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Abstract—Properly benchmarking a system is a difficult and
intricate task. Unfortunately, even a seemingly innocuous bench-
marking mistake can compromise the guarantees provided by
a given systems security defense and also put its reproducibility
and comparability at risk. This threat is particularly insidious as
it is generally not a result of malice and can easily go undetected
by both authors and reviewers. Moreover, as modern defenses
often trade off security for performance in an attempt to find an
ideal design point in the performance-security space, the damage
caused by benchmarking mistakes is increasingly worrisome.

To analyze the magnitude of the phenomenon, we identify a set
of 22 “benchmarking crimes” that threaten the validity of systems
security evaluations and perform a survey of 50 defense papers
published in top venues. To ensure the validity of our results,
we perform the complete survey twice, with two independent
readers. We find only a very small number of disagreements
between readers, showing that our assessment of benchmarking
crimes is highly reproducible.

We show that benchmarking crimes are widespread even in
papers published at tier-1 venues. We find that tier-1 papers
commit an average of five benchmarking crimes and we find only
a single paper in our sample that committed no benchmarking
crimes. Moreover, we find that the scale of the problem is constant
over time, suggesting that the community is not yet addressing
it despite the problem being now more relevant than ever. This
threatens the scientific process, which relies on reproducibility
and comparability to ensure that published research advances
the state of the art. We hope to raise awareness of these issues
and provide recommendations to improve benchmarking quality
and safeguard the scientific process in our community.

I. INTRODUCTION

Benchmarking is essential in systems security—to compare
different solutions and reproduce prior results. At every
program committee meeting for every top venue in our field,
heated discussions revolve around the question whether the per-
formance numbers reported in papers X and Y are reliable and
how they relate to each other. Making the wrong call is bad, as
nobody wants to accept or reject papers for the wrong reasons.
And after we accept a paper, we want to be able to reproduce
and compare the results in a meaningful way. Faults in bench-
marking are popularly referred to as benchmarking crimes [1],
even if authors generally do not commit them intentionally1.

1Crime here has no “criminal” connotations, but is intended as a hyperbolic
term following the original terminology introduced by Heiser [1].

Bluntly speaking, benchmarking crimes threaten the validity
of the research results in publications. The obvious question
then is: how safe are we as a community from this threat? And
if we are not safe, how serious is this threat, and how can we
mitigate it? Phrased differently, we want to know how well
the systems security research community detects anomalies in
benchmarking in evaluation sections of papers published in
tier-1 venues, what the consequences are of false negatives,
and how to fix these “vulnerabilities”.

In the community, there is wide agreement that performance
benchmarks are important to advance the field [2]. In systems,
it is clear that all security mechanisms incur some performance
overhead [3]. The aim is to keep the overhead as low as
possible, while raising the bar for attackers as high as possible.
Given an unlimited performance budget, techniques to build
secure systems under common threat models are already
well-established—memory safety being a typical example [4],
[5]. As a result, modern systems security research focuses
on practical defenses (such as control-flow integrity [6] or
randomization [7]), that trade off some security to achieve
realistic perfomance guarantees.

Given these constraints, performance benchmarking is in-
creasingly important in systems security. Proper benchmarks
allow us to compare different solutions and reproduce research
results. Improper benchmarking, on the other hand, may set
unrealistic standards and hamper progress in the area.

In this paper, we take a closer look at benchmarking
crimes in systems security. While it would be good to also
benchmark the security of a solution, doing so in an unbiased
way is much harder [8] and this paper primarily focuses on
performance benchmarking of defenses (expanding on other
dimensions when appropriate). After discussing the objectives
of performance benchmarking in general, we carefully explore
all the pitfalls that authors may encounter when assessing
the performance of their research artefact. For each of these
benchmarking crimes, we explain the negative impact they may
have on the validity or usefulness of the evaluation.

Finally, we assess the state of benchmarking in systems
security. We selected systems defense papers from USENIX
Security, the leading conference in systems security, but also
from the other tier-1 computer security venues where systems
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security defenses are routinely published (Security & Privacy,
CCS, and NDSS). We finecombed some 50 papers and analyzed
how they fared with respect to the benchmarking crimes. For
this purpose, we selected all defense papers with benchmarking
results published in 2010 and 2015. As nearly all papers in
our data set have at least some benchmarking issue (and many
have several) and we found no clear difference between the
more recent and the older papers, we conclude that improper
benchmarking is a serious threat with little improvement in
recent years. Moreover, our analysis shows that more and
more papers are affected over time, confirming the increasing
relevance of benchmarking crimes in our community.

It is explicitly not our intention to point fingers. As
mentioned, all of the papers that we investigated exhibited
some flaws and we freely admit that some of our own past
papers are no exception. The point that we want to make is
that the problem is not with individual papers, but with the
field. While we acknowledge that following all the guidelines
is difficult and sometimes impossible under time pressure, we
found that for many common and serious crimes the extra effort
is very low and our goal is to formulate specific guidelines
moving forward for the systems security community. Moreover,
by having concrete guidelines for benchmarking, it is possible
to build automatic tools that set up and run benchmarks in
such a way as to avoid benchmarking crimes. We believe this
is a promising area for future work.

We also refrain from speculating about the cause of the
crimes we encountered. Informal discussions at PC meetings
frequently blame the pressure to publish in good venues that
lead authors to cut corners. The reasoning is as follows. All de-
fense solutions in systems security represent a tradeoff between
security and performance. As a result, researchers frantically try
to minimize the performance overhead, while not compromising
the security—sometimes doing whatever it takes to stay under
(fairly arbitrary) thresholds. For example: “The instrumentation
overhead should be under 5%” [9]. We do not deny such
pressure exists, but we have found no evidence of deliberate
cheating. We believe that most, if not all, benchmarking crimes
we found are unintentional and just denote insufficient attention
devoted to performance benchmarking in our community. As
mentioned earlier, many prevalent benchmarking crimes we
found can, in fact, be prevented altogether with little effort and
simple benchmarking practices. Our goal is to raise awareness
of this increasingly important issue and foster high-quality
benchmarking to improve reproducibility and comparability of
research in our community.

Contributions

This paper makes the following contributions:

• We raise awareness of a number of common pitfalls that
affect the validity of benchmarking results in systems
security. We report on 22 benchmarking crimes which are
commonly found in systems research papers.

• We present a survey of defense research papers in top
security venues in recent years to demonstrate the impact

of these benchmarking crimes in the systems security
community.

• We propose best practices to reduce the impact of improper
benchmarking practices and improve the scientific process
in our community.

II. BENCHMARKING CRIMES

Almost every paper in computer systems requires an evalua-
tion that determines whether and how well the presented system
achieves its goals. One important purpose of the evaluation is
to compare against other work: it should show that the system
improves the state of the art in some way and allow possible
later papers to show that they improve this system. To allow for
comparison, an evaluation must meet a number of requirements.
First of all, it should be complete in the sense that it verifies
all claimed contributions of the system and shows the extent
of any negative impact the system may have. All the presented
results must be relevant in the sense that they actually tell
the reader something meaningful about the system. Another
important characteristic is soundness, the requirement that all
numbers measure what is intended with reasonable accuracy
and repeatability. Finally, a general principle of science, requires
papers to be reproducible. That is, the information provided
in the paper should be sufficient to allow others to build the
system and perform its evaluation in the same way as the
original. A good paper should meet all these requirements, but
unfortunately experience shows that this is often hard to come
by in practice. Indeed, we found that most papers commit a
number of benchmarking crimes that violate these properties.

In this section, we describe the benchmarking crimes we
identified and explain their importance. Our list is based in
large part on a reference web page by Heiser [1], but we
alter and add a number of benchmarking crimes and also
perform a systematic and large-scale survey of systems defense
papers at top conferences (see Section IV) to determine whether
these benchmarking crimes are common in published papers in
systems security. We will show that the applicability of these
crimes is not limited to the operating systems community,
but also extends to other subfields of computer systems,
in particular systems security. This is particularly important
because, as we shall see, Heiser’s original web page [1]
published in 2010 had insufficient impact in the systems
security community. Benchmarking crimes are still widespread
and their relevance has, in fact, grown over time.

We placed the 22 benchmarking crimes we identified in
groups and assigned codes (a letter for the group plus a
number for the specific crime) to simplify later references to
them. We summarize the identified benchmarking crimes and
their impact in Table I. While many crimes impact multiple
requirements, we merely show the most affected ones. We
describe the groups and the individual benchmarking crimes in
the following subsections and later elaborate on their impact
in Section IV.



TABLE I
BENCHMARKING CRIMES AND THEIR IMPACT;  =HIGH-IMPACT CRIME, #=OTHER CRIME (INDICATING ONLY THE most AFFECTED REQUIREMENTS).

Completeness Relevancy Soundness Reproducibility
A1 Not evaluating potential performance degradation  
A2 Benchmark subsetting without proper justification # #
A3 Selective data set hiding deficiencies #
B1 Microbenchmarks representing overall performance #
B2 Throughput degraded by x% ⇒ overhead is x%  
B3 Creative overhead accounting #
B4 No indication of significance of data #
B5 Incorrect averaging across benchmark scores #
C1 Benchmarking of simplified simulated system  
C2 Inappropriate and misleading benchmarks  
C3 Same dataset for calibration and validation #
D1 No proper baseline  
D2 Only evaluate against yourself #
D3 Unfair benchmarking of competitors  
E1 Not all contributions evaluated  
E2 Only measure runtime overhead #
E3 False positives/negatives not tested #
E4 Elements of solution not tested incrementally #
F1 Missing platform specification #
F2 Missing software versions #
F3 Subbenchmarks not listed  
F4 Relative numbers only #

A. Selective benchmarking

There is no single number that can fully express how well a
system performs. Performance overhead is multidimensional as
different operations are affected in different ways. For example,
a system that performs CFI [6] instruments indirect branches
but leaves other operations alone. Therefore, it is likely to
incur substantial overhead for programs and workloads that
perform many function calls, especially if they are indirect (e.g.,
common C++ programs), but it will incur minimal overhead
if the program spends most of its time in a loop that calls no
functions. This has several implications for benchmarking, and
when a paper does not consider these implications it might
result in a performance evaluation becoming anywhere from
slightly inaccurate to completely meaningless.

