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Abstract—In this paper, we study the scheduling problem of the im-
precise mixed-criticality model (IMC) under earliest deadline first with
virtual deadline (EDF-VD) scheduling upon uniprocessor systems. Two
schedulability tests are presented. The first test is a concise utilization-
based test which can be applied to the implicit deadline IMC task set.
The suboptimality of the proposed utilization-based test is evaluated via
a widely-used scheduling metric, speedup factors. The second test is
a more effective test but with higher complexity which is based on the
concept of demand bound function (DBF). The proposed DBF-based
test is more generic and can apply to constrained deadline IMC task set.
Moreover, in order to address the high time cost of the existing deadline
tuning algorithm, we propose a novel algorithm which significantly
improve the efficiency of the deadline tuning procedure. Experimental
results show the effectiveness of our proposed schedulability tests,
confirm the theoretical suboptimality results with respect to speedup
factor, and demonstrate the efficiency of our proposed algorithm over
the existing deadline tunning algorithm. In addition, issues related to the
implementation of the IMC model under EDF-VD are discussed.

1 INTRODUCTION

As safety-critical systems with diverse functionalities have
been emerging, besides real-time constraints, many real-time
applications in safety-critical systems also feature another
important property, called criticality levels. For example, un-
manned aerial vehicles (UAVs) have two types of applications,
safety-critical applications, such as flight control, and mission-
critical applications, such as surveillance and video streaming.
The safety-critical applications (e.g., the flight control) have
higher criticality level because they are essentially crucial to
the operational safety of the whole system and failure (i.e.,
violating timing properties) of the safety-critical applications
will lead to a catastrophic consequence, such as loss of
UAV which may injure a human-being. On the other hand,
the mission-critical applications have lower criticality level
because they are not coupled to the operational safety of
the whole system, so failure of mission-critical applications
will not threaten the operational safety of the system but will
only affect the system service quality. In different industrial
contexts, different standards are deployed to guide the design
of systems with different criticality-level applications, such
as IEC61508 for electrical/electronic/programmable electronic

safety-related systems, ISO26262 for automotive systems, and
DO-178B/C for avionic systems.

With the rapid development of complex and sophisticated
safety-critical systems, increasing number of applications with
different criticality and complex functionality are incorporated
into a system, thus requiring a plentiful of processing units.
For instance, modern premium cars typical contain around 70-
100 computers, around 100 electronic motors and 2 km of
wire [1]. This complicated and sometimes redundant hardware
leads to a system with large system size and very high power
consumption. Therefore, to reduce Size, Weight, and Power
(SWaP), the emerging trend in the development of safety-
critical systems is to integrate applications with different
criticality into a shared computing platform. We call such
systems mixed-criticality systems. A formal definition of a
mixed-criticality system is given as follows:

Definition 1 ( [2]). A mixed-criticality system is an integrated
suite of hardware, operating system and middleware services,
and application software that supports the execution of safety-
critical, mission-critical, and non-critical software within a
single, secure compute platform.

To ensure the timing correctness of a mixed-criticality (MC)
system, highly critical tasks are subject to certification by
Certification Authorities (CAs). In order to guarantee the
safety and correctness of highly critical tasks in all cases,
CAs consider very pessimistic situations which even rarely
occur in practice. As a consequence, this conservativeness
leads to a large overestimation of worst-case execution time
(WCET) for these highly critical tasks and in turn to resource
wastage. To deal with this overestimation, Vestal proposed
in [3] to characterize a highly critical task with different
WCETs corresponding to different criticality levels. Besides
the WCET determined by the CAs, each highly critical task is
specified with several smaller WCETs which are determined
by system designers at lower assurance levels, i.e., considering
less pessimistic situations. Scheduling highly critical tasks
using their low assurance WCETs can better utilize hardware
resource, and in most cases all tasks can be safely and
successfully scheduled with their low assurance WCETs, and
then the system is deemed to operate in low-criticality mode.



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2789879, IEEE
Transactions on Computers

2

Then, if a rare case occurs, i.e., any highly critical task cannot
complete its execution within its low assurance WCET, the
system discards all less critical tasks and schedules only highly
critical tasks with their certified (very pessimistic) WCETs.
When any highly critical tasks overrun, the system is deem
to transit to high-criticality mode and operate in this mode.
The challenge in scheduling MC systems is to simultaneously
guarantee the timing correctness of (1) only high-criticality
tasks under very pessimistic assumptions, and (2) all tasks,
including low-critical ones, under less pessimistic assumptions
such that resource efficiency is achieved.

The scheduling problem of MC systems has been intensively
studied in recent years (see Section 2 for a brief review and
[4] for a comprehensive review). The MC model proposed by
Vestal in [3] receives the most attention from the real-time
scheduling community such as [5]–[8]. In the reminder of
this article, we refer to the MC model proposed by Vestal
in [3] as the classical MC model. However, the classical
MC model seriously disturbs the service of low-criticality
tasks as it discards low criticality tasks completely when the
system switches to high-criticality mode. This is actually not
acceptable in many practical systems, so the Vestal MC model
receives some criticisms from system designers [9] [10].

Several new MC models have been proposed to improve
execution of low criticality tasks in high-criticality mode,
e.g., [9], [10], etc. Burns and Baruah in [9] introduced an
imprecise mixed-criticality (IMC) task model [4] [11] where
low-criticality tasks reduce their execution budgets (i.e., short
execution time) to guarantee their execution with regular
execution frequency (i.e., the same period) in high-criticality
mode. This IMC model is highly beneficial to those low
criticality tasks which feature the imprecise property defined
in the widely known and studied imprecise computation model
[12] [13]. In the imprecise computation model, the output
quality of a task is related to its execution time. The longer
a task executes, the better quality results it produces. Then,
if there is an overload in the system, tasks can trade off the
quality of the produced results (i.e., reduce the execution time)
to ensure their timing correctness. In [14], Ravindran et al.
gave several real-life applications with this imprecise feature in
different domains, e.g., video encoding, robotic control, cyber-
physical systems, and planetary rover.

However, the IMC model does not receive sufficient atten-
tion, only few works studying the scheduling problem of the
IMC model [9] [15]. Earliest-deadline-first with virtual dead-
lines (EDF-VD) scheduling algorithm [5] has shown strong
competence for the classical MC model by both theoretical
and empirical evaluations [5], [7], [8], where the classical EDF
scheduling algorithm is enhanced by a deadline adjustment
mechanism to compromise the resource requirement on dif-
ferent criticality levels. Although EDF-VD is an effective MC
scheduling algorithm, the scheduling analysis and performance
of the IMC model under EDF-VD scheduling has not been
addressed and known yet. Therefore, in this paper, we study
EDF-VD scheduling of the IMC model and demonstrate the
scheduling performance through comprehensive comparison
with other state of the art scheduling algorithms for the IMC
model. The main technical contributions of this paper include:

• We propose a utilization-based sufficient test for the IMC
model under EDF-VD, - see Theorem 3 in Section 4.
This concise utilization-based test is applicable to the
case where the IMC tasks with implicit deadlines are
considered and virtual deadlines of all high-criticality
tasks are tuned uniformly;

• With our proposed utilization-based test, we quantify the
EDF-VD scheduling for the IMC model via a scheduling
metric, namely speedup factor. We derive a speedup fac-
tor function with respect to the utilization ratios of high
criticality tasks and low criticality tasks - see Theorem 4
in Section 5. The derived speedup factor function enables
us to quantify the suboptimality of EDF-VD and evaluate
the impact of the utilization ratios on the speedup factor.
We also compute the maximum value 4/3 of the speedup
factor function, which is equal to the speedup factor
bound for the classical MC model [5].

• We propose a demand bound function (DBF) based test
for the IMC model. The DBF-based test is a good
complement to the utilization-based test and can be used
for the more generic case where constrained deadline
IMC tasks can be considered and virtual deadlines of
high-criticality tasks can be tuned individually.

• Along with the DBF-based test, we propose a novel
deadline tune algorithm which significantly improves the
efficiency of the deadline tuning procedure in comparison
with the existing algorithm [7] [8].

• We carry out extensive experiments on synthetic IMC
task sets. The experimental results show the effectiveness
of the proposed schedulability tests over the existing
approaches. Moreover, the experimental results validate
the observations we obtained for speedup factor and
demonstrates the efficiency of our proposed deadline
tunning algorithm.

• We present a possible implementation of IMC model
under EDF-VD based on Linux OS with LITMUS-rt
extension [16] and discuss the run-time overhead.

The remainder of this paper is organized as follows: Section
2 discusses the related work. Section 3 gives the preliminaries
and describes the IMC task model and its execution semantics.
Section 4 presents our sufficient test for the IMC model
and Section 5 derives the speedup factor function for the
IMC under EDF-VD. Section 6 presents our DBF based
test and gives the new deadline tunning algorithm. Section
7 shows our experimental results and Section 8 discusses
the implementation and overhead of the IMC model. Finally,
Section 9 concludes this paper.

