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A B S T R A C T

The relative impact of climate change and land use change on biodiversity loss is still under discussion. To
alleviate drawbacks related to the use of observed species distributions, we introduce a novel approach to se-
parate the effects of climate change and land use change, the latter split into fragmentation, agricultural in-
tensification and reforestation.

This approach, coined the Attribute Importance Analysis (AIA), uses the ability of species attributes to explain
population declines. Through the a priori association between attributes and individual drivers, the relative
importance of the drivers in causing the species decline can be assessed. We tested this approach on the po-
pulation decline of vertebrate, insect, vascular plant, and fungi species in the Netherlands since the 1950s.

Fragmentation was clearly the strongest driver of species decline for vertebrates and plants, and this may also
be true for insects. For fungi, climate change seems the only driver. We found a weak signal of the importance of
agricultural intensification for the decline of vertebrates only. We ascribe this unexpected low importance of
agricultural intensification to our partitioning of agricultural effects into fragmentation and intensification.

Our generic approach can offer valuable quantitative information on the relative importance of drivers that
change local community composition without the need for spatial explicit information. Without data on tem-
poral trends in drivers, including local climate and land use change, accurate information on species decline,
species attribute values and association of attributes with drivers can give insights into the causes of species
decline, which, in turn, can be used to adapt nature management accordingly.

1. Introduction

In the Millennium Ecosystem Assessment (2005), land use change is
regarded as the most important driver, in the sense that the observed
biodiversity loss is considered as mainly the result of habitat loss. Cli-
mate change is the driver that, together with pollution, is expected to
have a large impact on biodiversity in the near future (MEA, 2005).
However, the relative importance of climate change versus land use
changes as the main drivers of biodiversity change is presently under
discussion, while crucial for developing general conservation strategies
and implementation plans (Fox et al., 2014; Bradshaw et al., 2015;
Urban, 2015; Fraixedas et al., 2015; Elmhagen et al., 2015a; Lehsten
et al., 2015). Feeding this discussion with traditional empirical data is
difficult, because one needs long term data on biodiversity change in an
area that is large enough to include a gradient of climate change as well
as a similar gradient of land use change in which the correlation be-
tween climate change and land use change is not so strong that the
statistical separation of the two impacts is impossible. Although such

data are available for certain plant and animal groups for specific areas,
such as British birds (Bradshaw et al., 2015) and moths (Fox et al.,
2014) or birds in Finland (Luoto et al., 2007; Fraixedas et al., 2015),
finding accurate information for clarifying the relative importance of
drivers across different high-level taxonomic groups is extremely diffi-
cult at present.

We propose an alternative, trait-based approach for analyzing the
decline of species, which does not have such data requirements and that
can be applied to directly compare different taxonomic groups. Such an
approach is possible because ecological traits are supposed to reflect the
ecological strategies of species in relation to and in interaction with
environmental drivers (Violle et al., 2007; Webb et al., 2010; Murray
et al., 2011; Angert et al., 2011; Mouillot et al., 2013: van Bodegom
et al., 2014). We assume that a change in a local environmental driver
results in the selection in the community sensu Vellend (2016): some
species will become less abundant and others will thrive, depending on
their trait values. Recently, traits were used to show selection by land
use change, climate change, and change in nitrogen deposition,

https://doi.org/10.1016/j.biocon.2018.01.002
Received 28 June 2017; Received in revised form 15 December 2017; Accepted 2 January 2018

⁎ Corresponding author.
E-mail address: Musters@cml.leidenuniv.nl (C.J.M. Musters).

Biological Conservation 219 (2018) 68–77

Available online 11 January 2018
0006-3207/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00063207
https://www.elsevier.com/locate/biocon
https://doi.org/10.1016/j.biocon.2018.01.002
https://doi.org/10.1016/j.biocon.2018.01.002
mailto:Musters@cml.leidenuniv.nl
https://doi.org/10.1016/j.biocon.2018.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2018.01.002&domain=pdf


respectively (Bregman et al., 2017; Siepielski et al., 2017; Bowler et al.,
2017; van Strien et al., 2017; Pöyry et al., 2017). In other words, when
a specific driver changes the environment, only those species that have
a particular combination of trait values will decline. If this is true, we
can, in principle, use the trait values of declining species to study which
environmental drivers are responsible for the decline.

To implement this concept, we developed an approach based on
decision trees that we call the Attribute Importance Analysis (AIA). We
use the word ‘attribute’ instead of ‘trait’ in line with the literature on
decision trees. AIA is a strict a priori approach in the sense that we first
hypothesize which attributes should have a high predictive power for
decline, given a particular driver, and then use the actual predictive
power of the attributes to test this.

