) achieved sensitivity up to
10 μJy, with observations at 3.6 and 6 cm, but their sample was
limited to the central part of the NGC 1333 region in Perseus and
the resolution was around 5″. The AMI Consortium: Scaife et al.
(2011a, 2011b, 2012a, 2012b) observed selected protostars in
Perseus, Serpens, Taurus, and several isolated cores at low
resolution (30″) and sensitivity up to 15 μJy at 1.8 cm. The
Gould’s Belt Very Large Array (VLA) Survey targeted large
sample of protostars in selected star-forming regions with 16 μJy
sensitivity and resolution up to 0 4 (Dzib et al. 2013, 2015;
Kounkel et al. 2014; Ortiz-León et al. 2015; Pech et al. 2016) in
C-band (4.1 and 6.4 cm). Reipurth et al. (2002, 2004) surveyed a
sample of protostars in different star-forming regions with high
resolution (0 35) and sensitivity (∼10 μJy) at 3.6 cm and found
evidence for a few modestly extended jets.

To further investigate the properties of the protostellar jets
and to overcome limitations of the previous surveys, we use
VLA Nascent Disk and Multiplicity (VANDAM) survey
C-band observations of all known (84) Class 0/I protostars
in the Perseus molecular cloud, one of the most active stellar
nurseries in the solar neighborhood (d ∼ 230 pc, Hirota
et al. 2008). VANDAM is the largest radio survey of the
youngest (Class 0 and I) protostars in a single cloud ever
undertaken, with high resolution up to ∼80 au (0 3) at the
distance to Perseus and remarkable sensitivity of ∼5 μJy in the
C-band, both superior to previous surveys. Protostars targeted
by the survey span the low-mass regime with luminosities
between 0.1 L and 30 L. A comprehensive study of the
C-band observations will be the scope of a future paper
(Ł. Tychoniec et al. 2018, in preparation). Here, we present a
subset of sources with resolved radio jets. We will investigate
their properties and spectral index distributions along the jet
and discuss their relation to the larger-scale outflows.

2. Observations

Observations were a part of the VANDAM Survey.12

Observations were taken in A configuration between 2014

February 28 and April 12, with 3C48 as an absolute flux and
bandpass calibrator and J0336+3218 as the complex gain
calibrator. The observations were performed in 8-bit mode,
resulting in 2GHz of bandwidth divided into 16 128MHz sub-
bands with 2MHz channels and full polarization products
recorded; the polarization results will be published in a future
paper. The 2GHz is divided into two 1GHz basebands that were
centered at 4.7GHz (6.4 cm) and 7.3GHz (4.1 cm). The basebands
were centered away from the band edges to avoid persistent radio
frequency interference. The absolute flux uncertainty is estimated
to be ∼5%. With the simultaneous observations at the two ends of
C-band, the limiting factor in our ability to determine the spectral
index is the accuracy of the flux density model of 3C48 which is
known to better than 2%~ (Perley & Butler 2017).
The data were reduced and calibrated using CASA 4.1.0

(McMullin et al. 2007) and version 1.2.2 of the VLA Pipeline.
Further flagging was conducted after the pipeline run and is
detailed further in Tobin et al. (2015). We imaged the data
using the clean task in CASA version 4.1.0 with both natural
weighting and Briggs weighting with the robust parameters set
to 0.25. In all cases, we imaged the full field of the data set
using images with dimensions either 81922 or 163842 pixels
and pixel widths of 0 05. The nominal angular resolution at
4.1 cm was ∼0 30 and 0 25 for natural and robust 0.25=
weighting, respectively; the angular resolution at 6.4 cm was
∼0 50 and 0 35. For some images with bright extragalactic
sources, we performed two iterations of phase-only self-
calibration to achieve better dynamic range. Self-calibration
was not necessary for any fields containing resolved jets.

3. Results

From the 71 protostars detected in the C-band, we identified
eight that had clearly extended emission as listed in Table 1. The
integrated flux densities were obtained by fitting the 2D Gaussian
function to the sources with CASA imfit task. In most cases, a
multiple Gaussian fit was necessary to obtain as small a residual as
possible. The integrated flux value is then the sum of all Gaussians.
Uncertainty of the integrated flux was obtained from imfit task.
Peak flux density and the rms were measured with CASA imstat
task. Both values and their uncertainties were extracted from the
images before primary beam correction and subsequently corrected
for primary beam response measured at the position of the source.
For each source, we calculated spectral index values of both
integrated and peak flux using the following equation:

F Flog

log 6.4 4.1
, 14.1 6.4

4.1 6.4a =
( )
( )

( )

where F4.1 and F6.4 are integrated or peak fluxes at 4.1 cm and
6.4 cm, respectively. Uncertainty of the spectral index was
obtained using standard error propagation (Chiang et al. 2012).
Our analysis was done primarily on robust 0.25= images,
except for Per-emb-33 and SVS 13C, which have the most
extended radio emission and hence the natural weighting was
more appropriate. A summary of the measured properties of the
protostars with resolved jets is presented in Table 2.
We measured spectral indices at both central and off-source

positions along the resolved jets. This was done by taking a median
of 4.1 and 6.4 cm flux from area of the size of synthesized beam
using the CASA imstat task and then calculating the spectral index
in the way described above with the rms of the image used as a flux
uncertainty. Positions where the spectral index was measured are

12 FITS files from both Ka and C-band observations will be available at
https://dataverse.harvard.edu/dataverse/VANDAM.
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showed in the Appendix. Using the area of the synthesized beam
takes into account the resolution of the observations, but as the
emission fades steeply with distance to the protostar, we use
median as less sensitive to those outliers. While some of the
measured beams are overlapping, making measurements not
entirely independent, we note that the trends seen in the spectral
index maps are consistent with the obtained values. Protostellar
positions are adopted from the Ka-band survey results that identify
the protostar positions with the highest accuracy (Tobin
et al. 2016b). To measure the direction of the radio jet, we obtain
the position angle of a single 2D Gaussian fit to the source and
summarize the results in Table 3. For all sources, we produced a
spectral index map. To obtain the same angular resolution at both
wavelengths, the 4.1 cm frames were convolved with the same
restoring beam as 6.4 cm frames in the clean procedure in CASA.
Pixels with values below 3´ rms were masked.