2 RELATED WORK

Burns and Davis in [4] gave a comprehensive review of
work on real-time scheduling for MC systems. Many of
these literatures, e.g., [5] [7] [8], considered the classical
MC model in which all low criticality tasks are discarded
if the system switches to the high criticality mode. Several
models or approaches are proposed to improve the execution
low criticality tasks when there is an overrun occurred to any
high criticality tasks. In [9], Burns and Baruah discussed three
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approaches to keep some low criticality tasks running in high-
criticality mode. The first approach is to change the priority
of low criticality tasks. However, for fixed-priority schedul-
ing, deprioritizing low criticality tasks cannot guarantee the
execution of the low criticality tasks with a short deadline
after the mode switches. [9]. Similarly, for EDF, lowering
priority of low criticality tasks leads to a degraded service [10].
In this paper, we consider the IMC model which improves
the schedulability of low criticality tasks in high-criticality
mode by reducing their execution time. The IMC model can
guarantee the regular service of a system by trading off the
quality of the produced results. For some applications given
in [12] [13] [14], such trade-off is preferred.

The second approach in [9] is to extend the periods of
low criticality tasks when the system mode changes to high-
criticality mode such that the low criticality tasks execute less
frequently to ensure their schedulability. Su et al. [17] [18]
and Jan et al. [19] both consider this model. However, some
applications might prefer an on-time result with a degraded
quality rather than a delayed result with a perfect quality.
Some example applications can be seen in [20] [12] [13].
Then, the approach of extending periods is less useful for
this kind of applications. The last approach proposed in [9]
is to reduce the execution budget of low criticality tasks when
the system mode switches, i.e., the use of the IMC model
studied in this paper. In [9], the authors extend the AMC
[6] approach to test the schedulability of an IMC task set
under fixed-priority scheduling. Comparing to the AMC, EDV-
VD scheduling provides better schedulability and to our best
knowledge this is the first work addressing the schedulability
analysis of the IMC model under EDF-VD scheduling. In
[15], Baruah et al. analyzed the schedulability of the IMC
model under MC-fluid scheduling [21]. However, in practice,
MC-fluid scheduling algorithm suffers from extremely high
scheduling overhead due to the frequent context switching,
so the scheduling performance is affected seriously when
the scheduling overhead is taken into account. Moreover,
in Section 7, the experimental results show on uniprocessor
systems the EDF-VD scheduling is even slightly better than
the MC-fluid scheduling.

Some works tried to drop a subset of low-criticality tasks
instead of all low-criticality tasks [22], [23] in high-criticality
mode. Comparing to the IMC model, these studies have two
shortcomings: 1) both works consider a hierarchy scheduling
which may suffer from much higher scheduling overhead,
e.g., context-switch; 2) there is no service guarantee for low-
criticality tasks in high-criticality mode. In this paper, EDF-
VD scheduling algorithm is considered, where EDF-VD only
causes negligibly additional overhead than the original EDF
scheduling. In addition, as long as the system are schedulable
with the specified parameters, a minimum quality of service is
guaranteed to each low-criticality tasks. [24] is similar to our
work in providing a guaranteed service to low-criticality tasks
in high-criticality mode, but their approach relies on a run-time
budget allocator. Therefore, it is difficult for their approach to
provide any theoretical bound on the scheduling performance
such as the speedup factor we obtain in this paper.

The execution semantics of the classical MC model and

IMC model are very similar to the systems operating with
several modes [25]. The multi-mode system usually executes
in one mode and may change the mode during the runtime.
The crucial and main difference of the existing multi-mode
protocols and the MC models is that the multi-mode protocols
only guarantee the schedulability in each mode, however the
schedulability of the mode transition/switch is not considered
[26]. For the classical MC model and IMC model, even the
schedulability of the mode transition is required to be ensured.
Therefore, the existing multi-mode protocols or analysis can-
not be applied to the MC model.

3 PRELIMINARIES

This section first introduces the IMC task model and its exe-
cution semantics. Then, we give a brief explanation for EDF-
VD scheduling [5] and an example to illustrate the execution
semantics of the IMC model under EDF-VD scheduling.

3.1 Imprecise Mixed-Criticality Task Model
We consider the sporadic task model given in [9] where
a task set γ includes n tasks which are scheduled on a
uniprocessor system. Without loss of generality, all tasks in
γ are assumed to start at time 0. Each task τi in γ generates
an infinite sequence of jobs {J1

i , J
2
i ...} and is characterized

by τi = {Ti, Di, Li, Ci}:
• Ti is the period or the minimal separation interval be-

tween two consecutive jobs;
• Di denotes the relative task deadline;
• Li ∈ {LO,HI} denotes the criticality (low or high) of a

task. In this paper, like in many previous research works
[17] [10] [5] [7] [8], we consider a duel-criticality MC
model. Then, we split tasks into two task sets, γLO =
{τi|Li = LO} and γHI = {τi|Li = HI};

• Ci = {CLOi , CHIi } is a list of WCETs, where CLOi and
CHIi represent the WCET in low-criticality mode and the
WCET in high-criticality mode, respectively. For a high-
criticality task, it has CLOi ≤ CHIi , whereas CLOi ≥ CHIi
for a low-criticality task, i.e., low-criticality task τi has
a reduced WCET in high-criticality mode.

WCET Estimation: The high-criticality tasks are subject to
certification by Certification Authorities (CAs), so CAs usually
provide high-criticality WCET estimation (CHIi ) for high
criticality tasks. On the other hand, the system designers esti-
mate WCETs, CLOi for both low-criticality and high-criticality
tasks, and CHIi for low-criticality tasks. For low-criticality
tasks, CHIi is estimated by system designers according to their
expected Quality of Service (QoS) requirement (i.e., degraded)
when the system executes in high-criticality mode. This is
analogous to the imprecise computation model, where tasks
have a mandatory part which could guarantee an acceptable
output when the system overloads. Therefore, as long as a
given IMC task set is schedulable, we consider that the IMC
task set could guarantee a normal QoS in low-criticality mode
and a degraded QoS in high-criticality mode. It is worth noting
that low-criticality criticality tasks could have several WCETs
in high-criticality mode such that the system could select
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appropriate WCETs according to the system total workload of
high-criticality mode. But in this paper, we mainly consider
the schedulability test of the IMC model under EDF-VD
scheduling and our proposed schedulability tests will serve
as the critical foundation for this optimization problem. We
leave this problem for our future work.

Every task τi ∈ γ could generate infinite jobs during
system operation. Then each job Ji is characterized by Ji =
{ai, di, Li, Ci}, where ai is the absolute release time and di is
the absolute deadline. Note that if low-criticality task τi has
CHIi = 0, it will be immediately discarded at the time of the
switch to high-criticality mode. In this case, the IMC model
behaves like the classical MC model. Notice that in Section 4,
we consider the implicit deadline sporadic IMC model, i.e.,
∀τi ∈ γ,Di = Ti. In Section 6, we consider a more general
task model in which task’s deadline is smaller than or equal
to its period, i.e., ∀τi ∈ γ,Di ≤ Ti, widely known as the
constrained deadline task model.

In real-time theories, the utilization of a task is used to
denote the ratio between its WCET and its period. We define
the following utilizations for an IMC task set γ:

• For every task τi, it has uLOi =
CLO

i

Ti
, uHIi =

CHI
i

Ti
;

• For all low-criticality tasks, we have total utilizations
ULOLO =

∑
∀τi∈γLO

uLOi , UHILO =
∑

∀τi∈γLO

uHIi

• For all high-criticality tasks, we have total utilizations
ULOHI =

∑
∀τi∈γHI

uLOi , UHIHI =
∑

∀τi∈γHI

uHIi

• For an IMC task set, we have
ULO = ULOLO + ULOHI , UHI = UHILO + UHIHI

3.2 Execution Semantics of the IMC Model
The execution semantics of the IMC model are similar to
those of the classical MC model. The major difference occurs
after a system switches to high-criticality mode. Instead of
discarding all low-criticality tasks, as it is done in the classical
MC model, the IMC model tries to schedule low-criticality
tasks with their reduced execution times CHIi . The execution
semantics of the IMC model are summarized as follows:
• The system starts in low-criticality mode, and remains in

this mode as long as no high-criticality job overruns its
low-criticality WCET CLOi . If any job of a low-criticality
task tries to execute beyond its CLOi , the system will
suspend it and launch a new job at the next period;

• If any job of high-criticality task executes for its CLOi
time units without signaling completion, the system im-
mediately switches to high-criticality mode;

• As the system switches to high-criticality mode, if jobs of
low-criticality tasks have completed execution for more
than their CHIi but less than their CLOi , the jobs will
be suspended till the tasks release new jobs for the next
period. However, if jobs of low-criticality tasks have
not completed their CHIi (≤ CLOi ) by the switch time
instant, the jobs will complete the left execution to CHIi
after the switch time instant and before their deadlines.
Hereafter, all jobs are scheduled using CHIi . For high-
criticality tasks, if their jobs have not completed their

Task L CLOi CHIi Ti D̂i
τ1 LO 4 2 9
τ2 HI 4 7 10 7

Table 1: Illustrative example

τ1
0 5 10 15 18

τ2
0 5 10 15 20

Switch

Figure 1: Scheduling of Example 1

CLOi (≤ CHIi ) by the switch time instant, all jobs will
continue to be scheduled to complete CHIi . After that, all
jobs are scheduled using CHIi .