The first implication is that we should always make sure
we include benchmarks that perform all the kinds of work
where one might reasonably expect an impact on performance.
If a system improves one kind of workload compared to the
state of the art but slows down another, it is important to show
this to uncover tradeoffs and allow readers to decide whether
this solution is actually faster overall. If a paper does not
include such benchmarks, it commits benchmarking crime A1:
not evaluating potential performance degradation. A typical
example would be a system that instruments some system calls
in the kernel (potentially slowing them down) but runs only
workloads that primarily perform user mode computations. In
this case, the benchmarking results would be meaningless and
would not allow the reader to determine whether the system
is practical or how it compares to related work. This crime
results in a lack of completeness.

Another implication is that, whenever a paper summarizes
performance as a single number, it must take care to ensure

this number is representative of real-world workloads. A
number of benchmarking suites, such as SPEC CPU2006 [10],
have been created for this purpose. Different subbenchmarks
stress different types of operations and therefore result in
different overhead numbers. Any paper which arbitrarily selects
a subset of benchmarks and presents it as a single overall
performance overhead number as if it is still representative
commits benchmarking crime A2: benchmark subsetting with-
out proper justification. If the missing subbenchmarks happen
to be those that incur most overhead, the overall performance
number will be meaningless because important components
are missing (lack of completeness) and misleads the reader
into thinking the system performs better than it actually does
(lack of relevance). A typical example would be a system
that instruments memory management operations (potentially
slowing them down) and omits the memory-intensive perlbench
from SPEC CPU2006 [10]. This problem is not limited to
performance benchmarks; a subset arbitrarily selected from a
large set of tests is unlikely to be representative of the full
set regardless of whether they benchmark performance or, for
example, vulnerabilities that the system attempts to mitigate.

Finally, benchmark configurations are often flexible and
allow performance to be measured in different settings. A
typical example would be the number of concurrent connections
for a server program. Since this configuration parameter is
likely to affect overhead, it is important to measure a range of
concurrency settings. Papers that fail to test performance over
an appropriate range of settings are guilty of benchmarking
crime A3: selective data set hiding deficiencies. For example,
if throughput seems to scale linearly with the number of
concurrent connections, it suggests that the range of this
variable is too restricted because the system cannot keep



this up forever. Like the other two crimes in this group, it
has the potential to result in numbers that do not accurately
reflect the practical performance impact of the system (lack of
completeness).

B. Improper handling of benchmark results

Our second group of benchmarking crimes deals with the
question whether papers interpret benchmarking results in
appropriate ways. Even when running the right benchmarks,
the presentation of their results can be misleading if they are
processed in incorrect ways. This group contains five bench-
marking crimes related to incorrect handling of benchmark
results.

Microbenchmarks measure the performance of a specific
aspect of the system. While such benchmarks have value to de-
termine whether a system succeeds to speed up these particular
operations, as well as for drilling down on performance issues,
they are not an indication of how fast the system would run
in practice. For this purpose, more realistic macrobenchmarks
are needed. Misrepresenting the results of microbenchmarks
is classified as B1: microbenchmarks representing overall
performance and threatens relevance because the presented
results are misleading.

Benchmarks usually run either a fixed workload to measure
its runtime or repeat operations for a fixed amount of time
to measure throughput. One common mistake is for papers to
consider the increase in runtime or decrease in throughput to
be the overhead. However, for many workloads the CPU is
idle some of the time, for example waiting I/O. If the CPU
is working while it would otherwise have been waiting, this
masks some of the overhead because it reduces the CPU time
potentially available for other jobs. A typical example would
be a lightly loaded server program (e.g., at 10% CPU) that
reports no throughput degradation when heavily instrumented,
given that the spare CPU cycles can be spent on running
instrumentation code (at the expense of extra CPU load). Papers
that ignore this effect are guilty of B2: throughput degraded by
x% ⇒ overhead is x%. One possible way to avoid this crime
is to ensure the CPU is fully loaded by running a sufficient
number of concurrent jobs. Alternatively, the change in CPU
load must be taken into account, e.g. by quoting the cost of
processing a certain amount of data. When a paper commits
this crime, it threatens the soundness of the results and almost
certainly results in the presented overhead being lower than
the actual overhead.

Another crime in this group is B3: creative overhead
accounting. We use this to refer to any kind of incorrect
computations with overhead numbers. Examples include the
use of percentage points to present a difference in overhead,
such as the case where the difference between 10% overhead
and 20% overhead is presented as 10% more overhead, while
it is actually 100% more (i.e., 2x). Another example would
be computing slowdown incorrectly, for example presenting
a runtime that changes from 5s to 20s as a 75% slowdown
(1− 5

20 ) rather than a 300% slowdown ( 205 − 1). In all such

cases, this crime results in presenting numbers that are incorrect
and therefore unsound.

When measuring runtimes or throughput numbers, there is
always random variation due to measurement error. If these
measurement errors are large, it typically means that there
is a problem with the experimental setup and the numbers
measured should be taken with a grain of salt. For this reason,
we consider the lack of some indication of variance, such as
a standard deviation or significance test to be benchmarking
crime B4: No indication of significance of data. We classify
this as a lack of completeness because without knowing the
amount of variation one cannot tell what the measured results
really mean.

Papers that use benchmarking suites generally present a
single overall overhead figure representing average overhead.
Some authors use the arithmetic mean to summarize such
numbers. However, this is inappropriate because the arithmetic
mean over a number of ratios depends on which setup is
chosen as a baseline [11] and is therefore not a reliable metric.
Only the geometric mean is appropriate to average overhead
ratios. Papers that use the arithmetic mean (or other averaging
strategies such as using the median) are guilty of benchmarking
crime B5: incorrect averaging across benchmark scores. This
benchmarking crime threatens soundness because it results in
reporting incorrect overall overhead numbers.

C. Using the wrong benchmarks

The next group of benchmarking crimes is about using the
wrong benchmarks. It consists of three benchmarking crimes.
C1: benchmarking of simplified simulated system refers to
cases where the benchmarks are not run on a real system but
rather an emulated version, for example through virtualization.
While it is sometimes necessary to emulate a system if it is not
available otherwise, it is best avoided because the characteristics
of the emulated system are generally not identical to those
of the real system. This results in unsound measurements
that do not reflect the intended system. The second is C2:
inappropriate and misleading benchmarks, which refers to
the use of benchmarks that are not suitable to measure the
expected overheads. For example, it would be inappropriate to
use a workload that mostly performs user-space computations
if overhead is expected only on system calls in the kernel.
Presenting the results from inappropriate benchmarks misleads
the reader and therefore violates the property of relevance.
Finally, papers commit C3: same dataset for calibration and
validation when they benchmark their system using the same
data set that they used to train it or, more generally, if there
is any overlap between the training and test sets. A typical
example would be profile-guide approaches which optimize for
a specific workload and then use (parts of) that same workload
to demonstrate the performance of the technique. The results
from this approach lack relevance because they mislead the
reader into believing the system performs better than it actually
would in realistic scenarios.



D. Improper comparison of benchmarking results

Raw measurements like runtime or throughput numbers
are rarely meaningful in isolation. Instead, they get meaning
by comparing them to a baseline to determine how much
overhead the system incurs and/or to competing systems to
determine whether the system can improve their performance.
We separated this issue into three different benchmarking
crimes. D1: no proper baseline refers to computing overhead
compared to an unsuitable baseline. In systems defenses, the
proper baseline is usually the original system using default
settings with no defenses enabled. If the baseline is modified,
for example by adding part of the requirements for the
system being evaluated (such as specific compiler flags or
virtualization), this misleads the reader by hiding some of the
overhead in the baseline and therefore violates the relevance
requirement. D2: only evaluate against yourself refers to cases
where papers compare their new system to their own earlier
work rather than the state of the art. If better solutions are
available, they should be included in the comparison so as
to not mislead the reader. In this case, the comparison is not
relevant. Finally, D3: unfair benchmarking of competitors refers
to papers that do compare against competitors but do so in an
unfair way. For example, they might use a configuration that
is not optimal. Again, this misleads the reader into thinking
the presented system is better than it actually is and violates
relevance.

E. Benchmarking omissions

This group covers a number of necessary measurements for
evaluations that are not yet covered by the other benchmarking
crimes.

E1: not all contributions evaluated refers to cases where a
paper claims to achieve a certain goal, but does not empirically
determine whether this goal has been reached. It is critical that
papers verify claims for the progress of science, since incorrect
claims may prevent later work that does make the contributions
from being published. This crime violates completeness.

When evaluating their performance, many papers measure
runtime overhead. However, there are often other types of
overhead that are also relevant for performance. A typical
example would be memory overhead. Memory is a limited
resource, so applications using lots of memory can slow
down other processes running on the same system. Since
most defenses need to use memory for bookkeeping, it is
important to measure memory consumption. A paper commits
benchmarking crime E2: only measure runtime overhead and
its evaluation is incomplete whenever it does not measure
important performance characteristics.

Many systems defenses monitor behavior to determine
whether it is benign or could be malicious, which is usually
impossible to do with certainty. Unless it is obvious that the
system can never get it wrong (e.g., security enforcement
based on conservative program analysis), the evaluation needs
to quantify such failures; omission of this assessment results
in benchmarking crime E3: false positives/negatives not tested.
Without knowing how accurate the system is, it is impossible

to tell how valuable it would be in practice and the paper is
incomplete.