We do not expect the dust emission to significantly contribute
to the C-band flux. The values of the spectral indices at Ka-band
for all sources presented here are found below the value expected
from the thermal dust emission (Tobin et al. 2016b), which
shows that free–free emission is dominating the C-band flux and
also significantly affects the Ka-band fluxes. We also note that
any contribution of the thermal dust emission would be limited
the the central source position. Regarding the detected negative
spectral indices, any thermal dust contribution would increase
the value of spectral index between 4.1 and 6.4 cm, thus any
potential contribution does not cast a doubt on the tentative
detection of the synchrotron emission.

We detected eight protostars with resolved radio jets
extended on scales between 80 and 900 au. For all of the
objects, the spectral indices at the position of the protostar are
consistent with free–free emission. For five sources, we detect
negative spectral indices along the radio jet/outflow direction,
possibly indicative of synchrotron emission. We also find that
the integrated spectral indices of extended jet sources are lower
than the median observed for the whole sample ( 0.51;meda =
Ł. Tychoniec et al. 2018, in preparation). The significant
contribution of radio flux from the more optically thin extended
jets in the form of free–free or synchrotron emission would
lower the value of the overall spectral index.

Extended emission is observed from protostars with bolo-
metric luminosities between 1 L and 9.2 L. The sample
includes both Class 0 and Class I protostars with low bolometric
temperatures of T 100bol < K, meaning that the protostars are all
relatively young (e.g., Chen et al. 1995; Enoch et al. 2009).

Other than this upper limit on Tbol, there are no specific trends
between protostar properties and extended radio emission. We
will discuss the results for each source individually.

3.1. Per-emb-36

Per-emb-36 (also known as NGC 1333 IRAS 2B; Figure 1) is a
Class I system comprised of two protostars separated by ∼70 au
(Tobin et al. 2016b). Centimeter emission is dominated by the
bipolar jet from Per-emb-36-A. Per-emb-36-B is not clearly
resolved from Per-emb-36-A at 4.1 cm or 6.4 cm, but a small
asymmetry in the 4.1 cm emission is observed toward the position
of Per-emb-36-B as identified at Ka-band. There is a clear
decrease in a spectral index along the outflow direction, from
0.67±0.18 at the protostellar position to −0.64±0.20 in the
northern outflow. The position angle of the extended emission is
24 2  , closely matching the position angle of the CO outflow
observed by Plunkett et al. (2013). This is a strong indication that
the jet from the protostar is producing the extended radio
emission. The outflow is asymmetric, showing stronger emission
from the northern part, and it is only on this side that we detect a
steep spectral index that likely indicates the presence of the
synchrotron emission. It is noteworthy that the 6.4 cm emission
peaks significantly away from the source at 0 4 (93 au), which is
not the case for any other sources we observed. Shift is also
clearly seen in full-bandwidth image (Figure 9 in the Appendix).
We estimate the error of the position measurement at 6.4 cm,
following Equation (1) in Condon et al. (1998), and the resulting
error is below 0 01 in each coordinate, showing that this
displacement is robustly detected. It is possible that this offset in
the peak emission at 6.4 cm is due to a strong bow shock
producing synchrotron emission, which may have a counterpart in
X-rays similar to DG Tau (Ainsworth et al. 2014). We examined
the literature for possible X-ray detections and find an X-ray
source (Preibisch 1997) near Per-emb-36. However, the X-ray
emission may be from a Class III (BD +30 547) source with a
projected separation of ∼4″ from Per-emb-36; the source(s) were
detected toward the edge of the X-ray observations field where the
positional uncertainty is large.

3.2. SVS 13C

SVS 13C (Figure 2) is a Class 0 object, as classified by
Sadavoy et al. (2014), located in the NGC 1333 region in Perseus.
This source was also detected at millimeter wavelengths by
Looney et al. (2000). It produces the most prominent extended

Table 1
Properties of Powering Sources of Resolved Jets

Source Region Other Namesa Classb Lb
bol Tb

bol PAc

(L) (K) (°)

Per-emb-8 IC 348 PER22, IC 348a, IRAS 03415+3152, YSO 48 0 2.6±0.5 43.0±6.0 135 (5)
Per-emb-18 NGC 1333 NGC 1333 IRAS7, YSO 24 0 2.8±1.7 59.0±12.0 159 (2)
Per-emb-20 L1455 L1455 IRS4 0 1.4±0.2 65.0±3.0 115 (2)
Per-emb-30 B1 PER19, B1 SMM11, YSO 40 0/I 1.1±0.0 93.0±6.0 109 (2)
Per-emb-33 L1448 PER02, L1448 N(A), L1448 IRS 3B, YSO 2 0 8.3±0.8 57.0±3.0 105 (3)
Per-emb-36 NGC 1333 PER06, NGC 1333 IRAS 2B, YSO 16 I 6.9±1.0 85.0±12.0 24 (1)
L1448 IRS 3A L1448 L I 9.2±1.3 47.0±2.0 38 (4)
SVS 13C NGC 1333 VLA2 0 1.5±0.2 21.0±1.0 8 (1)