Santy et al. [27] have shown that the system can switch
back from high-criticality mode to low-criticality mode when
there is an idle period and no high-criticality job awaits for
execution. For the IMC model, we can use the same scenario to
trigger the switch-back. In this paper, we focus on the switch
from low-criticality mode to high-criticality mode.

3.3 EDF-VD Scheduling

The challenge to schedule MC tasks with EDF scheduling
algorithm [28] is to deal with the overrun of high-criticality
tasks when the system switches from low-criticality mode
to high-criticality mode. Baruah et al. in [5] proposed to
artificially tighten (i.e., tune down) deadlines of jobs of high-
criticality tasks in low-criticality mode such that the system
can preserve execution budgets for the high-criticality tasks
across mode switches. This approach is called EDF with
virtual deadlines (EDF-VD).

3.4 An Illustrative Example

Here, we give a simple example to illustrate the execution
semantics of the IMC model under EDF-VD. Table 1 gives
two tasks, one low-criticality task τ1 and one high-criticality
task τ2, where D̂i is the virtual deadline. Figure 1 depicts the
scheduling of the given IMC task set, where we assume that
the mode switch occurs in the second period of τ2. When the
system switches to high-criticality mode, τ2 will be scheduled
by its original deadline 10 instead of its virtual deadline 7.
Hence, τ1 preempts τ2 at the switch time instant. Since in
high-criticality mode τ1 only has execution budget of 2 , i.e.,
CHI1 , τ1 executes one unit and suspends. Then, τ2 completes
its left execution 4 (CHI2 − CLO2 ) before its deadline.

4 UTILIZATION BASED TEST

In this section, we consider the implicit deadline sporadic IMC
model and assume that virtual deadlines of all high-criticality
tasks are tuned uniformly by a scaling factor x. We propose a
utilization-based sufficient test for the IMC model under EDF-
VD. To aim so, we need to ensure the timely correctness of
the IMC model under two modes, i.e., low-criticality mode and
high-criticality mode. Following, we analyze the behaviors of
the IMC model under the two modes, respectively.
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4.1 Low Criticality Mode
We first ensure the schedulability of tasks when they are in
low-criticality mode. When in low-criticality mode, the tasks
can be considered as traditional real-time tasks scheduled by
EDF with virtual deadlines (VD). The following theorem is
given in [5] for tasks scheduled in low-criticality mode.

Theorem 1 (Theorem 1 from [5]). The following condition is
sufficient for ensuring that EDF-VD successfully schedules all
tasks in low-criticality mode:

x ≥ ULOHI
1− ULOLO

(1)

where x ∈ (0, 1) is used to uniformly modify the relative
deadline of high-criticality tasks.

Since the IMC model behaves as the classical MC model
in low-criticality mode, Theorem 1 holds for the IMC model
as well.

4.2 High Criticality Mode
For high-criticality mode, the classical MC model discards all
low-criticality jobs after the switch to high-criticality mode.
In contrast, the IMC model keeps low-criticality jobs running
but with degraded quality, i.e., a shorter execution time. So
the schedulability condition in [5] does not work for the IMC
model in the high-criticality mode. Thus, we need a new test
for the IMC model in high-criticality mode.

To derive the sufficient test in high-criticality mode, suppose
that there is a time interval [0, t2], where a first deadline miss
occurs at t2 and t1 denotes the time instant of the switch
to high-criticality mode in the time interval, where t1 < t2.
Assume that J is a minimal set of jobs generated from
task set γ which leads to the first deadline miss at t2. The
minimality of J means that removing any job in J guarantees
the schedulability of the rest of J . Here, we introduce some
notations for our later interpretation. Let variable ηi denote the
cumulative execution time of task τi in the interval [0, t2]. J1
denotes a special high-criticality job which has switch time
instant t1 within its period (a1, d1), i.e, a1 < t1 < d1.
Furthermore, J1 is the job with the earliest release time
amongst all high-criticality jobs in J which execute in [t1, t2).
Moreover, we define a special type of job for low-criticality
tasks which is useful for our later proofs.

Definition 2. A job JICi from low-criticality task τi is a
imprecise carry-over (IC) job, if its absolute release time
ai is before and its absolute deadline di is after the switch
time instant, i.e., ai < t1 < di.

With the notations introduced above, we have the following,

Proposition 1 (Fact 1 from [5]). All jobs in J that execute
in [t1, t2) have deadline ≤ t2.

It is easy to observe that only jobs which have deadlines
≤ t2 are possible to cause a deadline miss at t2. If a job has
its deadline > t2 and is still in set J , it will contradict the
minimality of J .

Proposition 2. The switch time instant t1 has
t1 < (a1 + x(t2 − a1)) (2)

Proof: Let us consider a time instant (a1 + x(d1 − a1))
which is the virtual deadline of job J1. Since J1 executes in
time interval [t1, t2), its virtual deadline (a1 + x(d1 − a1))
must be greater than the switch time instant t1. Otherwise, it
should have completed its low-criticality execution before t1,
and this contradicts that it executes in [t1, t2). Thus, it holds
that

t1 < (a1 + x(d1 − a1))
⇒t1 < (a1 + x(t2 − a1)) (since d1 ≤ t2)

Proposition 3. If a IC job JICi has its cumulative execution
equal to (di − ai)u

LO
i and uLOi > uHIi , its deadline di is

≤ (a1 + x(t2 − a1)).

Proof: For a IC job JICi , if it has its cumulative execution
equal to (di−ai)uLOi and uLOi > uHIi , it should complete its
CLOi execution before t1. Otherwise, if job JICi has executed
time units Ci ∈ [CHIi , CLOi ) at time instant t1, it will be
suspended and will not execute after t1.

Now, we will show that when job JICi completes its CLOi
execution, its deadline is di ≤ (a1+x(t2−a1)). We prove this
by contradiction. First, we suppose that JICi has its deadline
di > (a1+x(t2−a1)) and release time ai. As shown above, job
JICi completes its CLOi execution before t1. Let us assume
a time instant t∗ as the latest time instant at which this IC
job JICi starts to execute before t1. This means that at this
time instant all jobs in J with deadline ≤ (a1 + x(t2 − a1))
have finished their executions. This indicates that these jobs
will not have any execution within interval [t∗, t2]. Therefore,
jobs in J with release time at or after time instant t∗ can
form a smaller job set which causes a deadline miss at t2.
Then, it contradicts the minimality of J . Thus, IC job JICi
with its cumulative execution time equal to (di− ai)uLOi and
uLOi > uHIi has its deadline di ≤ (a1 + x(t2 − a1)).

With the propositions and notations given above, we derive
an upper bound of the cumulative execution time ηi of low-
criticality task τi.

Lemma 1. For any low-criticality task τi, it has
ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi (3)

Proof: If uLOi = uHIi , it is trivial to see that Lemma 1
holds. Below we focus on the case when uLOi > uHIi . If a
system switches to high-criticality mode at t1, then we know
that low-criticality tasks are scheduled using CLOi before t1
and using CHIi after t1. To prove this lemma, we need to
consider two cases, where τi releases a job within interval
(a1, t2] or it does not. We prove the two cases separately.

Case A (task τi releases a job within interval (a1, t2]): There
are two sub-cases to be considered.

• Sub-case 1 (No IC job): The deadline of a job of low-
criticality task τi coincides with switch time instant t1.
The cumulative execution time of low-criticality task τi
within time interval [0, t2] can be bounded as follows,

ηi ≤ (t1 − 0) · uLOi + (t2 − t1) · uHIi
Since t1 < (a1 + x(t2 − a1)) according to Proposition 2
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and for low-criticality task τi it has uLOi > uHIi , then
ηi <

(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi
• Sub-case 2 (with IC job): In this case, before the IC

job, jobs of τi are scheduled with its CLOi . After the IC
job, jobs of τi are scheduled with its CHIi . It is trivial to
observe that for a IC job its maximum cumulative exe-
cution time can be obtained when it completes its CLOi
within its period [ai, di], i.e., (di − ai)uLOi . Considering
the maximum cumulative execution for the IC job, we
then have for low-criticality task τi,

ηi ≤ (ai − 0)uLOi + (di − ai)uLOi + (t2 − di)uHIi
⇔ηi ≤ diuLOi + (t2 − di)uHIi

Proposition 3 shows as JICi has its cumulative execution
equal to (di − ai) · uLOi , it has di ≤ (a1 + x(t2 − a1)).
Given uLOi > uHIi for low-criticality task, we have
ηi ≤ diuLOi + (t2 − di)uHIi
⇒ηi ≤

(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Case B (task τi does not release a job within interval (a1, t2]):
In this case, let JICi denote the last release job of task τi before
a1 and ai and di are its absolute release time and absolute
deadline, respectively. If di ≤ t1, we have

ηi = (ai − 0)uLOi + (di − ai) · uLOi = diu
LO
i

If di > t1, JICi is a IC job. As we discussed above, the
maximum cumulative execution time of IC job JICi is (di −
ai)u

LO
i , so we have
ηi ≤ (ai − 0)uLOi + (di − ai) · uLOi ⇔ ηi ≤ diuLOi

Similarly, according to Proposition 3, we obtain,
ηi ≤ di · uLOi ≤ (a1 + x(t2 − a1))uLOi

⇒ηi < (a1 + x(t2 − a1))uLOi +
(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Lemma 1 gives the upper bound of the cumulative execution
time of a low-criticality task in high-criticality mode. In order
to derive the sufficient test for the IMC model in high-
criticality mode, we need to upper bound the cumulative
execution time of high-criticality tasks.