Many systems consist of multiple components or steps
that can to some extent be used independently. For example,
an instrumentation-based system might use static analysis
to eliminate irrelevant instrumentation points and improve
performance. Such optimizations are optional as they do not
affect functionality and can greatly increase complexity, so
it is best to only include them if they result in substantial
performance gains. Papers that do not measure the impact of
such optional components individually commit benchmarking
crime E4: elements of solution not tested incrementally and its
evaluation lacks completeness. This is of particular importance
if the optional components are a major part of the paper’s
contributions. If the system is faster than the state of the art
merely due to a faster implementation rather than the newly
designed optimizations, its novelty is questionable.

F. Missing information

The final group contains benchmarking crimes where impor-
tant information has been left out of a paper. A paper commits
F1: missing platform specification if it lacks a description
of the hardware setup used to perform the experiments. To
be able to reproduce the results, it is always important to
know what type of CPU was used and how much memory
was available. The cache architecture may be important to
understand some performance effects. Depending on the
type of system being evaluated, other characteristics such as
hard drives and networking setup may also be essential for
reproducibility. The second crime in this group, F2: missing
software versions, is similar but refers to the software. It
is almost always important to specify the type and version
of operating system used, while other information such as
hypervisors or compiler versions is also commonly needed.
Like the previous crime, such omissions lead to a lack of
reproducibility. Next F3: subbenchmarks not listed applies to
papers that run a benchmarking suite but do not present the
results of the individual subbenchmarks, just the overall number.
This threatens completeness as the results on subbenchmarks
often carry important information about the strong and the
weak points of the system. Moreover, it is important to know
whether the overhead is consistent across different applications
or highly application-specific. Finally, papers commit F4:
relative numbers only if they present only ratios of overheads
(example: system X has half the overhead of system Y) without
presenting the overhead itself (example: system X incurs
10% overhead). This is a bad crime as the most important
result is withheld and the reader cannot perform a sanity
check of whether the results seem reasonable, threatening the
evaluation’s completeness. A weaker version of this practice—
presenting overheads compared to a baseline without presenting
absolute runtimes or throughput numbers—is also undesirable.
The absolute numbers are valuable for the reader to perform a
sanity check (is the system configured in a reasonable way?)
and because a slow baseline often means overhead will be
less visible. The practice of omitting absolute numbers is not



harmful enough to consider it a benchmarking crime, but we
do strongly encourage authors to include absolute numbers in
addition to overheads.

III. METHODOLOGY

To determine the prevalence of the benchmarking crimes
discussed in Section II and get a better idea of how papers
commit these crimes in practice, we performed a survey of
50 papers published at top systems security venues. Table II
presents an overview of all the papers selected for our analysis,
sorted by year and title.

Given our focus on systems security, our methodology is
based on the approaches used in prior large-scale surveys of
papers in the area of computer systems [12], [13], [14], [15].
In this section, we discuss how we performed the survey. First
we consider how to determine whether a given paper has
committed a given crime, next we discuss how we selected
top venues to survey papers from, and finally we present the
sample of papers that we selected and the rationale behind this
selection.

A. Classification methodology

Based on the criteria discussed in Section II, two persons
independently categorized each paper for each crime as correct,
flawed, underspecified, or not applicable. In most cases,
both readers came to the same conclusions, showing that
our methodology is highly reproducible. For papers where
there were some disagreements, the readers discussed their
assessments to converge on a final classification. This was
the case for 8 out of 50 papers (16%). In only two cases did
the discussion lead to the addition of a benchmarking crime
that was initially missed by one of the readers. Only one of
these cases concerned a high-impact benchmarking crime. The
remaining disagreements concerned the precise extent of crimes
identified by both readers, rather than crimes completely missed
by one of the readers.

We use only information from the papers themselves and did
not contact the authors for explanation. Effectively, we impose
on ourselves the same constraints reviewers face when deciding
whether to accept or reject a paper in a double-blind submission
system. In cases where the papers themselves were excessively
unclear about the procedures that led to the presented results, we
classified that paper/crime pair as underspecified. This hampers
reproducibility, which is a problem in itself. We discuss this
as a separate verdict in Section IV. Not applicable refers to
cases where a paper could not possibly have committed the
crime, such as invalid comparisons in a paper that does not
perform any comparisons.

While we make an effort to anonymize our survey and
prevent naming and shaming of the papers in our sample, we
do believe it is important to allow reproduction of this study. For
this reason, we include a full overview of all evaluated papers,
as well as our detailed reasoning behind the classification of all
borderline cases (without identifying the papers themselves),
in Appendix A.

B. Selected venues

We focused our analysis on the traditional “top 4” venues in
systems security: USENIX Security, Security & Privacy, CCS,
and NDSS. While there are many other lower-tier venues
publishing relevant systems security research, the “top 4”
venues are the most influential and de-facto set the standard for
benchmarking practices in the community. For our purposes,
we selected all the relevant papers from these venues in 2010
and 2015. The 2015 sample is useful to study recent trends.
The 2010 sample, in turn, allows us to examine the evolution
of benchmarking crimes over time and the impact of Heiser’s
original benchmarking crimes web page [1] in the systems
security community five years after its publication.

C. Selected papers

From the listed conferences, we selected systems defense
papers given the increasingly strong focus on practical defense
solutions in the community. When evaluating these solutions,
it is crucial to follow adequate benchmarking practices to
demonstrate that the proposed design point in the performance-
security space actually improves the state of the art.

Among many security defense papers, it is important to
clearly delimit which papers are included and which are not
to ensure reproducibility. We want to select a group of papers
for which runtime performance is of particular importance and
which are reasonably comparable among each other. For this
reason, we specifically focus on systems intended to defend
software against attacks at runtime in production settings. For
example we include sandboxing approaches, which can be
used in production to limit the damage an attacker can do, but
exclude taint tracking, which, in modern practical defenses, is
primarily used only for offline analysis. Moreover, we only
consider systems that should be expected to have a potential
runtime performance impact. We consider approaches that
modify existing software rather than building completely new
software, which allows overhead to be computed relative to
the original software baseline.

As expected, the defense papers selected according to our
criteria have a relevant presence in all the “top 4” venues. The
steep increase of papers in 2015 (34 vs. 16 in 2010) stands out,
confirming that the number of practical defense papers and
thus the relevance of benchmarking crimes in our community
is on the rise.

IV. SURVEY RESULTS

For each selected paper listed in Table II and each benchmark-
ing crime described in Section II, we have determined whether
the paper commits that particular benchmarking crime. Table III
provides the number of papers committing each crime split by
year of publication. In this table, we consider only whether the
paper commits the crime at least once (i.e., papers that commit
the same benchmarking crime multiple times are counted
once). In some cases, we were unable to determine whether
the methodology in the paper is sound because important
elements of the experiments or their analysis were not specified
with a sufficient level of detail. We have classified these



TABLE II
PAPERS SELECTED FOR INCLUSION IN OUR ANALYSIS, SORTED BY YEAR AND TITLE.

venue year authors title
USENIX Sec 2010 Sehr et al. Adapting Software Fault Isolation to Contemporary CPU [. . . ]
USENIX Sec 2010 Ter Louw et al. AdJail: Practical Enforcement of Confidentiality and Integrity [. . . ]
CCS 2010 Lu et al. BLADE: An Attack-Agnostic Approach for Preventing [. . . ]
USENIX Sec 2010 Watson et al. Capsicum: Practical Capabilities for UNIX
USENIX Sec 2010 Akritidis Cling: A Memory Allocator to Mitigate Dangling Pointers
S&P 2010 Meyerovich et al. ConScript: Specifying and Enforcing Fine-Grained Security [. . . ]
CCS 2010 Novark et al. DieHarder: Securing the Heap
S&P 2010 Wang HyperSafe: A Lightweight Approach to Provide Lifetime [. . . ]
CCS 2010 Azab et al. HyperSentry: Enabling Stealthy In-context Measurement of [. . . ]
NDSS 2010 Seo et al. InvisiType: Object-Oriented Security Policies
USENIX Sec 2010 Kim et al. Making Linux Protection Mechanisms Egalitarian with UserFS
S&P 2010 Devriese et al. Non-Interference Through Secure Multi-Execution
CCS 2010 Askarov et al. Predictive Black-box Mitigation of Timing Channels
NDSS 2010 Barth et al. Protecting Browsers from Extension Vulnerabilities
CCS 2010 Cappos et al. Retaining Sandbox Containment Despite Bugs in Privileged [. . . ]
USENIX Sec 2010 Djeric et al. Securing Script-Based Extensibility in Web Browsers
CCS 2015 Lu et al. ASLR-Guard: Stopping Address Space Leakage for Code Reuse [. . . ]
USENIX Sec 2015 Backes et al. Boxify: Full-fledged App Sandboxing for Stock Android
CCS 2015 Mashtizadeh et al. CCFI: Cryptographically Enforced Control Flow Integrity
USENIX Sec 2015 Araujo et al. Compiler-instrumented, Dynamic Secret-Redaction of Legacy [. . . ]
NDSS 2015 Song et al. Exploiting and Protecting Dynamic Code Generation
CCS 2015 Muthukumaran et al. FlowWatcher: Defending against Data Disclosure [. . . ]
NDSS 2015 Younan FreeSentry: protecting against use-after-free [. . . ]
CCS 2015 Tang et al. Heisenbyte: Thwarting Memory Disclosure Attacks using [. . . ]
S&P 2015 Wagner et al. High System-Code Security with Low Overhead
NDSS 2015 Davi et al. Isomeron: Code Randomization Resilient to (Just-In-Time) [. . . ]
CCS 2015 Chudnov et al. Inlined Information Flow Monitoring for JavaScript
CCS 2015 Crane et al. It’s a TRaP: Table Randomization and Protection against [. . . ]
S&P 2015 Zhang et al. Leave Me Alone: App-level Protection Against Runtime [. . . ]
USENIX Sec 2015 Feng et al. LinkDroid: Reducing Unregulated Aggregation of App Usage [. . . ]
NDSS 2015 Mohan er al. Opaque Control-Flow Integrity
CCS 2015 Niu et al. Per-Input Control-Flow Integrity
CCS 2015 Van der Veen et al. Practical Context-Sensitive CFI
NDSS 2015 Lee et al. Preventing Use-after-free with Dangling Pointers Nullification
S&P 2015 Guan et al. Protecting Private Keys against Memory Disclosure Attacks [. . . ]
USENIX Sec 2015 Rane et al. Raccoon: Closing Digital Side-Channels through Obfuscated [. . . ]
S&P 2015 Stephen et al. Readactor: Practical Code Randomization Resilient to Memory [. . . ]
NDSS 2015 Jang et al. SeCReT: Secure Channel between Rich Execution Environment [. . . ]
NDSS 2015 Chen et al. StackArmor: Comprehensive Protection From Stack-based [. . . ]
CCS 2015 Soni et al. The SICILIAN Defense: Signature-based Whitelisting of Web [. . . ]
NDSS 2015 Crane et al. Thwarting Cache Side-Channel Attacks Through Dynamic [. . . ]
CCS 2015 Liu et al. Thwarting Memory Disclosure with Efficient [. . . ]
CCS 2015 Bigelow et al. Timely Rerandomization for Mitigating Memory Disclosures
USENIX Sec 2015 Lee et al. Type Casting Verification: Stopping an Emerging Attack Vector
CCS 2015 Xu et al. UCognito: Private Browsing without Tears
S&P 2015 Schuster et al. VC3: Trustworthy Data Analytics in the Cloud using SGX
NDSS 2015 Prakash et al. vfGuard: Strict Protection for Virtual Function Calls in COTS [. . . ]
NDSS 2015 Zhang et al. VTint: Protecting Virtual Function Tables’ Integrity
NDSS 2015 Demetriou et al. What’s in Your Dongle and Bank Account? Mandatory and [. . . ]
USENIX Sec 2015 Weissbacher et al. ZigZag: Automatically Hardening Web Applications Against [. . . ]

