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Introduction

The explosion of the World Wide Web at the end of the 20th century boosted
the interest in the comprehension of how real-world networks work. Indeed, be-
fore this boom the study of interconnected systems was limited to the social
sciences [1, 2, 3] and mathematics [4]. The former used to employ the notion of
networks to represent human relations like friendships and sexual contacts; the
latter focused on the analysis of graphs, namely abstract systems composed of
interacting units. The attention of physicists was, instead, mostly driven by the
large size and the dynamic, self-organizing nature of these systems. In particu-
lar, the statistical physics approach proved to be convenient as it could help to
understand the emergent macroscopic phenomena in terms of the microscopical
interactions between the basic elements of the system. Moreover, the presence
of common features shared by very diverse systems - like connectivity patterns
characterized by large fluctuations, scale-free topology, etc. - asked for general
modeling principles, typical of the physics community.

In this context, many efforts have been made to fully characterize the static
structure of real interconnected systems, to analyze and model their growth and to
study dynamical processes acting on top of such networks [5, 6, 7]. However, these
studies can be affected by the noise and randomness associated to the considered
systems; this observation, combined with the steadily increasing availability of
"big data" [8], highlighted the need for methods that allow the extraction of the
meaningful information from the - sometimes massive - real-world systems. This
issue has been faced by means of the introduction of null models, i.e. benchmarks
to which the observed networks could be compared. In particular, a successful set
of such null models is represented by the maximum-entropy models [9], that proved
their effectiveness in the grasp of (sometimes highly hidden) network patterns.

Despite all these efforts, scientists soon realized that something was still miss-
ing in the full understanding of many networked systems. For instance, the famous
blackout that occurred in Italy in 2003 which involved almost its entire power grid
could not be explained in terms of the usual network theory; however, a seminal
work by H. E. Stanley, S. Havlin and collaborators [10] showed that such an event
could be modelled as a failure cascade in interdependent networks, given that the
cause of the large disruption was the interplay between the damage of the power
stations and the resulting failure of the corresponding Internet communication
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network, which in turn determined breakdowns of the still working power grid
nodes.

Analogously, the interaction between the spreading of an epidemic and the in-
formation awareness useful to prevent the disease can be modelled as the coupling
of two distinct dynamical processes acting on two overlapping networks: indeed,
while the infection spreads on the network of physical contacts, the information
propagates on the layer of virtual social encounters between the same individuals.
It has been shown [11] that the presence of such a twofold structure can explain
the effectiveness of tools like Facebook and Twitter in controlling and reducing
the effects of seasonal influenza-like diseases.

These examples showed that many real systems can be suitably represented
as different networks coupled with each other; this led to the notion of interde-
pendent and multi-layer complex networks. Interdependent networks are systems
composed by two or more distinct networks, where each node of any graph is
dependent on one or more nodes belonging to the other(s) [10, 12], such as the
power grid and the Internet system in the aforementioned example. Multi-layer
networks, instead, are systems where a set of nodes is connected via distinct types
of interaction, each represented by a different layer; in general, each element can
be connected through intra-layer (i.e. within the layer) and inter-layer links (that
is, edges connecting nodes in different layers) [13, 14]. In this thesis, we will focus
on multiplex networks, which is a specific class of multi-layer systems where all
layers consist of the same nodes 1.

So far, several aspects of multiplex networks have been investigated: their
static structure [15, 16], possible growth mechanisms [17], community struc-
ture [18, 19] and dynamical processes occurring on top of them like diffusion [20]
or epidemic spreading [21] are just some examples. Nevertheless, as mentioned for
the single-layer case, the need of null models to extract the relevant information
from these complex systems is still both significant and urgent, as it could help
scientists in different fields to fully capture the essence of various real systems.

This thesis is meant to fill this gap. Specifically, we will extend the concept
of null models as canonical ensembles of multi-graphs with given constraints and
present new metrics able to characterize real-world layered systems based on their
correlation patterns. We will make extensive use of the maximum-entropy method
in order to find the analytical expression of the expectation values of several topo-
logical quantities; furthermore, we will employ the maximum-likelihood method
to fit the models to real datasets. One of the main contributions of the present
work is providing models and metrics that can be directly applied to real data,
even in the case of multi-graphs exhibiting a large number of layers, unlike other
work [22] that is, instead, limited to systems with a (very) small set of layers.

The thesis is divided into five chapters, each of them focusing on a different
aspect related to the analysis of multiplex networks, although the last two chapters
present results that are valid both for monoplex and multiplex systems.

1We will keep using the terms "multiplex networks", "multi-layer networks" and "multi-networks"
as synonyms, although this is not strictly correct [13].
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In Chapter 1 we focus on undirected multiplex networks. We provide new
measures of correlation between the layers of a multi-graph, both for binary and
weighted systems. Moreover, we highlight the importance of employing null mod-
els to distinguish between the information encoded in the node-specific properties
and the one related to the higher-order interactions between the elements compos-
ing the network. In particular, we point out that the use of homogeneous random
benchmarks can lead to misleading results, while heterogeneous null models are
theoretically more appropriate and practically more reasonable. We test our mea-
sures and models on real-world networks, showing that our approach is able to
characterize the considered systems based on their correlation patterns.

In Chapter 2 we shift our focus to directed multiplex networks. We show that
the extension of the structural quantities developed in the previous chapter is not
trivial, as the directionality of the connections implies that the interdependencies
between layers are twofold: indeed, in addition to the tendency of links of differ-
ent layers to align as the result of the above mentioned multiplexity, there exists
also a complementary tendency to anti-align as the result of the so-called multi-
reciprocity, expressing the propensity of links in one layer to be reciprocated by
opposite links in a different layer. Furthermore, we provide a thorough analysis of
the World Trade Multiplex; this system, representing the import-export connec-
tions among countries trading in different commodities, is indeed one of the best
examples of directed weighted multi-layer graph. We point out that our investi-
gation can have a significant impact on the development of product taxonomies
and on the improvement of the existing algorithms to establish the complexity of
products and competitiveness of countries.

In Chapter 3 we exploit the quantities introduced in the previous chapters to
provide a new network reconstruction method applicable to multi-layer graphs.
Missing data or confidentiality issues may limit our knowledge of the entire set of
connections of a real network; hence, the problem of recovering the full topology
of a network from partial information is a very hot topic, but such reconstructive
techniques have not been extended to the multiplex case yet, to the best of our
knowledge. Here we face this issue, providing a method able to infer the con-
nections of any node in a given layer from the same information referred to a
different layer. It turns out that this methodology, applicable to a specific class
of multi-layer networks, can be successfully employed to reconstruct the World
Trade Multiplex.

In the previous chapters we have shown that the null models are crucial in order
to properly characterize the correlation patterns of these layered systems and to
overcome the possible scarcity of topological information. In Chapter 4, instead,
we illustrate that the maximum-entropy models also allow us to find the so-called
backbone of a real network, i.e. the information which is irreducible to the single-
node properties and is therefore peculiar to the network itself. This technique can
be useful for vizualization purposes and may have a beneficial impact on further
analyses such as community detection, both in terms of results and computational
resources. We apply our filtering technique to several real systems (both single-
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layer and multiplex) and compare the results with other state-of-the-art methods,
showing that it is able to provide interesting insights in the analysis of very diverse
real-world networks.

Finally, in Chapter 5 we move our attention to a different dataset, namely
the scientific publication system. We exploit the innovative ScienceWISE plat-
form [23] connected to the arXiv repository [24] to extract information about
physics manuscripts and the scientific concepts therein. It turns out that this
system has a straightforward representation in terms of a bipartite network, i.e.
a graph composed by two distinct types of nodes such that an edge can exist only
between nodes of different type (in our case, articles and concepts). From this
bipartite network it is possible to build a unipartite (articles-only) graph, where
any link stands for the similarity between two papers in terms of content. The
application of a community detection algorithm allows us to make conclusions
about specificities in the approach employed by authors to classify their articles;
furthermore, we provide deeper interpretations of the notion of ground-truth.

We end the thesis with some concluding remarks and future perspectives on
the design and application of maximum-entropy models to multiplex networks.
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Chapter 1

Undirected multiplex networks

Several systems can be represented as multiplex networks, i.e. in terms of a super-
position of various graphs, each related to a different mode of connection between
nodes. Hence, the definition of proper mathematical quantities aiming at cap-
turing the added level of complexity of those systems is required. Various steps
in this direction have been made. In the simplest case, dependencies between
layers are measured via correlation-based metrics, a procedure that we show to
be equivalent to the use of completely homogeneous benchmarks specifying only
global constraints. However, this approach does not take into account the hetero-
geneity in the degree and strength distributions, which is instead a fundamental
feature of real-world multiplexes. In this chapter, we compare the observed depen-
dencies between layers with the expected values obtained from maximum-entropy
reference models that appropriately control for the observed heterogeneity in the
degree and strength distributions. This information-theoretic approach results
in the introduction of novel and improved multiplexity measures that we test on
different datasets, i.e. the International Trade Network and the European Airport
Network. Our findings confirm that the use of homogeneous benchmarks can lead
to misleading results, and highlight the important role played by the distribution
of hubs across layers.

The results presented in this chapter have been published in the following reference:
V. Gemmetto, D. Garlaschelli, Scientific Reports, 5, 9120 (2015).
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1.1 Introduction

1.1 Introduction

The study of networks allows scientists to suitably represent and analyze biolog-
ical, economic and social systems as a set of units (nodes) connected by edges
(links) symbolizing interactions [1, 2, 3, 4].

However, this approach may actually lead to an oversimplification: indeed,
several systems are composed by units connected by multiple kinds of interaction.
In such systems, the same set of nodes is joined by various types of links, each
of those representing a different mode of connection [5]. The simplest way to
analyse such systems is the aggregation of the various levels in a single network,
but it turns out that such a simplification may discard fundamental information
about the real topology of the network and therefore about possible dynamical
processes acting on the system [6]. For instance, such an aggregation may result
in a loss of information about the distribution of the hubs across layers, which is
instead crucial for the control of several processes arising on an interdependent
network [7]. Then, in order to solve such an issue, in the last few years the study of
multi-layer networks has been pursued. In this context, new quantities aiming at
mathematically analyzing multi-level networks have been provided [8, 9, 10, 11];
furthermore, models of growth [12, 13, 14] and dynamical processes occurring on
multiplexes, such as epidemic spreading [15], diffusion [16], cooperation [17] and
information spreading [18] have been designed.

In this chapter, we follow the path towards the definition of measures that can
be applied to multi-level networks, in order to characterize significant structural
properties of these systems, in particular focusing on the analysis of the depen-
dencies between layers. We argue that, in order to properly characterize such
dependencies, a comparison between the observed correlation and some notion of
expected correlation is required. We therefore exploit the concept of multiplex en-
semble [19, 20, 21], aiming at the definition of suitable null models for multi-layer
complex networks, in order to compare the observed overlap between layers with
the expected overlap one would find in a random superposition of layers with the
same node-specific properties. In particular, since our purpose is precisely that of
measuring such dependencies, we will consider uncorrelated multiplex ensembles,
in order to define a null model for the real system so that it is possible to compare
the observed correlations with reference models where the overlap between layers
is actually randomized and, at the same time, important node-specific properties
of the real network are preserved.

Various efforts have already been made about the study of correlations in
multi-level networks [22, 23, 24], but the comparison of the observed results with
the expected ones has generally been based on a - sometimes implicit - assumption:
the benchmark was a completely homogeneous graph. In particular, here we show
that correlation-based measures of inter-layer dependency (of the type used e.g. in
ref.[22]) build on an implicit assumption of homogeneity, which in the unweighted
case is equivalent to the choice of the Random Graph as null model. Similarly,
for weighted networks, the chosen benchmark was equivalent to the Weighted
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Undirected multiplex networks

Random Graph, where the weight distribution is independent from the considered
pair of nodes [25].

However, this assumption of uniformity in the probability distributions strongly
contrasts with the observed findings in real-world complex systems. Indeed, one of
the most well-known features of complex networks is their heterogeneity [26], both
in the degree distribution and in the strength distribution; it is therefore crucial
to take this aspect into account when proper null models for graphs are designed.
Moreover, it has been recently shown that, in multiplex networks, the correla-
tion between degrees (and strengths) of nodes across different layers is also an
important structural feature that can have strong effects on the dynamics [7, 27].
Ultimately, such inter-layer degree correlations determine the distribution of hubs
across layers, i.e. whether the same nodes tend to be hubs across many layers,
or whether different layers are characterized by different hubs. We therefore aim
at measuring multiplexity in terms of the “residual” inter-layer dependencies that
persist after we filter out, for each layer separately, the effects induced by the
heterogeneity of the empirical degree (for unweighted networks) or strength (for
weighted graphs) distribution. We show that such a refinement can completely
change the final findings and lead to a deeper understanding of the actual depen-
dencies observed between layers of a real-world multiplex.

First, we introduce a new “absolute” measure of multiplexity designed to quan-
tify the overlap between layers of a multi-level complex network. Second, we de-
rive the expression of the expected value of such a quantity, both in the binary
and in the weighted case, for randomized networks, by enforcing different con-
straints. Third, we combine the “absolute” multiplexity and its expected value
into a filtered, “relative” measure of multiplexity that has the desired properties.
We finally apply our measures to two different real-world multiplexes, namely
the World Trade Multiplex Network and the European Airport Network, show-
ing that the analysis of the dependencies between layers can actually make some
important structural features of these systems explicit.

Indeed, while the former shows significant correlations between layers (i.e.,
traded commodities), in the latter almost no overlap can generally be detected,
thus clearly defining two opposite classes of multiplexes based on the observed
correlations. Furthermore, we will link such a behaviour with the distribution
of the hubs across layers, hence providing a straightforward explanation to the
observed findings.

1.2 Methods

1.2.1 Null models

It is possible to design null models for multi-level networks as maximum-entropy
ensembles on which we enforce a given set of constraints [21]. In particular, we
exploit the concept of uncorrelated multiplex ensemble, so that the definition of
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proper null models for the considered multiplex reduces to the definition of an
indipendent null model for any layer of the system. In order to do this, we take
advantage of the concept of canonical network ensemble, or exponential random
graph [28], i.e. the maximum-entropy family of graphs satisfying a set of con-
straints on average. In this context the resulting randomized graph preserves
only part of the topology of the considered real-world network and is entirely ran-
dom otherwise, thus it can be employed as a proper reference model. However,
fitting such previously defined models to real datasets is hard, since it is usually
computationally demanding as it requires the generation of many randomized
networks whose properties of interest have to be measured.

In this perspective, we exploit a fast and completely analytical maximum-
entropy method, based on the maximization of the likelihood function [29, 30, 31],
which provides the exact probabilities of occurrence of random graphs with the
same average constraints as the real network. From such probabilities it is then
possible to compute the expectation values of the properties we are interested in,
such as the average link probability or the average weight associated to the link
established between any two nodes. While the adoption of such a method is not
strictly required when dealing with global constraints like the total number of links
observed in a network (the so-called Random Graph), it becomes crucial when
facing the problem of enforcing local constraints such as the degree sequence or the
strength sequence (Binary or Weighted Configuration Model). More information
about such null models can be found in the following subsections and appendices.

1.2.2 Homogeneous null models
The simplest null model for a binary multiplex is an independent superposition
of layers in which each layer is a Random Graph (RG) [28], which enforces as
constraint the expected number of links in that layer. Such model, therefore,
provides a unique expected probability pα that a link between any two nodes is
established in layer α: however, such a reference model completely discards any
kind of heterogeneity in the degree distributions of the layers, resulting in graphs
where each node has on average the same number of connections, inconsistently
with the observed real networks. Thus, the probability of connection between any
two nodes in layer α is uniformly given by:

pα =
Lα

N(N − 1)/2
(1.1)

where Lα is the total number of links actually observed in layer α.
Similar considerations apply to weighted networks and the related Weighted

Random Graph (WRG) [25], i.e. the straightforward extension of the previous
Random Graph to weighted systems; in such a null model, the probability of
having a link of weight w between two nodes i and j is independent from the
choice of the nodes and only depends on the total weight observed in a layer and
on the number of nodes.
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Analogously to the corresponding Binary Random Graph, also this kind of
null model discards the simultaneous presence of nodes with high and low values
of the strengths (that is, a high or low sum of the weights associated to links
incident on that node).

1.2.3 Heterogeneous null models

To take into account the heterogeneity of the real-world networks, in the un-
weighted case we consider a null model where the multiplex is an independent su-
perposition of layers, each of which is a (Binary) Configuration Model (BCM) [32],
i.e. an ensemble of networks satisfying on average the empirical degree sequence
observed in that specific layer. Since we make use of the canonical ensembles, it
is possible to obtain from the maximum-likelihood method each probability pαij
that nodes i and j are connected in layer α (notice that such value pαij is basically
the expectation value of aαij under the chosen Configuration Model). Similarly,
as a null model for a weighted multiplex we consider an independent superposi-
tion of layers, each described by the Weighted Configuration Model (WCM) [33]:
here, for each layer separately, the enforced constraint is the strength sequence as
observed in the real-world multiplex. In this view, the likelihood maximization
provides the expectation value of each weight wαij for any pair of nodes i and j as
supplied by the Weighted Configuration Model. It is worth noticing that enforc-
ing the degree sequence (respectively, the strength sequence in the weighted case)
automatically leads to the design of a null model where also the total number of
links (respectively, the total weight) of the network is preserved. In the appen-
dices attached to this chapter we will provide equations generalizing, for instance,
equation (1.1), whose solution allows then to derive the analytical expression of
the expected link probability pαij and, in the weighted case, the expected link
weight wαij . In order to do this, we make use of a set of N auxiliary variables xαi
for any layer α, which are proportional to the probability of establishing a link
between a given node i and any other node (or, respectively for the weighted case,
establishing a link characterized by a given weight), being therefore directly in-
formative on the expected probabilities pαij (or, respectively, the expected weights
wαij).

Before introducing our measures of multiplexity, we make an important pre-
liminary observation. Simple measures of inter-layer dependency are based on
correlation metrics, which in turn rely on an assumption of uniformity, such as-
sumption being ultimately equivalent to the choice of a uniform Random Graph
as a null model; this will strengthen the choice of emplying heterogeneous bench-
marks throughout the entire thesis. We illustrate this result in more detail in the
appendices.
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1.2.4 Multiplexity

When unweighted networks are considered, we define the “absolute” binary mul-
tiplexity between any two layers α and β as:

mαβ
b =

2
∑
i<j min{aαij , a

β
ij}

Lα + Lβ
(1.2)

where Lα is the total number of links observed in layer α and aαij = 0, 1 depending
on the presence of the link between nodes i and j in layer α. Such a quantity
represents a normalized overlap between any pair of layers and can therefore be
thought of as a normalized version of the global overlap introduced in [21].

The previous definition can be easily extended to weighted multiplex networks.
We define the “absolute” weighted multiplexity as:

mαβ
w =

2
∑
i<j min{wαij , w

β
ij}

Wα +W β
(1.3)

where wαij represents the weight of the link between nodes i and j in layer α and
Wα is the total weight related to the links in that layer. Both (1.2) and (1.3)
range in [0, 1], are maximal when layers α and β are identical - that is, if there is
complete similarity between those two layers - and minimal when they are totally
different; in this perspective, they evaluate the tendency of nodes to share links
in distinct layers.

However, the above absolute quantities are uninformative without a compar-
ison with the value of multiplexity obtained when considering a null model. We
may indeed measure high values of multiplexity between two layers due to the
possibly large observed values of density, without any significant distinction be-
tween real dependence and overlap imposed by the presence of many links in each
layer (thus forcing an increase in the overlap itself).

Furthermore, we cannot draw a clear conclusion about the amount of correla-
tion between layers by just looking at the observed value, since such a measure is
not universal and, for instance, no comparison between different multiplexes can
be done based on the raw “absolute” multiplexity.

We therefore introduce the following “relative” or rescaled quantity along the
lines of refs. [34, 35]:

µαβ =
mαβ − 〈mαβ〉

1− 〈mαβ〉
(1.4)

where mαβ is the value measured for the observed real-world multiplex and 〈mαβ〉
is the value expected under a suitably chosen null model. The main null models
that we will consider are respectively the Random Graph (RG) and the Binary
Configuration Model (BCM) in the unweighted case, the Weighted Random Graph
(WRG) and the Weighted Configuration Model (WCM) in the weighted case. We
will characterize them in more detail in the appendices following this chapter.
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This rescaled quantity is now directly informative about the real correlation be-
tween layers: in this context, positive values of µαβ represent positive correlations,
while negative values are associated to anticorrelated pairs of layers; furthermore,
pairs of uncorrelated layers show multiplexity values comparable with 0.
One of the motivations of the present work is the consideration that, in the binary
case, when the Random Graph is considered as a null model, the previous quantity
(1.4) can actually be reduced to the standard correlation coefficient between the
entries of the adjacency matrix referred to any two layers α and β of a multi-level
graph, defined as:

Corr{aαij , a
β
ij} =

〈aαija
β
ij〉 − 〈aαij〉〈a

β
ij〉

σασβ
(1.5)

In the appendices, we show that the previous expression is nothing but a different
normalization of the rescaled binary multiplexity defined in (1.4):

Corr{aαij , a
β
ij} = F ·

(
mαβ − 〈mαβ〉

)
(1.6)

where F is a factor depending on Lα, Lβ and N .

1.3 Results

1.3.1 Binary analysis
We validate our definitions applying them to two different real-world multiplexes:
the World Trade Multiplex (WTM) (N = 207 countries, M = 96 layers repre-
senting traded commodities), available as a weighted multi-level network, and the
European Airport Network (N = 669 airports, M = 130 airlines), provided as
an unweighted system. A more detailed description of the International Trade
dataset, which is one of the main focuses of the entire thesis, can be found in the
appendix following this chapter.

The implementation of the concept of multiplexity to different networks can
lead to completely divergent results, according to the structural features of the
considered systems. Indeed, the application of (1.2) to the WTM leads to the
color-coded multiplexity matrix Mb shown in Figure 1.1(a). Such an array gen-
erally shows very high overlaps between layers, i.e. between different classes of
commodities, pointing out that usually each country tends to import from or
export to the same set of countries almost independently of the traded items;
this is true in particular for most of the edible products (layers characterized by
commodity codes ranging from 1 to 22, as listed in the aforementioned appendix.

In order to have a complete picture of the dependencies between layers of the
considered systems, we have to compare our findings with the overlaps expected
for multiplexes having only some of the properties in common with the observed
ones. The simplest benchmark, as well as the most widely used, is the Random
Graph (RG), which discards, as we said, any kind of heterogeneity in the degree
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a b c

Figure 1.1: Analysis of the binary multiplexity between layers of the
World Trade Multiplex in 2011. Color-coded matrices with entries given by
mαβ
b (a), µαβRG (b) and µαβBCM (c) for any pair of layers (commodities).

distributions of the layers. When we compute µαβRG for the World Trade Net-
work, we obtain the multiplexity matrix shown in Figure 1.1(b). The plot clearly
shows that most of the correlations are still present: this layer-homogeneous null
model, together with the presence of comparable densities across the various lay-
ers, does not significantly affect the expected overlaps. So far, we have discarded
heterogeneity in our null models. However, this can considerably affect the sig-
nificance of our findings. Therefore, we introduce heterogeneity in the degree
distribution within the reference model by means of the previously defined (Bi-
nary) Configuration Model (BCM). This way, it is actually possible to detect only
the non-trivial dependencies, therefore discarding all the overlaps simply due to
the possibly high density of the layers, that would otherwise increase the observed
interrelations even if no real correlation is actually present.

This is exactly what happens when the World Trade Network is analyzed.
Indeed, as shown in Figure 1.1(c), we find out that a significant amount of the
binary overlap observed in this network is actually due to the information included
in the degree sequence of the various layers, rather than to a real dependence
between layers. This method is therefore able to detect the really meaningful
similarity between layers, discarding the trivial overlap caused by the presence, for
instance, of nodes having a high number of connections in most of the layers. This
non-significant overlap is thus filtered out by our procedure. Such observations
clearly show that the Random Graph is not the most proper reference model in
order to obtain an appropriate representation of crucial properties of such multi-
level systems.

We now note that linear correlations have been used in the literature to pro-
duce dendrograms [22, 36]. As we mentioned, the use of linear correlations corre-
sponds to the choice of the Random Graph as null model. Here, we can instead
make use of µαβBCM to implement an improved hierarchical clustering procedure,
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a b c

Figure 1.2: Analysis of the binary multiplexity between layers of the
European Airport Network. Color-coded matrices with entries given by mαβ

b

(a), µαβRG (b) and µαβBCM (c) for any pair of layers (airlines).

as reported in the appendix.

A completely different behaviour can be observed for the European Airport
System. Indeed, low values of multiplexity observed for such a network (Figure
1.2(a)) illustrate nearly no overlap between most of the layers: this highlights the
well-known tendency of airline companies to avoid superpositions between routes
with other airlines. In Figure 1.2(b) we show the residual correlations obtained
after the application of the Random Graph: almost no difference can be perceived
with respect to Figure 1.2(a), since the expected overlap in this case is very small,
due to the very low densities of the various layers. We should point out that the
Random Graph is not a proper reference model for this real-world network, since
the assumption of uniformity in the degree of the different nodes (i.e., airports)
is actually far from the observed structure of such a system, as we will highlight
later. Nevertheless, in Figure 1.2(c) we show that, at first glance, the adoption
of the Configuration Model does not look strictly required when the European
Airport Network is considered, except for a more suitable mathematical approach,
since the overall matrix looks apparently similar to the previous Figure 1.2(b).
However, the presence of a larger number of negative values of multiplexity and the
simultaneous disappearance of most of the significantly high values highlight once
more the anti-correlated character of such a system, and this crucial structural
property of the airport multiplex network was not fully revealed by the application
of the Random Graph.

In this case, a dendrogram designed form matrices reported in Figure 1.2 would
not be meaningful, since most of the layers meet at a single root level, due to the
very low correlation observed between them.
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a b c

Figure 1.3: Analysis of the weighted multiplexity between layers of the
World Trade Multiplex in 2011. Color-coded matrices with entries given by
mαβ
w (a), µαβWRG (b) and µαβWCM (c) for any pair of layers (commodities).

1.3.2 Weighted analysis

Since the International Trade Network is represented by a weighted multiplex,
the analysis of weighted overlaps between layers of that system can be performed,
in order to obtain more refined information about the dependencies between dif-
ferent classes of commodities. We should indeed point out that, for the World
Trade Web, while the binary overlaps provided by (1.2) only supply information
about the dependencies between the topologies of the various layers representing
trade in different commodities, the weighted multiplexity defined in (1.3) is able
to detect patterns of correlation between quantities of imported and exported
classes of items. In this perspective, observing high correlations is therefore more
unlikely. This is due, mathematically, to the functional form of the definition of
the multiplexity given in (1.3), which is significantly dependent on the balance
between weights of the corresponding links in different layers; such a property,
therefore, tends to assign higher correlations to pairs of commodities character-
ized by similar global amount of trade, as we want.

In Figure 1.3(a) we show the color-coded matrix Mw associated to the raw
values of weighted multiplexity as observed in the International Trade Network:
clear dependencies between different layers are still present, but a comparison with
its corresponding binary matrix Mb(shown in Figure 1.1(a)) explicitly reveals
that, while some pairs of layers are significantly overlapping, several pairs of
commodities are now actually uncorrelated, as expected when the weights of the
links are taken into account. In order to provide information about the relation
between the observed dependencies between layers and the expected ones under a
given benchmark, as a first estimate, we calculate µαβWRG, therefore considering the
corresponding Weighted Random Graph (WRG) as a reference for our real-world
network. Our findings show, in Figure 1.3(b), a strongly uncorrelated behavior
associated to most of the pairs of commodities, in contrast with our intuitive
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expectations based on the results obtained in the binary case.
We then compare the observed multiplexity with its expected values under the

Weighted Configuration Model (WCM). Results, shown in Figure 1.3(c), exhibit
a completely different behavior with respect to Figure 1.3(b), thus highlighting
once more the importance of taking into account the heterogeneity in the weight
and degree distributions within the considered null model. Indeed, we observe
that, exploiting this more suitable reference, several pairs are still correlated,
even in the weighted case, some of them are actually uncorrelated, as expected by
looking at the corresponding binary matrix (Figure 1.1(c)), and only a few, with
respect to the Weighted Random Graph case, remain anti-correlated. In general,
however, the dependencies between layers in the weighted case are less noticeable,
as we can see from a comparison between the matrices shown in Figures 1.1(c)
and 1.3(c).

1.3.3 Hubs distribution

The different behaviours observed for the two considered multiplexes can be, at
least partly, explained in terms of distribution of the hubs across layers. As we
show in Figure 1.4(a) and 1.4(b), generally any two layers of the World Trade Mul-
tiplex exhibit the same set of hubs (which in this particular case are represented
by the richest and most industrialized countries). Indeed, the two network layers
plotted in the Figure are, already from visual inspection, very similar to each
other. This property produces a high dependence between layers, since the over-
lap is increased by the multiple presence of links in the various layers connecting
nodes to the hubs.

It is possible to show that this hubs distribution, leading to the higher overlap
between layers, is strongly correlated to the relation existing between the hidden
variables xi associated to each node in the different layers (we provide further
details about such variables in appendices). Indeed, as shown in Figure 1.4(c),
for the considered pair of layers (but several pairs actually exhibit the same be-
haviour) such a trend can be clearly represented by a straight line, thus pointing
out that nodes with higher xi in one layer (hence, with higher probability of es-
tablishing a link with any other node in that layer) generally also have higher xi
in a different layer.

However, when the European Airport Network is considered, an opposite trend
can be observed, thus a clear explanation of the small measured overlap applies;
indeed, Figures 1.5(a) and 1.5(b) show that in this case the layers can be approx-
imated to star-like graphs, with a single, largely connected hub and several other
poorly connected nodes. Though, the hub is in general different for almost any
considered layer, since each airline company is based on a different airport: in
the considered pair of layers, hubs are represented by Rome - Fiumicino airport
(FCO) for Alitalia and Amsterdam - Schiphol airport (AMS) for KLM. Such a
property decreases significantly the overlap between layers, thus leading to the
matrices previously shown in Figure 1.2.
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a b

c

Figure 1.4: Hubs distribution in the World Trade Multiplex. Top panels:
graphs representing two layers of the system, respectively those associated to trade
in plastic (a) and articles of iron and steel (b); nodes represent trading countries;
size of a node is proportional to its degree in that layer. Only links associated to
a trade larger than 100 millions dollars are reported. Bottom panel: scatter plot
of the hidden variables xi relative to each of the nodes for the same two layers;
the black line represents the identity line.

Similar considerations can be done when looking at Figure 1.5(c), where the
scatter plot of the hidden variables associated to the nodes in two different layers
is shown. We observe that no linear trend can be inferred, since only the two hubs
stand out from the bunch of the other airports (which are actually characterized
by different values of xi, even though this cannot be fully appreciated). It is
anyway clear that the hub of one layer, characterized by the highest value xi
(hence, with the highest probability of establishing a link with any other node in
that layer) is a poorly connected node in a different layer, being characterized by
a small value of xi.
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a b

c

Figure 1.5: Hubs distribution in the European Airport multiplex. Top
panels: graphs representing two layers of the system, respectively those associated
to Alitalia airline (a) and KLM airline (b); nodes represent european airports; size
of a node is proportional to its degree in that layer. All the observed links are
reported. Bottom panel: scatter plot of the hidden variables xi relative to each
of the nodes for the same two layers.

1.4 Discussion

In the last few years the multiplex approach has revealed itself as a useful frame-
work to study several real-world systems characterized by elementary units linked
by different kinds of connection. In this context, we have introduced new measures
aiming at analyzing dependencies between layers of the network, both for binary
and weighted multi-graphs. We showed that our measures of multiplexity are able
to extract crucial information from both sparse and dense networks by testing it
on different real-world multi-layer systems. We clearly found that a distinction
can be done based on the degree of overlap between links in different layers. For
instance, we showed that some multiplexes exhibit small overlap between links in
different layers, since just a limited number of nodes are active in many layers,
while most of them participate to one or few layers. However, for other systems,
such as the World Trade Multiplex Network (WTM), most of the pairs of nodes
are connected in several layers, so that such multiplexes exhibit large overlap
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between layers. Furthermore, we found that the multiplexity can also provide
interesting information about the distribution of hubs across the various layers;
indeed, systems characterized by nodes having many connections in most of the
layers, such as the WTM, tend to show higher values of raw binary multiplexity.
On the other hand, in other networks exhibiting values of multiplexity for most
of the pairs of layers close to 0, a node with a low degree in a given layer may
represent a hub in a different layer: the European Airport Network is a clear
prototype of such systems.

Our findings suggest that adopting proper null models for multi-level networks,
enforcing constraints taking into account dependencies between layers, is required
in order to suitably model such real-world systems.

Further research in this direction, including the studies reported in the fol-
lowing chapters, will hopefully provide a better understanding of the role of local
constraints in real-world multi-level systems.

Appendix

1.A Uncorrelated null models for multi-layer net-
works

We define the multiplex
−→
G = (G1, G2, . . . , GM ) as the superposition of M layers

Gα (α = 1, 2, . . . ,M), each of them represented by a (possibly weighted) network
sharing the same set of N nodes with the other ones, although we do not require
that all the vertices are active in each layer. Therefore, multiplex ensembles can
be defined by associating a probability P (

−→
G) to each multi-network, so that the

entropy S of the ensemble is given by:

S = −
∑
−→
G

P (
−→
G) lnP (

−→
G) (1.7)

It is then possible to design null models for multi-level networks by maximizing
such an entropy after the enforcement of proper constraints. In this context, pre-
vious works, mentioned in the main text, introduced the concepts of correlated
and uncorrelated multiplex ensembles, based on the possibility to introduce cor-
relations between layers within the null models. In particular, for an uncorrelated
ensemble the probability of a given multiplex can be factorized into the probabil-
ities of each single-layer network Gα belonging to that multiplex, as the links in
any two layers α and β are uncorrelated; thus, it is given by:

P (
−→
G) =

M∏
α=1

Pα(Gα) (1.8)

Instead, if we want to take into account correlations between layers, the previous
relation (1.8) does not hold.
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As stated in the main text, since our purpose is precisely that of measuring
such correlations, we are going to consider the former type of ensemble, in order
to define a null model for the real system so that it is possible to compare the
observed correlations with reference models where the overlap between layers
is actually randomized and, at the same time, important properties of the real
network are preserved.

In this perspective, therefore, the definition of proper null models for the
considered multiplex reduces to the definition of an indipendent null model for
any layer of the system. In order to do this, we take advantage of the concept of
canonical network ensemble, or exponential random graph, i.e. the randomized
family of graphs satisfying a set of constraints on average. In this context the
resulting randomized graph preserves only part of the topology of the considered
real-world network and is entirely random otherwise, thus it can be employed as
a proper reference model.

However, fitting such previously defined models to real datasets is hard, since
it is usually computationally demanding as it requires the generation of many
randomized networks whose properties of interest have to be measured. In this
perspective, we make use of a fast and completely analytical maximum-entropy
method, combined with the maximization of the likelihood function, which pro-
vides the exact probabilities of occurrence of random graphs with the same aver-
age constraints as the real network. From such probabilities it is then possible to
compute the expectation values of the properties we are interested in, such as the
average link probability or the average weight associated to the link established
between any two nodes. This procedure is general enough to be applied to any
network, including the denser ones, and does not require the sampling of the con-
figuration space in order to compute average values of the quantities of interest.
While the adoption of such a method is not strictly required when dealing with
global constraints like the total number of links observed in a network, it becomes
crucial when facing the problem of enforcing local constraints such as the degree
sequence or the strength sequence.

Indeed, so far the most widely used graph null model has been represented by
the Random Graph (RG), which enforces on average as constraint the expected
number of links in the network. Such model, therefore, provides a unique ex-
pected probability pα that a link between any two nodes is established in layer
α: however, as we said, such a reference model completely discards any kind of
heterogeneity in the degree distributions of the layers, resulting in graphs where
each node has on average the same number of connections, inconsistently with
the observed real networks. Thus, the probability of connection between any two
nodes in layer α is uniformly given by:

pα =
Lα

N(N − 1)/2
(1.9)
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where Lα is the total number of links actually observed in layer α:

Lα =
∑
i<j

aαij (1.10)

and aαij = 0, 1 depending on the presence of the link between nodes i and j in
layer α.

Similar considerations apply to weighted networks and the related Weighted
Random Graph (WRG), i.e. the straightforward extension of the previous Ran-
dom Graph to weighted systems; in such a null model, the probability of having
a link of weight w between two nodes i and j is independent from the choice of
the nodes, and it is given by the following geometric distribution:

P (wα) = (pα)w(1− pα) (1.11)

where the maximum-likelihood method shows that the optimal value of the pa-
rameter pα is given by:

pα =
2Wα

N(N − 1) + 2Wα
(1.12)

with Wα defined as the total weight observed in layer α (wαij is the weight asso-
ciated to the link between nodes i and j in the same layer):

Wα =
∑
i<j

wαij (1.13)

Similarly to the corresponding binary random graph, also this kind of null models
discards the simultaneous presence of nodes characterized by high and low values
of the strengths (that is, by a high or low sum of the weights associated to links
incident on that node).

To take into account the heterogeneity of the real-world networks within the
null models, in the unweighted case we consider the Binary Configuration Model
(BCM), i.e. the ensemble of networks satisfying on average a given degree se-
quence. Since we make use of the canonical ensembles, it is possible to obtain
from the maximum-likelihood method each probability pαij that nodes i and j are
connected in layer α (notice that such value pαij is basically the expectation value
of aαij under the chosen Configuration Model). Similarly, for weighted graphs
the Weighted Configuration Model (WCM) can be defined: here, the enforced
constraint is represented by the strength sequence as observed in the real-world
network. In this view, the likelihood maximization provides the expectation value
of each weight wαij for any pair of nodes i and j as supplied by the Weighted
Configuration Model. It is worth noticing that enforcing the degree sequence
(respectively, the strength sequence in the weighted case) automatically leads to
the design of a null model where also the total number of links (respectively, the
total weight) of the network is preserved. In the following section, we will provide
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equations generalizing equations (1.9) and (1.12), whose solution allows then to
derive the analytical expression of the expected link probability pαij and, in the
weighted case, the expected link weight wαij . In order to do this, we make use of
a set of N auxiliary variables xαi for any layer α, which are proportional to the
probability of establishing a link between a given node i and any other node (or,
respectively for the weighted case, establishing a link characterized by a given
weight), being therefore directly informative on the expected probabilities pαij (or,
respectively, the expected weights wαij).

1.B Maximum-likelihood method

We now briefly explain the maximum-likelihood method (more details about this
technique can be found in the appendix associated to Chapter 2, where it is also
extended to the directed case). In the binary case, when the observed degree
sequence represents the property that we want to preserve (i.e., in the so-called
configuration model), the method reduces to finding the solution to following set
of N coupled nonlinear equation, independently for each layer α = 1, 2, . . . ,M :∑

i<j

xαi x
α
j

1 + xαi x
α
j

= kαi ∀i = 1, 2, . . . , N (1.14)

where kαi is the observed degree of node i in layer α and the unknown variables
of the equation are the so-called N hidden variables associated to that layer.

Thus, the expected link probability pαij is given by, for any pair of nodes (i, j)
in any layer α:

pαij =
xαi x

α
j

1 + xαi x
α
j

(1.15)

which is therefore the generalization of the expression (1.9) in the previous sec-
tion. We can therefore see that such hidden variables xαi are proportional to the
expected link probability pαij in a given layer α: a higher value of xαi will cor-
respond to a higher expected probability of observing a link between i and any
other node j 6= i, and vice-versa.

Similarly, for weighted multiplexes, we can enforce the strength sequence ob-
served in a real network on a network ensemble, thus designing a proper null
model where the strength sequence of the considered real-world network is pre-
served, while the other properties are randomized. In this context, the maximum-
likelihood method for weighted graphs reduces to solving a set of N coupled non-
linear equations. For any node i in any layer α, we have:∑

i<j

xαi x
α
j

1− xαi xαj
= sαi (1.16)
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1.C Binary multiplexity

where sαi is the observed strength of node i in layer α and the unknown variables
of the equation are, again, the N hidden variables associated to the considered
layer.

Thus, the expected link weight wαij is given by, for any pair of nodes (i, j):

wαij =
xαi x

α
j

1− xαi xαj
(1.17)

hence generalizing the corresponding equation (1.12). In this case, the computed
hidden variables xαi are proportional to the expected link weight wαij in a given
layer α; a higher value of xαi will therefore correspond to a higher expected link
weight between i and any other node j 6= i, and vice-versa.