Proposition 4 (Fact 3 from [5]). For any high-criticality task
τi, it holds that

ηi ≤
a1
x
uLOi + (t2 − a1)uHIi (4)

Proposition 4 is used to bound the cumulative execution of
the high-criticality tasks. Since in the IMC model the high-
criticality tasks are scheduled as in the classical MC model,
Proposition 4 holds for the IMC model as well. With Lemma
1 and Proposition 4, we can derive the sufficient test for the
IMC model in high-criticality mode.

Theorem 2. The following condition is sufficient for ensur-
ing that EDF-VD successfully schedules all tasks in high-
criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1 (5)

Proof: Let N denote the cumulative execution time of all

tasks in γ = γLO ∪ γHI over interval [0, t2]. We have
N =

∑
∀τi∈γLO

ηi +
∑

∀τi∈γHI

ηi

By using Lemma 1 and Proposition 4, N is bounded as follows

N ≤
∑

∀τi∈γLO

((
a1 + x(t2 − a1)

)
uLOi + (1− x)(t2 − a1)uHIi

)
+

∑
∀τi∈γHI

(
a1
x
uLOi + (t2 − a1)uHIi

)
⇔N ≤ (a1 + x(t2 − a1))ULOLO + (1− x)(t2 − a1)UHILO

+
a1
x
ULOHI + (t2 − a1)UHIHI

⇔N ≤ a1(ULOLO +
ULOHI
x

) + x(t2 − a1)ULOLO

+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(6)

Since the tasks must be schedulable in low-criticality mode,
the condition given in Theorem 1 holds and we have 1 ≥
(ULOLO +

ULO
HI

x ). Hence,
N ≤a1 + x(t2 − a1)ULOLO

+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(7)

Since time instant t2 is the first deadline miss, it means that
there is no idle time instant within interval [0, t2]. Note that
if there is an idle instant, jobs from set J which have release
time at or after the latest idle instant can form a smaller job set
causing deadline miss at t2 which contradicts the minimality
of J . Then, we obtain

N =

( ∑
∀τi∈γLO

ηi +
∑

∀τi∈γHI

ηi

)
> t2

⇒a1 + x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2

⇔x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2 − a1
⇔xULOLO + (1− x)UHILO + UHIHI > 1

By taking the contrapositive, we derive the sufficient test for
the IMC model when it is in high-criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1

Note that if UHILO = 0, i.e., no low-criticality tasks are
scheduled after the system switches to high-criticality mode,
our Theorem 2 is the same as the sufficient test (Theorem 2
in [5]) for the classical MC model in high-criticality mode.
Hence, our Theorem 2 actually is a generalized schedulability
condition for (I)MC tasks under EDF-VD.

By combining Theorem 1 (see Section 4.1) and our Theo-
rem 2, we prove the following theorem,

Theorem 3. Given an IMC task set, if
UHIHI + ULOLO ≤ 1 (8)

then the IMC task set is schedulable by EDF; otherwise, if
ULOHI

1− ULOLO
≤ 1− (UHIHI + UHILO)

ULOLO − UHILO

(9)

where
UHIHI + UHILO < 1 and ULOLO < 1 and ULOLO > UHILO (10)

then this IMC task set can be scheduled by EDF-VD with a
deadline scaling factor x arbitrarily chosen in the following
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range

x ∈
[

ULOHI
1− ULOLO

,
1− (UHIHI + UHILO )

ULOLO − UHILO

]
Proof: Total utilization U ≤ 1 is the exact test for EDF

on a uniprocessor system. If the condition in (8) is met, the
given task set is worst-case reservation [5] schedulable under
EDF, i.e., the task set can be scheduled by EDF without
deadline scaling for high-criticality tasks and execution budget
reduction for low-criticality tasks. Now, we prove the second
condition given by (9). From Theorem 1, we have,

x ≥ ULOHI
1− ULOLO

From Theorem 2, we have
xULOLO + (1− x)UHILO + UHIHI ≤ 1

⇔x ≤ 1− (UHIHI + UHILO )

ULOLO − UHILO

Therefore, if ULO
HI

1−ULO
LO

≤ 1−(UHI
HI +U

HI
LO)

ULO
LO−UHI

LO

, the schedulability
conditions of both Theorem 1 and 2 are satisfied. Thus, the
IMC tasks are schedulable under EDF-VD.

5 SPEEDUP FACTOR

The speedup factor bound is a useful metric to compare
the worst-case performance of different MC scheduling algo-
rithms. The following is the definition of the speedup factor
for an MC scheduling algorithm.

Definition 3 (from [5]). The speedup factor of an algorithm
A for scheduling MC systems is the smallest real number
f ≥ 1 such that any task system that is schedulable by a
hypothetical optimal clairvoyant scheduling algorithm1 on a
unit-speed processor is correctly scheduled by algorithm A on
a speed-f processor.

Generally speaking, by increasing a processor’s speed a
non-optimal scheduling algorithm is able to schedule the task
sets which are deemed to be unschedulable by the non-
optimal scheduling algorithm but schedulable by an optimal
scheduling algorithm on the processor without speed increase.
The speedup factor actually computes how much the processor
needs to speed up such that the non-optimal scheduling
algorithm achieves the same scheduling performance as an
optimal scheduling algorithm.

For the sake of understanding, we give a simple example.

Example 1. Given a task set which is presumptively schedu-
lable under an optimal scheduling algorithm on a platform,
we have two scheduling algorithms, A and B, which cannot
schedule the task set on the same platform. To successfully
schedule the task set by using algorithms A and B, we can
speed up the execution frequency of the platform (because the
execution time of tasks will be reduced). If algorithms A and
B need to speed up the platform at least by 1.5 and 2 times,
respectively, to ensure the schedulability of the task set, then
algorithm A is said to be better than algorithm B in terms of
scheduling performance due to the lower hardware cost, i.e.,

1. A ‘clairvoyant’ scheduling algorithm knows all run-time information,
e.g., when the mode switch will occur, prior to run-time.

the smaller scaling factor. It is evident to see that if we speed
up the platform more than the minimal scaling number, their
schedulability will always be guaranteed but unnecessary.

As seen from the example, a smaller speedup factor requires
a lower hardware cost and in turn indicate the better scheduling
performance for a non-optimal scheduling algorithm. The
speedup factor bound for the classical MC model under EDF-
VD is known to be 4/3 [5].

Following, we prove the speedup factor of the IMC model
under EDF-VD scheduling. For notational simplicity, we de-
fine

UHIHI = c, ULOHI = α× c
ULOLO = b, UHILO = λ× b

where α ∈ (0, 1] and λ ∈ [0, 1]. α denotes the utilization ratio
between ULOHI and UHIHI , while λ denotes the utilization ratio
between UHILO and ULOLO .

First, let us analyze the speedup factor of two corner cases.
When α = 1, i.e., ULOHI = UHIHI , this means that there is
no mode-switch. Therefore, the task set is scheduled by the
traditional EDF, i.e., the task set is schedulable if ULOLO +
ULOHI ≤ 1. Since EDF is the optimal scheduling algorithm on a
uniprocessor system, the speedup factor is 1. When λ = 1, i.e.,
ULOLO = UHILO , if the task set is schedulable in high-criticality
mode, it must hold UHIHI +U

LO
LO ≤ 1 by Theorem 2. Then it is

scheduled by the traditional EDF and thus the speedup factor
is 1 as well.

In this paper, instead of generating a single speedup factor
bound, we derive a speedup factor function with respect to
(α, λ). This speedup factor function enables us to quantify
the suboptimality of EDF-VD for the IMC model in terms of
speedup factor (by our proposed sufficient test) and evaluate
the impact of the utilization ratio on the schedulability of an
IMC task set under EDF-VD.

First, we strive to find a minimum speed s (≤1) for a
clairvoyant optimal MC scheduling algorithm such that any
implicit-deadline IMC task set which is schedulable by the
clairvoyant optimal MC scheduling algorithm on a speed-s
processor can satisfy the schedulability test given in Theorem
3, i.e., schedulable under EDF-VD on a unit-speed processor.