paper/crime pairs as underspecified. It is important to note
that underspecification is problematic even if the underlying
methodology is sound as it hampers reproducibility and makes
it harder for later competitors to perform a fair comparison
with prior work.

Our results show that benchmarking crimes are a major
problem in both years we investigate. Over all pairs of a paper
and an applicable crime, the crime either applies or the paper
is underspecified with regard to the crime in 77 out of the 255
cases (30%) for 2010 and in 179 out of the 596 cases (30%) for
2015. However, not all crimes are equally common. The lack
of indication of significance of data and benchmark subsetting
without proper justification are by far the most widespread,

respectively affecting 80% and 69% of the applicable papers
we surveyed. None of the other crimes affect a majority of
the papers, but four additional ones affect 40% or more of the
papers to which they apply. This shows that several types of
benchmarking crimes are widespread even in peer-reviewed
papers at top venues.

There is no clear difference visible between the more recent
and the older papers, confirming that improper benchmarking
is a longstanding problem and that the original web page
on benchmarking crimes published in 2010 [1] did not have
a sufficient impact in the systems security community. The
fraction of paper/crime pairs that applies or is underspecified
is almost identical between the years (30% in 2010, 30% in



TABLE III
BENCHMARKING CRIMES SURVEY OVERVIEW.

2010 2015
appl. flawed undersp. appl. flawed undersp.

A1 Not evaluating potential perf. degradation 16 8 (50%) 0 (0%) 34 8 (24%) 1 (3%)
A2 Benchmark subsetting w/o proper justification 9 4 (44%) 0 (0%) 33 24 (73%) 1 (3%)
A3 Selective data set hiding deficiencies 16 1 (6%) 1 (6%) 32 6 (19%) 0 (0%)
B1 Microbenchmarks representing overall perf. 14 5 (36%) 0 (0%) 10 1 (10%) 0 (0%)
B2 Throughput degr. by x% ⇒ overhead is x% 13 6 (46%) 2 (15%) 30 10 (33%) 0 (0%)
B3 Creative overhead accounting 16 1 (6%) 1 (6%) 34 8 (24%) 1 (3%)
B4 No indication of significance of data 16 13 (81%) 0 (0%) 34 25 (74%) 2 (6%)
B5 Incorrect averaging across benchmark scores 5 0 (0%) 2 (40%) 24 12 (50%) 0 (0%)
C1 Benchmarking of simplified simulated system 16 2 (13%) 0 (0%) 34 3 (9%) 0 (0%)
C2 Inappropriate and misleading benchmarks 16 0 (0%) 1 (6%) 34 8 (24%) 1 (3%)
C3 Same dataset for calibration and validation 0 0 0 5 1 (20%) 3 (60%)
D1 No proper baseline 16 3 (19%) 0 (0%) 34 9 (26%) 5 (15%)
D2 Only evaluate against yourself 2 0 (0%) 0 (0%) 13 2 (15%) 0 (0%)
D3 Unfair benchmarking of competitors 2 0 (0%) 1 (50%) 13 4 (31%) 1 (8%)
E1 Not all contributions evaluated 16 6 (38%) 0 (0%) 34 0 (0%) 0 (0%)
E2 Only measure runtime overhead 16 6 (38%) 0 (0%) 34 17 (50%) 0 (0%)
E3 False positives/negatives not tested 5 3 (60%) 0 (0%) 14 3 (21%) 0 (0%)
E4 Elements of solution not tested incrementally 5 0 (0%) 0 (0%) 20 4 (20%) 0 (0%)
F1 Missing platform specification 16 4 (25%) 0 (0%) 34 7 (21%) 0 (0%)
F2 Missing software versions 16 5 (31%) 0 (0%) 34 7 (21%) 0 (0%)
F3 Subbenchmarks not listed 8 2 (25%) 0 (0%) 30 5 (17%) 0 (0%)
F4 Relative numbers only 16 0 (0%) 0 (0%) 32 0 (0%) 0 (0%)

Total 255 69 (27%) 8 (3%) 596 162 (27%) 15 (3%)

2015).
For most individual benchmarking crimes we cannot apply

the χ2-test directly because the expected values in some cells
are below 5 [16]. This is mostly due to the fact that there
were relatively few suitable papers published in 2010. In the
cases where the χ2-test does (almost) apply, the differences
between the years are always insignificant. This is the case
for benchmarking crimes A1, B2, and E2 (see Table III for
the numbering). In the other cases, we apply Yates’ correction
for continuity [16] and find significant differences only for
benchmarking crime E1 (p = 0.001). The number of papers in
which not all contributions are evaluated (crime E1) has gone
down significantly over our period of five years, which suggests
that either authors or reviewers have been more careful to
require a complete evaluation. Overall, however, our conclusion
must be that differences over time are minor and, in almost
all cases, statistically insignificant for our sample.

Based on our findings in the survey, we classified some
benchmarking crimes as high-impact to indicate that they
are almost always a major threat to the usefulness of the
evaluation and, with it, the scientific value of the paper. Table I
presents our classification. We discuss the concrete impact
for each individual crime in Section V. A typical example
of a high-impact crime is not evaluating all contributions, as
unverified claims cannot be considered true contributions. A
typical example of a crime that is not high-impact is using
the arithmetic mean to average overhead numbers; while the
impact is severe in specific cases, there are also papers where
the difference is small and therefore does not undermine the
value of the paper. While we recognize any such classification
is necessarily subjective, we did make an effort to reflect our
observations from the survey. We do believe that any high-

impact crime we listed should be a reason for reviewers to
demand the paper to be revised, while for the other crimes
this depends on the context. Overall, high-impact crimes are
somewhat less common than other crimes. In our sample we
found 86 high-impact crimes out of 346 applicable crime/paper
pairs (25%) and 167 other crimes out of 505 applicable pairs
(33%). A χ2 test shows this difference to be significant with
p < 0.0005.

Figure 1 shows a histogram of the number of benchmarking
crimes (including underspecification) per paper. It is notable
that from our sample of 50 papers, we found only a single paper
without any benchmarking crimes. Crimes are fairly evenly
spread between papers, with many papers being very close to
the average number of benchmarking crimes per paper (5.0 for
all crimes, 1.7 for high-impact crimes). As such, the results
would seem to suggest that the problem of benchmarking crimes
is not an issue of a few authors and reviewers being particularly
careless (or malicious), but rather a community-wide lack of
awareness of or attention to these problems. This is further
corroborated by the fact that many prevalent benchmarking
crimes require very little effort to fix, as detailed later.

For completeness and to improve transparency, we have
included a detailed discussion and justification of the way we
classified the papers in Appendix A.

V. IMPACT

In this section, we consider the impact of the various
benchmarking crimes based on our findings from the survey
we conducted.

A. Selective benchmarking

a) A1 - Not evaluating potential performance degradation:
We found two major groups of papers that commit this crime:
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those where overhead figures are missing entirely and those
that do not reflect all potential slowdown. In both cases,
this crime makes it difficult (if not impossible) to assess
the practicality of the presented solution and improvements
over the state of the art. Moreover, papers that present
inappropriate performance measurements may even hamper
scientific progress because they prevent competing systems
that perform poorly on these inappropriate measures or not
as efficiently on appropriate measures from being published.
Even worse, they may encourage more benchmarking crimes
in future systems, as authors struggle to beat overly optimistic
performance figures. As such, we consider this crime high-
impact.

b) A2 - Benchmark subsetting without proper justification:
We found that many papers that use standardized benchmarking
suites leave out some subbenchmarks. Based on the particular
benchmarks that are often left out, it is very likely that this
will result in an underestimate of performance in practice
(see Appendix A for details). We conclude that leaving out
subbenchmarks can have a major impact on the soundness of
measurements as well as the comparability between competing
systems and therefore requires a proper and explicit justification.
Moreover, if different papers use subsets, the overall slowdown
is no longer suitable for comparing performance. Fortunately,
many of these problems can be solved simply by explicitly
acknowledging that a paper uses a subset of the available
subbenchmarks and detailing the reasoning behind this choice.
Despite the possibly large impact we do not consider this crime
to be high-impact as there are also cases where the particular
subbenchmarks left out do not seem to introduce a bias.

c) A3 - Selective data set hiding deficiencies: We found
two types of occurrences of this benchmarking crime, with
different impacts. Papers with important missing variables
make it hard to estimate how the solution would behave in
practical situations and may hide limitations of the solution’s
performance. Papers which use variables with a restricted
range might result in incorrect extrapolation and again hide
limitations.