Here, we provide a proof of principle and use AIA by applying it to
assess the relative effect of four environmental drivers on species de-
cline since the 1950s as reported in the Dutch red lists (Kalkman et al.,
2010; Wamelink et al., 2013; CBS, PBL, and Wageningen UR, 2014).
The first driver is climate change. The other three are different aspects
of land use change: i) fragmentation, which reflects isolation of natural
areas; ii) agricultural intensification, which reflects the change in land
use intensity in cultivated areas; and iii) reforestation, which reflects
the resent increase of wooded area in the Netherlands both in cultivated
and natural areas. We separately analyzed four widely different species
groups - vertebrates, insects, plants and fungi - for which we have data
sets of many species and their attributes.

2. Materials and methods

2.1. Species and decline

In the Netherlands, Red lists are available for vertebrates, for insects
belonging to Plecoptera, Orthoptera, Ephemeroptera, Odonata,
Lepidoptera, Trichoptera, and Apidae, for plants belonging to the vas-
cular plants, bryophytes and lichens, and for a large number of fungi
with visible fruiting bodies (mushrooms) (Supplementary material,
Appendix A). These can be regarded as representative for above-ground
terrestrial and freshwater macro-species within the Dutch territory,
while small species, marine species and soil species are under-
represented (Noordijk et al., 2010; Musters et al., 2013).

To obtain a balanced representation of the high level taxa within
each of our species groups, we randomly selected a similar number of
species per taxon. From taxa with only a few species, e.g., reptiles, we
selected all species (for details see Musters et al., 2013). In total, we
selected 175 vertebrate species (out of a total of 297 species), 371 insect
species (out of 724 species), 303 plants (out of 2513 species) and 249
fungi (out of 2405 species) from the Red lists.

Red lists evaluate the threat state of a species based on both its
rarity and observed decline. The background documentation of the Red
lists assesses the decline of the species based on real observations only.
The categories used to indicate the trend (‘stable or inclining’, ‘not
declining’, ‘moderately declining’, etc.) are standardized and equal for
all species groups. We defined decline as a binary variable indicating
whether or not the species range or abundance has been declining in the

Netherlands since the 1950s (categories ‘moderately declining’,
‘strongly declining’, ‘very strongly declining’ and ‘maximally declining/
extinct’; de Iongh and Bal, 2007; Musters et al., 2013). Declining species
occur in any of the Red list categories, from least concerned to critically
endangered. Of our selected vertebrates, 44% are in our definition
declining, as are 52% of the insects, 29% of the plants and 46% of the
fungi.

2.2. Attribute Importance Analysis

The Attribute Importance Analysis (AIA) consists of six steps. First,
based on ecological theory, we compiled a list of all attributes that may
be related to the vulnerability of species to environmental change (box
1 in Fig. 1). Second, we postulated how each environmental driver of
interest is associated with each attribute in the sense that the value of
that particular attribute would affect the abundance or the reproduc-
tion rate of species. Thus for each driver, we compiled a set of attributes
that is associated with that driver (box 2). Third, we collected in-
formation on the attributes values of the species in our study (box 3).
Fourth, we explained the decline of species from their attribute values
using a machine learning technique based on decision trees, i.e.,
random forests (box 4). Fifth, the explanatory power of the attributes
was assessed by estimating the ‘importance’ of the attributes in ex-
plaining the decline of species by the random forest (box 5). And sixth,
we aggregated the importance of the sets of attributes associated with
individual drivers (from box 2) to assess which environmental drivers
are likely the most important for the decline of species. We calculated
two different metrics for this: the proportion of attributes associated
with a specific driver that had the ability to explain the species decline
and the mean importance of the same set of associated attributes. As
part of our sixth step, we tested whether these two metrics significantly
deviated from a random sample of attributes (box 6). To summarize, the
list of associated attributes can be regarded as a set of hypotheses. Then
we calculate which attributes are actually explaining decline accu-
rately. If many of these accurate predictors are in the set of hypotheses,
we regarded that as supporting the idea that the driver is an important
driver. Below we describe the six steps of AIA more extensively.

2.2.1. Compile list of attributes
To identify attributes associated with the decline of species across

taxonomic groups, we used the published list of ‘universal’ factors of
decline from Musters et al. (2013). This list covers all aspects of life
history based on ecological theory (Appendix B, Table B1). The list of
factors was translated into a list of 128 attributes (Table B2).