Lemma 2. Given b, c ∈ [0, 1], α ∈ (0, 1), λ ∈ [0, 1), and
max{b+ αc, λb+ c} ≤ S(α, λ) (11)

where

S(α, λ) =
(1− αλ)((2− αλ− α) + (λ− 1)

√
4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)
then it guarantees

αc

1− b
≤ 1− (c+ λb)

b− λb
(12)

Proof: The complete proof is given in [11].
Lemma 2 shows that any IMC task set that is schedulable by

an optimal clairvoyant MC scheduling algorithm on a speed-
S(α, λ) is schedulable by EDF-VD on a unit-speed processor.
Therefore, the speedup factor of EDF-VD is 1/S(α, λ).

Theorem 4. The speedup factor of EDF-VD with IMC task
sets is

f =
2(1− α)(αλ− αλ2 − α+ 1)

(1− αλ)((2− αλ− α) + (λ− 1)
√
4α− 3α2)
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Figure 2: 3D image of speedup factor w.r.t α and λ

λ
α 0.1 0.3 1/3 0.5 0.7 0.9 1

0 1.254 1.332 1.333 1.309 1.227 1.091 1
0.1 1.231 1.308 1.310 1.293 1.219 1.090 1
0.3 1.183 1.256 1.259 1.254 1.201 1.087 1
0.5 1.134 1.195 1.200 1.206 1.174 1.083 1
0.7 1.082 1.126 1.130 1.143 1.133 1.074 1
0.9 1.028 1.046 1.048 1.056 1.061 1.048 1
1 1 1 1 1 1 1 1

Table 2: Speedup factor w.r.t α and λ

The speedup factor is shown to be a function with respect to
α and λ. Figure 2 plots the 3D image of this function and Table
2 lists some of the values with different α and λ. By doing
some calculus, we obtain the maximum value 1.333 (4/3) of
the speedup factor function when λ = 0 and α = 1

3 , which is
highlighted in Figure 2 and Table 2. We see that the speedup
factor bound is achieved when the task set is a classical MC
task set. From Figure 2 and Table 2, we observe different
trends for the speedup factor with respect to α and λ.
• First, given a fixed λ, the speedup factor is not a mono-

tonic function with respect to α. The relation between
α and the speedup factor draws a downward parabola.
Therefore, a straightforward conclusion regarding the
impact of α on the speedup factor cannot be drawn.

• Given a fixed α, the speedup factor is a monotonic
decreasing function with respect to increasing λ. It is seen
that increasing λ leads to a smaller value of the speedup
factor. This means that a larger λ brings a positive effect
on the schedulability of an IMC task set.

Note that the schedulability test and speedup factor results
of this paper also apply to the elastic mixed-criticality (EMC)
model proposed in [17], where the periods of low-criticality
tasks are scaled up in high-criticality mode. The detailed proof
is provided in [11].

6 DBF-BASED TEST

Section 4 provides a utilization based sufficient test and the
speedup factor derived in Section 5 quantifies the worst-
case scheduling performance of EDF-VD with our proposed
utilization-based test2. The utilization-based test is concise and
easy to check the schedulability for the implicit deadline IMC
model, but it also has some shortcomings. 1) The proposed
utilization-based test is not applicable to the constrained
deadline IMC model, where Di ≤ Ti. 2) The virtual deadlines
of high-criticality tasks cannot be tunned individually and

2. See the definition of the speedup factor.

in turn this uniformly deadline settings hurts the scheduling
performance of EDF-VD scheduling algorithm [7].

In this section, we propose a DBF-based schedulability
test to address the shortcomings of the utilization-based test.
Demand bound function (DBF) was proposed in [29] to test
the schedulability of conventional real-time tasks (i.e., only
one criticality level) under preemptive EDF. Basically, DBF
computes the maximum cumulative execution time of a task
within a time interval.

Definition 4. For a task τi and a time interval t, dbf(τi, t)
determines the maximum cumulative execution time of jobs
generated by task τi and with both release time and deadline
within the time interval [0, t).

For a task set γ, its total demand requirement within a
time interval is the summation of demand requirement of all
individual tasks in γ.

dbf(γ, t) =
∑
τi∈γ

dbf(τi, t)

To check the schedulability of a task set γ, it just needs
to check whether for any time instant within a sufficient long
time interval tmax the following holds,

∀t ≤ tmax, dbf(γ, t) ≤ t
If the above condition holds, then the task set is said to be
schedulable. Otherwise, it reports unschedulable.

To extend the DBF analysis framework to the IMC model,
we need to analyze the schedulability of the IMC model in
low-criticality and high-criticality mode, respectively.

6.1 Schedulability Analysis in Low-Criticality Mode

If there is no overrun occuring to any high-criticality task,
the schedulability of task set γ can be checked by using the
existing test.

Proposition 5 ( [7] [29]). An IMC Task set γ is schedulable
in low-criticality mode iff

∀0 ≤ t ≤ tmax,
∑
τi∈γ

dbf(τi, t) ≤ t (13)

6.2 Schedulability Analysis in High-Criticality Mode

To compute the maximum demand requirement in high-
criticality mode, we need to take into account the system
switch behavior. For the sake of simplicity, we also use
dbf(τi, ts, t) to denote the demand bound function of a task
τi in high-criticality mode where ts(≤ t) is the time instant
at which the system switches to high-criticality mode within
a time interval t.

6.2.1 Low-Criticality Tasks

To precisely derive the demand requirement of a low-criticality
task and eliminate pessimism, we need to accurately depict the
execution status of an IC job (Definition 2 in Section 4.2). For
sake of concise interpretation, in the remainder of paper, we
define mod(τi, ts)

mod (τi, ts) = ts −
⌊
ts
Ti

⌋
Ti (14)
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Figure 3: Case 2: CHIi ≤ mod(τi, ts) ≤ CLOi
mod (τi, ts) actually computes the time interval between

time instant ts and the release time of the IC job generated
by task τi. Additionally, we use JAK0 to denote max(A, 0).

The following proposition determines the demand require-
ment of the IC job of a low-criticality task.

Proposition 6. For a low-criticality task τi, the DBF of its IC
job JICi can be computed as follows,

dbf(JICi , ts, t) =



CHIi ; mod(τi, ts) ≤ CHIi
& r(JICi ) +Di ≤ t

mod(τi, ts); CHIi < mod(τi, ts) < CLOi
& r(JICi ) +Di ≤ t

CLOi ; mod(τi, t)s) >= CLOi
& r(JICi ) +Di ≤ t

0; r(JICi ) +Di > t
(15)

where r(JICi ) denotes the release time of IC job JICi .

Proof: According to the definition of DBF, a task or job
that demands execution within a time interval must have both
release time and deadline within this time interval. Therefore,
if r(JICi ) + Di > t, job JICi is deemed to have no demand
requirement within the time interval.

Then, with condition r(JICi ) + Di ≤ t, we can compute
the demand requirement of an IC job by considering three
different cases,
• Case 1: mod(τi, ts) < CHIi

We see that the interval between the switch time instant
and the release time of IC job JICi is < CHIi . For IC job
JICi , if it does not complete its CHIi execution before
the switch time, it will continue to complete the left
execution to CHIi after switch time instant ts. Therefore,
dbf(JICi , ts, t) = CHIi .

• Case 2: CHIi ≤ mod(τi, ts) < CLOi
The interval between switch time instant ts and the
release time of IC job JICi is ≥ CHIi but < CLOi . In
this case, the demand of JICi is maximized if job JICi
starts its execution immediately at its release time and
continuously executes until the switch time instant ts,
i.e., mod(τi, ts). Fig. 3 depicts this scenario. Therefore,
dbf(JICi , ts, t) = mod(τi, ts)

• Case 3: CLOi ≤ mod(τi, ts)
The interval between switch time instant ts and the
release time of IC job is > CLOi . In this case, the
demand of job JICi is maximized if job JICi completes
its CLOi before or at switch time instant ts. Therefore,
dbf(JICi , ts, t) = CLOi

With the three cases explained above, the DBF of IC job
JICi can be computed by Eq. (15).

Given the DBF of IC job JHIi , we can compute the demand
requirement of low-criticality task τi as follows,

Lemma 3. Given a time interval [0, t] and a switch time ts,
the demand requirement of low-criticality task τi is computed
by

dbfLO(τi, ts, t) =

⌊
ts
Ti

⌋
CLOi + dbf(JICi , ts, t)

+

(s⌊
t−Di

Ti

⌋{
0

−
⌊
ts
Ti

⌋)
CHIi

(16)

where dbf(JICi , ts, t) is computed by Eq. (15).

Proof: First, b tsTi
c computes how many jobs low-criticality

task τi has generated before the IC job JICi , and b tsTi
cCLOi

determines the demand requirement of those jobs which are
executed before JICi .

After JICi , jobs from low-criticality task τi are scheduled
with CHIi . Then, b t−Di

Ti
c computes how many jobs with

deadlines before time instant t are generated by low-criticality
task τi excluding JICi . If t − Di < 0, there is no any
demand from τi within (0, t). Hence, (Jb t−Di

Ti
cK0−b tsTi

c)CHIi
determines the total demand requirement of jobs executed after
JICi with deadlines smaller than t.

