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1
INTRODUCTION
Type 1 diabetes mellitus (T1D) is an autoimmune disease in which the body’s pancreatic 

β-cells are destroyed through a still incompletely understood immune reaction. β-Cells 

are  highly differentiated neuroendocrine cells that are the only source of the glucose-

regulating hormone insulin in the body. Autoimmune destruction of β cells leads to 

a deficiency of insulin and impaired glucose homeostasis, as without insulin peripheral 

tissues such as fat, liver and skeletal muscle cells are incapable of internalizing glucose 

from the bloodstream. The inability of cells to take up glucose leads to hyperglycemia, 

while leaving tissue cells deprived of their primary energy source. Under normal 

physiological conditions glucose is not present in urine, as it is completely reabsorbed 

in the kidneys. When levels of glucose in the blood surpass the kidney’s reabsorption 

capacity, the excess of glucose is being excreted in the urine, causing  the phenomenon 

from which T1D  derives its name; diabetes mellitus  means honey-sweet flow in 

ancient Greek.  Due to the osmotic effect of glucose in the renal tubules, glycosuria 

causes the concomitant loss of large quantities of water and electrolytes, leading to 

the pathognomonic symptom of polyuria. In turn, polyuria causes dehydration, leading 

to the second pathognomic feature of diabetes mellitus; polydipsia, or excessive thirst.  

In the diabetic state glucose is no longer available as an energy source for peripheral 

tissues and the body reverts to alternative mechanisms of energy production, such as 

the oxidation of fatty acids, to maintain vital cellular processes. During the oxidation of 

fatty acids acidic ketone bodies are produced as a by-product. The loss of circulating 

volume and electrolytes that results from the glycosuria, combined with the increased 

production of acidic ketone bodies can lead to the potentially fatal medical emergency 

known as diabetic ketoacidosis. If the metabolic acidosis  is not corrected swiftly using 

intravenous administration of fluids and exogenous insulin, the condition will lead to coma 

and eventually death.1

T1D is one of the oldest diseases known to medicine, being already described by ancient 

Egyptian physicians in the Eber’s papyrus.2 Despite modern medicine’s familiarity with 

the disease, it has remained an unequivocal death sentence within months after diagnosis 

until 1921, when Banting and Best were the first to isolate insulin from the carcass of a dog . 

This breakthrough paved the way for the first actual treatment for T1D, insulin replacement 

therapy, converting a lethal disease into a chronic condition.  Despite many advances in 

the treatment of T1D over the years, including the development of new insulin analogues, 

improvement in insulin administration and overall better healthcare, insulin replacement 

therapy targets  the  consequences, or symptoms of the disease, and not its cause. T1D 

patients will therefore retain a life-long dependency on exogenous insulin administration 

and remain continuously at risk for the acute complications of insulin replacement therapy, 

i.e. hypoglycemic coma and diabetic ketoacidosis, both potentially fatal conditions on 

their own.3 In addition to the acute complications of their treatment, T1D patients are 

at risk for long-term complications such as ocular, neurological, cardiovascular and renal 
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complications associated with prolonged hyperglycemia, as exogenous insulin cannot 

match the precision of the body’s own mechanisms of glucose regulation.4-6 Further, T1D 

patients often experience reduced quality of life as well as a diminished life expectancy 

despite the best available therapies.3 Elucidation of the exact etiology of T1D is a long 

sought-after goal in modern medicine as it may provide novel targets for a curative 

treatment or even allow prevention of disease. 

Over the course of the 20th century the worldwide incidence of T1D has been on 

the rise  and  is expected to have doubled in children under the age of 5 in the time-period 

from 2005 to 2020.7,8 The cause for this marked rise in incidence remains obscure, but 

given the short time-span in which this increase takes place genetic variability is unlikely 

to be accountable.  Under healthy conditions the human body has an insulin production 

capacity in vast excess of its physiological needs and T1D only becomes clinically overt 

when the insulin production fails to meet the absolute minimum requirements. At time-

of-diagnosis the autoimmune destruction of β-cell often has been ongoing for a long 

time and the majority of β-cell function is already lost. This delay poses difficulties for 

both research as well as potentially curative or preventative treatments as elucidating 

the initiating trigger for disease development long after its onset poses a major challenge. 

Further, β-cells do not appear to have any clinically relevant regeneration rates, reducing 

the chances for T1D patients to regain spontaneous insulin-independence even if 

the autoimmune process could be brought to a halt immediately upon diagnosis of 

the disease.  While increases in pancreatic β-cell mass has been described in conditions of 

increased insulin demand, such as obesity9  and pregnancy10, on average these changes 

are limited. T1D patients often experience a temporal decrease in the need of exogenous 

insulin administration shortly after diagnosis, a period referred to as the honeymoon 

phase. While the existence of this honeymoon phase and the data obtained from obesity 

and pregnancy suggest that (partial) restoration of lost beta cell function is possible, there 

currently are no possibilities to stimulate this response and  the chances for T1D patients 

to regain spontaneous, persistent insulin-independence are slim. Therefore, being able 

to predict disease occurrence by elucidating the factors that predispose to disease may 

facilitate both prediction and  prevention of T1D. 

The estimated lifetime risk for the development of T1D is estimated at 0.4%, but 

geographically a large variation in T1D occurrence exist. Globally, incidence ranges 

from less than 1/100.000 per year in China to over 50/100.000 per year in Finland.7,11 In 

addition to the geographic variation T1D displays aggregation in certain families, causing 

an increased risk of T1D development in individuals with affected parents, siblings or 

offspring.12-14  Children with an affected first-degree family member have a lifetime risk of  

3-8% to develop T1D, but also parents have an increased risk for developing the disease 

themselves as soon a one of their children becomes affected. The actual incidence in 

individuals with an affected first-degree family members depends on many factors, among 

which, but not limited to, ethnicity, family member affected, the age of diagnosis for 

the affected family member, birth order and maternal age of delivery, the HLA-type of 
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1
the affected family member and the degree of genetic similarity with the affected family 

member.15-18 In general, children with a diabetic mother  have an estimated risk of 1-4% 

for the development of T1D, while those with an affected father have a lifetime risk of 

3-8%.  This inherited parental risk is multiplicative, rather than additive, and when both 

parents are affected the lifetime risk for their children to develop T1D can be as high as 

30%. In the case of affected siblings, the a-priori risk for disease development ranges 

from 3-6% in case of non-twin siblings, to 8% in dizygotic twins and 30-65% in the case of 

monozygotic twins.19 The proband-wise concordance rate of monozygotic twins is high, 

but no complete, despite their identical genetic makeup. Although the concordance rates 

increase with the number of genetic risk factors present, it does not become  complete, 

suggesting that factors other than genetic variation play a role in T1D development.20-22 

This is indicated as well by the effects of birth order and maternal age at birth, which are 

difficult to explain from a genetic viewpoint, and the fact that the vast majority (>90%) 

of new T1D cases occur in individuals without a family history of the disease. These,  

in addition to genetic susceptibility other factors must be involved in the  onset of β 

cell autoimmunity. Environmental factors such as dietary intake of vitamin D, cow’s milk 

and gluten as well as increased hygienic conditions and viral outbreaks have all been 

implicated as risk modulators, classifying T1D as a complex disease with both genetic and 

environmental factors interacting in its pathogenesis.23-27 

Immunopathology of type 1 diabetes
During evolution, the immune system has adapted to protect the body against a plethora 

of possible pathogens such as viruses and bacteria while leaving one’s ‘self’’ unharmed. 

The adaptive immune system, composed of B and T lymphocytes, is capable of mounting 

highly effective, antigen specific immune responses against a broad range of different 

antigens. This broad reactive capacity results from rearrangement of genetically encoded 

receptor subunits during T and B cell development, which are linked together using 

a random sequence of nucleotides.28 The addition of random nucleotide insertions creates 

a highly diverse pool of T and B cell receptors, required to combat the many pathogens one 

might encounter. Yet, it also allows for the generation of immune cells with the propensity 

for autoreactivity.  The removal of these potential deleterious immune responses from 

the pool of immune cells during T cell development is enforced in a process referred to as 

induction of central tolerance.29 

T cells undergo an essential part of their development in the thymus, where specialized 

medullary thymic epithelial cells (mTECs) express and present self-antigens under 

the governance of the autoimmune regulator gene AIRE.30 T cells recognizing self-derived 

epitopes on the surface of mTECs commit to apoptosis or become anergic, rendering 

them inert, hereby theoretically clearing the T cell pool of all autoreactive cells. Yet, as 

demonstrated by the existence of various autoimmune diseases, this process of negative 

selection is not flawless. The mechanisms by which potentially autoreactive T cells escape 

thymic education are not clear, but suboptimal antigen presentation due to  low binding-
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affinity of various self-peptides to human leukocyte antigen (HLA)  is implicated. 31,32 

Alternatively, potential autoreactive T cells can express low avidity T cell receptors, causing 

them to survive negative selection despite interacting with self-peptide:HLA complexes on 

the surface of mTECs.33 A third possibility entails the absence of the cognate autoantigen  

from the thymus, either due to differential expression between thymus and peripheral 

tissue or as a result of tissue-specific posttranslational modifications, causing a discrepancy 

between periphery and thymus.34,35 It is conceivable that different mechanisms are 

involved for different autoantigens. Determining the method of tolerance evasion for 

each islet-autoantigen in T1D  will help focus therapeutic interventions as each method of 

tolerance evasion will require its own, tailored treatment approach. Currently, the escape 

of autoreactive T cells from the thymus is viewed as deleterious, yet islet-reactive T cells 

are not exclusive to T1D patients but can be readily detected in the peripheral blood of 

in healthy individuals as well. Therefore, determining the actual consequences of thymic 

escape by  analysing these cells in terms of phenotype and function, may help distinguish 

autoreactive T cells involved in disease propagation from “bystander” autoreactive T cells, 

that pose a distraction in the elucidation of disease etiology . 

To restrain the autoreactive cells that have eluded thymic selection, a second mechanism 

of tolerance exists, known as peripheral tolerance. Regulatory T cells (Tregs), which repress 

rather than promote immune activation upon activation, are pivotal in this process of 

peripheral tolerance. Tregs can be either naturally occurring Tregs, (nTreg), which suppress 

immune responses in a non-antigen-specific manner, or induced suppressor cells (iTregs)  

which act in an antigen-specific manner.  In T1D a diminished functionality of Tregs as 

well as increased resistance of autoreactive effector cells to Treg suppression have been 

reported, contributing to the immune dysregulation required for autoimmune diseases 

to occur 36,37.  The actual mechanism by which autoreactive T cells in T1D increase their 

resistance to regulation by Tregs remains unknown thus far and its elucidation may offer 

opportunities to correct this imbalance and revert aberrant immune responses, or even 

prevent them from ever happening at all. 

Several events have been proposed to precipitate autoimmunity in T1D by creating 

immunological “danger signals” that attract autoreactive cells to the site of the pancreas, 

including viral infections, environmental conditions leading to endoplasmic reticulum 

stress or bacterial transposition from the small intestine. 38-41 Yet, at present the trigger 

for the initiation of β-cell destruction remains unknown. After the initial autoantigen-

presentation to the immune system and subsequent immune activation that lead to β cell 

destruction, islet-reactive T cells with different specificities that the original culprit can be 

activated in a process called epitope spreading.42 In addition, unrelated T cells can get 

activated in a non-antigen specific manner via the process of bystander activation.43,44 

Under normal circumstances both these mechanisms are beneficial as they add to improved 

clearance of pathogens, however they pose a cardinal problem in the elucidation of T1D 

pathogenesis as T1D is often diagnosed long after the initial onset of autoimmunity. 

The search for the causative agent in T1D development is further complicated by the great 
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1
degree of heterogeneity of disease progression found among T1D patients, which 

suggests that perhaps there is no “single” disease mechanism but rather a multitude of 

disease processes with a common final pathway.45 Theoretically, any abrogation of immune 

regulation, such as impaired expression of immune-regulatory molecules or inadequate 

maintenance of autoreactive immune cells, may eventually lead to loss of tolerance and 

consequently start the cascade of  autoimmunity that leads to T1D.

Current evidence suggests that both CD4+ and CD8+ T cells play a pivotal role in 

the process of β-cell destruction.46 CD4+ T cells recognize extracellular antigens and 

promote local inflammation by releasing cytokines, whereas CD8+ T cells recognize 

peptides of intracellularly synthesized antigens on the surface of their target cells, which they 

subsequently lyse upon engagement. The specific destruction of insulin producing β-cells 

in T1D, sparing adjacent neuroendocrine islet cells such as glucagon-producing α-cells 

and somatostatin-producing δ- cells, implies that β-cell-specific antigens are targeted 

during the autoimmune response of T1D. Reactivity against various islet antigens has been 

described for T1D, yet no single islet autoantigen has unequivocally been identified as 

driving the autoimmune process in type 1 diabetes.45,47 In addition to T cells, members 

of the innate immune system have been implicated in T1D development.48  Dendritic 

cells are crucial in the initial antigen -presentation to autoreactive T cells49, whereas 

macrophages and NK cells act as sources of pro-inflammatory cytokines and chemokines. 

In addition, NK cells can directly interact with β-cells leading to their demise.50-52 Several 

pro-inflammatory cytokines produced by the innate immune system have been implicated 

directly in β-cell death, among which most notably interleukin 1β (IL-1β) and tumor necrosis 

factor alpha (TNF-α).  β-cells appear more sensitive to the apoptotic stimulus provided by 

TNF-α and IL-1B than α- and δ-cells, possibly contributing to the selective loss of insulin  

producing cells. 

The first steps towards the discovery of antigenic targets in T1D were made in 1974 with 

the indirect immunostaining of pancreatic tissue with islet cell antibodies from the serum 

of polyendocrine-disease patients.53 To date, multiple β-cell antigen have been found to 

be autoantibody targets among which (prepro-)insulin, the 65 kDa isoform of glutamic 

acid decarboxylase (GAD65), insulin autoantigen 2 (IA2), carboxypeptidase H, zinc 

transporter 8 (ZnT8), imogen-38 and phogrin.54-60 In addition, several self-antigens have 

been found to be targeted exclusively by T lymphocytes and not antibodies, including 

islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), islet amyloid 

polypeptide ppIAPP and heat shock protein 60 (hsp60).61-63 While pivotal in the initial 

discovery of several autoantigens in T1D, the role of autoantigens in disease propagation 

of T1D remains controversial and presently autoantibodies in T1D are viewed as markers 

of immune activation and disease progression rather than causal agents in destruction of 

β-cells. This view is strengthened by reports of T1D development of  in the setting of B-cell 

deficiency.64 Notwithstanding, anti B-cell therapies have been shown to temporarily delay 

the loss of insulin production in T1D in a small group of patients, indicating that the precise 

role of autoantibodies in the disease process of T1D  remains to be determined.65,66 Despite 
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Figure 1. The current view on islet autoimmunity in Type 1 Diabetes. The pathogenesis of type 1 
diabetes revolves around the presentation of islet antigens to CD4+ T cells by professional antigens 
presenting cells. CD4+ T cells propagate the immune response by activating CD8+ and B cells. Once 
primed, CD8+ T cells become licenced to kill β-cells. NK cells can directly interact with β-cells and 
together with other constituents of the innate immune system act as source of (potentially β cell toxic) 
cytokines and chemokines.  (B.O. Roep, Nature, 2007 [103])

the fact that recent years have provided renewed understanding of key immunological 

players involved in β-cell destruction (Figure 1), the precise reason why tolerance is lost 

against β-cell antigens in type 1 diabetes remains obscure to date.

Genetic contribution to T1D susceptibility 
As described previously, the familial clustering of T1D has long suggests involvement of 

genetic factors in T1D susceptibility. Proof hereof came with the association of the human 

leukocyte antigen (HLA) locus and T1D development.67-69  The HLA complex, or major 

histocompatibility complex (MHC), is a highly polymorphic gene locus containing more 

than 120 genes, over 40% of which are believed to be involved in immune processes.70,71 
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The most important regions of the MHC for T1D are the HLA class I and II genes that 

encode surface molecules involved in presenting intracellular peptide fragments to T 

lymphocytes, with  the greatest risk modifier for T1D development mapping to the HLA 

class II locus.72 CD8+ cytotoxic T cells recognize their cognate antigen in the context of 

MHC class I, whereas CD4+ T cells recognize antigen in the context of class II molecules. 

Genetic fine mapping has revealed that polymorphic DR and DQ α-β heterodimers, 

encoded by the HLA-DQB1 and HLA-DRB1 genes, are central to disease susceptibility.73 

Due to the high degree of linkage disequilibrium within the HLA locus, certain alleles 

often occur together and are referred to as haplotypes.  Two specific haplotypes carry 

the greatest risk for T1D, i.e. DR3 (DRB1*03:01-DQA1*05:01-DQB1*02:01) and DR4 

(DRB1*04:01-DQA1*03:01-DQB1*03:02).74 Over 90% of all T1D patients express either 

DR3 or DR4, while only 40% of non-affected carry either haplotype.75,76 Separately, DR3 

and DR4 increase susceptibility for T1D (odds ratios of 3.6 and 11.4, respectively), yet 

their risks act synergistically and individuals heterozygous for HLA-DR3/DR4 have up to 

a 47-fold increased risk compared to the general population.72 This extreme risk haplotype 

is present in 2.3% of United States-born Caucasian children, while 39% of patients who 

develop T1D before the age of 20 have this specific genotype.77 Other HLA haplotypes 

increase the risk of type 1 diabetes to a lesser extent, while some haplotypes even seem 

to protect against developing this condition. The DR15-DQ6 (DRB1*15:01- DQA1*01:02- 

DQB1*06:02) haplotype is present in ~20% of the general population but only in 1% of 

T1D patients and has a dominant protective association with T1D with and odds ratio of 

0.03.72,78 Due to a high degree of linkage disequilibrium it has been difficult to determine 

other, weaker, genetic risk factors within the HLA locus. Still, the independent effect of 

several HLA class I genes on T1D susceptibility, most notably HLA-B*57:01 and HLA-B-

39:06, was discovered recently, 79,80.  The mechanism by which HLA alleles influence T1D 

risk is not completely clear, but it is presumed that the risk conferred by these alleles and 

haplotypes relates to specificity of self-peptide binding and presentation.47,81 

In addition to the HLA locus 58 non-HLA regions have been found to associate with 

T1D development.82-85 In contrast to the HLA region, which is thought to account for ~50% 

of all genetic risk in T1D, the majority of these T1D risk loci only carry a moderate risk for 

disease development (OR 1.1~1.5).83,84,86 Among the first non-HLA regions discovered to 

associate with T1D are the INS locus, harboring the gene coding for insulin, and the CTLA4 

locus which codes for the immune-regulatory surface receptor cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4).87,88 Compared to other known non-HLA risk regions, these 

regions carry a relatively large genetic risk which might explain why their associated 

genetic risk for T1D susceptibility was be detected  in relatively small patient studies 

prior to the large cohort genome-wide associated studies (GWAS). The INS locus became 

a premier candidate for genetic association with T1D due to insulin’s central role in glucose 

homeostasis and its unique distinction as the only known β cell-specific antigen. Evidence 

for genetic linkage of the insulin gene with T1D came when variation of a variable number 

of tandem repeats (VNTR) upstream of the INS gene was shown to associate with risk 
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for T1D development.89-91 Alleles with short (class I) VNTR elements predispose to T1D, 

while longer (class III) VNTR alleles  are dominantly protective. The length of the VNTR 

influences expression of the INS gene in cis, with class III alleles causing a 20% reduction 

of insulin expression in the pancreas, but up to threefold higher expression in the thymus 

compared to class I alleles.3,92 It is hypothesized that the increase in thymic insulin 

expression facilitates negative selection of autoreactive cells, thereby diminishing the risk 

for T1D development.92,93 Overall, the role of the INS locus can be viewed as prototypical 

for the role of the thymus in the development of autoimmune diseases, where proper 

education of T-cell is critical in regulating autoimmunity. The discovery that the genetic 

risk of the INS region was linked to thymic expression of the autoantigen prompted further 

investigation and a role for differential thymic expression in the occurrence of autoreactivity 

was postulated for additional islet-autoantigens in T1D, i.e. islet antigen 2 (IA-2) and islet-

specific glucose-6-phosphatase catalytic subunit related protein (IGRP). The latter will be 

discussed in chapter 2 of this thesis.  

The CTLA4 region was the third genetic locus to be associated with T1D predisposition.  