We can now derive the expression for the expectation values of the binary and
weighted multiplexity defined in the main text.

1.C Binary multiplexity
When the unweighted networks are considered we have defined the “absolute”
binary multiplexity between any two layers α and β as:

mαβ
b =

2
∑
i<j min{aαij , a

β
ij}

Lα + Lβ
(1.18)

with the previously introduced notation.
As we said, this quantity is informative only after a comparison with the value

of binary multiplexity obtained when considering a null model. We have therefore
introduced the following transformed or rescaled quantity:

µαβb =
mαβ
b − 〈m

αβ
b 〉

1− 〈mαβ
b 〉

(1.19)

where mαβ
b is the value measured for the observed real-world multiplex and 〈mαβ

b 〉
is the value expected under the chosen null model. We will show in the next
section that, when the Random Graph is considered as a null model, the previous
quantity (1.19) is actually the correlation coefficient between the entries of the
adjacency matrix referred to any two layers α and β of a multi-level graph.

We should point out that the raw intra-layer multiplexity mαα
b always leads to

a measured value equal to 1, representing complete similarity between any layer
and itself. However, the rescaled intra-layer multiplexity µααBCM actually leads
to an indeterminate value; therefore, we choose to set this value by construction
equal to 1 too, for sake of clarity.

In order to compute µαβb we should then calculate the expected multiplexity
under the chosen null model, that is:

〈mαβ
b 〉 =

2
∑
i<j〈min{aαij , a

β
ij}〉

〈Lα〉+ 〈Lβ〉
(1.20)
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However, since both the considered null models preserve the average number of
links in each layer as constraint, we have just to evaluate the analytical expression
for the expected value of the minimum of two variables. In the unweighted case,
this is easy because it reduces to the evaluation of the expected minimum between
two indipendent, binary variables. In particular, when the Configuration Model
is considered (the extension to the Random Graph is straightforward), the prob-
ability that a link exists between nodes i and j is given by the mass probability
function of a Bernoulli-distributed variable:

P (aαij) = p
aij
ij (1− pij)(1−aij) (1.21)

Therefore, we have for the configuration model:

〈min{aαij , a
β
ij}〉BCM =

∑
aαij ,a

β
ij

min{aαij , a
β
ij}P

(
min{aαij , a

β
ij}
)

=

= 0·P
(

min{aαij , a
β
ij} = 0

)
+ 1·P

(
min{aαij , a

β
ij} = 1

)
=

= P
(

min{aαij , a
β
ij} = 1

)
=

= P
(
aαij = 1

)
P
(
aβij = 1

)
=

= pαijp
β
ij (1.22)

and similarly for the Random Graph:

〈min{aαij , a
β
ij}〉RG = pαpβ (1.23)

where we define pα as the fraction of links actually present in that layer, as we
have already done before:

pα =
Lα

N(N − 1)/2
(1.24)

It is now possible to compute the analytical expression for the rescaled multi-
plexity. We obtain for the Random Graph:

µαβRG =
2
∑
i<j

(
min{aαij , a

β
ij} − pαpβ

)
∑
i<j

(
aαij + aβij − 2pαpβ

) (1.25)

and for the Binary Configuration Model:

µαβBCM =
2
∑
i<j

(
min{aαij , a

β
ij} − pαijp

β
ij

)
∑
i<j

(
aαij + aβij − 2pαijp

β
ij

) (1.26)

33



1.C Binary multiplexity

1.C.1 Binary multiplexity: z-scores
As we have already said, such rescaled quantities provide proper information
about the similarity between layers of a multiplex, by evaluating the dependencies
measured in a real network with respect to what we would expect, on average, for
an ensemble of multi-level networks sharing only some of the topological properties
of the observed one. However, we cannot understand, from the obtained values of
multiplexity itself, whether the observed value of mαβ

b is actually compatible with
the expected one, as µαβBCM (and the correspondig value related to the Random
Graph) does not provide any information about the standard deviation associated
to the expected value of multiplexity.

In order to solve this issue, we introduce the z-score associated to the previ-
ously defined multiplexity:

z
[
mαβ
b

]
=
mαβ
b − 〈m

αβ
b 〉

σ
[
mαβ
b

] (1.27)

where mαβ
b is the measured multiplexity between a given pair of layers on the

real-world network, 〈mαβ
b 〉 is the value expected under the chosen null model and

σ[mαβ
b ] is the related standard deviation. The z-score, therefore, shows by how

many standard deviations the observed value of multiplexity differs with respect
to the expected one for any pair of layers. In particular, in the binary case such
a quantity becomes:

z
[
mαβ
b

]
=

∑
i<j min{aαij , a

β
ij} −

∑
i<j〈min{aαij , a

β
ij}〉

σ
[∑

i<j min{aαij , a
β
ij}
] (1.28)

Interestingly, not only the expected value, but even the standard deviation
can be calculated analytically. Indeed:

σ2
[
min{aαij , a

β
ij}
]

= 〈min2{aαij , a
β
ij}〉 − 〈min{aαij , a

β
ij}〉

2 (1.29)

Exploiting again the binary character of the two indipendent variables aαij and a
β
ij ,

the expected value of the square of the minimum becomes for the Configuration
Model:

〈min2{aαij , a
β
ij}〉BCM =

∑
aαij ,a

β
ij

min2{aαij , a
β
ij}P

(
min{aαij , a

β
ij}
)

=

= 0·P
(

min{aαij , a
β
ij} = 0

)
+ 1·P

(
min{aαij , a

β
ij} = 1

)
=

= P
(

min{aαij , a
β
ij} = 1

)
=

= P
(
aαij = 1

)
P
(
aβij = 1

)
=

= pαijp
β
ij (1.30)
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Therefore, the standard deviation, required in order to evaluate the z-score asso-
ciated to the multiplexity, is given by:

σ

∑
i<j

min{aαij , a
β
ij}

 =

√√√√∑
i<j

[
pαijp

β
ij −

(
pαijp

β
ij

)2
]

(1.31)

The analytical value of the z-score related to the binary multiplexity, when the
Configuration Model is taken into account, is then:

zαβBCM =

∑
i<j min{aαij , a

β
ij} −

∑
i<j p

α
ijp

β
ij√∑

i<j

[
pαijp

β
ij −

(
pαijp

β
ij

)2
] (1.32)

Extending such results to the Random Graph is immediate, since everything re-
duces to a change in the definition of the probability of observing a link between
any given pair of nodes in each layer. Hence, the z-score associated to the binary
multiplexity according to the binary Random Graph is given by:

zαβRG =

∑
i<j min{aαij , a

β
ij} −

∑
i<j p

αpβ√∑
i<j

[
pαpβ − (pαpβ)2

] (1.33)

where we used the previous definitions for pα and pβ .
We should point out that such z-scores should in principle be defined only if

the associated property (in this case, µαβBCM ) is normally distributed; nevertheless,
even if such assumption does not occur, they provide important information about
the consistency between observed and randomized values. It is worth saying that
these z-scores provide a different kind of information with respect to the previous
multiplexities. Mathematically, the only correlation between, for example, µαβBCM
and the corresponding zαβBCM is the sign concordance; furthermore, the z-score is
useful in order to understand whether, for instance, values of multiplexity close
to 0 are actually comparable with 0, so that we can consider those two layers as
uncorrelated, or they are instead significantly unexpected, although very small.
In this perspective, we should not expect a particular relation between such two
variables µαβBCM and zαβBCM (or, respectively, µαβRG and zαβRG).

1.C.2 Relationship with the correlation coefficient

A possible definition of correlation between layers of a multiplex builds on the
standard correlation coefficient:

Corr{aαij , a
β
ij} =

〈aαija
β
ij〉 − 〈aαij〉〈a

β
ij〉

σασβ
(1.34)
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1.C Binary multiplexity

Hence, a value of correlation equal to 0 represents a pair of uncorrelated layers
only if the probability distributions of aαij and aβij are independent from the cho-
sen node, that is, if all the edges in a certain layer are statistically equivalent.
However, this leads to a probability of establishing a given link which is common
to each pair of nodes, and this is the assumption behind the Random Graph.

In this context, it is then possible to show that, when the Binary Random
Graph is taken into consideration, our novel measure of multiplexity can be re-
duced to the usual definition of correlation coefficient. Indeed, we have:

〈aαija
β
ij〉 =

2
∑
i<j a

α
ija

β
ij

N(N − 1)
=

=
2
∑
i<j min{aαij , a

β
ij}

Lα + Lβ
Lα + Lβ

N(N − 1)
=

= mαβ
b

Lα + Lβ

N(N − 1)
(1.35)

Moreover, the average value of aαij over all the pairs of nodes in layer α is given
by:

〈aαij〉 =
2Lα

N(N − 1)
(1.36)

and similarly for layer β:

〈aβij〉 =
2Lβ

N(N − 1)
(1.37)

Hence,

〈aαij〉〈a
β
ij〉 =

4LαLβ

N2(N − 1)2
(1.38)

On the contrary, the expected value of multiplexity under random graph is given
by:

〈mαβ
b 〉 =

2
∑
i<j p

αpβ

Lα + Lβ
=

=
N(N − 1)
Lα + Lβ

2Lα

N(N − 1)
2Lβ

N(N − 1)
=

=
1

N(N − 1)
4LαLβ

Lα + Lβ
(1.39)

There is therefore a direct relation between 〈aαij〉〈a
β
ij〉 and 〈m

αβ
b 〉:

〈aαij〉〈a
β
ij〉 =

4LαLβ

N2(N − 1)2
=

= 〈mαβ
b 〉

Lα + Lβ

N(N − 1)
(1.40)
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Furthermore, we need to derive the expression for the standard deviation σα and
σβ :

σα =
√
〈
(
aαij
)2〉 − 〈aαij〉2 =

=
√
〈aαij〉

(
1− 〈aαij

)
=

=

√
2Lα

N(N − 1)

[
1− 2Lα

N(N − 1)

]
(1.41)

and analogously for β. Hence, the correlation coefficient between aαij and aβij is
given by:

Corr{aαij , a
β
ij} =

Lα+Lβ

N(N−1)m
αβ
b −

Lα+Lβ

N(N−1) 〈m
αβ
b 〉

2
N(N−1)

√
LαLβ

(
1− 2Lα

N(N−1)

)(
1− 2Lβ

N(N−1)

)
=

(
Lα + Lβ

) (
mαβ
b − 〈m

αβ
b 〉
)

2
√
LαLβ

(
1− 2Lα

N(N−1)

)(
1− 2Lβ

N(N−1)

) (1.42)

It is therefore clear that, apart from a different normalization factor (depending
on Lα and Lβ), our definition of binary rescaled multiplexity, when the Random
Graph is considered as null model, reduces to the usual correlation coefficient
(1.34).

However, such a property does not hold when a different reference model, such
as the Configuration Model, is considered.

1.D Weighted multiplexity
In the main text, we have also extended the previous definitions to weighted
multiplex networks. We have defined the “absolute” weighted multiplexity as:

mαβ
w =

2
∑
i<j min{wαij , w

β
ij}

Wα +W β
(1.43)

where wαij represents the weight of the link between nodes i and j in layer α and
Wα is the total weight related to the links in that layer.

Furthermore, we have defined the following transformed or rescaled quantity:

µαβw =
mαβ
w − 〈mαβ

w 〉
1− 〈mαβ

w 〉
(1.44)

where 〈mαβ
w 〉 is the value measured for the observed real-world network and 〈mαβ

w 〉
is the value expected under the considered reference model. Again, the sign of
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1.D Weighted multiplexity

µαβw is then directly informative about the weighted dependency existing between
layers.

In this context, the expected value of weighted multiplexity is given by:

〈mαβ
w 〉 =

2
∑
i<j〈min{wαij , w

β
ij}〉

〈Wα〉+ 〈W β〉
(1.45)

However, since both the Weighted Random Graph and the Weighted Configura-
tion Model preserve the average total weight associated to the links in each layer
as constraint, also in this case we just need to evaluate the analytical expres-
sion for the expected value of the minimum of two variables; the only difference
with respect to the binary description is related to a change in the underlying
probability distribution.

Indeed, in the weighted case, when the Weighted Configuration Model is con-
sidered (again, the extension to the Weighted Random Graph is straightforward)
such variables are distributed according to a geometrical distribution:

P (wαij) = p
wαij
ij (1− pαij) (1.46)

In order to quantify such an expectation value, we exploit the cumulative distri-
bution of the minimum between the considered variables:

P
(

min{wαij , w
β
ij} ≥ w

)
= P

(
wαij ≥ w

)
P
(
wβij ≥ w

)
=

=
(
pαijp

β
ij

)w
(1.47)

Thus, the expected minimum, under Weighted Configuration Model, becomes:

〈min{wαij , w
β
ij}〉WCM =

∑
w′

w′[P
(

min{wαij , w
β
ij} ≥ w

′
)

+

− P
(

min{wαij , w
β
ij} ≥ w

′ + 1
)

] =

=
∑
w′

w′
[(
pαijp

β
ij

)w′
−
(
pαijp

β
ij

)w′+1
]

=

=
pαijp

β
ij

1− pαijp
β
ij

(1.48)

and, for the Weighted Random Graph:

〈min{wαij , w
β
ij}〉WRG =

pαpβ

1− pαpβ
(1.49)

where we define pα, according to the likelihood maximization, as:

pα =
Wα

Wα +N(N − 1)/2
, (1.50)
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We can now compute the analytical expression for the rescaled multiplexity, ac-
cording to both the chosen null models. We obtain for the Weighted Random
Graph (WRG):

µαβWRG =
2
∑
i<j

(
min{wαij , w

β
ij} −

pαpβ

1−pαpβ

)
∑
i<j

(
wαij + wβij − 2 pαpβ

1−pαpβ

) (1.51)

and for the Weighted Configuration Model (WCM):

µαβWCM =
2
∑
i<j

(
min{wαij , w

β
ij} −

pαijp
β
ij

1−pαijp
β
ij

)
∑
i<j

(
wαij + wβij − 2

pαijp
β
ij

1−pαijp
β
ij

) (1.52)

with the previously defined notation.

1.D.1 Weighted multiplexity: z-scores
Furthermore, we can extend to the weighted case the analysis of the z-scores
associated to the values of multiplexity as defined in (1.44). We can define it in
the usual way:

z
[
mαβ
w

]
=

∑
i<j min{wαij , w

β
ij} −

∑
i<j〈min{wαij , w

β
ij}〉

σ
[∑

i<j min{wαij , w
β
ij}
] (1.53)

Since:

σ2
[
min{wαij , w

β
ij}
]

= 〈min2{wαij , w
β
ij}〉 − 〈min{wαij , w

β
ij}〉

2

(1.54)

we just have to compute the analytical expression for the expected value of the
square of minimum bewteeen wαij and wβij . Then, following the same procedure
adopted for (1.48) we find:

〈min2{wαij , w
β
ij}〉WCM =

∑
w′

(w′)2 [P
(

min{wαij , w
β
ij} ≥ w

′
)

+

− P
(

min{wαij , w
β
ij} ≥ w

′ + 1
)

] =

=
∑
w′

(w′)2
[(
pαijp

β
ij

)w′
−
(
pαijp

β
ij

)w′+1
]

=

=
pαijp

β
ij +

(
pαijp

β
ij

)2

(
1− pαijp

β
ij

)2 (1.55)
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and therefore the standard deviation is:

σ

∑
i<j

min{wαij , w
β
ij}

 =

√√√√√√∑
i<j

pαijpβij +
(
pαijp

β
ij

)2

(
1− pαijp

β
ij

)2 −

(
pαijp

β
ij

)2

(
1− pαijp

β
ij

)2

(1.56)
Finally, the z-score associated to the weighted multiplexity under Weighted Con-
figuration Model is therefore given by:

zαβWCM =

∑
i<j min{wαij , w

β
ij} −

∑
i<j

pαijp
β
ij

1−pαijp
β
ij√∑

i<j

pαijp
β
ij

(1−pαijp
β
ij)

2

(1.57)

Analogously, we get:

zαβWRG =

∑
i<j min{wαij , w

β
ij} −

∑
i<j

pαpβ

1−pαpβ√∑
i<j

pαpβ

(1−pαpβ)2

(1.58)

for the Weighted Random Graph, where we used the previous definitions for pα
and pβ .

1.E Additional results

As we stated in the main text, in order to have a better understanding of the
correlations between layers, it is possible to implement a hierarchical clustering
procedure starting from each of the aforementioned multiplexity matrices. How-
ever, we have to define a notion of distance between layers, starting from our
notion of dependency. We can define a distance dαβ between any pair of com-
modities in the following way:

dαβ =

√
1− µαβBCM

2
. (1.59)

where we chose to consider, for instance, the transformed multiplexity under Bi-
nary Configuration Model. Hence, the maximum possible distance dαβ between
any two layers is 1 (when layers α and β show multiplexity µαβBCM = 1), while the
minimum one is 0 (corresponding to µαβBCM = −1). We can therefore represent the
layers of the multiplex as the leaves of a taxonomic tree, where highly correlated
communities meet at a branching point which is closer to baseline level. In Figure
1.6 we show the dendrogram obtained by applying the Average Linkage Clustering
Algorithm to the matrix representing values of multiplexity µαβBCM for the World
Trade Multiplex (WTM). We can see that some groups of similar commodities are
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Figure 1.6: Dendrogram of commodities traded in 2011 in the WTM
as obtained applying the Average Linkage Clustering Algorithm to the
binary rescaled multiplexity µαβBCM . Colors of the leaves represent different
classes of commodities, as reported in the last Section of this Appendix.
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clearly visible (for instance, the group of edible commodities can be easily identi-
fied), while in other cases apparently distant commodities are grouped together,
pointing out that some unexpected dependencies are present. The dendrogram
reported in Figure 1.6 therefore represents a refinement of the taxonomic tree
reported in previous studies, where the usual correlation coefficient was employed
to define the dependency between layers. Similar dendrograms can be designed
starting from the matrices representing values of µαβRG or weighted multiplexity
µαβWRG and µαβWCM .

Moreover, it is possible to perform the same analysis on the European Airport
Network. However, a dendrogram in this case would not be meaningful, since
most of the layers meet at a single root level, due to the very low correlation
observed between them.

As we said, color-coded multiplexity matrices, as shown in the main text, are
useful in order to detect the meaninful dependencies between layers in a multiplex,
but they do not supply any information about the discrepancy of the observed
values from the corresponding expected ones. Hence, the introduction of suitable
z-scores associated to the previously defined quantities is required. Moreover, it
is worth reminding that the information provided by (1.26) (respectively (1.25)
for the Random Graph) is not necessarily connected to that supplied by (1.32)
(respectively, (1.33)) Indeed, while the multiplexity by itself detects the degree
of correlation between layers of a multi-level network, the corresponding z-scores
reveal how significant those values actually are with respect to our expectations.
In Figure 1.7(a) we show, for the World Trade Multiplex (WTM), the scatter

a b

Figure 1.7: Significance of the binary multiplexity values for the World
Trade Multiplex. Scatter plots of binary multiplexity values µαβb vs the corre-
sponding z-score for each pair of layers, respectively for Random Graph (a) and
Binary Configuration Model (b), for the WTM.

plot of the values of binary multiplexity versus the corresponding z-scores, after
comparing the observed values with the expected ones under Random Graph.
We show that observed very large values of z-scores reveal a high significance of
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the previously obtained overlaps; such a consideration therefore points out that
even the pairs of layers showing low (but positive) values of multiplexity cannot
actually be considered as uncorrelated. Furthermore, a clear correlation between
µαβRG and zαβRG can be observed, thus large values of binary multiplexity correspond
to large z-scores, and vice-versa.

Similar considerations can be done when the Binary Configuration Model is
considered as a benchmark. Indeed, as we show in Figure 1.7(b), a large cor-
relation between µαβBCM and zαβBCM is still present when we consider the WTM;
moreover, since almost all the z-scores are higher than the widely used critical
value z∗BCM = 2 (so that almost no pair of layers shows a multiplexity lying
within 2 standard deviations form the expected value), we highlight that most
of the pairs therefore exhibit unexpectedly high correlations with respect to the
corresponding average value obtained when randomizing the real-world layers ac-
cording to the Configuration Model, similarly to what we found before for the
Random Graph.

However, if we look at the absolute values of such z-scores, we observe that the
significance of the values of multiplexity under Random Graph (µαβRG) is generally
much higher than that measured under Binary Configuration Model (µαβBCM ).
This property, which will still be true in the following Figures, is actually not
surprising, since the Configuration Model enforces more constraints and therefore
leads to higher similarity with the real network w.r.t the Random Graph.

a b

Figure 1.8: Significance of the binary multiplexity values for the Euro-
pean Airport Network. Scatter plots of binary multiplexity values µαβb vs the
corresponding z-score for each pair of layers, respectively for Random Graph (a)
and Binary Configuration Model (b).

A different trend can be observed when the European Airport Network is taken
into account (Figure 1.8(a)). Indeed, it is still clear a high correlation between
values of multiplexity and their respective z-scores when the Random Graph is
considered. However, many z-scores associated to multiplexities close to 0, in
this case, are now close to 0 themselves, therefore suggesting that many pairs of
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layers (i.e. airline companies) may actually be anti-correlated rather than simply
uncorrelated. In this case, the adoption of a more refined null model is then
crucial in order to deeply understand the structural properties of such a system.

When the Binary Configuration Model is considered as benchmark, however,
the analysis of the corresponding scatter plots dramatically changes. However,
as we said, these results are strongly dependent on the considered network. In-
deed, Figure 1.8(b) exhibits a completely different trend with respect, for instance,
to the corresponding Figure 1.7(b) (related to the World Trade Multiplex): no
correlation between µαβBCM and zαβBCM can be observed in this case, so that the
same value of multiplexity can be either associated to a low z-score (thus being
compatible with the expected value under the chosen Configuration Model) or to
very high z-scores (hence unexpectedly different from the model’s expectation).
Moreover, Figure 1.8(b) clearly shows the sign-concordance existing between the
multiplexity and the associated z-score that we pointed out in the previous Sec-
tion. However, no other clear trend can be inferred from such a plot, therefore
pointing out the importance of taking into account both the quantities (µαβBCM
and zαβBCM ) in order to have a complete understanding of the correlations between
layers of a multiplex.

Furthermore, we should highlight once more that, in terms of absolute z-
scores values, the significance of the values of multiplexity under Random Graph
(µαβRG) is usually much higher than that observed after the comparison with the
Configuration Model (µαβBCM ), as we have already found before for the WTM.

Similarly, we can analyze the patterns of correlations resulting from the z-
scores associated to the weighted multiplexity, as defined in (1.58) and (1.57). In
Figure 1.9(a) we show the relation between the values of weighted multiplexity for
any pair of layers and the related z-score, computed with respected to the expected
multiplexity according to the Weighted Random Graph. The sign concordance
is still clear, but the correlation between µαβWRG and zαβWRG is much less sharp
with respect to the corresponding binary case, especially for negative values of
multiplexity.

Even more so, such a weak correlation between weighted multiplexity and the
corresponding z-score completely disappears when the considered benchmark is
the Weighted Configuration Model (Figure 1.9(b)): in this case the same value
of µαβWCM may correspond to z-scores even characterized by different orders of
magnitude, thus pointing out once more the importance of the introduction of a
notion of standard deviation referred to the average 〈µαβWCM 〉. Indeed, the same
value of observed multiplexity can actually be either extremely unexpected or in
full agreement with the null model’s prediction.
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a b

Figure 1.9: Significance of the weighted multiplexity values for the World
Trade Multiplex. Scatter plots of weighted multiplexity values µαβw vs the
corresponding z-scores for each pair of layers, respectively for Weighted Random
Graph (a) and Weighted Configuration Model (b).

1.F International Trade Multiplex Network: list
of layers

Throughout this thesis we meticulously analyze the World Trade Multiplex Net-
work (WTM), as provided by the BACI database mentioned in the main text. The
data provide information about import and export between N = 207 countries
(we focus in particular on the year 2011) and turn out to have a straightforward
representation in terms of multi-layered network; it is indeed possible to disag-
gregate the global trade between any two countries into the import and export in
a given commodity, so that the global trade system can be thought of as the su-
perposition of all the layers. The network is then composed by 207 countries and
M = 96 different commodities, according to the standard international classifica-
tion HS1996 (the list of commodities is reported below in Table 1.1). While the
aggregated network shows a density higher than 55%, the various layers are char-
acterized by densities from 6% (related to trade in silk) to 45% (for import-export
of mechanical appliances and parts thereof). Such heterogeneity may suggest that
a multiplex analysis is therefore required. Interestingly, in this case each of the
layers is represented by a weighted network, where the weight associated to any
link in a layer stands for the amount of money exchanged by a given pair of
countries in that layer (i.e., commodity).
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1.F International Trade Multiplex Network: list of layers

Commodity
01 Live animals •
02 Meat and edible meat

offal
•

03 Fish, crustaceans and
acquatic invertebrates

•
04 Dairy produce; birs eggs;

honey and other edible
animal products

•

05 Other products of animal
origin

•
06 Live trees, plants; bulbs,

roots; cut flowers and
ornamental foliage tea

and spices

•

07 Edible vegetables and
certain roots and tubers

•
08 Edible fruit and nuts;

citrus fruit or melon peel
•

09 Coffee, tea, mate and
spices

•
10 Cereals •
11 Milling products; malt;

starch; inulin; wheat
gluten

•

12 Oil seeds and oleaginous
fruits; miscellaneous

grains, seeds and fruit;
industrial or medicinal
plants; straw and fodder

•

13 Lac; gums, resins and
other vegetable sap and

extracts

•

14 Vegetable plaiting
materials and other
vegetable products

•

15 Animal, vegetable fats
and oils, cleavage
products, etc.

•

16 Edible preparations of
meat, fish, crustaceans,
mollusks or other aquatic

invertebrates

•

17 Sugars and sugar
confectionary

•
18 Cocoa and cocoa

preparations
•

19 Preparations of cereals,
flour, starch or milk;

bakers wares

•

20 Preparations of
vegetables, fruit, nuts or

other plant parts

•

21 Miscellaneous edible
preparations

•
22 Beverages, spirits and

vinegar
•

23 Food industry residues
and waste; prepared

animal feed

•

24 Tobacco and
manufactured tobacco

substitutes

•

25 Salt; sulfur; earth and
stone; lime and cement

plaster

•

26 Ores, slag and ash •
27 Mineral fuels, mineral oils

and products of their
distillation; bitumin

substances; mineral wax

•

28 Inorganic chemicals;
organic or inorganic

compounds of precious
metals, of rare-earth
metals, of radioactive
elements or of isotopes

•
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29 Organic chemicals •
30 Pharmaceutcal products •
31 Fertilizers •
32 Tanning or dyeing

extracts; tannins and
derivatives; dyes,

pigments and coloring
matter; paint and

varnish; putty and other
mastics; inks

•

33 Essential oils and
resinoids; perfumery,
cosmetic or toilet

preparations

•

34 Soap; waxes; polish;
candles; modeling pastes;
dental preparations with

basic of plaster

•

35 Albuminoidal substances;
modified starch; glues;

enzymes

•

36 Explosives; pyrotechnic
products; matches;

pyrophoric alloys; certain
combustible preparations

•

37 Photographic or
cinematographic goods

•
38 Miscellaneous chemical

products
•

39 Plastics and articles
thereof

•
40 Rubber and articles

thereof
•

41 Raw hides and skins
(other than furskins) and

leather

•

42 Leather articles; saddlery
and harness; travel goods,
handbags and similar;
articles of animal gut
(not silkworm gut)

•

43 Furskins and artificial fur;
manufactures thereof

•
44 Wood and articles of

wood; wood charcoal
•

45 Cork and articles of cork •
46 Manufactures of straw,

esparto or other plaiting
materials; basketware and

wickerwork

•

47 Pulp of wood or of other
fibrous cellulosic material;
waste and scrap of paper

and paperboard

•

48 Paper and paperboard
and articles thereof;
paper pulp articles

•

49 Printed books,
newspapers, pictures and
other products of printing
industry; manuscripts,

typescripts

•

50 Silk, including yarns and
woven fabric thereof

•
51 Wool and animal hair,

including yarn and woven
fabric

•

52 Cotton, including yarn
and woven fabric thereof

•
53 Other vegetable textile

fibers; paper yarn and
woven fabrics of paper

yarn

•

54 Manmade filaments,
including yarns and

woven fabrics

•

55 Manmade staple fibers,
including yarns and

woven fabrics

•
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56 Wadding, felt and
nonwovens; special yarns;
twine, cordage, ropes and
cables and article thereof

•

57 Carpets and other textile
floor coverings

•
58 Special woven fabrics;

tufted textile fabrics;
lace; tapestries;

trimmings; embroidery

•

59 Impregnated, coated,
covered or laminated
textile fabrics; textile

articles for industrial use

•

60 Knitted or crocheted
fabrics

•
61 Apparel articles and

accessories, knitted or
crocheted

•

62 Apparel articles and
accessories, not knitted or

crocheted

•

63 Other textile articles;
needlecraft sets; worn

clothing and worn textile
articles; rags

•

64 Footwear, gaiters and the
like and parts thereof

•
65 Headgear and parts

thereof
•

66 Umbrellas, walking sticks,
seat sticks, riding crops,
whips, and parts thereof

•

67 Prepared feathers, down
and articles thereof;

artificial flowers; articles
of human hair

•

68 Articles of stone, plaster,
cement, asbestos, mica or

similar materials

•

69 Ceramic products •
70 Glass and glassware •
71 Pearls, precious stones,

metals, coins, etc.
•

72 Iron and steel •
73 Articles of iron and steel •
74 Copper and articles

thereof
•

75 Nickel and articles thereof •
76 Aluminum and articles

thereof
•

77 Lead and articles thereof •
78 Zinc and articles thereof •
79 Tin and articles thereof •
80 Other base metals;

cermets; articles thereof
•

81 Tools, implements,
cutlery, spoons and forks
of base metal and parts

thereof

•

82 Miscellaneous articles of
base metal

•
83 Nuclear reactors, boilers,

machinery and
mechanical appliances;

parts thereof

•

84 Electric machinery,
equipment and parts;
sound equipment;

television equipment

•

85 Railway or tramway;
locomotives, rolling stock,
track fixtures and parts
thereof; mechanical and
electromechanical traffic

signal equipment

•
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86 Vehicles (not railway,
tramway, rolling stock);
parts and accessories

•

87 Aircraft, spacecraft, and
parts thereof

•
88 Ships, boats and floating

structures
•

89 Optical, photographic,
cinematographic,

measuring, checking,
precision, medical or

surgical
instruments/apparatus;
parts and accessories

•

90 Clocks and watches and
parts thereof

•
91 Musical instruments;

parts and accessories
thereof

•

92 Arms and ammunition,
parts and accessories

thereof

•

93 Furniture; bedding,
mattresses, cushions, etc.;
other lamps and light

fitting, illuminated signs
and nameplates,

prefabricate buildings

•

94 Toys, games and sports
equipment; parts and

accessories

•

95 Miscellaneous
manufactured articles

•
96 Works of art, collectors

pieces and antiques
•

Table 1.1: List of commodities of
the WTM, according to the stan-
dard international classification
HS1996, and associated codes, as
provided by the BACI-Comtrade
dataset. In the first column we show
the number representing each product.
In the third column we divide such com-
modities in classes of similar traded
items, each of them being represented
by a different colored circle; colors are
the same as reported in the dendrogram
in Figure 1.6.
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Chapter 2

Directed multiplex networks

Real-world multi-layer networks feature nontrivial dependencies among links of
different layers. Here we argue that, if links are directed, dependencies are twofold.
Besides the ordinary tendency of links of different layers to align as the result of
‘multiplexity’, there is also a tendency to anti-align as the result of what we call
‘multireciprocity’, i.e. the fact that links in one layer can be reciprocated by
opposite links in a different layer. Multireciprocity generalizes the scalar defi-
nition of single-layer reciprocity to that of a square matrix involving all pairs
of layers. We introduce multiplexity and multireciprocity matrices for both bi-
nary and weighted multiplexes and validate their statistical significance against
maximum-entropy null models that filter out the effects of node heterogeneity. We
then perform a detailed empirical analysis of the World Trade Multiplex (WTM),
representing the import-export relationships between world countries in different
commodities. We show that the WTM exhibits strong multiplexity and multire-
ciprocity, an effect which is however largely encoded into the degree or strength
sequences of individual layers. The residual effects are still significant and allow
to classify pairs of commodities according to their tendency to be traded together
in the same direction and/or in opposite ones. We also find that the multire-
ciprocity of the WTM is significantly lower than the usual reciprocity measured
on the aggregate network. Moreover, layers with low (high) internal reciprocity
are embedded within sets of layers with comparably low (high) mutual multi-
reciprocity. This suggests that, in the WTM, reciprocity is inherent to groups
of related commodities rather than to individual commodities. We discuss the
implications for international trade research focusing on product taxonomies, the
product space, and fitness/complexity metrics.

The results presented in this chapter have been published in the following reference:
V. Gemmetto, T. Squartini, F. Picciolo, F. Ruzzenenti, D. Garlaschelli, Physical Review E, 94 (4),
042316 (2016).
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2.1 Introduction

2.1 Introduction

Several real-world systems are composed by intricately interconnected units, thus
exhibiting a nontrivial network structure. The behaviour and dynamics of such
systems are strongly dependent on how information can propagate throughout
the network. Both the directionality and the intensity of connections crucially af-
fect this process, and should possibly be incorporated in the network description.
For instance, most of the communication relations among individuals, such as ex-
changes of letters, e-mails or texts, are intrinsically directional and are therefore
best represented as directed networks [1]. Furthermore, such interactions typi-
cally have heterogeneous intensities, calling for a description in terms of weighted
networks [2].

Recently, it has been realized that many real-world systems often require an
even more detailed representation, because a given set of units can be connected
by different kinds of relations. This property can be abstractly captured in terms
of so-called edge-colored graphs (where links of different colors are allowed among
the same set of nodes) or equivalenlty multi-layer or multiplex networks (where
the same set of nodes is replicated in multiple layers, each of which is an ordi-
nary network) [3, 4]. The nontrivial properties of these systems, with respect to
ordinary single-layer (‘monochromatic’ or ‘monoplex’) networks, arise from the
fact that the various layers are interdependent and the presence of a link in one
layer can influence the presence of a link in a different layer. A clear example is
represented by the different kinds of relationships existing between employees in a
university department [5], where individuals can be connected by co-authorship,
common leisure activities, on-line social networks etc. The interdependence of lay-
ers implies that the topological properties usually defined for monoplex networks
admit nontrivial generalizations to multiplex networks, and that some properties
which are uninteresting, or even undefined, for single-layer networks become rel-
evant for multiplexes.

This chapter introduces novel metrics characterizing the dependencies among
layers in multiplexes with directed links. While various measures of inter-layer
overlap for multiplexes have already been introduced [6, 7], they suffer from two
main limitations. First, most definitions are available only for multiplexes with
undirected links, and their straightforward generalization to the directed case
would overshadow important properties that are inherent to directed networks,
most importantly the reciprocity (which is one of our main focuses here). Second,
even in ‘trivial’ multiplexes where there is no dependence among layers (i.e. in
independent superpositions of single-layer networks with the same set of nodes), a
certain degree of inter-layer overlap can be created entirely by chance. This effect
becomes more pronounced as the density of the single-layer networks increases
and as the correlation among single-node properties (like degrees or strengths)
across layers increases. For instance, if a node is a hub in multiple layers, there
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is an increased chance of overlap among these layers, even if the presence of links
in one layer is assumed not to influence the presence of links in another layer.

The two limitations discussed above highlight the need to define metrics that
appropriately filter out both global (network-wide) and local (node-specific) den-
sity effects. Correlation-based measures of inter-layer overlap have been proposed
with this aim in mind [8]. However, as recently pointed out [9], correlation-based
metrics for multiplexes are not a correct solution in general, because they implic-
itly assume that edges observed between different pairs of nodes are sampled from
the same probability distribution. This assumption is strongly violated in real-
world networks, whose markedly heterogeneous topology is a signature of very
different probabilities for edges emanating from different nodes, e.g. the proba-
bility of links being found around more important nodes is clearly different from
the probability of links being found around less important nodes.

The above considerations motivate us to introduce new multiplexity metrics
that explicitly take the directionality of links into account and appropriately fil-
ter out the spurious effects of chance, while controlling for the extreme hetero-
geneity of empirical node-specific properties. In this chapter we carry out this
program by extending recent ‘filtered’ definitions of multiplexity [9], originally
defined for undirected links, to the case of directed links. Although this might
seem a straightforward procedure at first, we will in fact show that it requires
different null models, triggers novel concepts, and leads to new quantities that
are undefined in the undirected case. Indeed, while in the undirected case there
is only one possible notion of dependency among links in different layers, in the
directed case there are two possibilities, depending on whether links are ‘aligned’
or ‘anti-aligned’.

Aligned links between two layers are observed when a directed link from node
i to node j exists in both layers. This situation is the straightforward analogue of
what can happen in undirected multiplex networks, and is a signature of the fact
that the connection from i to j is relevant for multiple layers. We will denote this
effect simply as (directed) multiplexity, in analogy with the undirected case [9],
and will study it in the general case of an arbitrary number of layers. By contrast,
anti-aligned links form between two layers when a link from node i to node j in one
layer is reciprocated by an opposite link from node j to node i in the other layer.
This situation does not have a counterpart in the case of undirected multiplexes
and leads us to the definition of the novel concept of multireciprocity, i.e. the gen-
eralization of the popular concept of reciprocity to the case of multiplex networks.

In monoplex networks - either binary [10] or weighted [11] - reciprocity is de-
fined as the tendency of vertex pairs to form mutual connections. This property,
which is one of the best studied properties of single-layer directed networks, can
crucially affect various dynamical processes such as diffusion [12], percolation [13]
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and growth [14, 15]. For instance, the presence of directed, reciprocal connections
can lead to the establishment of functional communities and hierarchies of groups
of neurons in the cerebral cortex [16].

In binary graphs, a simple measure of reciprocity is the ratio of the number
of reciprocated links (i.e. realized links for which the link pointing in the oppo-
site direction between the same two nodes is also realized) to the total number
of directed links. However, it has been shown [10] that this measure is not per
se informative about the actual tendency towards reciprocation, because even in
a random network a certain number of reciprocated links will appear. So the
number of observed mutual interactions has to be compared with the expected
number obtained for a given random null model, if one wants to understand
whether mutual links are present in the real network significantly more (or less)
often than in the random benchmark [17]. It is therefore crucial to make use of
proper null models for networks. Since in most real-world directed networks the
distribution of the number of in-coming and out-going links (i.e. the in-degree
and out-degree) of nodes is very broad, an appropriate null model should fix the
in- and out-degrees of all nodes equal to their observed values. The null model
of directed networks with given in- and out-degrees often goes under the name of
directed binary configuration model (DBCM) [18]. The rationale underlying the
DBCM is the consideration that the in- and out-degree of a node might reflect
some intrinsic ‘size’, or other characteristic, of that node; therefore a null model
tailored for a specific network should preserve the observed degree heterogeneity.
Conveniently, the DBCM is also the correct null model to use when measuring the
multiplexity among layers of a multiplex with directed links. Indeed, the DBCM
is the directed generalization of the undirected binary configuration model used
in the previous chapter [9] for the definition of appropriately filtered, undirected
multiplexity metrics. This nicely implies that we can use the DBCM as a single
null model in our analysis of both multiplexity and multireciprocity.

Recently, the definition of reciprocity has been extended to weighted net-
works [11]. A simple measure of weighted reciprocity is the ratio of ‘total recip-
rocated link weight’ to total link weight, where the reciprocated link weight is
defined, for any two reciprocated links, as the minimum weight of the two links.
Similarly to the binary case, some level of weighted reciprocity can be generated
purely by chance. So the empirical measure has to be compared to its expected
value under a proper null model, represented in this case by a random weighted
network where each node has the same in-strength and out-strength (i.e. total
in-coming link weight and total out-going link weight, respectively) as in the real
network. This null model is sometimes called the directed weighted configuration
model (DWCM) [19] and, conveniently, is also the relevant null model (gener-
alizing its undirected counterpart [9]) to study the multiplexity in presence of
weighted directed links.
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We stress that the concept of reciprocity has not been generalized to multiplex
networks yet. Our definition of multireciprocity represents the first step in this
direction and captures the tendency of a directed link in one layer of a multiplex
to be reciprocated by an opposite link in a possibly different layer. While ordi-
nary reciprocity can be quantified by a scalar quantity, multireciprocity requires a
square matrix where all the possible pairs of layers are considered. Similarly, the
multiplexity also requires a square matrix. Together, the multiplexity matrix and
the multireciprocity matrix represent the two ‘directed’ extensions of the undi-
rected multiplexity matrix that has been introduced in Chapter 1 to characterize
undirected (either binary or weighted) multiplexes.