With b tsTi
c, (Jb t−Di

Ti
cK0 − b tsTi

c)CHIi and the demand re-
quirement of IC job JICi determined by Proposition 6, if the
system switches to high-criticality mode at time instant ts, the
demand requirement of low-criticality task τi within interval
[0, t] can be computed by Eq (16).

6.2.2 High-Criticality Tasks

The high-criticality tasks in the IMC model behave exactly the
same as in the classical MC model, so the existing method of
computing the demand requirement for high-criticality tasks
can be reused in this case. Here, we refer to the method
proposed in [8] because it provides the better schedulability
for the classical MC model. The computing method proposed
in [8] is resummarized in [22] as follows,

Proposition 7 ( [22]). If the system switches to high-criticality
mode at time instant ts within time interval [0, t], the demand
requirement of a high-criticality task τi within time interval
(0, t] can be computed by the following equation.

dbfHI(τi, ts, t) =



b tsTi
cCLOi + dbf(JAi , ts, t)

if t− ti ≤ Di −DLO
i

biC
LO
i + dbf(JAi , ts, t) + aiC

HI
i

if t− ti ≥ Di

max
{
dbfHI(1), dbfHI(2)

}
if Di −DLO

i < t− ts < Di

(17)
where Di and DLO

i denote the actual deadline and virtual
deadline of task τi, respectively. bi and ai in Case 2 are
computed as follows,

bi = b
ts − (t−Di − b(t−Di)/Tic × Ti

Ti
c

ai = b
t−Di

Ti
c − bi

dbfHI(1) and dbfHI(2) denote the first and second case
given in Eq. (17), respectively.
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6.3 DBF Schedulability Test
Given Lemma 3 and Proposition 7, we derive the DBF-based
schedulability test for the IMC model.

Theorem 5. An IMC task set γ is schedulable under EDF-VD,
if ∀0 ≤ t ≤ tmax, ∀0 ≤ ts ≤ t∑
∀τi∈γLO

dbfLO(τi, ts, t) +
∑

∀τj∈γHI

dbfHI(τj , ts, t) ≤ t (18)

where dbfLO(τi, ts, t) and dbfHI(τj , ts, t) are given in Eq.
(16) and Eq. (17), respectively. tmax = lcm{T1, T2, · · · , Tn}.

Here, lcm is the least common multiply operation and tmax
is also called hyper-period. Although EDF-VD is a varia-
tion of EDF, many optimization and improvement techniques
proposed for EDF are not applicable to EDF-VD, like more
efficient tmax given in [30]. Therefore, we use the most
generic bound of lcm to test the schedulability and in future
it is worth investigating a more efficient bound for our test.
When a switch from low-criticality mode to high-criticality
mode occurs at ts within time interval (0, t], the left-hand-
side of inequality (18) computes the maximum cumulative
demand of task set γ. And for any time interval within a
sufficient long time interval tmax, if Theorem 5 holds, then
all jobs from task set τi are ensured to receive enough time
to complete the execution by their deadlines. Thus, task set γ
is schedulable under EDF-VD. In the implementation of this
test, since a miss (i.e., the demand requirements are greater
than the time interval) only happens at a task’s deadline [30],
the complexity can be reduced by only checking at all absolute
virtual deadlines and real deadlines within this interval.

6.4 Deadline Tuning Algorithm
In Section 6.3, we establish the DBF-based schedulability test
for the IMC model. In the DBF-based test, properly setting
virtual deadlines of high-criticality tasks is crucially important
to shape the demand requirement of tasks within time interval
such that the schedulability of the task set can be ensured.

The existing deadline tunning algorithm, such as the one
in [7] [8], gradually reduces the virtual deadlines of high-
criticality tasks until the schedulability of the task set is
guaranteed in both low-criticality and high-criticality mode.
Basically, if the algorithm finds the task set is unschedulable
at a time instant in high-criticality mode, it terminates and
tunes down the virtual deadline of a selected high-criticality
task. However, tunning down virtual deadlines may cause
unschedulability of the task set in low-criticality mode. When
this happens, a new virtual deadline setting has to be found
and the complex high-criticality DBF test has to be carried
out again. Typically, this procedure repeats many times until
a valid virtual deadline configuration is retained, thus leading
to high time cost.

To address this issue, we propose a new and efficient dead-
line tunning algorithm, namely DTA, which can significantly
reduce the time cost in setting proper virtual deadlines for
high-criticality tasks. Two features in our algorithm boost the
efficiency of the tunning procedure. The first feature is that in
DTA algorithm, instead of reducing virtual deadlines gradually,
we strive to find the minimum virtual deadlines configuration

Algorithm 1: Deadline Tuning Algorithm (DTA)
input : An IMC taskset γ
output: schedulability of taskset γ

1 for ∀τi ∈ γ do
2 if Li = HI then
3 D′

i = CLOi

4 else
5 D′

i = Di

6 dmin = min{di|di = D′
i}

7 t = max{di|di = kTi +D′
i ∧ di < tmax}

8 while t > dmin do
9 if dbfLO(γ, t) < t then

10 t = dbfLO(γ, t)

11 else
12 if t = dbfLO(γ, t) then
13 t = max{di|di = kTi +D′

i ∧ di < t}
14 else
15 τc = findTask(γ, t)
16 if τc =⊥ then
17 return Failure

18 D′
c = t− b t

Tc
cTc + 1

19 t = max{di|di = kTi +D′
i ∧ di < tmax}

20 if dbfLO(γ, t) ≤ dmin and Pass Theorem 5 then
21 return Schedulable

22 return Failure

which can ensure the schedulability of the IMC task set in
low-criticality mode. Then, when we check the schedulability
of an IMC task set in high-criticality mode with the minimum
virtual deadline settings, our DTA algorithm just goes through
the complex test in Theorem 5 only once.

The second feature of our DTA algorithm is that we
integrate the Quick-convergence Processor-demand Analysis
(QPA) [30] into our algorithm. QPA approach has shown that
it can effectively reduce the timing complexity of DBF test.
For the details of QPA, interesting readers are referred to [30].
With the two features, our algorithm provides a very efficient
approach to tune virtual deadlines for high-criticality tasks. In
addition, experimental results show that our algorithm achieves
this high efficiency with negligible schedulability loss.

The pseudo-code of our DTA algorithm is given in Algo-
rithm 1. Basically, the algorithm first sets all high-criticality
tasks’ virtual deadlines equal to CLOi (Line 1-5). From Line
6-20, we use the QPA approach to check the schedulability of
low-criticality mode. If it reports unschedulable at time instant
t, function findTask selects a high-criticality task τc which
contributes the most demand requirement in time interval (0, t]
and then the algorithm increases the virtual deadline of high-
criticality task τi such that the demand requirement within
(0, t] is reduced. The process repeats until a valid virtual
deadline configuration is obtained for low-criticality mode.
Then, the algorithm proceeds to check the schedulability
in high-criticality mode. If it passes the high-criticality test
proposed in Theorem 5, it reports schedulable. Otherwise, a
failure is detected. Note that since Theorem 5 also works with
the classical MC model, DTA algorithm can be applied to the
classical MC model.
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Complexity: In our DTA algorithm, the while loop in
the worst case needs to execute

∑
∀τi∈γHI (Di − Ci) times,

where function findTask goes through all high-criticality tasks
to find a candidate and thus the complexity of function
findTask is |γHI |. The complexity of the test in Theorem
5 is t2max. Therefore, the complexity of our DTA algo-
rithm is −O(|γHI | ·

∑
∀τi∈γHI (Di − Ci) + t2max), whereas

the complexity of the deadline tunning algorithm in [8] is
O(t2max ·

∑
∀τi∈γHI (Di − Ci)).

7 EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the effec-
tiveness of the proposed sufficient tests for the IMC model in
terms of schedulable task sets (acceptance ratio). Moreover,
we conduct experiments to verify the observations obtained
in Section 5 regarding the impact of α and λ on the average
acceptance ratio. Finally, we carry out experiments to show
the efficiency of our proposed deadline tunning algorithm. The
experiments are based on randomly generated IMC tasks. We
use a task generation approach, similar to that used in [8] [7],
to randomly generate IMC task sets for the evaluation. Each
task τi is generated based on the following procedure,
• pCriticality is the probability that the generated task is a

high-criticality task; pCriticality∈ [0, 1].
• Period Ti is randomly selected from range [100, 1000].
• In order to have sufficient number of tasks in a

task set, utilization ui is randomly drawn from the
range[0.05, 0.2].

• For any task τi, CLOi = ui ∗ Ti.
• R ≥ 1 denotes the ratio CHIi /CLOi for every high-

criticality task. If Li = HI , we set CHIi = R ∗ CLOi . It
is easy to see that α used in the speedup factor function
is equal to 1

R ;
• λ ∈ (0, 1] denotes the ratio CHIi /CLOi for every low-

criticality task. If Li = LO, we set CHIi = λ ∗ CLOi .
In the experiment, we generate IMC task sets with different
target utilization U . Each task set is generated as follows.
Given a target utilization U , we first initialize an empty task
set. Then, we generate task τi according to the task generation
procedure introduced above and add the generated task to the
task set. The task set generation stops as we have

U − 0.05 ≤ Uavg ≤ U + 0.05

where

Uavg =
ULO + UHI

2

is the average total utilization of the generated task set. If
adding a new task makes Uavg > U + 0.05, then the added
task will be removed and a new task will be generated and
added to the task set till the condition is met.