The CTLA4 gene encodes a receptor on the cell surface of T lymphocytes that negatively 

regulates co-stimulation of T cells, by binding the same B7 ligand as the activating  T cell 

receptor CD28.94 In contrast to CD28, the intracellular part of CTLA-4 has phosphatase 

activity that downregulates the intracellular signals that take place after the T-cell 

receptor engages with its cognate HLA:peptide complex and thereby inhibits immune 

activation.  The CTLA4 gene was first shown to be associated with the risk of T1D in 

several  candidate gene study and more recently GWAS have confirmed the association 

of the CTLA4 locus with not only T1D, but also rheumatoid arthritis, celiac disease and 

autoimmune thyroid disease.95-97 The association of CTLA4 polymorphisms with multiple 

autoimmune diseases underlines the importance of its immune regulatory capacities. It is 

conceivable that polymorphisms within the CTLA4 region lead to altered expression or 

functionality of CTLA-4 and thus aberrant immune regulation. Yet, despite fine-mapping 

of the genetic risk to a single nucleotide polymorphism (SNP) located near the 3’ end of 

the CTLA4 gene, to date no actual functional implications have been attributed to this 

polymorphism. The potential of CTLA-4 modulating agents in treatment of autoimmune 

disease has recently been indicated by a clinical trial with abatacept, a CTLA-4 fusion 

immunoglobulin, that showed a temporary delay of β-cell loss in treated recent onset T1D 

patients. Thus, elucidating the  mechanism behind the genetic association of the CTLA4 

region with autoimmune diseases may provide more novel therapeutics and tailored 

treatment strategies .  

 Many of the T1D-associated non-HLA loci have only recently been discovered through 

comprehensive GWA studies  in which large cohorts of T1D patients and matched controls 

are analyzed for over 500,000 different SNPs, covering the whole human genome.83 

The vast majority of the newly identified risk regions has at most a modest impact on 

disease susceptibility, reflected by low odds ratio  (varying from ~1.1 to ~2.0), and many 

of the associated risk variants are common in the generic population. While many regions 
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harbor genes with immunological functions and  show similarity to the CTLA4 locus as 

they associate with susceptibility for multiple  autoimmune diseases, for the majority of 

associated regions no validated causal gene has been identified. Further, for those loci with 

validated causal genes the mechanisms through which these genetic variations influence 

disease remains unclear. It is estimated that taking all currently known disease-associated 

genetic variation into account approximately 40-88% of the observed familial clustering, 

or heritability, of T1D can be explained.73,98-100 The remaining ’missing heritability’ is 

thought to be caused by genetic variations that are not investigated in GWA studies, 

such as deletions, insertions and copy-number variants in addition to rare genetic variants 

with a frequency too low to properly detect in GWA studies. Additionally gene-gene 

and gene-environment interactions may modulate the risk of genetic variants, and these 

effects cannot be directly investigated with genomic screening.101 Environmental triggers 

may alter gene transcription through epigenetic modifications such as DNA-methylation 

or alterations of the histone code102.  Alternatively, environmental changes can influence 

the expression small non-coding RNAs, e.g. microRNAs, which regulate gene expression 

at a post-transcriptional level.  Identification of the ’missing genetic risk’ and elucidation 

of the pathways by which disease associated genes contribute to disease development 

is crucial for the clarification of T1D pathogenesis. Genetic predisposition undeniably 

contributes to disease occurrence, yet by itself it is not sufficient for disease development 

as demonstrated by the incomplete concordance of affected twin pairs and the discrepancy 

between occurrence of very-high risk genotypes versus disease prevalence. Additional 

immune dysregulation appears to be required to ‘hot-start’ the autoimmune destruction 

of β-cells. Identifying factors that modulate genetic risk through gene-environment 

interactions might reveal potential triggers preceding disease development and may lead 

to new therapeutic modalities and strategies of disease prevention. 

AIMS OF THIS THESIS
Identification of the cellular mechanisms involved in the occurrence and persistence of 

autoreactive lymphocytes is key for understanding T1D etiology. Comparing autoreactive 

T lymphocytes from healthy individuals and T1D patients can provide clues as to what 

the driving force is for the destruction of β-cells and might designate potential targets 

for (immune) intervention. Elucidating in what way T1D associated gene variants actually 

contribute to disease development, i.e. understanding the functional aspects of genetic 

risk, and how genetic control of autoantigens influences autoimmunity may provide crucial 

clues to the clarification of the enigma of T1D. This thesis aims to answer several of these 

issues by investigating the role of transcriptional and post-transcriptional gene control  

in T1D. 

In chapter 2 the immunological implications of differential expression and splicing of 

G6PC2, the gene coding for the islet-autoantigen IGRP, and the role of thymic education 

on the occurrence of IGRP reactive lymphocytes is discussed. In chapter 3 we compare 
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IGRP-reactive T lymphocytes between health and disease and identify a major difference 

in proliferative capacity that associates with differential microRNA-mediated regulation of 

the pro-apoptotic FAS and TRAIL pathways in diabetogenic T lymphocytes. Chapter 4 of 

this thesis discusses the phenotypic effects that rare genetic variants located within known 

T1D risk genes can exert by affecting the post-transcriptional control of microRNAs, while 

chapter 5 provides evidence that the (AT)n microsatellite in the CTLA4  3’UTR is causal for 

the association of the CTLA4 with T1D susceptibility via reduced CTLA-4 expression in 

lymphocytes of individuals carrying susceptibility alleles.
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SUMMARY
Thymic expression of self-antigens during T-lymphocyte development is believed to 

be crucial for preventing autoimmunity. It has been suggested that G6PC2, the gene 

encoding islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), is 

differentially spliced between pancreatic beta cells and the thymus. This may contribute 

to incomplete elimination of IGRP-specific T lymphocytes in the thymus, predisposing 

individuals to type 1 diabetes. We tested whether specific splice variation in islets vs 

thymus correlates with loss of tolerance to IGRP in type 1 diabetes. Expression of G6PC2 

splice variants was compared among thymus, purified medullary thymic epithelial cells 

and pancreatic islets by RT-PCR. Differential immunogenicity of IGRP splice variants was 

tested in patients and healthy individuals for autoantibodies and specific cytotoxic T 

lymphocytes using radiobinding assays and HLA class I multimers, respectively. Previously 

reported G6PC2 splice variants, including full-length G6PC2, were confirmed, albeit that 

they occurred in both pancreas and thymus, rather than islets alone. Yet, their expression 

levels were profoundly greater in islets than in thymus. Moreover, three novel G6PC2 

variants were discovered that occur in islets only, leading to protein truncations, frame 

shifts and neo-sequences prone to immunogenicity. However, autoantibodies to novel or 

known IGRP splice variants did not differ between patients and healthy individuals, and 

similar frequencies of IGRP-specific cytotoxic T lymphocytes could be detected in both 

patients with type 1 diabetes and healthy individuals. We propose that post-transcriptional 

variation of tissue-specific self-proteins may affect negative thymic selection, although this 

need not necessarily lead to disease.
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INTRODUCTION
Type 1 diabetes is characterised by the autoimmune destruction of insulin-producing 

beta cells in the pancreas. Autoreactive cytotoxic T lymphocytes (CTLs) are pivotal in 

the actual beta cell destruction and type 1 diabetes development. While the majority of 

autoreactive T cells are thought to be deleted during their development in the thymus1, 

the process of thymic education appears inherently incomplete, as islet-reactive T cells can 

be readily detected in peripheral blood of both patients with type 1 diabetes and healthy  

individuals.2-4 Proper negative selection of autoreactive T cells is dependent on 

the presentation of peripheral tissue antigens by medullary thymic epithelial cells (mTECs) 

and thymic dendritic cells under the control of the transcription factor autoimmune 

regulator (AIRE).5,6 T cells recognising self-peptide presented by thymic dendritic cells 

or mTECs with high avidity are removed from the T cell repertoire through apoptosis. 

However, T cells recognising autoantigens with low avidity7,8, or T cells reactive against 

self-epitopes that are not expressed in the thymus, may evade negative selection and 

escape into the periphery.9 

Several islet antigens have been proposed as antigenic targets for autoreactive CTLs 

in type 1 diabetes development, among which is islet-specific glucose-6-phosphatase 

catalytic subunit-related protein (IGRP).10-12 IGRP is a 355-amino acid endoplasmic reticulum-

embedded phosphatase that plays a role in glucose homeostasis.13,14 Increased reactivity 

against IGRP has been observed in patients with recent-onset type 1 diabetes, implying 

involvement of IGRP-reactive T cells in the development of human type 1 diabetes.3,15 

The gene coding for IGRP, G6PC2, can give rise to multiple splice variants, and it has been 

hypothesised that the incomplete tolerance to IGRP is caused by differential expression 

of splice variants between the thymus and pancreatic islets.16 Notably, G6PC2 transcripts 

containing exons 3 and 4, including full-length G6PC2, have been reported to be absent 

from the thymus and suggested to be involved in the incomplete tolerance towards IGRP 

in type 1 diabetes.

Here, we investigated whether differential expression of G6PC2 splice variants 

between the thymus and pancreas indeed contributes to incomplete negative selection 

and increases the risk of disease development.  For this, expression of G6PC2 in purified 

mTECs, whole fetal thymus and pancreatic islet cells was analyzed. Next, we tested for 

humoral immunogenicity of IGRP isoforms in 60 type 1 diabetes patients and 60 matched 

healthy individuals. Finally cellular immunogenicity of G6PC2 splice variants was tested 

in peripheral blood of recent onset type 1 diabetes patients and healthy HLA-matched 

subjects using quatum-dot (Qdot) labeled peptide-MHC (pMHC) multimers.

METHODS
Tissue samples
Purified mTECs were obtained by 24 h incubation of neonatal tissue with dexamethasone. 

Snap-frozen neonatal thymic tissue was obtained from neonates requiring cardiac surgery, 
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as described.17 Human islets were obtained from the islet isolation core at the Leiden 

University Medical Centre and stored in Trizol upon isolation. After informed consent had 

been given, heparinised blood samples were obtained from type 1 diabetic patients in 

the first year after diagnosis, and all samples were treated identically according to standard 

procedures. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll–Isopaque 

density gradient centrifugation; they were then frozen and kept in liquid nitrogen until use. 

HLA-A2 (HLA-A*0201) typing was confirmed by flow cytometry using FITC-conjugated 

HLA-A2 antibodies (BD Biosciences, Franklin Lakes, NJ, USA). The study was approved by 

the ethics committees of all centres involved.

Detection of splice variant
Cells and tissue samples were lysed using 1  ml Trizol, and total RNA was obtained 

according to the manufacturer’s protocol. Total RNA was treated with DNAse (Qiagen, 

Venlo, the Netherlands) for 45  min at room temperature to remove potential genomic 

DNA carry-over. RNA was subsequently cleaned using RNAeasy columns (Qiagen). First-

strand cDNA synthesis was performed using Superscript III Reverse Transcriptase (Life 

Technologies, Carlsbad, CA, USA) in combination with oligo-dT primers.

RT-PCR amplification was performed using 0.4  μmol/l sense and anti-sense primer, 

0.2 mmol/l dNTPs (Promega, Madison, WI, USA), 1.5 mmol/l MgCl2 (Promega) and 1 U 

GoTaq Flexi DNA polymerase (Promega) in 25  μl reaction volume. Initial denaturation 

was carried out at 95°C for 2 min, followed by 40 cycles of denaturation at 94°C for 30 s, 

annealing at 60°C for 30 s and extension at 72°C for 1 min. Unless stated otherwise, 10 ng 

cDNA template was used per reaction.

Sequencing templates were generated using 1 U Pfx50 DNA Polymerase (Invitrogen, 

Breda, the Netherlands) with an elongation temperature of 68°C. Other conditions 

were identical. The nucleotide sequence of all splice variants found was confirmed by 

polyacrylamide gel sequencing using the Thermo Sequenase Primer Cycle Sequencing kit 

(GE Healthcare, Zeist, the Netherlands) according to the manufacturer’s instructions.

Radiobinding assay
Sera from 60 recent-onset islet antibody-positive type 1 diabetic patients and 60 age- 

and sex-matched controls (mean age 12 years, range 0–34 years; male/female ratio 1.7) 

were obtained. G6PC2 transcripts were subcloned into the pTNT (Promega, Leiden, 

the Netherlands) backbone using XhoI and NotI restriction sites using T4 DNA ligase 

(Promega) overnight at 16°C. Transcripts were translated in the presence of [35S]methionine 

using the TNT in vitro translation system (Promega). Goat anti-human IGRP antibody G-16 

(sc-33472; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used at 1:50 dilution 

as a positive control. Tracer purification and radiobinding assays were performed as 

previously described.18 Results were expressed as % tracer binding. Reference serum from 

a healthy non-diabetic individual was included in each radiobinding assay. Tracer binding 
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was calculated as (cpmsample − cpmreference)/cpmtotal × dilution  factor  for  each  sample. Cold 

target inhibition with unlabelled in vitro translation products leading to loss of signal was 

performed for each target, confirming assay specificity.

Peptides
Peptides were synthesised using solid-phase Fmoc chemistry. All peptides were analysed 

by reverse phase HPLC (purity >85%) and matrix-assisted laser desorption/ionisation-time 

of flight (MALDI-TOF) MS to confirm the expected mass. Peptide binding to HLA-A2 was 

tested as described.19 IC50 values were calculated using nonlinear regression analysis.

Generation of pMHC monomers and Qdot labelling
Generation of pMHC monomers was performed as described previously.20 Briefly, exchange 

reactions were performed by exposing UV-sensitive pMHC monomers (2 μmol/l in PBS) to 

UV light (366 nm UV lamp; Camag, Berlin, Germany) in the presence or absence (negative 

control) of exchange peptide (200 μmol/l) for 60 min. Multimeric pMHC complexes were 

produced by addition of streptavidin-conjugated Qdot-585, -605, -655, -705 and -800 

(Invitrogen) to achieve a 1:20 streptavidin–Qdot/biotinylated-pMHC ratio.

PBMC staining with Qdot-labelled pMHC multimers
PBMC staining was performed as previously described.7 Briefly, PBMCs (2 × 106) were 

stained with 0.1 μg of each specific IGRP multimer in PBS/0.5% BSA for 15 min at 37°C. 

Subsequently, allophycocyanin (APC)-labelled anti-CD8 and FITC-labelled anti-CD14, 

-CD20, -CD4, -CD40 and -CD16 (all from BD Biosciences, Breda, the Netherlands) were 

added for 30 min at 4°C. After a wash, cells were resuspended in PBS/0.5% BSA containing 

7-aminoactinomycin D (7-AAD) (eBioscience, San Diego, CA, USA) to exclude dead cells 

and analysed using an LSRII flow cytometer (BD Biosciences).

RESULTS
Detection of novel G6PC2 splice variants
To test the extent of differential splicing between thymus and pancreas, the expression 

of G6PC2 was assessed in purified mTECs, whole thymic tissue and purified pancreatic 

islet cells by RT-PCR. Primers were designed annealing to exon 1 and exon 5 of G6PC2 

such that all known splice variants could be amplified in a single reaction. In addition, we 

designed a panel of primers annealing to specific exon–exon boundaries to selectively 

amplify specific splice variants, thereby enabling us to distinguish splice variants with 

similar transcript lengths (Supplementary material Table  1).

Using equal amounts of input cDNA, we observed a distinct and consistent splicing 

pattern of G6PC2 in islets, but not in purified mTECs or whole thymus material  

(Figure 1a). Weak expression of G6PC2 was detectable in purified mTECs, suggesting 

that thymic expression was close to the detection limit of our assay. Indeed, when we 



CHAPTER 2

32

increased the amount of thymic RNA per RT-PCR, thymic expression of full-length G6PC2 

and all splice variants became detectable (Figure 1b). Yet, in contrast with pancreatic 

islets, G6PC2 levels in thymus were low and displayed inconsistent patterns between 

thymic samples from different donors. Parallel analysis of a single thymic sample yielded 

a stochastic pattern, with different isoforms detectable in separate RT-PCRs, confirming 

that thymic expression of G6PC2 remained near the detection limit of our assay despite 

optimisation of input material. Nevertheless, in every thymic sample, all isoforms could be 

detected, albeit after specific targeting by selective PCR primers in separate analyses (data  

not shown).

In addition to previously reported ‘conventional’ splice variants that use conserved 

exon–exon boundaries, three novel G6PC2 isoforms (variant A, B and C) were identified 

exclusively in islets. Sequencing of these isoforms showed that these variants resulted from 

non-conventional splicing of exon 1 (partial) and exon 5 (partial) (Fig. 2). Expression of 

these three non-conventional isoforms was confirmed using exon-junction-specific primers 

in three separate islet preparations. Furthermore, we confirmed all previously reported 

conventional G6PC2 isoforms and identified two conventional isoforms not previously 

described lacking exon 2 or exon 3 only (Δ2 and Δ3; Supplementary Figure 1). 

a mTEC Thymus Islets

HPRT

G6PC2
300 bp
400 bp
500 bp
650 bp

100 bp

H2O
No.1 No.2 No.3 No.1 No.2 No.3 No.1 No.2 No.3

b Thymus Islets

HPRT

G6PC2 400 bp
500 bp
650 bp

100 bp

No.1 No.2 No.3 No.2

300 bp

1:5001:1

H2O

Figure 1. Expression of G6PC2 in thymus and pancreas. (a) G6PC2 expression was analysed by 
RT-PCR in separate purified preparations of mTECs and whole thymus obtained after cardiac 
surgery and pancreatic islets of non-diabetic organ donors. (b) RT-PCR analysis of G6PC2 in thymus 
using 250  ng cDNA template. A 0.5  ng cDNA template of islet preparation No. 2 was analysed 
in parallel for semiquantitative comparison. The housekeeping gene hypoxanthine–guanine 
phosphoribosyltransferase (HPRT) was used as the reference gene 
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Next, quantitative PCR analysis was performed to assess the relative expression of 

each isoform in the same pancreatic islets analysed by RT-PCR (primer sequences are 

specified in Supplementary Table 2). Expression of splice variants differed slightly between 

islet preparations, yet all isoforms could be readily detected (Supplementary Figure 2). 

However, as previously observed, expression of the novel splice variants, A, B and C, was 

low compared with other isoforms. Given that expression in thymus was detectable only 

around the detection limit, we decided against quantitative PCR approaches for thymic 

expression of G6PC2, as these would not add to the data already obtained. To confirm 

the specificity of our assay for the islet-restricted G6PC2, we analysed total RNA of kidney 

and liver, both known to express high levels of the homologous glucose 6-phosphatase 

(G6PC) in parallel. The specificity of the assay was confirmed by the absence of all isoforms 

in both kidney and liver (data not shown).

Detection of splice variant specific IGRP antibodies
To assess humoral immunogenicity of IGRP, the presence of autoantibodies directed against 

full-length IGRP as well as specific splice isoforms was tested in 60 recent-onset type 1 

diabetes patients and 60 sex- and age-matched healthy individuals using a radiobinding 

assay. 35S-labelled forms of full-length IGRP, the splice variant lacking exons 3 and 4 (Δ3/4, 

reported to be the most abundant isoform in thymus16) and the islet-specific isoforms A, 

b

b

b

b

b b

b

Exon 1
(310 bp)

Exon 2
(110 bp)

Exon 3
(112 bp)

Exon 4
(116 bp)

Exon 5
(566bp)

Genomic

mRNA

Full length

Δ exon 3/4

Δ exon 4 
DKFSITLH RHAGGRGLa

Δ exon 3
PTTCETGP Da

Δ exon 2
DWLNLIFK WKSIWPCNGRILCLVCHGNRCPEPHCLWDGa

Δ exon 2/4
WKSIWPCNGRILCLVCHGNRCPEPHCLWDGa

Δ exon 2/3
Wa

Δ exon 2/3/4
WHAGGRGLaDWLNLIFK

Variant A
WAHTaTKMIWVAV

Variant B
EDQPLSLPVCTWLLPASaFLNFMSNV

Variant C
CWLLPASaDWLNLIFK

DWLNLIFK

DWLNLIFK

Islet Thymus

Expression

  (      )

  (      )

  (      )

  (      )

  (      )

  (      )

  (      )

  (      )

Figure 2. Overview of G6PC2 transcripts and putative protein sequences. Exonic sequences of all 
G6PC2 splice isoforms in-frame (grey), in alternative reading frame (black) and truncated (dotted). 
Putative neo-sequences are underlined, and in-frame protein sequences are displayed in regular font. 
Relative expression levels of transcripts indicated on the right: abundant (bold), low (regular) and 
stochastic (in parentheses). aStop codon; bnovel splice variant
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B and C were created through cell-free in vitro translation. In addition to these naturally 

occurring isoforms, an artificial construct coding for G6PC2 exons 3 and 4 was created to 

directly assess the immunogenicity of these exons. In vitro translation of all tested isoforms 

into protein was confirmed using gel electrophoresis (Supplementary Figure 3).