2.2.2. Associate drivers with attributes
Environmental drivers were associated to attributes based on the

framework that Williams et al. (2008) developed for assessing the
vulnerability of species to climate change. We generalized this frame-
work by deleting the references to climate change and made a dis-
tinction between the vulnerability to fragmentation as such, and the
other drivers, that could have indirect fragmentation effects (Fig. 2).
We used literature (Appendix C, Table C1) and expert knowledge to

Fig. 1. Procedure of Attribute Importance Analysis (AIA). The six steps are further explained in 2.2.
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evaluate attributes related to landscape (regional changes in the frame-
work) and local habitat (microhabitat) – together these are classed as
exposure attributes. Attributes related to sensitivity to quality change and
fragmentation were classed as species sensitivity. We excluded attributes
that could affect the vulnerability of species to all four drivers, such as
‘adaptive capacity’. By doing so, we simplified Williams et al.'s frame-
work to the bold categories in Fig. 2. An overview of the selected at-
tributes per driver is given in Table 1. For more extensive information
on the procedure and references see Appendix C.

Climate change is our first driver. Changes in species distribution
and phenology that can be attributed to climate change are common in
the Netherlands and are usually assumed to have started in the 1980s
(e.g., Kleukers and Reemer, 2003; Visser and Both, 2005; Dingemans
and Kalkman, 2008; Tamis et al., 2009; Kalkman et al., 2010; Musters
et al., 2010; Wereld Natuur Fonds, 2015). In total 32 attributes were
associated with climate change. Some of these attributes indicate the
species sensitivity to weather (temperature, humidity and wind). Cli-
mate change may affect the phenology of species, which can result in
asynchrony between a species and the species on which it depends,
particularly affecting specialist species. Also, those attributes that re-
flect global range margins and known shifts of these margins were in-
cluded.

Fragments of natural areas are usually small and isolated in the
Netherlands in a landscape of mainly urbanized and cultivated land,
and can be regarded as the end result of large land use changes that
occurred over the past centuries. While most loss of natural areas has
stopped after WWII, dispersal barriers have increased because of in-
tensification of land use (e.g. agriculture), disappearance of semi-nat-
ural elements such as ponds and hedgerows, and growth of urban areas,
road length and traffic (Wamelink et al., 2013; CBS, PBL, and
Wageningen UR, 2014; Wereld Natuur Fonds, 2015). So, since the
1950s, fragmentation of natural areas in the Netherlands implies in-
creased isolation (fragmentation sensu stricto; Fahrig, 2003). We as-
sociated 33 attributes with fragmentation. These are related to species
depending mainly on natural areas. For colonization ability, attributes
related to dispersion ability, the number of offspring, and abundance
were selected. Success in colonization may also be limited by depen-
dence on specific other species.

Dutch agriculture started to intensify in the 1850s with major in-
tensifications since the 1950s and is now among the most intensive of
the world, while production per ha is still increasing (Stoate et al.,
2009; Geiger et al., 2010). We associated 23 attributes with agriculture
intensification, of which a number relate to species occurrence in early

successional stages and nutrient availability. Since water availability is
manipulated in agriculture, an attribute related to humidity was in-
cluded, as well as those that are related to human disturbance.

In a number of areas, woodlots have recently been planted, espe-
cially around the large cities of the western part of the Netherlands.
Moreover, both in natural and cultivated areas, the cover of trees and
bushes is increasing, at least since the 1980s (CBS, PBL & Wageningen
UR, 2008 & 2014; Wereld Natuur Fonds, 2015). In the natural areas, the
increase of trees and bushes took place at the cost of open areas like
heath lands and moors (CBS, PBL, and Wageningen UR, 2013). We have
called this process ‘reforestation’ because of a lack of a more appro-
priate term. With reforestation 18 attributes were associated, specifi-
cally those related to environmental conditions of forests, such as
shadiness, shelter and humidity, but also the dependency on dead
wood.

2.2.3. Collect attribute value per species
The attribute values per species were obtained by asking at least one

expert to provide the attribute values of ‘their’ species group. These
values were then checked for consistency and obvious errors by the
Naturalis Biodiversity Center, Leiden, The Netherlands. Obviously, not
all attributes are relevant for all species groups. For both vertebrates
and insects there were 87 attributes, for plants 42 and for fungi 30
attributes (Table B2).

All attributes were transformed into categorical variables in order to
avoid the influence of cardinality on the importance of attributes (Deng
et al., 2011). In the case of scale variables, the scale-axis was divided
into five equal parts, leading to a five-point ordinal attribute. When
needed, the original values were log-transformed to approach a normal
distribution before transforming into an ordinal attribute.