B. Improper handling of benchmark results

a) B1 - Microbenchmarks representing overall perfor-
mance: This crime came in two flavors in our survey: papers
which leave out macrobenchmarks altogether and one paper
that includes both but bases performance claims on microbench-
marks. In both cases this is inappropriate as microbenchmarks
are a poor indicator for real-world performance, resulting in
misleading claims. In the former case it is impossible to
determine how strong this impact is, but in the latter case
the paper suggested a runtime performance that is not realistic
in practice.

b) B2 - Throughput degraded by x% ⇒ overhead is x%:
Based on our survey, we believe that all instances of this
benchmarking crime are likely to result in an underestimate of
performance overhead, although without the necessary data it
is impossible to determine by how much. Because this crime
is likely to affect the soundness of performance measurements
in all cases, we consider it to be a high-impact benchmarking
crime.

c) B3 - Creative overhead accounting: It is hard to make
a general statement about the impact of creative overhead
accounting as this benchmarking crime is committed in many
different ways. In some papers this leads to unsound results,
some of which systematic underestimations of overhead, while
in other cases the conclusions are misleading. See Appendix A
for details about the specific issues we found.

d) B4 - No indication of significance of data: Some
indication of variation is important because it is an indication
of how reliable the numbers are and whether, given the
measurement inaccuracy, the measured differences are actually
meaningful. However, we expect the overall impact of this
crime to be relatively mild for papers where researchers set
up their experiments correctly.

e) B5 - Incorrect averaging across benchmark scores: To
determine the impact of incorrect averaging, we computed
the geometric mean based on tables or graphs presenting
the subbenchmark results for papers that should have used it.
Because there is some inaccuracy in deriving numbers from the
graphs, we compared the geometric mean with the arithmetic
mean derived from the same numbers rather than the arithmetic
mean presented in the paper. We were able to do this for eight
papers. For four out of the eight papers, the difference between
the means is less than 1% and as such the impact of using
the incorrect mean is negligible. For the other four papers, the
arithmetic mean is higher than the geometric mean, so they
overestimate overall overhead. In the worst case we found,
the arithmetic mean is more than twice the geometric mean,
while the remainder overestimates overhead by 2% to 16%.
The relative difference between the means is largest in cases
where the overhead is large.

C. Using the wrong benchmarks

a) C1 - Benchmarking of simplified simulated system:
For all papers that committed this benchmarking crime,
benchmarking a simplified system threatens the accuracy of
the reported numbers and makes it harder to compare against



competing systems that were evaluated under more realistic
conditions. Given that this issue always yields potentially
unsound results, we classified it as high-impact.

b) C2 - Inappropriate and misleading benchmarks: In
all cases we found, the use of inappropriate and misleading
benchmarks is likely to have a major impact on the validity of
the results. This crime always results in either an underestimate
of overhead or an overestimate of effectiveness in the papers
in our survey. For this reason, we consider this a high-impact
crime.

c) C3: same dataset for calibration and validation: While
we believe this is a very serious crime that can have a major
impact, we have found too few papers that it applies to in our
sample to meaningfully judge its impact in practice. However,
we believe that as profile-guiding and machine learning become
more popular, this may become a major issue if authors and
reviewers do not pay sufficient attention to it.

D. Improper comparison of benchmarking results

a) D1 - No proper baseline: With regard to the impact,
we can distinguish two different cases for this crime: papers
that have an incorrect baseline and papers that do not present
one at all. In our sample, the former group is always likely
to either underestimate overhead or overestimate effectiveness.
This threatens both the soundness and comparability of the
results. Absolute performance numbers with no baseline to
compare against cannot be compared between systems and
therefore provide little meaningful information. Since we found
that the lack of a proper baseline was a serious problem in all
cases, we consider this crime high-impact.

b) D2 - Only evaluate against yourself: The impact for
this crime in practice is hard to assess because it would require
gathering the state of the art at the time the paper was submitted
for publication and ensuring their performance numbers are
actually comparable. This process would be highly error-prone
except when done by an expert on the type of system the paper
is about.

c) D3 - Unfair benchmarking of competitors: In all cases
of this benchmarking crime that we found, the reader is misled
into believing the presented system performs better compared
to the state of the art than it actually does. As such, we consider
this crime to be high-impact.

E. Benchmarking omissions

a) E1 - Not all contributions evaluated: The impact of
not evaluating claimed contributions is that the design may not
actually work as advertised and future solutions that do achieve
such goals may have a much harder time getting published,
holding back research progress. Given that this risk is present
in all cases we found, this crime is labeled as high-impact.

b) E2 - Only measure runtime overhead: Papers which do
not measure important sources of overhead other than runtime
are incomplete. However, the impact of this incompleteness
differs from case to case. If, for example, memory overhead
can theoretically be assumed to be minor and similar to prior
work, the impact is limited. If, on the other hand, there is

reason to believe the paper incurs significant memory overhead
yet does not measure it, this could be a problem for later papers
that improve on this overhead.

c) E3 - False positives/negatives not tested: The lack of
testing for false positives or negatives is potentially a major
issue because if the number of these is substantial it could
greatly affect the practicality or effectiveness of the approach.
Without this information, it may be impossible for a reader to
properly assess how valuable the contributions of the paper are.
That said, in practice the impact depends on the type of system
presented. In some cases false positives may crash the system
while in others they merely result in performance degradation.

d) E4 - Elements of solution not tested incrementally: If
elements of the presented system are not tested incrementally, it
is unclear whether all parts of the approach are indeed necessary
to implement a system that is as effective and efficient and
therefore it is also unclear whether all the components are
actually contributions.

F. Missing information

a) F1 - Missing platform specification: In all cases, this
benchmarking crime makes reproducing the exact results based
on the contents of the paper impossible and it may make the
results less comparable. However, it does not affect the validity
of the results.

b) F2 - Missing software versions: This benchmarking
crime hampers reproducibility for all papers that commit it,
as the software about which information is missing should be
expected to have an impact on performance.

c) F3 - Subbenchmarks not listed: The impact of this
benchmarking crime is somewhat hard to estimate. Although
the lack of important information always affects completeness
of the paper, it may even result in measurements that are
unsound and misleading. This is the case, for example, if the
omission obscures the fact that the results are greatly affected
by outliers or that only a subset of the benchmarking suite is
run. The latter also makes the results incomparable. While it is
impossible to tell whether this is the case due to the missing
information, our results for crime A2 suggest the practice of
unjustified subsetting is widespread. Because of the wide range
of possible consequences of this crime it seems likely there is
some relevant impact for almost every paper that commits this
crime and, as such, we consider it high-impact.

d) F4 - Relative overheads only: We have not found this
crime in its worst form, so we cannot determine the practical
impact. As for leaving out an absolute baseline, we have
found one case of D1 (no proper baseline) where the presented
absolute baseline was clearly inconsistent with the reference
baseline for the benchmark. This means the measurement was
performed incorrectly, something that would not have been
clear without the absolute baseline. As such we believe that
the mild version of this crime does impact some cases.

VI. RECOMMENDATIONS

While our analysis shows that benchmarking crimes are very
common and potentially have a major impact on the quality of



published research in systems security, it also reveals that the
quality of published research could be greatly improved with
little effort by paying extra attention to the most important
crimes.

The primary focus should be on preventing common high-
impact benchmarking crimes. The most common high-impact
benchmarking crimes are A1 (not evaluating potential per-
formance degradation), B2 (throughput degraded by x% ⇒
overhead is x%), and D1 (no proper baseline). We believe
authors should consider these crimes early on in the research
process to ensure they set up the right benchmarks.

To address A1, authors should consider which performance
dimensions the solution could possibly affect (for example,
CPU, concurrency, memory, IO, system calls, . . . ) and include
at least one appropriate benchmark for each dimension. Authors
can address B2 by ensuring the system is always fully loaded
while benchmarking. Typically, this is simply a matter of setting
up a sufficient number of concurrent operations on workloads
that would otherwise be bound by IO latencies. If this is not
feasible, an alternative is to present the CPU load on both the
baseline and the experimental setup in the paper. Benchmarking
crime D1 can be addressed by considering the way the system
protected by the provided solution would be used in a setting
where the presented solution is not available. Often, this means
avoiding any non-default compiler flags or emulation techniques
that would slow down the baseline. Moreover, authors should
always specify what the baseline is.

A number of common benchmarking crimes is not neces-
sarily high-impact, but very easy to address and we believe
every author should go through the list to avoid them. In
particular, crimes B4 (no indication of significance of data),
B5 (incorrect averaging across benchmark scores), F2 (missing
software versions), and F1 (missing platform specification) can
be addressed by simply adding readily available data to the
paper. Yet, each of these crimes is committed by more than 10
papers in the sample. Although F4 (relative overheads only)
is not committed by the papers in our survey in the worst
form, many papers can still be improved by adding an absolute
baseline. Addressing each of these issues should take almost
no time (and space), yet it would greatly improve many of the
papers in our survey.