Antibody reactivity was observed for all tested splice variants, but binding of IGRP 

autoantibodies was comparable between type 1 diabetes patients and healthy individuals 

(Figure 3). Mean antibody titres did not differ among the naturally occurring isoforms or 

between natural isoforms and the artificial exon 3–4 construct. Autoantibody reactivity 

against the islet-specific isoforms A, B and C was not significantly increased compared 

with isoforms expressed in thymus, nor did reactivity against these variants discriminate 

type 1 diabetes patients from healthy participants.

Detection of IGRP specific CD8+ T-cells 
G6PC2 can give rise to at least 10 splice isoforms in addition to full-length IGRP  

(Figure 2). All these isoforms may theoretically act as neo-antigens not present in full-length 

IGRP, as they emerge either through novel exon–exon junctions or shifted reading frames 

as a result of alternative splicing. Expression of G6PC2 splice variants encoding unique 
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Figure 3. Antibody reactivity against IGRP isoforms in type 1 diabetic patients and healthy individuals. 
Radiobinding assays were performed for (a) full-length IGRP, (b) variant Δ3/4, (c) exon 3/4, (d) variant A, 
(e) variant B and (f) variant C. Antibody (Ab) binding was determined as the percentage of radioactive 
tracer that immuno-complexed with human serum (see Methods). T1D, type 1 diabetes. Statistical 
analysis was performed using the Mann–Whitney U test. Median values plus interquartile range (IQR) 
are displayed
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amino acid sequences in pancreas, but not thymus, may lead to autoimmune targeting of 

beta cells. To test whether IGRP peptides contribute to cellular autoimmune responses in 

type 1 diabetes, all putative amino acid sequences of IGRP variants were tested in silico 

for high-affinity binding to HLA-A2*0201. We particularly focused on peptides derived 

from exons 3 and 4, those generated by novel exon–exon boundaries, and peptides from 

the islet-specific isoforms variants A, B and C. Peptides derived from exon 1, present in all 

thymic splice isoforms, were included in the search to compare relative immunogenicity 

of splice isoforms present in thymus with those with a presence limited to pancreatic islets  

(Table 1). All peptides with predicted HLA-A2 binding were synthesised, tested for actual 

in vitro binding, and used to generate HLA multimers as previously described.20

PBMCs of HLA-A2-positive type 1 diabetes patients and healthy controls were stained 

with IGRP-specific pMHC multimers in a combinatorial fashion to detect CD8+ T cells 

against multiple epitopes simultaneously in a single sample, increase staining sensitivity, 

and reduce background signal. As a negative control, pHLA multimers were used that 

were UV-exchanged in the absence of rescuing IGRP peptide and Qdot-labelled in 

the same manner as IGRP pHLA multimers. CTLs against a broad range of IGRP peptides 

were observed that were comparable between recent-onset type 1 diabetes patients and 

healthy individuals (Figure 4). Frequencies of CTLs recognising peptides from the proposed 

high-immunogenic exons 3 and 4 (proposed to be lacking in the thymus) were as common 

as those recognising the supposedly less immunogenic exon 1. T cells recognising IGRP 

isoforms exclusive to pancreatic islets (variants B and C) could be detected at the highest 

Table 1. Predicted HLA-A2*0201 binding peptides derived from G6PC2 transcripts.

Peptide Location Sequence in vitro IC50 (nmol/l)

IGRP3-11 Exon 1 FLHRNGVLI 8195
IGRP23-32 Exon 1 YTFLNFMSNV 7251
IGRP62-70 Exon 1 VIGDWLNLI 1175
IGRP116-125 Exon 3 AMGASCVWYV 787
IGRP117-125 Exon 3 MGASCVWYV 1146
IGRP125-134 Exon 3 VMVTAALSHT 33673
IGRP130-138 Exon 3 ALSHTVCGM 5655
IGRP137-145 Exon 3 GMDKFSITL 521
IGRP152-160 Exon 4 FLWSVFWLI 255
IGRP155-164 Exon 4 SVFWLIQISV 3545
IGRP161-169 Exon 4 QISVCISRV 8532
IGRP170-179 Exon 4 FIATHFPHQV 1285
Variant B28-37 Neo-junction exon 1/5 FMSNVEDQPL 480
Variant B37-46 Frameshift exon 5 LSLPVCTWLL 3379
Variant B38-46 Frameshift exon 5 SLPVCTWLL 60
Variant C66-75 Neo-junction exon 1/5 WLNLIFKCWL 39420
Variant C68-76 Neo-junction exon 1/5 NLIFKCWLL 2150
Variant C69-78 Neo-junction exon 1/5 LIFKCWLLPA 1708



CHAPTER 2

36

levels, possibly reflecting the absence of these isoforms from the thymus. Yet, their 

frequencies were equally high in type 1 diabetes patients and healthy individuals.

DISCUSSION
The thymus plays a central role in tolerance induction by eliminating T cells reactive 

against peripheral tissue antigens.1,21 Here, we investigated whether differential splicing 

between the thymus and pancreatic islets of G6PC2, coding for the islet autoantigen 

IGRP, associated with IGRP autoantibodies and circulating autoreactive CTLs. Expression 

of G6PC2 in the thymus and pancreatic islets is similar in quality, yet highly distinct in 

quantity. In contrast with previous research16, all conventional splice variants of G6PC2, 

i.e. isoforms using conserved exon–exon boundaries, could be detected in thymic tissues, 

Figure 4. IGRP-specific CD8+ T cells in peripheral blood of type 1 diabetes patients and controls. 
PBMCs of (a) recent-onset type 1 diabetes patients and (b) healthy individuals were screened for 
the presence of CD8+ T cells recognising IGRP peptides. Peptides are depicted per exon from 
which they are derived; variants B and C refer to peptides derived from islet-specific isoforms. No 
significant differences were detected between type 1 diabetes patients and healthy controls using 
Mann–Whitney U tests with Bonferroni correction for multiple testing. Median values are displayed. 
Ag, antigen; Neg Ctrl, negative control
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even though the expression levels were low compared with pancreatic islets. Despite 

differences in expression of G6PC2 between thymus and pancreas, humoral immunity 

against IGRP splice variants was low in both patients with recent-onset type 1 diabetes and 

healthy individuals. Relatively high frequencies of CD8+ T cells recognising various IGRP-

derived peptides could be detected in peripheral blood of both type 1 diabetes patients 

and healthy individuals. Thus, while differential expression of G6PC2 between pancreas 

and thymus can lead to thymic escape of IGRP-reactive T cells, these autoreactive cells are 

not associated with disease by definition.

It has been suggested that G6PC2 is differentially spliced between pancreatic beta 

cells and the thymus16. Here we show that all conventional G6PC2 isoforms occur in 

the thymus, including full-length G6PC2, albeit in very low frequencies. The only isoforms 

showing islet-restricted expression in our study were the neo-sequence variants, A, B and 

C, resulting from alternative splice sites. Since thymic expression of conventional splice 

variants occurred near the limit of detection, we cannot exclude the possibility that variants 

A, B and C exist in the thymus. Intriguingly, these particular fragments were associated 

with the highest rate of islet autoimmunity.

Owing to their putative absence from the thymus, exons 3 and 4 had been proposed 

to be particularly immunogenic in the pathogenesis of type 1 diabetes because of the lack 

of central tolerance. Here we show that, although present at low levels, exons 3 and 4 are 

transcribed in the thymus. Moreover, our findings indicate that this portion of IGRP gives 

rise to low, rather than high, rates of autoimmunity compared with other IGRP sequences, 

either because of expression leakage in the thymus or because this region does not contain 

immunogenic peptide sequences.

In our search for putative IGRP-derived HLA-A2-binding epitopes, we focused on those 

peptides that are likely to be presented in the thymus despite low thymic expression of 

G6PC2, i.e. peptides with predicted medium- and high-affinity binding to HLA-A2. Recently, 

however, it has been demonstrated that high frequencies of CD8 T cells recognising low-

affinity self-peptides are present in the peripheral blood of type 1 diabetes patients.7,22 

Low-affinity peptides are believed to be presented by mTECs at levels insufficient to 

ensure proper deletion of autoreactive T cells.23 Higher expression of tissue antigens in 

peripheral organs, however, may cause low-affinity peptides to be presented at levels 

sufficient for T cells to be activated, resulting in immune targeting of self-tissue under 

conditions of stress or inflammation. As G6PC2 expression is at least 1000-fold higher 

in pancreas than in thymus, low-affinity peptides might reach sufficient levels on the cell 

surface for T cell activation and the subsequent selective destruction of beta cells. Thus, 

although no differential reactivity against IGRP-derived peptides with high HLA-binding 

affinity was observed between type 1 diabetes patients and healthy individuals, reactivity 

against low-affinity IGRP peptides might still distinguish healthy individuals from patients 

with type 1 diabetes. Further, the immunogenicity of IGRP-derived peptides presented in 

the context of type 1 diabetes-associated HLA class I molecules other than HLA-A2, such 

as HLA-A24 or HLA-B39, remains to be determined.
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In addition to central tolerance through thymic education, autoreactive T cells can be 

controlled by other means, such as peripheral tolerance.24 Extrathymic AIRE-expressing 

cells have been demonstrated to induce tolerance in a murine IGRP-driven model of 

autoimmune disease25 and high-affinity IGRP-specific T cells have been shown to be 

actively regulated by regulatory T cells in mice.26 These findings underscore the idea that 

prevention of autoimmunity goes beyond thymic selection.

Since the discovery of IGRP as an islet autoantigen, its role in the pathogenesis of 

type 1 diabetes has been controversial. High levels of IGRP-specific CD8+ T cells could 

be detected in murine models of type 1 diabetes12, yet, in human type 1 diabetes, 

the contribution of IGRP to the autoreactive CD8+ T cell population was modest. More 

recent findings that IGRP knockout mice have delayed onset, but not absence, of islet 

autoimmunity27,28 suggest that the notion of IGRP as the driving antigen in the NOD mouse 

needs revision. The low antibody titres and CD8+ T cell frequencies we have found against 

IGRP and its isoforms, which are non-discriminative between health and disease, suggest 

that IGRP does not play a crucial role in type 1 diabetes onset, and further investigation into 

the relevance of IGRP as an autoantigen in human type 1 diabetes is therefore warranted.

Although we were unable to directly show presentation of IGRP peptides in the thymus 

or pancreas, in vitro translation of G6PC2 isoforms indicates that translation into protein 

indeed takes place. This implies that IGRP splice variants can actually occur in both 

thymus and pancreas. Thymic presentation of IGRP peptides, however, still appears to be 

insufficient for complete thymic deletion of IGRP-reactive cells, as demonstrated by their 

presence in peripheral blood of patients and healthy individuals

In summary, self-reactive T cells can escape thymic selection because of a discrepancy 

in autoantigen expression between the thymus and pancreatic islets. We propose that 

the role of the thymus in deleting IGRP-specific T cells is limited, as autoimmunity against 

IGRP occurs in both type 1 diabetes patients and healthy individuals despite thymic 

expression of all conventional G6PC2 isoforms. We disprove the hypothesis that exons 3 

and 4 of G6PC2 are more immunogenic than other IGRP sequences because of differential 

central and peripheral expression. Furthermore, we conclude that, although self-reactive 

IGRP-specific T cells escape thymic selection, this does not necessarily cause disease.
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SUPPLEMENTARY DATA

Supplementary Table 1. Primer sequences used for detection of G6PC2 expression.

Specificity Direction Sequence

Generic isoform amplification sense  5’-AGAAGGACTACCGAGCTTACTAC-3’
anti- sense  5’-CAGGTCAATGTTGAGCACCC-3’

Variant A sense sense  5’-TGGGTAGCAGTCTGGGCA-3’
Variant B sense sense  5’-GTCCAATGTTGAAGACCAACC-3’
Variant C sense sense  5’-GGTTAAATCTTATATTTAAATGTTGGC-3’
Splice specific exon 1/3 sense  5’-ATCTTATATTTAAATGGAAGTCCATCTGGC-3’ 
Splice specific exon 1/4  sense  5’-CTTATATTTAAATGACTGACCTGG-3’ 
Splice specific exon 1/5  sense  5’-CTTATATTTAAATGGCATGCTGGT-3’
Splice specific exon 2/3  sense  5’-AACAGGTCCAGGAAGTCC-3’ 
Splice specific exon 2/4  sense  5’-GGTCCAGACTGACCTGGTCATT-3’
Splice specific exon 2/5  sense  5’-AACAGGTCCAGGCATGC-3’
Splice specific  common anti-sense 5’-CTACTGACTCTTCTTTCCGCTTTG-3’

Supplementary Table 2. Primer sequences used for quantitation of G6PC2 expression by qPCR.

Full length Sense 
Antisense

5’-AACAGGTCCAGGAAGTCC-3’ 
5’-CACCAGCATGCCACCAA-3’

Δ2 Sense

Antisense

5’-ATCTTATATTTAAATGGAAGTCCATCTGGC-3’ 
5’-CACCAGCATGCCACCAA-3’

Δ3 Sense 
Antisense

5’-GTGAAACAGGTCCAGACTGAC-3’ 
5’-CACCAGCATGCCACCAA-3’

Δ4 Sense 
Antisense

5’-AACAGGTCCAGGAAGTCC-3’  
5’-CACCAGCATGCTGTGCAGA-3’

Δ3/4

Δ2/4

Sense 
Antisense

Sense

Antisense

5’-AACAGGTCCAGGCATGC-3’  
5’-CAGGTCAATGTTGAGCACCC-3’

5’-ATCTTATATTTAAATGGAAGTCCATCTGGC -3’ 
5’-CACCAGCATGCTGTGCAGA-3’

Δ2/3 Sense 
Antisense

5’-CTTATATTTAAATGACTGACCTGG-3’  
5’-CACCAGCATGCCACCAA-3’

Δ2/3/4 Sense 
Antisense

5’-CTTATATTTAAATGGCATGCTGGT-3’ 
5’-CAGGTCAATGTTGAGCACCC-3’

Variant A

Variant B

Variant C

Sense

Antisense

Sense 

Antisense 

Sense

Antisense

5’-ATGGATTTCCTTCACAGGAATGGAG-3’ 
5’-GTGCCCAGACTGCTAC-3’

5’-GTCCAATGTTGAAGACCAACC-3’

5’-CAGGTCAATGTTGAGCACCC-3’

5’-GGTTAAATCTTATATTTAAATGTTGGC-3’

5’-CAGGTCAATGTTGAGCACCC-3’
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Supplementary Figure 1. Detection of G6PC2 isoforms in pancreatic islets using splice specific 
primers. Intron spanning sense primers were designed to specifically amplify designated G6PC2 
isoforms. A common generic anti-sense primer was used.
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Supplementary Figure 2. Expression of G6PC2 splice variants in pancreatic islets. Relative expression 
of G6PC2 was assessed by Q-PCR. Splice variant expression levels differed slightly between islet 
samples No.1 (circle), No.2 (square) and No.3 (triangle) yet all variants could be detected. Expression 
of the variant Δ3 and the novel splice variants Variant A, Variant B and Variant C was low compared to 
other isoforms in all three samples. Error bars indicate 95% C.I.
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Supplementary Figure 3. Autoradiography of 35 S-labeled in vitro translation fragments after 
gelelectrophoresis. Arrows indicate predicted protein products
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SUMMARY
Autoreactive CD8+ T cells recognizing autoantigens expressed by pancreatic islets lead 

to the destruction of insulin-producing beta cells in type 1 diabetes (T1D), but these T 

cells also occur in healthy subjects. We tested the hypothesis that uncontrolled expansion 

of diabetogenic T cells in patients occurs, resulting from failure to activate apoptosis. 

We compared function, transcriptome and epigenetic regulation thereof in relation 

with fate upon repeated exposure to islet-autoantigen of islet autoreactive T cells from 

healthy and type 1 diabetic donors with identical islet epitope specificity and HLA-A2 

restriction. Patient’s T cells proliferated exponentially, whereas those of non-diabetic origin 

succumbed to cell death. Transcriptome analysis revealed reduced expression of TRAIL, 

TRAIL-R2, FAS and FASLG (members of the extrinsic apoptosis pathway) in patient-derived 

compared with healthy donor-derived T cells. This was mirrored by increased expression 

of microRNAs predicted to regulate these particular genes, namely miR-98, miR-23b and 

miR-590-5p. Gene-specific targeting by these microRNAs was confirmed using dual-

luciferase reporter assays. Finally, transfection of these microRNAs into primary T cells 

reduced FAS and TRAIL mRNA underscoring their functional relevance. We propose that 

repression of pro-apoptotic pathways by microRNAs contributes to unrestricted expansion 

of diabetogenic cytotoxic T cells, implicating microRNA-mediated gene silencing in islet 

autoimmunity in T1D.
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INTRODUCTION
Type 1 diabetes (T1D) is an autoimmune disease characterized by the loss of insulin producing 

beta cells in the pancreas, leading to impaired glucose homeostasis. Autoreactive cytotoxic 

T lymphocytes are central to T1D development, as they are responsible for the actual 

destruction of beta cells. Yet, the processes controlling their undesirable proliferation upon 

recognition of autoantigens remain poorly understood.1 Apoptosis, as a physiological 

means of cell elimination, has a critical role in maintaining immune homeostasis.2 Several 

disorders, notably lymphoproliferative disorders and autoimmune diseases, have been 

associated with disruptions in the mechanisms controlling lymphocyte apoptosis.3-6 As 

a general principle, failure to appropriately execute apoptosis in immune cells may lead 

to uncontrolled survival and expansion of autoreactive cells and thus autoimmune disease.

Apoptosis in mammalian cells can be initiated through a cell-intrinsic and a cell-extrinsic 

pathway, both leading to the activation of the caspase cascade. The cell-extrinsic pathway 

depends on the activation of death receptors, such as FAS- or TNF-related apoptosis-

inducing ligand (TRAIL) receptors, on the cell surface.7 The cell-intrinsic pathway involves 

activation of pro-apoptotic Bcl-2 family members in response to developmental cues 

and cytotoxic stimuli, such as cytokine deprivation. Which of these two distinct pathways 

initiates apoptosis in T cells is dependent on the activation status of the cells involved. 

Naive T cells predominantly commit to apoptosis via the intrinsic Bcl-2-dependent route, 

whereas apoptosis in activated T cells can be initiated through both the cell-intrinsic and 

cell-extrinsic pathway.8,9

Recently we have shown that beta cell-specific autoreactive CD4+ and CD8+ T cells 

are present at significantly higher frequency in patients with T1D than in healthy control 

subjects.10 Yet, despite this quantitative difference, autoreactivity is not limited to affected 

individuals, as autoreactive T cells are present in the peripheral blood of healthy subjects 

as well.10,11 The presence of autoreactive T cells in unaffected individuals suggests that 

a qualitative distinction, such as the ability of such cells to proliferate and persist upon 

activation, might exist. On this basis, we hypothesized that a defining characteristic 

of autoreactive T cells from T1D patients would be their propensity for unrestricted 

proliferation upon recognition of cognate islet autoantigen. In contrast, autoreactive cells 

from healthy controls would be tightly controlled by intrinsic regulatory mechanisms.

To investigate whether proliferative capacities differ between pathogenic and non-

pathogenic autoreactive T cells, we compared autoreactive T-cell clones isolated from 

a T1D patient and a healthy control subject. These clones recognized the same peptide 

from the putative islet-autoantigen islet-specific glucose-6-phosphatase catalytic subunit-

related protein (IGRP265–273) in the context of HLA-A*02:01 and displayed comparable 

antigen-specific cytotoxicity in vitro. Yet, despite these similarities, the capacity of these 

clones to expand upon antigenic stimulation differed greatly. While T cells derived from 

a T1D patient expanded exponentially, those from a healthy individual could only be 

propagated for a limited number of antigen-specific stimulation cycles. Transcriptome 
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analysis showed differential gene expression of several pro-apoptotic factors between 

health and disease, among which are FAS (CD95), FASLG (CD95L), TNFSF10 (TRAIL) 

and TNFRSF10B (TRAIL-R2). microRNA (miRNA) profiling revealed that several miRNA 

predicted to regulate these apoptotic genes, that is, miR-98, miR-590-5p and miR-23b, 

were simultaneously expressed at higher levels in patient-derived cells. Using dual-

luciferase reporters assays, the targeting of Fas and TRAIL pathways by these miRNAs 

was functionally validated. Furthermore, a reduction of TRAIL and FAS mRNA following 

nucleofection of miR-98 into primary T cells was observed, indicating that miRNAs indeed 

have the propensity to regulate apoptosis through downregulation of cell-surface death 

receptors and their ligands. Thus, this study identifies a disrupted regulation of Fas and 

TRAIL by miRNAs as potential mechanism underlying the unrestricted expansion of 

diabetogenic, autoreactive T cells in autoimmune diabetes.