The rest of the chapter is organized as follows. In Sec. 2.2 we introduce
our methods, null models and main definitions for both binary and weighted
multiplexes. In Sec. 2.3 we apply our techniques to the analysis of the World
Trade Multiplex (WTM), a directed weighted multiplex representing the import-
export relations between countries of the world in different products. We identify
a number of empirical properties of the WTM that are impossible to access via the
usual aggregate (monoplex) analysis of the network of total international trade.
We finally conclude the chapter in Sec. 2.4, where we discuss some important
implications of our results, both for the general study of multiplex networks and
for more specific research questions in international trade economics. Several
necessary technical details are given in the follwing appendices.

2.2 Multiplexity and Multireciprocity metrics

In this section we give definitions of (directed) multiplexity and multireciprocity
metrics for both binary and weighted multiplexes. These definitions require, as
a preliminary step, the introduction of appropriate null models. In turn, null
models require the choice of a convenient notation. We address these points in
the resulting order.

We represent a directed multiplex
−→
G = (G1, . . . , GM ) as the superposition of

M directed networks (layers) Gα (α = 1, . . . ,M), all sharing the same set of N
nodes [3]. Links can be either binary or weighted. In the binary case, each layer
α is represented by a N × N binary adjacency matrix Gα = (aαij)

N
i,j=1, where

aαij = 0, 1 depending on whether a directed link from node i to node j is absent or
present, respectively. In the weighted case, each layer α is represented by a N×N
non-negative integer adjacency matrix Gα = (wαij)

N
i,j=1, where wαij = 0, 1, . . .∞

is the weight of the directed link from node i to node j (wαij = 0 indicating
the absence of such link). We denote by GN the set of all (binary or weighted)
single-layer graphs with N nodes, and by GMN ≡ (GN )M the set of all (binary or
weighted) M -layer multiplexes with N nodes.
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2.2 Multiplexity and Multireciprocity metrics

2.2.1 Null models of multiplex networks: maximum en-
tropy and maximum likelihood

Since our purpose is that of measuring correlations between directed links (pos-
sibly, in opposite directions) in different layers, we define independent reference
models for each layer of the multiplex, thus creating an uncorrelated null model
for the entire multiplex [7, 9]. This means that, if P(

−→
G |
−→
θ ) denotes the joint

probability of the entire multiplex
−→
G ∈ GMN (given a set of constraints enforced

via the vector
−→
θ of parameters, see Appendix 2.A) and

Pα(Gα|
−→
θα) ≡

∑
G1∈GN

· · ·
∑

Gβ∈GN

· · ·
∑

GM∈GN︸ ︷︷ ︸
β 6=α

P(
−→
G |
−→
θ ) (2.1)

denotes the (marginal) probability for the single-layer graph Gα ∈ GN (given a
set of layer-specific constraints enforced via the partial vector

−→
θα), we require the

null model to obey the factorization property

P
(−→
G |
−→
θ
)

=
M∏
α=1

Pα(Gα|
−→
θα). (2.2)

The above property ensures that the definition of the null model for the entire
multiplex reduces to the definition of independent null models for each layer sep-
arately (see Appendix 2.A for a rigorous derivation).

In the case of binary multiplexes, the null model we want to use to control
for the heterogeneity of nodes in each layer is, as we have already mentioned, the
Directed Binary Configuration Model (DBCM) [20, 21], defined as the ensemble
of binary networks with given in-degree and out-degree sequences. At this point,
we have to make a major decision, since the DBCM can be implemented either
microcanonically or canonically.

In the microcanonical approach, node degrees are “hard”, i.e. enforced sharply
on each realization. The most popular microcanonical implementation of the
DBCM is based on the random degree-preserving rewiring of links [18] (a.k.a.
the Local Rewiring Algorithm), which unfortunately introduces a bias. This bias
arises because, if the degree distribution is sufficiently broad (as in most real-
world cases), the randomization process explores the space of possible network
configurations not uniformly, giving higher probability to the configurations that
are “closer” to the initial one [22] (more details are given in Appendix 2.B). An-
other possible microcanonical implementation, based on the random matching of
“edge stubs” (half links) to the nodes, creates undesired self-loops and multiple
edges [18, 23]. Besides these limitations, microcanonical approaches are compu-
tationally demanding. Indeed, in order to measure the expected value of any
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quantity of interest, it is necessary to generate several randomized networks, on
each of which the quantity needs to be calculated. This sampling method is per
se very costly, and even more so in the case of multiplex networks, due to the
presence of several layers requiring a further multiplication of iterations (see Ap-
pendix 2.B).

By contrast, in the canonical implementation [20, 21] of the DBCM the in-
and out-degrees are “soft”, i.e. preserved only on average. The resulting probabil-
ity distribution over the ensemble of possible graphs is obtained analytically by
maximizing the entropy subject to the enforced constraints [20, 24, 25, 26] (see
Appendix 2.A for details). This procedure leads to the class of models also known
as Exponential Random Graphs or p? models [27, 28, 29]. In order to fit such
exponential random graphs to real-world networks, we adopt an exact, unbiased
and fast method [20, 21] based on the Maximum Likelihood principle [30]. The
method is summarized in Appendix 2.B and implemented in our analysis using
the so-called MAX&SAM (“Maximize and Sample”) algorithm [21]. The latter
yields the exact probabilities of occurrence of any graph in the ensemble and the
explicit expectation values of the quantities of interest. This has the enormous
advantage that an explicit sampling of graphs is not required: expectation values
are calculated analytically and not as sample averages. In particular, the prob-
ability pαij that a link from node i to node j is realized in layer α (aαij = 1) can
be easily calculated. From the set of all such probabilities, the expected value
of - for instance - the multireciprocity can be computed analytically and directly
compared with the empirical value, in order to obtain a filtered measure.

We now come to the case of multiplexes with weighted links. In this case we
want the enforced constraints to be the in-strength and out-strength sequences of
the real network, separately for each layer. The corresponding model is sometimes
referred to as the Directed Weighted Configuration Model (DWCM) [11]. As for
the binary case, we want to build the null model canonically as a maximum-
entropy ensemble of weighted networks, leading to a weighted Exponential Ran-
dom Graph model [20, 11]. The implementation we use is again based on the
MAX&SAM algorithm [21], which in this case calculates the exact probability
that, in the null model, the weight of the directed link connecting node i to node
j in layer α has a particular value wαij , for each pair of nodes and each layer.
From this probability, the expected weighted multireciprocity can be computed
analytically and compared with the empirical one, thus producing a filtered value
that, in this case as well, does not require the explicit sampling of graphs.

2.2.2 Binary multiplexity and multireciprocity

Our first set of main definitions are specific for multiplexes with binary links.
Consider a directed and binary multiplex ~G with M layers. We quantify the
similarity and reciprocity between any two layers α and β by defining the binary
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2.2 Multiplexity and Multireciprocity metrics

multiplexity mαβ
b and multireciprocity rαβb as follows:

mαβ
b =

2
∑
i

∑
j 6=i min{aαij , a

β
ij}

Lα + Lβ
=

2Lα⇒β

Lα + Lβ
, (2.3a)

rαβb =
2
∑
i

∑
j 6=i min{aαij , a

β
ji}

Lα + Lβ
=

2Lα�β

Lα + Lβ
, (2.3b)

where Lα =
∑
i

∑
j 6=i a

α
ij represents the total number of directed links in layer α

(analogously for layer β), Lα⇒β =
∑
i

∑
j 6=i min{aαij , a

β
ij} is the number of links

of layer α that are multiplexed in layer β (clearly, Lα⇒β = Lβ⇒α), and Lα�β =∑
i

∑
j 6=i min{aαij , a

β
ji} is the number of links of layer α that are reciprocated in

layer β (clearly, Lα�β = Lβ�α). Note that possible self-loops (terms of the type
aαii) are deliberately ignored because they are indistinguishable from links pointing
in the opposite direction, thus making their contribution to either multiplexity or
multireciprocity undefined.

Equations (2.3) can be regarded as defining the entries of twoM×M matrices,
which we will call the binary multiplexity matrix Mb = (mαβ

b )αβ and the binary
multireciprocity matrix Rb = (rαβb )αβ respectively. The matrices Mb and Rb rep-
resent the two natural extensions, to the case of directed multiplexes, of the single
binary multiplexity matrix introduced in Chapter 1 [9] for undirected binary mul-
tiplexes. Both matrices provide information about the ‘overlap’ between directed
links connecting pairs of nodes in different layers. Their entries range in [0, 1] and
are maximal only when layers α and β are respectively identical (i.e. aαij = aβij
for all i 6= j) and fully ‘multireciprocated’ (i.e. aαij = aβji for all i 6= j). The
matrix Mb has by construction a unit diagonal, since the intra-layer multiplexity
trivially has the maximum value mαα

b = 1 for all α. By contrast, the diagonal of
Rb is nontrivial and of special significance, as the intra-layer multireciprocity rααb
reduces to the ordinary definition of binary reciprocity for monoplex networks [10].

For ‘trivial’, uncorrelated multiplexes made of sparse non-interacting layers
with narrow degree distributions, the matrix Mb would asymptotically (i.e. in
the limit of large N , but not necessarily large M) be the M ×M identity matrix,
and the matrix Rb would asymptotically be a M ×M diagonal matrix. This is
because, in presence of sparse uncorrelated layers without hubs, the chance of a
link in one layer ‘overlapping’ with a (mutual) link in a different layer is negligi-
ble. For finite and/or dense networks and/or broad degree distributions, however,
positive values of mαβ

b and rαβb (with α 6= β) can be produced entirely by chance
even in a multiplex with no dependencies among layers. For instance, if the same
node is a hub in multiple layers, the chance of a large overlap of links among all
pairs of such layers is very high, even if the layers are non-interacting.

The above considerations imply that, in order to extract statistically significant
information about the tendency towards multiplexity and multireciprocity in a
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real-world multiplex, it becomes necessary to compare the empirical values ofmα,β
b

and rα,βb with the corresponding expected values calculated under the chosen null
model of independent multiplexes with given degrees (i.e. the DBCM). Hence, we
introduce the transformed (i.e., rescaled) binary multiplexity and multireciprocity
matrices with entries

µαβb =
mαβ
b − 〈m

αβ
b 〉DBCM

1− 〈mαβ
b 〉DBCM

(α 6= β), (2.4a)

ραβb =
rαβb − 〈r

αβ
b 〉DBCM

1− 〈rαβb 〉DBCM

, (2.4b)

where 〈·〉DBCM denotes the expected value under the DBCM. Note that, since
〈mαα

b 〉DBCM = mαα
b = 1 for all α, we formally set the diagonal terms µααb ≡ 1,

as the definition (2.4a) would produce an indeterminate expression if extended
to α = β. The explicit calculation of the above expected values is provided in
Appendix 2.C and more details are provided later in this section.

The filtered quantities (2.4) are directly informative about the presence of de-
pendencies between layers. Positive values represent higher-than-expected multi-
plexity or multireciprocity (correlated or ‘attractive’ pairs of layers), while nega-
tive values represent lower-than-expected quantities (anticorrelated or ‘repulsive’
pairs of layers). Pairs of uncorrelated (‘noninteracting’) layers are characterized
by multiplexity and multireciprocity values comparable with 0. In principle, a
layer that is uncorrelated with all other layers can be separated from the multi-
plex and analysed separately from it.

The choice of the denominator of (2.4a) and (2.4b), a priori not obvious,
guarantees that the maximum value for the transformed multiplexity and multi-
reciprocity is 1. Moreover, it ensures that ρααb reduces to the rescaled reciprocity
ρb defined for single-layer networks [10]. It should also be noted that the multi-
plexity defined in (2.3a) is just the normalized version of the inter-layer overlap
introduced in [6] and [7], extended to directed multiplex networks. In this context,
the novel contribution that we give is the comparison with a null model. Indeed,
while (2.3a) only provides information about the raw similarity of the layers,
which is strongly density-dependent, the transformed measure (2.4a) is mapped
to a universal interval. In combination with the z-scores that we introduce later,
it can be used to consistently compare the statistical significance of the multiplex-
ity of different systems. The quantity defined in (2.3b), which focuses explicitly
on the reciprocity properties of the multiplex, has never been introduced before,
along with its transformed quantity defined in (2.4b). The latter can be used
for a consistent comparison of the multireciprocity of multiplexes with different
densities.
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2.2 Multiplexity and Multireciprocity metrics

The calculation of the expected values of mαβ
b and rαβb under the DBCM can

be carried out analytically using the MAX&SAM method [21], with no need to
actually randomize the empirical network or numerically sample the null model
ensemble. Ultimately, the calculation requires the computation of the expected
value of the minimum between two binary random variables (see Appendix 2.C).
If pαij ≡ 〈aαij〉DBCM denotes the probability that, under the DBCM, a directed link
is realized from node i to node j in layer α, then the adjacency matrix entry aαij
is described by the Bernoulli mass probability function

P (aαij) = (pαij)
aαij (1− pαij)(1−aαij). (2.5)

Using the above equation, and given the explicit expression for pαij , it is pos-
sible to calculate µαβb and ραβb analytically as reported in the aforementioned
Appendix 2.C.

It is instructive to compare the multivariate quantities measured on the multi-
plex with the corresponding scalar quantities defined on the aggregate monoplex
network obtained by combining all layers together. This comparison can high-
light the gain of information resulting from the multiplex representation, with
respect to the ordinary monoplex projection where all the distinct types of links
are treated as equivalent. The binary aggregate monoplex can be defined in terms
of the adjacency matrix with entries

amono
ij = 1−

M∏
α=1

(1− aαij) =
{

1 if ∃α : aαij = 1
0 otherwise . (2.6)

For the quantities we defined so far, the only meaningful comparison between
the multiplex and the aggregate network can be done in terms of the reciprocity,
because the multiplexity of the aggregate is mmono

b = 1 by construction. The
single, global reciprocity of the aggregated monoplex network is given by

rmono
b =

∑
i

∑
j 6=i min{amono

ij , amono
ji }

Lmono
(2.7)

where Lmono =
∑
i

∑
j 6=i a

mono
ij . Similarly, it is possible to define the correspond-

ing filtered quantity ρmono
b , in analogy with (2.4b).

The transformed quantities µαβb and ραβb defined in (2.4) capture the similarity
and reciprocity between layers of a multiplex via a comparison of the empirical
values with the expected values under a null model. However, those quantities
do not consider any information about the variances of the values of multiplex-
ity and multireciprocity under the null model, thus giving no direct information
about statistical significance. In particular, even multiplexes sampled from the
null model with independent layers would be characterized by small, but in gen-
eral nonzero, values of µαβb and ραβb . This makes it difficult to disentangle, for
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an observed real-world multiplex, weak inter-layer dependencies from pure noise.
Moreover, the random fluctuations around the expectation values will be in gen-
eral different for different pairs of layers, potentially making the comparison of
the values of µαβb and ραβb for different pairs of layers misleading. To overcome
these limitations, we define the z-scores associated to mαβ

b and rαβb as:

z
(
mαβ
b

)
=

mαβ
b − 〈m

αβ
b 〉DBCM√

〈(mαβ
b )2〉DBCM − 〈mαβ

b 〉2DBCM

, (2.8a)

z
(
rαβb
)

=
rαβb − 〈r

αβ
b 〉DBCM√

〈(rαβb )2〉DBCM − 〈rαβb 〉2DBCM

. (2.8b)

As for the quantities defined in (2.4), it is possible to obtain an analytical ex-
pression for the z-scores as well. This is shown in detail in Appendix 2.C.

Each z-score in (2.8) has the same sign as the corresponding quantity in (2.4),
since the numerator is the same and both have positive denominators. However,
except for the common sign, the two sets of quantities can have a priori very
different values. In particular, the z-scores count the number of standard devi-
ations by which the observed raw quantities deviate from their expected values
under the null model. As such, they are useful in order to understand whether
small measured values of µαβb or ραβb are actually consistent with zero within a
small number of standard deviations, in which case we can consider the layers
α and β as uncorrelated. We point out that, in general, z-scores have a clear
statistical interpretation only if their distribution is Gaussian under repeated re-
alizations of the model. In our case, although the quantities mαβ

b and rαβb are not
truly normally distributed under the null model, they are defined as the sum of
many independent 0/1 random variables (of the type min{aαij , a

β
ij} or min{aαij , a

β
ji}

respectively), which all have variance in the interval (0, 1/4] and are thus approx-
imately described by a central limit theorem ensuring an asymptotic convergence
to the normal distribution. We can therefore consider as statistically significant
all the z-scores having an absolute value larger than a given threshold, which we
set at zc = 2. This selects the observed pairs of layers with values of multiplexity
and/or multireciprocity that differ from their expectation values by more than 2
standard deviations, i.e. with |z| > zc.

2.2.3 Weighted multiplexity and multireciprocity

We now move to our second set of definitions, valid for weighted multiplexes.
In analogy with (2.3), we define the weighted multiplexity and multireciprocity
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matrices Mw and Rw having entries

mαβ
w =

2
∑
i

∑
j 6=i min{wαij , w

β
ij}

Wα +W β
=

2Wα⇒β

Wα +W β
, (2.9a)

rαβw =
2
∑
i

∑
j 6=i min{wαij , w

β
ji}

Wα +W β
=

2Wα�β

Wα +W β
, (2.9b)

where Wα =
∑
i

∑
j 6=i w

α
ij is the total weight of the links in layer α (analo-

gously for layer β), Wα⇒β =
∑
i

∑
j 6=i min{wαij , w

β
ij} is the total link weight of

layer α that is multiplexed in layer β (clearly, Wα⇒β = W β⇒α), and Wα�β =∑
i

∑
j 6=i min{wαij , w

β
ji} is the total link weight of layer α that is reciprocated in

layer β (clearly, Wα�β = W β�α). The matrices Mw and Rw represent the two
generalizations, for directed multiplexes, of the weighted multiplexity matrix in-
troduced in the previous chapter and in [9] for undirected weighted multiplexes.
Like their binary counterparts, both matrices have entries in the range [0, 1], the
maximum value being attained by identical (wαij = wβij for all i, j) and fully ‘mul-
tireciprocated’ (wαij = wβji for all i, j) layers respectively. In analogy with the
corresponding binary case, the diagonal of Mw has all unit entries while that of
Rw has entries that coincide with the recent definition of reciprocity for weighted
monoplex networks [11].

In this case as well, for trivial multiplexes with sparse noninteracting layers and
narrow strength distributions, the two matrices are expected to be asymptotically
diagonal. However, this is no longer true in presence of dense layers and/or for
broad strength distributions, and we therefore need a comparison of the raw
quantities with their expected value under a null model (now the DWCM). This
consideration leads us to introduce the transformed weighted multiplexity and
multireciprocity matrices with entries

µαβw =
mαβ
w − 〈mαβ

w 〉DWCM

1− 〈mαβ
w 〉DWCM

, (2.10a)

ραβw =
rαβw − 〈rαβw 〉DWCM

1− 〈rαβw 〉DWCM

, (2.10b)

where 〈·〉DWCM denotes the expected value under the DWCM. As in the binary
case, we can derive an analytical expression for the expected values that ultimately
requires the expectation of the minimum of wαij and wβij (or wβji). This is done
in Appendix 2.D. It turns out that, under the DWCM, the distribution of link
weights is geometrical [11, 21]:

P (wαij) = (pαij)
wαij (1− pαij), (2.11)

where pαij denotes again the probability that a directed link (of any positive weight)
from node i to node j is realized in layer α. The above probability can be used
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to calculate µαβw and ραβw analytically as discussed in Appendix 2.D.

The weighted multireciprocity of the multiplex can be conveniently compared
with the weighted reciprocity of the aggregated monoplex network. The link
weights of the latter are defined by

wmono
ij =

M∑
α=1

wαij , (2.12)

and the associated aggregate weighted reciprocity [11] is

rmono
w =

∑
i

∑
j 6=i min{wmono

ij , wmono
ji }

Wmono
(2.13)

(where Wmono =
∑
i

∑
j 6=i w

mono
ij ). The corresponding filtered value ρmono

w can be
defined as in (2.10b).

In analogy with the binary case, it is possible to define the z-scores associated
to mαβ

w and rαβw as follows:

z
(
mαβ
w

)
=

mαβ
w − 〈mαβ

w 〉DWCM√
〈(mαβ

w )2〉DWCM − 〈mαβ
w 〉2DWCM

, (2.14a)

z
(
rαβw
)

=
rαβw − 〈rαβw 〉DWCM√

〈(rαβw )2〉DWCM − 〈rαβw 〉2DWCM

. (2.14b)

The explicit analytical expressions for these z-scores are calculated in Appendix 2.D.
Again, the z-scores (2.14) have the same signs as the corresponding quantities
(2.10), but in addition they allow to test for statistical significance using e.g. a
threshold of zc = 2.

2.3 Empirical analysis of the World Trade Multi-
plex

In this section, we apply the framework defined so far to the analysis of a real-
world system. This system is the World Trade Multiplex (WTM), defined as
the multi-layer network representing the directed trade relations between world
countries in different commodities. At both the binary and the weighted level,
the structure of the aggregate (monoplex) version of this network is well studied
[31, 32, 33], as well as that of many of its layers separately [8, 34]. However,
much less is known about the inter-layer dependencies in the WTM. In particu-
lar, an assessment of the inter-layer couplings that are not simply explained by
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the local topological properties of the WTM has been carried out only for the
undirected version of the network [9]. Given the importance of the directionality
of trade flows, especially at the disaggregated level of individual commodities, it
is therefore important to carry out a directed analysis of the WTM. The tools we
have introduced in the previous section allow us to make this step and arrive at a
novel characterization of the WTM where the undirected multiplexity properties
documented in the previous chapter [9] are resolved into their two directed com-
ponents, namely multiplexity and multireciprocity. These results have important
potential implications for problems related to research on international trade, such
as the definition of trade-based ‘product taxonomies’ [8], the construction of the
‘product space’ [35], and the calculation of ‘fitness and complexity’ metrics [36].
These points are discussed later in sec. 2.4.

2.3.1 Data

We use the already mentioned BACI-Comtrade dataset [37] where international
trade flows among all countries of the world are disaggregated into different com-
modity classes at the 2-digit resolution level, defined as in the standard HS1996
classification [38] of traded goods. Here we take into account the directionality of
trade, hence distinguishing between import and export. As explained in the pre-
vious chapter, it is possible to represent this dataset as a multiplex as in [8, 9, 34].
In particular, we will consider a multi-layer representation defined by N = 207
nodes (countries) andM = 96 layers (commodities), for the year 2011. Since each
trade exchange is reported by both the importer and the exporter (and the two
values may in general differ), the dataset uses a reconciliation procedure to get a
unique value for each flow (see [37] for details). All the resulting trade volumes
are expressed in thousands of dollars in the dataset. Since our approach works
for integer link weights, all the reported trade values have been rescaled by first
dividing by 10 (for computational reasons) and then rounding to the closest inte-
ger. This defines our integer link weights {wαij} for all layers. For each entry wαij ,
we then define aαij = 1 if wαij > 0 and aαij = 0 otherwise. We point out that the
rounding procedure does not significantly affect the structure of the system under
study, as the percentage of original links which are lost (i.e. rounded to zero) is
negligible.

From the multiplex trade flows we also compute the aggregate binary and
weighted links amono

ij and wmono
ij between any two countries i and j in the collapsed

monoplex trade network, as in (2.6) and (2.12) respectively. This allows us to
compare the multiplex structure of trade with the aggregate one and highlight
relevant information that is lost in the aggregation procedure. For instance, for
both the binary and the weighted representation of the system, we can compare
the values of the multireciprocity matrix measured on the commodity-resolved
multiplex with the usual scalar reciprocity measured on the monoplex aggregate
trade network.
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Figure 2.1: Analysis of the binary multiplexity between layers of the
WTM. Top panels: color-coded binary multiplexity matrix Mb (a) and corre-
sponding distribution of off-diagonal multiplexity values mαβ

b (with α 6= β) (b).
Bottom panels: same as for the top panels, but with raw binary multiplexity mαβ

b

replaced by rescaled binary multiplexity µαβb .

2.3.2 Binary analysis

We start with a binary analysis of the WTM, thus taking into account only the
topology of the various layers while disregarding the information about trade vol-
umes. In Figure 2.1(a) we show the color-coded binary multiplexity matrix Mb.
Next to it, in Figure 2.1(b) we show the corresponding frequency distribution of
off-diagonal matrix entries mαβ

b (with α 6= β). In calculating the frequencies,
we discard the diagonal entries because they trivially evaluate to mαα

b = 1, as
discussed above. High values of multiplexity are observed for most of the pairs of
commodities. This result is in agreement with what has been reported in [9] (see
Chapter 1) on the basis of an undirected analysis of the WTM where imports and
exports between any two countries were combined together into a single trade link.

As we mentioned, the multiplexity matrix Mb would be asymptotically diag-
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onal for trivial multiplexes with sparse non-interacting layers and narrow degree
distributions. However, since the layers of the WTM are very dense and their de-
gree distributions significantly broad [8, 9, 34], this system is an ideal case study
requiring the use of a null model in order to assess the presence of a genuine cou-
pling among layers. In Figure 2.1(c) we show the color-coded matrix of rescaled
multiplexity values µαβb , which control for the effects of the heterogeneity of the
layer-specific in- and out-degree sequences. Similarly, in Figure 2.1(d) we show the
corresponding distribution of off-diagonal entries. We find that, after controlling
for the degrees, a significant amount of correlation is destroyed. However all the
values are still strictly positive, indicating a tendency of all pairs of commodities
to be ‘traded together’. The statistical significance of this result is discussed later
in terms of z-scores.

We now move to the analysis of multireciprocity. It is known that, when the
aggregate trade in all commodities is considered, the binary monoplex represen-
tation of the World Trade Network exhibits a high level of reciprocity [10, 39, 40].
It is interesting to see whether such a property is preserved also at the multi-
plex level, and how the values compare with the aggregate case. Figure 2.2(a)
shows the color-coded binary multireciprocity matrix Rb and Figure 2.2(b) the
corresponding distribution of off-diagonal entries 1, with a superimposed delta
function indicating the value of the binary reciprocity rmono

b of the aggregate
monoplex network as a comparison. The results are comparable with those found
above for the multiplexity. Also in this case, the high multireciprocity values are
consistent with the high multiplexity values found for the undirected representa-
tion of the WTM [9] (where pairs of reciprocated links in each layer are merged
into single undirected links). However, for the multireciprocity this result is much
less trivial than for the multiplexity, given the chosen level of disaggregation into
many commodity classes. Indeed one would expect that, at such a relatively high
resolution, it should be not very likely (at least not as likely as in the undirected
representation) that the same commodity is traded “back and forth”, i.e. both
ways between the same two countries. In any case we do find, in accordance with
what we expect, that for all pairs of commodities the multireciprocity is signifi-
cantly smaller than the reciprocity rmono

b of the aggregate monoplex. This means
that, as layers are aggregated, there is a bigger relative increment (with respect
to individual layers) in the overall number of reciprocated links than in the total
number of links.

As an interesting result, the intra-layer reciprocity values rααb lying along the
diagonal of the multireciprocity matrix are found to be very similar to the values
of the matrix entries rαβb lying close to the diagonal. Indeed, in the matrix plot of
Figure 2.2(a) the diagonal is visually indistinguishable from the entries of the ma-

1We discard the diagonal entries in order to make the distribution compatible with the correspond-
ing distribution for the multiplexity shown above; in any case, if the diagonal entries are included, the
distribution looks very similar.
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trix that are “nearby”. Given the order of the commodities in the matrix (as shown
in the appendix of Chapter 1), these nearby entries represent the multireciprocity
between pairs of similar commodities. This result means that the high reciprocity
of the aggregate trade monoplex does not arise from the superposition of layers
with high internal reciprocity and low mutual multireciprocity (as would be the
case in presence of an approximately diagonal multireciprocity matrix). Rather,
we find that a trade flow in one commodity α tends to be reciprocated by compa-
rable trade flows in several different commodities, including (but not dominated
by) the same commodity α and many other related commodities. Specifically,
it can be seen from Figure 2.2(a) that layers characterized by low (high) values
of internal reciprocity are embedded within groups of layers with low (high) mu-
tual multireciprocity. This suggests that the level of reciprocity in international
trade is not an intrinsic property of individual commodities, but rather a property
of whole groups of mutually reciprocated commodities with comparable multire-
ciprocity values.

In Figure 2.2(c) and (d) we show the color-coded binary rescaled multire-
ciprocity matrix and the corresponding distribution of off-diagonal entries ραβb
(with α 6= β). The relatively small values (with respect to the non-rescaled quan-
tities) indicate that, in analogy with what we found for the multiplexity, the
apparent correlation between the topology of pairs of layers is largely encoded
in the relatedness of the degree sequences of such pairs. For the vast majority
of pairs of commodities the multireciprocity is still lower than that measured on
the aggregate network. However, all pairs of layers preserve a positive residual
multireciprocity, the statistical significance of which is studied later in our z-score
analysis.

When we look at the multiplexity matrix in Figure 2.1(a) and the correspond-
ing multireciprocity matrix in Figure 2.2(a), we see the appearance of similar
patterns. Such similarity is further investigated in Figure 2.3(a), where we re-
port the scatter plots of pairwise multireciprocity values versus the corresponding
multiplexity values. We observe a roughly linear trend, which is however lost
when we look at the filtered values, as shown in Figure 2.3(b). We see that, in
the latter case, the relationship between ραβb and µαβb is non-linear and signifi-
cantly scattered. Although the presence of a non-linear relation may be related
to the particular choice of normalization adopted in (2.4), we point out that the
entity of the scatter is so big that it is not possible to retrieve the value of mul-
tiplexity from the multireciprocity, and vice-versa. This illustrates that the two
quantities convey different pieces of information that are irreducible to each other.

Similar considerations apply to the z-scores. In Figure 2.4(a) and 2.4(b) we
show the empirical relation between the transformed multiplexity and multire-
ciprocity and their corresponding z-scores: it is worth recalling that the informa-
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Figure 2.2: Analysis of the binary multireciprocity between layers of the
WTM. Top panels: color-coded binary multireciprocity matrix Rb (a) and cor-
responding distribution of off-diagonal multireciprocity values rαβb (with α 6= β)
(b). Bottom panels: same as for the top panels, but with raw binary multire-
ciprocity rαβb replaced by rescaled binary multireciprocity ραβb . The dashed lines
represent the value of (raw and rescaled) binary reciprocity rmono

b and ρmono
b of

the aggregated monoplex network.

tion provided by these two quantities can be a priori different, given the lack of
information about the standard deviation in the rescaled multiplexity and multire-
ciprocity metrics. Empirically, we however find a strong correlation between these
quantities, indicating that large values of binary multiplexity or multireciprocity
correspond to large z-scores, and vice-versa. Moreover, even the smallest z-scores
(those found for the pairs of layers showing very low multiplexity or multireciproc-
ity) are still quite high (i.e. positive and larger than zc = 2) in terms of statistical
significance. This means that even the pairs of layers with smallest multiplexity
or multireciprocity should be considered as significantly and positively correlated.
We therefore conclude that, at a binary level, every commodity of the WTM tends
to be traded together with all other commodities, both in the same and in the op-
posite direction. As we show below, this is no longer the case when the weighted
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Figure 2.3: Relation between the values of binary multiplexity and multi-
reciprocity for the WTM. Scatter plots of off-diagonal binary multireciprocity
values versus off-diagonal binary directed multiplexity values. Left: raw values
(rαβb vs mαβ

b ); right: rescaled values (ραβb vs µαβb ).

version of the multiplex is considered.

Figure 2.4(c) shows the relation existing between z(rαβb ) and z(mαβ
b ) for each

pair of layers. If we compare this figure with Figure 2.3, we see that in this
case the trend is more linear, although the scatter is again quite large. This
confirms that it is not possible to recover the values of multiplexity from those of
multireciprocity, and vice-versa.

2.3.3 Weighted analysis

We now perform a weighted analysis of the World Trade Multiplex, by taking into
account the values of import and export observed between countries.

In Figure 2.5(a) and (b) we show the color-coded weighted directed multi-
plexity matrix Mw and the distribution of its off-diagonal entries. We clearly
see that, even though several pairs of commodities are still strongly overlapping,
the multiplexity distribution is concentrated over a range of significantly smaller
values with respect to the corresponding binary distribution. Indeed, the notion
of weighted multiplexity, by involving the minimum of the weights of two recip-
rocated links, provides a stricter criterion with respect to the unweighted case.
In particular, for any pair of nodes and any pair of layers, it is more unlikely to
achieve the maximum weighted value min{wαij , w

β
ij} than the maximum binary
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Figure 2.4: Analysis of significance of the values of binary multiplexity
and multireciprocity for the WTM. Left: binary transformed multiplexity
µαβb versus its corresponding z-score z(mαβ

b ); center: binary transformed multi-
reciprocity ραβb versus its corresponding z-score z(rαβb ); right: z(rαβb ) vs z(mαβ

b ).
Only off-diagonal values are reported.

value min{aαij , a
β
ij}. Lower values of multiplexity with respect to Figure 2.1(a)

are therefore expected. We also expect to find a similar reduction for the multi-
reciprocity later on.

In Figure 2.5(c) and (d) we report the color-coded weighted rescaled multi-
plexity matrix and the corresponding distribution of off-diagonal entries µαβw . The
fact that many values are now mapped to zero means that a significant compo-
nent of the overlap between commodities can be explained simply in terms of
the correlated strength sequences of the various layers. Importantly, we see that
some pairs of layers actually exhibit negative rescaled multiplexity, even though
the distribution is far from symmetric. This result, which is only visible in the
weighted analysis, means that there are pairs of commodities for which the ob-
served trade multiplexity is actually lower than expected under the null model:
these commodities prefer ‘not to be traded together’.

We then analyze the weighted multireciprocity of the WTM. Recently, it has
been shown that the aggregated version of the network has a strong weighted reci-
procity [11], a result that we can now complement with the analysis of the disag-
gregated multiplex. In Figure 2.6(a) and (b) we report the color-coded weighted
multireciprocity matrix Rw, along with the distribution of its off-diagonal entries.
In analogy with the binary case, we see that the aggregated network exhibits a
reciprocity which is significantly higher than the multireciprocity associated to
any individual pair of layers. Yet several pairs of commodities are characterized
by a substantial level of multireciprocity. In Figure 2.6(c) and (d) we show the
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Figure 2.5: Analysis of the weighted multiplexity between layers of the
WTM. Top panels: color-coded weighted multiplexity matrix Mw (a) and cor-
responding distribution of off-diagonal multiplexity values mαβ

w (with α 6= β) (b).
Bottom panels: same as for the top panels, but with raw weighted multiplexity
mαβ
w replaced by rescaled weighted multiplexity µαβw . Note that, in panel (c),

white entries represent negative values.

corresponding results for the rescaled weighted multireciprocity ρα,βw . We see that
many values become close to zero and some become negative, in analogy with the
behaviour of the multiplexity. The identification of pairs of layers with negative
rescaled multireciprocity indicates that the corresponding commodities ‘prefer not
to be traded in opposite directions’, in contrast with the results we found in the
binary analysis.

In Figure 2.7 we compare the weighted multireciprocity and the weighted mul-
tiplexity. When we consider the raw values (a), we observe a clear linear trend
(although more scattered than in the corresponding unweighted case). The trend
becomes even more robust, and less noisy, for the filtered values, as shown in (b).
In both panels, the most significant commodities (both in terms of trade volumes
and economic relevance) mainly lie along the diagonal, while the outliers represent
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Figure 2.6: Analysis of the weighted multireciprocity between layers of
the WTM. Top panels: color-coded weighted multireciprocity matrix Rw (a)
and corresponding distribution of off-diagonal multireciprocity values rαβw (with
α 6= β) (b). Bottom panels: same as for the top panels, but with raw weighted
multireciprocity rαβw replaced by rescaled weighted multireciprocity ραβw . The
dashed lines represent the value of (raw and rescaled) weighted reciprocity rmono

w

and ρmono
w of the aggregated monoplex network. Note that, in panel (c), white

entries represent negative values.

less relevant products (for instance, some textiles or less traded craft goods). We
also see pairs of commodities whose multireciprocity is similar to the reciprocity
of the aggregate trade network. These commodities, such as cereals and heavy
industry products, are not necessarily the most traded ones, still they better rep-
resent the reciprocity patterns of total trade among countries, possibly because
they give the main contribution to the reciprocity of the aggregated network.

Quantitatively, another important difference between the binary and the weighted
approach lies in the statistical significance of the values of multiplexity and mul-
tireciprocity, as we can see from the analysis of the z-scores (Figure 2.8). Indeed,
in the unweighted case we found that even the smallest values of µαβb and ραβb
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Figure 2.7: Relation between the values of weighted multiplexity and
multireciprocity for the WTM. Scatter plots of off-diagonal weighted multi-
reciprocity values versus off-diagonal weighted directed multiplexity values. Left:
raw values (rαβw vs mαβ

w ); right: rescaled values (ραβw vs µαβw ).

are significant, as the corresponding z-scores are larger than the critical value zc.
Instead, here we observe almost no correlation (except for the aforementioned
sign concordance) between weighted multiplexity or multireciprocity and the cor-
responding z-scores (see Fig. 2.8(a) and 2.8(b) respectively). Indeed, the same
value of µαβb or ραβb may even correspond to z-scores with different orders of mag-
nitude. This means that, even for two pairs of layers with the same observed
value of weighted multiplexity or multireciprocity, the statistical significance of
the inter-layer coupling can be very different. Moreover, the absolute value of
many weighted z-scores is found below the significance threshold zc = 2, identi-
fying pairs of uncorrelated layers (a result that is unobserved in the binary case).
Finally, many pairs of commodities have a negative z-score below −zc for the mul-
tiplexity and/or multireciprocity. For these pairs, the tendency not to be traded
in the same direction and/or in opposite direction is statistically validated and
confirms a difference with respect to the binary case.

As a final result, in Figure 2.8(c) we show the relation existing between z
(
mαβ
w

)
and z

(
rαβw
)
. We find an overall level of correlation which however leaves room for

a significant scatter of points around the identity line. This scatter is big enough
to imply that, for a given significance threshold zc, the pairs of commodities can
be partitioned in the following five classes:

1. a few pairs of commodities that tend to be traded in the same direction
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(z(mαβ
w ) > zc) but not in opposite directions (z(rαβw ) < −zc): examples are

apparel articles vs ships and boats; food industry residues, prepared animal
feed vs ores, slag and ash;

2. a few pairs of commodities that tend to be traded in opposite directions
(z(rαβw ) > zc) but not in the same direction (z(mαβ

w ) < −zc): examples are
ores, slag and ash vs footwear and gaiters; apparel articles vs ores, slag and
ash;

3. a moderately-sized group of pairs of commodities that tend to be traded
neither in the same direction (z(mαβ

w ) < −zc) nor in opposite ones (z(rαβw ) <
−zc): examples are raw hides and skins vs arms and ammunitions; tobacco
vs ships and boats;

4. a large group of pairs of commodities for which there is no statistically
significant tendency in at least one of the two directions (|z(mαβ

w )| < zc
and/or |z(rαβw )| < zc): examples are tobacco vs inorganic chemicals; explo-
sives, pyrotechnic products vs vehicles (note that this class can be further
split in sub-classes where commodities are uncorrelated in one direction but
correlated in different ways in the other direction);

5. a very large group of pairs of commodities that tend to be traded both in the
same direction (z(mαβ

w ) > zc) and in opposite ones (z(rαβw ) > zc): examples
are sugar vs cocoa; soap, waxes, candles vs sugar.

It should be noted that, in contrast with the above classification, the binary anal-
ysis concluded that all pairs of commodities belong to the last class only.
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Figure 2.8: Analysis of significance of the values of weighted multiplexity
and multireciprocity for the WTM. Left: weighted transformed multiplexity
µαβw versus its corresponding z-score z(mαβ

w ); center: weighted transformed multi-
reciprocity ραβw versus its corresponding z-score z(rαβw ); right: z(rαβw ) vs z(mαβ

w ).
In panel (c), numbered circles correspond to the bullet points reported in Sec.
2.3.3. Only off-diagonal values are reported.