2.2.4. Explain decline based on attributes: random forests
We used random forests to evaluate the power of attributes to ex-

plain the demographic decline of species. Random forests consist of a
large number of decision trees (Breiman, 2001). In our case, these were
classification trees that classify the species as either declining or not.
Each tree uses a random sample of species and attributes as a learning
set. Using a random forest instead of a single classification tree prevents
over-fitting (Breiman, 2001; Strobl et al., 2009). Random forests are
especially fit for handling datasets in which the number of predictive
variables (here attributes) is large compared to the number of cases
(here species) (Strobl et al., 2009). They do not have a problem with
handling non-linear relationships between the predictive variables and

Fig. 2. General framework to assess the vulnerability of species to drivers of change. For associating attributes to individual drivers we used the bold categories. Adapted after Williams
et al. (2008).
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the response variable (here decline) (Strobl et al., 2009). Moreover,
since on every node it is decided which predictive variable should be
used for dividing the remaining set of cases, interactions between
predictive variables are also taken into consideration. These are im-
portant strengths of this approach over a variance-covariance approach
like regression analyses. It makes classification tree-based approaches
real non-parametric alternatives for regression-based approaches
(Strobl et al., 2009). We used with the package ‘party’ of R for calcu-
lating the random forests (R Development Core Team, 2015).

2.2.5. Assess importance of attributes
Using random forests, the importance of an attribute for the clas-

sification of species – here, declining or not declining - is estimated by
comparing the proportion of correct classifications of the random forest
with that of a random forest in which the values of that attribute are
randomly permuted (Strobl et al., 2009). The decrease in correct clas-
sification is a measure of the importance of that attribute. However, it
has been shown that this measure is biased towards correlated

attributes (Strobl et al., 2007). Therefore, the alternative measure of
importance developed to solve this problem by conditional permuta-
tion, was used: the ‘conditional importance’ (Strobl et al., 2008). All
default settings of party were kept, except for the number of attributes
tested per node, which was set on the square root of the total number of
attributes as recommended by Strobl et al. (2009).

We ensured robustness of the importance estimates and the ranking
of attributes according to their importance by applying 100 random
forests and calculating the median and 95th percentile of the im-
portance. We have chosen median and percentiles, instead of mean and
standard deviation, because we cannot assume importance is normally
distributed (Fig. 3).

2.2.6. Assess importance per driver
The conditional importance of attributes with random values will

have a median of zero (Strobl et al., 2009). As a result, a number of
attributes will have a negative importance. The distribution of these
negative values can be regarded as half of the variance distribution of

Table 1
Classification of the attributes based on species exposure and sensitivity following the adapted framework fromWilliams et al. (2008) (in rows) as associated with climate change and land
use change drivers (in columns). Numbers refer to attribute numbers of S1.

Climate change Fragmentation Agricultural intensification Reforestation

Exposure Regional change Global range margins
11: Margin through the

Netherlands
13: Margin shift 1900–1990
14: Margin shift since 1990

Nature areas
19: Dependence on natural

habitats
20: Preference for urban or

agricultural habitats

Agricultural areas
15b: Main habitat freshwater
19: Dependence on natural

habitats
20a: Preference for

agricultural areas
21: Preference habitat

stability

Terrestrial areas
15: Main habitat

Micro-habitat Temperature
37a: Endotherm

Humidity
17: Terrestrial humidity

Wind
52b: Pollination by wind
53a: Seed dispersal by wind

Early succession stages
16: Forest or non-forest

habitats
50: Shadiness growing

habitat
Humidity
17: Terrestrial humidity

Nutrients
61: Nutrient indication
62: pH indication
65: Sensitivity to

eutrophication

Forests
16: Forest or non-forest

habitats
51: Functional group

plants
Shadiness
50: Shadiness growing

habitat
Humidity
17: Terrestrial humidity

Wind
52b: Pollination wind
53a: Seed dispersal by

wind
Species sensitivity Quality change Phenology

22: Reproductive period
Dependency on other species

34: Depending on symbiosis
41a: Herbivores depending on

one species
42a: Predators depending on

one species
43a: Parasites depending on

one species
63: Functional group fungi

Dependency on other species
34: Depending on symbiosis
41a: Herbivores depending on one

species
42a: Predators depending on one

species
43a: Parasites depending on one

species
63: Functional group fungi

Human disturbance
3: Controlled by man
26: Considered a pest
27: In agricultural area

before 1960
28: In agricultural area after

1960

Dependency on other
species
63: Functional group

fungi

Fragmentation Dispersal ability
25: Dispersion capacity
45: Flying
46: Active dispersion
47: Passive dispersion
52: Pollination type
53: Dispersion of seeds

Offspring
29: Number of generations per

year
31: Years before reproduction
32: Reproductive years
48: Number of offspring per year
54: Seed longevity

Abundance
10: Body size
36: Reproductive area
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attributes with random values. In accordance with Strobl et al. (2009),
we use the negative variance distribution to calculate a threshold value
for deciding which attributes have an importance of higher than zero.
So, attributes that have a higher median importance than the 95% value
of the negative variance distribution turned positive are regarded as
having a higher importance than zero (Strobl et al., 2009). This ap-
proach is illustrated in Fig. 3, using the importance of one random
forest of the vertebrates.