RESULTS
Autoreactive T lymphocytes from a T1D patient display an increased 
expansion potential
Previously, we described cloning of autoimmune T cells reactive against amino acid 

265–273 of the islet-autoantigen IGRP from peripheral blood of a healthy individual.12 To 

our knowledge, this is the first and only islet autoreactive CD8 T-cell clone ever isolated 

from a healthy donor, putting us in a unique position to compare health with disease. 

Using fluorochrome-conjugated HLA-A2 tetramer sorting, followed by limiting dilution to 

give rise to single-cell clones, two independent autoreactive T-cell clones recognizing this 

same IGRP265–273 epitope were isolated from peripheral blood mononuclear cells (PBMCs) 

of a recent onset T1D patient. All three T-cell clones elicited comparable in vitro antigen-

specific cytolytic capacity and IFN-γ and granzyme B production upon stimulation with 

IGRP265–273 presented in HLA-A*02:01 and killed HLA-matched primary human beta cells, 

even though they expressed distinct T-cell receptors (described in more detail in Unger 

et al.,12 Babad et al.13 and Unger et al.14). Despite their similarities, CD8+ T lymphocytes 

derived from T1D blood demonstrated the capacity to expand indefinitely, whereas 

the healthy donor-derived T cells collapsed after repeated antigen exposure (Figure 1). 

Thus, patient-derived autoreactive CD8 T lymphocytes appeared to have acquired an 

enhanced survival capacity leading to increased proliferation, which might be due to 

a defective apoptosis response to repeated autoantigen exposure.

Reduced expression of apoptotic genes in autoreactive T cells from T1D 
patients 
To determine whether differences in gene expression could explain the enhanced 

proliferative capacity in diabetogenic T cells, a transcriptome analysis was performed. As 

each clone has its own growth rate, total RNA was obtained at the end of their respective 

growth cycle. We focused our analysis on pro- or anti-apoptotic genes with a central role 
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in the intrinsic or extrinsic apoptosis pathway. In addition, members of the caspase family, 

and genes belonging to the anti-apoptotic inhibitor of apoptosis family were investigated.

Reduced expression of several pro-apoptotic factors from the extrinsic apoptosis 

pathway was observed in patient T cells, among which are FAS and FASLG, TNFSF10, 

encoding TRAIL, as well as its receptor TNFRSF10B (TRAIL-R2, DR5) (Figure 2a). Protein 

expression analysis by flow cytometry showed a similarly reduced expression of Fas, 

FasL, TRAIL and TRAIL-R2 in T1D patient versus healthy individual T cells. Among pro-

apoptotic mediators of the intrinsic apoptosis pathway, only the BAX showed reduced 

expression in both patient clones, whereas other genes were not differentially expressed 

between patients and healthy T cells or did not show consistent expression between 

the two patient-derived clones (Supplementary Figure 1). Within the inhibitor of apoptosis 

family, BIRC5 that encodes the pro-survival factor survivin was upregulated in both patient-

derived T-cell clones. Both diabetogenic clones showed reduced expression of the pro-

inflammatory caspases CASP1, CASP4 and CASP5, as well as the pro-apoptotic caspase 

CASP7 compared with healthy individual-derived T cells. Since the Fas/Fas ligand and 

the TRAIL/TRAIL receptor pathways are known major inducers of T-cell apoptosis, we 

decided to focus on the mechanisms underlying the discrepant expression of these two 

major apoptosis pathways between health and disease.
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Figure 1. Autoreactive cytotoxic T lymphocytes isolated from T1D patients exhibit increased 
proliferation rate upon repeated autoantigen exposure. T-cell clone IGRP#7 (black triangle), IGRP#32 
(black circle) and healthy individual-derived clone FSB (gray triangle) show qualitative differences in 
proliferative capacity. Each symbol represents restimulation with cognate antigen IGRP265–273. Each line 
represents a separate passage, showing reproducibility and maintenance of phenotype.
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T1D T cells express high levels of miR-98, -590-5p and -23b 
Recently it has been shown that death receptor-mediated apoptosis can be regulated by 

miRNAs, implicating post-transcriptional control in the process of apoptosis regulation.15 To 

determine whether miRNAs contributed to the dysregulation of apoptosis in diabetogenic 

autoreactive T-cell clones, miRNA expression was determined using microarray analysis 

(Figure 3). Expression profiles differed between patient- and healthy individual-derived 

autoreactive cells, although the limited sample size did not allow for actual clustering and 

statistical testing.

To determine whether any differences in miRNA expression could explain the differences 

found at mRNA level, the 20 miRNAs that showed highest upregulation in both T1D 

cytotoxic T cells compared with healthy T cells were tested in silico for potential regulation 

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

CFLA
R

TNFRSF10
D

TNFRSF10
C

TNFRSF10
B

TNFRSF10
A

TNF

FA
SLGFA

S
FA

DD

TNFRSF11
B

TNFRSF1A

TNFSF10

Extrinsic apoptosis pathway
Fo

ld
 c

ha
ng

e 
vs

 H
ea

lth
y 

C
on

tro
l

TRAIL TRAIL-R2 Fas FasL

103 106105104 103 106105104103 106105104

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fo
ld

 c
ha

ng
e 

M
FI

 v
s 

H
ea

lth
y 

C
on

tro
l

Fas
Fas

L

TRAIL-
R2

TRAIL

Fluorecense Intensity

C
ou

nt
s 

no
rm

al
iz

ed
 to

 m
od

e

a b

c

103 106105104

Figure 2. Reduced expression of extrinsic apoptosis pathway factors in diabetogenic cytotoxic T 
lymphocytes. (a) Gene expression analysis represent patient-derived clones IGRP#7 (white bar) and 
IGRP#32 (black bar). Values are represented as fold change versus healthy individual clone FSB. (b) 
Fold change of mean fluorescence intensity (MFI) of patient clones IGRP#7 (white bar) and IGRP#32 
(black bar) versus FSB. (c) Fluorescence-activated cell sorting analysis of TRAIL, TRAIL-R2, FAS and 
FASL on FSB (dark gray), IGRP#7 (blue) and IGRP#32 (purple). Isotype control is displayed in white.
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of FAS, FASL, TNFSF10 and TNFRSF10B using the online microRNA.org16 resource. Three 

of these, that is, miR-98, miR-23b and miR-590-5p, were predicted to target FAS, FASL, 

TNFSF10 or TNFRSF10B transcripts and were selected for functional follow up (Table 1). 

miR-23b, miR-98 and miR-590-5p target members of the Fas and TRAIL 
pathway 
To test whether the predicted miRNA-binding sites in apoptotic genes associated with 

islet autoimmunity were indeed functional, HEK293T cells were transfected with reporter 

vectors containing the respective 3′-untranslated region (3′-UTR) of each gene ligated 

downstream of a luciferase cassette. Control vectors harboring up to two nucleotide 

mutations at each predicted miRNA target site were created to confirm specificity of 

miRNA targeting. In the case for TRAIL-R2 targeting by miR-23b, where two predicted 

binding sites were present, a vector was created where both binding sites were mutated 

(wild-type and mutated sequences are depicted in Supplementary table 1). Dual-luciferase 

reporter assays were conducted in the presence of miR-23b, miR-98, miR-590-5p or 

a negative control miRNA. Transfection of all miRNA lead to specific reduction reporter 

expression compared with treatment with an Caenorhabditis elegans-derived control 
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Figure 3. miRNA and mRNA expression in cytotoxic T1D T lymphocytes. Heatmap of miRNA profile 
showing expression of miRNAs in patient T-cell clone #1 (IGRP#7), #2 (IGRP#32) and healthy control 
clone (FSB). Ranking was performed as fold change of patient clones versus healthy control.
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miRNA (Figure 4). Specificity of 3′-UTR targeting was validated by calculating the ratio 

of repression observed in wild-type 3′-UTR constructs over constructs containing miRNA 

target-mutated 3′-UTRs. Thus, these data indicate that miR-590-5p, miR-98 and miR-23b 

directly bind to the 3′-UTR Fas, FasL, TRAIL or TRAIL-R2, respectively, thereby inhibiting 

translation of these pro-apoptotic factors.

Overexpression of miR-98 reduces Fas and TRAIL mRNA expression in 
primary T cells
To assess the ability of miRNA to regulate pro-apoptotic gene expression in lymphocytes, 

primary CMV-reactive CD8+ T cells were nucleofected with miR-23b, miR-98 or miR-590. 

As negative control a C. elegans derived, miRNA was used. Forty-eight hours post 

nucleofection, cells were harvested and mRNA expression of FAS, FASLG TRAIL and 

TRAIL-R2 was analyzed by qPCR. Nucleofection of primary T cells with miR-98 lead to 

a significant reduction of both FAS and TRAIL mRNA compared with control miRNA 

(Figure 5) . In contrast to the reporter assays, FASLG mRNA levels were not significantly 

downregulated upon treatment with miR-98. Nucleofection of miR-23b lead to a reduction 

of both TRAIL-R2 and FAS mRNA, however efficiency of mRNA reduction varied across 

experiments and the overall effect only reached statistical significance for TRAIL-R2. 

Downregulation of TRAIL-R2 mRNA by miR-590-5p was minimal, but comparable to 

previous findings. miR-590-5p treatment did not result in any downregulation of FASLG 

mRNA, in contrast to the results obtained with previous luciferase reporter assays. Overall, 

with exception of FASLG mRNA, effectiveness of miRNA for their respective targets 

showed comparable levels of mRNA inhibition in primary T cells compared with previous 

reporter assay finding.

DISCUSSION
Presence of islet-reactive cytotoxic T lymphocytes is a conditio sine qua non for 

development of T1D. Yet, the mere presence of islet-reactive cells is not sufficient for 

disease development10,11 and this observation appears to be generally true, as autoreactive 

T cells can be routinely detected in blood of healthy subjects.17 Using a unique series of 

diabetogenic T-cell clones, we here provide evidence that autoreactive CD8+ T cells from 

T1D patients differ qualitatively from autoreactive cells of HLA-matched healthy individuals 

Table 1. Predicted miRNA targeting of apoptotic genes

Gene Predicted miRNA binding

TNFSF10 (TRAIL) miR-98
TNFRSF10B (TRAIL-R2) miR-23b,miR-590-5p
FAS miR-23b,mir-98
FASLG miR-98,miR-590-5p
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Figure 4. Targeting of extrinisic pathway apoptosis genes by miRNA. The ability of miR-23b, mir-98 
and miR-590-5p to target the predicted seed region in the 3′-UTR of FAS, FASLG, TRAIL and TRAIL-R2 
was tested with a dual-luciferase reporter constructs containing the wild-type or target site-mutated 
3’-UTRs. Specific inhibition was calculated as decrease in luciferase activity in wild-type 3’-UTR 
compared with target region-mutated 3’-UTR. Each individual experiment was internally normalized 
against an negative control miRNA (C. elegans cel-miR-67). Bars represent mean±s.e.m. Each 
experiment was performed three times in duplicate. *P<0.05; **P<0.01; ***P<0.001.
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by displaying increased proliferative capacity upon repeated antigen exposure with 

concomitant reduced expression of the pro-apoptotic FAS, FASLG, TRAIL and TRAIL-R2 at 

gene and protein level and increased the expression of miRNAs regulating these factors, 

that is, miR-23b, miR-98 and miR-590-5p.

One of the hallmarks of autoimmune disorders, and T1D in particular, is the acquisition 

of defects in the regulatory circuits that control cell proliferation and immune homeostasis. 

Two well-known pathways involved in immune homeostasis are the Fas/FasL18 and TRAIL/

TRAIL-R pathways,19 however, their role in T1D appears to be two-fold.20,21 On one hand, Fas 

and TRAIL expression by PBMCs is required for control of autoreactive cells,22 whereas on 

the other hand, expression of Fas or TRAIL on PBMCs may facilitate beta-cell lysis through 

increased death receptor:ligand interactions in pancreatic islets.23,24 It is conceivable that 

both mechanisms occur simultaneously during autoimmune disease progression. Yet, 

the immunoregulatory properties of Fas/FasL and TRAIL/TRAIL-R appear to hold greater 

clinical relevance.25 This is demonstrated for Fas by increased resistance to Fas-induced 

apoptosis by PBMC of T1D patients, which would lead to decreased immune regulation and 

thus increased susceptibility to autoimmunity.26 Indeed, a favorable response to treatment 

with high-dose immune suppression followed by autologous hematopoietic stem cell 

transplantation, correlated with an increase of Fas and Fas ligand expression to levels 

seen in healthy individuals.27 Although the role of TRAIL in T1D has not been studied as 

extensively as Fas, interference with TRAIL receptor signaling correlated with aggravation 

of autoimmune disease28 and administration of TRAIL protected against,29 or alleviated 

severity30 of disease in murine models for T1D. These findings suggest that restoration of 

the apoptosis balance by increasing the expression of Fas and TRAIL pathway members 

would be beneficial despite possible negative effects on organ damage.

In this study, we focused on the differential expression of the Fas and TRAIL pathway 

between autoreactive cells from T1D patients and non-affected individuals. Although 

these two pathways are known regulators of T-cell death, it is likely that other factors 

contribute to the increased survival capacity of the T cells observed in this study. Indeed, 

our mRNA profiling experiments point to several other apoptosis regulators that appear 

differently expressed between autoreactive T cells in health versus disease. For instance, 

the pro-apoptotic BAX was expressed at lower levels in patient-derived autoreactive T 

cells, whereas survivin, a negative regulator of both Fas- and BAX-mediated apoptosis,31 

was expressed higher in these cells. Further, several members of the caspase family were 

differentially expressed in patient-derived T cells, among which are the pro-inflammatory 

caspases CASP1, CASP4 and CASP5, as well as pro-apoptotic CASP7. Although 

the individual roles of each of these apoptosis regulators remain to be clarified, these 

collective findings point to overall anti-apoptotic mRNA expression profile in autoreactive 

T cells in T1D.

The autoreactive T cells used in this study present a rare opportunity to compare 

autoreactivity in health and disease. However, as these cells are expanded in vitro 

we cannot exclude culture artifacts from our analyses, despite the reproducibility of 
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the observed phenotypes. Significant effort was undertaken to analyze the transcriptome 

of polyclonal IGRP265-273T cells directly ex vivo, but unfortunately their low frequencies 

in peripheral blood prevented us to do so in a sufficiently robust and reproducible 

manner. Further, the fragile nature of autoreactive T cells derived from healthy individuals 

precluded miRNA overexpression studies, as the procedure of nucleofection resulted in an 

unacceptable rate of cell death. Therefore, a CMV-specific T-cell clone that expressed FAS 

and TRAIL at levels comparable to the healthy individual-derived autoreactive T cells were 

selected to determine the effect of miR-23b, miR-98 and miR-590-5p overexpression in  

primary T lymphocytes.

Recently, miR-98 has been reported to regulate Fas expression, as well as Fas-

mediated apoptosis in a dose-dependent manner in HeLa cells.15 Furthermore, miR-98 was 

implicated as mediator of the anti-inflammatory effects of glucocorticoids by suppressing 

Fas and Fas ligand, among other factors.32 miR-23b was recently shown to mediate 

neuronal apoptosis in hypoxia-induced brain damage33 and overexpression of miR-23b 

lead to reduced apoptosis in lymphoma cells, whereas inhibition of miR-23b increased 

cell death.34 These findings further underscore the general anti-apoptotic potential of 

these particular miRNAs. Thus far, little is known on the role of miR-590-5p in apoptosis 

regulation, although miR-590-5p is implicated in acute myeloid leukemia and cervical 

cancer.35,36 Interestingly, the seed region of miR-590-5p is identical to the seed region 

of miR-21, a miRNA overexpressed in a wide variety of malignancies,37-40 leading to its 

classification as an ‘oncomir’. Overexpression of miR-21 has many consequences, of which 

the increased resistance to apoptosis is predominant. It can be argued that cancer and 

autoimmune disease are on opposite sides of the immunological spectrum. Treatment 

of cancer focuses on activation of adaptive immunity, whereas the therapeutic strategies 

in autoimmunity target immune regulation. Yet, the finding that two independent but 

functionally related miRNAs are overexpressed in both cancer and autoimmune disease, 

with similar phenotypic consequences in both conditions, creates an interesting parallel 

between autoimmunity and neoplastic disease in which the elucidation of miRNA 

expression may provide novel therapeutic targets for both conditions.

miRNAs are known essential negative regulators of gene expression during T-cell 

development and differentiation.41 A striking example of this is given by miR-155, 

a miRNA extensively studied for its role in hematopoiesis and lymphocyte functioning. 

In mice miR-155 deficiency leads to immunodeficiency, likely through dysfunctioning 

dendritic cells, B and T cells. In contrast, increased expression of miR-155 is linked to 

tumor development,42-44 whereas aberrant expression of miR-155 has been observed 

in several autoimmune diseases including rheumatoid arthritis, multiple sclerosis and 

systemic lupus erythematosus.45 The fact that different levels of expression of a single 

miRNA can lead to both immune deficiency, autoimmune disease and cancer indicates 

the potential therapeutic value of understanding the regulatory mechanisms governing 

miRNA expression. Yet, over the past years insight into miRNA biogenesis has revealed 

its complexity and to date the exact transcriptional cues that regulate miRNA expression 
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remain unclear for the majority of miRNAs.27, 28 miRNA gene control involves various 

regulatory mechanisms, among which are transactivation and transrepression by nuclear 

transcription factors. Expression of miRNA can be influenced by extracellular cues and 

shows tissue- and developmental stage-specific expression.46 Expression of miR-23b is 

influenced by extracellular stimuli and inflammatory cues, among which are estrogen, 

TSH, interleukin (IL)-17 and type I interferons.47 miR-590-5p expression appears to be 

affected by IL-3, macrophage colony-stimulating factor and granulocyte-macrophage 

colony-stimulating factor and is under the control of the lysine methyl transferase SEDT1A 

(a regulator of cell cycle progression).35,48 To date, little is known about the molecular 

pathways regulating mir-98 expression, although v-myc avian myelocytomatosis viral 

oncogene homolog is implicated in the regulation of the let-7 family, to which miR-98 

belongs.49  Although there is still much to be learned about the spatiotemporal expression 

of miRNAs, further elucidation of miRNA regulation may aid in identifying a potential 

common event in the etiogenesis of autoreactive T cells.

miRNAs are inherently pleiotropic and potentially target a wide range of mRNAs. 

Therefore, functional validation of in silico predicted target binding is essential and 

the biological relevance of miRNAs for complex biological processes such as apoptosis 

should ideally be tested only in relevant cell types.50 This is underscored by the discrepancy in 

miRNA efficacy observed in our study between dual-luciferase reporters assays and primary 

T cells. Limited availability of autoreactive T cells and technical difficulties manipulating 

these cells, such as low transfection efficacy and low tolerance for manipulation, impair 

functional miRNA studies for the most relevant cell types in autoimmunity. Here we 

used a top-down approach to identify disparities between autoreactive T-cell clones 

from T1D patients and healthy individuals and identified differential expression of two 

canonical extrinsic apoptosis pathways and miRNAs regulating them, leading to increased 

proliferative potential of diabetogenic autoreactive T cells.

Previously, great effort was put into understanding the roles of protein-coding genes in 

T1D. Our finding that miRNAs can reduce the expression of several key apoptotic molecules 

in cytotoxic T lymphocytes implicate them as modifiers of disease susceptibility in T1D. 

Increased expression of miRNAs may act as a biomarker, distinguishing autoreactive T 

cells in patients from those in healthy subjects. Understanding the mechanisms by which 

autoreactive T cells overexpress miRNAs leading to increased survival and proliferation 

upon self-recognition may offer novel targets for therapeutic intervention. 

MATERIALS AND METHODS 
T cell clones 
The procedure for the isolation of healthy controls T-cell clone (FSB) recognizing IGRP 

have been previously reported.12 Patient-derived T-cell clones IGRP#7 and IGRP#32 were 

cloned and characterized, as previously described.14 All T cells were cultured in Iscove’s 

Modified Dulbecco’s Medium with 10% human serum (Sanquin, Leiden, The Netherlands), 
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supplemented with IL-2 and IL-15. Restimulation was performed in the presence of 

irradiated, cognate peptide-loaded JY cells and irradiated, pooled third-party PBMCs. 