Notes.
a Names: YSOXX (Jørgensen et al. 2007), PERXX (Karska et al. 2014), VLAXX (Rodríguez et al. 1997).
b References: Enoch et al. 2009; Sadavoy et al. 2014.
c References: (1) Plunkett et al. 2013; (2) Davis et al. 2008; (3) Kwon et al. 2006; (4) Lee et al. 2016; (5) J. Tobin et al. 2018, in preparation.
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Table 2
C-band Observation Results

Source R.A. Decl. F ,intn F ,peakn rms F ,intn F ,peakn rms Sp. Indexa Sp. Indexb

(6.4 cm) (6.4 cm) (6.4 cm) (4 cm) (4 cm) (4 cm) Int. Peak
(J2000) (J2000) (mJy) (mJy bm−1) (mJy bm−1) (mJy) (mJy bm−1) (mJy bm−1)

Per-emb-8 03:44:43.981 +32:01:35.210 0.2788±0.0122 0.1323 0.0049 0.3132±0.0166 0.1240 0.0037 0.26±0.15 −0.14±0.10
Per-emb-18 03:29:11.258 +31:18:31.072 0.1919±0.0090 0.1326 0.0058 0.1957±0.0059 0.1505 0.0043 0.04±0.12 0.28±0.11
Per-emb-20 03:27:43.276 +30:12:28.780 0.1477±0.0083 0.1093 0.0054 0.1384±0.0124 0.1098 0.0042 −0.14±0.23 0.01±0.14
Per-emb-30 03:33:27.303 +31:07:10.159 0.2747±0.0171 0.1542 0.0055 0.2815±0.0254 0.1681 0.0055 0.05±0.24 0.19±0.11
Per-emb-33 03:25:36.379 +30:45:14.727 0.1648±0.0139 0.1154 0.0053 0.1386±0.0071 0.1041 0.0042 −0.38±0.22 −0.23±0.13
Per-emb-33-A 03:25:36.312 +30:45:15.153 0.1389±0.0082 0.1154 0.0053 0.1386±0.0071 0.1041 0.0042 −0.00±0.17 −0.23±0.13
Per-emb-33-B 03:25:36.321 +30:45:14.913 <0.0158±0.0053 <0.0158 0.0053 <0.0127±0.0042 <0.0127 0.0042 −99.00±−99.00 −99.00±−99.00
Per-emb-33-C 03:25:36.380 +30:45:14.722 0.0259±0.0057 0.0282 0.0053 <0.0127±0.0042 <0.0127 0.0042 <−1.57±0.88 <−1.75±0.84
Per-emb-36-A 03:28:57.373 +31:14:15.764 0.2433±0.0192 0.1267 0.0051 0.2523±0.0169 0.1037 0.0044 0.08±0.23 −0.44±0.13
Per-emb-36-B 03:28:57.370 +31:14:16.072 <0.0152±0.0051 <0.0152 0.0051 <0.0132±0.0044 <0.0132 0.0044 −99.00±−99.00 −99.00±−99.00
L1448 IRS3A 03:25:36.499 +30:45:21.880 0.4922±0.0149 0.3717 0.0053 0.5074±0.0149 0.3607 0.0043 0.07±0.09 −0.07±0.04
SVS 13C 03:29:01.970 +31:15:38.053 1.0676±0.0218 0.6812 0.0049 1.2095±0.0296 0.6753 0.0039 0.28±0.07 −0.02±0.02

Notes.
a Integrated spectral index: calculated with flux density integrated over the full extent of the source.
b Peak spectral index: calculated with peak value of the flux density.
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radio jet in our sample. The position angle for its centimeter
emission is 9 1  . It extends∼4″ (900 au) in both the north and
south directions. The extended centimeter emission toward this
source had been previously reported by Rodríguez et al. (1997)
(their source VLA2), and later by Reipurth et al. (2002) and
Carrasco-González et al. (2008). However, our observations are
the highest fidelity maps to date taken toward this source. We find
an irregular, clumpy structure along the jet, with the spectral index
significantly decreasing outward. At 2″ (460 au) distance in the
northern direction, we can observe a source of emission detached
from the main component, suggesting that there is a clump of

denser matter in the area. Plunkett et al. (2013) tentatively
identified an outflow with 8 position angle, and Lee et al. (2016)
found a similar position angle of 0, both of which are consistent
with an extended radio jet. The outflow also appeared to be in the
plane of the sky in the observations from both Plunkett et al.
(2013) and Lee et al. (2016). This is consistent with the large
proper motions of ∼100 kms−1 found by Raga et al. (2013).