2.4 Discussion and conclusions

The study of multi-layer networks has received substantial attention in the last
few years, leading to the introduction of several novel quantities characterizing
the structure of multiplexes as well as the behaviour of several dynamical pro-
cesses taking place on them. The aim of all these studies is that of highlighting
the role of the inter-layer couplings, the latter being the ultimate reason why
layers of a multiplex should be analyzed together in the first place, rather than
separately. In this chapter we have argued that even the simplest definitions of
inter-layer coupling, based merely on the structural overlap of links across layers,
are strongly biased by the density, finiteness, and heterogeneity of the network.
We have shown that controlling for the above effects requires a quite elaborate
statistical treatment. Focusing on multiplexes with (binary or weighted) directed
links, we have introduced maximum-entropy multiplex ensembles with given node
properties as the unbiased null models serving as a benchmark for the empirically
observed properties. We have then defined novel multiplexity and multireciprocity
metrics, respectively quantifying the tendency of pairs of links to ‘align’ and/or
‘anti-align’ across each pair of layers of a real-world directed multiplex. Since
links can exist in both directions in every layer, the possible tendencies of forming
aligned (multiplexed) and anti-aligned (multireciprocated) links do not conflict
with each other and can actually coexist. Both multiplexity and multireciproc-
ity are matrix-valued, as they represent the possible couplings among all pairs of
layers. While multiplexity is a natural extension of the corresponding definition
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for undirected multiplexes, multireciprocity is a novel concept representing a non-
trivial extension of the notion of single-layer reciprocity to multi-layer networks.

We believe that our results can be of value for several applications. For in-
stance, they provide a statistically rigorous way to identify possible (groups of)
layers that are uncorrelated from the other layers, thus allowing to simplify the
whole multiplex into mutually independent sub-systems with smaller numbers of
layers. This problem has received significant attention recently [41, 42]. Our
finding of a strong influence of the local node properties on the overall level of
inter-layer coupling suggests that many of the results found with alternative tech-
niques that do not control for these effects might be subject to an uncontrolled
level of bias.

Other more specific applications are relevant for the specific case study of the
WTM. In extreme summary, our detailed analysis of this system confirmed that
its multiplex structure contains much more information than the aggregated net-
work of total trade does. At a binary level, we found that all pairs of commodities
tend to be traded together between countries, both in the same direction (high
multiplexity) and in opposite directions (high multireciprocity). At a weighted
level, this result only holds for a subset of pairs of commodities. Other commodity
pairs are not correlated and others even tend to avoid being traded together in
the same direction and/or in opposite ones. The multireciprocity structure of the
WTM highlights a tendency of groups of commodities to have a comparably high
mutual reciprocity, of the same entity of the internal single-layer reciprocity of
these commodities. When aggregated into the monoplex network of total inter-
national trade, the WTM has a resulting reciprocity that is much bigger than the
multireciprocity among its constituent layers.

In the light of the above results, our approach has implications relevant to var-
ious directions in international trade research. In particular, it indicates concrete
ways to refine existing measures of inter-commodity correlation or similarity that
are widely used to construct, among others, ‘product taxonomies’ [8], the ‘prod-
uct space’ [35] and ‘fitness and complexity’ metrics [36]. All these applications
are briefly explained below.

Inter-commodity correlation metrics have been introduced to quantify the
coupling among layers of the WTM [8], with the goal of constructing ‘product
taxonomies’ that reflect empirical trade similarities, as opposed to pre-defined
product categories. However, as already pointed out inthe first chapter and in [9],
correlation metrics make an implicit and totally unrealistic assumption of struc-
tural homogeneity of the network, by interpreting all the edges of a layer as inde-
pendent observations drawn from the same probability distribution. Our results
provide alternative metrics of inter-layer coupling that replace the homogeneity
assumption with a much more realistic null model that accurately controls for
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the observed degree of node heterogeneity in each layer. The use of our metrics
is likely to change the structure of correlation-based product taxonomies signifi-
cantly.

The ‘product space’ is defined as a network of commodities connected by links
whose weight quantifies the tendency of a pair of commodities to be traded to-
gether (in the same direction) between the same two countries [35]. Our results
clearly indicate that, to be statistically reliable, such an analysis should include a
way to filter out the strong empirical heterogeneity of node degrees and/or node
strengths. Moreover, they highlight a second layer of information that should
be relevant for the product space construction, namely the fact that, besides
the tendency of pairs of commodities to be traded together in the same direction
(multiplexity), there can be a substantial tendency of being traded in the opposite
direction (multireciprocity). We found that these two effects have a comparable
magnitude. We also found that pairs of commodities with approximately the same
multiplexity can be characterized by very different levels of multireciprocity. This
suggests that neglecting multireciprocity in the construction of the product space
can represent a substantial loss of information.

Finally, the ‘fitness and complexity’ approach focuses on the bipartite network
of countries and their exported products, and uses the structure of this network
to recursively define metrics of product complexity and country competitiveness
(fitness) [36]. This method can reveal the ‘hidden’ potential of countries that
is not (yet) reflected in their current GDP levels. Clearly, the output of this
approach entirely depends on how the bipartite country-product matrix is con-
structed. This matrix is ultimately a projection of the WTM but is generally
filtered using a null model based on the concept of ‘revealed comparative advan-
tage’ [43], which however operates at the aggregate country-product level and not
at the level of the underlying multiplex. As such, it does not control for the size of
importers. Our approach provides a way to enforce a more accurate null model on
the original WTM and obtain an alternative bipartite country-product projection.

We believe that all the research directions outlined above deserve future ex-
plorations and we expect the results reported in this chapter to be of use.

Appendix

2.A Maximum-entropy method for multiplex net-
works

As in the previous chapter, we define null models of multiplexes as canonical
maximum-entropy ensembles satisfying a given set

−→
C of K constraints on aver-
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age. If Gα ∈ GN denotes the graph realized in layer α of the multiplex (recall
that GN is the set of all directed monoplex graphs with N nodes), and if

−→
G ∈ GMN

denotes the entire multiplex (where GMN is the set of all directed multiplex graphs
with N nodes andM layers), we write

−→
G = (Gα)Mα=1. Now let

−→
C denote a vector-

valued function on GMN , evaluating to
−→
C (
−→
G) on the particular multiplex

−→
G . The

vector
−→
C (
−→
G) is to be regarded as a set of structural properties measured on

−→
G .

A canonical ensemble of binary (weighted) directed multiplex networks with
the soft constraint

−→
C is specified by a probability distribution P

(−→
G |
−→
θ
)
on GMN ,

where
−→
θ is a vector of Lagrange multipliers required to enforce a desired expected

value

〈
−→
C 〉−→

θ
=

∑
−→
G∈GMN

P
(−→
G |
−→
θ
)−→
C (
−→
G) (2.15)

of
−→
C . Note that both

−→
θ and

−→
C are vectors of numbers with the same (but

model-dependent) dimension K, while
−→
G is always an M -dimensional vector of

graphs. Obviously, an additional constraint on the probability is the normalization
condition∑

−→
G∈GMN

P
(−→
G |
−→
θ
)

= 1 ∀
−→
θ . (2.16)

We want our ensembles to produce multiplexes with independent layers. This
requirement corresponds to the enforcement of separate constraints on the differ-
ent layers, i.e.

−→
C = (

−→
Cα)Mα=1, where

−→
Cα is a Kα-dimensional vector of structural

properties of the network in layer α only, evaluating to
−→
Cα(Gα) on the particular

single-layer graph Gα. This leads to a separation in the corresponding Lagrange
multipliers, i.e.

−→
θ = (

−→
θα)Mα=1. Kα is the dimension of both

−→
Cα and

−→
θα, and

we must have
∑M
α=1K

α = K. Consequently, we can express the entropy of the
ensemble of multiplex networks as

S
(−→
θ
)
≡ −

∑
−→
G∈GMN

P
(−→
G |
−→
θ
)

lnP
(−→
G |
−→
θ
)

=
M∑
α=1

Sα
(−→
θα
)
, (2.17)

where

Sα
(−→
θα
)
≡ −

∑
Gα∈GN

Pα
(
Gα|
−→
θα
)

lnPα
(
Gα|
−→
θα
)

(2.18)
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is the entropy of the ensemble of monoplex graphs for the individual layer α, with
Pα
(
Gα|
−→
θα
)
subject to the normalization condition∑

Gα∈GN

Pα
(
Gα|
−→
θα
)

= 1 ∀
−→
θα α = 1,M. (2.19)

At this point, we want to maximize the entropy S
(−→
θ
)
, subject to the soft

constraint
−→
C , to find the functional form of P

(−→
G |
−→
θ
)
we are looking for. Equa-

tion (2.17) ensures that the maximization of S
(−→
θ
)
, subject to (2.15), reduces to

the maximization of each single-layer entropy Sα
(−→
θα
)
, subject to

〈
−→
Cα〉−→

θα
=

∑
Gα∈GN

Pα
(
Gα|
−→
θα
)−→
Cα(Gα), (2.20)

separately. Therefore the probability P
(−→
G |
−→
θ
)
maximizing S

(−→
θ
)
reduces to the

product of all single-layer probability distributions of the type Pα
(
Gα|
−→
θα
)
, each

of which should separately maximize the corresponding entropy Sα
(−→
θα
)
.

The general solution to the problem of maximizing Sα
(−→
θα
)
, subject to (2.20),

for single-layer networks, leads in our notation to the probability distribution

Pα
(
Gα|
−→
θα
)

=
e−H

α(Gα|
−→
θα)

Z
(−→
θα
) , (2.21)

where

Hα
(
Gα|
−→
θα
)

=
−→
θα ·
−→
Cα(Gα) (2.22)

is the graph Hamiltonian (the dot indicating a scalar product, i.e. a linear com-
bination of the enforced constraints) and

Z
(−→
θα
)

=
∑

Gα∈GN

e−H
α(Gα|

−→
θα) (2.23)

is the partition function (representing the normalizing constant for the probabil-
ity).

Equation (2.23), and consequently (2.21), leads to different explicit functional
forms depending on the choice of the constraint(s), i.e. depending on the func-
tional form of

−→
Cα(Gα). In the following Sections we explicitly discuss the cases of

the Directed Binary Configuration Model (where the constraints are the in- and
out-degrees of all nodes in each layer α) and of the Directed Weighted Configu-
ration Model (where the constraints are the in- and out-strenghts of all nodes in

81



2.B Maximum-likelihood method for multiplex networks

each layer α), respectively.

Once an explicit expression for each Pα
(
Gα|
−→
θα
)
is found, we can find the final

expression for the whole multiplex probability in the null model:

P
(−→
G |
−→
θ
)

=
M∏
α=1

e−H
α(Gα|

−→
θα)

Z
(−→
θα
) =

e−H(
−→
G |
−→
θ )

Z
(−→
θ
) , (2.24)

where

H(
−→
G |
−→
θ ) ≡

M∑
α=1

Hα(Gα|
−→
θα) (2.25)

and

Z
(−→
θ
)
≡

M∏
α=1

Z
(−→
θα
)
. (2.26)

The last three equations rephrase the independence of all layers explicitly.

2.B Maximum-likelihood method for multiplex net-
works

The maximization of the entropy is a constrained, functional maximization of
S
(−→
θ
)
in the space of probability distributions. As such, its result is the func-

tional form of the maximum-entropy distribution P
(−→
G |
−→
θ
)
, given by (2.24), but

not its numerical values. In fact, the distribution depends on the whole vector
of parameters

−→
θ , and any expectation value calculated analytically using the ex-

plicit expression of P
(−→
G |
−→
θ
)
can only be evaluated numerically after a value of

−→
θ is specified. This leads to the problem of choosing

−→
θ . Since we are interested

in the case where all layers of the multiplex are independent, choosing a value of−→
θ reduces to the problem of choosing

−→
θα separately for each layer.

The problem of finding the parameter values of a maximum-entropy model
of single-layer networks has been solved in the general case using the maximum
likelihood principle. In our notation here, this solution can be restated as follows.
Let Gα∗ denote, among all graphs Gα ∈ GN , the particular empirical network
realized in layer α of the multiplex. Given Gα∗ , the log-likelihood function

Lα
(−→
θα
)
≡ lnP

(
Gα∗ |
−→
θα
)

(2.27)

represents the log of the probability to generate the empirical graph Gα∗ , given a
value of

−→
θα. The maximum likelihood principle states that the optimal choice for
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−→
θα is the one that maximizes the chances to obtain Gα∗ from the model, i.e. the
one that maximizes Lα

(−→
θα
)
. Let this parameter choice be denoted by

−→
θα∗ , where

−→
θα∗ ≡ arg max

−→
θα

Lα
(−→
θα
)
. (2.28)

As a general result, the value
−→
θα∗ defined above is such that

〈
−→
Cα〉−→

θα∗
=
−→
Cα(Gα∗ ), (2.29)

i.e. the expectation value of each constraint coincides with the empirical value
measured on the empirical network Gα∗ . This is precisely the outcome we desire,
given that our ultimate goal is the construction of ensembles of networks with the
same numerical value of the constraints as in the real network.

From a practical point of view, eqs. (2.28) and (2.29) represent two equivalent
ways to determine

−→
θα∗ . The former requires the maximization of a scalar function

over a Kα-dimensional space, while the latter requires the solution of a system
of Kα nonlinear coupled equations. For various choices of the graph ensemble
GN and of the constraints

−→
Cα (including those required for our analysis), both

approaches are implemented in the MAX&SAM algorithm (see references in the
main text of this Chapter). More details are given in Sections 2.C and 2.D. Once
the value

−→
θα∗ is found, it is used to find the numerical value P

(
Gα|
−→
θα∗
)
of the

probability of any graph Gα ∈ GN . So, while the maximization of the entropy
generates the functional form of the graph probability, the maximization of the
likelihood fixes its numerical values. If Xα denotes any single-layer structural
property X of interest, the above procedure allows us to evaluate the expected
value

〈Xα〉 ≡ 〈Xα〉−→
θα∗

=
∑

Gα∈GN

P
(
Gα|
−→
θα∗
)
Xα(Gα) (2.30)

(and similarly the standard deviation) of Xα explicitly over the desired ensemble.
For many properties of interest, the expected value (2.30) can be calculated an-
alytically given the explicit expression of P

(
Gα|
−→
θα∗
)
, without the need to sample

the graph ensemble explicitly. For more complicated properties, one can instead
use the knowledge of P

(
Gα|
−→
θα∗
)
to sample graphs from the ensemble in an unbi-

ased way and then calculate expectations as sample averages.

The multiplexity and multireciprocity metrics introduced in the main text are
not single-layer properties like Xα, as they require measurements on multiple
layers simultaneously. We therefore need to generalize eq. (2.30) to the case of
an arbitrary multiplex quantity X , evaluating to X (

−→
G) on a specific multiplex
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2.B Maximum-likelihood method for multiplex networks

−→
G ∈ GMN , as follows:

〈X 〉 ≡ 〈X〉−→
θ∗

=
∑
−→
G∈GMN

P
(−→
G |
−→
θ∗
)
X (
−→
G) (2.31)

where
−→
θ∗ = (

−→
θα∗ )Mα=1 contains the Langrange multipliers (2.28) for all layers and

−→
G∗ = (Gα∗ )Mα=1 ∈ GMN denotes the whole empirical multiplex. Both the expected
values and the standard deviations of multiplexity and multireciprocity can be
calculated explicitly, and we will therefore follow the analytical approach, which
is exact and faster than the sampling approach (see Sections 2.C and 2.D).

From a computational point of view, the above canonical approach based on
soft constraints has many benefits with respect to the microcanonical approach
with hard constraints. Indeed, the microcanonical approach cannot be controlled
analytically, and necessarily requires sampling many randomized multiplexes ex-
plicitly from the ensemble. Generating even only a single randomized multiplex re-
quires the iteration of many random constraint-preserving ‘rewiring moves’, which
is computationally costly. Such a procedure must be repeated several times, to
produce a large sample of R randomized multiplexes, on each of which any topo-
logical property X of interest has to be calculated. Finally, a sample average
should be performed to obtain an estimate of 〈X〉.

For instance, on single-layer networks with constrained degree sequence one
should iterate the so-called ‘local rewiring algorithm’ that preserves the degrees
while randomizing the network. On a monoplex network with L links, the above
approach would require a computational time of order O(L), only to generate a
single realization of the randomized network. On such a realization, one would
then need to measure X (for instance the monoplex reciprocity), which would
require a certain time TX . The total time needed for a single realization would
therefore be TX +O(L), and for all realizations R · TX +O(R · L).

In a multiplex network withM layers, the corresponding time required to gen-
erate a single randomized multiplex would in principle be of order O(

∑M
α=1 L

α),
where Lα is the number of links in the α-th layer. However, if layers are inde-
pendent in the null model, the randomization could (if computational resource
allows) be run in parallel on the different layers, thus reducing the above time
to O(L̄) where L̄ is the average number of links per layer, which does not scale
with M . However, the calculation of multiplex quantities X (e.g. the multire-
ciprocity) which would require a time TX for a single layer (e.g. the monoplex
reciprocity) would now need to be iterated for each pair of layers, thus requiring
a time O(TX ·M2). In total, this means that the total microcanonical computa-
tional time for a multiplex is Tmic = O(R · TX ·M2) + O(R · L), before carrying
out the final sample averages.
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By contrast, our canonical approach does not require the sampling of any
multiplex. For individual layers, the calculation of the expected value of most
properties of interest basically requires replacing the adjacency matrix of the net-
work with the corresponding expected matrix (or more complicated replacements
that in any case require a comparable calculation time). Therefore calculating the
expected value 〈X〉 takes the same time TX that it would take for the empirical
property X to be calculated on the real system. The same holds true for the entire
multiplex. Therefore the total canonical time needed is Tcan = O(TX ·M2) + TL,
where TL is the one-off time required to preliminary maximize the likelihood
(possibly of each layer in parallel) defined in (2.27).

As already mentioned above, the time TL required to maximize the likelihood
function can be proxied by the time required to solve a system of coupled, non-
linear equations ( 2N equations in the case of directed networks, as shown below).
However, since such systems can be further simplified by rewriting them only in
terms of the sequences of distinct directed degrees/strengths (which are always
less than 2N), the computational time drops to the order of seconds or minutes
(depending on the chosen constraints) for each layer. Moreover, further analyses
on synthetic networks have shown that this time scales roughly quadratically with
the number of nodes; this is anyway considerably shorter than the corresponding
total microcanonical time Tmic estimated above.

Besides the computational advantages described above, the canonical approach
has the statistical advantage of being a truly unbiased method, in the sense that
its maximum-entropy nature implies that no preference is given to specific graph
configurations, other than on the basis of the enforced constraints. So unbiased-
ness is ensured by the maximum degree of randomness encoded in the graph
probability, given the constraints. By constrast, microcanonical approaches are
not guaranteed to ensure the same property. In the microcanonical case, unbiased-
ness means that the realizations of the network should be sampled uniformly (i.e.
with exactly the same probability) from the whole set of configurations compati-
ble with the constraints. Ensuring uniform sampling is highly nontrivial and often
impossible. For instance, in the case of graphs with fixed degree sequence, it can
be proved that the local rewiring algorithm is biased, as it preferentially samples
configurations that are ‘close’ to the empirical one. Previous studies showed that
it is in principle possible to remove this bias, by calculating the so-called ‘mobil-
ity’ function (which is a quantity that depends on the current configuration being
randomized) and accepting the ‘next’ randomized configurations with a probabil-
ity that depends on the mobility itself. This requirement further increases, and by
a large extent, the already heavy computational requirements of the microcanon-
ical approach, because the mobility should be continuously recalculated during
the randomization process.
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2.C Directed Binary Configuration Model

2.C Directed Binary Configuration Model

In this Section we explicitly discuss the DBCM model, obtained through the
maximum entropy and maximum likelihood methods in the specific case where
GN contains all binary directed graphs with N nodes and

−→
Cα is a vector of di-

mension Kα = 2N containing the out-degree kouti and the in-degree kini of all
nodes (i = 1, N). Correspondingly, the 2N -dimensional vector

−→
θα contains the

associated Lagrange multipliers φαi and χαi for all nodes. Note that we enforce
the in- and out-degree sequences on all layers, which means that, as a function,
−→
Cα = (

−−→
kout,

−→
kin) is the same for all α. However, the numerical values of the

degrees in different layers will in general be different, i.e.
−→
C (Gα) 6=

−→
C (Gβ) for

α 6= β, thus
−→
θα = (

−→
φα,
−→
χα) must still depend on α explictly.

For single-layer networks, this model has been fully discussed. Here we simply
summarize the main steps leading to the final expressions for the expected binary
multiplexity and binary reciprocity. Using the notation introduced in the main
text and in Appendix 2.A, the single-layer Hamiltonian (2.22) reads

H
(
Gα|
−→
φα,
−→
χα
)

=
−→
φα ·
−−→
kout(Gα) +

−→
χα ·
−→
kin(Gα) =

=
N∑
i=1

[
φαi k

out
i (Gα) + χαi k

in
i (Gα)

]
=

=
N∑
i=1

∑
j 6=i

(
φαi + χαj

)
aαij (2.32)

and the partition function (2.23) can be calculated as:

Z
(−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(
1 + e−φ

α
i −χ

α
j
)

=
N∏
i=1

∏
j 6=i

(
1 + xαi y

α
j

)
, (2.33)

where we have set xαi ≡ e−φ
α
i and yαi ≡ e−χ

α
i . This implies that the probabil-

ity (2.21) can be written explicitly as

Pα
(
Gα|
−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(xαi y
α
j )a

α
ij

1 + xαi y
α
j

=
N∏
i=1

∏
j 6=i

(pαij)
aαij (1− pαij)1−aαij , (2.34)
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where

pαij =
xαi y

α
j

1 + xαi y
α
j

(2.35)

is the probability of a directed link from i to j in layer α. Equation (2.34) shows
that the random variable aαij is drawn, for all i 6= j, from a Bernoulli distribution
with success probability pαij .

Given the real-world multiplex
−→
G∗ = (Gα∗ )Mα=1, the single-layer log-likelihood

function (2.27) to be maximized is then given by

L
(−→
xα,
−→
yα
)

=
N∑
i=1

[
kouti (Gα∗ ) lnxαi + kini (Gα∗ ) ln yαi

]
+

−
N∑
i=1

∑
j 6=i

ln
(
1 + xαi y

α
j

)
, (2.36)

and the equivalent set of 2N coupled nonlinear equations (2.29) to be solved is∑
j 6=i

xαi y
α
j

1 + xαi y
α
j

= kouti (Gα∗ ) ∀i = 1, N (2.37)

∑
j 6=i

xαj y
α
i

1 + xαj y
α
i

= kini (Gα∗ ) ∀i = 1, N. (2.38)

Once found, the values of {xαi } and {yαi } providing the unique solution to the
above problem can be put back in eqs. (2.34) and (2.35), allowing us to analyt-
ically calculate the expected values 〈·〉DBCM of the quantities of interest via the
corresponding probabilities pαij (where for simplicity we drop the asterisk indicat-
ing that pαij is evaluated at the specific values that maximize the likelihood).

In particular, we can calculate the rescaled metrics of multiplexity and mul-
tireciprocity defined in the main text as follows. First of all, since in the DBCM
the in- and out-degrees of all nodes in all layers are equal to their expected val-
ues, we necessarily have 〈Lα〉DBCM = Lα∗ for all α, where Lα∗ ≡ Lα(Gα∗ ) is the
number of links of the observed, layer-specific graph Gα∗ . This means that Lα is
a constrained quantity, and we therefore expect the denominators of the afore-
mentioned quantities to fluctuate around their expected values Lα∗ +Lβ∗ much less
than how the numerators fluctuate around the corresponding expected values. We
therefore approximate their expected values as follows:

〈mα,β
b 〉DBCM =

2〈Lα⇒β〉DBCM

Lα∗ + Lβ∗
(α 6= β), (2.39a)

〈rα,βb 〉DBCM =
2〈Lα�β〉DBCM

Lα∗ + Lβ∗
. (2.39b)
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Consequently,

µα,βb =
2Lα⇒β
∗ − 2〈Lα⇒β〉DBCM

Lα∗ + Lβ∗ − 2〈Lα⇒β〉DBCM
(α 6= β),

ρα,βb =
2Lα�β
∗ − 2〈Lα�β〉DBCM

Lα∗ + Lβ∗ − 2〈Lα�β〉DBCM
.

Since aαij and aβij (for β 6= α), and similarly aαij and aβji (for any β), are indepen-
dently drawn from two Bernoulli distributions, the expected values of min{aαij , a

β
ij}

(with β 6= α) and min{aαij , a
β
ji} are easily calculated as

〈min{aαij , a
β
ij}〉DBCM = pαijp

β
ij (α 6= β), (2.40a)

〈min{aαij , a
β
ji}〉DBCM = pαijp

β
ji, (2.40b)

as shown in Chapter 1 for the undirected case. Therefore the final expressions
for the transformed multiplexity and multireciprocity are:

µα,βb =
2Lα⇒β
∗ − 2

∑
i

∑
j 6=i p

α
ijp

β
ij

Lα∗ + Lβ∗ − 2
∑
i

∑
j 6=i p

α
ijp

β
ij

(α 6= β) (2.41a)

ρα,βb =
2Lα�β
∗ − 2

∑
i

∑
j 6=i p

α
ijp

β
ji

Lα∗ + Lβ∗ − 2
∑
i

∑
j 6=i p

α
ijp

β
ji

, (2.41b)

where the probabilities are defined according to Eq. (2.35).

Similarly, we need to calculate the z-scores associated to our metrics. To
do this, we need to calculate the standard deviations of mαβ

b and rαβb at the
denominator of the z-scores. Neglecting again the fluctuations of the constrained
quantities Lα and Lβ around their average values (with respect to the fluctuations
of the unconstrained quantities), and since all pairs of nodes are independent, we
calculate the variances of mαβ

b and rαβb in a way similar to what we did for the
expressions in eq. (2.42):

Var[mαβ
b ] =

4
∑
i

∑
j 6=iVar[min{aαij , a

β
ij}]

(Lα∗ + Lβ∗ )2
(α 6= β),

Var[rαβb ] =
4
∑
i

∑
j 6=iVar[min{aαij , a

β
ji}]

(Lα∗ + Lβ∗ )2
.

Now we note that the minimum of two 0/1 quantities is also a 0/1 quantity.
This implies that the square of the minimum is equal to the minimum itself, and
that the expected square of the minimum is equal to the expected value of the
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minimum. In formulas:

〈min2{aαij , a
β
ij}〉DBCM = pαijp

β
ij (α 6= β), (2.43)

〈min2{aαij , a
β
ji}〉DBCM = pαijp

β
ji. (2.44)

It then follows that the variance of the minimum is

Var
[

min{aαij , a
β
ij}
]

= pαijp
β
ij(1− p

α
ijp

β
ij) (α 6= β),

Var
[

min{aαij , a
β
ji}
]

= pαijp
β
ji(1− p

α
ijp

β
ji).

Putting these expressions into those for Var[mα,β
b ] and Var[rα,βb ], and taking the

square root to obtain the standard deviations, we finally arrive at the explicit
calculation of the z-scores:

z
(
mαβ
b

)
=

Lα⇒β
∗ −

∑
i

∑
j 6=i p

α
ijp

β
ij√∑

i

∑
j 6=i p

α
ijp

β
ij(1− pαijp

β
ij)

(α 6= β)

z
(
rαβb
)

=
Lα�β
∗ −

∑
i

∑
j 6=i p

α
ijp

β
ji√∑

i

∑
j 6=i p

α
ijp

β
ji(1− pαijp

β
ji)

From a direct comparison between the above equations and Eqs. (2.41), we im-
mediately observe the sign concordance reported in Chapters 1 and 2.

2.D Directed Weighted Configuration Model

Here we consider the DWCM model, obtained when GN contains all weighted
directed graphs (with non-negative integer edge weights) with N nodes and

−→
Cα

is a vector of dimension Kα = 2N containing the out-strength souti and the in-
strength sini of all nodes (i = 1, N). The 2N -dimensional vector

−→
θα contains the

associated Lagrange multipliers φαi and χαi . As for the DBCM,
−→
Cα = (

−−→
sout,

−→
sin)

is the same function for all α. However, the numerical values
−→
θα = (

−→
φα,
−→
χα) still

depend on α.

For single-layer networks, the Hamiltonian (2.22) reads

H
(
Gα|
−→
φα,
−→
χα
)

=
−→
φα ·
−−→
sout(Gα) +

−→
χα ·
−→
sin(Gα) =

=
N∑
i=1

[
φαi s

out
i (Gα) + χαi s

in
i (Gα)

]
=

=
N∑
i=1

∑
j 6=i

(
φαi + χαj

)
wαij (2.45)
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and the partition function (2.23) can be calculated as:

Z
(−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(
1− e−φ

α
i −χ

α
j
)−1

=
N∏
i=1

∏
j 6=i

(
1− xαi yαj

)−1
, (2.46)

where we have set xαi ≡ e−φ
α
i and yαi ≡ e−χ

α
i . This implies that the probabil-

ity (2.21) can be written as

Pα
(
Gα|
−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(xαi y
α
j )w

α
ij (1− xαi yαj )

=
N∏
i=1

∏
j 6=i

(pαij)
wαij (1− pαij), (2.47)

where

pαij = xαi y
α
j (2.48)

denotes again the probability that a directed link (of any positive weight) from
node i to node j is realized in layer α. Equation (2.47) gives the interpretation of
wαij as a geometrically distributed variable, constructed as the iteration of many
random events, each defined as incrementing wαij by one, starting from wαij = 0.
In this interpretation, pαij is the elementary probability of a ‘success’ event, and
the probability that wαij = w coincides with the probability (pαij)

w(1 − pαij) of
having w consecutive successes followed by one failure. This leads precisely to a
geometric distribution.

The single-layer log-likelihood function (2.27) to be maximized is now given
by

L
(−→
xα,
−→
yα
)

=
N∑
i=1

[
souti (Gα∗ ) lnxαi + sini (Gα∗ ) ln yαi

]
+

+
N∑
i=1

∑
j 6=i

ln
(
1− xαi yαj

)
, (2.49)

and the corresponding equations (2.29) are∑
j 6=i

xαi y
α
j

1− xαi yαj
= souti (Gα∗ ) ∀i = 1, N (2.50)

∑
j 6=i

xαj y
α
i

1− xαj yαi
= sini (Gα∗ ) ∀i = 1, N. (2.51)
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The expected values 〈·〉DWCM of the relevant quantities can be found through
eqs. (2.47) and (2.48), evaluated at the values of {xαi } and {yαi } that solve the
above problem (again, in what follows we drop the asterisk indicating that pαij is
evaluated at the specific values that maximize the likelihood).

We start with the calculation of the expected values of the multiplexity and
multireciprocity metrics defined in the main text. In analogy with what we did
for the DBCM, we expect the (constrained) denominators of both the metrics to
fluctuate much less than the (unconstrained) numerators and we therefore replace
the denominators with their expected values Wα

∗ +W β
∗ . We therefore write

〈mαβ
w 〉DWCM =

2〈Wα⇒β〉DWCM

Wα
∗ +W β

∗
, (2.52a)

〈rαβw 〉DWCM =
2〈Wα�β〉DWCM

Wα
∗ +W β

∗
(2.52b)

and

µαβw =
2Wα⇒β
∗ − 2〈Wα⇒β〉DWCM

Wα
∗ +W β

∗ − 2〈Wα⇒β〉DWCM
(α 6= β),

ραβw =
2Wα�β
∗ − 2〈Wα�β〉DWCM

Wα
∗ +W β

∗ − 2〈Wα�β〉DWCM
.

Since wαij and wβij (for β 6= α), and similarly wαij and wβji (for any β), are
independenlty drawn from two geometric distributions, the expected values of
min{wαij , w

β
ij} (with β 6= α) and min{wαij , w

β
ji} are easily calculated as

〈min{aαij , a
β
ij}〉DBCM =

pαijp
β
ij

1− pαijp
β
ij

(α 6= β), (2.53a)

〈min{aαij , a
β
ji}〉DBCM =

pαijp
β
ji

1− pαijp
β
ji

. (2.53b)

Therefore the transformed multiplexity and multireciprocity read

µαβw =
2Wα⇒β
∗ − 2

∑
i

∑
j 6=i

pαijp
β
ij

1−pαijp
β
ij

Wα
∗ +W β

∗ − 2
∑
i

∑
j 6=i

pαijp
β
ij

1−pαijp
β
ij

(α 6= β) (2.54a)

ραβw =
2Wα�β
∗ − 2

∑
i

∑
j 6=i

pαijp
β
ji

1−pαijp
β
ji

Wα
∗ +W β

∗ − 2
∑
i

∑
j 6=i

pαijp
β
ji

1−pαijp
β
ji

, (2.54b)
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where the probabilities are defined in Eq. (2.48).

We then calculate the z-scores. Following an argument similar to the binary
case, we write

Var[mαβ
w ] =

4
∑
i

∑
j 6=iVar[min{wαij , w

β
ij}]

(Wα
∗ +W β

∗ )2
(α 6= β),
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∑
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∑
j 6=iVar[min{wαij , w

β
ji}]

(Wα
∗ +W β

∗ )2
.

After calculating the variance of the minimum of two geometrically distributed
random variables, we get
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[
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β
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=
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β
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)2 (α 6= β),
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)2 .
Combining all the relevant expressions together, we get for the z-scores:
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)2
in analogy with the results shown in the first chapter for the undirected case.
Comparing with Eqs. (2.54), we confirm the concordance of the sings.

92



Directed multiplex networks

Bibliography

[1] H. Ebel, L.-I. Mielsch, S. Bornholdt (2002) ’Scale-free topology of e-mail
networks’, Physical Review E 66 (3), 035103

[2] M. E. J. Newman (2004) ’Analysis of weighted networks’, Physical Review E
70 (5), 056131

[3] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes,
M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin (2014) ’The structure
and dynamics of multilayer networks’, Physics Reports 544 (1), 1

[4] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, M. A. Porter
(2014) ’Multilayer networks’, Journal of Complex Networks 2 (3), 203

[5] M. Magnani, B. Micenková, L. Rossi (2013) ’Combinatorial analysis of mul-
tiple networks’, arXiv:1303.4986

[6] F. Battiston, V. Nicosia, V. Latora (2014) ’Structural measures for multiplex
networks’, Physical Review E 89 (3), 032804

[7] G. Bianconi (2013) ’Statistical mechanics of multiplex networks: entropy and
overlap’, Physical Review E 87 (6), 062806

[8] M. Barigozzi, G. Fagiolo, D. Garlaschelli (2010) ’Multinetwork of inter-
national trade: a commodity-specific analysis’, Physical Review E 81 (4),
046104

[9] V. Gemmetto, D. Garlaschelli (2015) ’Multiplexity versus correlation: the
role of local constraints in real multiplexes’, Scientific Reports 5, 9120

[10] D. Garlaschelli, M. I. Loffredo (2004) ’Patterns of link reciprocity in directed
networks’, Physical Review Letters 93 (26), 268701

[11] T. Squartini, F. Picciolo, F. Ruzzenenti, D. Garlaschelli (2013) ’Reciprocity
of weighted networks’, Scientific Reports 3, 2729

[12] L. A. Meyers, M. E. J. Newman, B. Pourbohloul (2006) ’Predicting epidemics
on directed contact networks’, Journal of Theoretical Biology 240 (3), 400

[13] M. Boguñá, M. Serrano (2005) ’Generalized percolation in random directed
networks’, Physical Review E 72 (1), 016106

[14] M. Schnegg (2006) ’Reciprocity and the emergence of power laws in social
networks’, International Journal of Modern Phtsics C 17, 1067

[15] D. Garlaschelli, M. I. Loffredo (2005) ’Structure and evolution of the world
trade network’, Physica A 355 (1), 138

93



2.8 Bibliography

[16] C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, J. Kurths (2006) ’Hi-
erarchical organization unveiled by functional connectivity in complex brain
networks’, Physical Review Letters 97 (23), 238103

[17] M. E. J. Newman, S. Forrest, J. Balthrop (2002) ’Email networks and the
spread of computer viruses’, Physical Review E 66 (3), 035101

[18] S. Maslov, K. Sneppen (2002) ’Specificity and stability in topology of protein
networks’, Science 296, 910

[19] M. Serrano, M. Boguñá, (2005) ’Weighted configuration model’, AIP Con-
ference Proceedings 776, 101

[20] T. Squartini, D. Garlaschelli (2011) ’Analytical maximum-likelihood method
to detect patterns in real networks’, New Journal of Physics 13, 083001

[21] T. Squartini, R. Mastrandrea, D. Garlaschelli (2015) ’Unbiased sampling of
network ensembles’, New Journal of Physics 17, 023052

[22] E. S. Roberts, A. C. C. Coolen (2012) ’Unbiased degree-preserving random-
ization of directed binary networks’, Physical Review E 85 (4), 046103

[23] M. E. J. Newman, S. H. Strogatz, D. J. Watts (2001) ’Random graphs with
arbitrary degree distributions and their applications’, Physical Review E 64
(2), 026118

[24] G. L. Robins, P. E. Pattison, Y. Kalish, D. Lusher (2007) ’An introduction
to exponential random (p∗) models for social networks’, Social Networks 29
(2), 173

[25] J. Park, M. E. J. Newman (2004) ’Statistical mechanics of networks’, Physical
Review E 70 (6), 066117

[26] J. Park, M. E. J. Newman (2003) ’Origin of degree correlations in the Internet
and other networks’, Physical Review E 68 (2), 026112

[27] P. W. Holland, S. Leinhardt (1981) ’An exponential family of probability
distributions for directed graphs’, Journal of the American Statistical Asso-
ciation 76 (373), 33

[28] S. Wasserman, K. Faust (1994) ’Social network analysis’, Cambridge Univer-
sity Press, Cambridge, New York

[29] T. A. B. Snijders, P. E. Pattison, G. L. Robins, M. S. Handcock (2006) ’New
specifications for exponential random graph models’, Sociological Methodol-
ogy 36 (1), 99

[30] D. Garlaschelli, M. I. Loffredo (2008) ’Maximum likelihood: extracting unbi-
ased information from complex networks’, Physical Review E 78 (1), 015101

94



Directed multiplex networks

[31] D. Garlaschelli, M. I. Loffredo (2004) ’Fitness-dependent topological proper-
ties of the World Trade Web’, Physical Review Letters 93 (18), 188701

[32] T. Squartini, G. Fagiolo, D. Garlaschelli (2011) ’Randomizing world trade.
I. A binary network analysis’, Physical Review E 84 (4), 046117

[33] T. Squartini, G. Fagiolo, D. Garlaschelli (2011) ’Randomizing world trade.
II. A weighted network analysis’, Physical Review E 84 (4), 046118

[34] R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli (2014) ’Recon-
structing the world trade multiplex: the role of intensive and extensive bi-
ases’, Physical Review E 90 (6), 062804

[35] C. A. Hidalgo, B. Klinger, A.-L. Barabási, R. Hausmann (2007) ’The product
space conditions the development of nations’, Science 317, 482

[36] A. Tacchella, M. Cristelli, G. Caldarelli, A. Gabrielli, L. Pietronero (2012)
’A new metrics for countries’ fitness and products’ complexity’, Scientific
Reports 2, 723

[37] G. Gaulier, S. Zignago (2010) ’BACI: international trade database at the
product-level (the 1994-2007 version)’, CEPII Working Paper 23

[38] http://www. wcoomd.org

[39] F. Ruzzenenti, D. Garlaschelli, R. Basosi (2010) ’Complex networks and sym-
metry II: reciprocity and evolution of world trade’, Symmetry 2 (3), 1710

[40] F. Picciolo, T. Squartini, F. Ruzzenenti, R. Basosi, D. Garlaschelli (2012)
’The role of distances in the World Trade Web’, Proceedings of the 8th Inter-
national Conference on Signal Image Technology and Internet Based Systems
(SITIS), 784

[41] M. de Domenico, V. Nicosia, A. Arenas, V. Latora (2015) ’Structural re-
ducibility of multilayer networks’, Nature Communications 6, 6864

[42] J. Iacovacci, Z. Wu, G. Bianconi (2015) ’Mesoscopic structures reveal the
network between the layers of multiplex data sets’, Physical Review E 92
(4), 042806

[43] B. Balassa (1965) ’Trade liberalization and "revealed" comparative advan-
tage’, Manchester School 33, 99

95



2.8 Bibliography

96



Chapter 3

Multiplex network
reconstruction

The characterization of various properties of real-world systems requires the knowl-
edge of the underlying network of connections among the system’s components.
Unfortunately, in many situations the complete topology of this network is em-
pirically inaccessible, and one has to resort to probabilistic techniques to infer it
from limited information. While network reconstruction methods have reached
some degree of maturity in the case of single-layer networks (where nodes can
be connected only by one type of links), the problem is practically unexplored
in the case of multiplex networks, where several interdependent layers, each with
a different type of links, coexist. Even the most advanced network reconstruc-
tion techniques, if applied to each layer separately, fail in replicating the observed
inter-layer dependencies making up the whole coupled multiplex. Here we develop
a methodology to reconstruct a class of correlated multiplexes which includes the
World Trade Multiplex as a specific example we study in detail. Our method
starts from any reconstruction model that successfully reproduces some desired
marginal properties, including node strengths and/or node degrees, of each layer
separately. It then introduces the minimal dependency structure required to repli-
cate an additional set of higher-order properties that quantify the portion of each
node’s degree and each node’s strength that is shared and/or reciprocated across
pairs of layers. These properties are found to provide empirically robust measures
of inter-layer coupling. Our method allows joint multi-layer connection probabil-
ities to be reliably reconstructed from marginal ones, effectively bridging the gap
between single-layer properties and truly multiplex information.