All cells used are routinely tested for mycoplasma before freezing. Informed consent was 

obtained for all material used in this study and was approved by the internal review board 

of our institution.

mRNA and miRNA profiling
Total RNA, including the miRNA fraction, was purified from cytotoxic T-cell clone derived 

from T1D patient and healthy donor by the miRNeasy isolation kit (Qiagen, Venlo, 

The Netherlands). Microarray-based miRNA and whole-genome mRNA expression 

profiling analysis were performed using Illumina (San Diego, CA, USA) human miRNA and 

mRNA arrays (Illumina). The miRNA arrays contained ~1200 assay probes corresponding to 

the all annotated human miRNAs (miRBase, version 12, 2008, The Wellcome Trust Sanger 

Institute, Cambridgeshire, UK). Total RNA labeling and hybridization was performed using 

standard conditions according to manufacturer instructions.

Flowcytometry 
For flow cytometry analysis, aliquots of 2 × 105 cells were incubated with a cocktail of 

monoclonal antibodies on ice for 30 min and washed with phosphate-buffered saline 

supplemented with 0.5% bovine serum albumin. Flow cytometric staining was analyzed on 

a fluorescence-activated cell sorting Accuri (Becton Dickinson, Breda, The Netherlands). 

Analyses were performed on Flow Jo 7.6 (Tree Star, Ashland, OR, USA). Antibodies used 

in this study were FITC-conjugated anti-CD95 (clone DX2, eBiosciences, San Diego, CA, 

USA), PE-conjugated anti- CD178 (clone NOK-1, Biolegend, San Diego, CA, USA), PE-

conjugated anti-CD253 (clone RIK-2, Biolegend) and APC-conjugated anti-CD262 (clone 

DJR2-4, Biolegend). PerCP-conjugated anti-CD8 (clone SK1) and corresponding isotype 

controls were purchased from BD Pharmingen (San Diego, CA, USA).

Dual luciferase assays
HEK293T cells were propagated at 37 °C in Dulbecco’s Modified Eagle’s Medium (Life 

Technologies, Bleiswijk, The Netherlands) supplemented with 10% fetal bovine serum, 

100 U ml-1 penicillin and 100 U ml-1 streptomycin. Cells were regularly passed to maintain 

exponential growth.

Prior to transfection, cells were plated at 50% density in 24-well format cell  

culture plates.

Transfection was performed using Lipofectamin 2000 (Life Technologies), 75 μg of 

reporter plasmid, 15 μg of SV40-RenillaLuciferase plasmid and 50 μg of miRNA mimic 

(HMI0408, HMI0982 and HMI0814; Sigma-Aldrich, St Louis, MO, USA) or negative 

control miRNA (MISSION miRNA, Negative Control 2; Sigma-Aldrich, Zwijndrecht, 

The Netherlands). Cells were harvested 48 h post transfection and dual-luciferase activity 
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was analyzed using Dual-Luciferase Reporter Assay System (Promega, Madison, WI, 

USA) according to manufacturer’s instructions. Experiments were carried out threefold  

in triplicates.

T cell nucleofection
CMV reactive primary T cells were nucleofected using Human T Cell Nucleofector Kit 

(VPA-1002; Lonza, Basel, Switzerland) on the Nucleofector 2 (Lonza). Cells were prepared 

according to manufacturer instructions with 300 μmol of miRNA mimic. Total RNA from 

primary CD8 T cells was isolated using Nucleospin miRNA kit (Machery-Nagel, Düren, 

Germany). cDNA synthesis was carried out using Superscript III (Invitrogen, Bleiswijk, 

The Netherlands) and oligo-dT primers. Detection of human FAS, FASLG, TNFSF10B, 

TNFRSF10 and OAZ1 was performed using SYBR Green PCR Master Mix (Life Technologies) 

StepOnePlus Real-Time PCR System (Life Technologies). Primer sequences are depicted 

in Table 2.

Statistical anlysis
One-way ANOVA tests with correction for multiple testing with Dunnett’s test were carried 

with the statistical package of GraphPad Prism (Graphpad Software, San Diego, CA, USA).

Table 2. RT-PCR primer sequences

FAS sense 5’-accaaggttctcatgaatctcc-3’
antisense 5’-tgactccagcaatagtggtgata-3’

FASLG sense 5’-tggggatgtttcagctcttc-3’
antisense 5’-gtgtgcatctggctggtaga-3’

TNFRSF10B (TRAIL-R2) sense 5’-gaagaaagtccttccttacctgaa-3’
antisense 5’-ccaggtcgttgtgagcttc-3’

TNFSF10 (TRAIL) sense 5’-cctcagagagtagcagctcaca-3’
antisense 5’-ggcccagagccttttcat-3’

OAZ1 sense 5’-ggatcctcaatagccactgc-3’
antisense 5’-tacagcagtggagggagacc-3’
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Supplementary Figure 1. Microarray expression analysis of members of the intrinsic apoptosis 
pathway, Inhibitors of Apoptosis (IAPs) family, and caspase gene family in diabetogenic cytotoxic 
T lymphocytes. White bars represent patient derived clone IGRP#7, black bars represent patient 
derived clone IGRP#32. Values are represented as fold change versus healthy individual clone FSB.
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Supplementary Table 1. Sequences microRNA binding sites in the 3’ UTR of TRAIL, TRAIL-R2, FAS and 
FASLG. Alterations made to wild-type binding sequences in order to generated  mutated constructs 
are depicted by underscored, capital letters.

Gene microRNA Variant Sequence

TRAIL miR-98 Wild-type gactctacctcat
Mutated gactcGaGctcat

TRAIL-R2 miR-590-5p Wild-type ttttataagctg
Mutated ttttaCCagctg

miR-23b #1 Wild-type agctgaatgtgat
Mutated agctgCaGgtgat

miR-23b #2 Wild-type agttatgtgaat
Mutated agttaACtgaat

FAS miR-98 Wild-type ctctacctcaa
Mutated ctctaGctcaa

miR-23b Wild-type taaatgtgaat
Mutated taaatCtgaat

FASLG miR-98 Wild-type tgctacctcaa
Mutated tgctaGctcaa

miR-590-5p Wild-type taataagctaa
Mutated taataGgctaa
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ABSTRACT
The genetic variation causal for predisposition to type 1 diabetes (T1D) remains unidentified 

for the majority of known T1D risk loci. MicroRNAs function as post-transcriptional gene 

regulators by targeting microRNA-binding sites in the 3′ untranslated regions (UTR) of 

mRNA. Genetic variation within the 3′-UTR of T1D-associated genes may contribute to T1D 

development by altering microRNA-mediated gene regulation. In silico analysis of variable 

sites predicted altered microRNA binding in established T1D loci. Functional implications 

were assessed for variable sites in the 3′-UTR of T1D candidate risk genes CTLA4 and IL10, 

both involved in immune regulation. We confirmed that in these genes 3′-UTR variation 

either disrupted or introduced a microRNA-binding site, affecting the repressive capacity 

of miR-302a* and miR-523, respectively. Our study points to the potential of 3′-UTR 

variation to affect T1D pathogenesis by altering post-transcriptional gene regulation  

by microRNAs.
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INTRODUCTION
Type 1 diabetes (T1D) is an autoimmune disease characterized by the selective destruction 

of pancreatic β cells by T cells.1 It is appreciated that both environmental and genetic 

factors contribute to disease predisposition, although the identity of causal factors remains 

elusive. Identification of the causal genetic factors explaining genetic risk for T1D may 

vastly improve prediction, prevention and treatment. Genome-wide association studies, 

assessing millions of single-nucleotide polymorphisms (SNPs) simultaneously in a large 

number of individuals, have greatly increased the power of genetic association studies 

and yielded new insights into the genetic architecture of T1D.2-5 Yet, except for the MHC 

region, INS and PTPN22, the causal genetic variations conferring risk for diabetes, and 

the mechanism on which they act, remains undetermined. Furthermore, the current 

knowledge on genetic disease predisposition leaves a considerable fraction of disease 

heritability unexplained.6 It is not likely that the discovery of new common variants will add 

to the explanation of heritability, but rather it is expected that rare genetic variations will 

improve insight in heritability.7 

Rare SNPs occurring in non-coding regions have the potential to induce phenotypical 

changes by altering regulatory elements such as promoter sequences8 or 3′ untranslated 

regions (UTRs). The latter may influence gene expression levels by interfering with regulation 

by microRNAs, an important mechanism of post-transcriptional gene regulation.9,10 

Recently it has been shown that SNPs frequently alter accessibility of microRNA-binding 

sites, which may account for individual differences in gene expression patterns.11 

We hypothesized that SNPs in 3′-UTRs of T1D-associated candidate risk genes affect 

T1D pathogenesis by modifying microRNA-binding sites and interfering with gene 

regulation. SNPs located in 3′-UTRs of T1D-associated genes were selected through 

dbSNP and T1D Genetics Consortium databases and assessed for their ability to create 

or disrupt microRNA-binding sites using the PolymiRTS database.12 Our data show that 

variation of functionally relevant microRNA-binding elements within the 3′-UTRs of T1D-

associated genes can have consequences for regulation of T1D risk genes. This suggests 

a novel and unexplored mechanism by which rare SNPs can influence disease pathogenesis 

with relevance for translation of genetic risk and possibly intervention.

RESULTS AND DISCUSSION
Genome-wide association studies have identified 56 genomic regions conferring risk for 

T1D development and subsequent fine-mapping proposed candidate disease genes for 

many of the T1D regions.3 For many T1D loci, more than one gene is implicated, resulting 

in a total of 268 candidate disease genes. We investigated whether known genetic 

variation of 3′-UTRs of these T1D risk genes are predicted to alter microRNA binding by 

cross-reference of known 3′-UTR SNPs of T1D risk genes using the PolymiRTS database.12 

Mature microRNAs exert their repressive function embedded in the multiprotein RNA-

induced silencing complex. The structural conformation of targeted mRNA molecules is 
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known to affect the accessibility of microRNA-target sites to the multiprotein RNA-induced 

silencing complex and has been shown to potently influence microRNA functionality.13 

Therefore, we performed accessibility analysis of each microRNA-target site to estimate 

the probability of microRNA-target duplex formation.14 Accessibility of the predicted 

microRNA sites was computed as the difference (ΔΔG) in free energy gained from 

the microRNA-target formation (ΔGDuplex) and the energetic cost of disrupting the secondary 

structure of the target (ΔGOpen). 

Using the PolymiRTS algorithm, we identified 37 different SNPs within 3′-UTR of T1D 

candidate disease genes, that could affect microRNA binding (miRSNPs) (Table 1) and 127 

in additional genes mapping to the T1D risk loci (Supplementary Table 1). The 37 miRSNPs 

in T1D candidate disease genes were predicted to affect 50 microRNA-binding sites, 

of which 28 (56%) involved disruption and 22 (44%) involved introduction of microRNA 

binding. Accessibility analysis of these sites predicted favorable microRNA–mRNA duplex 

formation by 13 (26%) miRSNPs using a minimum ΔΔG value of −7 kcal mol−1 as cutoff. 

The remainder (74%) of the microRNA-binding sites predicted by the PolymiRTS algorithm 

were calculated to have unfavorable binding characteristics, underscoring the need for 

functional validation of microRNA targets sites procured by in silico analysis.

To address the functional impact of polymorphic microRNA sites in T1D risk genes 

we focused on miRSNPs that were predicted to have functional consequences by both 

prediction models. As proof of principle for both disruption or induction of microRNA 

binding we selected miRSNPs in immune-regulatory genes CTLA4 and IL10 for functional 

validation. Both loci have important functions in immune regulation, which is believed to 

be ineffective in controlling loss of tolerance and immune-mediated beta-cell destruction 

in T1D. Reporter constructs containing the full length ancestral 3′-UTR sequences of 

CTLA4 and IL10 were generated and were co-transfected with 50 pmol of miR-302a* 

and miR-523, respectively in HEK293T cells (Figure 1). miR-302a* showed the capacity to 

inhibit mRNA containing the wild-type 3′-UTR CTLA4, whereas the wild-type IL10 3′-UTR 

was not regulated by miR-523. To address the functional impact of polymorphism within 

the microRNA-target sites we generated the allelic counterparts of the CTLA4 and IL10 

3′-UTR by mutating the luciferase reporter constructs at a single-nucleotide position 

within the microRNA-binding site. Transfection of the mutated 3′-UTR constructs with their 

respective microRNAs resulted in reduced inhibition of luciferase activity by miR-302a* 

with the minor allele of the CTLA4 SNP rs13384548. Conversely, increased gene repression 

was observed for the minor allele of IL10 SNP rs6687786. These data demonstrate that, 

indeed, rare genetic polymorphisms in the regulatory sequences of T1D risk genes have 

the propensity to alter protein levels by influencing microRNA-mediated gene repression.

T1D diabetes is marked by a large variability of disease occurrence and progression 

between affected individuals of different ethnicities. As with regular SNPs, the frequency 

of miRSNPs can differ greatly between different ethnic populations, as demonstrated by 

the IL10 miRSNP rs6687786, which is considerably more frequent in individuals of African 

descent than those of Central European descent (6–8% (ref. 15) vs. 1.3% in dbSNP, resp.). 



POSTTRANSCRIPTIONAL CONTROL OF CANDIDATE RISK GENES FOR TYPE 1 DIABETES 

73

4

Ta
b

le
 1

. P
ol

ym
or

p
hi

c 
m

ic
ro

RN
A

 b
in

d
in

g 
si

te
s 

in
 T

1D
 ri

sk
 g

en
es

. G
en

es
 li

st
ed

 b
y 

th
e 

T1
D

G
C

 a
s 

ca
nd

id
at

e 
ca

us
al

 g
en

es
 w

er
e 

sc
re

en
ed

 fo
r p

ol
ym

or
p

hi
sm

s 
af

fe
ct

in
g

 
m

ic
ro

R
N

A
 b

in
d

in
g

 th
e 

Po
ly

M
IR

TS
 d

at
ab

as
e.

 F
re

e 
en

er
g

y 
w

as
 c

al
cu

la
te

d
 fo

r t
he

 a
lle

lic
 v

ar
ia

nt
 c

o
nt

ai
ni

ng
 th

e 
p

re
d

ic
te

d
 m

ic
ro

R
N

A
 s

ite
 a

nd
 th

e 
co

rr
es

p
o

nd
in

g
 

m
ic

ro
R

N
A

. m
iR

SN
Ps

 w
it

h 
an

 e
st

im
at

ed
 Δ

Δ
G

 o
f ≤

 -7
 k

ca
l/

m
o

l a
re

 d
is

p
la

ye
d

 in
 b

o
ld

. M
in

o
r 

al
le

le
 fr

eq
ue

nc
ie

s 
w

er
e 

o
b

ta
in

ed
 fr

o
m

 d
sS

N
P.

G
en

e
SN

P 
M

in
o

r 
al

le
le

  
fr

eq
. (

%
)

A
lle

le
s

m
ic

ro
R

N
A

m
iR

 s
it

e
Δ

Δ
G

  
(k

ca
l/

m
o

l)
C

o
ns

eq
ue

nc
e

B
A

C
H

2
rs

10
45

55
12

21
.9

A
/G

m
iR

-5
91

A
TG

G
TC

A
-9

.7
3

D
is

ru
p

t
 

rs
17

51
32

76
3.

7
A

/G
m

iR
-5

21
A

G
TG

C
G

T
n/

a
C

re
at

e
C

1Q
TN

F6
rs

96
22

56
4

0.
2

C
/T

m
iR

-2
3a

/b
A

TG
TG

A
A

-3
.4

0
C

re
at

e
rs

60
00

59
8

n/
a

C
/A

m
iR

-3
74

TA
TT

A
TA

-3
.9

7
C

re
at

e
m

iR
-3

69
-3

p
TA

TT
A

TA
-1

.9
2

C
re

at
e

rs
96

22
56

3
n/

a
C

/T
m

iR
-1

5a
/b

 m
iR

-1
6 

m
iR

-1
95

 
m

iR
-4

24
 m

iR
-4

97
TG

C
TG

C
T

-6
.4

2
D

is
ru

p
t

rs
57

56
53

9
27

.1
T/

A
m

iR
-1

5a
/b

 m
iR

-1
6 

m
iR

-1
95

 
m

iR
-4

24
 m

iR
-4

97
TG

C
TG

C
T

-6
.4

2
D

is
ru

p
t

m
iR

-5
00

A
G

G
TG

C
A

n/
a

C
re

at
e

C
D

22
6

rs
13

69
89

6
0.

0
A

/G
m

iR
-6

32
C

A
G

A
C

A
A

-8
.5

3
C

re
at

e
m

iR
-3

46
G

C
A

G
A

C
A

-4
.4

9
C

re
at

e
 

 
 

m
iR

-4
52

G
C

A
A

A
C

A
n/

a
D

is
ru

p
t

C
D

69
rs

11
05

28
77

34
.2

T/
C

m
iR

-1
45

A
C

TG
G

A
A

1.
65

C
re

at
e

C
O

B
L

rs
10

25
13

88
0.

6
G

/C
m

iR
-1

8a
/b

 
G

C
A

C
C

TT
-1

2.
27

C
re

at
e

m
iR

-1
9a

/b
 

TT
TG

C
A

C
-5

.8
8

C
re

at
e

 
rs

17
13

41
26

1.
9

G
/A

m
iR

-6
35

 
G

C
C

C
A

A
G

-3
.8

9
C

re
at

e
C

TL
A

4
rs

13
38

45
48

0.
1

G
/A

m
iR

-3
02

a*
A

C
G

TT
TA

-1
1.

17
D

is
ru

p
t

E
R

B
B

3
rs

32
02

53
8

n/
a

G
/T

m
iR

-2
04

A
A

A
G

G
G

A
6.

62
D

is
ru

p
t

m
iR

-2
11

A
A

A
G

G
G

A
-2

.5
6

D
is

ru
p

t
G

A
B

3
rs

12
39

50
61

6.
8

T/
C

m
iR

-3
39

A
C

A
G

G
G

A
-5

.4
2

C
re

at
e

rs
44

31
75

9
46

.0
A

/G
m

iR
-1

97
TG

G
TG

A
A

-6
.2

3
C

re
at

e
 

rs
38

13
45

5
4.

4
G

/C
m

iR
-3

73
* 

m
iR

-6
16

 
TT

TT
G

A
G

2.
71

D
is

ru
p

t
IL

10
rs

66
87

78
6

1.
3

C
/T

m
iR

-5
23

G
C

G
C

G
TA

-7
.7

0
C

re
at

e
IL

19
rs

22
43

19
9

0.
4

A
/G

m
iR

-6
54

-5
p

G
C

C
C

A
C

C
-8

.4
1

D
is

ru
p

t



CHAPTER 4

74

Ta
b

le
 1

. (
co

nt
in

ue
d

)

G
en

e
SN

P
M

in
o

r 
al

le
le

  
fr

eq
. (

%
)

A
lle

le
s

m
ic

ro
R

N
A

m
iR

 s
it

e
Δ

Δ
G

  
(k

ca
l/

m
o

l)
C

o
ns

eq
ue

nc
e

rs
22

43
19

2
0.

0
A

/G
m

iR
-2

6a
/b

A
C

TT
G

A
A

-8
.0

5
D

is
ru

p
t

rs
22

43
19

3
41

.2
G

/A
m

iR
-6

17
G

A
A

G
TC

A
-1

2.
29

D
is

ru
p

t
rs

17
98

18
.6

C
/G

m
iR

-4
50

G
C

A
A

A
A

A
n/

a
C

re
at

e
m

iR
-1

89
TA

G
G

C
A

A
-6

.9
9

C
re

at
e

IL
20

rs
30

24
52

2
n/

a
A

/G
m

iR
-5

27
C

TT
TG

C
A

-9
.2

3
D

is
ru

p
t

rs
30

24
52

1
1.

8
C

/T
m

iR
-5

68
TT

A
TA

C
A

-3
.3

5
D

is
ru

p
t

 
m

iR
-4

10
TT

A
TA

TA
-3

.1
3

C
re

at
e

IL
18

R
A

P
rs

75
59

47
9

 
A

/G
m

iR
-1

36
 

A
A

TG
G

A
G

-4
.6

C
re

at
e

PR
K

C
Q

rs
47

50
43

9
17

.0
G

/A
m

iR
-5

64
C

G
TG

C
C

A
-1

0.
03

D
is

ru
p

t
rs

11
81

47
44

3.
4

G
/T

m
iR

-4
52

*
A

G
A

C
TG

A
n/

a
D

is
ru

p
t

 
m

iR
-6

22
A

G
A

C
TG

A
-9

.9
4

D
is

ru
p

t
PT

PN
22

rs
12

17
41

2
33

.8
T/

C
m

iR
-3

80
-3

p
TT

A
C

A
TA

n/
a

D
is

ru
p

t
rs

95
80

08
n/

a
G

/A
m

iR
-5

76
-5

p
TT

A
G

A
A

A
-1

.0
9

D
is

ru
p

t
R

G
S1

rs
28

16
30

8
13

.7
G

/C
m

iR
-6

35
C

C
C

A
A

G
A

-2
.1

5
D

is
ru

p
t

ST
A

T4
rs

22
80

23
6

n/
a

A
/T

m
iR

-3
1

TC
TT

G
C

A
-6

.0
4

C
re

at
e

TA
G

A
P

rs
12

19
83

74
23

.4
A

/G
m

iR
-1

26
* 

TA
A

TA
A

T
1.