3.3. Per-emb-30

Per-emb-30 (Figure 3) is a Class 0 source located in the
Barnard 1 region. We find radio emission at 6.4 cm extending∼1″

Table 3
Spectral Indices at Different Positions and Position Angles of Resolved Emission

Source PAa Sp. Index Sp. Index Sp. Index Sp. Index
deg Central Outflow 1 Outflow 2 Outflow 3

Per-emb-8 13.0±1.9 0.16±0.12 −0.25±0.16 L L
Per-emb-18 163.9±15.6 0.37±0.14 −0.76±0.94 −1.13±0.42 L
Per-emb-20 137.1±7.8 0.00±0.18 −1.38±0.51 L L
Per-emb-30 123.8±2.9 0.28±0.14 −0.20±0.46 −1.10±0.47 L
Per-emb-33 108.0±3.7 −0.14±0.14 −0.30±0.74 −0.27±0.52 −0.53±0.50
Per-emb-36 20.6±1.7 0.67±0.18 −0.64±0.20 −0.20±0.28 L
L1448 IRS3A 79.3±2.2 0.08±0.05 −0.61±0.24 −0.13±0.12 L
SVS 13C 179.7±1.6 0.39±0.02 −0.15±0.28 0.05±0.36 L

Note. Outflow positions where spectral index was measured are numbered with descending declination. See figures in the Appendix.
a Position angle measured from north to east.

Figure 1. Images of Per-emb-36. Spectral index map with contours: [−2, −1.6, −1.2, −0.8, −0.4, 0.0, 0.4, 0.8, 1.2, 1.6, 2.0]. 6.4 and 4.1 cm maps with contours [−3,
3, 6, 9, 12, 15, 20] × σ where 4.83 Jy6.4 cms m= and 3.90 Jy4.1 cms m= . Synthesized beam is shown in the left bottom corner (Sp. Index and 6.4 cm: 0 41×0 35,
4.1 cm: 0 26×0 22). The stars mark the position of the protostars based on Ka-band observations (Tobin et al. 2016b) and the red and blue arrows indicate outflow
direction from Plunkett et al. (2013) with a position angle 24. 6.4 and 4.1 cm maps are not corrected for a primary beam response (spectral index derived from PB
corrected map).

Figure 2. Naturally weighted map of SVS 13C with contours as in Figure 1 ( 4.83 Jy6.4 cms m= and 3.90 Jy4.1 cms m= ). Synthesized beam is shown in the left bottom
corner (Sp. Index and 6.4 cm: 0 41×0 35, 4.1 cm: 0 26×0 22). The star marks the position of the protostar based on Ka-band observations (Tobin et al. 2016b)
and the red and blue arrows indicate outflow direction from Plunkett et al. (2013) and Lee et al. (2016).
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(230 au) from the source and more compact emission at 4.1 cm.
The more compact emission at 4.1 cm results in a strongly
negative spectral index ( 1.10 0.47-  ) along the jet direction.
The direction of extended radio emission is consistent with the H2

feature (HH790) originating from this source (Davis et al. 2008),
having a position angle of ∼109°, which is consistent with our fit
of 117 4  . Storm et al. (2014) also finds evidence for an
HCO+ outflow toward Per-emb-30 with a similar position angle.
Interestingly, the H2, radio, and HCO

+ outflow appear monopolar;
upcoming CO observations from the MASSES survey (e.g., Lee
et al. 2014) will be more definitive. The monopolar appearance
may reflect the spatial distribution of dense gas around the
protostar; the southeastern portion of the outflow is interacting
with ambient medium, while the northwestern portion is not.

3.4. Per-emb-33

Per-emb-33 (Figure 4) is a triple system of Class 0 protostars,
also known as L1448IRS 3B (Looney et al. 2000) and L1448
N(B) (Curiel et al. 1990). Per-emb-33-A is dominating the
emission in the C-band and Per-emb-33-C is marginally detected,
in contrast to the 9mm observations, where source C has the
highest flux density (Tobin et al. 2016b). The resolution was not
sufficient to resolve Per-emb-33-B from source A. The radio
emission is also extended along the jet outflow direction measured
by Lee et al. (2015), making it difficult to determine whether Per-
emb-33-C is actually detected or if this is just the extended jet
emission. Along the radio jet/outflow direction to the west, there

is a clump of emission separated from the source position by a
distance 2 4 (540 au), which also appears to be due to the radio
jet. The spectral index along the outflow is consistent with
optically thin free–free emission, varying from −0.14±0.14 in
the A source position to −0.30±0.74 in the northwestern clump
and −0.53±0.50 in the position of source C. Position angle of
the extended jet 107 5   is consistent with the CO outflow
position angle obtained by Kwon et al. (2006) and (Lee et al.
2015). Tobin et al. (2016a) find that the rotational center of the
system is located closest to Per-emb-33-A, consistent with it
driving the radio jet. They also showed that Per-emb-33-C drives a
distinct, collimated outflow.

3.5. L1448 IRS 3A

L1448 IRS 3A (Figure 5) is a Class I protostar and a wide
companion of Per-emb-33, separated by 7 3 (∼1700 au; Looney
et al. 2000; Tobin et al. 2016b). It has extended centimeter
emission in the western direction at both 4.1 and 6.4 cm. The
spectral index northeast of the protostar position is −0.61±0.24.
This indicates that the emission could be produced by synchrotron
emission, but the fact that emission arises on the edge of the
source casts a doubt on this detection. The portion more extended
to the west has a spectral index of −0.13±0.12 and is consistent
with free–free emission. Measured position angle (79 1  ) of
the 4.1 and 6.4 cm emission is notably different from the CO
outflow position angle of 38 measured by Lee et al. (2015).
Recent ALMA observations show a disk in dust emission aligned

Figure 3. Images of Per-emb-30 with contours as in Figure 1 ( 4.87 Jy6.4 cms m= and 4.01 Jy4.1 cms m= ). Synthesized beam is shown in the left bottom corner
(Sp. Index and 6.4 cm: 0 34 × 0 37, 4.1 cm: 0 24 × 0 22). The star marks the position of the protostar based on Ka-band observations (Tobin et al. 2016b) and the
red and blue arrows indicate the outflow direction from Davis et al. (2008) with a position angle 109.