Our first metric for assessing the importance of a specific driver in
explaining decline is the proportion of attributes with an importance
higher than zero, called the non-zero attributes hereafter, associated
with that driver. This metric was chosen for its robustness: if a driver
affects the decline of species, we expect that at least some of the as-
sociated attributes will be non-zero, even if not all attribute-driver as-
sociations are equally strong. This metric is independent of the actual
importance, which may be affected by the proximity of the attribute-
decline association (even though the actual gradient of a driver is not
needed for the analysis and hence cannot bias the results) or the het-
erogeneity within the group of species.

Our second metric is the mean importance of our set of attributes
associated with an individual driver. This metric gives an estimate of
the strength of the association between attributes and species decline,
averaged over the attributes associated with a specific driver.

For each driver, we tested the performance of these metrics by
comparing the proportion of non-zero attributes and the mean im-
portance of the associated attribute sets vs. random sets containing an
equal number of attributes. The random sets were created by 1000×
bootstrapping (without replacement) this number of attributes from the
complete set of attributes in the random forest of the species group. The
proportion of non-zero attributes and the mean importance of random
forests that were greater than or equal to the calculated proportion of
non-zero attributes and the mean importance for a given driver equaled
the corresponding one sided p-value. We calculated this p-value for 100
random forests to additionally obtain the distribution of p-values. Fig. 4
gives an example of the calculation of a p-value of climate change as a
driver for decline in fungi. All calculations were done with R (R
Development Core Team, 2015).

3. Results

Random forests of vertebrates, insects, plants and fungi correctly

classified declining species on average (± sd) for, respectively,
60.0 ± 0.6, 66.1 ± 0.47, 67.0 ± 0.32, and 51.1 ± 1.10% of the
species. Of the 87 attributes available, 21 and 35 had an importance
greater than zero for vertebrate species and insects, respectively,
compared with 13 out of 42 were non-zero for plants, and 3 out of 30
for fungi. Although the exact relationship between the attribute values
and the decline of the species is not relevant for our approach -
whenever an attribute is able to separate the declining from the not-
declining species, it has an importance greater than zero - we show per
species group how each of these non-zero attributes is related to the
probability of species decline in Appendix D, Fig. D1 and Table D1.

We calculated the proportion of the associated attributes being non-
zero and the probabilities of that proportion being equal to that of a
random sample of attributes (Fig. 5; the same results, but ordered per
species group, are in Appendix E, Fig. E1). It shows that climate change
was an important driver (proportions well below 0.05 and hence sig-
nificantly different from chance) only for fungi. In the case of frag-
mentation, they are well below 0.05 for vertebrates and below 0.10 for
plants. In the case of agricultural change and reforestation about half of
the probabilities are below 0.10 for vertebrates.

Figs. 6 and E2 present the mean importance of the associated at-
tributes and the probabilities of that mean being at least equal to that of
a random sample of attributes. For most combinations of driver and
species group, this shows a similar pattern as the probabilities of the
proportions. The mean importance of fragmentation attributes has p-
values below 0.05 for insects and plants too. Agricultural intensification
and reforestation have higher p-values for mean importance than for
proportion of non-zero attributes.

4. Discussion

4.1. Attribute importance analysis (AIA)

The AIA is a novel, trait-based approach for analyzing species-en-
vironment relationships, in this case the relationship between species
decline and environmental drivers. It is relatively simple and clear cut
in comparison to previous, spatially explicit approaches (Fox et al.,
2014; Bradshaw et al., 2015; Fraixedas et al., 2015). It does not depend
on spatial gradients in the environmental drivers (and is thus not af-
fected by different gradients among environmental drivers). However,
because it is a novel approach, its performance demands extensive

Non-zero attributes

Fig. 3. Frequency distribution of the conditional importance of 87 attributes used in a
conditional random forest to classify the vertebrates into species that decline and species
that do not decline. 5% of the negative importance's are smaller than −0.58 ∗ 10−3.
Therefore we regard all attributes having an importance of greater than 0.58 ∗ 10−3 as
greater than zero, i.e., non-zero. In this example, showing one random forest run for
vertebrate species 19 attributes have a non-zero importance.

p-value=0.004

Fig. 4. Frequency distribution of the mean conditional importance of 1000 random
samples of 10 fungi attributes. In one random forest run for the fungi species, the set of 10
attributes associated with climate change had a mean importance of 0.90 ∗ 10−3. Only 4
random samples had a higher mean importance, resulting in a p-value for climate change
attributes of 0.004.
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evaluation and here we provide a proof of principle for the Netherlands,
hoping that others may find our approach useful for answering their
questions. Before going into the results of our proof of principle, we first
discuss the potential weaknesses of the approach and our solutions.