79
D

is
ru

p
t

TL
R

8
rs

57
44

08
7

1.
6

C
/G

m
iR

-4
23

C
C

G
A

G
C

A
-1

8.
57

C
re

at
e

rs
57

41
88

9
5.

6
A

/C
m

iR
-6

55
 

TG
TA

TT
A

1.
05

D
is

ru
p

t
m

iR
-6

41
TG

TC
TT

A
0.

82
D

is
ru

p
t

rs
57

44
08

9
0.

2
G

/A
m

iR
-4

50
G

C
A

A
A

A
A

1.
95

D
is

ru
p

t
m

iR
-6

21
G

C
TA

G
C

A
-1

.9
1

D
is

ru
p

t
TN

FA
IP

3
rs

12
66

1
n/

a
G

/T
m

iR
-3

30
 

TG
C

TT
TG

-1
3.

47
D

is
ru

p
t

rs
50

29
96

6
0.

2
A

/T
m

iR
-6

07
TT

TG
A

A
A

-0
.2

6
C

re
at

e
rs

50
29

95
8

1.
1

T/
C

m
iR

-3
74

A
TT

A
TA

A
0.

14
D

is
ru

p
t

 
 

 
m

iR
-3

69
-3

p
TA

TT
A

TA
2.

62
D

is
ru

p
t

U
B

A
SH

3A
rs

17
11

49
52

4.
7

C
/T

m
iR

-5
18

c*
TC

C
A

G
A

C
-6

.4
6

D
is

ru
p

t
 

 
 

m
iR

-5
17

*
TC

TA
G

A
G

-4
.7

8
C

re
at

e



POSTTRANSCRIPTIONAL CONTROL OF CANDIDATE RISK GENES FOR TYPE 1 DIABETES 

75

4

As such, miRSNPs may contribute to variation, disease heterogeneity and incidence, 

and effectiveness of immune intervention therapies targeting T1D between different  

ethnic populations.16 

As the phenotypic effects of any miRSNP are ultimately dependent on co-occurrence 

of both the polymorphic microRNA-binding site and the targeting microRNA itself, further 

investigation into the dynamics of microRNA expression are required to assess the impact 

of miRSNPs on disease progression. Our data validate such undertaking by demonstrating 

that low-frequent 3′-UTR SNPs located in T1D risk genes have the capacity to alter gene 

expression of potent immune regulators that can contribute to the genetic risk inferred by 

T1D risk loci.
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Figure 1. Functional validation of IL10 and CTLA4 miRSNPs. Effect of miRSNP in luciferase assay 
after co-transfection of microRNA and 3’UTR reporter constructs.  Full length CTLA4 and IL10 
3’UTRs were cloned directly downstream of the firefly luciferase cassette in the pGL3-Control vector 
(Promega, Madison, WI, USA). Minor alleles of both 3’UTR miRSNPs were obtained by site-directed 
PCR mutagenesis of the wild-type plasmids. Primer sequences are displayed in Supplementary Table 
2. Plasmids were sequence verified.
HEK293T cells were maintained in Iscove’s Modified Eagles Medium (IMDM) supplemented with 10% 
fetal calf serum in 5% CO2 atmosphere at 37°C. Cells were transfected at 30-50% confluency in 
24-well format with 150ng of either wild-type or rare variant pGL3 plasmid, 25ng pRL-TK (Promega) 
and 50 pmol of hsa-miR-302a* (Sigma-Aldrich, St. Louis, MO, USA) or hsa-miR-523 (Ambion, Foster 
City, CA, USA) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The ratio of firefly luciferase 
to renilla luciferase was obtained for each well using Dual Luciferase Assay (Promega). Inhibition was 
calculated as decrease in firefly to renilla luciferase ratio compared to HEK293T cells transfected with 
negative control microRNA based on C. elegans microRNA cel-miR-67. Bars represent mean ± SEM. 
Each experiment was performed at least three times in duplicate. For statistical analysis a Student’s 
T test was used. 
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SUPPLEMENTARY DATA

Supplementary Table 1. miRSNPs in non-candidate risk gene mapping to T1D risk loci.

Genomic region Gene
Minor allele 
frequency (%) SNP miRNA Consequence

11p15.5 IGF2AS n/a rs17886764 miR-125b Disrupt
miR-125a Disrupt

38.8 rs10770125 miR-581 Disrupt
1.1 rs4930042 miR-370 Create

miR-345 Create
miR-378 Disrupt

n/a rs17880764 miR-586 Disrupt
miR-448 Disrupt

12q13.2 RAB5B n/a rs1050198 miR-154 Disrupt
n/a rs12307159 miR-626 Disrupt

miR-224 Create
n/a rs1050200 miR-544 Disrupt

miR-545 Create
n/a rs1050201 miR-370 Create

miR-661 Disrupt
n/a rs1050202 miR-602 Create

miR-506 Disrupt
n/a rs1050203 miR-506 Disrupt
n/a rs1050209 miR-448 Disrupt
n/a rs7350566 miR-30a-3p Create

miR-30e-3p Create
n/a rs1050231 miR-9* Create

MYL6 n/a rs1063598 miR-564 Disrupt
miR-506 Disrupt

0.2 rs4847 miR-598 Create
IL23A n/a rs13378047 miR-661 Disrupt

15q25.1 MORF4L1 n/a rs16970208 miR-532 Create
n/a rs1062751 miR-302a* Disrupt

miR-517b Disrupt
miR-586 Create
miR-570 Create

n/a rs3211410 miR-128a Create
miR-128b Create
miR-148a Create
miR-148b Create
miR-152 Create
miR-586 Disrupt

RASGRF1 1.6 rs4778732 miR-24 Disrupt
22q12.2 AP1B1 5.0 rs6006095 miR-608 Disrupt

miR-654 Disrupt
2.4 rs8140166 miR-130b Create
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Supplementary Table 1. (continued)

Genomic region Gene
Minor allele 
frequency (%) SNP miRNA Consequence

miR-301 Create
miR-130a Create
miR-363* Disrupt

RFPL1 13.1 rs13053624 miR-425-5p Create
NEFH 28.6 rs1061373 miR-661 Create

miR-637 Create
NIPSNAP1 29.7 rs7609 miR-577 Disrupt

n/a rs13054859 miR-26b Disrupt
miR-26a Disrupt

n/a rs459556 miR-153 Disrupt
NF2 n/a rs3180505 miR-512-5p Disrupt

rs1008515 miR-139 Create
29.3 rs2530680 miR-328 Disrupt

miR-504 Create
30.3 rs1034880 miR-411 Create

miR-603 Disrupt
miR-329 Disrupt

n/a rs11537543 miR-573 Disrupt
CABP7 9.2 rs5997508 miR-657 Create

n/a rs9614043 miR-515-5p Disrupt
miR-519e* Disrupt

7.2 rs5752956 miR-617 Create
ZMAT5 1.1 rs6006230 miR-585 Disrupt
MTMR3 32.8 rs41171 miR-542-3p Create

0.9 rs10212055 miR-566 Disrupt
33.8 rs12537 miR-181a Disrupt

miR-181b Disrupt
miR-181c Disrupt
miR-181d Disrupt

n/a rs4487184 miR-651 Create
LIF 26.0 rs737812 miR-617 Create

0.02 rs11913927 miR-363* Disrupt
0.03 rs12160405 miR-324-3p Disrupt

16p13.13 CIITA 2.4 rs11074940 miR-539 Create
PRM2 n/a rs452495 miR-337 Disrupt

miR-637 Disrupt
LITAF n/a rs13810 miR-7 Create

16q23.1 ZFP1 7.4 rs7199871 miR-512-3p Disrupt
miR-520f Disrupt

0.0 rs12932318 miR-17-5p Create
miR-20a Create
miR-106a Create
miR-106b Create
miR-20b Create
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Supplementary Table 1. (continued)

Genomic region Gene
Minor allele 
frequency (%) SNP miRNA Consequence

miR-519d Create
miR-93 Create
miR-302a Create
miR-302b Create
miR-302c Create
miR-302d Create
miR-372 Create
miR-373 Create
miR-520e Create
miR-520a Create
miR-526b* Create
miR-520b Create
miR-520c Create
miR-520d Create

19.3 rs7206003 miR-496 Disrupt
BCAR1 7.1 rs11640206 miR-129 Disrupt

miR-450 Disrupt
19p13.2 ICAM1 25.8 rs281436 miR-373* Create

miR-616 Create
n/a rs923366 miR-326 Create

miR-518c* Create
25.6 rs281437 miR-31 Create

ICAM5 n/a rs2569710 miR-618 Create
n/a rs2735443 miR-205 Create

RAVER1 n/a rs11539686 miR-299-3p Disrupt
14q24.1 ZFP36L1 n/a rs11623420 miR-374 Create
18q22.2 DOK6 n/a rs1790972 miR-365 Create
22q13.1 SSTR3 1.5 rs8141312 miR-632 Create

miR-346 Create
21q22.3 TMPRSS3 27.0 rs13047838 miR-30a-3p Create

miR-30e-3p Create
7p15.2 HOXA1 n/a rs17449017 miR-181a Disrupt

miR-181b Disrupt
miR-181c Disrupt
miR-181d Disrupt

n/a rs17449010 miR-338 Create
0.4 rs7786554 miR-99a Disrupt

miR-100 Disrupt
miR-99b Disrupt

HOXA3 1.1 rs1978133 miR-25 Disrupt
miR-32 Disrupt
miR-92 Disrupt
miR-363 Disrupt
miR-367 Disrupt
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Supplementary Table 1. (continued)

Genomic region Gene
Minor allele 
frequency (%) SNP miRNA Consequence

miR-92b Disrupt
HOXA4 3.2 rs4722662 miR-197 Disrupt

3.2 rs4722661 miR-512-5p Disrupt
HOXA5 0.8 rs17472021 miR-512-5p Disrupt

miR-510 Disrupt
HOXA7 0.4 rs17472084 miR-551a Disrupt

miR-551b Disrupt
4.2 rs17500932 miR-187 Create
n/a rs17500918 miR-492 Disrupt

HOXA9 7.0 rs17500987 miR-517* Disrupt
36.2 rs7810502 miR-539 Create

12p13.31 CLEC2D 18.3 rs2401388 miR-181a* Disrupt
n/a rs11052488 miR-15a Disrupt

miR-16 Disrupt
miR-15b Disrupt
miR-195 Disrupt
miR-424 Disrupt
miR-497 Disrupt

0.1 rs11052491 miR-516-3p Disrupt
1q32.1 DYRK3 3.0 rs17014165 miR-518c* Disrupt
3p21.31 FYCO1 12.4 rs2291471 miR-191* Create

5.7 rs1994493 miR-554 Create
9.5 rs1047444 miR-548c Disrupt

miR-548a Create
CXCR6 46.4 rs2234358 miR-532 Disrupt
XCR1 n/a rs7650968 miR-588 Create

miR-339 Disrupt
CCR1 6.0 rs3774630 miR-663 Disrupt

miR-654 Create
TDGF1 6.9 rs3189859 miR-374 Create

Xp22.2 TMSB4X n/a rs11544905 miR-223 Disrupt
19q13.4 CA11 n/a rs7251936 miR-630 Disrupt

FUT2 34.0 rs603985 miR-186 Create
1.2 rs28362840 miR-520g Disrupt

miR-520h Disrupt
miR-17-5p Disrupt
miR-20a Disrupt
miR-106a Disrupt
miR-106b Disrupt
miR-20b Disrupt
miR-519d Disrupt
miR-518b Create
miR-518c Create
miR-518d Create
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Supplementary Table 1. (continued)

Genomic region Gene
Minor allele 
frequency (%) SNP miRNA Consequence

0.6 rs281376 miR-150 Disrupt
n/a rs28746182 miR-492 Disrupt
32.9 rs2251034 miR-558 Disrupt
0.3 rs28362843 miR-617 Disrupt
n/a rs2638279 miR-637 Create

FUT1 1.8 rs16982283 miR-518c* Disrupt
18.7 rs12611028 miR-517* Disrupt
24.7 rs28682322 miR-373* Create

miR-616* Create
Xq28 DKC1 3.5 rs7878787 miR-339 Disrupt

F8 0.8 rs5986887 miR-542-3p Create
miR-34a Disrupt
miR-34c Disrupt
miR-449 Disrupt
miR-449b Disrupt

FUNDC2 n/a rs1048795 miR-193a Disrupt
miR-193b Disrupt

n/a rs5945283 miR-515-5p Create
miR-519e* Create

VBP1 n/a rs17328215 miR-128a Disrupt
miR-128b Disrupt
miR-27a Disrupt
miR-27b Disrupt
miR-342 Disrupt

12q13.3 RBMS2 20.7 rs941209 miR-517b Create
BAZ2A n/a rs11541997 miR-299-3p Disrupt

9.4 rs12296335 miR-485-5p Disrupt
PTGES3 n/a rs28413138 miR-489 Disrupt
STAT6 n/a rs7316645 miR-630 Create

miR-626 Disrupt
n/a rs11172097 miR-15a Create

miR-16 Create
miR-15b Create
miR-195 Create
miR-424 Create
miR-497 Create

R3HDM2 n/a rs7309842 miR-539 Disrupt
MARS n/a rs1054519 miR-17-5p Disrupt

miR-20a Disrupt
miR-106a Disrupt
miR-106b Disrupt
miR-20b Disrupt
miR-519d Disrupt

DDIT3 n/a rs1054519 miR-224 Disrupt
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Supplementary Table 1. (continued)

Genomic region Gene
Minor allele 
frequency (%) SNP miRNA Consequence

miR-204 Create
miR-211 Create

KIF5A n/a rs12370421 miR-421 Create
B4GALNT1 0.4 rs3741418 miR-635 Disrupt
OS9 n/a rs10403 miR-605 Disrupt

rs1050022 miR-373* Create
miR-616 Create

n/a rs1050038 miR-218 Disrupt
34.1 rs1050045 miR-639 Create
n/a rs1050051 miR-654 Disrupt

MARCH9 25.6 rs1048691 miR-520a* Create
miR-525 Create

21q22.3 PFKL n/a rs1057197 miR-542-3p Disrupt
C21orf2 1.7 rs9306098 miR-339 Create

2q11.2 AFF3 16.0 rs4851212 miR-595 Create
LONRF2 19.5 rs2309822 miR-345 Create

23.3 rs2309821 miR-659 Disrupt
CHST10 3.8 rs10187094 miR-504 Create

n/a rs13419601 miR-491 Create
miR-625 Create

3.8 rs6759686 miR-510 Create

Supplementary Table 2. Primer sequences

Primer Sequence (5’ to 3’)

IL10 3’UTR Cloning F AAAAAAAAAAGCTAGCACAATGAAGATACGAAACTGA
IL10 3’UTR Cloning R AAAAAAAAAAGCTAGCACCAGAACATGATGTGAATAAG
IL10 3’UTR Mutagenesis F TAGCCGGGCATGGTGGCGCGTACCTGTAATCCCAGCTACTT
IL10 3’UTR Mutagenesis R AAGTAGCTGGGATTACAGGTACGCGCCACCATGCCCGGCTA
CTLA4 3’UTR Cloning F AAAAAAAAAAGCTAGCAGCAATTTCAGCCTTATTTTATTC
CTLA4 3’UTR Cloning R AAAAAAAAAAGCTAGCAAACGACCACCACAGATTTTTA
CTLA4 3’UTR Mutagenesis F CTTATATTTACGTATGAGACATTTATAGCCGAAATG
CTLA4 3’UTR Mutagenesis R CATTTCGGCTATAAATGTCTCATACGTAAATATAAG

Gene specific region of the cloning primers was elongated with a NheI restriction site (underlined) and 
a poly-A spacer (italic). Polymorphic site are displayed bold and italic. 
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ABSTRACT
Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is a protein receptor that 

downregulates the immune system. CTLA4 gene variants associate with various 

autoimmune diseases, including type 1 diabetes. Fine mapping of the genetic risk has 

shown that the genomic region near CTLA4 marked by the single-nucleotide polymorphism 

(SNP) CT60A/G (rs3087243) acts as a susceptibility factor. Yet, the functional basis for 

the increased susceptibility conferred by rs3087243 remains unclear. We demonstrate that 

the length of the dinucleotide (AT)n repeat within the CTLA4 3’ untranslated region (3′UTR) 

strongly associates with the risk of SNP CT60A/G (P<6.5 × 10−72). Genomic (AT)n repeat 

length inversely correlated with CTLA4 messenger RNA (mRNA) and protein levels in islet 

autoreactive T-cell lines. Transfer of a long (AT)n element into T cells lead to a reduction 

of mRNA compared to a short (AT)n element. Thus, this study provides evidence for a role 

of the CTLA4 3′UTR (AT)n repeat in the increased genetic risk for islet autoimmunity 

associated with the CTLA4 locus.
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INTRODUCTION
T cells need a co-stimulatory signal in addition to the main antigen-driven signal for full 

activation.1 Naïve autoreactive T cells recognizing their target autoantigen may become 

activated through co-stimulation by CD28 on T cells with CD80 or CD86 on antigen 

presenting cells.2,3 Activated Th1 cells orchestrate a cascade of autoimmune responses 

eventually leading to destruction of self-tissue and autoimmune disease. Cytotoxic 

T-lymphocyte antigen 4 (CTLA4) is an essential negative regulator of adaptive immunity.4  

CTLA4 has been implicated as an effector molecule of regulatory T cells,5 and has recently 

been shown to capture its ligands from opposing cells by process of trans-endocytosis, 

leading to decreased co-stimulation via CD28 and resulting in negative immune regulation.6 

The relevance of CTLA4 signaling in immune regulation of autoimmune diseases was 

recently underscored by a clinical trial using Abatacept (CTLA4-Ig) demonstrating 

temporary preservation of beta-cell function in recent onset type 1 diabetes, although 

decline in beta-cell function occurred parallel to placebo-treated individuals after 6 

months of treatment indicating that in addition to CTLA4 other factors are involved in 

the dysregulated immune response in type 1 diabetes.7

Variations of the CTLA4 gene region are associated with increased susceptibility to 

multiple autoimmune diseases, such as type 1 diabetes, 8 celiac disease9 and rheumatoid 

arthritis.10 Despite the identification of the CT60 single-nucleotide polymorphism (SNP; 

rs3087243) as the principal marker for genetic risk,8 the mechanism through which 

polymorphisms of the CTLA4 locus contribute to autoimmune susceptibility remains 

undetermined.11-13. The CTLA4 risk haplotype that is marked by the ancestral allele of CT60 

has previously been associated with reduced messenger RNA (mRNA) levels of CTLA4 

and its soluble isoform sCTLA-4, presumed to be caused by altered gene transcription 

and splicing.14,15 Alternatively, reduced mRNA expression might result from altered post-

transcriptional control of mRNA stability. Post-transcriptional processing is a regulatory 

mechanism involved in the protein expression of several immune factors, including 

tumor-necrosis factor (TNF) and interleukin-1β (IL-1β), which contain regulatory elements 

in the 3′ untranslated region (3′UTR) of their mRNA affecting RNA stability and rate of 

translation.16,17  Previously, genetic variation located within 3′UTRs of disease-associated 

genes has been shown to affect post-transcriptional control and gene expression, thereby 

potentially affecting disease susceptibility.18,19

We investigated whether post-transcriptional regulation of CTLA4 mRNA and protein 

expression is implicated in autoimmune susceptibility by studying polymorphisms located 

within the 3′UTR of CTLA4. Here we show that a structural variant within the 3′UTR of 

CTLA4, consisting of an (AT)n dinucleotide repeat, is in strong linkage disequilibrium 

with the autoimmune risk marker CT60. Long variants of the (AT)n repeat are associated 

with reduced CTLA4 mRNA levels in islet autoreactive T cells and transfer of a long (AT)n  

element leads to a significant reduction of mRNA in T cells, compared with a short 

(AT)n repeat. Thus, variation of the (AT)n repeat represents an explanation for disease 
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association of the CTLA4 locus and implicates altered post-transcriptional regulation of 

the immunoregulatory CTLA4 as a mechanism contributing to genetic predisposition 

towards autoimmune disease.