The results presented in this chapter have been published in the following reference:
V. Gemmetto, D. Garlaschelli, arXiv:1709.03918 (2017).
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3.1 Introduction

In the last twenty years, the study of complex networks acquired importance as it
could significantly increase our understanding of many real-world systems [1, 2, 3],
ranging from the global airport infrastructure [4] to biological systems like the
brain [5]. Indeed, it is easy to realize that several systems, including the ones just
mentioned, share a common abstract representation in terms of nodes connected
by links, i.e. in terms of graphs or networks.

However, a more careful analysis shows that a simple network representation
is often not enough to fully capture the whole complexity of the aforementioned
systems [6]. For instance, the presence of different airline companies significantly
affects the air transportation landscape [7, 8]. Similarly, the human body can be
thought of as a set of interdependent networks where several complex physiological
systems, e.g. the nervous and the cardiovascular ones, constantly interact [9].

For this reason, the concepts of multiplex and interdependent networks have
been developed. In a multiplex network, a given set of nodes is connected through
different modes of interactions; the system is therefore represented as a coloured-
edge or layered graph [10], where each layer contains the same set of “replica
nodes”. Interdependent networks are instead composed of two or more intercon-
nected networks, where each node of any graph is dependent on one or more nodes
belonging to the other(s) [6].

Several studies have focused on the analysis of structural aspects of these
multi-graphs [11, 12, 13]. In particular, the analysis of the overlap between layers
of a multiplex network can provide valuable information in order to better un-
derstand some dynamical processes that occur on top of those systems [14, 15]
or possible failure cascades [6]. Moreover, the presence of dipendencies between
layers crucially affects the systemic risk associated to these networks, for instance
in the case of financial or economic systems [16, 17]. It must be pointed out that,
in order to study the aforementioned dynamical processes, the full graph structure
is required, even in the case of monoplex networks. In general, however, confi-
dentiality issues or limitedness of the topological information may not allow the
knowledge of the entire network, but only that of partial information about the
nodes (for instance, the degrees of all or some of the vertices, or the strengths and
the density). Various network reconstruction methods have therefore been devel-
oped, in order to successfully infer the full topological structure of graphs starting
from incomplete information [18, 19, 20, 21, 22, 23, 24, 25]. Unfortunately, the
current methodologies are applicable only to single-layer networks, leaving an im-
portant gap open in the study of multiplex networks. If these techniques were
applied to each layer of a multiplex separately, they would by construction fail in
replicating the empirical coupling between layers.

Our main goal in the present chapter is that of developing a satistifactory
methodology for the reconstruction of multiplex networks from partial informa-
tion. Our approach is guided by the following consideration. Clearly, a single-layer
network can be seen as a particularly simple case of a multiplex, i.e. in the limit
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when the number of layers is one. Then, from an entirely general point of view, a
method to reconstruct multiplex networks may fail as a result of (a combination
of) two factors. On one hand, the method may be unsuccessful because the prop-
erties of (some of) the layers are incorrectly reconstructed. This may be due to
the method failing on each layer separately, a circumstance that strongly indicates
an intrinsic unreliability of the reconstruction model itself, even when applied in
the single-layer limit. On the other hand, the method may succeed in replicating
the marginal properties of each layer separately, while it may fail in replicating
the interdependencies among layers. In the former case we do not learn anything
useful about whether and how the method can be improved. By contrast, the lat-
ter situation is quite informative, as it indicates that, if the reconstruction model
could be generalized in such a way that its marginal single-layer properties are
maintained, while at the same time its inter-layer ones are made more realistic,
then it would become an acceptable method for reconstructing multiplexes with
coupled layers.

Following the above reasoning, we put ourselves in the latter situation and
assume that the empirical multiplex is taken from a class of multiplex networks
for which a ‘marginal’ method capable of reliably reconstructing each layer sep-
arately exists. Then, we investigate how a generalized and coupled multiplex
method with the same marginal properties can be constructed. Building on the
recent literature on single-layer network reconstruction methods, we select the
World Trade Multiplex (WTM) as the ideal empirical candidate for our analysis.
The nodes of this multiplex are countries of the world, whereas links represent
trade relationships, disaggregated into different commodities. Each commodity
gives rise to a separate layer. The links in each layer are in principle directed
(from the exporter to the importer) and weighted (by the dollar value of the
trade relationship), even though they are often projected into undirected and/or
unweighted ones. The empirical properties of the WTM have been studied ex-
tensively [26, 27, 28, 29, 30, 31]. If all the commodities are aggregated together,
one obtains a single-layer projection documenting the total trade fluxes among
countries [27, 28, 32, 33]. In the representation considered here, we use data from
Ref. [34, 35] reporting N = 207 countries trading in M = 96 different commodi-
ties, each representing a given layer of the multiplex.

The WTM fulfills our criterion stated above, because it has been shown that
each of its layers is very closely replicated by a model that takes only local node in-
formation as input. Indeed, the purely binary structure of each layer of the WTM
can be replicated starting from the knowledge of the degree of each node in that
layer [27] (Binary Configuration Model [36, 37]), while the weighted structure can
be successfully replicated from the knowledge of both the strength and the degree
of each node in that layer [29] (Enhanced Configuration Model [22, 37]). More
relaxed reconstruction models [23, 24, 25], which are discussed later in the paper,
have also been shown to successfully replicate the properties of the World Trade
network. At the same time, it has been shown that the knowledge of the strength
and degree of each node in each layer is not enough to replicate the coupling be-
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tween layers [30, 31], illustrating that even if the marginal reconstruction method
is successful in each and every layer separately, it fails in replicating the multiplex
as a whole.

Our strategy in this chapter is that of devising a way to preserve the good
marginal properties of single-layer reconstruction methods, while at the same
time introducing a minimal but effective coupling such that, additionally, various
robust inter-layer properties of the multiplex are also replicated. The structure
of the chapter is as follows. In sec. 3.2 we introduce some preliminary concepts
that constrain the range of possible multiplex reconstruction models. In sec. 3.3
we focus on the case of binary multiplexes (both undirected and directed) and
develop a multiplex reconstruction method in that case. In sec. 3.4 we move on
to weighted multiplexes (again, both undirected and directed) and develop the
weighted counterpart of the reconstruction method. Finally, in sec. 4.6 we make
some concluding remarks.

3.2 Preliminaries
This section establishes some useful criteria which constrain the features of the
multiplex reconstruction model we are after.

3.2.1 Beyond inter-layer degree correlations
To reliably reconstruct a multiplex, we need to identify useful target properties
that accurately capture the inter-layer coupling. Various notions of inter-layer
overlap have been developed in the literature, for instance in terms of correlation
of layer activity [11] and overlapping degree [12]. In single-layer networks, degree
correlation is usually computed by looking at the average degree of the first neigh-
bours of a node having a certain degree (average nearest neighbour degree). In
the same spirit, notions of multiplex assortativity or inter-layer degree correlation
have been developed [11, 38, 39]. The inter-layer degree correlation function has
been defined as:

k
α (
kβ
)

=
∑
kα

kαP
(
kα|kβ

)
(3.1)

where P
(
kα|kβ

)
is the probability that a node having a given degree kβ in layer

β has degree kα in layer α.
We have shown in the previous chapters that the above quantity is unfortu-

nately not informative about the component of inter-layer coupling that is not
due to the degree distribution of the various layers [30]. For instance, if the
same node is a hub in multiple layers (a property that gives rise to positive inter-
layer assortativity), it will automatically produce a significant overlap of links
across these layers, even if links in different layers are drawn completely indepen-
dently. Such an overlap should therefore not be taken as a genuine measure of
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statistical dependency across layers. This spurious effect increases with increas-
ing intra-layer density and increasing heterogeneity of local node properties like
degrees and strengths. In order to detect ‘true’ inter-layer dependencies that are
not merely explained by chance, density, or by the local properties of individual
nodes, one can construct maximum-entropy null models of multiplexes with in-
dependent layers and given node properties [36, 40, 41]. In these null models, in
each layer every node has - on average - the same degree (for binary networks),
or strength (for weighted networks), that it has in the real multiplex [30]. Apart
from these constraints, the maximum-entropy multiplex ensemble is completely
random and no dependency is introduced among layers. The expectation values of
the multiplexity over the null ensemble can be calculated exactly and used to filter
out the undesired effects from the measured values. In the first chapter, we have
therefore defined new metrics that quantify the intensity of coupling among layers
of an undirected multiplex network, introducing the concept of multiplexity [30].
We have used these metrics to extensively document the empirical properties of
real-world systems such as the World Trade Multiplex (WTM) [26, 29, 30] and
the European Airport Multiplex [7]. We concluded that much of the apparent
multiplexity observed among the layers is actually explained by the local proper-
ties of nodes. Still, we found a significant level of measured remaining overlap,
which quantifies the residual, ‘genuine’ multiplexity structure of the WTM.

Whenever it is important to take into account the directionality of the connec-
tions in a graph [42], the aforementioned approach can be extended to directed
multi-layer networks [31]. We found that, in the directed case, the inter-layer
‘link overlap’ can manifest itself in terms of both the ‘alignment’ (a phenomenon
that we called multiplexity in analogy with the undirected case [30]) and the ‘anti-
alignment’ (a phenomenon that we called multireciprocity as a generalization of
the ordinary reciprocity for single-layer networks [43, 44]) of links across layers.
Since in each layer links are allowed in both directions between any two nodes,
the alignment and the anti-alignment of links across layers do not conflict with
each other and can actually coexist.

3.2.2 A multiplex model with dyadic independence

Our aim is that of introducing a minimal but realistic multiplex model that can
reproduce the observed inter-layer dependencies reported above. Unlike the null
models considered therein, the multiplex model should be characterized by non-
trivial joint probabilities of connection involving multiple layers. We want to
develop one such model for binary multiplexes, and one for weighted multiplexes,
in both the undirected and directed case.

To keep the model as simple as possible, we assume dyadic independence: the
presence (and weight) of a link connecting a pair of nodes in a given layer does
not depend on the presence (and weight) of a link connecting a different pair of
nodes in the same or in any other layer, although it does depend on the presence
(and weight) of the links connecting the same pair of nodes in other layers. If
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we introduce the term multidyad to denote a single pair of nodes ‘replicated’
over all layers of the multiplex (i.e. the set of all single-layer dyads involving
the same two nodes), the above assumption might be referred to as multidyadic
independence. Note that, in directed and binary single-layer networks, a dyad
formed by two nodes i and j can have 4 different topologies (a single link from i
to j, a single link from i to j, two reciprocal links between i and j, or no link at
all). This implies that, in a directed binary multiplex with M layers, a multidyad
can have 4M possible topologies. In a directed and weighted single-layer network,
even assuming that the weights are non-negative integer numbers (as often done
in previous approaches), a dyad can already have an infinity of possible weight-
dependent configurations. Correspondingly, a multidyad in a multiplex with M
layers would have an infinite number, ‘raised to theMth power’, of configurations.
Analogously, similar considerations hold for the undirected case, with the only
difference that a dyad in a single-layer unweighted graph can now have 2 possible
distinct values (a link between i and j, or no link at all).

The assumption of multidyadic independence only restricts the topological
properties that individual layers can have, but does not restrict the range of
possible dependencies among layers of the multiplex. Moreover, many single-
layer networks have been in fact shown to have a structure consistent with dyadic
independence [27, 28, 29, 36]. This property is also confirmed by the success
of network reconstruction techniques that, as the one we will introduce here,
assume dyadic independence [20, 21, 45, 46]. An important example is given
precisely by the WTM, whose single-layer structure is largely consistent with
dyadic independence [27, 29].

3.3 Binary multiplex model
In this Section, we develop our analytical framework and show the results of
the application of such a theoretical model to a real-world system, namely the
binarized version of the International Trade Multiplex [30, 35].

Let us consider the marginal - i.e. unconditional on the presence of any other
link in any layer - probability that a (possibly directed) link from node i to node
j exists in layer α:

pαij ≡ P (aαij = 1) = 〈aαij〉 (3.2)

(here and in the rest of the chapter, angular brackets do not denote expected
values under a null model with independent layers – as in the previous chapters
– but ensemble averages over a realistic multiplex model with dependent layers).
Due to our assumption of multidyadic independence, the relevant information
that is marginalized in the probability pαij does not involve other pairs of nodes
(joint probabilities involving multiple pairs of nodes would in any case factorize
into products of marginal probabilities of invididual pairs of nodes), but it does
involve other layers.
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In other words, pαij does not contain information about the inter-layer de-
pendencies that we want to model. As such, it can be chosen to be specified
by any convenient single-layer network model that satisfactorily reproduces the
topological properties of layer α. This marginal model is not actually an essential
ingredient of our multiplex model and can be in some sense ‘outsourced’. For
instance, it can be chosen to be a proper null model: an appropriate choice would
be the (undirected or directed) Configuration Model [47], i.e. the ensemble of
networks satisfying on average the empirical degree sequence observed in that
specific layer α. It has indeed been shown [27, 29, 36] that this model is able
to reliably replicate the topological properties of each layer of many real multi-
layer networks, including the World Trade Web itself [48, 49]. Hence, defining
the values pαij as the link probabilities, for each layer separately, deriving from
the Configuration Model is the most straightforward choice. As a byproduct, this
choice illustrates that the previously introduced multiplex assortativity metrics
(Eq. (3.1)) are not informative about the inter-layer coupling of interest for our
analysis, because they are completely reabsorbed into the dyadic probabilities
pαij ; hence, these measures simply refer to a different kind of dependency between
layers.

We now come to the definition of the true building blocks of our model of mul-
tiplexes with dependent layers. Indeed, the assumption that layers are dependent
implies that joint probabilities involving the same pairs of nodes but different
layers should not trivially factorize into products of marginal probabilities of the
type pαij . We therefore need to introduce generic joint probabilities that involve
multiple layers. In general, even if we are assuming multidyadic independence, for
each pair of nodes we should consider the joint probabilities of all combinations
of links across all layers together, i.e. (in the jargon of multiplex networks [41])
the probabilities of all possible multilinks involving the same two nodes. As we
mentioned, in multiplexes with directed links a multidyad can have 4M possible
topologies, i.e. 4M possible multilinks. For each pair of nodes, fully specifying the
joint connection probabilities across all layers would require the specification of
a different probability for each of these multilinks, with the only constraint that
the 4M probabilities sum up to one. This would lead to the definition of 4M − 1
probabilities. While this operation is feasible and insightful in the most studied
case of a multiplex with two layers only, it becomes increasingly challenging (and
decreasingly transparent) as M increases.

By contrast, we want to keep our approach feasible and useful (both from
a modelling and from a network reconstruction perspective) even in the case of
a very large number of layers, for which our formalism based on multiplexity
and multireciprocity matrices fully shows its advantages. Therefore we take the
following parsimonious approach. For a given pair of nodes, we start from the
definition of two joint (and conditional) probabilities that fully characterize both
the multiplexity and the reciprocity properties of a single pair of layers, and then
consider the set of such probabilities for all the M2 pairs of layers (including a
layer with itself) of the multiplex. This leads to a set of only 2M2 probabilities
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defining the directed multiplex model (but still for a single pair of nodes). This
set represents the relevant projection (or marginalization) of the full set of 4M −1
multilink probabilities. The quadratic (as opposed to exponential) growth of the
number of probabilities with the number of layers makes our approach appeal-
ing and manageable. Moreover, we will show that, at least in the empirical case
study considered here, the conditional probabilities are approximately indepen-
dent of the particular pair of nodes, making the information contained in the
multiplexity and multireciprocity matrices sufficient in order to fully characterize
the dependencies among the layers. Remarkably, this also means that the number
of relevant probabilities remains 2M2 (equal to the total number of entries in the
multiplexity and multireciprocity matrices) independently of the number N of
nodes in the multiplex. Similar considerations can be made for the undirected
systems.

We recall that, as reported in Chapter 1 and in [30], in the undirected binary
case the multiplexity reads:

mαβ
b =

2
∑
i

∑
j<i min{aαij , a

β
ij}

Lα + Lβ
=

2
∑
i

∑
j<i a

α
ija

β
ij

Lα + Lβ
=

2Lα⇒β

Lα + Lβ
(3.3)

where aαij are the entries of the adjacency matrices of the various layers, Lα =∑
i<j a

α
ij is the number of links in that layer and Lα⇒β counts the number of

links present in both layers α and β between the same pairs of nodes. This
notation is somewhat redundant at this stage, but on the other hand it allows
for an easier generalization to the directed case, as we will show later. So, mαβ

b

ranges between 0 and 1 and represents a normalized overlap between pairs of
layers of a multiplex. As mentioned in the introduction of this chapter, in the
directed case we must take into account both the ’aligned’ and the ’anti-aligned’
overlap. Hence, in the second chapter we defined the binary directed multiplexity
and multireciprocity [31] respectively as:
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=

2
∑
i

∑
j 6=i a

α
ija

β
ij

Lα + Lβ
=

2Lα⇒β

Lα + Lβ
(3.4)

and

rαβb =
2
∑
i

∑
j 6=i min{aαij , a

β
ji}

Lα + Lβ
=

2
∑
i

∑
j 6=i a

α
ija

β
ji

Lα + Lβ
=

2Lα�β

Lα + Lβ
(3.5)

where Lα⇒β represents the number of directed links present in both the considered
layers between the same pairs of nodes, while Lα�β counts the number of directed
links present in α which are reciprocated in β, over all the possible pairs of vertices.

In the previous sections we stressed the importance of the inter-layer link
coupling for the characterization of a real-world multiplex. We now pave the
way for realistic (undirected and directed) binary models that can capture the
observed features in the particular case of the World Trade Multiplex. Once
more, one should not confuse these realistic models with the null models used in
other contexts [50].
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3.3.1 Undirected binary model

We start with the definitions of the measures we will focus on in our analysis.
The empirical single-layer degree reads:

kαi =
∑
j 6=i

aαij . (3.6)

Moreover, we can introduce the first of the new quantities that will allow us to
properly describe the inter-layer coupling of a multiplex, namely the empirical
multiplexed degree:

kα⇒β
i =

∑
j 6=i

aαija
β
ij . (3.7)

If we look at Eq. (3.3), we immediately see that, as compared to the global
quantity mα,β

b , the multiplexed degree kα⇒β
i provides an even more detailed,

local quantification of the multiplexity.
In what follows, we first establish an empirically robust pattern displayed by

kα⇒β
i and then select it as one of the target properties that a multiplex recon-

struction model should replicate, in addition to the desired marginal single-layer
network properties. Figure 3.1 reports the scatter plot of kα⇒β

i versus kβi for four
pairs of commodities (blue points). We clearly see an approximate linear trend of
the type

kα⇒β
i ≈ uαβkβi . (3.8)

Similar plots can be observed for the other pairs of layers as well (not shown).
The robustness of this pattern motivates us to look for a multiplex model able to
replicate it.

We define the joint probability pα⇒β
ij for the simultaneous presence of a link

from node i to node j in layer α and of a corresponding link in layer β:

pα⇒β
ij ≡ P (aαij = 1 ∩ aβij = 1) = 〈aαija

β
ij〉 = pβ⇒α

ij . (3.9)

Using pα⇒β
ij and the aforementioned pβij we can also obtain the conditional prob-

ability uαβij that a link from i to j exists in layer α, given that the corresponding
link exists in layer β:

uαβij ≡ P (aαij = 1|aβij = 1) = pα⇒β
ij /pβij . (3.10)

We call uαβij the multiplexity probability. Note that, while pα⇒β
ij is symmetric

under the exchange of α and β, uαβij is not; indeed, we have:

pα⇒β
ij = uαβij p

β
ij = uβαij p

α
ij = pβ⇒α

ij . (3.11)
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Figure 3.1: Degree of layer β versus inter-layer multiplexed degree for
4 different pairs of commodities: inorganic chemicals (a), plastics (b), iron
and steel (c), electric machinery (d) versus trade in cereals. Blue dots: real
data; yellow dots: expected multiplexed degree according to the uncorrelated
model; lower green line: expected trend according to (3.24); upper red line (when
discernible): best fit. In all the cases, R2 > 0.93, for both the curves. It should
be noted that we fit the empirical data with lines of the form y = a · x, and only
after we plot the results in log-log scale.

Furthermore pα⇒β
ij depends, at least in the general case, both on the pair of nodes

and on the pair of layers. Given the previous definitions, the expected value of
the multiplexed degree becomes:

〈kα⇒β
i 〉 =

∑
j 6=i

〈aαija
β
ij〉 =

∑
j 6=i

pα⇒β
ij =

∑
j 6=i

uαβij p
β
ij =

∑
j 6=i

uβαij p
α
ij . (3.12)

The main goal consists in understanding the structure of uαβij , which is the crucial
quantity responsible for the coupling among layers. By contrast, as already said
before, pβij can in general be left largely unspecified as it can be chosen to be any
single-layer network model that satifactorily reproduces a set of desired marginal
topological properties of layer β, irrespective of the coupling with the other layers.
The only basic property we require from pβij is that the degree sequence is among
such desired properties, or in other words that, for each node i and each layer β,
the expected degree 〈kβi 〉 =

∑
j 6=i p

β
ij satisfactorily replicates the empirical degree
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Multiplex network reconstruction

kβi :

〈kβi 〉 =
∑
j 6=i

pβij ≈ k
β
i ∀i. (3.13)

For instance, if the Binary Configuration Model [36, 37] is chosen as the marginal
single-layer reconstruction method, the above criterion is strictly verified, since
that model assumes that the degree of each node is known and that the pβij can
be constructed as the maximum-entropy probability such that

〈kβi 〉 =
∑
j 6=i

pβij = kβi ∀i. (3.14)

Other marginal reconstruction methods, which relax the hypothesis that the de-
gree of each node is known, use other node-specific pieces of information, plus
some proxy of the overall network density, to construct a pβij such that Eq. (3.13)
is in any case realized [23, 24, 25, 33, 51]. The above examples have all been
shown to provide reliably reconstructed networks [23, 24, 25].

The presence of a nontrivial uαβij in the present multiplex model implies that
any pβij coming from a single-layer model should be interpreted as a marginal
probability resulting from a more realistic model where the presence of links across
all layers is governed by a joint distribution for the entire multiplex. In other
words, uαβij allows us to extend any desired single-layer model to a truly multiplex
model with nontrivial coupling among layers. The trivial case of independent
layers can be easily recovered by setting:[

uαβij

]
unc

= pαij (3.15)

since here the presence of the link in layer β does not affect the connection prob-
ability in layer α. In such a case, the expected multiplexed degree becomes:

〈kα⇒β
i 〉unc =

∑
j 6=i

pαijp
β
ij . (3.16)

From Eq. (3.3) it should be noted that, if such an uncoupled model were used to
generate the multiplex, the expected value of the multiplexity mαβ

b would be zero.
Yet, if Eq. (3.13) holds, then the inter-layer degree correlation function defined
in Eq. (3.1) would be replicated. This shows that such a correlation function is
not informative about the genuine inter-layer dependencies which go beyond the
degree-degree correlations across the layers of the multiplex. By contrast, the
multiplexity mαβ

b is, confirming the argument that led us to its introduction in
Chapter 1.

To build a minimal model that can reproduce the observed level of similarity
(i.e., multiplexity) between layers of the multiplex, we require that the robust
empirical trend encapsulated in Eq. (3.8) is replicated. Looking at Eqs. (3.12)
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3.3 Binary multiplex model

and (3.13), and imposing Eq. (3.8), this requirement implies that the conditional
probability uαβij should be approximately independent of the pair of nodes:

uαβij =
pα⇒β
ij

pβij
=
〈aαija

β
ij〉

〈aβij〉
≈ uαβ . (3.17)

Since the transformation i 7→ j together with α 7→ β keeps the quantities unaf-
fected, we also have

uαβ〈aβij〉 ≈ 〈a
α
ija

β
ij〉 = 〈aβija

α
ij〉 ≈ qβα〈aαij〉. (3.18)

Summing over i and j, we get

uαβLβ ≈ uβαLα. (3.19)

and from (3.17) we immediately have

uαβ〈aβij〉 ≈ 〈a
α
ija

β
ij〉. (3.20)

Summing over i and j and inverting, we obtain

uαβ ≈
∑
i

∑
i<j〈aαija

β
ij〉∑

i

∑
i<j〈a

β
ij〉

=

∑
i

∑
i<j a

α
ija

β
ij

Lβ
. (3.21)

The above relations allow us to express twice the inverse of (3.3) as

2

mαβ
b

=
Lα + Lβ∑
i

∑
i<j a

α
ija

β
ij

≈ 1
uαβ

+
1
uβα

(3.22)

where mαβ
b is measured from the multiplex data while uαβ is derived from the

slope of the empirical linear relationship between kβi and kα⇒β
i . Thus, we find

that mαβ
b is approximately the harmonic mean of the conditional probabilities

uαβ and uβα. Applying Eq. (3.19) to the previous expression, we get:

2

mαβ
b

≈ 1
uαβ

(
1 +

uαβ

uβα

)
≈ 1

uαβ

(
1 +

Lα

Lβ

)
=

Lα + Lβ

uαβLβ
(3.23)

Hence, the value of the slope in the plots of kα⇒β
i vs kβi is predicted to be

uαβ ≈ Lα + Lβ

2Lβ
mαβ
b (3.24)
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Indeed, in Figure 3.1 we show that the best fit curves almost coincide with
the expected ones having slope calculated independently from Eq. (3.24). Futher-
more, we also show (yellow dots) that the model assuming independent layers
as in Eqs. (3.15) and (3.16) produces values of the multiplexed degree that are
systematically lower than the empirical ones.

From the previous analysis, it turns out phenomenologically that the minimal
model one can design in order to reproduce the (local) observed values of the
multiplexed degree requires only the (global) information about the total number
of multiplexed links Lα⇒β for any ordered pair of layers (α, β) (together with the
aforementioned degree sequences in each layer).

In other words, a reliable network reconstruction method for the class of mul-
tiplexes we are focusing on here requires as input information a reconstruction
model that works successfully on each layer separately, plus the M(M − 1)/2 val-
ues of Lα⇒β , for all pairs of layers. These values are the numerators of the entries
of the so-called (binary) multiplexity matrix [30]. If the reconstruction model is
chosen to be the Configuration Model, then the overall input information reduces
to the degree sequence ~kα for each layer α, plus the values Lα⇒β for each pair of
layers.

3.3.2 Directed binary model

As said in the introductive section, in the directed case we should take into account
that the inter-layer coupling can intervene both in terms of alignment and anti-
alignment. Hence, we have not only to extend the notion of multiplexed degree
to the directed case, but also to introduce the quantity dubbed multireciprocated
degree. It is indeed straightforward to exploit the same approach to analyse the
patterns of multiplexity and multireciprocity in the directed case. The main
difference w.r.t. the undirected case will consist in the definition of two separate
conditional probabilities. We start defining the quantities that we will measure
on the real multiplex network, namely the in-degree:

kα,ini =
∑
j 6=i

aαji; (3.25)

and the out-degree:

kα,outi =
∑
j 6=i

aαij . (3.26)

In analogy with the undirected model, we assume we can start from a marginal
single-layer model characterized by the probability pβij = 〈aβij〉 that a directed link
from node i to node j exists. The only thing we require from pβij is that it reliably
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3.3 Binary multiplex model

replicates the in- and out-degree of each node i in layer β:

〈kα,ini 〉 =
∑
j 6=i

pαji ≈ k
α,in
i ∀i (3.27)

〈kα,outi 〉 =
∑
j 6=i

pαij ≈ k
α,out
i ∀i, (3.28)

generalizing the corresponding criterion in Eq. (3.13).
We also define the multiplex quantities that extend the ones introduced in the

undirected case, i.e. the multiplexed degree:

kα⇒β
i =

∑
j 6=i

aαija
β
ij . (3.29)

and the multireciprocated degree.

kα�β
i =

∑
j 6=i

aαija
β
ji. (3.30)

It is possible to generalize the argument explained in the previous subsection;
also in this case we find that kα⇒β

i and kα�β
i are in almost-linear relation with,

respectively, kβ,outi (not shown, as it is very similar to the undirected case) and
kβ,ini (Figure 3.2, blue dots), therefore we can set:

kα⇒β
i ≈ uαβkβ,outi (3.31)

and

kα�β
i ≈ vαβkβ,ini . (3.32)

The presence of two different multiplex quantities leads to the definition of two
distinct joint probabilities:

pα⇒β
ij ≡ P (aαij = 1 ∩ aβij = 1) = 〈aαija

β
ij〉 = pβ⇒α

ij (3.33)

gives the probability for the simultaneous presence of a link from node i to node j
in layer α and of a corresponding link (with the same direction) in layer β, while:

pα�β
ij ≡ P (aαij = 1 ∩ aβji = 1) = 〈aαija

β
ji〉 = pβ�α

ji (3.34)

is the probability of having a link from node i to node j in layer α and a link
in the opposite direction in layer β. Consequently, from these joint probabilities
and the marginal single-layer probabilities we can derive the two separate con-
ditional probability uαβij that a link from i to j exists in layer α, given that the
corresponding link exists in layer β:

uαβij ≡ P (aαij = 1|aβij = 1) = pα⇒β
ij /pβij . (3.35)
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Figure 3.2: In-degree of layer β versus inter-layer multireciprocated de-
gree for 4 different pairs of commodities: inorganic chemicals (a), plastics
(b), iron and steel (c), electric machinery (d) versus trade in cereals. Blue dots:
real data; yellow dots: expected multireciprocated degree according to the un-
correlated model; lower green line: expected trend according to (3.40); upper red
line (when discernible): best fit. In all the cases, R2 > 0.95, for both the curves.
It should be noted that we fit the empirical data with lines of the form y = a · x,
and only after we plot the results in log-log scale.

and vαβij representing the probability of having a link from i to j in α, given that
a link from j to i exists in layer β:

vαβij ≡ P (aαij = 1|aβji = 1) = pα�β
ij /pβji. (3.36)

We call uαβij the multiplexity probability and vαβij the multireciprocity probabil-
ity. These probabilities lead to the separate notions of expected multiplexed and
multireciprocated degree, defined respectively as:

〈kα⇒β
i 〉 =

∑
j 6=i

〈aαija
β
ij〉 =

∑
j 6=i

pα⇒β
ij =

∑
j 6=i

uαβij p
β
ij =

∑
j 6=i

uβαij p
α
ij (3.37)

and:

〈kα�β
i 〉 =

∑
j 6=i

〈aαija
β
ji〉 =

∑
j 6=i

pα�β
ij =

∑
j 6=i

vαβij p
β
ji =

∑
j 6=i

vβαij p
α
ji (3.38)

Analogously to the undirected case, uαβij and vαβij are driving the real coupling
among the layers of the system, while the single-layer probabilities pαij can be freely
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3.4 Weighted multiplex model

chosen starting from any network model that correctly reproduces the marginal
topology of the considered layer. For instance, we may choose the Directed Config-
uration Model [36, 37], for which Eqs. (3.27) and (3.28) hold with a strict equality
sign, or some of its relaxed versions that assume less input information [23, 24, 25].

With the same reasoning of the previous subsection, it is possible to show that
the value of the slope in the plots of kα⇒β

i vs kβ,outi is predicted to be:

uαβ ≈ Lα + Lβ

2Lβ
mαβ
b (3.39)

while the slope in the plots of kα�β
i vs kβ,ini is, according to the model:

vαβ ≈ Lα + Lβ

2Lβ
rαβb . (3.40)

As shown in Figure 3.2 for the multireciprocated degree (the corresponding plot
referred to the multiplexed degree is not reported, being however very similar to
the undirected case), the best fit curves are well modelled by the expected ones.
We also show the results of the uncorrelated model, producing again values of the
multireciprocated degree which are systematically lower than the observed values.

It turns therefore out that an appropriate multiplex reconstruction method
for the class of directed multi-layer networks we are considering is based on the
information about the in- and out-degree sequences of each layer combined with
the entries of the matrices Lα⇒β and Lα�β for any pair of layers.

3.4 Weighted multiplex model

In the case of weighted multiplex networks, the marginal (i.e. single-layer) quan-
tity we will focus on is the the weight wαij associated to any (possible directed)
link between i and j in layer α, together with its expected value 〈wαij〉. At the
same time, we can still consider the link probability pαij , representing the chance
that nodes i and j are connected by a link, irrespective of the weight of the latter.
Since the assumption of multidyadic independence still holds, the information
provided by 〈wαij〉 and pαij does not involve other pairs of nodes other than (i, j).

As the marginal quantities 〈wαij〉 are not influenced by the inter-layer coupling
that we will add, they can therefore be considered as expectation values provided
by any model able to correctly reproduce the weighted structure of layer α. How-
ever, in order to correctly reproduce the entire multiplex, we need to employ a
single-layer model which has been proved to be reliable; it has been shown [22]
that the Weighted Configuration Model [52] is not capable of reproducing both
the topology and the weighted structure of a network, as it gives rise to almost
complete graphs. Instead, we can think of the marginal values as stemming from
the Enhanced Configuration Model [29, 37] - constraining both the degree and
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the strength sequence of the observed graph, i.e.

〈sαi 〉 =
∑
j 6=i

〈wαij〉 = sαi ∀i, (3.41)

〈kαi 〉 =
∑
j 6=i

pαij = kαi ∀i. (3.42)

Similar to the binary case, these constraints can be relaxed in such a way that the
required input information is considerably reduced. For instance, the methods
proposed in refs. [23, 24, 25] require much less input information but are still such
that

〈sαi 〉 =
∑
j 6=i

〈wαij〉 ≈ sαi ∀i, (3.43)

〈kαi 〉 =
∑
j 6=i

pαij ≈ kαi ∀i, (3.44)

and have recently been found to provide the best reconstruction methods for
monoplex weighted networks from limited information [45, 46].

In the weighted case, the assumption of dependency between layers means
that the joint probability of observing a given weight wαij between i and j in layer
α together with a weight wβij in β does not factorize into two separate single-layer
probabilities. In previous studies [53] this issue has been tackled by introducing
the concept of multistrength; however, as already explained for the binary case,
this approach is practically feasible only in the case of multiplex networks with a
(very) limited number of layers.

On the contrary, our multiplex reconstruction technique appears to be use-
ful also when applied to multigraphs possessing a larger number of layers, as it
requires as input the strength sequence of the various layers and the multiplexity/-
multireciprocity matrices (both growing like M2). This quadratic growth in the
number of layers (opposed to the exponential growth shown by the multistrength
method), combined with the phenomenological observation that the conditional
probabilities are again independent of the considered pair of nodes, makes our
approach very promising.

As we said, our reconstruction method builds on the notions of weighted mul-
tiplexity and multireciprocity ; in particular, in the undirected case we will exploit
the measures of weighted multiplexity introduced in Chapter 1:

mαβ
w =

2
∑
i

∑
j<i min{wαij , w

β
ij}

Wα +W β
=

2Wα⇒β

Wα +W β
(3.45)

where wαij are the entries of the weighted adjacency matrices of the various layers,
Wα =

∑
i<j w

α
ij is the total weight associated to the links in that layer and

Wα⇒β represents the "shared weight" between α and β. In analogy with the
binary case, mαβ

w ranges between 0 and 1 and represents a normalized weighted
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3.4 Weighted multiplex model

overlap between pairs of layers of the multi-graph. In the directed case, instead,
we have to consider the overlap in both the directions. In Chapter 2 we defined
the weighted directed multiplexity and multireciprocity respectively as:

mαβ
w =

2
∑
i

∑
j 6=i min{wαij , w

β
ij}

Wα +W β
=

2Wα⇒β

Wα +W β
(3.46)

and

rαβw =
2
∑
i

∑
j 6=i min{wαij , w

β
ji}

Wα +W β
=

2Wα�β

Wα +W β
(3.47)

where Wα⇒β is the "shared total weight" between the considered layers, and
Wα�β is the "shared reciprocated weight" between α and β.

In the following sections we will show a method to reconstruct the World
Trade Multiplex from single-layer information exploiting the knowledge of the
aforementioned multiplexity and multireciprocity matrices.

3.4.1 Undirected weighted model

In this section, we will focus on the relation between the single-layer strength,
defined as:

sαi =
∑
j 6=i

wαij (3.48)

and the multiplexed strength, for any ordered pair of layers:

sα⇒β
i =

∑
j 6=i

wα⇒β
ij ≡ min{wαij , w

β
ij} (3.49)

where wα⇒β
ij is the multiplexed component of the weights associated to the links

between i and j in layers α and β. In particular, sα⇒β
i is the multiplex quantity

allowing us to describe the inter-layer weighted coupling. Figure 3.3 reports the
relation between sβi and sα⇒β

i for various pairs of commodities of the World
Trade Multiplex; a clear empirical trend is exhibited (blue points), that can be
approximated as:

sα⇒β
i ≈ Uαβsβi . (3.50)

Our goal will consist in designing the minimal model able to capture this empirical
evidence.

In this perspective, we define the corresponding expected quantities 〈wα⇒β
ij 〉

and 〈wαij〉; in particular, the multiplexed component can be written in terms of a
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Figure 3.3: Strength of layer β versus inter-layer multiplexed strength
for 4 different pairs of commodities: inorganic chemicals (a), plastics (b),
iron and steel (c), electric machinery (d) versus trade in cereals. Blue dots: real
data; yellow dots: expected multiplexed strength according to the uncorrelated
model; lower green line: expected trend according to (3.59); upper red line (when
discernible): best fit. In all the cases, R2 > 0.92, for both the curves. It should
be noted that we fit the empirical data with lines of the form y = a · x, and only
after we plot the results in log-log scale.

joint probability, in order to keep the same structure adopted for the binary case:

〈wα⇒β
ij 〉 = 〈min{wαij , w

β
ij}〉 =

=
∞∑
w=1

P
(

min{wαij , w
β
ij} ≥ w

)
=

=
∞∑
w=1

P
(
wαij ≥ w ∩ w

β
ij ≥ w

)
=

=
∞∑
w=1

Uαβij
(
wαij ≥ w|w

β
ij ≥ w

)
P
(
wβij ≥ w

)
(3.51)

where Uαβij is now the probability of observing a weight wαij in α larger than w

given that a weight wβij larger than w has been observed in β.
As mentioned, the phenomenological observation shows that the conditional

probability defined in (3.51) is actually independent from the considered pair of
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nodes:

Uαβij =
〈min{wαij , w

β
ij}〉

〈wβij〉
≈ Uαβ (3.52)

Applying the same transformations i 7→ j and α 7→ β we get:

Uαβ〈wβij〉 ≈ 〈min{wαij , w
β
ij}〉 =

= 〈min{wβij , w
α
ij}〉 ≈ Uβα〈wαij〉 (3.53)

Summing (3.53) over i and j, we have:

UαβW β = UβαWα (3.54)

Similarly, inverting (3.52) we obtain:

Uαβ〈wβij〉 ≈ 〈min{wαij , w
β
ij}〉 (3.55)

and summing the previous expression, as in the binary case:

Uαβ =

∑
i

∑
j<i〈min{wαij , w

β
ij}〉∑

i
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(3.56)

Therefore we get:
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where mαβ
w represents the entry of the weighted multiplexity matrix and Uαβ is

derived from the empirical relationship between sβi and sα⇒β
i . In analogy with the

binary case, mαβ
w is therefore the harmonic mean of the conditional probabilities

Uαβ and Uβα, as previously defined. Applying (3.54) to the previous expression,
we get:
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=
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UαβW β
(3.58)

Thus, the value of the angular coefficient in the plots sα⇒β
i vs sβi should be, in

the weighted case:

Uαβ =
Wα +W β

2W β
mαβ
w (3.59)
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in perfect analogy with the unweighted case. Indeed, in Figure 3.3 we show the
comparison between the actual fit lines and the expected ones according to (3.59):
the agreement is clear and robust across different pairs of commodities.

Therefore, in analogy to the unweighted case, here the minimal model suitable
to reproduce the observed values of pairwise weighted multiplexity is based on the
total multiplexed weightWα⇒β for any ordered pair of layers (α, β), accompanied
by the strength sequences measured in any layer. We indeed show that any model
that does not take into account some sort of weighted coupling between layers
would not be sufficient, as shown by the results provided by the uncorrelated
model (yellow dots in Figure 3.3).