A crucial step in AIA, as in any trait-based approach on the re-
lationship between biodiversity change and environmental drivers, is
the selection of attributes (Estrada et al., 2016; Moretti et al., 2017).
First, it can be argued that not all important attributes that determine
the possibilities of species to cope with specific drivers may have been
included. For instance, metabolic attributes could be associated with
climate change or agricultural intensification, but were not included
because of lack of information on these attributes. Second, not all at-
tributes associated with a particular driver may have a strong, direct
response to that driver, i.e., some attributes associated to a driver may
be under weak selection by the driver. In our analysis, these attributes
would have a low importance even though the driver is the actual cause
of decline and the distribution of the attribute values in the community
will in the long run be changed by the driver. This might be especially
problematic for the interpretation of the results when one or more of
the drivers have all their selected associated attributes belonging to this
type. Third, some attributes could be responsive to more than one cause

of decline. Attributes that enable species to cope with change in general
are related to all environmental drivers (and were not included in our
analysis).

Since these problems of attribute selection are common to many
trait-based studies – the first two form a problem in any study on the
relative importance of attribute values for species survival (e.g., the
references in Appendix C), the third in any study on the relative im-
portance of environmental drivers for attribute-dependent species sur-
vival. This points to an urgent need for better procedures for attribute
selection and more knowledge on the relationship between attribute
values and species trends as well as the limitations of trait-based stu-
dies. Recently some progress has been made in this field, mainly fo-
cusing on standardizing trait definition and measurement (Estrada
et al., 2016; Moretti et al., 2017; Garnier et al., 2017) and on the re-
lationship between specific drivers, attributes, and species trends
(Bregman et al., 2017; Siepielski et al., 2017; Bowler et al., 2017; van
Strien et al., 2017; Pöyry et al., 2017).

Another type of problem is that species groups may be ecologically
so heterogeneous that decline of some species within the group relate to
other attributes than that of other species. Decision trees are especially
fit for finding the attributes that predict the decline in subgroups, but,

Fig. 5. Proportion of non-zero attributes associated with the four studied drivers of species decline. Distribution of the p-values of the proportion of non-zero attributes being higher than
that proportion of a random selection of attributes per species group is given. Number of attributes associated with climate change are for vertebrates, insects, plants and fungi, resp. 16,
16, 13 and 10; with fragmentation, resp. 10, 10, 6 and 6; with agricultural intensification, resp. 11, 11, 11 and 10; and with reforestation, resp. 16, 16, 13 and 10. The thick horizontal line
is the median p-value, 50% of all p-values are in the boxes, o are outliers. The dashed red line is at p-value= .05. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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depending on the size of the subgroups and the predictive power of the
attributes, the associated attributes may show relatively low im-
portance in such cases. The obvious solution for this problem is to split
the species group into more ecological homogeneous groups, for ex-
ample in aquatic and terrestrial species. However, this splitting may be
in conflict with the goal of a study to find general strategies for the
conservation policy at the level of, say, countries or regions.

In this study, AIA has been made robust against the problems of
selecting attributes per driver by, first of all, including a long list of
attributes to start with and selecting never fewer than 6 and usually
more than 10 associated attributes per driver, so that our analyses never
depend on one or two attributes only. Second, we chose to allow at-
tributes to be associated to more than one driver, as long as an attribute
was not associated with all four drivers. This was done to ensure that
any signal of the effect of a driver was included in the two metrics.
Third, because selecting only those attributes that are known to have a
strong responsive relationship with the driver is impossible due to the
sparse literature on the subject (Appendix C), we used two testing
metrics, the proportion of non-zero attributes and the mean im-
portance. Because the first metric ignores the value of the importance, it
is robust against the problem of the relative strength of the relationship

between attribute and driver. It is also robust against the problem of
group heterogeneity that can cause low importance of attributes that
are only predictive for a small part of the species within the species
group. However, it is insensitive to the actual explanatory power of the
attributes. For that we have the mean importance. Our results on insects
vs. fragmentation show the relevance of studying both testing metrics
(see below).