RESULTS & DISCUSSION
Since post-transcriptional control of any gene is largely determined by its 3′UTR, we 

tested whether the risk SNP CT60 links with variation in the CTLA4 3′UTR. Length of an 

(AT)n dinucleotide repeat within the 3′UTR of CTLA4 presents a major source of variation. 

To determine whether length variation of the CTLA4 3′UTR (AT)n repeat associated with 

risk for autoimmune disease its correlation with the major risk SNP CT60 was assessed 

in a cohort of 360 type 1 diabetes patients (Table 1). Analysis showed that CT60 status 

and (AT)n length were in strong linkage disequilibrium (D’=1.0, P<6.5 × 10−72). The most 

common, wild-type, repeat (AT)7 was more frequently observed in individuals carrying 

the CTLA4 neutral allele CT60A, whereas alleles containing longer (AT)n elements were 

uniquely associated with the CT60G risk haplotype (Supplementary Table 1). Individuals 

homozygous for CT60A were exclusively (AT)7 homozygous and CT60G homozygosity was 

strongly related with elongated (AT)variant homozygosity (Supplementary Table 2). Thus, 

long (AT)n elements within the 3′UTR of CTLA4 would directly correlate with increased risk 

for islet autoimmunity.

To assess the functional consequences of (AT)n length variation, (AT)n length was 

compared with CTLA4 mRNA levels in autoimmune T-cell lines from type 1 diabetes patients 

and healthy controls reactive against insulin-secretory granules that we had stored in our 

repository from our studies in the past.20  These T cells contain islet autoreactivities without 

bias to certain islet autoantigens. As these T-cell lines had been derived from a series of 

recent onset type 1 diabetic patients as well as non-diabetic, but age and HLA-matched 

control subjects, we could assess the relationship between mRNA and protein levels in 

subjects with susceptible and non-susceptible CTLA4 associated genetic risk profiles.

The T cells were cultured under IL-2/IL-15 enriched and deprived conditions to mimic 

physiological conditions that affect mRNA stability 21 and thus expression levels. CTLA4 

mRNA levels were significantly lower in T cells with long (AT)n elements in both patients 

and healthy individuals, although the low sample size due to the rare nature of islet 

Table 1.

CTLA4 AT-repeat CT60A CT60G

(AT)wt 153 10
(AT)variant 0 197

Global D’=1.0 (p<6.5x10-72)
Association of (AT)n length with CTLA4 risk. SNP CT60A/G was tested in 180 recent-onset type 1 diabetic 
individuals. Short (AT)wt alleles were associated with the neutral CT60A genotype. Elongated (AT)variant alleles were 
exclusively associated with the CT60G risk genotype. 
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autoreactive T-cell lines might pose a possible limitation to this observation (Figure 1a). 

Furthermore, (AT)n length correlated with CTLA4 protein expression levels in a series of 

separately isolated, clonal islet autoreactive T cells with varying (AT)n lengths in a dose-

dependent manner (Figure 1b).  To directly test the effect of (AT)n repeat length on gene 

expression, Jurkat cells were transduced with a green fluorescent protein (GFP) reporter 

vector containing the CTLA4 3′UTR with either a short (AT)7 or long (AT)28 element. T cells 

transduced with an CTLA4 3′UTR containing a long (AT)n element displayed markedly 

reduced levels of GFP mRNA, in line with the results obtained from autoreactive T-cell 

lines and clones (Figure 2). Vector integration was similar between constructs as verified 

by quantitative reverse transcription PCR (qRT-PCR; data not shown).

Next, we assessed whether this difference in mRNA levels associated with (AT)n 

repeat length could be attributed to altered mRNA stability. Jurkat cells were transduced 

with GFP constructs as described above and treated with the transcriptional inhibitor 

actinomycin D. Cells were collected at 2, 4, 6 and 8 h after treatment and mRNA 

expression was measured using quantitative PCR. As observed before, increased reporter 

mRNA levels were observed for the short (AT)7 levels, however, the rate of mRNA decay 
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Figure 1. Expansion of the CTLA4 (AT)n element correlates with decreased CTLA4 levels in 
T-lymphocytes. (a) qRT-PCR analysis of CTLA4 mRNA in autoreactive T-cell lines cultured in the presence 
and absence of IL-2 and IL-15. Comparisons between subjects homozygous for the wild-type short 
repeat ((AT)wt) versus subjects homozygous or heterozygous for an elongated element ((AT)variant) are 
shown. For statistical analysis a Mann–Whitney U-test was performed. Experiments were performed 
in triplicates. (b) Representative intracellular CTLA4 FACS staining of T-cell clones harboring short 
((AT)7), intermediate ((AT)19) or long ((AT)28) CTLA4 3′UTR elements. FACS, fluorescence-activated  
cell sorting.
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did not differ between reporter mRNA harboring a short (AT)7 or a long (AT)28 element  

(Supplementary Figure S1). 
Variation of the CTLA4 locus has been implicated in type 1 diabetes, but the genetic 

variant causal for disease association remains elusive.22 We reveal a striking linkage 

disequilibrium between the CTLA4 risk marker CT60 and (AT)n repeat length in the CTLA4 

3′UTR, suggesting involvement of this microsatellite in autoimmune susceptibility. 

CTLA4 (AT)n length affected CTLA4 mRNA and protein levels in islet autoreactive T cells 

carrying the disease-associated CTLA4 allele, leading to a reduction in immune regulation 

in the context of human autoimmune disease. The localization of the (AT)n element in 

the regulatory 3′UTR of CTLA4 implies possible involvement of altered post-transcriptional 

regulation in disease association of the CTLA4 locus.

Several other mechanisms by which the CTLA4 risk allele, marked by CT60G, contributes 

to risk for autoimmune diseases have been proposed, including differential splicing15 and 

altered transcriptional regulation.14 Differential splicing of CTLA4 mRNA as explanation for 

the disease association of the CTLA4 locus remains controversial, and conflicting results 

have been reported.23-25 The role of sCTLA-4 in the pathogenesis of type 1 diabetes 

remains unclear, as circulating sCTLA-4 was only detected in a minority of type 1 diabetes 

patients by novel isoform-specific antibodies.26 Further, no direct functional association of 

promoter polymorphisms and altered CTLA4 transcription have been found, suggesting 

that the CTLA4 risk allele is not functionally related to differences in gene transcription.

Intriguingly, the CTLA4 (AT)n repeat is conserved among primates only. This implies that 

the factors determining genetic risk differ between species despite functional homology 

of CTLA4. Indeed, the murine Ctla4 susceptibility allele (Idd5.1) is strongly associated with 
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Figure 2. (AT)n mediates CTLA4 mRNA expression. Jurkat cells were transduced with a vector containing 
a short ((AT)7) or expanded ((AT)28) element ligated downstream of a GFP cassette. qRT-PCR analysis 
for GFP was performed and normalized for the housekeeping gene OAZ1 in triplicates. Results are 
shown as mean ± S.E.M.
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decreased levels of the ligand-independent isoform of CTLA4 (liCTLA-4),27,28, a CTLA4 

splice variant absent in humans.15,29 This discrepancy of genetic association of CTLA4 

between species precludes functional genetic studies to define mechanisms of disease 

association in preclinical animal models.28

Collectively, we propose that length variation of the (AT)n repeat in the 3′UTR is causal 

for the association of CTLA4 with autoimmune disease. Using type 1 diabetes as prototype 

autoimmune disease associated with CTLA4, we demonstrated that the CTLA4 risk allele 

is functionally related to CTLA4 mRNA expression. We propose that the marker status of 

CT60 is explained by its exceptionally strong linkage disequilibrium with length variation 

of the (AT)n repeat in the CTLA4 3′UTR. Individuals carrying risk alleles will have reduced 

CTLA4 mRNA affecting CTLA4 protein levels and impairing immune regulation. It should 

be noted, however, that multiple genetic variants may act in concert to modulate disease 

susceptibility and we cannot exclude that other genetic factors contribute to the genetic 

risk associated with the CTLA4 locus. Genetic risk associated with the CTLA4 locus for type 

1 diabetes is identical for other autoimmune diseases among which celiac disease and 

rheumatoid arthritis. Although in this study only type 1 diabetes patients were analyzed, 

it is likely that our findings can be extrapolated to these autoimmune diseases as well. 

Our study proposes a novel relationship between genetic susceptibility and variation in 

post-transcriptional gene regulation, contributing to immune abnormalities that may add 

to beta-cell destruction.

MATERIAL AND METHODS
Cells lines and clones
Autoreactive T cells against insulin-secretory granules had been isolated from new-onset 

type 1 diabetes patients (n=10) and healthy HLA and age matched non-diabetic individuals 

(n=8). Procedures and clinical background reported in detail in ref (20). Jurkat cells were 

propagated at 37 °C in RPMI-40 supplemented with 10% fetal bovine serum and 2 mM 

glutamine. Cells were regularly passed to maintain exponential growth.

HLA-A2 restricted T cells reactive against insulin, cytomegalovirus and islet-specific 

glucose-6-phosphatase-related protein were cultured in IMDM supplemented with 10% 

heat-inactivated human serum, 2 mM glutamine, 100 U ml−1 of penicillin, 100 μg ml−1 of 

streptomycin, 20 U ml−1 IL-2 and 5 pg ml−1 IL-15 at 37 °C in a humidified atmosphere with 

5% CO2. (AT)n length was determined by sequencing as 7/7 (glucose-6-phosphatase-

related protein), 7/19 (cytomegalovirus) and 28/28 (insulin). All cells used are routinely 

tested for mycoplasma before freezing. Informed consent was obtained for all material 

used in this study and was approved by the internal review board of our institution.

CTLA4 genotyping
CTLA4 polymorphism (CT60 SNP, rs3087243) analysis was performed on genomic DNA of 

recent onset type 1 diabetes patients (n=180) using the Taqman SNP genotyping assay 
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for PCR as supplied by Applied Biosystems (Nieuwerkerk a/d IJssel, the Netherlands). 

PCR amplification of the (AT)n element in the 3′UTR of CTLA4 was performed in a total 

volume of 25 μl, containing 5–10 ng of genomic DNA, 10 pmol of Cy5-conjugated forward 

primer (5′-CCTTTTATTTCTTAAACAAATGTATGAT-3′) and unlabeled reverse primer 

(5′-CAAAAACATACGTGGCTCTATG-3′) at 55 °C. The fragment size was determined using 

an ABI3730 sequencer. For statistical analysis subjects were divided into two groups: with 

a short CTLA4 3′UTR (AT)n element (seven repeats) or long (AT)n element (8 repeats).

qRT-PCR analysis of T cell lines
Total RNA was extracted from autoreactive T-cell lines and primary CD8 T-cell clones 

using a Nucleospin miRNA kit (Machery-Nagel, Düren, Germany). Complementary DNA 

synthesis was carried out with Superscript III (Invitrogen, Carlsbad, CA, USA) and oligo-dT 

primers (Promega, Madison, WI, USA) according to manufacturer instructions. qRT-PCR 

analysis were performed for CTLA4 (Sense: 5′-TAGCTTTCTCCTCACAGCTGT-3′
Antisense: 5′-TTTTCACATTCTGGCTCTGTT-3′) and GAPDH (Sense: 

5′-TGCACCACCAACTGCTTAGC-3′;Antisense: 5′-GCATGGACTGTGGTCATGAG-3′) 
using an iCycler5 with SYBR-green Super-mix (Bio-Rad, Hercules, CA, USA).

CTLA-4 3’UTR cloning and T cell transduction
The CTLA4 3′UTR was cloned downstream of the GFP cassette in the lentiviral vector 

pRRL-GFP using sense primer 5′-AGCAATTTCAGCCTTATTTT-3′ and antisense 

primer 5′-AAACGACCACCACAGATTTTTA-3′. Human DNA isolates were used as 

template. Constructs and length of (AT)n region were sequence verified. Total RNA 

from Jurkat cells was obtained using RNA-Bee (Tel-Test, Friendswood, USA) according 

to manufacturer’s instructions. Complementary DNA synthesis was performed using 

Superscript III (Invitrogen) and oligo-dT primers (Promega) according to manufacturer 

instructions. Quantitative RT-PCR was performed with SYBR-Green Master Mix (Life 

Technologies, Carlsbad, CA, USA) using the StepOnePlus (Life Technologies) system. 

The following primers were used: GFP (Sense: 5′-GAAGCGCGATCACATGGT-3′, Antisense: 

5′-CCATGCCGAGAGTGATCC-3′), OAZ1 Sense: 5′-GGATCCTCAATAGCCACTGC-3’, 

Antisense: 5’-TACAGCAGTGGAGGGAGAC-3′). Each experiment was performed at least 

three times

Fluorescence-activated cell sorting analysis
Ninety-six-well plates were coated with α-CD3 (eBioscience, San Diego, CA, cat #16-

0037-85) at a 1:1,000 dilution for 4 h at 37 °C. T cells were incubated on coated plates 

overnight at 37 °C in full IMDM medium as described above. Before fluorescence-activated 

cell sorting analysis cells were treated with Golgi-stop (BD Biosciences San Jose, CA, USA; 

cat. #554724) for 2 h. Cells were fixed and permeabilized using Cytofix/Cytoperm Plus (BD 

Biosciences, cat. #555028) according to manufacturer protocol. Staining for CTLA4 was 
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carried out for 30 min on ice using an APC-conjungated α-152 antibody (BD Biosciences, 

cat. #560938) at a 1:10 dilution. IgG2a-APC (BD Biosciences, cat. #552893) was used as 

isotype control.

Stastistical analysis
The non-random association between AT length and CT60 was defined by the delta (D’) 

coefficient and was calculated using the UNPHASED software package.30 As the groups 

analyzed appeared to have different variances an unequal variances Welch t-test was 

performed to analyze CTLA4 mRNA expression in autoreactive T cells lines. A paired 

Student’s t-test was used for comparison of GFP mRNA expression in transduced Jurkat 

cells. All tests were two-sided.
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Supplementary Figure 1. CTLA4 (AT)n does not affect CTLA-4 mRNA decay. Jurkat cells transduced 
with a vector containing an (AT)7 (open circles) or (AT)28 (black circles) element were treated with 
Actinomycin D and GFP mRNA was analysed at different time points. Cells were harvested at different 
time points and qRT-PCR analysis for GFP was performed at and normalized for the housekeeping 
gene OAZ1 in triplicates. Results are shown as mean ± S.E.M.
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Supplementary Table 1. Frequency distribution of (AT)n alleles

(AT)n CT60A CT60G

AT7 153 10
AT11 0 3
AT15 0 16
AT16 0 90
AT17 0 20
AT18 0 11
AT19 0 9
AT20 0 7
AT21 0 2
AT22 0 3
AT23 0 2
AT24 0 4
AT25 0 8
AT26 0 6
AT27 0 5
≥AT28 0 11
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Supplementary Table 2. Association of (AT)n length with CTLA4 CT60A/G genotype

CT60 / (AT)n wt/wt wt/variant variant/variant

AA 30 0 0
AG 6 92 0
GG 0 4 58

wt= (AT)7. variant = any (AT)n >(AT)7
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GENERAL DISCUSSION AND SUMMARY
Type 1 diabetes is an autoimmune disease that results in the loss of insulin-producing beta 

cells in the pancreas. The etiology of the disease remains incompletely understood, but 

both environmental and genetic factors contribute to disease susceptibility. Elucidating 

the genetic mechanisms involved in disease development will contribute to personalized 

medicine and is invaluable for the development of novel therapies and a potential cure. 

Transcriptional regulation of the islet-autoantigen IGRP is similar between 
pancreas and thymus and not implicated in the loss of tolerance for IGRP 
in T1D
In chapter 2 of this thesis I describe the role of differential splicing of G6PC2 between 

pancreas and thymus in the development of islet autoreactivity. G6PC2 encodes 

the autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein 

(IGRP), a known target of autoreactive CD8 T cell in T1D. Previously, Pugliese et al. 

suggested that absence of G6PC2 isoforms containing exon 3 and 4 in the thymus 

contributes to IGRP autoreactivity.1 The thymus plays a key role during T cell development 

as the anatomical site where lymphoid progenitors differentiate and are educated.2 

Through both positive and negative selection a T cell repertoire is formed that can properly 

interact with antigen presenting cells while avoiding immune responses to the body’s own 

tissue.  Potentially autoreactive cells are eliminated in the thymus in a process referred to 

as central tolerance, which involves presenting tissue-specific autoantigens to developing 

T cells and the removal of those cells with the potential to react to these autoantigens. 

That negative selection contributes to the prevention T1D is illustrated by the fact that 

disease promoting INS variant associate with a quantitative reduction of thymic insulin 

expression, which is thought to impair negative selection of INS reactive T cells and promote  

islet autoreactivity.3,4

In 2006 differential splicing of G6PC2 between thymus and pancreas was hypothesized 

to exert an effect on islet-reactivity through incomplete negative selection of IGRP-specific 

T lymphocytes. We initially set out to quantify the autoreactivity against G6PC2 isoforms  

containing exon 3 and 4 in T1D patients,  as these isoforms were supposedly lacking from 

the thymus. However, using G6PC2 isoform specific primers demonstrated that actually 

all G6PC2 isoform that employ conventional splice sites are expressed in the thymus, be 

it at considerably lower levels than in pancreatic islets.  Yet, we did identify three novel 

splice variants that were only detectable in islet-isolates. As thymic expression of regular 

G6PC2 isoforms was already near the lower detection limit of our assays, our inability to 

detect these in thymic tissue might have resulted from technical limitations, rather than 

from actual differential expression between pancreas and thymus. Further, these novel 

islet-specific isoforms employ unconventional splice sites and whether they actually are 

valid isoforms or erroneous byproducts of normal splicing remains to be determined by 

proteomic studies and immunohistochemistry. Yet, if proven to be translated into protein 
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product these isoforms would be an interesting subject for further functional studies, given 

their exclusivity to islet cells.  

Next, we investigated autoreactivity against IGRP isoforms by quantifying IGRP 

autoantibody levels and frequencies of IGRP-specific, HLA-A2 restricted CD8 T cells in 

peripheral blood of patients and healthy individuals. Interestingly, T cells reactive against 

IGRP-derived peptides could be readily detected in the peripheral blood of healthy 

individuals, suggesting that negative selection of IGRP reactive T lymphocytes is incomplete. 

Yet, no significant difference could be detected between T1D patients and healthy 

individuals, implying that the apparent defective negative selection of IGRP-reactive T cells 

is insufficient development of T1D.  In our study we focused on the interaction between 

IGRP and HLA-A2, the class I molecule that occurs with the highest frequencies  among 

T1D patients.5 Ideally we would have also been able to analyze T cells recognizing IGRP 

peptides in the context of other T1D associated HLA molecules, especially HLA-DR and 

HLA-DQ molecules given their strong genetic linkage to T1D development. Unfortunately, 

our technical platform currently precludes us from employing any HLA molecule other 

than HLA-A2.  While it is technically possible to produce HLA class II tetramers, in vitro 

generated HLA-class II monomers are highly unstable.  Their stability can be improved by 

covalently linking the peptide of interest to the HLA class II monomer, yet this increases 

the complexity of their production process and prohibits the  high throughput analysis as 

we have performed here.6,7 If technological advances would allow a similar approach for 

class II HLA molecules as we have performed here for HLA-A2,  it would be interesting 

to determine the immunogenicity of  IGRP splice variants in the context of the remaining 

HLA class I and class II molecules to determine their actual impact on the autoimmune 

response in T1D. 

The presence of IGRP-specific T cells in peripheral blood of healthy individuals 

suggests that incomplete negative selection alone is insufficient for autoimmune disease 

to develop. IGRP reactive T cells can display potent cytotoxic activity in vitro and in vivo.8,9 

Therefore, the protection from β-cells lysis in healthy individuals must be effectuated by 

means other than thymic selection. Potential mechanism involve peripheral suppression of 

autoreactivity by regulatory T cells (Tregs) or inhibitory mechanisms inherent to autoreactive 

cells, e.g. increased activation threshold preventing autoreactive T cells from becoming 

activated,  or activation induced cell death (AICD) causing apoptosis upon recognition of 

an autoantigen.10,11 The role of the thymus in self-tolerance induction of CD4 T cells was 

recently shown to be dependent on the autoantigen involved.12 Although our study was 

not designed to answer this question, it appears that distinct methods of self-tolerance 

induction exist for CD8 T lymphocytes as well and the role of the thymus in the prevention 

autoreactivity against IGRP is limited.