3.4.2 Directed weighted model
Also in the weighted case it is possible to extend the analysis to the directed case.
Here, the main goal consists in the study of the relation between single-layer
metrics and inter-layer weighted quantities, in order to model them exploiting the
notions of directed multiplexity and multireciprocity introduced before.

We have to define two distinct strengths, namely the out-strength:

sα,outi =
∑
j 6=i

wαij (3.60)

and the in-strength:

sα,ini =
∑
j 6=i

wαji (3.61)

Moreover, also the multiplex quantities will split into two separate metrics, i.e.
the multiplexed strength:

sα⇒β
i =

∑
j 6=i

wα⇒β
ij ≡ min{wαij , w

β
ij} (3.62)

and the multireciprocated strength:

sα�β
i =

∑
j 6=i

wα�β
ij ≡ min{wαij , w

β
ji} (3.63)

where wα⇒β
ij is the multiplexed component of the weights associated to the di-

rected links from i to j in layers α and β, and wα�β
ij is the reciprocated compo-

nent. sα⇒β
i and sα�β

i are the metrics that will allow us to analyse and model the
inter-layer coupling of the weighted World Trade Multiplex.

We empirically observe that the relations between sα,outi and sα⇒β
i (not shown),

and sα,ini and sα�β
i (Figure 3.4, blue points) are both linearly approximated;

hence:

sα⇒β
i ≈ Uαβsβ,outi (3.64)
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and

sα�β
i ≈ V αβsβ,ini . (3.65)

With the same reasoning developed for the undirected case, it is possible to derive
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Figure 3.4: In-strength of layer β versus inter-layer multireciprocated
strength for 4 different pairs of commodities: inorganic chemicals (a),
plastics (b), iron and steel (c), electric machinery (d) versus trade in cereals.
Blue dots: real data; yellow dots: expected multireciprocated strength according
to the uncorrelated model; lower green line: expected trend according to (3.24);
upper red line (when discernible): best fit. In all the cases, R2 > 0.95, for both
the curves. It should be noted that we fit the empirical data with lines of the
form y = a · x, and only after we plot the results in log-log scale.

the expected value of the angular coefficient Uαβ and V αβ , exploiting the notion
of conditional probability; we obtain that the model predicts:

Uαβ =
Wα +W β

2W β
mαβ
w (3.66)

and

V αβ =
Wα +W β

2W β
rαβw (3.67)

where mαβ
w and rαβw are the corresponding entries of, respectively, the multiplex-

ity and multireciprocity matrices. The results of the fit of the model to the
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World Trade Multiplex are shown in Figure 3.4. The model is able to satis-
factorily reproduce the values of multireciprocated strengths starting from the
single-layer in-strengths (similar results are obtained for the relation between the
out-strength and the multiplexed strength), while an uncorrelated model (i.e.,
without introducing any sort of dependency between layers) cannot capture the
phenomenological observation.

Hence, in the weighted directed case the most inexpensive reconstruction
model builds on the knowledge of the in- and out-strength sequence of the different
layers plus the M ×M multiplexity and multireciprocity matrices.

3.5 Conclusions

The reconstruction of multiplex properties in multi-layer networks from single-
layer information is an important and so far unfaced problem. Indeed, in the
multiplex case the limitedness of information about the full topology may affect
only some of the layers; hence, any tool allowing us to infer inter-layer node-
specific properties from the known information related to some particular layer is
theoretically interesting and practically useful. In this chapter we have provided a
possible solution to this issue by means of the new quantities dubbed multiplexed
andmultireciprocated degrees and strengths, directly stemming from the previously
defined multiplexity and multireciprocity. Our reconstruction technique builds
on methods that have been shown to be well-grounded in the single-layer case.
Indeed, previous studies highlighted that it is possible to correctly reproduce the
topological structure of real-world graphs starting from limited information about,
for instance, the strengths and the density of the considered system.

In this chapter we have extended the notion of network reconstruction to the
case of multi-layer systems, in particular proving that a trustworthy reconstruc-
tion method can be based on the knowledge of (possibly in turn reconstructed)
degrees or strengths of the single layers, combined with the compact and usu-
ally fixed-over-time multiplexity and multireciprocity matrices. Furthermore, our
methodology works for both binary and weighted networks and it is able to take
into account also the potential directionality of the links.

We must however stress that this technique is successfully applicable to sys-
tems exhibiting two main features. First, the single layers should be repro-
ducible via the Configuration Model (or the Enhanced Configuration Model in the
weighted case), such that the entire topology could be reconstructed just from the
knowledge of the degrees of the single nodes (respectively, from the strengths).
Second, the conditional probabilities of observing a link in any layer given that
a link exists between the same pair of nodes in a different layer should be in-
dependent of the considered nodes: in other words, such probabilities (that we
called multiplexity and multireciprocity probabilities) should be common for all the
nodes and dependent only on the pair of layers we are focusing on. Although these
assumptions significanly restrict the range of systems that can be successfully re-
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constructed through our method, we highlight that one of most crucial economic
networks, namely the World Trade Multiplex (incidentally, strongly suffering of
the problem of missing data), belongs to this class of multi-layer networks.

Moreover, we have shown that the measures of multiplexed or multirecipro-
cated degrees and strengths can give information about the coupling between lay-
ers. We have indeed explained that, by means of the aforementioned quantities, it
is possible to acquire more refined notions of inter-layer coupling; multiplexed and
multireciprocated degrees and strengths can therefore be thought of as new mea-
sures of multiplex assortativity, expressing the coupling caused by dependencies
different than the simple correlation between the degree or strength distributions.

Future steps in the design of reconstruction techniques are needed in order to
further generalize the aforementioned methods. Nevertheless, our findings show
that the multiplexity and multireciprocity matrices allow us to reconstruct the
joint connection probabilities from the marginal ones, hence bridging the gap
between single-layer information and truly multiplex properties.
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Chapter 4

Backbone extraction

Networks provide an informative, yet non-redundant description of complex sys-
tems only if links represent truly dyadic relationships that cannot be directly
traced back to node-specific properties such as size, importance, or coordinates in
some embedding space. In any real-world network, some links may be reducible,
and others irreducible, to such local properties. This dichotomy persists despite
the steady increase in data availability and resolution, which actually determines
an even stronger need for filtering techniques aimed at discerning essential links
from non-essential ones. Here we introduce a rigorous method that, for any desired
level of statistical significance, outputs the network backbone that is irreducible
to the local properties of nodes, i.e. their degrees and strengths. Unlike previous
approaches, our method employs an exact maximum-entropy formulation guar-
anteeing that the filtered network encodes only the links that cannot be inferred
from local information. Extensive empirical analysis confirms that this approach
uncovers essential backbones that are otherwise hidden amidst many redundant
relationships and inaccessible to other methods. For instance, we retrieve the hub-
and-spoke skeleton of the US airport network and many specialised patterns of
international trade. Being irreducible to local transportation and economic con-
straints of supply and demand, these backbones single out genuinely higher-order
wiring principles.

The results presented in this chapter have been published in the following reference:
V. Gemmetto, A. Cardillo, D. Garlaschelli, arXiv:1706.00230 (2017).
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4.1 Introduction

Over the last two decades, networks have become a standard tool of analysis of
many complex systems. A network can represent any instance of a natural, social
or technological system as a collection of nodes (or vertices) connected by links
(or edges) [1, 2, 3, 4, 5, 6, 7, 8]. In many cases, it is possible to quantify the
magnitude of interaction between two nodes, and encode it as a numerical value
– the weight – attached to the link connecting them. In these cases, we refer to
those networks as weighted [9]. Weighted networks are the focus of this chapter.

A recurrent and robust feature observed in the vast majority of real-world net-
works is a striking heterogeneity of the topological properties of different nodes.
For instance, both the number of connections of a node (the so-called degree) and
the total weight of these connections (the so-called strength) differ greatly across
nodes in a network. Typically, the empirical distribution of both quantities in a
given network is a power law, or more generally a broad distribution with ‘fat
tails’. Various models have been introduced in order to propose explanations
for the origin of such distributions in real networks. Regardless of the possible
mechanisms generating it, the observed heterogeneity of nodes has immediate
consequences for the way real networks can or should be analysed. For instance,
topological quantities averaged or summed over nodes (such as the total number
of links, or the total link weight) are typically not informative about the whole
network structure. Consequently, many structural quantities (such as the cluster-
ing coefficient measuring the relative abundance of triangles) should be defined
locally and interpreted conditionally on the values of the degree and/or strength
of nodes.

This chapter focuses on another important and well known consequence of
the heterogeneity of nodes: namely, the impossibility of using a single reference
value, or equivalently a unique global threshold, to assess the importance of dif-
ferent links in a given weighted network. If nodes have different strengths, global
thresholds do not work, due to varying levels of statistical significance: a light-
weighted link connecting two nodes with low strength may be even more significant
than a heavy one connecting nodes with high strength [10]. This calls for techiques
to assess the statistical significance of links based on the local properties of nodes.
This problem arises in a variety of circumstances. One of the most important
and recurrent examples is graph filtering, i.e. the identification of the most rele-
vant links and the subsequent elimination of the least significant ones. Of course,
whether a link qualifies as ‘relevant’ is largely problem-dependent and ultimately
relates to the specific reason why the network is being filtered in the first place.
Such a reason may be of practical or fundamental character. In this chapter, we
propose a novel method of graph filtering whose motivation encompasses both
aspects.

At a practical level, a widespread reason for filtering is the necessity of keeping
real graphs sparse in order to directly and easily pinpoint the main relationships
between the units of the system they represent. The recent data deluge associated
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with the so-called Big Data era [11] has bolstered the tendency to represent com-
plex systems as networks [12, 13, 14, 15]. Unfortunately, the huge opportunities
associated to the availability of big data are not free of charges. The increase of in-
formation, in fact, usually produces a raise in the number of reported connections,
which in turn increases the computational complexity of most algorithms used for
network analysis and visualization. Effectively, this makes real networks harder
to render, characterize and ultimately get a grip on. To continue using networks
to retrieve the essential backbone of a complex system, uncluttering techniques
are therefore needed.

At a more fundamental level, and irrespective of computational aspects, there
is a subtler and less contemplated, yet very important reason for graph filtering.
While this is seldom acknowledged, the network representation of a real system
is non-redundant, thus really necessary, only if the presence and/or magnitude
of the pairwise interactions between the units of the system cannot be entirely
inferred from node-specific properties – such as size, importance, position in some
underlying geometry, etc. Indeed, if node-specific properties were enough to char-
acterize, infer or reconstruct the relationships among pairs of nodes (for instance if
the network were a regular lattice embedded in space and the coordinates of nodes
were given, or if the topology were a function of only the sizes of nodes and such
sizes were known), then the network representation, while still correct, would be
redundant. In general, some of the links of a given network may be ‘reducible’, and
others ‘irreducible’, to node-specific properties. If so, the former would be in some
sense unsurprising, while the latter would be much more interesting and provide
truly dyadic information. This possibility calls for the introduction of graph filter-
ing techniques that allow irreducible links to be discerned from reducible ones, thus
highlighting the non-redundant backbone of a network. One should at this point
note that recently, motivated by the fact that certain (e.g. financial) networks
cannot be empirical observed in their entirety because of privacy or confidential-
ity reasons, there has been a proliferation of techniques devised for reconstructing
the hidden topology of such networks from partial information [16, 17]. A specific
class of methods have significantly increased the level of predictability of network
structure from local, node-specific information [18, 19, 20, 21, 22], thus showing
that, indeed, real networks can have a considerably big ‘reducible’ component.

Taken together, the above two considerations imply that, as the empirical
availability of node-related information increases and the toolkit for reconstruct-
ing networks from partial information expands, the question of what makes up
the non-redundant, genuinely dyadic properties of a network becomes more im-
portant and more difficult to answer. In this chapter we focus on the problem of
identifying the irreducible backbone of a weighted network from a novel, rigorous
standpoint. We define such backbone as the collection of links that cannot be
reconstructed via unbiased inference from the knowledge of the local topological
properties of nodes. This new definition guarantees that, by construction, the net-
work backbone only encodes truly dyadic information. We identify the irreducible
backbone by constructing, for a given empirical network, a corresponding unbi-
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ased maximum-entropy null model where both the degree and the strength of each
node are preserved as ensemble averages. Such maximum-entropy model is de-
scribed by the generalized Bose-Fermi distribution [23] and is called the Enhanced
Configuration Model (ECM) [18] because it enhances the Weighted Configuration
Model (i.e. the maximum-entropy ensemble of weighted networks with given node
strengths) by adding the degree sequence as an extra constraint.

The choice of the ECM as our null model is motivated by a recent series of
theoretical and empirical results focusing on the problem of network reconstruc-
tion [18, 19, 20, 21, 22]. These studies have shown that the information encoded
in the degrees and strengths of the nodes can be used to replicate many higher-
order properties of real-world networks [18, 19]. The knowledge of both degrees
and strengths is crucial to this purpose. Indeed, using only the degrees (as in
the Binary Configuration Model [24, 25]) would provide no information about
link weights, while using only the strengths (as in the Weighted Configuration
Model [25, 26]) would lead to an exceedingly high density of links resulting, tipi-
cally, in almost complete graphs. In conclusion, these studies show that, in pres-
ence of only local node-specific information, the best unbiased inference about
the entire structure of a weighted network is the one obtained using both the
strengths and the degrees of all nodes as input.

It is important to stress that, although the recent progress in the area of
network reconstruction is a strong motivation for the present work, our approach
goes in a direction that is entirely opposite to that of network reconstruction
techniques. Indeed, in the network reconstruction approach, links are unknown
and are inferred (i.e. created) probabilistically from the knowledge of node-specific
quantities, trusting the resulting ensemble of random graphs as the best guess
about the structure of the unobserved network. By constrast, in our approach
the full network is already known from the beginning and links are removed if
they are consistent with the random ensemble, which here acts as a filter (i.e.
a null model) rather than an inference tool (i.e. a generative model). Thus,
the links that are generated in the network reconstruction approach are precisely
those that are removed here. In this entirely opposite perspective, we have to
complement the generative, probabilistic toolkit of maximum entropy ensembles
with the introduction of a new, statistic toolkit of hypothesis testing.

The rest of the chapter is organized as follows. In sec. 4.2 we discuss the novel
ingredients of our framework with respect to previous graph filtering approaches
and we further elaborate on the above key difference between our method and
the problem of network reconstruction. In sec. 4.3 we describe our method for
the extraction of irreducible network backbones in detail. In sec. 4.4 we show the
results of an extensive empirical analysis using our method. In sec. 4.5 we discuss
further extensions of our method to directed and bipartite networks. Finally, in
sec. 4.6 we make some concluding remarks, followed by some additional results in
appendix.
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4.2 Relation to previous work

Despite our motivation, i.e. the identification of the irreducible network back-
bone that cannot be inferred from the local topological properties, is quite novel,
our work necessarily relates to previous literature. Under different names (e.g.
thresholding, filtering, pruning, sparsification, backbone extraction, statistical
validation, etc.), several algorithms have been proposed in order to remove links
from a network. In general, the available approaches can be grouped in two
main categories: coarse graining and edge removal methods. The former tend
to merge together nodes with similar properties, thereby providing a hierarchi-
cal, multiscale view of the system [27, 28]. The latter fix instead the scale and
proceed by removing connections. Edge removal methods split further into two
sub-categories: pruning and sparsification techniques. Pruning approaches aim
at removing connections to unveil some hidden structure/property of the system
that is considered to be unknown a priori. On the other hand, sparsification tech-
niques remove connections while preserving some property of the original system,
thus aiming at retrieving comparable information but at a cheaper computational
cost [29, 30, 31].

Among the pruning solutions, the most straightforward one is thresholding
and its most recent variations (see e.g. [32]). Removing all the edges having a
weight, w, lighter than a given value, wt, produces systems surely sparser but
at the cost of losing all their “weak ties” [10] and, more importantly, losing the
weight heterogeneity which represents one of the hallmarks of complex systems
[9]. Despite such serious limitations, thresholding has been used extensively, for
example, in brain networks [5]. Another notorious technique is the extraction
of the Minimum Spanning Tree (MST) albeit it delivers an over simplification
of the system because it destroys many features (cycles, clustering and so on)
[33, 34, 35]. Other pruning techniques are link validation methods, which produce
what is sometimes called a statistically validated network [36]. These are the
most similar to our method proposed here, yet still different, because in general
the statistically validated network is not guaranteed to be irreducible (e.g. if the
full information about strengths and degrees is not specified) or unbiased (e.g.
if the procedure is not maximum-entropy). To the best of our knowledge, in
fact, validation of empirical networks against maximum-entropy ensembles with
constrained strenghts and degrees has not be done yet.

On the other hand, the idea of sparsification relies on the (often implicit)
assumption that the properties of the original network, especially those to be
preserved, are statistically significant and therefore worth preserving in the first
place. This means that sparsification techniques require, at least in principle,
that a preliminary filtering has already taken place. In this sense, the method
we propose here is a filtering method that can be used for link pruning, link
validation, and as a preliminary step for other sparsification methods.

Coming to a closer inspection of the available techniques, three methods are
most directly related to what we are going to develop in this chapter: the Dis-
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parity Filter (DF) introduced by Serrano et al. [37], the so-called GloSS method
proposed by Radicchi et al. [38], and a method recently developed by Dianati
[39]. Some details of these methods are briefly recalled in the remainder of this
section. For completeness, we also stress the main differences between the fil-
tering technique that will be introduced here and recent network reconstruction
approaches that, while apparently related, go precisely in the opposite direction.

4.2.1 The Disparity Filter

The DF is very close in spirit to our method, since it constrains both the strength
and the degree of each node [37]. However, there are crucial differences that we
now explain.

The DF assumes that, in the null model, the strength si of each node i is
redistributed uniformly at random over the ki links of that node. The result-
ing criterion for establishing whether a link having weight w∗ij satisfies the null
hypothesis requires the computation of the following p-value

γij = 1−
∫ w∗ij

0

ρ(w|si, ki) dw , (4.1)

and its comparison with a chosen critical value γ̃. Here ρ(w|si, ki) is probability
(density) that a link has weight w, under the null hypothesis that the value
si is partitioned uniformly at random into ki terms. By contrast, we will see
that the correct maximum-entropy probability derived in our approach does not
correspond to such uniformly random partitioning, as it collectively depends also
on the strengths and degrees of all other nodes. This means that the DF introduces
some bias. This bias can be understood by noticing that, when distributing the
strength of a node at random over its links, it disregards the strength of the nodes
at the other end of these links, thus effectively ‘flattening’ the weights received
by these nodes. For each node i, this creates randomized weights that tend to
be too small around high-strength neighbours and too high around low-strength
neighbours. As a consequence, as we will confirm later, the DF has a bias towards
retaining heavier connections.

From a mathematical point of view, the above problem is manifest in the fact
that, despite w∗ij = w∗ji (we are considering undirected networks for the moment),
eq. (4.1) is not symmetric under the exchange of i and j, and in general one has
γij 6= γji. To partly compensate for this, the DF is usually applied twice, from the
perspective of each of the two endpoints of an edge. However, it should be noted
that, in general, the resulting randomized weights cannot be actually generated in
any network, as it is not possible to produce randomized link weights that realize
the null hypothesis for all nodes simultaneously. So, in the end, the statistical
test is based on an ill-defined null hypothesis.

Another evidence of the above problem is the fact that, under the correct
maximum-entropy model, the level of heterogeneity of the weights of the links
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incident on a node (as measured for instance by the so-called ‘disparity’) does not
take on the values one usually expects under the assumption of uniform random-
ness and is strongly biased towards other values [23]. A consequent bias must
necessarily arise in the p-values as calculated above.

A final difference with respect to our method is that the DF enforces the de-
grees and strengths sharply (i.e. as in the microcanonical ensemble in statistical
physics), whereas we enforce them only as ensemble averages (i.e. as in the canon-
ical ensemble) [40]. The microcanonical implementation, even if carried out in
a correct and unbiased way, implies statistical dependencies between the weights
of all edges in the null model, because these weights must add up to a determin-
istic value. This in turn implies that the statistical test cannot be carried out
separately for each edge. In our canonical implementation of the null model, all
edges are instead independent, a property that allows us to consistently carry
out the statistical test for each node separately, even if, as we mentioned, our
p-value for each link depends on the degrees and strengths of all other nodes in
the network, as desired. The recent results about the non-equivalence of micro-
canonical and canonical ensembles of random graphs with given strengths and/or
degrees [40, 41, 42] imply that the two approaches remain different even in the
limit of large network size, and must therefore lead to different results.

4.2.2 The GloSS method

In the GloSS method [38], the null model used to assign p-values to edges is a net-
work with exactly the same topology of the original network and with link weights
randomly drawn from the empirical weight distribution P (w). This effectively
means that the observed link weights are randomly reshuffled over the existing,
fixed topology. Unlike the local criterion of the DF, this choice results in a global
null model. Indeed, since links are fixed and they all have the same probability
of being assigned a given weight, the statistical test is the same for every existing
edge, and the method effectively reduces to selecting the strongest weight only,
thus setting a global threshold which depends on the desired confidence level.
This leads us back to the problem of global thresholds being inappropriate for
networks with strong heterogeneity.

Another, related problem with GloSS is the fact that it conceives the topol-
ogy and the weights as two separate, or separable, network properties. This is
however hard to justify, since the topology is encoded in the adjacency matrix
whose entries {aij} = {Θ(wij)} are binary projections of the link weights {wij},
and thus entirely dependent on the latter. Indeed, as a result of this decoupling,
the null model turns light links into heavy ones and viceversa, irrespective of the
importance of the end-point vertices. In other words, it views the weight distri-
bution as unconditional on the strengths of the end-point vertices. The strengths
are viewed as the result of, rather than a constraints for, a random realization of
weights. The resulting expected strengths are indeed proportional to the observed
degrees. One can partly relax the null model by globally reshuffling the weights
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while simultaneously randomizing the topology in a degree-preserving way [43],
but the method will still retain the proportionality between the expected strength
and the degree of a node, and the underlying notion of complete separability of
topology and weights.

It should be noted that the proportionality between strengths and degrees
in the null model violates the strongly non-linear relationship observed between
these two quantities in real-world networks [9, 20, 21]. Coming back to the net-
work reconstruction problem, this implies that GloSS suffers from what we may
call a redundancy problem: since many properties of real-world networks can be
inferred from the empirical degrees and strengths of nodes (as we will briefly re-
call below), GloSS cannot ensure that the filtered network is irreducible to the
knowledge of such node-specific properties. Indeed, such properties contain in
general more information than what is retained in the null model. The resulting
network backbone may therefore still contain redundant interactions.

4.2.3 The ‘hairball’ method

Dianati has recently proposed a different ‘hairball’ approach [39] where, unlike the
methods discussed above, the null model is maximum-entropy based and therefore
unbiased. The constraints imposed on entropy maximization are the strenghts of
all nodes, but not the degrees. Dianati considers two distinct null models: a local
one, acting on single links, named Marginal Likelihood Filter (MLF) and a global
one, acting on the network as a whole, named Global Likelihood Filter (GLF).
Both null models produce graphs which, for a given p-value, are quite alike.

Although the maximum-entropy nature of the filter introduced by Dianati fixes
the problem of bias encountered by the other approaches, the method still suffers
from the redundancy problem, even if in a direction in some sense opposite to that
of GloSS. Concretely, constraining only the strength sequence in the null model
corresponds to generating almost complete networks [25, 26]. This implies that
the nonlinear empirical strength-degree relation is again violated, here because
the degree of each node tends to saturate to the maximum allowed value and is
therefore independent of the strength. Once more, this does not guarantee that
the filtered network is irreducible to the knowledge of the degrees and strenghts
of nodes. Indeed, the weights are redistributed among virtually all the possible
pairs of nodes, which also means that the empirical non-zero link weights are
systematically larger than those generated by the null model. This implies that
the filter tends to retain too many spurious links.

4.2.4 Network reconstruction methods

As we mentioned in sec. 4.1, there has recently been a flourishing of methods to
reconstruct networks from partial information. Among the motivations for the in-
troduction of these methods, a prominent one is the frequent lack of transparency
about real-world financial networks or the lack of fine-grained data about social
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contact networks. Fortunately, our specific need in this chapter allows us to re-
strict to a well defined class of network reconstruction techniques, among the zoo
of available ones [16].

Since our main goal is that of separating truly dyadic properties from local
node-specific ones, the relevant class of network reconstruction models that can
guide the definition of our method is the one that assumes that the partial in-
formation available about the network is local and node-specific. The methods
in this class start from the knowledge of the strengths and/or degrees (of all or
a subset of the nodes) and infer the overall network topology by constructing a
maximum-entropy (i.e. maximally unbiased) ensemble of graphs consistent with
these properties [18, 19, 20, 21, 22]. The final output is an ensemble of random
graphs where links are created with some probability.

It turns out that, in order to achieve a reliable reconstruction of an unknown
weighted network, the optimal set of node-specific properties to be enforced as
constraints is given precisely by the degrees and the strengths of all nodes [18].
Indeed, including only the degrees would predict the topology fairly well, but
would provide no information about link weights [24, 25]. By contrast, as we have
already mentioned, including only the strengths would produce networks that are
overly dense and tend to be almost completely connected [25, 26]. This is the
result of the fact that strengths contain no information about the bare topology
of the network, and ensembles constructed from node strengths tend to dilute the
total link weight among basically all pairs of nodes. Statistical tests confirm that
the information contained in the degrees is indeed irreducible to that contained in
the strengths [18]. Indeed, it has been shown that, if the degrees of nodes are not
empirically accessible, the success of the reconstruction method entirely depends
on how well one is able to preliminarily obtain reliable estimates of the degrees,
before constructing maximum-entropy null models that simultaneously preserve
the (observed) strengths and the (inferred) degrees [19, 20, 21, 22].

The above results lead us to choose the ECM, where both strengths and degrees
are enforced, as the most appropriate ensemble for our filtering purposes, because
it provides the most accurate inference possible about a weighted network, if only
local node-specific properties can be accessed.

It is important to stress again that, although our filtering framework will
largely build upon the mathematical properties of the ECM, its goal is basically
opposite to that of the network reconstruction methods based on the same model.
Indeed, in our approach we do know the entire network, and our aim is that of
filtering out what might be inferred about it if we were given only local informa-
tion. To this end, we use the ECM to remove (not create) connections from the
real network. The output is therefore not the ensemble of random graphs, but
precisely the opposite, i.e. the sets of nodes/edges of the original network that
are not compatible (within any desired level of statistical significance) with the
random graph model embodying the null hypothesis. In order to carry out this
program, we indeed need to introduce new ingredients to the ECM framework,
in particular the calculation of a p-value, separately for each link, based on the
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observed link weight and of the likelihood of subgraphs of the original network.
These steps will enable us to define both local and global new schemes for graph
filtering.

Again, the rationale behind this entirely new approach is that, if connections
can be predicted based only on local properties (i.e. via network reconstruction),
they are in some sense redundant, i.e. reducible to a list of node properties,
and the network representation is therefore unnecessary. We thus aim at finding
the graph that is non-redundant, i.e. maximally unlikely to be produced via
network reconstruction. This approach pushes the field of graph filtering into a
new direction.

4.3 Extraction of irreducible backbones: the ECM
filter

In the rest of this chapter, we aim at combining together the good ingredients
of previous methods, while overcoming their most important limitations. In par-
ticular, we want to retain the unbiasedness of the maximum-entropy approach
proposed by Dianati while keeping the empirical non-linear relationship between
strengths and degrees as in the DF.

We therefore introduce a new filtering method based on the comparison be-
tween a given real-world weighted network and a canonical maximum-entropy
ensemble of weighted networks having (on average) the same degree sequence and
the same strength sequence as the real network, i.e. the ECM. Our model can be
fully characterized analytically, a property that allows us to explicitly calculate
the exact p-value for each realized edge in the original network. Unlike the DF,
our maximum-entropy construction ensures consistency from the point of view of
both nodes at the endpoint of an edge and makes the null hypothesis realizable
by the networks in the statistical ensemble. It also makes different edges statis-
tically independent, thus justifying the establishment of a separate test for each
observed link. We remark that, unlike all previous approaches, the use of the
ECM ensures that the filtered network cannot be retrieved by any impartial and
unbiased network reconstruction method that starts from local information. This
also fixes the redundancy problem of other methods.

Below, we first briefly review the definition and main properties of the ECM [18,
40], which has been originally introduced under the name of Bose-Fermi ensem-
ble [23], and then provide a new recipe to use it for the purpose of graph filtering.

4.3.1 The Enhanced Configuration Model or Bose-Fermi
Ensemble

Very generally, a maximum-entropy model is a canonical ensemble described by a
probability distribution P (G) (over the microscopic configurations {G} of the sys-
tem) that maximizes the Shannon-Gibbs entropy S = −

∑
G P (G) lnP (G), while
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satisfying a given set of macroscopic constraints enforced as ensemble averages
[44]. The formal solution to this problem is a Boltzmann-like (i.e. exponential)
probability function of the form P (G) = Z−1e−H(G), whose negative exponent,
sometimes (improperly) termed “Hamiltonian (function)” H(G), is a linear com-
bination of the constraints and whose normalization constant is the inverse of the
so-called “partition function” Z =

∑
G e
−H(G). We are now going to define these

quantities rigorously for the case of interest to us.
We consider an ensemble W of undirected, unipartite weighted networks with

a fixed number N of nodes (an explicit generalization to the case of directed and
bipartite networks is provided later in sec. 4.5). Each element of W is a weighted
graph, uniquely specified by a N×N symmetric matrixW whose entry wij = wji
represents the weight of the link connecting node i to node j (wij = 0 means that
i and j are not connected). Without loss of generality, we assume integer weights
(wij = 0, 1, 2, . . . ) and no self-loops (wii = 0 for all i). Starting from the matrix
W , one can construct the adjacency matrix A(W ) whose entry is defined as
aij(W ) = Θ(wij), i.e. aij(W ) = 1 if wij > 0 and aij(W ) = 0 if wij = 0. Given a
networkW , the strength of node i is defined as si(W ) =

∑
j 6=i wij and the degree

of node i is defined as ki(W ) =
∑
j 6=i aij(W ).

Let us consider an empirical network, W ∗, that we would like to filter. We
define s∗i ≡ si(W ∗) and k∗i ≡ ki(W ∗), so that the resulting empirical strength and
degree sequences are denoted as ~k∗ and ~s∗ respectively. We look for the probability
distribution P over graphs that maximizes the entropy, under the constraint that
the expected degree and strength of each node equal the empirical values, e.g.

〈~k〉 = ~k∗, 〈~s〉 = ~s∗. (4.2)

The above requirement introduces a Lagrange multiplier, which for later conve-
nience we denote as − lnxi (with xi > 0 for all i), for each expected degree 〈ki〉
and another multiplier, denoted as − ln yi (with 0 < yi < 1 for all i), for each
expected strength 〈si〉. The graph probability we are looking for will depend on
these 2N parameters, which we array in two N -dimensional vectors ~x and ~y. We
require that such probability, denoted as P (W |~x, ~y) from now on, maximizes the
Shannon-Gibbs entropy

S(~x, ~y) = −
∑
W∈W

P (W |~x, ~y) lnP (W |~x, ~y) (4.3)

subject to the constraints in (4.2) and to the normalization condition∑
W∈W

P (W |~x, ~y) = 1. (4.4)

The solution to the above constrained maximization problem is found to be [23,
18, 40] the probability

P (W |~x, ~y) =
e−H(W |~x,~y)

Z(~x, ~y)
=

N∏
i=1

∏
j<i

qij(wij), (4.5)
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where we have introduced the Hamiltonian

H (W | ~x, ~y) = −
N∑
i=1

[ki (W ) lnxi + si (W ) ln yi] (4.6)

= −
N∑
i=1

∑
j<i

[Θ(wij) ln(xixj) + wij ln(yiyj)] ,

the partition function

Z(~x, ~y) =
∑
W∈W

e−H(W |~x,~y) (4.7)

=
N∏
i=1

∏
j<i

1− yiyj + xixjyiyj
1− yiyj

,

and the probability that a link between nodes i and j has weight w:

qij(w) ≡ (xixj)
Θ(w) (yiyj)

w (1− yiyj)
1− yiyj + xixjyiyj

(4.8)

=
{

1− pij if w = 0
pij (yiyj)

w−1 (1− yiyj) if w > 0
,

with

pij ≡ 1− qij(0) =
xixjyiyj

1− yiyj + xixjyiyj
(4.9)

representing the probability that nodes i and j are connected, irrespective of the
weight wij > 0 of the link connecting them.

The key quantity describing the above maximum-entropy ensemble is qij(w),
whose expression (4.8) has been first derived in [23] and denoted as Bose-Fermi
distribution. The name comes from the fact that, as a result of enforcing both
degrees and strenghts, the distribution combines features of the Bose-Einstein
distribution, which is encountered when dealing with systems described by integer
configurations such asW , and the Fermi-Dirac distribution, which is encountered
when dealing with systems described by binary configurations such as A(W ).

We now come back to the real-world networkW ∗ that we want to prune, and
to its strength and degree sequences ~s∗ and ~k∗. Using the above form of qij(w),
〈~s〉 and 〈~k〉 can be calculated explicity, both as functions of ~x and ~y, so that the
condition (4.2) can be rewritten explicitly [18, 40] as

k∗i =
∑
j 6=i

xixjyiyj
1− yiyj + xixjyiyj

∀i, (4.10)

s∗i =
∑
j 6=i

xixjyiyj
(1− yiyj + xixjyiyj)(1− yiyj)

∀i. (4.11)
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The above system of 2N coupled nonlinear equations is solved by certain param-
eter values (~x∗, ~y∗). Equivalently, the values (~x∗, ~y∗) can be proven to coincide
with the values that maximize the log-likelihood of the model [40, 45, 46], i.e.

(~x ∗, ~y ∗) = argmax
{xi>0, 0<yi<1 ∀i}

L(~x, ~y) (4.12)

where the log-likelihood, L, is defined as

L(~x, ~y) = lnP (W ∗|~x, ~y),

=
N∑
i=1

∑
j<i

ln qij(w∗ij)

=
N∑
i=1

[k∗i lnxi + s∗i ln yi]

−
N∑
i=1

∑
j<i

ln
1− yiyj + xixjyiyj

1− yiyj
. (4.13)

Once P (W |~x, ~y) is evaluated at the parameter values (~x∗, ~y∗), we obtain the
explicit maximum-entropy probability distribution P (W |~x∗, ~y∗) that we were
looking for. For ease of notation, once the values (~x ∗, ~y ∗) are inserted into
Eqs. (4.8) and (4.9), we denote the resulting key probabilities as q∗ij and p∗ij
respectively.

4.3.2 The local filter

We can now introduce our new filtering technique. Starting from the properties
of the ECM summarized in the previous subsection, here we develop a novel
statistical test that uses the ECM as null hypothesis and arrives at the explicit
calculation of the p-value for the acceptance of each link in the network. We
consider a local (and, as we argue later, more appropriate) version of our filtering
method first, and then move on to a global one.

As we anticipated, our local filtering method is similar in spirit to the Disparity
Filter (DF) introduced by Serrano et al. [37], as it is based on the calculation of
a p-value γ∗ij for each observed link of weight w∗ij > 0, defined as the probability
that the null model produces a weight wij ≥ w∗ij , and on the removal of links for
which γ∗ij is higher than a fixed critical value γ̃. However, our method improves
upon the DF by recalculating the p-values according to the maximum-entropy
probability q∗ij derived above. Since in our case weights are discrete, p-values
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should be calculated by replacing the integral appearing in Eq. (4.1) with a sum:

γ∗ij ≡ Prob(wij ≥ w∗ij)

=
∑
w≥w∗ij

q∗ij(w)

=

{
1 if w∗ij = 0

1−
∑w∗ij−1

w=0 q∗ij(w) if w∗ij > 0
. (4.14)

If a link is actually present in the observed network, i.e. w∗ij > 0, we have

γ∗ij = 1−
w∗ij−1∑
w=0

q∗ij(w)

= 1−
w∗−1∑
w=0

(
x∗i x

∗
j

)Θ(w) (
y∗i y
∗
j

)w (1− y∗i y∗j )
1− y∗i y∗j + x∗i x

∗
jy
∗
i y
∗
j

= 1−
1− y∗i y∗j

1− y∗i y∗j + x∗i x
∗
jy
∗
i y
∗
j

[
1 + x∗i x

∗
j

w∗−1∑
w=1

(
y∗i y
∗
j

)w]

=
x∗i x

∗
j

(
y∗i y
∗
j

)w∗ij
1− y∗i y∗j + x∗i x

∗
jy
∗
i y
∗
j

= p∗ij
(
y∗i y
∗
j

)w∗ij−1
. (4.15)

The above quantity represents the probability of generating a link between nodes
i and j with a weight equal to, or greater than, the observed weight w∗ij . It can
be seen from Eq. (4.15) that this probability coincides with the probability p∗ij
that a link of unit weight is established, times the probability

(
y∗i y
∗
j

)w∗ij−1 that
the weight is successfully incremented w∗ij − 1 times (so that the total weight is
at least w∗ij), irrespective of whether possible attempts to further increment the
weight beyond w∗ij are successful or not.

Per se, γ∗ij represents the p-value associated with the null hypothesis that the
edge weight w∗ij has been produced by mere chance, given the empirical strength
and degree sequences ~s∗ and ~k∗. Links with a higher value of γ∗ij are closer to
compatibility with the null hypothesis. Therefore the quantity 1/γ∗ij > 0 can be
viewed as a rescaling of the original weight w∗ij > 0 that effectively reduces the
absolute importance of large weights, if these are found between nodes with large
strengths and/or degrees. In principle, this rescaling can already be considered
a form of filtering, that keeps all edges but with modified weights. In practice,
we are going to fix a threshold value (corresponding to a desired level of statis-
tical significance) and retain only the edges for which 1/γ∗ij , rather than w∗ij , is
larger than the threshold. As we now show, this crucial step effectively replaces
the problematic enforcement of a global threshold on the original weights with
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the enforcement of a local threshold that controls for the strengths and degrees
of nodes. In particular, we reject the null hypothesis, and therefore retain the
observed link between nodes i and j as statistically significant, if γ∗ij is smaller
than a desired threshold γ̃:

γ∗ij < γ̃. (4.16)

Equivalently, using Eq. (4.15) the above homogeneous (global) threshold γ̃ for γ∗ij
translates into the following heterogeneous (local) threshold w̃ij for w∗ij :

w∗ij > 1 +
ln(γ̃/p∗ij)
ln(y∗i y

∗
j )
≡ w̃ij . (4.17)

It should be noted that the term on the r.h.s. depends on x∗i , x∗j , y∗i , y∗j .
In turn, these four parameters depend on the entire empirical strength and de-
gree sequences ~s∗ and ~k∗ through Eqs. (4.10) and (4.11), or equivalently (4.12)
and (4.13). So, unlike the DF, where the statistical significance of the observed
edge weight w∗ij is assessed against a null model that (upon double-checking from
the point of view of both i and j) depends only on the endpoint properties s∗i ,
k∗i , s∗j , k∗j , here the statistical test for w∗ij depends on the degrees and strengths
of all nodes in the network. This is a desirable property, following from the
maximum-entropy nature of our model whereby the specified constraints collec-
tively determine the probability of each graph, and ultimately each edge, in the
ensemble.

Summing up, our local filtering method is very simple: given the empirical
network W ∗ with strength sequence ~s∗ and degree sequence ~k∗, we

• find the values (~x∗, ~y∗) through Eqs. (4.10) and (4.11), or equivalently (4.12)
and (4.13) (efficient algorithms serving this purpose have been devised [40]
and coded [47, 48]);

• retain only the links (along with their weight w∗ij) that realize Eq. (4.16), or
equivalently (4.17), for a given value of the threshold γ̃ (a generally accepted
reference choice is γ̃ = 0.05, although we will show results for a wide range
of values of γ̃).

We refer to the resulting pruned network as the local backbone ofW ∗ and denote
it in terms of the (γ̃-dependent) matrix Σlocal(γ̃) with entries σlocalij (γ̃). Clearly,
the extreme cases are Σlocal(1) = W ∗ (all links of the original network being
preserved) and Σlocal(0) = 0, the latter denoting a matrix will all zero entries,
i.e. an empty graph.