One more benchmarking crime is neither high-impact nor
trivial to address, but it is so common that we feel it deserves
more attention since it does have a major overall impact
on the quality of research in our field. A2 (benchmark
subsetting without proper justification) does not always have
a large impact, but it may result in overly optimistic (or
completely incorrect) overall overheads. Authors should run
all subbenchmarks that can reasonably be run and be explicit
about reasons for omitting the others. Moreover, they should
not present the overall result as if it is a complete result that
can be compared with other papers using the same benchmarks.

While we hope authors avoid all the benchmarking crimes
discussed in this paper, we believe that following the recom-
mendations here would at least be a first step to greatly improve
the research quality in systems security with relatively little

effort. Had all the authors followed these simple rules, it would
almost triple the number of papers without any high-impact
crimes committed or underspecified (from 8 to 22 papers),
greatly increase the number of papers that commit no crimes
at all (from 1 to 9 papers), and reduce the average number
of crimes per paper by almost two thirds (4.6 to 1.7 for all
crimes, 1.5 to 0.6 for high-profile crimes).

VII. LIMITATIONS

Although we have performed this survey as carefully as
possible, there are a number of limitations on its applicability
that are hard to avoid.

First, we do not claim that either our list of benchmarking
crimes or our dimensions of evaluation quality are complete.
Similarly, we do not seek comparison with other systems fields,
as the distribution of crimes is inherently field-specific. There
are many more benchmarking crimes possible in the broader
computer systems field. The ones we examined are merely some
of the most important issues that stand out for being common
problems in systems security papers, especially defenses.

Second, in some cases, whether a particular benchmarking
crime has been committed or even whether a benchmarking
crime applies to a paper is subjective. Other people could reach
somewhat different conclusions, although we did make an
effort to be lenient in borderline cases so as to be conservative
in our analysis. We also discussed borderline cases among
ourselves and always consulted an independent reader as
necessary. Whenever possible, we explicitly discuss these cases
in Section IV. We also cannot rule out that, despite the care
we put into our analysis, there can be mistakes or oversights.
Hopefully, this only concerns a small fraction of the paper/crime
pairs.

A third limitation is the fact that we cannot be transparent
about which papers commit which crimes. While this would
be better for reproducibility and allowing others to verify
our work, we believe that naming and shaming would be
counterproductive as in our opinion the problem is not with
individuals but rather the community as a whole. Moreover,
we believe it would not be appropriate to create what amounts
to a ranking of individuals or institutions given that not all
crimes are equally severe and the lack of the specific crimes
we consider does not imply that there are no other flaws in
the paper. In avoiding this, we follow common practice in
papers that perform similar surveys [12], [13], [14], [15]. To
compensate, we added a detailed discussion in Appendix A
that should allow others to perform the survey themselves
according to the same criteria.

Fourth, popular research topics have changed over time,
which makes a direct comparison between percentages in 2010
and 2015 hard. Different types of papers are subject to different
types of benchmarking crimes. All we can and did do is show
that benchmarking crimes were a problem at both points in
time.

Fifth, for studies such as the one presented in this paper
a larger sample size is always desirable. Since we surveyed
all eligible papers in all tier-1 security venues for 2010 and



2015, the most logical way to increase the sample size would
be to consider more years. However, given that we found
minimal differences between the two years currently surveyed,
we believe that a larger sample over recent years would not
yield significantly different results.

Finally, published papers are not necessarily a representative
sample of all papers, especially at the top conferences. One
would hope the review process weeds out the papers which
commit the worst benchmarking crimes, but one cannot rule
out that benchmarking crimes make acceptance more likely if
they are not too obvious and appear to improve the presented
results. Either possibility creates a bias when applying our
survey results to papers submitted for review.

VIII. RELATED WORK

a) Benchmarking in systems security: While there have
been several surveys to determine whether computer science
papers perform measurements in appropriate ways [17], [13],
[18], [19], [14], [20], [15], [12], to the best of our knowledge
none of them is specific to benchmarking in systems security.
The most closely related work is Heiser’s original web page
about benchmarking crimes [1], which serves as an inspiration
for this paper and forms the basis for our benchmarking
requirements. Compared to Heiser’s web page, we propose
an extended classification and present a systematic analysis
to show that benchmarking crimes are indeed an increasingly
relevant problem in peer-reviewed defense papers accepted
at top systems security venues. We also formulate concrete
recommendations for authors in the security community.

b) Surveys considering evaluation quality: We will now
consider a number of papers that have performed surveys to
determine how well papers in various fields evaluate their
work. Kuz et al. [18] survey the use of benchmarking for
multi-core systems to propose a better approach, but only
include six papers in their survey. Skadron et al. [20] survey a
number of papers in computer architecture to determine their
topics and performance evaluation techniques adopted. They
provide an overview and discussion of the various techniques,
of which benchmarking is done, but do not go in depth about
incorrect benchmarking practices. Kurkowski et al. [13] survey
papers using simulation techniques for mobile ad-hoc networks
(MANET) and identify common pitfalls. Krishnamurty and
Willinger [21] discuss a list of common pitfalls in networking
measurements using illustrative examples of flaws, but do not
perform a systematic survey. Mogul [19] surveys papers to
determine what types of benchmarks are commonly used in
operating systems papers. However, it considers only whether
those benchmarks themselves are realistic, not whether they
are used appropriately. Traeger and Zadok [14] survey the use
of benchmarks in file systems and storage research. However,
they limit themselves to setting up the benchmarks and do
not consider whether the results are handled appropriately.
Mytkowicz [15] presents a survey to determine whether
measurement error is considered correctly in computer systems
experiments and provides suggestions on how to improve this.
Aviv and Haeberlen [17] survey botnet research, but focus

on correctness evaluations rather than performance. Collberg
et al. [22] survey a number of computer systems papers to
examine their repeatability, but focus on being able to locate,
build, and run the systems prototypes. No attempt is made
to reproduce the experimental results detailed in the paper
or generally assess the quality of their benchmarking results.
Rossow et al. [12] study the methodological rigor and prudence
in papers using malware execution. While their approach to
identifying flaws and surveying is similar to ours, the pitfalls
they identify are quite different because they focus on malware
analysis rather than on performance. While these papers have
used a survey of published papers in ways similar to ours, none
of them are in the field of systems security and none considers
all the benchmarking flaws we do.

c) Benchmarking advice: Some other papers also provide
benchmarking advice but do so without a systematic survey,
instead using examples, and their own tests to verify the
identified pitfalls result in questionable results. Schwarzkopf
et al. [23] identify benchmarking problems in cloud research
this way and Seltzer et al. [24] discuss problems with using
standardized benchmarks in file systems research. While these
studies demonstrate important benchmarking problems, the
lack of a survey means they cannot determine the impact these
potential problems have on the research literature in practice.

IX. CONCLUSION

As a security community, we struggle to preserve the integrity
of everyday systems from increasingly dangerous security
threats. Regrettably, much less attention has been devoted
to preserve the integrity of systems security research results
themselves from accidental “threats”. Benchmarking crimes,
in particular, have been largely neglected in systems security
research, as its core focus has been traditionally on security
rather than performance. As the focus of the community
is increasingly shifting to devising practical, low-overhead
defenses, however, benchmarking crimes have grown extremely
relevant and are now the elephant in the room.

In this paper, we assessed the magnitude of the problem by
surveying 50 defense papers in top systems security venues.
Our results show that benchmarking crimes are widespread
and, while their prevalence has not changed over time, their
impact is increasingly worrisome. Faults in benchmarking can
hamper comparability and reproducibility at best, or “poison”
an entire research area in the worst case. Encouragingly, we
found that many common benchmarking crimes can be easily
prevented and we formulated concrete recommendations for
authors. We hope our research will raise awareness of this threat
and encourage adequate benchmarking practices to improve
the quality of the scientific process in our community.

APPENDIX

In this appendix we discuss the conclusions from our survey
for the individual benchmarking crimes introduced in Section II.
In each subsection, we elaborate on one group of benchmarking
crimes. Where appropriate we use examples from the papers
we surveyed, but to keep the discussion anonymous with



regard to the papers in our sample, we either abstract away
or change some of the details. We also consider what impact
the benchmarking crimes we found are likely to have on the
results.

A. Selective benchmarking

Benchmarking crimes related to selective benchmarking are
very common. 40 out of the 50 papers in our sample (80%)
commit at least one of the three crimes in this group and
one additional paper does not provide enough information to
determine whether this element is performed correctly. This
is largely due to the most common benchmarking crime in
this group, selecting a subset of a benchmarking suite without
proper justification (A2).

A1 - Not evaluating potential performance degradation: Not
evaluating potential performance degradation is a relatively
common benchmarking crime, affecting 16 out of the 50
papers (32%) it applies to, and being underspecified in one
more case. There are two main manifestations of this crime.
The most obvious case are those papers which provide no
meaningful measurement of runtime performance for some
or all of the systems presented. We found this to be the
case for seven papers in our sample. A more subtle case are
those papers that do present runtime performance numbers,
but where the benchmarks used to measure those numbers
are inappropriate for the presented system, not reflecting an
important element of its potential performance impact. This
occurs for eight papers in our sample. Examples include not
using a memory-intensive benchmark for systems likely to
affect memory accesses, using a single-threaded workload for
systems that benefit from additional cores, using benchmarks
that do not stress instrumented calls, or omitting start-up/warm-
up periods that might be affected by the system. While these
papers do present runtime performance numbers, they are not
meaningful for comparisons to similar systems.

A2 - Benchmark subsetting without proper justification:
This is the most common benchmarking crime in this group,
affecting 28 out of the 42 papers (67%) it applies to and
is underspecified in one more case. The most common
benchmarking setup in our sample is the use of the SPEC
CPU [10] benchmarks, which is the case for 18 out of 50
papers (36%). These CPU-intensive benchmarks are appropriate
to test single-threaded performance of systems that insert
instrumentation which requires the CPU and the memory to
do more work to run the program.