Figure 4. Naturally weighted images of Per-emb-33 with contours as in Figure 1. ( 4.87 Jy6.4 cms m= and 4.01 Jy4.1 cms m= ). Synthesized beam is shown in the left
bottom corner (Sp. Index and 6.4 cm: 0 34 × 0 37, 4.1 cm: 0 24 × 0 22). Stars mark the positions of the protostars based on Ka-band observations (Tobin
et al. 2016b). The source on the east is 33-C, while A (south) and B (north) form a tight binary. The red and blue arrows indicate outflow direction from Kwon et al.
(2006) with a position angle of 105.
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perpendicularly to the CO outflow (J. Tobin et al. 2018, in
preparation); thus, the difference in PA between the centimeter
radio and the molecular outflow could indicate that the free–free
emission is tracing a portion of an ionized outflow cavity. This
may be similar to what was observed toward a more luminous
protostar in Serpens (Hull et al. 2016). The 9mm observations of
L1448IRS 3A are also extended in the same direction and the
spectral index was found to be relatively flat (Tobin et al. 2016b).
Thus, the free–free emission is likely contributing also at shorter
wavelengths.

3.6. Per-emb-8

Per-emb-8 (Figure 6) is a Class 0 protostar in the IC 348
region and is located 9 6 (∼2200 au) from Per-emb-55, which
is a close multiple itself (Tobin et al. 2016b). Per-emb-8 shows
4.1 and 6.4 cm emission extended north and slightly east, the
position angle is 13 2  . The spectral index smoothly
decreases further away from the protostar, with a value of
−0.25±0.16 along the extension, and the spectral index
remains consistent with free–free emission despite being
marginally steeper than optically thin free–free emission. This
source did not have previously published CO or H2 observa-
tions, which would indicate outflow direction and the Spitzer
data are not resolved well enough to be definitive. However,
recent ALMA observations resolved a disk around Per-emb-8
(J. Tobin et al. 2018, in preparation) and observed the outflow
in 12CO. The observed disk has a position angle of 45° and the

CO outflow is orthogonal to this. The extended 4.1 and 6.4 cm
emission has a position angle of about ∼45° different from the
CO outflow direction. Thus, like L1448 IRS 3A, the extended
radio emission might trace the edge of an ionized outflow
cavity or the ionized surface of the disk.

3.7. Per-emb-18

Per-emb-18 (Figure 7) is a Class 0 system in the NGC 1333
IRAS7 region consisting of two protostars separated by only
20 au (Tobin et al. 2016b). Thus, C-band observations were
unable to resolve the system. The radio emission is asymmetric
and the spectral index decreases steeply from 0.37±0.14 at
the protostellar position to −1.13±0.42 in the southern
outflow. Measured position angle of 164 16   is consistent
with the value of the H2 outflow (159) observed by Davis et al.
(2008). The steep negative spectral index in this source is also
partly due to the lack of emission detected at 4.1 cm where
extended 6.4 cm emission is present.

3.8. Per-emb-20

Per-emb-20 (Figure 8) is a Class 0 protostar known also as
L1455 IRS4. An extension of the 4.1 and 6.4 cm is observed
with a position angle of 137 8  . This position angle is
reasonably consistent with the 115° position angle found by
Davis et al. (2008) from H2 observations. The extension is
small, but is present at both wavelengths, and other sources in

Figure 6. Images of Per-emb-8 with contours as in Figure 1 ( 4.90 Jy6.4 cms m= and 3.70 Jy4.1 cms m= ). Synthesized beam is shown in the left bottom corner
(Sp. Index and 6.4 cm: 0 36×0 34, 4.1 cm: 0 26×0 25). The star marks the position of the protostar based on Ka-band observations (Tobin et al. 2016b).
Red and blue arrows are orthogonal to the major axis of the disk based on ALMA observations (J. Tobin et al. 2018, in preparation).

Figure 5. Images of L1448 IRS 3A with contours as in Figure 1 ( 5.26 Jy6.4 cms m= and 4.20 Jy4.1 cms m= ). Synthesized beam is shown in the left bottom corner
(Sp. Index and 6.4 cm: 0 45 × 0 36, 4.1 cm: 0 29 × 0 23). The star marks the position of the protostar based on Ka-band observations (Tobin et al. 2016b).
Red and blue arrows indicate outflow direction from Lee et al. (2015) with a position angle of 38.
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the map do not show a similar extension. The spectral index is
flat in the central part (0.00± 0.18) and is decreasing toward
the northwest along the extension. The spectral index measured
along the extension is −1.38±0.51, but the extension is only
marginally resolved at 6.4 cm.

4. Discussion

Resolved jets at centimeter wavelengths have typically been
associated with massive protostars (e.g., HH 80-81; see Marti
et al. 1995) and with a few remarkable low-mass protostars that
have exceptionally powerful jets (e.g., L1527, HH 1-2 VLA 1,
SVS 13C; see Rodríguez et al. 1997; Rodríguez & Delgado-
Arellano 2000; Reipurth et al. 2004). However, analysis of the
frequency of extended radio jets toward an unbiased sample of
low-mass protostars has only recently become possible with the
advent of the upgraded Jansky VLA. While some of the
previous studies looked at a reasonably large number of
sources (e.g., Anglada et al. 1998), the observations were often
conducted at resolutions of ∼1″ or greater and the observations
were not very sensitive due to the bandwidth limitations of the
old VLA. Thus, while some of the protostars observed may
have had extended radio jets, the surface brightness sensitivities
of the previous observations may have been too low even if the
resolution was high enough. Thus, our sensitive, unbiased
survey has enabled the detection of eight extended radio jets
toward low-mass stars in Perseus, where only one extended
radio jet had been previously found (Rodríguez et al. 1997).