4.3.3 The global filter
So far, we have implemented the filter locally by computing the significance of
each link γij and comparing it with a given critical p-value γ̃. However, in analogy
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with [39], it is in principle possible to apply the same filter in a global, whole-
graph fashion. In this context, we assume that the most significant global backbone
Σglobal(L̃) with L̃ ≤ L∗ links (where L∗ is the empirical number of links in
the original network W ∗) is the minimum-likelihood subgraph among the set
of all subgraphs of the original network having L̃ edges. This is equivalent to
claiming that Σglobal(L̃) is the subnetwork which is least likely to be generated
by pure chance. For each weighted subgraph Σ of the observed networkW ∗, the
likelihood is

P (Σ|W ∗) =
∏
i<j

[qij(σij)]
a∗ij =

∏
i<j

[
qij(w∗ij)

]a∗ij , (4.18)

where σij is the weight of the link between i and j in the subgraph Σ and
a∗ij = 0, 1 is the element of the adjacency matrix of the original graph W ∗. The
global backbone (for given L̃) is then defined as

Σglobal(L̃) = argmin
Σ:L(Σ)=L̃

P (Σ|W ∗), (4.19)

where L(Σ) denotes the number of links in the subgraph Σ.
Given L̃, the minimum of the likelihood is achieved by the L̃ smallest factors

of the product in Eq. (4.18). Hence, the entries of Σ∗(L̃) are easily found to be

σglobalij (L̃) =
{
w∗ij if (i, j) ∈ λL̃(W ∗)
0 otherwise ,

where λL̃(W ∗) is the set of the L̃ least likely links, i.e. those with the smallest
probabilities qij(w∗ij).

Note that, while the local filter selects links based on statistical significance,
this is not the case for the global one. Nonetheless, it is worth comparing the local
backbone, for a given γ̃, with the global one obtained using a value of L̃ giving
as many links as the local backbone. This effectively establishes a relationship
between L̃ and γ̃. It then becomes clear that the difference between the local filter
and the global one is the fact that the latter selects the L̃ links for which the prob-
ability mass function Prob(wij = w∗ij) is minimum, while the former selects the L̃
links for which the cumulative probability function Prob(wij ≥ w∗ij) is minimum.
One can at this point note that, as in the usual construction of one-sided tests
and the associated p-values in statistics, the use of the cumulative probability is
much more reasonable, as it makes more sense to define compatibility with the
null model in terms of the chance that the edge weight is equal to or larger than,
rather than only equal to, the empirical one. We therefore claim that the local
method should be preferred over the global one. We also note that, if the global
filter were redefined in terms of cumulative probability, the two methods would
coincide. Nevertheless, in the following we measure also the performances of the
two methods and present an empirical a posteriori confirmation of our claim.
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4.4 Empirical analysis

In this Section we gauge the performances of the ECM filter and compare its
filtering power with that of the disparity and GloSS methods. All three methods
are based on null models that, by preserving (among other properties) the degree
sequence of the original network, automatically preserve the link density and
therefore allow for a consistent comparison. We do not include the method by
Dianati in this comparison since, as we mentioned, it does not preserve the link
density and therefore tends to retain too many spurious links, many of which
would be reducible to the knowledge of node degrees. After that, we compare the
networks filtered with the local and global versions of ECM. Finally, we show how
our filter is able to dig out interesting hidden patterns by presenting the results
obtained for the time-varying World Trade and US airport networks.

4.4.1 Data

Here we provide a short description of the datasets used, and in Tab. 4.1 we list
their fundamental topological features.

Domestic
flights in
the U.S.A.

A node corresponds to an airport of U.S.A. and a link between two
airports exists if there is a direct flight connecting them. The weight
of a link indicates the number of passengers transiting between two
airports [9].

Florida
Bay
Foodweb

The network describes the trophic interactions between species dur-
ing the dry season in the South Florida Bay ecosystem. The data
have been collected from the ATLSS Project by the University of
Maryland [49]. Nodes correspond to species and links represent the
carbon flows (mg C y−1 m−2) among them.

Star Wars
movies

The data portrait the interactions between the characters of the
Star Wars films saga. Each node represents a character of the cast,
while a link connects two characters if they both speak in the same
scene and the weight counts the number of different scenes that
they share across the seven episodes of the saga [50].

World
Trade
snapshots

The networks represent the trading volumes between countries in
the period between the years 1998 and 2011. Each year is encoded
as a distinct network. A node indicates a country, while the weight
of a link denotes the gross trade volume (measured in thousands of
US dollars) between two countries [51, 52].

World
Trade
Multiplex

Multiplex representation of trade volumes for year 2011. Each layer
represents a different commodity [53]; we focus on four products,
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Network N L ρ (%)
US airports network 426 2439 2.69
Florida Bay foodweb 126 1969 25.00
Star Wars network:
All merged 111 444 7.27
All 112 450 7.24
Full int 110 398 6.64
Mentions 113 817 12.91
World trade network:
Year 1998 208 10210 47.43
Year 1999 208 10904 50.65
Year 2000 208 11778 54.71
Year 2001 208 12256 56.93
Year 2002 208 12523 58.17
Year 2003 208 12796 59.44
Year 2004 208 12921 60.02
Year 2005 208 13145 61.06
Year 2006 208 13146 61.06
Year 2007 208 13230 61.45
Year 2008 208 13489 62.66
Year 2009 208 13360 62.06
Year 2010 208 13321 61.88
Year 2011 208 12956 60.18
World trade multiplex:
Fish 207 4628 21.71
Cereals 207 3474 16.29
Fuel/oil 207 5711 26.79
Iron 207 5348 25.08

Table 4.1: Topological characteristics of the datasets used. For each net-
work, we report the number of nodes N , of edges L and the link density ρ for the
non filtered case.

namely: Fish, crustaceans and acquatic invertebrates (FISH); Ce-
reals (CER); Mineral fuels, mineral oils and products of their dis-
tillation, bitumin substances, mineral wax (FUEL/OIL); Iron and
steel (IRON) [51, 52].

4.4.2 Typical results and comparison with other methods

When it comes to performances, a good filtering technique should, ideally, be able
to prune as many connections as possible while preserving the highest amount of
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Figure 4.1: Effects of filtering on three topological indicators, for the
International Trade Network in 2011. Fraction of nodes N/N0 (left), links
L/L0 (center), and total weight W/W0 (right) as a function of the p-value γ̃. Red
squares refer to the disparity filter, blue dots to GloSS, and green diamonds to
ECM.

information and avoiding the breakup of the system. A good way to measure such
ability is computing the fraction of a given quantity X preserved after filtering,
X/X0, where X0 denotes the same quantity measured in the original network.
We consider three indicators: number of nodes (N), of edges (L) and the total
weight (W ) respectively. The behaviour of these indicators for different filtering
intensities (i.e. the p-values) for the International Trade Network in 2011 is
displayed in Fig. 4.1.

In the left panel, we notice how all methods return networks with no isolated
nodes up to γ̃ ' 0.06. Below such value, the disparity filter appears to be the most
conservative method because its local nature tends to avoid the pruning of all the
connections of a node. At the other extreme, despite imposing the conservation of
the initial topology, GloSS is the most aggressive method, isolating more than 20%
of nodes for γ̃ < 0.05. The ECM filter, instead, stays in between these boundaries
and achieves a trade-off between its aggressive and conservative counterparts.
In the strong filtering regime, which corresponds to the typical accepted range
of p-values γ̃ < 0.05, the established hierarchy holds also for L/L0 and W/W0.
The scenario changes, instead, for γ̃ > 0.05. In this regime ECM prunes out
more connections than GloSS (central panel) as well as heavier than disparity
ones (right panel). More specifically, since GloSS redistributes only the weights
keeping the topology unaltered, this artificially boosts the significance of each
link making it harder to remove. The stark difference in the behaviour of W/W0

for the DF is, instead, the hallmark of bias towards heavier edges. Although the
preservation of heavy connections might seem an advantage this is not always
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the case. As we will show later, heavier connections tend to conceal interesting
features of the system such as its mesoscopic structure (like, for instance, the
presence of communities [54, 55]).

4.4.3 Local versus global filtering

Besides comparing the ECM filter with other existing solutions, it is worth com-
paring also its global and local versions. Given a certain p-value γ̃, to properly
compare the two implementations we first produce the local backbone, which re-
sults in a certain number L̃ of links, and then rank all the edges of the original
network according to their link probability q∗ij using Eq. (4.8). We thus obtain
the global backbone by retaining only the first L̃ links. Finally, to study the dif-
ferences between the two filtering approaches, in Fig. 4.2 we display the fraction
of nodes, edges and total weight with respect to the p-value for the International
Trade Network in 2011. By construction, the trends showing the fractions of re-
tained links coincide. Furthermore, the analysis of Fig. 4.2 denotes no qualitative
difference between the fraction of preserved nodes in the two methods. This is
however not the case when we consider the residual total weight: indeed, we ob-
serve that the global ECM filter preserves significantly more weight than the local
one, in particular for p-values higher than 10−4.

A portrait of the differences between the local and global filter can be found
in Fig. 4.3 and Tab. 4.2 (results for other datasets can be found in the appendix
associated to this chapter), where we display the case of US airports dataset.
The most striking feature of Fig. 4.3 is the stark difference between the local
network (right panel) and the other two. In the local network, in fact, we observe
the emergence of a clear hub-and-spoke pattern [56]. Indeed, the list of the 20
heaviest edges (Tab. 4.2) confirms that there is not very much difference between
the global network and the original one in terms of backbone, while the difference
becomes much stronger in the local case with the appearance of many connections
among global “tier-1” hubs like New York and San Francisco and “tier-2” airports
like Austin, Cleveland and Indianapolis, just to name a few as clearly shown in
the graphs displayed in Fig. 4.3.

A more detailed analysis of the similarity between the local and global net-
works as a function of the p-value is provided by computing the Jaccard score J
[57]. This score quantifies the similarity between two sets A and B by computing
the ratio between the cardinality of the intersection and the cardinality of the
union, i.e.

J =
|A ∩B|
|A ∪B|

. (4.20)

A value J = 1 indicates that A and B are exactly the same set, while a value J = 0
denotes that the sets are completely different. In our case, we calculate J for the
sets of edges belonging to the local and global networks computed using different
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Figure 4.2: Effects of the global and local implementations of the ECM
filter on three topological indicators. Fraction of nodes N/N0 (blue dots),
links L/L0 (red diamonds), and total weight W/W0 (green squares) as a function
of the p-value γ̃. Filled symbols refer to the local filter and empty symbols to the
global one.

values of γ̃. The results for all the datasets are visible in Fig. 4.4. The shape of
J versus γ̃ highlights two distinct behaviours. In one case, the similarity between
local and global networks tends to fade away monotonically as we increase the
aggressivity of the filtering. In the other case, the two networks initially tend
to differentiate and become more and more alike thereafter. The World Trade
Network is an example of the latter behaviour. As we increase the aggressivity
of the filter, we observe the presence of a minimum of similarity around γ̃ ' 0.35
followed by an increase up to J ≈ 0.8 for γ̃ = 10−6. One culprit of such behaviour
is that the original networks are, in general, denser than the others (〈ρ〉 & 58%
for time-varying and 〈ρ〉 & 22% for single commodities). For γ̃ > 0.35 (which
corresponds to a low level of statistical significance), the ECM filters (local and
global) tend to prune out different links as suggested by the decrease of J . Instead,
the behavior of J for γ̃ ≤ 0.35 (which includes all acceptable ranges of significance)
suggests the emergence of a backbone shared by both networks which is resilient
to pruning, resulting in an increase of J .
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Figure 4.3: Heaviest links in the US Airport Network. Visual represen-
tation of the 200 heaviest links in the original network (left), ECM global filter
(center) and ECM local (right) for the US Airport Network. The local filtering
is obtained using γ̃ = 0.05 and the global filtering is constructed such that the
number of links is the same as in the local one.
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Figure 4.4: Similarity between the local and global ECM filters. Jaccard
score J of local and global filtered backbones obtained at different p-values γ̃ for
all the datasets considered in our study. The vertical dashed line denotes γ̃ = 0.05.

4.4.4 The filter at work on multiplex networks

The presence of a similar trend in the Jaccard score between global and local
backbones of yearly and single commodities leads us to investigate the effect that
the aggregation of multiple commodities has on the extraction of the backbone. A
multiplex network representation [53, 58] provides the natural way to study such
an effect. It has been proven, in fact, that the topological properties of single
layers and aggregate networks may differ a lot [59]; whilst in some cases, the
multiplex can be reduced, deleting entire layers without losing information [60].
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Orginal network Local filter Global filter

Los Angeles - San Francisco Las Vegas - Los Angeles Los Angeles - San Francisco
Las Vegas - Los Angeles Boston - New York Las Vegas - Los Angeles
Los Angeles - Phoenix Seattle - San Francisco Los Angeles - Phoenix
New York - Chicago New York - Ft Lauderdale New York - Chicago
Los Angeles - Chicago San Diego - San Francisco Los Angeles - Chicago

Dallas - Houston Los Angeles - Sacramento Dallas - Houston
New York - Los Angeles Portland - San Francisco New York - Los Angeles
Chicago - San Francisco Houston - New Orleans Chicago - San Francisco
Atlanta - New York Kansas City - Chicago Atlanta - New York
Boston - New York Dallas - San Antonio Boston - New York

New York - Washington Austin - Dallas New York - Washington
Dallas - Los Angeles Houston - San Antonio Dallas - Los Angeles

Seattle - San Francisco Austin - Houston Seattle - San Francisco
Las Vegas - San Francisco Cleveland - Chicago Las Vegas - San Francisco
New York - San Francisco New York - West Palm B. New York - San Francisco
New York - Ft Lauderdale Albuquerque - Phoenix New York - Ft Lauderdale
Minneapolis - Chicago Spokane - Seattle Minneapolis- Chicago

San Diego - San Francisco Indianapolis - Chicago San Diego - San Francisco
Los Angeles - Sacramento Atlanta - Jacksonville Los Angeles - Sacramento

Denver - Chicago Reno - San Francisco Denver - Chicago

Table 4.2: Heaviest connections in the US Airport Network. List of the
20 heaviest links in the US Airport Network in the original network (left column),
and after applying the local (center) and global (right) ECM filters.

It is therefore reasonable to ask whether filtering the layers first, and projecting
them onto a single layer then, produces a filtered backbone whose structural
properties are different from those of the network obtained inverting the order of
these operations.

In Fig. 4.5, we report the evolution of four topological indicators, namely: Jac-
card score (J), number of edges (L), size of the giant component (S) and size of
the mutually connected component (Si), with respect to γ̃. In Fig. 4.5(a) we dis-
play the similarity of the backbones using the Jaccard score J . We can gauge the
similarity either in a topological sense (the same link existing in both backbones)
or in a weighted one (the link existing in both backbones with the same weight
w). Except for the case where no filtering is performed, the weighted similarity
is always smaller than the topological one, suggesting that the connection among
the same countries is significative for one specific commodity but not in the re-
maining ones. Additionally, after an initial increase, for γ̃ < 0.01 the difference
between the topological and weighted similarities remains more or less constant.
In general, we observe that filtering before projecting returns a network which
has fewer edges L (Fig. 4.5(b)) and a smaller giant component S (Fig. 4.5(c)).
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Figure 4.5: Results of the ECM filter applied to the World Trade Mul-
tiplex. Effect of multiplexity on the extraction of the weighted backbone. From
top to bottom, we report the Jaccard score J (a), number of edges L (b), size
of the giant component S (c) and size of the mutually connected component Si
(d) as a function of p-value γ̃. The quantities L, S and Si are computed in
networks obtained filtering each layer first and projecting them then (Filter →
Project/Intersect) or in the inverse order case (Project/Intersect → Filtering).

The existence of a giant component is crucial for the appearance of several
collective phenomena like synchronization and spreading, just to cite a few [61].
In multiplex networks, besides the giant component in the single layers and in the
aggregate network, the so-called mutually connected component (here defined as
the network obtained projecting only the edges appearing in all the layers) plays
a key role in the emergence of collective phenomena as well [62]. In Fig. 4.5(d),
we compute the size of the mutually connected component, Si, of the networks
obtained filtering the layers first, extracting the intersection of the edge sets then
and projecting them finally (orange pentagons). We also show the result obtained
by computing the intersection first, projecting the layers and filtering the aggre-
gate network then (yellow hexagons). As we can see from panel (d), the behavior
of these two quantities with respect to γ̃ is completely different. In particular,
for γ̃ < 0.2 one case is above the critical percolation threshold while the other is
already completely fragmented [63]. Moreover, a visual representation of the orig-
inal networks and their respective backbones for some commodities is available in
the appendix.
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4.4.5 ‘Irreducible patterns’ revealed by the method

Finally, we illustrate several results showing that the ECM-filtered backbones
can unveil significant information about real-world systems that would otherwise
remain hidden or not completely revealed by the other methods. We provide also
some interpretation of the uncovered patterns. For the sake of brevity, here we
discuss only the results obtained for the US airports and the International Trade
networks, albeit similar conclusions can be drawn from the analysis of the other
datasets as well, as shown in the appendix.

We start from US airports and refer to Fig. 4.6, where we show the original
network (panel a) compared with the results of three filtering techniques: disparity
(panel b), GloSS (panel c), and the local ECM filter (panel d). For all three
methods, the backbones are extracted using always the same p-value γ̃ = 0.05
for consistency and, to facilitate visual comparison, we display only the first 200
heaviest connections. At first glance, we notice a stark difference between the
three backbones. More specifically, the disparity backbone is akin to the original
network, displaying several long-range connections between airports like Atlanta
(ATL), Chicago (ORD), Newark (EWR) and Los Angeles (LAX) to mention a
few. All these airports are among the top 12 in terms of the number of passengers
in 2002 as reported by the Federal Aviation Administration (FAA) of the United
States [64]. The pattern of connections resembles therefore a point-to-point one
[8]. Qualitatively, this is in agreement with the tendency of the disparity filter
to preserve heavier connections as reported in Fig. 4.1. This is not the case for
GloSS (panel c) and ECM (panel d). The former returns a very sparse backbone
having less than 200 edges (so all the retrieved edges are shown in this case) where,
despite the emergence of some star-like structures centered around Atlanta (ATL),
Minneapolis (MSP) and Dallas (DFW), there are almost no connections at all in
the west of the country. Such a result is clearly undesirable, at it would imply
no relevant connections for many US states at the chosen p-value, resulting in a
heavily fragmented network. By contrast, the ECM filter displays a much more
spread-out pattern consisting of several local hubs, not directly connected to each
other. This corresponds to the so called hub-and-spoke, a well known structure
observed in many spatial systems and indeed used in the airline system [8, 56].
The hub-and-spoke structure is usually the result of a design aimed at minimizing
the operational cost, here emphasizing the role of regional hubs as Salt Lake City
(SLC), Minneapolis (MSP), Portland (PDX), Charlotte (CLT) and St. Louis
(STL), to name a few. In other words, the ECM filter uncovers the cost-oriented
hub-and-spoke structure of US airports that is hidden within large-flow point-to-
point patterns. Importantly, all US states are connected in the ECM backbone,
making the resulting structure overall connected and hence much more acceptable
in terms of transportation constraints.

The case of the International Trade Network (in the year 2011) exhibits trends
similar to US airports. In particular, as reported in Fig. 4.7, the disparity back-
bone and the original network (panels b and a) look very alike, having China
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Figure 4.6: Filtered backbones of the US airport network. In each map, we
display the top 200 heaviest connections for the original (a), disparity (b), GloSS
(c) and ECM (d) networks. All the filtered backbones have been obtained using
a common p-value equal to γ̃ = 0.05.

(CHN) and USA playing the role of global juggernauts since they embody together
the 32.5% of all connections. We also notice the role of global broker/middleman
played by Europe as well as the presence of members of G8 as Russia (RUS)
and Japan (JPN), together with some G20 members like India (IND), South Ko-
rea (KOR), Brazil (BRA), South Africa (ZAF), Australia (AUS) and Indonesia
(IDN). However, the complete absence of connections either within or towards
African countries (except for South Africa) looks quite unrealistic. The backbone
obtained using GloSS, albeit resembling the original one, looks more like a star
with Europe at its center, in line with its geographical, political and technological
role. Unfortunately, in the map depicted by GloSS it is hard to discriminate any
local relationship between neighbouring countries which surely exists due to their
tight related historical development. As in the case of airports, the scenario de-
picted by ECM (panel d) is rather different from the previous two and is the least
predictable from the original network. Some of the features captured by dispar-
ity and GloSS can still be found in the ECM backbone, like the prominent role
of USA, China and Europe on the global checkerboard. Others are captured by
ECM only, and can thus be considered the hallmarks of ECM itself. We observe
the emergence of many more “spheres of influence” characterized by an interac-
tion pattern which is stronger with neighbouring countries in close analogy with
what observed for airports. For example, Russia loses its global role and becomes
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(a)

(d)
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Figure 4.7: Filtered backbones for the International Trade Networks
network in year 2011. In each map, we display the top 200 heaviest connections
for the original (a), disparity (b), GloSS (c) and ECM (d) networks. All the filtered
backbones have been obtained using a p-value, γ̃, equal to 0.05.

almost exclusively a partner of European countries. Brazil has more connections
with other South American countries. African countries other than South Africa
like Nigeria (NGA), Angola (AGO) and North African countries such as Morocco
(MAR) and Egypt (EGY) appear. Australia becomes more pivotal in the South
Pacific. An unexpected trait highlighted by ECM is the brokering role between
USA and China played by Middle Eastern countries like Saudi Arabia (SAU).
Finally, Europe loses its role of global broker and becomes a more independent
player.

Finally, we comment on the ability of ECM to identify relevant features per
se. As an illustrative example, we consider the time evolution of the International
Trade Network in the period 1998–2011 displayed in Fig. 4.8. In 1998, we can
distinguish basically six “centers of influence”. Two of them (namely USA and
France (FRA)) act as global partners, while the other four, i.e. Russia (RUS),
South Africa (ZAF), Australia (AUS) and Japan (JPN), appear instead to play a
more “local” role. As time passes, we notice the rise of some countries and the fall
of others. For example, around year 2002 we notice the growth of China (CHN),
South Korea (KOR) and India (IND). In 2006 France (FRA) has considerably
lost its original influence while New Zealand (NZL) plays a prominent role among
the Pacific islands compartment (though showing connections which are less rel-
evant in terms of exchanged volumes); moreover, China still exhibits a startling
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(a) (b)

(c) (d)

Figure 4.8: Time evolution of the International Trade Network, filtered
according to the local ECM filter. Top left: 1998; top right: 2002; bottom
left: 2006; bottom right: 2011. Figures refer to a critical p-value of 10−6.

development. Finally, in 2011 China and USA appear to be equally influential
centers of trade. In particular, China gains several connections with the African
countries, to the detriment of France and other European countries.

4.5 Additional specifications of the method

We now illustrate how our method can be extended to different ensembles of
weighted networks. For the sake of brevity, we only provide the mathematical
expressions and do not show explicit empirical analyses.

4.5.1 Extension to directed networks

Let us consider the set W of directed weighted networks with N nodes, each of
which is described by a N×N weight matrixW that is not necessarily symmetric
and has non-negative integer entries. The constraints we impose are now the out-
degree kouti , the in-degree kini (defined as the number of out-going and in-coming
links of node i, respectively), the out-strength souti and the in-strength sini (defined
as the total out-going and in-coming weight of the links of node i, respectively).
If we denote empirical values by asterisks, enforcing these constraints on average
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means requiring

〈~k out〉 = ~k out∗, 〈~k in〉 = ~k in∗, (4.21)
〈~s out〉 = ~s out∗, 〈~s in〉 = ~s in∗, (4.22)

which results in the Hamiltonian

H (W | ~x out, ~x in, ~y out, ~y in) = (4.23)

= −
N∑
i=1

∑
j 6=i

[
Θ(wij) ln(xouti xinj ) + wij ln(youti yinj )

]
,

where xouti , xini , youti , yini are Lagrange multipliers coupled to kouti , kini , souti , sini
respectively. A straightforward modification of the calculation we showed for
the undirected case leads to the following results. The graph probability that
maximizes the Shannon-Gibbs entropy subject to the above constraints is

P (W |~x out, ~x in, ~y out, ~y in) =
N∏
i=1

∏
j 6=i

qij(wij), (4.24)

where

qij(w) =
{

1− pij if w = 0
pij
(
youti yinj

)w−1 (1− youti yinj ) if w > 0
,

is the probability that the directed link from node i to node j has weight w, and

pij ≡ 1− qij(0) =
xouti xinj y

out
i yinj

1− youti yinj + xouti xinj y
out
i yinj

(4.25)

is the probability that a directed link from node i to node j exists, irrespective of
its weight.

Given a real directed network W ∗, the values of the Lagrange multipliers are
found by maximizing the log-likelihood

lnP (W ∗|~x out, ~x in, ~y out, ~y in) (4.26)

or, equivalently, as the solution to the following 4N coupled equations:

k out∗
i =

∑
j 6=i

xouti xinj y
out
i yinj

1− youti yinj + xouti xinj y
out
i yinj

k in∗
i =

∑
j 6=i

xoutj xini y
out
j yini

1− youtj yini + xoutj xini y
out
j yini

s out∗
i =

∑
j 6=i

xouti xinj y
out
i yinj

(1− youti yinj + xouti xinj y
out
i yinj )(1− youti yinj )

s in∗
i =

∑
j 6=i

xoutj xini y
out
j yini

(1− youtj yini + xoutj xini y
out
j yini )(1− youtj yini )
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4.5 Additional specifications of the method

Once the parameter values are found, the p-value for the weight w∗ij > 0 of
the realized directed link from node i to node j reads

γ∗ij ≡ Prob(wij ≥ w∗ij) = p∗ij
(
yout∗i yin∗j

)w∗ij−1
. (4.27)

As before, the local filter proceeds by retaining only the links for which the p-
value γ∗ij is smaller than a chosen critical value γ̃. The global filter would employ
a similar criterion based on the probability mass function, rather than on the
cumulative probability function, but this is expected to lead to poorer results, as
already discussed for the undirected case.

4.5.2 Extension to bipartite networks

We then assume thatW ∗ is a bipartite, undirected, weighted network, andW the
corresponding ensemble. Each network in the ensemble has two layers, one with
N1 nodes and one with N2 nodes. Links are only allowed across layers, not within
them. For each node i, one can still define the degree ki and strength si as for
an ordinary (i.e. unipartite) undirected graph. The main difference with respect
to the unipartite case is the fact that all graphs W that do not have a bipartite
structure are excluded from W and from the calculations.

There is, however, a trick that allows us to map (exactly) the ensemble of
bipartite undirected graphs to the ensemble of unipartite directed graphs consid-
ered above. The trick consists in assigning an arbitrary but common direction
(say, from layer 1 to layer 2) to all the links in the original bipartite network
W ∗. Then, the resulting directed network can be treated as a unipartite one with
N = N1 + N2 nodes and the procedure described above for directed networks
can be applied. At the end, the direction of the links that are retained by the
filter is simply discarded, and one correctly obtains the irreducible backbone of
the original bipartite undirected network.

The above mapping between a bipartite undirected graph and a unipartite
directed graph (and the corresponding null models) is exact because, after assign-
ing a direction to the links, all nodes in (say) layer 1 have kini = 0 and kouti > 0,
while all nodes in (say) layer 2 have kouti = 0 and kini > 0 (if we had kini = 0 and
kouti = 0, node i would be disconneted from all other nodes, and we would have
discarded it). Similar conditions hold for the in- and out-strenghts. If we now
apply the null model for weighted directed unipartite networks described in the
previous subsection, the zero in- and out-degrees (and strengths) will be kept to
zero, as there is no other way to enforce that their expected value is zero. This
ensures that the nodes in each layer do not receive connections from other nodes
in the same layer, so that the bipartite structure is preserved in the null model as
desired.
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4.6 Conclusions

The ever-increasing availability of ‘big data’ has spurred the use of networks as
a powerful way to capture the relevant features of complex systems. However,
when the flood of information becomes overwhelming, the advantages of a network
representation tend to fade away and the possibility to discriminate the essential
structure of the system (i.e. its backbone) deteriorates considerably. To preserve
sparsity and non-redundancy of networks, several filtering techniques have been
developed so far.

At the same time, recent improvements in network reconstruction techniques
have emphasized that many structural features of real-world networks can be
reliably estimated from the knowledge of the local node-specific topological prop-
erties, namely the degrees and strengths of nodes. This means that the truly
dyadic relationships, i.e. those that are irreducible to node properties, may be
hidden amidst a majority of redundant ones. In particular, recent results have
shown that the “first-order approximation” for many networks with heterogeneous
nodes is the ECM, while any other feature not directly encapsulated in the size of
nodes (like higher-than-expected preference for specific connections, dependence
on geographic or other distances, presence of communities and motifs, etc.) is
expected to be immediately visible at the next order.

Based on the above considerations, we have introduced a method that filters
out the first-order local effects embodied in the strength and degree sequence, thus
highlighting the truly dyadic (and higher-order) patterns relating nodes to each
other. We found that, while before applying the filter many networks display
similar properties (precisely because their first-order structure is well approxi-
mated by the ECM), after applying the filter they show significant differences,
presumably because higher-order features arise as network-specific effects.

Importantly, since strengths and degrees are the maximal set of local node-
specific properties that can be defined in any weighted network, our approach
is guaranteed to identify the connections that are by construction impossible to
infer on the basis of node-specific properties alone and that cannot be recovered
by any network reconstruction method based only on local node properties.

The comparison of the performances of the ECM, disparity and GloSS methods
shows that the ECM filter outperforms its competitors. We have also examined
the structural differences between the backbones retrieved from the global and
local implementations of our filter and the role of the order of filtering and ag-
gregating in multiplex networks. We have applied the ECM filter to the analysis
of several empirical datasets and illustrated how successfully it extracts relevant
hidden features like the hub-and-spoke structure of the US airport network and
the evolution in time of the most relevant “spheres of influence” across world trade.

Finally, we have shown that the ECM filter can be applied to different kinds of
weighted networks (e.g. undirected, directed, bipartite) and therefore constitutes
a valuable tool for the analysis of any networked system where the excess of
information hinders the identification of the essential backbone of interactions.
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4.A World Time-varying Trade Network

We believe that the approach introduced in this chapter advances significantly
the state of the art in the field of graph filtering by creating a new paradigm based
on irreducibility to the output of network reconstruction, thereby pushing the field
of graph filtering into a promising, yet unexplored direction.

Appendix
The present Appendix contains the results that have not been displayed in Chap-
ter 4, grouped by datasets.

4.A World Time-varying Trade Network
Considering the trading volumes between countries in the period between the
years 1998 and 2011 we can build a time-varying network where each time snap-
shot corresponds to a given year. A node indicates a country and the weight of a
link denotes the gross trade volume between two countries. In Fig. 4.9 we show
the filtered graphs for the year 2011. Panel (a) is the local filter case obtained con-
sidering p-value, γ̃, equal to 10−6. Panel (b) is the global case obtained choosing
the first L′ least likely links such that the number of edges in the two networks is
the same. At a glance, we see that most of the significant connections are shared
by both graphs.

(a) (b)

Figure 4.9: 2011 World Trade Network filtered using local (a) and global
(b) ECM filters. The local network is obtained using γ̃ = 10−6. The number
of links, L, in both graphs is 149. The size of the nodes is proportional to their
degree.

In Tab. 4.3 we report the list of the twenty most significant links according to
local ECM, global ECM, GloSS and Disparity filters for year 1998. The names
of the countries are represented using the ISO 3166-1 alpha-3 standard encoding.
Since we are looking at the first twenty most significant links out of about 200, it
is reasonable that the four lists are pretty much similar. Interestingly, the most
significant connection in GloSS and Disparity Filter (DF) (i.e. that between
Canada (CAN) and USA (USA)) is not even present among the most significative
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of ECM filters. DF, instead, fails to identify the links between France (FRA)
and French Polynesia (PYF) and also between Belgium-Luxemburg (BLX) and
Central African Republic (CAF) to give an example. More in general, DF tends
to assign an eccessive relevance to USA placing fifteen out of twenty connections
with USA in the list while for the other methods such number drops to just half
of the connections. Finally, it is worth mentioning that with the sole exception
of DF, we are not able to find trace of China in 1998 table in accordance with
the not predominant role played by such country at that time. In Tab. 4.4 we

Rank Local filter Global filter GloSS Disparity

1 DNK GRL DNK GRL CAN USA CAN USA
2 JAM USA JAM USA DNK GRL MEX USA
3 HND USA HND USA TCA USA BLR RUS
4 HTI USA BLR RUS COM FRA DOM USA
5 VGB RUS DOM USA HTI USA HND USA
6 BLR RUS HTI USA VGB RUS AUT DEU
7 FRA PYF VGB RUS BLX CAF CRI USA
8 DOM USA FRA PYF JAM USA CZE DEU
9 BLX CAF CRI USA FRA PYF JAM USA
10 FRA MDG GAB USA CPV PRT VGB RUS
11 GAB USA FRA MDG AND ESP JPN USA
12 AND ESP AND ESP FRA MDG COL USA
13 CRI USA BLX CAF HND USA HTI USA
14 ALB ITA ALB ITA GRD USA GTM USA
15 TCA USA GTM USA ALB ITA GAB USA
16 CPV PRT NIC USA BLR RUS IRL GBR
17 COM FRA BHS USA GAB USA CHN USA
18 NIC USA ANT VEN FRA WLF ECU USA
19 BHS USA CPV PRT CRI USA ISR USA
20 GTM USA TTO USA DOM USA TCA USA

Table 4.3: Most significant links of the World Trade Web in 1998. List
of the twenty most significant connections in the International Trade Network for
year 1998 according to the local and global ECM filters, GloSS and Disparity
Filter.

list the same kind of information displayed in Tab. 4.3 but for year 2011. At first
glance, something catches our attention, namely the presence of the following
“bizarre” connections: Antigua and Barbuda (ATG) and Nigeria (NGA), Algeria
(DZA) and Saint Kitts and Nevis (KNA), Barbados (BRB) and Nigeria, Turks
and Caicos Islands (TCA) and USA. All methods indicate those connections as
relevant. However, a deeper analysis of the data revealed the presence of errors in
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4.B World Trade Multiplex Network

the records of trade volumes among such countries. Some of the endpoints of these
anomalous connections are very small Caribbean or Pacific countries, showing
sheer trade volumes (for certain commodities) higher than those between China
and USA for example. In the light of these findings, filtering can be thought of
not exclusively as a way to recognize relevant connections, but also as a method
to validate them. Finally, contrary to the Disparity Filter, ECM and GloSS
identify additional wrong entries in the dataset such as: Bermuda (BMU) and
South Korea, South Korea and Liberia (LBR), Nigeria and Niue (NIU) and Cocos
(Keeling) Islands (CCK) and India (IND). We have checked for the presence of
such anomalous connections across all our time-varying data, and we have found
that such mistakes are present only in the years 2009, 2010 and 2011. Among
other noticeable - and meaningful - connections spotted by ECM filter, instead, we
find: South Africa (ZAF) and Zimbawe (ZWE), Denmark (DNK) and Greenland
(GRL), China (CHN) and Mongolia (MNG), Albania (ALB) and Italy (ITA) just
to cite a few.

The scenario becomes more interesting by looking at Tab. 4.5, i.e. the list
of the twenty heaviest links according to our global and local methods. Here, in
fact, we can see how the link between China (CHN) and USA (USA), which is
the heaviest in the original network, has disappeared from both filtered networks.
Conversely, the relation between Russian Federation (RUS) and Ukraine (UKR)
clearly emerges in the filtered networks as one of the most important ones. An-
other curious feature is the vanishing of Germany (DEU) from the column of local
filter albeit it appears in ten out of twenty positions available in the original net-
works. Finally, we observe the presence of a link between Italy (ITA) and Libya
(LBY) which have a strong historic and economic relation due to the past role of
Libya as one of the colonies of Italy during the beginning of the 20th century.

4.B World Trade Multiplex Network
The results displayed in Figures 4.10 - 4.12 show that the ECM filter can be
useful to detect patterns in the International Trade Multiplex, namely the multi-
layer network where each node denotes a country and each layer represents the
trade in a given commodity, that is one of the main focuses of this thesis. In
particular, here we consider the year 2011. The original layers do not exhibit any
evident difference among each other, due to the large density of this disaggregated
representation; the filtered ones provide, instead, some relevant information, such
as the appearance of Norway and Russia as hubs, respectively in the trade in fish
and fuels/oil.

4.C US Airport Network
In the US airport network, the first result reported in Fig. 4.13 is the behaviour
of the fractions of nodes, edges and total weight as a function of the p-value. As
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Rank Local filter Global filter GloSS Disparity

1 ATG NGA ATG NGA ATG NGA ATG NGA
2 CHN PRK CHN PRK CHN PRK MEX USA
3 DZA KNA DZA KNA NGA NIU CAN USA
4 NPL IND NPL IND BRA LCA TCA USA
5 BRB NGA BRB NGA DZA KNA NPL IND
6 TCA USA TCA USA NPL IND BRB NGA
7 AND ESP AND ESP AND ESP BLR RUS
8 ZAF ZWE ZAF ZWE BRB NGA DOM USA
9 BRA LCA BRA LCA CCK IND TCD USA
10 DOM USA DOM USA DNK GRL AND ESP
11 DNK GRL ABW USA TCD USA AUT DEU
12 TCD USA TCD USA ZAF ZWE HND USA
13 ABW USA DNK GRL BTN IND ABW USA
14 ALB ITA HND USA DOM USA GTM USA
15 HND USA ALB ITA COM FRA CRI USA
16 JAM USA CHN SDN PRT STP ALB ITA
17 CHN SDN JAM USA ALB ITA CZE DEU
18 CHN MNG CHN MNG ABW USA BTN IND
19 BTN IND KOR LBR COK NZL COL USA
20 BMU KOR BTN IND JAM USA SLV USA

Table 4.4: Most significant links of the World Trade Web in 2011. List
of the twenty most significant connections in the International Trade Network for
year 2011 according to the local and global ECM filters, GloSS and Disparity filter.
Green cells correspond to connections displaying false volumes. Blue (orange) cells
correspond to erroneous connections identified only by ECM (GloSS ) filter.

we can see, for γ̃ = 0.05 the filter is able to remove around 70% of the connections
while retaining about 20% of the total information (i.e. total weight). In Fig. 4.14
we display the pruned networks (according to both the versions of the ECM
filtered) with all their links. Despite being more “noisy”, the difference between
the structures of local and global networks remains clearly distinguishable. In
particular, we observe the persistence of many links among principal aiports due
to their heavy weights. The absence of such links in the local network enables the
emergence of the hub-and-spoke structure mentioned in the main text.

In addition to the visual comparison between local and global filters, we pro-
pose the comparison between the twenty most significant edges (Tab. 4.6). The
most striking fact about the names listed in this table is that they correspond
mainly to very small towns. The only exception is link number 17 in the global
network corresponding to the connection between Miami and Key West which is
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4.D Florida Bay Food Web

Rank Original Local Global

1 CHN USA RUS UKR CAN USA
2 CHN JPN USA VEN MEX USA
3 CAN USA BLR RUS AUT DEU
4 MEX USA COL USA RUS UKR
5 CHN KOR AGO CHN USA VEN
6 FRA DEU JPN PAN DEU HUN
7 CHN DEU CHN OMN BLR RUS
8 DEU NLD ECU USA COL USA
9 JPN USA LTU RUS ARG BRA
10 DEU ITA CRI USA JPN QAT
11 BLX NLD AZE ITA AGO CHN
12 DEU GBR GTM USA PRT ESP
13 BLX DEU CHN SDN JPN PAN
14 DEU USA FRA TUN CHN AMN
15 DEU CHE HND USA ECU USA
16 AUS CHN KOR LBR LTU RUS
17 JPN KOR TTO USA AUS NZL
18 AUT DEU KOR MHL CRI USA
19 BLX FRA ITA LBY DEU SVN
20 DEU POL CHN MNG AZE ITA

Table 4.5: Heaviest links in World Trade Web in 2011. List of the twenty
heaviest connections in the International Trade Network (2011) in the original
network, and according to the local and global ECM filters.

very important, among many factors, for tourism. This is completely different
from what can be seen in the main text (where the links were ranked according
to the weight of the connections, rather than according to the p-value), where all
the connections listed are among main airports with New York and Los Angeles
playing prominent roles in both the global and the local network.

4.D Florida Bay Food Web

The analysis of the filtering power of local ECM on the Florida Bay dry dataset
on the usual three topological indicators displays a behaviour not very different
from the other cases. However, for γ̃ = 0.05 we observe a slightly higher value of
W
W0

than for airports accompanied by a steeper decrease of if for lower values of
γ̃.
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(a) (b)

(c) (d)

Figure 4.10: Original and ECM filtered trade multiplex of fish and ce-
reals. Panels a-c refer to the original (a) and local ECM filter (c) fish and
crustaceans commodity. Panels b-d account for cereals, instead. The original net-
works are built using the 2011 data, and have been filtered considering γ̃ = 10−5.