However, many papers using SPEC CPU benchmarks only
run a subset of the benchmarks. The papers from our sample
show that overhead often differs greatly between the programs
that make up the SPEC CPU benchmarking suites, with
the percentage overhead often showing at least an order of
magnitude difference between the best and the worst case. In
particular, perlbench, xalancbmk, and povray often stand out
for large overhead numbers. If any of these benchmarks is
omitted, it can have a large impact on the overall overhead
computed for SPEC. However, there is a substantial difference
between the different systems in which benchmarks stress them

most, so even if other benchmarks are left out, there can be a
large and unpredictable impact on the overall result.

We find that leaving out SPEC subbenchmarks for legitimate
reasons is common and we have been lenient in these cases even
though any overall score from an incomplete benchmarking
suite is somewhat misleading. All papers in our sample that use
SPEC leave out the benchmarks written in the Fortran language,
instead using only the C and/or C++ ones. We consider this
to be justified because the prototypes built to test the designs
in these papers only support C and/or C++. Moreover, it does
not affect comparability because this practice is widespread
in the systems security literature. Another justified case of
subsetting is the use of only C++ benchmarks for systems
that do not apply to programs that are purely written in C.
Given that these systems would not be applied to C programs
in practice, their overhead on C has little meaning for their
practicality. In three cases, a subset of the benchmarks was
omitted because the system was based on a framework which
does not support them. We consider this acceptable if it is
clearly indicated because it is hard to avoid incompatibilities
in third-party software. Another case is the use of a subset in
a detailed evaluation after presenting overall numbers for the
full set. It is sensible to limit such an in-depth investigation to
the most interesting cases, generally those with most overhead,
and it provides more insight in which cases are hard for the
system to deal with without affecting comparability. We have
not marked any of the cases described in this paragraph as a
benchmarking crime because they are properly justified.

Although there can be legitimate reasons to select a subset
of benchmarks, we also found a large number of papers that
did not properly justify their subbenchmark selection. Four
papers leave out a number of SPEC subbenchmarks seemingly
arbitrarily without even mentioning explicitly that they were
left out. This is a serious omission because these papers present
an overall overhead number that does not actually represent the
entire benchmarking suite, misleading readers into believing
that this number is directly comparable with those measured
for other solutions. While these subbenchmarks may have
been left out for legitimate reasons—for example they might
not contain the type of memory safety bugs that the system
defends against—it is crucial to explain why these particular
benchmarks cannot be run with the system. This not only
justifies the lack of comparable numbers, but also indicates the
effectiveness or the limits of the solution and helps competitors
compare their solutions on these issues as well.

A second problem we found is leaving out the floating
point benchmarks of SPEC CPU without justification, which
is a problem in four of the papers in the sample. While
this is not a random subset of SPEC CPU, it is problematic
because there are relatively many C++ benchmarks in the
floating point benchmarks. C++ programs tend to allocate
relatively many small heap objects, which stresses allocator
instrumentation, and contain relatively many virtual function
calls, which stresses indirect branch instrumentation. This
means that for certain classes of defenses, leaving out the
floating-point programs is likely to result in underestimating



performance overhead.
Another problem we found in two papers that use SPEC is

mixing subbenchmarks from two different versions, namely
SPEC CPU2000 and CPU2006. While these benchmarking
suites have some programs in common, they use different
workloads and their results are therefore not interchangeable.
The benchmarking suites are designed to be used as a balanced
whole and mixing versions results in unpredictable deviations
in the overall results, making those numbers incomparable.

One final problem that we found among the papers using
SPEC CPU is the use of an incorrect justification for leaving out
subbenchmarks. In particular, we found claims that some of the
subbenchmarks do not perform some instrumented operations
while in reality they do. Those subbenchmarks have thus been
omitted in error, although the impact here is less prominent
than cases where benchmarks have been omitted arbitrarily
since at least the incompleteness of the benchmarking suite is
clearly acknowledged. Overall, we found a substantial number
of cases where papers using SPEC CPU improperly select a
subset of the benchmarks and it seems plausible that this has
a substantial impact on the comparability of the results.

Not all papers use SPEC CPU to evaluate performance,
although some do use other standard benchmarking suites that
test specific types of systems, for example to evaluate the
performance of operating systems [25], [26] or browsers [27],
[28]. We found four such papers that use a subset of benchmarks
without justification. The impact in these cases is similar
to those where we found a subset of SPEC CPU is used.
In one additional case, a paper modified subbenchmarks
without stating why this was necessary. Like subsetting through
selection, this practice has a strong impact on comparability.

Papers that do not use a standard benchmarking suite
generally use a selection of supported programs and workloads
for them to measure performance. This is in itself acceptable as
there is not always a suitable benchmarking suite available. A
common example is the use of ApacheBench [29] to measure
the performance of instrumented server programs. However,
even in these cases, it is important to justify selection and avoid
misrepresentation of the results. We found five papers that
presented a number of supported programs, but then selected
an unjustified subset of these programs for benchmarking. This
is problematic in cases where competing solutions do include
them, leaving the reader wondering which solution would be
faster, had the evaluation been more complete.

Another issue, which we found in one paper, is computing
an overall overhead figure over a number of self-selected
programs. While this may be useful to informally summarize
overhead trends, it cannot be used as a reference performance
figure because such a figure strongly depends on the selection
of the programs. Instead, it would be more appropriate to
provide a range of overheads or always mention each program
individually.

Finally, when defending against vulnerabilities, it is impor-
tant to ensure that the defense can prevent attacks in practice.
For this reason, many papers use vulnerabilities registered in the
CVE database [30]. While this is an excellent way to assess the

effectiveness of defenses, authors generally select only a small
number of CVEs to evaluate their solution with. While this is
understandable given the often heroic effort, it is important to
ensure that these CVE entries are representative. We found five
papers that lack a systematic selection of vulnerabilities. This
means there is a risk of a biased selection, masking limitations
in the effectiveness of the solution being evaluated.

A3 - Selective data set hiding deficiencies: Problems with
selective data sets are not as common as the other benchmarking
crimes in this group, with a total of 7 out of 48 applicable papers
(15%) either committing the crime or being underspecified. We
found four papers where the impact of an important variable
is not considered in workload selection. An example is not
considering different levels of concurrency when concurrency
is expected to influence performance. There are two papers
in our sample where graphs suggest that performance might
reach a threshold but the range of the x-axis is too limited to
see it.

B. Improper handling of benchmark results

Improper handling of benchmark results is another very
common group of benchmarking crimes. 44 out of the 50
papers in our sample (88%) commit at least one of the five
crimes in this group and two additional papers do not provide
enough information. However, it should be noted that this is
mostly due to lack of indication of significance (B4) being
very common in our sample.

B1 - Microbenchmarks representing overall performance:
Compared to the other benchmarking crimes, B1 stands out for
being applicable to relatively few papers because many papers
do not present any microbenchmarks at all. It is noteworthy
that the use of microbenchmarks was much more common in
2010 (14 out of 16 papers, 88%) than in 2015 (10 out of 34
papers, 29%). Overall, this crime is committed in 6 out of 24
papers (25%) and was more common in 2010 even relative to
the larger number of applicable cases. In five cases, papers only
present microbenchmarks and base their performance claims
on these microbenchmarks. While there is one more paper
that presents only microbenchmarks, we have not labelled it
as a crime since it only affects rare operations that cannot
realistically affect performance overhead on macrobenchmarks;
we consider it appropriate in cases where microbenchmarks can
reveal overhead that macrobenchmarks would not. Finally, one
paper presents both microbenchmarks and macrobenchmarks
but bases its performance claims on the microbenchmarks
even though the macrobenchmarks show substantially more
overhead.

B2 - Throughput degraded by x% ⇒ overhead is x%:
For most papers in our sample, this crime comes down to not
ensuring that the benchmark fully loads the CPU(s). This crime
applies to 43 out of 50 papers (86%), with the remainder not
providing benchmarking results that are intended to measure
overhead. Out of these 43 papers, 16 commit the crime (37%)
and 2 are underspecified (5%). Most papers avoid this crime
by either using a benchmarking suite known to be CPU-bound
or by ensuring that a manually constructed benchmark fully



loads the CPU, for example by running multiple concurrent
threads until all cores are fully loaded. Fifteen papers commit
this crime by using a benchmark that is not clearly CPU-bound
without taking precautions to ensure the CPU is fully loaded,
while one other paper computes overhead from latency rather
than from throughput. In both cases, there is a substantial risk
that the actual overhead is underestimated because the overhead
computation does not consider the extra CPU load introduced
by the protection mechanism being evaluated.

B3 - Creative overhead accounting: This crime is committed
in 9 out of 50 papers (18%) and it is impossible to determine
whether creative overhead accounting has been used in 2
more papers (4%). While this type of benchmarking crime
is relatively uncommon, it is very diverse. The most common
variety is to use magic numbers that are not supported by
experiments in overhead computations. In these cases, the
results cannot be considered methodologically sound. Another
case of creative overhead accounting is not considering some
required instrumentations in the overhead numbers, for example
if the approach relies on the use of non-default compiler passes.
This results in an underestimation of the overhead that a user
would experience in practice. Another instance we found is to
use percentage points to compare overhead. For example, if
solution A incurs 10% overhead and solution B incurs 20%
overhead then B has 100% more overhead than A, not 10%.
This misleads the reader into thinking that the differences are
smaller than they really are. One final issue we found is to
mark overhead as negligible because it is small compared to
the standard deviation. While this logic holds if the standard
deviation is reasonable, a large standard deviation is more
likely to mean that the experiment is set up incorrectly and
the results are unreliable. The proper reaction would be to
improve the experiment to reduce measurement error or, if this
is not feasible, provide a confidence interval on the overhead.
There is one more common issue with overhead computation,
namely computing an overall overhead when a number of
subbenchmarks have substantial negative overhead. We did
not mark it as a crime as it can be a legitimate effect of
random measurement errors, but we do want to raise the issue
that it is important to explain why overhead is negative for
systems that should only decrease performance. Large negative
overheads can be an indication that the experiment is set up
incorrectly and authors should make an attempt to set up the
experiment in such a way as to reduce measurement errors.
Mytkowicz et al. [15] provide guidelines on how to achieve
this. If negative overhead is simply ignored, it may result
in inaccurate performance numbers which are unsuitable for
comparison with competing solutions. In summary, creative
overhead accounting is a broad group of benchmarking crimes
which can often result in misleading and inaccurate results.