7.1 Schedulability Evaluation
In this section, we thoroughly compare the two proposed
schedulability tests, i.e., Theorem 3 and Theorem 5, to all
existing works considering the IMC model, the AMC approach
[9] and the MC-Fluid approach [15] in terms of average
acceptance ratio. In this experiment, AMC denotes the AMC

approach [9], MCF denotes the MC-Fluid approach [15],
UTIL and DBF denote the tests given in Theorem 3 and 5,
respectively.

We setup this experiment as follows. R is randomly selected
from a uniform distribution [1.5, 2.5]. With different λ and
pCriticality settings, we vary Uavg from 0.4 to 0.95 with step
of 0.05, to evaluate the effectiveness of the proposed sufficient
test in terms of the average acceptance ratios. We generate
10,000 task sets for each given Uavg . Due to space limitations,
we only present the experimental results when pCriticality=
0.3 and pCriticality= 0.5. Experimental results with different
settings show the similar trend as we observe from these two
experimental configurations. The results are plotted in Figure
4 and 5, where the x-axis denotes the varying Uavg and the
y-axis denotes the acceptance ratio. We observe the following:

1) DBF performs the best among the four approaches in
terms of average acceptance ratio. In particular, with the
increasing Uavg , the acceptance ratio of UTIL and MCF
drops rapidly, whereas DBF still remains a relatively
high acceptance ratio.

2) Although MC-Fluid scheduling is more effective than
EDF-VD scheduling on multiprocessor systems, we see
that on the uniprocessor system the UTIL achieves the
same acceptance ratio as MCF. Even in some cases
UTIL is slightly better than MCF.

3) Although we can briefly deem that AMC corresponds
to fixed-priority scheduling and EDF-VD corresponds to
EDF in the traditional real-time literature, the introduced
concept of mode switch in MC model actually under-
mines the optimality of EDF and therefore we cannot
really ensure whether EDF-VD is always better than
AMC in terms of acceptance ratios, i.e., schedulability.
When Uavg ∈ [0.5, 0.8], EDF-VD (UTIL) always out-
performs AMC in terms of acceptance ratio. However,
if Uavg > 0.8 and λ = 0.3 or 0.5, AMC performs better
than EDF-VD. The same trend is also found for the
classical MC model under EDF-VD and AMC, see the
comparison in [7].

4) By comparing sub-figures in Figure 5, we see that the
average acceptance ratio improves when λ increases.
This confirms the observation for the speedup factor
we obtained in Section 5. The increasing λ leads to a
smaller speedup factor. As a result, it provides a better
schedulability. When λ increases, we surprisingly notice
that not only UTIL improves its acceptance ratio but the
acceptance ratios of other approaches [9] also improve.

In Figure 4 and 5, we evaluate different approach with
different values of λ and pCriticality. Next, we study the
effect of varying period selection range. We use a weighted
acceptance ratio to plot the experimental results. The weighted
acceptance ratio is computed as follows [7],

A(U)def
=

∑
U∈U (U ·A(U))∑

U∈U U
where U is a set of average utilizations, in this experiment, we
have U = [0.5, 0.6, 0.7, 0.8]. U ∈ U is one average utilization
generated. A(U) is the acceptance ratio when U is given. The
plots with the weighted acceptance ratio allow to reduce one
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(c) λ = 0.7

Figure 4: Varying Uavg with different λ and pcriticality=0.3
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Figure 5: Varying Uavg with different λ and pcriticality=0.5
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Figure 6: Varying the lower bound of period range

dimension in plots and can evaluate the effect of a varying
parameter. We can notice that from the equation above, in the
plots with the weighted acceptance ratio, the more importance
is given to the acceptance ratio for a larger utilization value. To
vary the period, we set the period range [lb, 10000] and change
the value of lb such that the effect of different period range can
be evaluated. The experimental results are plotted in Figure 6.
We can see that for all approaches the weighted acceptance
ratios remain steady over different period ranges, so we can
conclude that the different period ranges do not affect the
scheduling performance of MC scheduling algorithms.

7.2 Impact of α and λ

Above, we compare our proposed sufficient test to the existing
AMC approach and MC-Fluid approach. In this section, we
conduct experiments to further evaluate the impact of λ and
α (1/R) on the acceptance ratio with respect to the utilization
based test given in Theorem 3. In this experiment, we select
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Figure 7: Impact of λ

Uavg = {0.65, 0.7, 0.75, 0.8, 0.85} to conduct experiments.
We fix Uavg to a certain utilization and vary λ and α to
evaluate the impact.

We first show the results for λ. The results are depicted in
Figure 7, where the x-axis denotes the value of λ from 0.2
to 0.9 with step of 0.1 and the y-axis denotes the average
acceptance ratio. R is randomly selected from a uniform
distribution [1.5, 2.5] and pCriticality= 0.5. Similarly, 10,000
task sets are generated for each point in the figures. A clear
trend can be observed that the acceptance ratio increases as λ
increases. This trend confirms the positive impact of increasing
λ on the schedulability which we have observed in Section 5.

Next we conduct experiments to evaluate the impact of α
on the schedulability. Similarly, we fix Uavg and vary α to
carry out the experiments. Due to α = 1

R , if α is given,
we compute the corresponding R to generate task sets. The
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Figure 8: Impact of α

Acceptance Ratio Efficiency ratio
Uavg EYE DTA Average Max

0.6 1 0.999 40 1.8× 103

0.65 0.998 0.994 88 6.4× 103

0.7 0.997 0.994 59 6.2× 103

0.75 0.997 0.984 63 4× 103

0.8 0.984 0.951 8.8× 103 4× 106

0.85 0.968 0.949 4.1× 103 1.8× 106

average 0.0127 2.2× 103 9.6× 105

Table 3: The effectiveness and efficiency comparison for IMC
task sets

results are depicted in Figure 8, where λ = 0.5. The x-
axis denotes the varying α from 0.1 to 0.9 with step of 0.1.
while the y-axis denotes the average acceptance ratio. First,
from Table 2, we see that with increasing α the speedup
factor first increases till a point. This means within this range
the scheduling performance of EDF-VD gradually decreases.
After that point, the speedup factor decreases which means
the scheduling performance of EDF-VD gradually improves.
The experimental results confirm what we have observed for
α in Section 5. The acceptance ratio gradually decreases till
a point and then it increases.

7.3 DTA Evaluation

As analyzed at the end of Section 6, our DTA algorithm has
a lower complexity than the deadline tuning algorithm used
in [7] [8], denoted as EYE. In this section, we evaluate the
effectiveness and efficiency of DTA in comparison with EYE
through extensive experiments. The two comparison metrics
are the average acceptance ratio and execution efficiency. The
experiment is setup as before, where R is randomly selected
from a uniform distribution [1.5, 2.5]. pCriticality and λ are
set to 0.5 and 0.7, respectively, and we vary Uavg from 0.6 to
0.85 with step of 0.05. Since EYE is really time consuming,
we only generate 1000 task sets for each given Uavg . All
experiments are performed on an Intel i7 dual-core processor
running at 2.7GHz with 4 GB RAM.

The experimental results are summarized in Table 3. The
first column is the varying utilizations, while the second and
third columns are the acceptance ratios gained by EYE and
DTA, respectively. To evaluate the efficiency of our DTA, we

Acceptance Ratio Efficiency ratio
Uavg EYE DTA Average Max

0.6 0.995 0.996 74 1.9× 103

0.65 0.987 0.98 2.1× 103 7.6× 105

0.7 0.979 0.968 3.5× 103 1.4× 106

0.75 0.923 0.919 2.5× 104 1.0× 107

0.8 0.855 0.843 4.7× 104 3.2× 106

0.85 0.748 0.72 9.5× 104 9.7× 106

average 0.0102 2.9× 104 4.2× 106

Table 4: The effectiveness and efficiency comparison for
classical MC task sets

use the metric efficiency ratio which is computed as follows,

efficiency ratio =
time cost of EYE
time cost of DTA

The four column is the average efficiency ratio of 1000 task
sets and the fifth column is the maximum efficiency obtained
from 1000 task sets.