The observations presented here provide a more complete
picture of extended radio jets in low-mass protostellar systems.
In the study of radio emission toward selected regions with

prominent Herbig–Haro objects, Reipurth et al. (2004) showed
that almost half of the detected sources have radio jets. Only
11% of protostars detected in our unbiased survey have
resolved emission. It is worth noting that sources of some well-
known HH objects in Perseus (e.g., HH 7-11) appear compact
in our observations (Ł. Tychoniec et al. 2018, in preparation).

4.1. Why Are Some Jets Extended?

With a larger sample of extended jets, we are able to
investigate if there are any evolutionary or morphological
trends behind the detection of extended jets. The majority of
extended jets are found toward Class 0 protostars, Per-emb-8,
Per-emb-18, Per-emb-20, Per-emb-33, SVS 13C, and Per-emb-
30 which is a borderline Class 0/I source; the others are Class I
protostars (Per-emb-36, L1448 IRS 3A). Taking into account a
similar number of Class 0 (40) and Class I (38) protostars in the
sample, and additional six borderline sources, at first glance it
appears that youth tends to play a role in the presence of
extended jet emission. Furthermore, the two Class I protostars
with extended jets are found within dense regions with Class 0
protostars and dense molecular gas in close proximity. Per-
emb-20 is the most isolated protostar found with an extended
jet. It should be noted that protostellar ages, based on
bolometric temperature, are subject to large uncertainties due

Figure 7. Images of Per-emb-18 with contours as in Figure 1 ( 6.77 Jy6.4 cms m= and 5.54 Jy4.1 cms m= ). Synthesized beam is shown in the left bottom corner
(Sp. Index and 6.4 cm: 0 56×0 38, 4.1 cm: 0 37×0 25). Stars mark the position of the protostars based on Ka-band observations (Tobin et al. 2016b). Red and
blue arrows indicate outflow direction from Davis et al. (2008) with a position angle of 159.

Figure 8. Images of Per-emb-20 with contours as in Figure 1 ( 5.30 Jy6.4 cms m= and 4.05 Jy4.1 cms m= ). Synthesized beam is shown in the left bottom corner
(Sp. Index and 6.4 cm: 0 38×0 35, 4.1 cm: 0 24×0 22). The star marks the position of the protostar based on Ka-band observations (Tobin et al. 2016b). Red
and blue arrows indicate outflow direction from Davis et al. (2008) with a position angle of 115.
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to inclination and reddening. The sources have bolometric
luminosities that range between 1 to 10 L, whereas the most
luminous sources in the VANDAM sample (e.g., 4 sources
with L 10bol > L) do not have extended jets. Thus, extended
jets are not directly linked with protostellar luminosity.
Geometric orientation of the sources could play a role; for
instance, the pole-on alignment would make extended jet
emission difficult to observe, but this would prevent the
detection of the extended emission of only about 10%–20% of
sources based on the probabilities of random orientations.
Edge-on orientation, on the other hand, can make sources
appear underluminous (Whitney et al. 2003).

It is also possible that extended radio emission could be a
transient phenomenon. Strong variability of jets from protostars
is supported both with numerical modeling (Machida 2014) and
observations (Rodríguez & Delgado-Arellano 2000). Much less
is known about the origin of the variability. Regarding the close
relation between accretion and ejection, resolved jets could be
induced by recent accretion burst. However, the association of
enhanced free–free emission with an accretion burst has not been
firmly established given the recent study of Galván-Madrid et al
(2015) toward the outbursting source HOPS-383 where an
increase in the centimeter flux density was not observed post-
outburst. It is possible that the enhanced free–free emission is
visible later post-outburst when additional outflow material
propagates to greater distances from the protostar.

4.2. Why Are Some Jets Not Extended?

While the detection of these extended radio jets is remarkable, it
is also remarkable that many sources driving powerful outflows do
not have extended radio jets. Famous outflow driving sources such
as HH 211 (e.g., Gueth & Guilloteau 1999), L1448-C (e.g.,
Bachiller et al. 1990), SVS 13A, NGC 1333 IRAS 2A, NGC 1333
IRAS 4A/B (e.g., Plunkett et al. 2013) only show compact free–
free emission. These sources are at a variety of inclination angles,
so the pole-on viewing should not be a systematic problem. They
are all also very young sources and are located in regions with
high protostellar density, high surrounding gas density, and/or
nearby sources driving extended jets. Furthermore, some of these
sources have high-velocity molecular emission features located
near the protostar position, indicating that energies are high
enough for shocks to produce extended free–free emission on
these scales. Thus, it remains unclear why some of these powerful
outflow sources do not have extended jets, while some less
energetic sources do. Our observations are sensitive to structures
as large as 9~ , thus any structure in the crucial region close to the
protostar should be detectable up to the sensitivity limit.

It is possible that those sources have high-density material
surrounding them, as indicated by vast amount of entrained gas in
their molecular outflows. Higher densities could result in effective
molecular cooling and rapid recombination that will keep the level
of ionization low, hampering the detection of the free–free
emission. Rapid cooling in the protostellar envelope also
implicates that for extended jets, heating occurs in situ by internal
shocks, thus it is likely that more variable jets, by producing more
internal shocks, are the sources of extended radio emission. It
would explain the lack of relation between the molecular outflow
strength and the presence of extended radio jet, as the former is
expected to be less sensitive to short-time variations.