4.E Star Wars
We conclude our portfolio of datasets with the Star Wars movie saga one. The
effects of filter aggressivity on topological quantities shown in Fig. 4.16 are in
line with similar results for other datasets. However the amount of retained
information for γ̃ = 0.05 is much higher than any other case. This is probably
due to the fact that these networks are already very sparse and therefore the
statistical significance of their links is high. Considering the full interactions
dataset, the visual inspection (Fig. 4.17) of the original and filtered networks
permits to identify those characters playing a key role. In particular, the centrality
of Darth Vader, Luke Skywalker and Obi-Wan Kenobi clearly increases while for
other characters like C3P0 and Jar Jar Binks this is the opposite, showing once
more the usefulness of the ECM filter.
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4.E Star Wars

(a) (b)

(c) (d)

Figure 4.11: Original and ECM filtered trade multiplex of fuels/oils and
iron/steel. Original (panels a-b) and ECM filtered (panels c-d) trade multiplex
of fuels and oils (panels a-c) and iron and steel (panels b-d). The original networks
are built using the 2011 data, and have been filtered considering γ̃ = 10−5.

(a) (b) (c)

Figure 4.12: Visual representation of the 200 heaviest links in the original
network (a), ECM global (b) and local (c) filters for the 2011 Trade
in cereals. The local filtering is obtained using γ̃ = 0.05, the global one is
constructed such that LGLOB = LLOC .
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Figure 4.13: Effect of filtering on the US-airport dataset. We report the
fraction of the number of nodes N/N0 (blue dots), edges L/L0 (red diamonds) and
total weight W/W0 (green squares) as a function of the p-value γ̃. The vertical
line corresponds to γ̃ = 0.05.
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Figure 4.14: Graphs obtained after filtering according to the global (left)
and local (right) ECM method, for the US Airport Network. In the local
filter, results refer to γ̃ = 0.05; in the global one, we choose the most unlikely
links such that the number of edges in the two panels is the same (in this case,
764 links).
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4.E Star Wars

Rank Local filter Global filter

1 Nantucket - Hyannis Nantucket - Hyannis
2 Bedford - Trenton Bedford - Trenton
3 Fort Dodge - Mason City Fort Dodge - Mason City
4 Alpena - Sault Ste Marie Alpena - Sault Ste Marie
5 Devils Lake - Jamestown Lewiston - Pullman
6 Hot Springs - Harrison Spokane - Seattle
7 Denver - Bullhead City Eau Claire - Rhinelander
8 Kingman - Prescott Devils Lake - Jamestown
9 Brookings - Huron Hancock - Marquette
10 Melbourne - Oshkosh Hot Springs - Harrison
11 Hancock - Marquette Columbus Starkville WestPt - Tupelo
12 El Dorado - Jonesboro Springfield - Quincy
13 Eau Claire - Rhinelander Grand Rapids - Saint Cloud
14 Havre - Lewistown Kingman - Prescott
15 Grand Rapids - Saint Cloud Friday Harbor - Lopez Island
16 Clovis - Hobbs Idaho Falls - Pocatello
17 Riverton - Worland Key West - Miami
18 Lewiston - Pullman Brookings - Huron
19 North Platte - Norfolk El Dorado - Jonesboro
20 Manhattan - Salina Melbourne - Oshkosh

Table 4.6: Most significant links of the US Airport Network. List of the
20 most significant connections in the US Airport Network according to the local
and global ECM filters. The local network is filtered considering γ̃ = 0.05.
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Figure 4.15: Effect of filtering on the Florida Bay food web dataset. We
report the fraction of the number of nodes N/N0 (blue dots), edges L/L0 (red
diamonds) and total weight W/W0 (green squares) as a function of the p-value γ̃.
The vertical line corresponds to γ̃ = 0.05.
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Figure 4.16: Effect of filtering on the Star Wars interactions network.
We report the fraction of the number of nodes N/N0 (blue dots), edges L/L0 (red
diamonds) and total weight W/W0 (green squares) as a function of the p-value γ̃.
The vertical line corresponds to γ̃ = 0.05.
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Figure 4.17: Visual representation of the original and filtered Star Wars
network. Original graph showing the interactions among Star Wars characters
(left) and corresponding pruned graph (right), according to the local ECM filter
with p-value equal to γ̃ = 0.05. The size of the nodes is proportional to their
degrees. We highlight also the most important connections.
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Chapter 5

Scientific publications network

Community detection techniques are widely used to infer hidden structures within
interconnected systems. Despite demonstrating high accuracy on benchmarks,
they reproduce the external classification for many real-world systems with a
significant level of discrepancy. A widely accepted reason behind such an outcome
is the unavoidable loss of non-topological information (such as node attributes)
encountered when the original complex system is converted into a network. In
this chapter we systematically show that the observed discrepancies may also be
caused by a different reason: the external classification itself. For this end we
use scientific publication data which i) exhibit a well defined modular structure
and ii) hold an expert-made classification of research articles. Having represented
the articles and the extracted scientific concepts both as a bipartite network and
as its unipartite projection, we applied modularity optimization to uncover the
inner thematic structure. The resulting clusters are shown to partly reflect the
author-made classification, although some significant discrepancies are observed.
A detailed analysis of these discrepancies shows that they may carry essential
information about the system, mainly related to the use of similar techniques and
methods across different (sub)disciplines, that is otherwise omitted when only the
external classification is considered.

The results presented in this chapter have been published in the following reference:
V. Palchykov, V. Gemmetto, A. Boyarsky, D. Garlaschelli, EPJ Data Science, 5, 28 (2016).
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5.1 Introduction

5.1 Introduction

A conflict between two members of a relatively small university organization that
happened more than 40 years ago [1] has attracted a lot of attention in the scien-
tific community so far [2]. A confrontation during the conflict resulted in a fission
of the organization, known as Zachary’s karate club, into two smaller groups,
gathered around the president and the instructor of the club, respectively. Pre-
dicting the sizes and compositions of the resulting factions, given the structure of
the social interaction network before the split, attracted a lot of attention. This
puzzle, supplemented by the known outcome, makes this system among the best
studied benchmarks to test community detection algorithms [3]. Having verified
a high level performance on the aforementioned system and on other benchmarks
[4], community detection algorithms have then been massively applied to uncover
tightly connected modules within large real-world systems. This allowed scientists
to identify, for instance, Flemish- and French-speaking communities in Belgium
using mobile phone communication networks [5], detect functional regions in the
human or animal brain from neural connectivity [6], observe the emergence of
scientific disciplines [7] and investigate the evolution of science using citation pat-
terns and article metadata [8, 9, 10].

A bird’s eye view on the identified clusters in real-world systems certifies their
meaningfulness. However, an in-depth quantitative validation of the community
structure requires its comparison with an external classification of the nodes,
which is accessible only for a limited number of large systems. Examples include
crowd-sourced tag assignments for software packages [11], product categories for
Amazon copurchasing networks [12], declared group membership for various online
social networks [13, 14] and publication venues for coauthorship networks in the
computer science literature [13]. Surprisingly, significant discrepancies have been
identified between the extracted grouping of nodes and their external classification
for these systems [11, 15]. This message remains robust independently of the
system under investigation and the technique used to uncover its community
structure, and calls for a detailed inspection of such discrepancies in order to
understand the reasons behind them.

One of the possible reasons concerns the strong simplification that occurs dur-
ing the projection of the original complex system into a network. This projection
may omit some crucial information that cannot be encoded into the structural
connection pattern [11]. The missing information may correspond to age or gen-
der of individuals in social networks [16, 17] or geographical position of the nodes
within spatially embedded systems [18]. Following this direction, several algo-
rithms [19, 20] have been developed in order to handle specific nodes attributes,
beside the usual connectivity patterns. Such approaches have been shown to
identify groups of nodes that more closely reproduce the external classification in
real-world systems [20] than the techniques that rely on the connectivity patterns
only.

In this chapter we argue that, independently of the aforementioned issue, the
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supposedly poor performance of community detection algorithms may be caused
by the external classification itself and its misinterpretation. For instance, a
system may possess several alternative classification schemes, such as thematic
and methodological groupings in a system of scientific publications or in aca-
demic coauthorship networks [21]. In such situation, the discrepancies between
the community detection results and a single accessible classification (e.g. based
on thematic similarity) may carry, instead, meaningful information (e.g. about
methodological similarity), therefore providing an added value to the system un-
derstanding.

Here we explore this idea by performing a detailed analysis of a scientific pub-
lication record system. This system may be simplified into a structural network
representation, where the nodes correspond to scientific articles, and the links
represent the relationship between them. There are various possibilities to map
these relationships: direct citation [22], cocitation and bibliographic coupling [23]
or content related similarities [24, 25]. In this chapter we focus on the latter, con-
sidering scientific terms or concepts that appear within the articles. Performing
community detection on the corresponding network, we compare the results with
an expert made classification of these articles, considering both similarities and
discrepancies between the two different partitions. Then we investigate the main
reasons causing the most notable deviations.

This chapter is organized as follows. In the section 5.2 we present the dataset
used; in sec. 5.3 we introduce the methodology used to build the networks, extract
the partitions and compare them with the external classification. Finally, in
sections 5.4 and 5.5 we present our findings and discuss them.

5.2 Data

We investigate a collection of scientific manuscripts submitted to e-print reposi-
tory arXiv [26] during the years 2013 and 2014. During the submission process,
the authors were requested to classify the manuscript according to the arXiv
classification scheme by assigning at least one category to it. In our analysis we
are focussed only on the articles that have been assigned to a single category,
restricting ourself to the field of physics. Moreover, the collections of manuscripts
submitted during the years 2013 and 2014 will be considered separately, eliminat-
ing the possible issues related to the temporal evolution of research disciplines.
The resulting datasets consist of 36386 articles submitted during 2013 and 41848
articles submitted during 2014, and will be referred below (together with the
extracted contents) as the arxivPhys2013 and arxivPhys2014 datasets, respec-
tively. The numbers of articles belonging to each category are shown in Tab. 5.1.

Each article is represented by a set of scientific concepts that characterize
its content, i.e. specific words or combinations of them. The concepts have
been identified within the full text by the ScienceWISE.info platform (SW). SW
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5.2 Data

category ns
2013 nm

2013 ns
2014 nm

2014

nucl-th 648 1628 766 1210
nucl-ex 315 924 324 736
hep-ph 2625 3935 3116 2885
hep-ex 602 1726 706 1225
hep-lat 352 695 419 417
hep-th 1787 3717 2316 2960
gr-qc 1118 2782 1527 2204
astro-ph 10984 3023 11445 2437
physics 4452 6479 5711 4880
cond-mat 10549 4609 11397 3538
nlin 392 327 522 905
quant-ph 2558 3240 3187 2471
math-ph 0 3789 412 2668

Table 5.1: Distribution of articles among categories. The number of
manuscript submitted during the year y that have been assigned to a given cate-
gory only (ns

y) or to the category and at least one another (nm
y ). List of cat-

egories: theoretical and experimental nuclear physics (nucl-th and nucl-ex,
respectively), four branches of high energy physics (hep-ph: phenomenology,
hep-ex: experiment, hep-lat: lattice and hep-th: theory), general relativity
and quantum cosmology (gr-qc), astrophysics (astro-ph), physics (physics),
condensed matter physics (cond-mat), nonlinear science (nlin), quantum physics
(quant-ph) and mathematical physics (math-ph).

is a web service connected to the main online repositories such as arXiv, whose
peculiarity is a bottom-up approach in the management of scientific concepts [27].
The initially created scientific ontology was followed by a continuous editing by
the users, for instance by adding new concepts, definitions and relationships. This
crowd-sourced procedure leads to the most comprehensive vocabulary of scientific
concepts in the domain of physics. Such vocabulary takes care of synonyms that
refer to the same concepts and it includes physics concepts explicitely labeled as
generic like mass or energy, or more specific ones like community detection.
Both are the results of crowd-sourcing by the registered expert-users.

The number k of concepts significantly vary among the manuscripts, reaching
up to kmax ∼ 400 for review articles. The average number of identified con-
cepts 〈k〉 per article, together with some other characteristics of the datasets
arxivPhys2013 and arxivPhys2014, are shown in Tab. 5.2.
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N V Vgen 〈k〉 Lidf Lbp

arxivPhys2013 36386 12200 347 37 3.3× 108 1.3× 106

arxivPhys2014 41848 12728 344 38 4.5× 108 1.6× 106

Table 5.2: Basic characteristics of the datasets. Total number of articles
(N), total number of identified concepts (V ) and the number of generic ones
(Vgen) among them; 〈k〉 gives the average number of non-generic concepts within
arbitrary chosen article. The number of links in a unipartite network (provided
that the generic concepts are excluded) Lidf is two orders of magnitude larger than
the corresponding number of links in bipartite networks (Lbp)1. This results in
significant differences in computational resources needed to perform community
detection analysis.

5.3 Methods
The dataset may be represented as a network, whose nodes correspond to arti-
cles. Two nodes i and j are connected by a link if the corresponding articles share
at least a single common concept. The resulting networks are extremely dense,
covering almost 90% of all possible network connections; this number may be
reduced to 50% if the generic concepts are ignored (see Tab.5.2). Below, to save
the computational resources, we will ignore the generic concepts in our analysis.
The weight of the link between two manuscripts is designed to reflect the level
of content similarity between two articles, i.e. the overlap between the respec-
tive lists of concepts. Different concepts, however, may contribute differently to
the similarity among two articles. Indeed, sharing a widely used concept should
affect the similarity between two articles differently than sharing a specific one,
suggesting that specific concepts should have a higher impact on the similarity.
Each concept c in the dataset is therefore weighted according to its occurrence,
which may be accounted for by the so-called idf(c) factor [28]:

idf(c) = log
N

N(c)
. (5.1)

Here N is the total number of articles and N(c) is the number of articles that
contain concept c. As mentioned above, among the V concepts identified by
SW, we will consider only the specific ones, discarding the Vgen generic concepts.
The content of each article can be therefore expressed by means of a (V − Vgen)-
dimensional concept vector ~vi. The element vic of the concept vector of the article
i has non-zero value equal to idf(c) only if the concept c appears within the article
i and equals zero otherwise.

The similarity between the contents of two articles i and j, and the link weight
wij between the corresponding nodes, may then be estimated by the cosine simi-

1These represent, in all the cases, roughly the 60% of all the links, i.e. including also the contri-
bution given by the generic concepts.
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larity between the two concept vectors ~vi and ~vj as follows:

wij =
~vi · ~vj
|~vi||~vj |

. (5.2)

The resulting network will be referred below as the idf representation of the data.
Alternatively to idf representation, the dataset may be mapped into a bipar-

tite network. Such network consists of the nodes of two types that correspond
to manuscripts and scientific concepts, respectively. The unweighted links in the
simplest case reflect the appearance of a concept within the article. This network
will be referred below to as a bp representation of the data, and the usage of
the two alternative representation will serve the robustness of our results. The
number of links (Lidf , Lbp) of these networks are shown in Tab. 5.2. As one may
see, the number of links in bp representation is about two orders of magnitude
smaller than the number of links in the corresponding idf representation. This
has significant consequences on the run-time and memory used to analyse the
networks.

Indeed, the run-time t of the Louvain algorithm scales with the number of links
L of the considered network. Since empirically in the bipartite representation
Lbp ∼ O(N) while in the unipartite case Lidf ∼ O(N2), this reflects in much
different computational resources required to perform the community detection.
Moreover, here we point out that the bipartite representation is the most natural
and suitable characterization of the dataset, since the null model behind such
representation of the data is definitely more correct. In fact, the bipartite null
model is consistent with the constraints on both the types of node (number of
papers per concept and concepts per article). This feature is instead lost when
the system is projected into a unipartite network, since the previous constraints
are not matched any more. Furthermore, the bipartite representation and null
model already take into account the presence of more frequent concepts, sparing
us the use of any idf factor. In this context, we therefore propose the use of the
bipartite representation as a possible alternative to the more widespread idf (or
tf-idf) unipartite representation.

In order to find a unipartite network partition, we will maximize a modularity
function [29]. To deal with bipartite networks, we adopt a co-clustering approach
[30] and Barber’s generalization of modularity [31].

In both cases, we assume that each article may belong to a single cluster
only, hence exploiting the notion of non-overlapping communities. Furthermore,
the co-clustering approach makes stronger restrictions on a bipartite partition,
compared to a unipartite one. Indeed, the resulting clusters of a bipartite partition
consist of both articles and related concepts, and we assume that each concept
belongs to a single cluster as well. Such restriction may be relaxed, for instance
by using alternative ways to generalize modularity for bipartite network [32] or
by employing stochastic block model techniques [33]. However, we will consider
co-clustering of bipartite networks since it allows us to straightforwardly employ
the same greedy optimization algorithm [5] for the networks of both types.
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The restriction towards a single algorithm is also caused by the result [11]
that i) the selected algorithm is among the ones that perform best on real-world
networks and ii) the major influence on the accuracy is related to the dataset
itself rather than the algorithm. Due to the stochastic origin of this algorithm, it
has been applied 100 times for unipartite networks and 1000 times for bipartite
ones (due to the significantly different number of links and, therefore, the required
computational resources). Among the detected partitions, for each network we
will select the single partition that corresponds to the highest value of modularity;
this partition will be referred below as the optimal partition for each network.

5.4 Results

A partition of a bipartite network consists of clusters that contain both articles
and scientific terms (concepts), while clusters of a unipartite network partition
consist of articles only. To compare both unipartite and bipartite partitions with
the external article classification, we will be focussed only on the articles that fall
into each cluster. Thus, by referring below to a cluster of bipartite partition we
mean the set of articles that belong to the specified cluster. In this perspective,
the external classification of the articles is represented by the arXiv standard split
into different subject classes or categories (astro-ph, cond-mat, etc.).

Then, given two partitions P and Q of the same network (for instance a
detected network partition and the arXiv classification), an initial comparison
between them has been performed using an information-based symmetrically nor-
malized mutual information:

IN(P,Q) =
2I(P,Q)

H(P ) +H(Q)
. (5.3)

Here I(P,Q) is the mutual information [34] between two partitions P and Q, and
H(P ) is the entropy of partition P . The normalized mutual information IN(P,Q)
may vary between 0 and 1. A value of 0 indicates that the two partitions have
no information in common, while a value of 1 corresponds to identical partitions.
In Tab. 5.3 we show the level of similarity between each optimal partition and
the arXiv classification ones. The reported values of normalized mutual informa-
tion indicate the existence of some common information between automatically
identified clusters of articles (both in the bipartite and unipartite cases) and the
author based classification. However, the values being quite far from the possi-
ble maximum of 1 reflect evidence for some discrepancies between the partitions.
Below we perform a detailed analysis of these discrepancies. Here we will show
the results for the arxivPhys2013 dataset; similar findings can be observed in the
arxivPhys2014 case and are shown in the following appendix.

The first difference is observed in the numbers of detected clusters and of
arXiv subject classes: while the number of categories in the arXiv classification
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idf bp
arxivPhys2013 0.60± 0.02 0.56± 0.03
arxivPhys2014 0.55± 0.00 0.54± 0.02

Table 5.3: Similarity between network partitions and external classifi-
cation. Average value of the normalized mutual information IN (5.3) between a
partition of each network representation and arXiv classification of the articles
and the corresponding standard deviations. Both bp and idf partitions demon-
strate similar value of closeness to arXiv classification.

scheme is 12 2, the number of clusters in our partitions is only equal to 4 in
the idf and to 6 in the bp network representations, respectively3. Indeed, the
articles of some different arXiv categories tend to belong to a single cluster. This
may be clearly observed in Fig. 5.1 that shows the fraction of articles of each
arXiv category belonging to each cluster in the resulting partitions. This merger
is especially visible for different high energy physics (hep) categories (hep-ph,
hep-ex, hep-lat and hep-th): in the idf partition, almost 99% of all these
articles fell into a single cluster, independently of the sub-field. This result, despite
deviating from the arXiv classification scheme, is reasonable since we observe a
union of almost all papers about high energy physics, no matter if they deal with
experimental or theoretical issues.

Instead, in the bp partition the articles of the four hep categories are almost
entirely distributed among two clusters, focussed on experimental and theoret-
ical issues, respectively. The first of them joins 95% of all articles that belong
to experimental categories (hep-ph, hep-ex or hep-lat), while the second one
contains 94% of all theoretical (hep-th) articles. Thus, the presence of more
clusters within the bipartite network partition allows us to identify methodologi-
cally different clusters of articles within the hep categories, in particular dividing
theoretical papers from experimental ones.

Even though the split of hep articles into two groups may be simply explained
by the different approaches used to study the phenomena, a further result can
be observed from Fig. 5.1: in the bipartite network partition, hep-th articles
tend to form a single cluster with the articles that belong to general relativity
and quantum cosmology (category gr-qc) rather than with the other high energy
physics articles, thus appearing to be more similar to gr-qc papers rather than
to the other hep ones. Intuitively, indeed, we know that both hep-th and gr-qc
both focus mostly on general relativity, while the other hep categories focus on
particle physics 4.

2In fact, there are 13 physics categories in arXiv classification scheme, but there is no single article
in arxivPhys2013 dataset that belong to math-ph category only.

3By performing a detailed comparison we ignore all single-node clusters, which contain the articles
for which no concept has been identified.

4Indeed, it is very likely that nowadays the hep- categories would be split in multiple subcategories
(namely hep-th, hep-lat, etc.). However, here we point out that our study (in particular in the
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Figure 5.1: Inner composition of arxivPhysics2013 partitions. The color
of each cell accounts for the fraction of articles of a given category belonging to
a cluster (each column sums to 1). The articles of the same categories tend to
incorporate into single clusters as justified by the clearly visible block-diagonal
structure of both idf and bp partitions. Nevertheless, the split of some categories
into distinct clusters may be observed. For instance, the articles of nucl-th cat-
egory are roughly equally split among hep- and cond-mat-dominated categories.
On the right, the most representative concepts for each cluster are shown.

Such a relatedness between the articles of the two theoretical physics categories
(hep-th and gr-qc) may be verified independently by a category co-occurrence
analysis. To show this, we will use the complementary part of the investigated
dataset. This set consists of all articles that have been submitted to arXiv during
the same 2013 year, but for which the authors have assigned at least two different
categories. Thus, no article of this set overlaps with the clustered arxivPhys2013
collection. Irrespective of the details of the decision-making process through which
authors assign multiple categories, this multiplicity reflects the authors’ decision
that the scope of the article can not be properly covered by a single category of
a given classification scheme. Whilst several categories may cover the scope of a
single research article, the co-occurrence of the same two categories in a significant
fraction of articles may reflect some hidden relationships between them. The
corresponding empirical co-occurrence matrix is shown in Fig. 5.2 and indicates

bipartite case) shows that hep-th looks actually more similar to gr-qc than to the other hep- classes.
This therefore seems to strengthen the apparently counterintuitive choice of dividing the high energy
articles in different primary classes.
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5.4 Results

the fraction of articles of a given category that have been co-submitted to the other
categories. The diagonal elements of this matrix indicate the fraction of articles
of each category that have been assigned to a single category by the author(s),
i.e. the articles of the arxivPhys2013 dataset. A normalization procedure has
been performed such that each column of the matrix sums to 1.

Fig. 5.2 confirms that the hep-th subject class is indeed more related to the
gr-qc class than to the other hep categories: hep-th co-occurred with gr-qc in
1721 articles, and with all other hep categories in only 1286 articles, even though
the number of the corresponding hep papers (hep-ph, hep-ex, hep-lat) exceeds
the number of gr-qc ones threefold. This high level of relatedness between hep-th
and gr-qc categories justifies the merging of the articles of these categories into a
single cluster and indicates the meaningful deviation from the arXiv classification
scheme. It is worth to mention that in the idf partition, where all hep category
articles tend to belong to a single cluster, the same cluster is supplemented by
87% of all gr-qc articles, in agreement with the result observed above. Moreover
such a tendency is not restricted to the dataset for the selected year: it has also
been observed for the arxivPhys2014 one (as shown in the appendix).

The same approach explains the presence of a significant fraction of physics,
non-linear (nlin) and quantum physics (quant-ph) articles into the cond-mat
clusters. It also allows us to understand a possible reason why nuclear physics
articles (both theory and experiment) occur significantly within the hep clusters.
However, it cannot explain the presence of roughly one half of nucl-th articles
into the condensed matter cluster (cluster No. 3 in idf and No. 5 in bp par-
titions) in both network representations. The latter deviation from the article
classification, which is not explained by category co-occurrence, does not exclude
that similarities between these topics exist but are considered not strong enough
by the authors to label the articles with both subject classes. To uncover the
possible essence of these similarities, we examine the top representative concepts
that characterize the nucl-th articles that belong to the two different clusters,
see Table 5.4. In both cases, the top representative concepts contain the ones
that characterize the object of investigation within theoretical nuclear physics,
such as Isotope, Isospin or Nuclear matter. However, one may clearly iden-
tify method-related concepts, such as Hartree-Fock, Hamiltonian, Mean field
and Random phase approximation, among the top representative concepts of ar-
ticles in the cond-mat cluster. These concepts clearly characterize methods that
are widely used in condensed matter physics research, and that have not been
identified among top concepts in any other cluster. This result emphasizes the
ability of scientific concepts found within research articles to highlight not only
topics focussed on the same objects, but also methodologically similar research
directions.
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Figure 5.2: Co-occurrence matrix of arXiv categories during year 2013.
Built on the complementary dataset to arxivPhys2013, this matrix reflects the
relationships between arXiv categories and allows to justify the meaningfulness
of some remarkable discrepancies, like the merger of hep-th and gr-qc articles.
Each non-diagonal element reflects the fraction of articles in which two specified
categories have co-occurred. The diagonal cells represent the fractions of articles
that have been assigned to a single category, i.e. they concern the articles of the
arxivPhys2013 dataset. A normalization procedure has been performed such that
each row of the matrix sums to 1. Thus, the aforementioned fractions correspond
to the fractions of manuscripts that have been labeled with a given category.
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5.5 Conclusions

% Concept (cluster no. 1) % Concept (cluster no. 3)
43 Hadronization 55 Isotope
39 Isospin 53 Hamiltonian
37 Pion 39 Hartree-Fock
33 Degree of freedom 36 Quadrupole
32 Heavy ion collision 34 Isospin
31 Quark 31 Nuclear matter
29 Chirality 30 Degree of freedom
29 Hamiltonian 28 Mean field
29 Nuclear matter 26 Harmonic oscillator
26 Coupling constant 25 Spin orbit

Table 5.4: Representative concepts of two groups of articles categorized
as nucl-th. The left side of the table represents the group of articles that fell
into the hep dominated cluster (no. 1) in idf partition. The right side – the
other group: the nucl-th articles that fell into the cond-mat dominated cluster
(no. 3). For each group, the numbers next to the concepts give the percentage of
articles in which the concept has been identified. The table allows us to make a
suggestion that the two groups of articles significantly differ by the methods used
to investigate nuclear matter.

5.5 Conclusions
The differences between the outcomes of community detection algorithms and
possible external classifications may have various reasons. The most notable of
them concern a possible failure of the considered algorithm or the unavoidable
loss of data about real complex systems determined by their representation as
networks. To deal with the first issue, algorithms are heavily tested on bench-
marks, while the second issue is still under investigation [20]. In this chapter, we
emphasize a third possible reason behind such discrepancies, i.e. the fact that
the external classification itself may possess its own limitations. For this reason
we performed a detailed investigation of a scientific publication system which i)
may be naturally represented as a network and ii) owns an external author-made
classification of scientific articles. While, indeed, some discrepancies are caused
by the lack of data (for instance in the case of the articles for which no concept
has been identified), we argue that the most remarkable of them may reflect real
commonalities across different subject classes. Academic publications are tra-
ditionally categorized and classified5 according to objects or phenomena under
investigation. The same phenomena, however, may be explored using various ap-
proaches, experimental observation and theoretical modeling being among them.

5Document classification and categorization are different processes: classification refers to the
assignment of one or more predefined categories to a document, while categorization refers to the
process of dividing the set of documents into priory unknown groups whose members are in some way
similar to each other [35].
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On the other hand, the phenomena that belong to different research topics may
be investigated using the same methods, composing the core of the interdisci-
plinary research. Thus, a more comprehensive classification or research articles
may be represented by a two layer categorization scheme, where one layer reflects
phenomena or objects while the other one stands for the methods of investiga-
tion. Usually, these two layers are not taken equally into account. The expert
made classification may include rather a strong bias towards the object layer. The
reasons involve the classification scheme itself and the limited knowledge about
all other research disciplines that employ the same methods. Instead, automatic
concept-based categorization has no direct preference for any of the layers: the
extracted concepts correspond both to phenomena and methods, and the algo-
rithm has no information about the possible division of the concepts. Thus, the
observed discrepancies may reflect the dominance of the methodological layer over
the other one, which corresponds to phenomena or objects. Similar results have
been previously observed within the collaboration network of scientists at Santa
Fe Institute [21], where, besides the expected grouping around common topics,
some methodologically driven clusters have been observed.

This shows that the failure in reproducing an external classification may in-
dicate a genuinely more complicated organization within the system, in addition
to the lack of data or algorithmic mistakes. Besides developing sophisticated al-
gorithms to deal with real systems, we should therefore keep in mind that some
observed discrepancies may go beyond the standard classification and carry im-
portant information about the system under study. We believe that similar results
may be observed in other systems. Indeed, the ground truth necessarily follows
from a given classification criterion; however, the considered data may contain
more than that single type of information (perhaps in conflict one with each
other). In general, therefore, it may happen that what we consider as the ground
truth is just one of the possible reference points, rather than some absolute truth.
Understanding the information employed to define the so-called ground truth is
therefore crucial in order to perform a proper comparison between external clas-
sification and automatically retrieved communities.

Appendix

5.A Scientific publications network in 2014

Here we show the results of the community detection algorithm to the so-called
arxivPhys2014 dataset, representing the content-relations between 41848 scien-
tific articles that have been assigned to a single physics category, submitted to
arXiv in 2014; our findings are reported in Figure 5.3 (top panel). The parti-
tions obtained through the Louvain algorithm are very similar to those observed
for the arxivPhys2013 dataset: we see that, also in this case, the manuscripts
belonging to the same category tend to merge into single clusters as illustrated
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5.A Scientific publications network in 2014

by the block-diagonal structure of both idf and bp clusterings. Still, the split
of some categories into different communities may be observed, such as nucl-th
and math-ph.

Furthermore, we can justify our results based on the co-occurrence matrix
reported in Figure 5.3 (bottom panel). This matrix, built on the complementary
dataset of arxivPhys2014, namely the set of articles showing more than one
physics category, reflects the relations between the various arXiv categories in
2014 and can therefore explain the reason of some of the observed discrepancies,
such as the union of hep-th and gr-qc manuscripts.

186



Scientific publications network

nu
cl

-t
h

nu
cl

-e
x

he
p-

ph
he

p-
ex

he
p-

la
t

he
p-

th
gr

-q
c

as
tr

o-
ph

ph
ys

ic
s

co
nd

-m
at

nl
in

qu
an

t-
ph

Standard Model, Quark, Supersymmetry, Hadronization

Star, Galaxy, Planet, Active Galactic Nuclei, Luminosity

Hamiltonian, Graphene, Superconductivity, Lasers

Qubit, Entanglement, Hamiltonian, Quantum mechanics

Standard Model, Quark, Hadronization, Parton

Black hole, Horizon, Scalar �eld, Supersymmetry

Galaxy, Star, Planet, Active Galactic Nuclei, Luminosity

Turbulence, Coronal mass ejection, Vorticity

Hamiltonian, Graphene, Superconductivity, Lasers

Qubit, Entanglement, Hamiltonian,  Entropy, Eigenvalue

cl
us

te
rs

 o
f

id
f p

ar
tit

io
n

cl
us

te
rs

 o
f

bp
 p

ar
tit

io
n

0 0.2 10.4 0.6 0.8

arXiv category id representative concepts

1

2

3

4

1

2

3

4

5

6

m
at

h-
ph

0

0.25

0.5

0.75

nu
cl

-t
h

nu
cl

-e
x

he
p-

ph

he
p-

ex

he
p-

la
t

he
p-

th

gr
-q

c

as
tr

o-
ph

ph
ys

ic
s

co
nd

-m
at

nl
in

qu
an

t-
ph

m
at

h-
ph

nucl-th
nucl-ex

hep-ph

hep-ex

hep-lat

hep-th

gr-qc

astro-ph

physics

cond-mat

nlin

quant-ph

math-ph

ca
te

go
ry

category

Figure 5.3: Results of the analysis for the arxivPhys2014 dataset. Top:
inner composition of the obtained partitions. The color of each cell accounts for
the fraction of articles of a given category belonging to a cluster (each column
sums to 1); the articles of the same categories tend to incorporate into single
clusters as justified by the clearly visible block-diagonal structure of both idf
and bp partitions. Bottom: co-occurrence matrix of arXiv categories during year
2014. Each non-diagonal element reflects the fraction of articles in which two
specified categories have co-occurred; the diagonal cells represent the fractions of
articles that have been assigned a single category, i.e. they concern the articles
of the arxivPhys2014 dataset. A normalization procedure has been performed
such that each row of the matrix sums to 1.
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Concluding remarks

In this thesis, we have focused on multi-layer complex networks, developing vari-
ous maximum-entropy models and showing their application in the extraction of
relevant patterns of several real systems. We have therefore exploited concepts
stemming from theoretical and statistical physics, such as entropy and partition
functions, to design null models for networked systems as canonical ensembles
with specified constraints.

The definition of random benchmarks in terms of canonical ensembles is by
no means new, as it has already been introduced at the beginning of the 21th
century for single-layer networks and extended to the multiplex case a few years
later. Our main contribution, clearly illustrated in this work, consisted in the fit of
such maximum-entropy models to real-world systems via the so-called maximum-
likelihood method. This allowed us to deeply analyze systems composed by a large
number of layers without incurring into significant computational limitations.

We have pointed out that the aforementioned models can be employed for dif-
ferent - and sometimes even opposite - purposes, ranging from the phenomenolog-
ical modelling of observed networks to the statistical inference and data filtration.
In this context, we have indeed shown that they are able to inform us about the
genuine correlations between layers of a multiplex; the flexibility of these models
was also exhibited by their application to directed and weighted graphs, as illus-
trated in Chapters 1 and 2. Furthermore, in Chapter 3 we have pointed out that
such metrics can overcome the problem of limitedness of topological information,
leading to the design of new multiplex reconstruction methods able to infer the
inter-layer topology from partial information. We have then highlighted that,
strikingly, the same models that can be used for the previous inference problems
may also be employed for the opposite task, namely the data filtration. This
observation led us to the development of an original and successful graph pruning
method (Chapter 4). In conclusion, we have also focused on a scientific publica-
tions system, thanks to the collaboration with the ScienceWISE platform, that
allowed us to connect scientific manuscripts based on their content. In Chapter 5
we have shown that this system can be effectively tackled in the network theory
framework; a better comprehension of this system, involving the whole scientific
community, may come from the inclusion of other layers of interactions, such as
adding the information about the citations between articles. These analyses can
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therefore provide insights into the global scientific landscape.
As previously stated, one of the cornerstones of the thesis was the focus on real-

world systems. Indeed, we have tested all our new metrics and models to observed
networks, ranging from the economic sector to the infrastructural one. Moreover,
we have highlighted that a better understanding of some of these systems is strictly
connected to the use of the multiplex approach, as clearly shown for instance in
the case of the World Trade Network. This approach can therefore provide a
significant added value to the usual "monoplex" network theory.

Our findings point out once more the power of the maximum-entropy method,
especially when coupled to the maximum-likelihood approach, and show their
relevance with respect to various fields. These results can therefore be consid-
ered as the building blocks of further research in the direction of more advanced
maximum-entropy network models, for instance with the introduction of inter-
layer correlation within the benchmarks and the applications of similar reference
models to different fields, ranging from the financial sector to the biological sys-
tems.
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Samenvatting

Allerlei realistische collecties van gegevens kunnen weergegeven worden door mul-
tiplex netwerken (ook bekend als meerlaagse netwerken of multigrafen): superposi-
ties van netwerken die elk op een andere manier de verbindingen tussen knoop-
punten leggen.

De betrouwbaarheid van zulke weergaves kan worden aangetast door ruis en
willekeurigheid, terwijl toch de behoefte bestaat aan het extraheren van zinvolle
informatie uit deze - soms enorme - verzamelingen van gegevens. Aan deze be-
hoefte wordt voldaan door de introductie van nulmodellen, ofwel: referentiemod-
ellen, waarmee de waargenomen netwerken vergeleken kunnen worden. We brei-
den het idee van nulmodellen als kanonieke ensembles van netwerken met bepaalde
randvoorwaarden uit naar het multiplex geval en presenteren nieuwe meettech-
nieken waarmee we gelaagde systemen kunnen karakteriseren op basis van de
correlatiepatronen. We maken uitgebreid gebruik van het maximale-entropie
principe om analytische uitdrukkingen voor de verwachtingswaarden van verschil-
lende grootheden met betrekking tot de topologie van het netwerk te vinden;
bovendien gebruiken we de maximum-likelihood methode om de modellen zo goed
mogelijk de realistische gegevens te laten weergeven.

We behandelen eerst ongerichte multiplex netwerken. We introduceren nieuwe
maten voor de correlaties tussen de lagen van een multigraaf, zowel voor binaire
(ongewogen) als gewogen netwerken. Verder wijzen we op het belang van het ge-
bruik van nulmodellen om de informatie die is gecodeerd in knooppunt-specifieke
eigenschappen te onderscheiden van informatie die gerelateerd is aan hogere orde
interacties tussen de elementen waaruit het netwerk bestaat. We maken duidelijk
dat het gebruik van homogene willekeurige referentiemodellen kan leiden tot mis-
leidende resultaten; heterogene nulmodellen zijn theoretisch geschikter en in de
praktijk redelijker.

Vervolgens verleggen we de aandacht naar gerichte multiplex netwerken. We
tonen aan dat de uitbreiding van de structuurgrootheden die zijn ontwikkeld voor
ongerichte netwerken niet triviaal is, aangezien de gerichtheid van de verbindingen
impliceert dat de afhankelijkheden tussen lagen van tweeërlei aard zijn: behalve
dat er een tendens is verbindingen in verschillende lagen in dezelfde richting te
laten wijzen, vanwege de zogenaamde multiplexiteit, is er ook een complemen-
taire tendens verbindingen in verschillende lagen in tegengestelde richting te laten
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wijzen, de zogenaamde multireciprociteit.
Verder stellen we een methode voor om gecorreleerde multiplex netwerken

te reconstrueren, waarin de topologie uit gedeeltelijke informatie afgeleid wordt.
Onze techniek bouwt voort op willekeurige reconstructiemodellen, die met succes
een aantal gewenste eigenschappen van enkellaagsnetwerken reproduceren (zoals
het gewicht van de verbindingen en/of het aantal buren van de knooppunten).
Vervolgens wordt de minimale afhankelijkheidsstructuur geïntroduceerd die nodig
is om een extra verzameling van hogere-orde interlaageigenschappen te repliceren.

We illustreren dat de maximale-entropie modellen het ook mogelijk maken
om de zogenaamde ruggengraat van een netwerk te vinden. We introduceren een
grondige methode die, voor elk gewenst niveau van statistische significantie, de
subgraaf produceert die niet te reduceren is naar de lokale eigenschappen van de
knooppunten van het netwerk. We laten zien dat, in tegenstelling tot eerdere
methoden, de exacte maximale-entropie formulering garandeert dat het gefilterde
netwerk alleen verbindingen bevat die niet kunnen worden afgeleid van lokale
informatie.

In alle eerder genoemde gevallen testen we onze meettechnieken en modellen
op verschillende realistische netwerken, met speciale aandacht voor het World
Trade Multiplex: het netwerk dat de import-export verbindingen weergeeft tussen
landen die met elkaar handelen in verschillende producten.

Tenslotte bestuderen we een andere dataset, namelijk het netwerk van weten-
schappelijke publicaties. We tonen aan dat dit systeem een eenvoudige weer-
gave heeft in termen van een bipartiet netwerk, ofwel een graaf die bestaat uit
twee verschillende soorten knooppunten, waarbij er alleen verbindingen zijn tussen
knooppunten van verschillend type (in ons geval, artikelen en wetenschappelijke
concepten daarin). De toepassing van een community detection algoritme stelt
ons in staat om conclusies te trekken over specifieke aanpakken van auteurs om
hun artikelen te classificeren. Bovendien geven we diepgravender interpretaties
van het begrip gouden standaard.
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