From the schedulability perspective, EYE performs slightly
better than DTA in terms of the average acceptance ratio.
In the worst case, EYE achieves 3% higher acceptance ratio
than DTA at Uavg = 0.8. On the average, we see that our
DTA loses only 1.3% acceptance ratio than the EYE. For
the execution efficiency, we see that when Uavg ≤ 0.75, the
majority of generated tasks are schedulable with a simple
deadline tunning procedure, on the average our DTA does
not improve the execution efficiency too much but still in the
best case DTA improves the efficiency more than 103 times.
When Uavg ≥ 0.8, since the increasing number of generated
task sets goes through a more complex procedure to find a
valid deadline setting, even on the average DTA can achieve
more 103 times execution efficiency than EYE and in the best
case DTA can speed up the deadline tuning by 4× 106 times.
Usually, DTA takes only a couple of minutes in the worst case,
whereas EYE, in the worst case, takes several hours to tune
deadlines. On average, our DTA can speed up the deadline
tuning procedure by 2.2 × 103 times. In the best case, DTA
can speed up the procedure by 4× 106 times. As we see, the
experimental results show that the proposed DTA considerably
improves the efficiency of deadline tunning procedure with a
negligible schedulability loss.

We further evaluate the effectiveness and efficiency of
DTA on the classical MC task sets. The experiment setup
is analogous to the IMC experimental setup and the only
modification is to set λ = 0. The experimental results are
summarized in Table 4. The experimental results show a larger
improvement in terms of the execution efficiency when the
classical MC tasks are considered. Only when Uavg = 0.6, the
average efficiency improvement is 74. For other experimental
settings, the average efficiency ratio is more than 103. In
the best case, the efficiency ratio can achieve 1.0 × 107 at
Uavg = 0.75.

8 DISCUSSION

This section presents some discussion related to the IMC
model in terms of the application of the proposed schedu-
lability tests and the implementation of the IMC model under
EDF-VD scheduling.
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8.1 Discussion of The schedulability Tests
Two schedulability tests for the IMC model under EDF-VD
are proposed in this paper. The utilization-based test provides
a concise and polynomial-time test, but only applicable to the
implicit deadline task model. On the other hand, the DBF-
based test can be applied to a more general task model,
constrained deadline task model, at the expense of high
complexity. Hence, in practical, the two sets can be first
selected to use according to the type of task models, i,e,
implicit or constrained. For the implicit task model, if the
utilization-based test reports unschedulable, the DBF-test and
the deadline tunning algorithm can be applied to further check
the schedulability. However, for the constrained deadline task
model, only the DBF-test can be deployed.

In this work, our analysis is mainly based on the model
with two criticality levels. In industry standards, it can be up
to 5 criticality level, e.g., DO-178B/C for aviation industry.
In this case, at different criticality levels, different virtual
deadlines might be assigned to tasks according to their inherent
criticality level. Then, all tasks start to be scheduled at the
lowest criticality level. When any tasks with criticality level
higher than the operating criticality level overrun, the system
switches to a higher criticality mode similar to what we have
in the two-criticality level model. The criticality mode of the
system could be switched one by one and may finally reach
the highest criticality level. The execution semantics of the
multiple criticality levels is still analogous to the one with
two criticality levels, and the only difference is that the system
may occur several mode switches. But also, some tasks with
lower criticality levels might be completely discarded during
consecutive switches in order to compensate tasks with higher
criticality levels. Baruah et al. in [31] have shown that the
similarly utilization-based test for the classical MC model
can be scaled up to 5 criticality levels at the cost of the
scheduling performance, so our utilization-based test should
follow the same trend as in [31] when more criticality levels
are considered. However, for the DBF-based test, although we
have improved the deadline tunning algorithm, the complexity
is still pseudo-polynomial time. As Burns et al. observed for
the classical MC model in [4], it is not clear whether the DBF-
based test can be scaled up to more than two criticality levels,
due to the high complexity of the deadline tunning algorithm.

8.2 Discussion of The Implementation
Previously, we have theoretically shown some results for the
IMC model. In this section, we discuss the IMC mode under
EDF-VD from the practical perspective, i.e., the implementa-
tion on real systems. To implement the IMC model on a real
platform, we have two parts to consider, the implementation
of the imprecise feature of low-criticality tasks, and the
implementation of EDF-VD scheduling.

In [32], two approaches to return the imprecise results were
proposed, the milestone approach and the sieve approach.
The milestone approach is suitable for the applications which
have several distinct stages. At the end of every distinct
stage, the currently computed results are recorded. If the
system overloads and needs to make the deadline, the latest

recorded results are returned as the imprecise results. The sieve
approach is applicable to the applications whose results are
improved over time. That is, at a certain point the raw results
can be generated but the further refinement can be conducted
on the initially raw results to obtain the refined results (more
precise results). When the applications are terminated to ensure
the deadline, the latest refined results are returned as the
imprecise results. Both milestone and sieve approaches can
be implemented with simple primitive functions, therefore
they occur no significant overhead. To guarantee the temporal
correctness of the system, the implementation overhead should
be added to the WCET estimation of low-criticality tasks.

Following, we discuss the implementation solution of EDF-
VD scheduling based on the latest version of LITMUS-RT
[16]. LITMUS-RT is a real-time extension of Linux kernel
and has been widely used in the real-time systems research to
evaluate the performance of different scheduling algorithms.
The first step to implement EDF-VD needs to extend the
parameters of real-time tasks. In LITMUS-RT, a data structure,
called rt_task, is given to specify the real-time parameters
of a process/thread, such as WCET, period, and deadline. To
enable the MC property, more parameters should be given
to account for high-criticality WCET, virtual deadline, and
criticality level. A possible solution is to define a new data
structure to include all these MC-related parameters and add
this MC-related data structure to rt_task. The following is one
possible implementation of the MC-related data structure.
s t r u c t m c _ e x t e n s i o n {

c r i t _ l e v e l _ t c r i t i c a l i t y ;
unsigned long long d e a d l i n e _ o f f s e t ;
unsigned long long wce t_h igh ; } ;

where crit_level_t is an enum type to specify the criticality
level, deadline_offset is the difference of the actual deadline
and the virtual deadline of a task.

The implementation of EDF-VD can be done with a slight
modification on the EDF implementation. The modification
is to implement the mode switch in the MC/IMC model.
In LITMUS-RT, every task is assigned an execution budget,
and different mechanism can be deployed when the assigned
budget is exhausted. In the context of MC systems, the
task is assigned an execution budget equivalent to its low-
criticality WCET, and the high-criticality wcet is assigned
to the element, wcet_high, in struct mc_extension. When
a budget overrun is detected for a low-criticality task, the
low-criticality task will be throttled and wait for the next
release. On the other hand, if a high-criticality task overruns
its low-criticality budget, instead of throttling the task, we
update the parameters like changing the execution budgets
for all tasks and deadlines for all high-criticality tasks. In
LITMUS-RT, the ready queue and the release queue are both
implemented based on binomial heap (bheap) which could
provide a priority queue according to a certain scheduling
algorithm. However, it is very difficult to traverse all nodes
in bheap. So a linked list data structure would be preferred
to store references of all tasks such that updating tasks’
parameters could be achieved by quickly traversing all tasks.
Once the parameters are all updated, the build-in function
bheap_decrease which increase the priority of a task within
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i n t b h e a p _ d e c r e a s e (
b h e a p _ p r i o _ t e d f _ r e a d y _ o r d e r ,
s t r u c t bheap_node∗ node )

a queue can be used to update the scheduling order of all tasks.
where bheap_prio_t is to specify how to order tasks in the
heap and bheap_node is a bheap node with one task in it.
The complexity of the update parameter should be O(|γ|), |γ|
indicates the number of tasks on the system. For the step of
reordering tasks, since deadlines of high-criticality tasks will
be increased (i.e., priority of high-criticality tasks will remain
the same or become lower after the mode switches), only
calling bheap_decrease function for all low-criticality tasks
could reorder all released tasks on the system. The complexity
of bheap_decrease is O(log |γ|), so the complexity of the
reordering step should be O(|γLO| log |γ|), where |γLO| is
the number of low-criticality tasks. On a 2.7GhZ core, one
execution of bheap_decrease just takes 15 µs. We can see
that this implementation does not occur significant overhead,
and this overhead is only added to the high-criticality tasks
because the mode switch always happens when one high-
criticality task overruns.

9 CONCLUSIONS

In this paper, we comprehensively study the scheduling prob-
lem of imprecise mixed-criticality (IMC) model from [9] under
EDF-VD scheduling. A utilization-based schedulability test is
first proposed. Based on the utilization-based sufficient test, we
derive a speedup factor function with respect to the utilization
ratio α of all high-criticality tasks and the utilization ratio
λ of all low-criticality tasks. This speedup factor function
provides a good insight to observe the impact of α and λ
on the speedup factor and thus quantifies the suboptimality of
EDF-VD for the IMC model in terms of speedup factor. To
further improve the schedulability of the IMC model under
EDF-VD and consider more general constrained deadline task
model, we propose a complex schedulability test based on the
demand bound function and a new algorithm to improve the
efficiency of the deadline tuning procedure is also provided.
Our experimental results demonstrate the effectiveness of our
proposed schedulability tests in terms of average acceptance
ratio and show the efficiency of our deadline tunning algorithm
in comparison with the existing algorithm. Moreover, the
extensive experiments also confirm the theoretical observations
we obtained for the speedup factor. From practical perspective,
the possible implementation of the IMC model under EDF-VD
scheduling is discussed at the end.
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