Recent observations with Herschel provided new insights into
the properties of jets. Nisini et al. (2015) used observations of
[O I] to probe the atomic component of outflows. Such

observations allowed to describe a process of the jet evolution.
In this scheme, the molecular jet would be progressively
dissociated, becoming mostly atomic, and eventually appear as
hot and ionized. Radio observations present a unique tool to
study the base of the protostellar jet during the most embedded
phase. It appears that the ionized component of the outflow can
be present at very early stages of star formation. Lahuis et al.
(2010) observed signatures of the ionization with Spitzer, but
without the ability to disentangle the processes spatially. From
our observations, we can show that ionization can frequently
happen away from the protostar, although we are not able to say
whether this happens in the cavity walls or in the spot shocks.

4.3. Resolved Emission Not Aligned With the Outflow

Per-emb-8 and L1448 IRS 3A uniquely have misaligned radio
emission relative to their molecular outflows. While jets are known
to precess (e.g., L1157; Gueth et al. 1996; Looney et al. 2007),
precession angles are typically small for low-mass protostars
(Frank et al. 2014) while a massive protostar has shown changes in
the jet direction of up to ∼45°(Cunningham et al. 2009). Thus, it
is possible, but perhaps not likely, that jet precession is the cause of
the misalignment between the outflow and radio emission for these
two sources. We note that a water maser had been previously
identified toward the L1448 IRS3 region with the 37m Haystack
Telescope (Anglada et al. 1989), but the maser faded before
followup with the VLA, so exact positional relation with the
extended radio jet cannot be determined.
An additional possibility is that we are tracing an ionized

portion of an outflow cavity or disk surface, where there is a low-
extinction pathway from the protostar emitting UV radiation to the
cavity or disk surface. Both Per-emb-8 and L1448 IRS 3A have
well-developed disks observed in the dust continuum and
molecular lines (J. Tobin et al. 2018, in preparation). Moreover,
toward more massive protostar Serpens SMM1, Hull et al. (2016)
recently discovered extended radio emission from the outflow
cavity walls. While SMM1 is a much more luminous source
(∼100 L ; Kristensen et al. 2012) and the radio emission is
extended over a much larger area, we suggest that we are
observing a similar phenomenon on much smaller scales toward
these two low-mass protostars.

4.4. Significance of Synchrotron Emission

Toward five of eight protostars in our sample of extended
radio jets, we detect negative spectral index in the positions
away from the protostar. To date, this phenomenon has only
been observed within outflows of massive protostars (e.g.,
Serpens SMM1, HH 80-81; see Curiel et al. 1993 and Marti
et al. 1995), one solar-mass Class II protostar (DG Tau;
Ainsworth et al. 2014), and a single example of Class I low-
mass protostar (L778 VLA5; Girart et al. 2002). In our
observation, we see the tentative detection of synchrotron
emission in the outflow of low-mass Class 0/I protostars. Of
the entire sample, the most robust detection of synchrotron
emission offset from the protostar position is found toward Per-
emb-36. It has visibly shifted peak emission at 6.4 cm,
presumably associated with the intensely shocked material.
This shock may be strong enough to produce cosmic rays.
In the study of Serpens SMM1, an intermediate-mass Class 0

protostar powering radio jet with negative spectral indices,
(Rodríguez-Kamenetzky et al. 2016) showed that conditions in
this jet allows the production of the cosmic rays by diffuse
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shock acceleration (DSA; e.g., Drury 1991). They suggested
that this process might be episodic and, for example, a close
binary encounter might trigger jet velocity enhancement,
creating favorable conditions for the cosmic rays production.

The presence of synchrotron emission being generated
within the star-forming core could have significant implications
on the chemistry of the gas associated with disk and planet
formation. Recent work has shown that high-energy cosmic
rays may be attenuated by the magnetic field of the young stars
(Cleeves et al. 2013), leaving only radioactive decay as a
source of ionization inside protoplanetary disks. While that
model was specific to more evolved pre-main sequence stars
with disks, Padovani et al. (2013, 2014) show that magnetic
fields in collapsing protostellar clouds can also shield cosmic
rays from penetrating too deeply into clouds.

Thus, the potential lack of ionization in these clouds will
strongly affect the chemical composition of the gas in the disk-
forming region of the clouds. However, Padovani et al. (2016)
demonstrated that cosmic rays can be accelerated to relativistic
energies through first-order Fermi acceleration (DSA) even at
jet velocities as low as 100 km s−1, typical for low-mass
outflows. Thus, if there is a component of synchrotron emission
in some of these extended jets, it could be acting as a local
source of cosmic rays, enabling richer chemistry (e.g., Aikawa
et al. 1997; Padovani et al. 2013; Eistrup et al. 2016; Rodgers-
Lee et al. 2017).

It should be noted that for some of the sources, the
uncertainty of the calculated spectral index value is high
(∼0.5), so we cannot completely rule out the possibility that the
emission is optically thin free–free. Rodríguez et al. (1993)
showed that indices below −0.1 are virtually impossible for
thermal processes, which suggests that at least some of our
sources are strong candidates for synchrotron emission.

In the positions of the shocks, we may also find associated
X-ray emission (Pravdo et al. 2004), such as was found toward
DG Tau (Güdel et al. 2008). The only protostar within our
sample with sensitive X-ray data is SVS 13C, and it was
undetected. Per-emb-36 lies at the outskirts of the X-ray map
taken toward NGC 1333, but the X-ray emission toward its
position cannot be positively associated with it due to the
nearby, more evolved star BD+30547. Non-detections have
also been reported toward both Per-emb-33 and L1448 IRS 3A
by Tsujimoto et al. (2005).