The AIA as proposed here is based on the calculation of the attri-
butes' importance using random forests. In theory, it could also have
been done based on logistic regression analyses (e.g., Angert et al.,
2011; van Bodegom et al., 2014). However, because of the large
number of attributes, the number of parameters in regression analyses
would be so large in relation to the number of species that the prob-
ability of spurious results would have been substantial, if an analysis
would be possible at all (Anderson, 2008; Strobl et al., 2009). Several
studies have compared the performance of decision tree with multiple
regression for analyzing complex ecological data and found that the
first were adequate if not superior to the last (e.g., De'ath and Fabricius,
2000; Prasad et al., 2006; Williams et al., 2009; Hegel et al., 2010;
Oliveira et al., 2012; Delgado et al., 2014).

Overall, we think that our AIA is robust and could deliver solid

Fig. 6. Mean importance of attributes associated with the four studied drivers of species decline. Distribution of the p-values of the mean importance of the associated attributes being
higher than the mean importance of a random selection of attributes per species group is given. Number of attributes associated with climate change are for vertebrates, insects, plants and
fungi, resp. 16, 16, 13 and 10; with fragmentation, resp. 10, 10, 6 and 6; with agricultural intensification, resp. 11, 11, 11 and 10; and with reforestation, resp. 16, 16, 13 and 10. The thick
horizontal line is the median p-value, 50% of all p-values are in the boxes, o are outliers. The dashed red line is at p-value= .05. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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results. Even so, it should not be forgotten that in the end AIA cannot
prove causal relationships. Its strength lies in its a priori approach, its
potential of handling a large number of predictive variables and its
robustness because of its low dependency on statistical assumptions.
But, obviously, the quality of its results depends also on the quality of
the data, i.e., on adequate information on the decline and attribute
values of the species, on inclusion of all relevant attributes, and on
correct association of attributes with drivers. Our information on de-
cline of species can be regarded as solid (A. van Strien, in lit.), but the
inclusion of all relevant attributes, the assessment of attribute values
per species and the correct association of attributes with drivers de-
pended partly on expert judgments. The following discussion of the
results should therefore be regarded as preliminary and mainly for
generating hypotheses.

4.2. Causes of decline

Both our metrics, proportion of non-zero attributes and mean im-
portance, show that the attributes associated with climate change ex-
plained the decline of fungi, but not the decline of the other species
groups in the Netherlands. Our metrics also show that attributes asso-
ciated with fragmentation explained the decline of vertebrates and
plants, and maybe insects in the Netherlands. Both metrics show also
that the attributes associated with agricultural intensification only ex-
plained the decline of vertebrates in part of our 100 random forests.
Likewise, in some random forests only, attributes associated with re-
forestation related to the decline of vertebrate species.

Although climate change is a well-recognized cause of projected
population changes and presents changes in phenology and range shifts
(e.g., Visser et al., 1998; Foden et al., 2013; Elmhagen et al., 2015b;
Kullberg et al., 2015; Kerr et al., 2015; Hovick et al., 2016), it was in the
MEA (2005) regarded as having a low impact on biodiversity over the
last century. Our results for the Netherlands seem to confirm this, ex-
cept for fungi, a group that is showing effects of climate change,
probably due to the fact that these are narrowly restricted to certain
temperature-humidity combinations for fruiting (Kauserud et al.,
2008). Of course, a decline in fruiting bodies does not necessary reflect
a decline in populations size of the fungi. Further, it should be noted
that of all 30 attributes of fungi, only three were non-zero, and the
predictive power of the random forests was relatively low (51.1% of the
species correctly classified).

Concerning the impacts of fragmentation on the decline in verte-
brates, plants and fungi, our analyses identify fragmentation as clearly
the most important cause of species decline for vertebrates and plants,
but not for fungi, in the Netherlands. The impact of fragmentation on
vertebrates has been shown in several papers (e.g., Haddad et al., 2015;
Blandón et al., 2016). Likewise, the impact of fragmentation on plants
confirms earlier research that identified colonization ability to be cru-
cial for local plant survival (Blomqvist et al., 2003; Ozinga et al., 2009;
Evju et al., 2015; Haddad et al., 2015). Our hypothesis is that isolation
is the key factor for the impact, although it may also concern lagged
decline caused by habitat loss in earlier periods (Haddad et al., 2015) or
changes in habitat quality, e.g. due to nitrogen deposition. That frag-
mentation may not be an important driver of decline for fungi is not
surprising, since most fungi in our analysis are mushrooms that can
easily overcome barriers by their spores.