B4 - No indication of significance of data: The lack of
an indication of significance is a very widespread problem,
occurring in 38 out of 50 papers (76%). Two more papers
contain qualitative significance statements without putting
a concrete upper bound on observed variations. We expect
papers that perform measurements that are subject to random

fluctuations, such as runtimes or throughput numbers, to
perform multiple runs to reduce standard errors and to allow
the standard deviation to be measured. Papers should present
the standard deviation or level of significance for such numbers.
We also accepted a general statement that ensures that variation
is at a very low level, such as “all standard deviations are below
1%”.

B5 - Incorrect averaging across benchmark scores: We
found that 12 out of 29 papers (41%) incorrectly use the
arithmetic mean to average overhead numbers. For two more
papers, there was not enough information to decide whether the
overall score was computed correctly. This crime only applies
to 29 out of the 50 papers (58%) because the remainder either
does not present overhead numbers or does not compute an
overall score. One additional paper used the arithmetic mean
to average absolute overhead numbers, which is acceptable
and we did not count this as a crime. Another paper presents
overhead as a range, which is also acceptable to obtain an
overall indication of overhead.

C. Using the wrong benchmarks

Using the wrong benchmarks is a relatively rare group of
benchmarking crimes, with 14 out of the 50 papers in our
sample (28%) committing at least one of the three crimes in
this group and 5 additional papers (10%) not providing enough
information. However, the crimes in this group can have a
major impact on the validity of the benchmarking results.

C1 - Benchmarking of simplified simulated system: We found
5 out of 50 papers (10%) benchmarking a simplified simulated
system. We did not count this as a crime in cases where the
use of a simplified system was explicitly acknowledged and
there was no practical way to avoid or compensate for it, for
example because the system relies on hardware that is not
yet available. In two of the papers that commit this crime
we found that performance was measured in a virtualized
environment without need. Virtualization does not incur a
uniform slowdown, but instead slows down operations that
require an exit to the hypervisor much more than unprivileged
operations. As a consequence, numbers measured in a virtual
machine cannot be meaningfully translated to numbers that
would be measured on the bare metal. Three other papers
omitted some operations that would need to be performed if
the system were used in practice. Two of these cases were
unjustified, while the third had a good reason but did not
consider the impact on performance.

C2 - Inappropriate and misleading benchmarks: The use
of inappropriate and misleading benchmarks is moderately
common, with 8 out of 50 applicable papers (16%) committing
the crime and 2 more being underspecified. Although all the
instances we found are in papers published in 2015, the χ2-
test reveals that this can reasonably be the case due to mere
chance (p = 0.198). Papers that make this mistake commonly
also have a problem with not evaluating potential performance
degradation (benchmarking crime A1) because inappropriate
benchmarks often do not reveal important cases where the
system incurs overhead. The difference between the two is



that A1 applies if an important type of benchmark is missing
even if the included benchmarks are appropriate, while A3 can
apply even if some of the other benchmarks cover the relevant
performance dimensions.

A typical example in the papers we surveyed includes the
use of IO-bound workloads in systems that introduce extra
CPU load. This results in benchmark results that suggest
unrealistically low overhead. This poses a major problem for
later work, which is now expected to compare its performance
against the overly optimistic numbers measured before. Another
situation is the case where single-threaded single-process
benchmarks are used to test systems where concurrency is
important, for example because they affect multiple cores. Like
in the previous case, the benchmark ignores an important part
of the overhead.

One final problem is the use of performance benchmarks in
cases where high coverage is important, for example to detect
false positives. Since performance benchmarks are typically
repetitive and do not test error paths, they will not reach high
coverage, revealing fewer false positives.

C3 - Same dataset for calibration and validation: Unforun-
tately, this crime applies only to very few papers in our sample
(5 out of 50, 10%). Out of these five, one papers commits the
crime and three are underspecified.

D. Improper comparison of benchmarking results

16 out of the 50 papers in our sample (32%) commit at
least one of the three crimes that have to do with improper
comparison of benchmarking results. In addition, 6 more papers
are underspecified with regards to the criteria in this group.

D1 - No proper baseline: This benchmarking crime stands
out for having most papers by far that are underspecified.
There were 5 cases out of 50 (10%) where it was neither clear
from the text of the paper nor implicit from the context what
baseline was used. This is an important problem, not only
because it means a reader cannot verify whether the baseline is
reasonable but also because it hampers reproducibility. While
the correct baseline should often be obvious, it is always good
to be explicit about it.

The benchmarking crime of not using a proper baseline was
committed in 12 out of 50 papers (24%). Five papers did not
use a baseline at all, presenting only raw numbers that do not
give a good indication of overhead. Another five papers used
a nonstandard configuration for the baseline, such as running
on top of an instrumentation framework or using nonstandard
compiler options. In four of these papers, this likely means
that performance overhead is underestimated, while in a fifth
the baseline was easier to attack than a standard system would
be.

One more paper used a simplification for the experimental
system without applying the same treatment to the baseline.
A more appropriate approach would be to measure both and
use whichever approach is faster as the baseline. Finally, we
found a paper where a memory baseline is off by more than
an order of magnitude from the published reference baseline
for the same benchmark. This strongly suggests that it has

been measured incorrectly and such a difference requires an
explanation in the paper.

D2 - Only evaluate against yourself: The benchmarking
crime of only evaluating against oneself applies to relatively
few papers, 15 out of 50 (30%), because we only considered
those papers that actually perform a comparison. Out of those
15 papers, 2 (13%) compare only against their own work while
there would have been appropriate alternatives.

D3 - Unfair benchmarking of competitors: Like the previous
benchmarking crime, this one only applies to the 15 out of
50 papers (30%) that actually perform a comparison. The
crime is committed in 4 out of 15 papers (27%) and unclear
due to underspecification in 2 more papers. In two papers,
we found competing solutions were presented as having much
higher overhead than in their original paper with no explanation.
Another paper selected an unoptimized number for comparison,
while an optimized version was also presented in the original
paper. In the fourth case, the configuration does not seem
appropriate.

E. Benchmarking omissions

We found that 30 out of 50 papers (60%) omit some
important benchmarking configurations, committing one or
more of the four benchmarking crimes in this group.

E1 - Not all contributions evaluated: We found that 6 out of
50 papers do not evaluate all claimed contributions. In particular,
four papers do not test their effectiveness in securing programs
while two others do not evaluate the performance on some
relevant applications.

E2 - Only measure runtime overhead: While most papers
evaluate runtime overhead, this is often not the only relevant
performance characteristic. We found that 23 out of 50 papers
(46%) omitted other relevant dimensions of performance. For
almost all of these papers, memory overhead is missing
while it is reasonable to believe the presented system might
incur some memory overhead. Given that memory usage can
often be traded off against runtime performance and that
memory is a limited resource that must be shared between
applications running on a system, performance measurements
are not complete without measuring memory overhead. This
means that, for example, a paper that achieves similar runtime
performance but greatly reduces memory overhead compared
to the state of the art is worth publishing. If prior work
lacks an evaluation of memory overhead, it becomes harder to
improve on it. Other missing measurements include the amount
of extra network and/or disk IO, increased binary size after
instrumentation, and the time taken to instrument the protected
program. Like for memory, we have only counted cases where
these performance dimensions were not presented if there is a
reasonable expectation that there may be significant overhead.

E3 - False positives/negatives not tested: For this bench-
marking crime, we only considered papers where false positives
or negatives would be a potential problem. Out of the 19 papers
where this was the case, 6 papers (32%) ignore the possibility
of false positives or negatives.



E4 - Elements of solution not tested incrementally: This
benchmarking crime only applies to the 25 out of 50 papers
(50%) that actually consist of multiple components that could
potentially be measured independently or incrementally. From
these papers, 4 (16%) do not provide measurements for
individual components.

F. Missing information

20 out of 50 papers (40%) commit at least one of the
four benchmarking crimes in this group, leaving out some
information that is important for completeness, reproduction
and/or sanity checking.

F1 - Missing platform specification: 11 out of 50 papers
(22%) do not provide a full specification of the hardware used
to run the benchmarks. Out of these, five do not give any
information, five more do not provide information about the
networking setup and the final one provides some information
about the networking setup but it is incomplete.

F2 - Missing software versions: This benchmarking crime
is committed by 12 out of 50 papers (24%). In six cases the
paper does not specify the operating system used, two papers
do specify the operating system but not its version number,
one paper does not specify which hypervisor is used, and three
papers do not specify any information at all about the software
used to evaluate their systems.

F3 - Subbenchmarks not listed: This benchmarking crime is
applicable to the 38 out 50 papers (76%) which use subbench-
marks and, out of these, 7 (18%) commit the crime. While
a seventh also does not list subbenchmark results explicitly,
the number of applications it was tested with is so large that
presenting all of them would be unpractical. Moreover, it does
provide extensive statistics about the subbenchmarks, which
compensates for the missing information. Therefore, we decided
not to count it as having committed this benchmarking crime.
Still, it would have been even better if this paper had discussed
the methodology used to select the benchmarks that were used.
The other papers do not provide additional information that
can compensate for this lack of completeness.

F4 - Relative numbers only: This benchmarking crime is
applicable to 48 out 50 papers (96%), but none of these papers
commit the crime in its worst form. We found that 24 out
of 48 applicable papers in our sample (50%) included only
overheads.
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