5. Conclusions

We conducted observations of all known Class 0 and I
protostars in Perseus molecular cloud in 4.1 and 6.4 cm. 8 of 71
detected sources exhibit resolved radio emission. In this paper,
we analyzed emission toward the resolved subset of sources
with the following conclusions:

1. We observe resolved emission toward 11% sources from
the unbiased radio survey. Their integrated spectral
indices are consistent with optically thin free–free
emission; however, we find them systematically lower
than the median for the whole sample.

2. Toward five sources—Per-emb-18, Per-emb-20, Per-emb-30,
Per-emb-36, and L1448 IRS 3A—we detect negative spectral
indices in the outflow position indicative of synchrotron
emission. Per-emb-36 is the most robust candidate for

synchrotron emission and its peak of emission is shifted away
from the protostar, indicative of a strong shock. This is one of
the few detections of synchrotron emission toward a low-
mass protostar. This result suggests that production of cosmic
rays might be frequent, however transient, in the shocks of
low-mass protostars, which could have significant repercus-
sions for disk and planet formation.

3. Six sources have position angles matching directions of the
large-scale molecular outflow, showing that in most cases
radio emission can be interpreted as an ionized base of the jet.

4. Two sources, Per-emb-8 and L1448 IRS 3A, show
significant misalignment of the resolved radio emission.
We suggest that this emission not necessarily comes from
the jet, but more likely from the ionized outflow cavity
wall or even the upper layer of the disk.

Since the upgrade of the VLA, we are able to study ionized
component of the protostellar outflow with high resolution for
an unprecedented number of protostars. This study showed that
analysis of the spectral index and alignment of the thermal
radio jet can be a useful tool to examine the most embedded
protostars. With the James Webb Space Telescope, we will be
able to resolve emission from ions and atoms in the direct
vicinity of the protostar, which will allow us to disentangle
different processes. Future cm-wave facilities will provide even
higher resolution and sensitivity to show if negative spectral
indices toward jets of low-mass protostars are common
phenomena.
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Appendix
Additional Plots

Here Figures 9–16 show the positions where the spectral
index was measured, the corresponding error map of the
spectral index, and the full-bandwidth image centered at 5 cm.
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Figure 9.Maps of IRAS 2B. Left: spectral index map with marked positions where median flux was measured to calculate spectral indices. Center: spectral index error
map with contours [0.4, 0.8, 1.2, 1.6, 2.0]. Right: full-bandwidth image centered at 6.05 GHz (5 cm). Contours as in Figure 1 ( 3.77 Jy5 cms m= ). Synthesized beam is
shown in the left bottom corner (0 29″×0 25). Stars mark the positions of the protostars based on Ka-band observations (Tobin et al. 2016b). Red and blue arrows
indicate outflow direction from Plunkett et al. (2013).

Figure 10. Same as Figure 9, but for SVS 13C ( 3.06 Jy5 cms m= ). Synthesized beam of the full-bandwidth image is 0 41×0 36. The star marks the position of the
protostar based on Ka-band observations (Tobin et al. 2016b). Red and blue arrows indicate outflow direction from Plunkett et al. (2013).

Figure 11. Same as in Figure 9, but for Per-emb-30 ( 3.58 Jy5 cms m= ). Synthesized beam of the full-bandwidth image is 0 27×0 25). The star marks the position
of the protostar based on Ka-band observations (Tobin et al. 2016b). Red and blue arrows indicate the outflow direction from Davis et al. (2008).

Figure 12. Same as Figure 9, but for L1448 IRS 3B ( 3.35 Jy5 cms m= ). The synthesized beam of the full-bandwidth image is 0 45 × 0 37). Stars marks the position
of the protostar based on Ka-band observations (Tobin et al. 2016b). Red and blue arrows indicate outflow direction from Lee et al. (2015).
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Figure 13. Same as Figure 9, but for L1448 IRS 3A ( 3.91 Jy5 cms m= ). Synthesized beam of the full-bandwidth image is 0 33 × 0 26). The star marks the position
of the protostar based on Ka-band observations. Red and blue arrows indicate outflow direction from Lee et al. (2015).

Figure 14. Same as Figure 9, but for Per-emb-8. Contours as in Figure 1 ( 3.34 Jy5 cms m= ). The synthesized beam of the full-bandwidth image is 0 29× 0 28). The
star marks the position of the protostar based on Ka-band observations (Tobin et al. 2016b). Red and blue arrows indicate outflow direction of 135 based on ALMA
observations (outflow is assumed to be perpendicular to the disk (J. Tobin 2018, in preparation).

Figure 15. Same as Figure 9, but for Per-emb-18. Contours as in Figure 1 ( 3.34 Jy5 cms m= ). The synthesized beam of the full-bandwidth image is 0 29 × 0 28).
Stars mark the positions of the protostar based on Ka-band observations (Tobin et al. 2016b). Red and blue arrows indicate outflow direction from Davis et al. (2008).

Figure 16. Same as Figure 9, but for Per-emb-20. Contours as in Figure 1 ( 3.68 Jy5 cms m= ). Synthesized beam of the full-bandwidth image is 0 27 × 0 25). The
star marks the position of the protostar based on Ka-band observations (Tobin et al. 2016b). Red and blue arrows indicate outflow direction from Davis et al. (2008).
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