For insects, the assessment of fragmentation impacts on species
decline was not consistent across metrics. The proportion of non-zero
attributes was not higher than that of a random sample of attributes,
but the mean importance was. This is due to the attribute ‘Active dis-
persion’ that distinguishes short distance dispersers from long distance
dispersers. This attribute has a very high importance (Fig. D1, Table
D1). Dropping this attribute from our analysis reduces the mean im-
portance for insects below the level of being significantly higher than
expected (Appendix F, Fig. F1). Hence, we have found only one attri-
bute to support that insect decline is related to fragmentation, which

seems weak as support. In aquatic systems, it has been shown that small
organisms are less strongly affected by isolation than larger organisms
and that flying insects are even less affected than other organisms of the
same size class (de Bie et al., 2012). If this is a general pattern, it would
mean that vertebrates should be more strongly affected by fragmenta-
tion than insects (but also see Haddad et al., 2015), which is supported
by our results on the proportion of non-zero attributes (Fig. 5). On the
other hand, the attribute ‘Active dispersion’ seems to have a very direct
relationship to fragmentation and its predictive power is really high
(Fig. D1). Obviously, more research is needed here.

Reforestation showed consistent results over the two metrics and
does not seem of great importance for any group of species, although
there is a weak signal of importance for vertebrates in our results. In
general, forest species, which in the Netherlands are often species that
live both in woodlands and urban parks, seems to do well (CBS, PBL,
and Wageningen UR, 2015), but reforestation may be a too recent de-
velopment to be visible in the species trends since the 1950s.

The most unexpected result is the consistent unimportance of agri-
cultural intensification as a cause of species decline, except for a weak
signal in vertebrates. One could have expected this importance to be
greater since most studies into the cause of change of biodiversity in the
Netherlands, and Europe in general, identify agriculture as a key driver
(e.g., Stoate et al., 2009; Geiger et al., 2010; Wamelink et al., 2013). A
possible reason might be that the Dutch species are species that have
survived the strong intensification of agriculture that took place at the
end of the 19th and the beginning of the 20th century. For these spe-
cies, the relatively small changes from highly intensive to mega-in-
tensive agriculture, that occurred since the fifties, may be of less im-
portance. This is suggested by the fact that the most rapid decrease of
pollinators occurred before WWII in Britain (Ollerton et al., 2014). If
this is true, then the actual mechanism of agricultural change as a
driver of change of populations is the isolation of natural habitat and
not so much the loss of quality within agricultural systems, which
disappeared much earlier. Isolation of natural habitat is captured by
‘fragmentation’ in our analysis. The partitioning of the effects of agri-
culture on biodiversity into the effects of intensification and the effects
of isolation need further study because the results might have important
policy implications (Green et al., 2005; Phalan et al., 2011).

The proportion of non-zero attributes of agricultural intensification
in vertebrates was highly variable, ranging from 0 to 1 (Fig. 5). This
high variance seems to indicate that many of the attributes had an
importance close to the threshold value, causing a high variation in the
proportion of non-zero attributes for agriculture. This supports our in-
terpretation that there is only a weak support of the hypothesis that the
decline of vertebrates is affected by agricultural intensification.

4.3. Policy implications

Our results support the idea that, except for fungi, the decline of
species since WWII in the Netherlands has been caused by land use
change, in particular fragmentation, rather than climate change. Of
course, in other countries or regions different drivers might be im-
portant because of different climate, geology or land use history.

Our results would mean that nature conservation measures for
biodiversity in the Netherlands in general - not for specific species -
should have been concentrated on defragmentation. Defragmentation
can be obtained by restoring natural habitats and connecting old and
new nature conservation areas. This strategy has in fact been the main
nature conservation strategy in the Netherlands since 1990 (realization
of the Ecological Main Structure) and has also been adopted in the EU
in the Natura 2000 strategy (http://ec.europa.eu/environment/nature/
natura2000/). Whether this strategy should be continued cannot be
concluded from our analyses, but based on a scenario study, Lehsten
et al. (2015) concluded recently that mitigation actions for conserving
European habitats should keep on focusing on land use change rather
than climate change.
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Along with this focus on nature conservation areas, since 1975 there
has also been a strategy to mitigate agricultural intensification in the
form of Agri-Environmental Schemes (AES, in the EU since 1985, Batáry
et al., 2015). AES are presently under discussion in the Netherlands
because of their disappointing results so far (Kleijn, 2012). Batáry et al.
(2015) found that schemes that take out areas from agricultural pro-
duction have been more effective than schemes that tried to change
production. Our results support the idea that mitigation of land use
intensity may not have been a very promising general strategy for
biodiversity conservation in the Netherlands.
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