Since its discovery as an islet-autoantigen IGRP has been regarded as one of the driving 

antigens for disease development and progression in mice.13-15 However, its exact role 

in the pathophysiology of human T1D remained controversial as the frequency of IGRP-

specific CD8 T cells in the peripheral blood of T1D patients is modest compared that 
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to murine models.16,17 In our study antibody titers and CD8+ T cell frequencies against 

IGRP and its isoforms were low and non-discriminating between health and disease. This 

suggests against the role of disease-driving antigen for IGRP in human T1D. Still, previous 

studies from our laboratory showed that IGRP-specific CD8 cells are present in human 

insulitic lesions and adoptive transfer of human IGRP-specific CD8 T cells into HLA-A2 

transgenic mice provokes insulitis and β-cell destruction.8,18 Thus, while IGRP does not 

appear to be a driving autoantigen in human autoimmune diabetes, IGRP autoreactivity 

seems to contribute to the etiology of T1D and clarifying its exact role it would  

be worthwhile. 

Concluding, the difference of G6PC2 expression between pancreas and thymus is 

not so much quantitative as it is quantitative. Further, it appears the role of the thymus 

in tolerance induction against IGRP is limited at most and the effect of reduced thymic 

G6PC2 expression on the occurrence of autoimmune disease appears negligible. 

Posttranscriptional control of pro-apoptotic genes by miRNA contributes 
to apoptosis resistance in autoreactive T cells in T1D
In T1D autoreactive CD8+ T-cells destroy insulin-producing β-cells that display their 

cognate autoantigen on the cell surface. Yet, as described in chapter 2 islet-reactive 

T-cells can be readily detected in the peripheral blood of healthy individuals. A potential 

difference between health and disease may be the capacity of peripheral regulatory T 

cells to dampen autoimmune responses or prevent them from even happening.Reduced 

Treg activity has been described for several autoimmune diseases, including T1D.19and,  

increased resistance for regulation by autoreactive T effector cells has been suggested 

as well.20 In chapter 3 of this thesis we compared two autoreactive T cell clones isolated 

from a T1D patient with a T cell clone isolated from a healthy individual, all recognizing 

the same peptide:HLA complex and displaying comparable in vitro cytotoxicity. We 

observed that the healthy individual’s autoreactive T cells could be stimulated for a finite 

number of times before collapsing, a characteristic not observed in autoreactive T cells 

obtained from a T1D patient. Therefore, we tested the hypothesis that in T1D uncontrolled 

expansion of diabetogenic T cells occurs as a result of failure to activate apoptosis upon 

repeated antigen exposure. 

Transcriptome analysis of the T cells clones revealed reduced expression of TRAIL, 

TRAIL-R2, FAS and FASLG, members of the extrinsic apoptosis pathway, in patient-derived 

compared to healthy-donor-derived T cells. This was mirrored by increased expression 

of microRNAs (miRNAs) predicted to regulate these particular genes, namely miR-98, 

miR-23b and miR-590-5p. Gene specific targeting by these microRNAs was confirmed 

using dual-luciferase reporter assays. Finally, transfection of these microRNAs into primary 

T-cells reduced FAS and TRAIL mRNA expression, underscoring the functional relevance 

of these microRNAs in effectuating resistance to apoptosis of autoreactive T cells. Thus, 

we showed that the differences in proliferative capacity between autoreactive T cells 
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from health and disease associates with altered in expression of pro-apoptotic genes and 

the post-transcriptional factors regulating them.

To definitively prove that the increased proliferative capacity of autoreactive T 

cells from T1D patients stems from altered expression of pro-apoptotic factors and 

the microRNAs governing them, we set out to reverse the observed phenotypes via 

molecular intervention. Primary T lymphocytes are notoriously difficult to transfect, but  

we show that nucleofection is a viable way of introducing miRNA into primary autoreactive 

T cells.  Unfortunately, employing this method on T-cells derived from non-diabetic donors 

caused cell death in the majority of cells within 24 hours after treatment. This timeframe fell 

short of the minimal time needed to observe an effect of miRNA treatment, as a resting/

recovery phase for the cells and the time required for the miRNA to assert its effect needs 

to be taken into account. Another difficulty with our initial approach was that the estimated 

half-life for miRNAs is approximately 5 days.21 The proliferative capacity of a T cell clone 

can only be reliably tested at the end of its respective restimulation cycle, which is around 

10 days  for the autoreactive T cell clones described here. To deal with these limitations, 

we opted to use virus-specific T cells that express high levels of FAS and TRAIL and are 

relatively resistant to the negative effects of nucleofection and measure the effect of our 

treatment with quantitative PCR analysis of FAS and TRAIL mRNA. By doing so we were 

able to provide evidence that overexpression of miR-23b, miR-98 and miR-590-5p indeed 

leads to reduced expression of members of the FAS and TRAIL pathways and thereby may 

contribute to increased survival of autoreactive T cells.

Our observations and transcriptome comparisons in this study involved a single  

IGRP265-273-reactive T cell clone derived from a healthy individual and two IGRP265-273-reactive 

T cell clones from a T1D patient. Autoreactive CD8+ T cell clones are extremely difficult to 

produce and maintain in culture without loss of antigen specificity, especially autoreactive 

T cells derived from healthy individuals. The clones used in this study represent the majority 

of IGRP-specific CD8 T cell clones available worldwide, and although the limited number 

of samples poses a potential sampling bias, here we have been able to reproducibly 

investigate the transcriptomes of autoreactive cells that were actually primed in vivo, 

and thus likely involved in β-cell destruction, with their non-pathogenic counterparts 

from healthy individuals. Naturally our study would have been strengthened if more 

clones could have been examined, particularly from the healthy individuals.  We have 

aimed to obtain and compare IGRP specific cells directly after isolation from the blood 

of T1D patients and healthy individuals using a FACS-based approach in an attempt to 

increase the number of T cell clones for our study. Due to the low numbers of circulating 

autoreactive cells of a given specificity in both T1D patients and healthy individuals, using 

this approach we were unable to robustly test mRNA and miRNA expression in T cells 

with a single specificity using this approach. Yet, by comparing pooled autoreactive cells 

with varying specificities from recent onset T1D patients to pooled virus-reactive cells 

from the same individuals we were able to show a significant difference in FAS and TRAIL 

expression between autoreactive T cells and virus-specific T cells within a single individual, 
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which lends support to the notion that autoreactive T cells have impaired expression of 

surface death receptors and a subsequent increased resistance to apoptosis induction 

(unpublished data). Further, given the promising results from these preliminary data I am 

convinced that this approach stands to be an excellent alternative to the laborious cell-

culture and may offer new opportunities to analyse autoreactive T cells directly ex-vivo in 

the near future. 

Thus, repression of pro-apoptotic pathways by miRNAs contributes to unrestricted 

expansion of diabetogenic cytotoxic T-cells, implicating miRNA-mediated gene silencing 

in islet autoimmunity in T1D. Further analysis of the miRNA transcriptome of autoreactive 

cells might provide novel therapeutic options and elucidation of the mechanisms that 

govern miRNA expression may result in the identification of (environmental) triggers 

involved in T1D development. 

Rare variants alter post-transciptional regulation of T1D risk genes
In chapter 4 of this thesis we investigated the possible interaction between rare 

genetic variants and functionality of miRNAs, which play an important role in the post-

transcriptional regulation of gene expression.  Genome wide association studies (GWAs) 

have greatly increased our knowledge on disease-associated genomic regions. However, 

even when taking all verified disease-associated gene variations into account we still 

cannot completely explain the heritability of T1D. GWAs are designed for the detection 

of common single nucleotide polymorphisms (SNPs).  Rare SNPs and structural variations 

such as insertions, deletions and repeats are not analyzed with current GWAs and it is 

therefore hypothesized that the ’missing heritability’ of complex diseases such as T1D  can 

be explained by these types of genetic variations.  

The magnitude of the missing heritability of T1D is subject to debate, with estimates 

for the unexplained heritability ranging from 0% to 40%.22-25 Regardless of the size of 

the unexplained heritability, consensus is that common genetic risk variants are unlikely 

further our understanding  and that future research should focus on structural and  

rare variants.26

In our proof-of-concept study we have investigated rare polymorphisms in T1D risk 

genes with the propensity to influence post-transcriptional gene control by affecting 

miRNA function. miRNAs in general are pleiotropic, with each miRNA regulating up to 

several hundreds of protein-coding mRNAs. In our study we limited our investigation to 

genes with known association for T1D susceptibility and investigated whether they were 

predicted to be under regulatory control by miRNAs. Using in silico modeling we identified 

miRNAs that could potentially interact with mRNA of T1D genes. With gene-targeting 

models we validated these predictions and demonstrated in vitro that rare SNPs, miRSNPs, 

have the capacity to modulate post-transcriptional gene control by instilling or abrogating 

miRNA-mediated gene silencing, a novel mechanism through which rare polymorphisms 

can affect T1D associated gene pathways. Although this study is a proof-of-concept rather 
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than a comprehensive analysis, we already describe several functionally active miRSNPs 

in T1D associated gene loci. Currently little is known about the biological importance 

of the miRNA identified in this study, i.e. miR-302a* and miR-523, and the expression 

patterns of these miRNA.  However, knowledge on both miRNA species and genetic 

polymorphisms is rapidly increasing  and the association between environemtal cues 

and miRNA expression is becoming more clear.27 Although further research is required to 

establish the actual impact of miRSNPs on development and heritability of autoimmune 

diseases, this study provides a potential mechanism by which  environmental factors can 

interact with genetic susceptibility factors in the development of T1D. 

The CTLA 3’ UTR (AT)n microsatellite is causal for the  association of  
the CTLA4 locus with genetic susceptibility for T1D 
Cytotoxic T-lymphocyte antigen-4 (CTLA-4) is a surface molecule present on activated 

T cells that inhibits the T cell receptor signalling upon binding to its ligands CD80 

and CD86.  It has been hypothesized that inherited variations in the CTLA4 gene can 

increase T cell autoreactivity and thereby play a role in autoimmune diseases such as 

T1D. Indeed, the CTLA4 locus was among the first genomic regions to be associated 

with susceptibility for T1D. Yet, the genetic variant causal for the actual association, as 

well as the molecular mechanisms associated with increased disease susceptibility have 

long remained unknown. Recent fine mapping studies have shown that the region marked 

by the single-nucleotide polymorphism CT60 (rs3087243) downstream of the CTLA4 

3’UTR acts as a susceptibility factor.28,29 This CT60 polymorphism maps to a non-coding 

region and the mechanisms through which it would influence CTLA4 expression remains 

elusive. In chapter 5 of this thesis we provide evidence that a structural genomic variant, 

i.e. the (AT)n microsatellite located within the 3’ untranslated region (UTR) of CTLA4, is 

causal for the genetic association of CTLA4 with T1D susceptibility. First, we investigated 

the association of the CTLA4 (AT)n microsatellite with the T1D risk marker CT60 . Analysis 

showed that CT60 status and (AT)n length were in extremely strong linkage and that CTLA4 

alleles containing longer (AT)n elements are uniquely associated the CT60G risk haplotype. 

Conversely, the protective CT60A haplotype was observed  more frequently in association 

with wild-type, short, (AT)n elements. Thus, long (AT)n elements within the 3’UTR of CTLA4 

would directly correlate with increased risk for islet autoimmunity. In autoreactive T cell 

lines increased microsatellite length associated with a significant decrease in CTLA4 mRNA 

expression and direct transfer of a long (AT)n microsatellite resulted in decreased reporter 

mRNA expression compared to the transfer of a short (AT)n element.

It should be noted that the number of T cell lines studied we have studied here, i.e. 

10 patient T cell lines and 8 control lines, is low and represents a potential limitation to 

our findings. Yet, it should also be appreciated that the cell lines used here are extremely 

rare and generation of additional cell-lines is technically highly demanding. Furthermore, 

the fact that a significant difference between the lines when stratified on (AT)n  genotype 
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was still detected, despite the heterogeneous composition of the cell lines, indicates 

robustness of the association between (AT)n  genotype and CTLA-4 expression. 

In order to assess the effect of the (AT)n  length on CTLA4 expression we transferred 

the 3’UTR of CTLA4 variants with different (AT)n  lengths into a GFP reporter constructs. 

Sequencing analysis excluded any variation other than the (AT)n  element between 

the generated constructs.  Upon transduction of the constructs into a immortalized 

lymphocyte cell line we observed a significant difference on steady state GFP mRNA levels, 

with the construct containing a long  (AT)n  element showing decreased levels of reporter 

mRNA. The use of a long-standing immortalized cell line instead of actual T lymphocytes 

introduces the possibility of culture artefacts or aberrant outcomes due to differences 

in intracellular mechanisms, with the addition of  potential genomic instability due to 

the process of transduction. Yet, as our results were consistent over two separate rounds 

of transduction, performed with separately produced virus batches, we are confident 

these confounders were kept to a minimum and our results reflect the actual influence of  

the (AT)n  repeat on gene expression.

The location of the microsatellite in the 3’ UTR, known for its role in post-transcriptional 

gene regulation, suggests that the mechanisms underlying the observed differences in 

mRNA expression involve altered post-transcriptional control. In our study we did not 

observe any significant effect of the (AT)n  repeat on mRNA decay rate.  While this suggests 

that the (AT)n  repeat does not affect mRNA stability it remains possible that transcription-

dependent factors have acted as rate-limiting factors in our experiment. Proteins with 

a very short half-life, or a RNA-silencing moieties that are consumed as a result of 

their actions would  be equally affected by the actinomycin D treatment used to block 

the transcription of our GFP reporter. The actinomycin D treatment may thereby have 

obscured any mRNA decline that would have normally occurred in vivo between short and 

long (AT)n containing  mRNA. Alternatively, the difference in mRNA levels may be the result 

of different transcriptional regulation, and not altered post-transcriptional control. It is 

known that the location of a genomic element does not necessarily correspond with its 

function and that genomic interactions can occur between regions that are up to hundreds 

of kilobases apart.30 Therefore, while its localization suggests that the (AT)n  microsattelite 

affects post-transcriptional regulation, possibly via  short-lived regulatory molecules, 

our current data do not allow us to exclude long-range gene interactions or differential 

binding of chromosomal moieties as factors in the observed difference in CTLA4 mRNA 

expression. Still, the extremely strong association between the CT60 risk variant and long 

(AT)n  alleles, combined with the direct effect of the (AT)n  repeat on mRNA expression 

suggests a causal role for the (AT)n  microsatellite in the genetic association of the CTLA4 

region with T1D susceptibility.
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FUTURE PERSPECTIVES
The last two decades have provided (bio)medical scientists with a wealth of information on 

the genetics of complex diseases such as T1D. Understanding exactly how gene variants 

influence disease susceptibility and determining the interplay between environment, 

genetics and immunology have proven to be the next hurdles to overcome. Achieving 

this goal may enable us to predict disease progression, design novel treatment methods 

and improve patients categorization in order to provide actual personalized medicine. 

The contributions of this thesis are summarized in Figure 1. In short, we reposition 

the proposed alternative splicing of G6PC2 between thymus and pancreas, discuss 

the role of the thymus in tolerance towards the putative islet-autoantigen IGRP and argue 

the validity of  IGRP as an critical islet-antigen in T1D. Further we show that a structural 

genetic variant located with the 3’ UTR of CTLA4 associates with risk for T1D development 

and influences expression of the immune regulator CTLA-4. In addition, we show that 

rare genetic variants can influence microRNA mediated post-transcriptional control, 

identifying a novel mechanism through which genetic predisposition might interact with 

environmental trigger to influence (auto)immunity and contribute to familial aggregation 

of T1D. Finally, we show that pivotal apoptosis pathways are affected in autoreactive T 

lymphocytes of T1D patients and that microRNA play a vital role in this, again indicating 

the importance of understanding of gene-gene and gene-environment interactions in 

the development of T1D. Yet, our work only covers a small part of the unknown and many 

aspects of the functional genetics of T1D remain to be addressed. As mentioned before, 

Figure 1. The immune reaction in Type 1 Diabetes – an update.  Adapted from B.O. Roep,  
Nature, 200737
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despite their valuable contribution thus far, larger GWAs studies are unlikely to aid this 

cause further, as potential new risk SNPs are expected to carry a very modest impact on 

disease susceptibility at best. With current technological advances and the advent of large 

sequencing centers, whole-genome sequencing, a technique that charts the complete 

genome of a single individual, has come within reach for academic researchers. Using 

whole-genome sequencing, future research will be able to overcome the limitations of 

GWAs by assessing al genetic variation within a single individual at once. At the same 

time this approach will generate an unparalleled amount of complex data. Data analysis, 

processing and statistics will most likely prove to be a bottleneck and new strategies for 

data-management will be required. From the cell-biological perspective of T1D research, 

optimization of single cell techniques that will allow for direct isolation and investigation 

of autoreactive T cells directly isolated from peripheral blood can eliminate cell culture 

artifacts and provide ‘clean’ data regarding the make-up of diabetogenic T cells and what 

distinguishes them from their non-diabetogenic counterparts. Further, direct isolations will 

allow for high-throughput analysis and remove the problem of limited sample availability 

currently complicating research.  Combined with improvements in big data analysis, this 

approach may prove invaluable in identifying molecular pathway involved in, or even 

preceding, β cell destruction. 

THERAPY
The cure and complete prevention of disease occurrence is the ultimate goal in medicine, 

but is also be the hardest goal to achieve. Fortunately, treatment modalities are constantly 

improving, allowing for better patient care in the interim. The future holds several promising 

outlooks for management of T1D, among which the artificial pancreas31, stem-cell derived 

(neo) β cells32 and promising immunotherapies.33-35 Recent myeloablative therapies with 

subsequent autologous stem cell transplantation that resulted in reduced, and in some cases 

very long-standing, insulin dependency demonstrate the power of immunotherapies and 

indicate that reprogramming the immune system may hold a potential cure for T1D 36.  Yet, 

the current approach subjects patients to high-risk conditions, using chemotherapies that 

cause temporary immunodeficiency and potentially life-threatening infections. Efforts are 

undertaken to try and achieve a subtler reprogramming of the unwanted immune reaction 

in a tissue-specific manner, thereby reducing risk of the procedure while maintaining its 

efficacy. As T1D is a heterogeneous disease, a (semi-) personalized approach is warranted 

for the selection of appropriate candidates and appropriate immune endpoints for these 

novel therapies. Detailed knowledge on the genetic background of affected individuals 

and their exposure to environmental risk modulators can be used to ‘match’ the patient to 

the correct treatment and reduce the unnecessary exposure of patients to therapies that 

are unlikely to provide them any benefit. Determining biomarkers that distinguish T1D 

patients from healthy individuals, genetic factors that can mediate environmental triggers 

to altered immune status and genetic variants that are causal for the association of T1D loci 
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with disease, as described in chapter 3, chapter 4 and chapter 5 of this thesis, will benefit 

patient selection and subsequent personalized treatment. Therefore, it is imperative that 

it remains a focus of attention alongside the development of novel therapeutic strategies. 

Currently several approaches using recombinant antibodies to immune-receptors, adoptive 

regulatory T cell therapy or vitamin D modified dendritic cells are in progress, and might 

prove efficacious and feasible options for the treatment of T1D. As with anything the proof 

of the pudding is in the eating, and results of these trials are eagerly awaited. 

Other strategies for combatting T1D aim to restore the insulin deficit directly, and 

thereby glycemic control, in T1D, rather than correcting the autoimmune response. 

The development of  automated, closed-loop systems that mimic the pancreas’ ability to 

sense glucose and release insulin according to need promises improved glycaemic control 

and increasing quality-of-life for T1D patients. Although this provides great promise in 

terms of improved quality of life and reduces the chance of acute complications of insulin 

replacement therapy, the artificial pancreas is not expected to fully reach the accuracy of 

endogenous β cells and will probably not completely prevent the long-term complications 

of T1D. Advances in (islet) transplantation have made replacement of lost β cells a realistic 

option for T1D patients, although as with all transplantations this approach suffers greatly 

from the shortage of donor organs and side-effects associated with immunosuppressive 

drugs that are, ironically, toxic to β-cells. Furthermore, as autoimmunity has a long-lived 

memory, the disease often recurs, leaving patients again dependent on exogenous 

insulin administration. The development of islet-protecting encapsulations, that allows for 

the free transfer of insulin while preventing the destruction of transplanted islets, promises 

better graft survival and transplant success. Concurrently, new sources of β cells are being 

investigated and with recent breakthroughs in differentiation of embryonic stem cells to 

(neo) beta-cells and establishment of immortalized β cell lines renewable sources of β cells 

appear within reach. 

With all of these approaches issues regarding safety, feasibility, efficacy and cost-

effectiveness need to be addressed and the continuing efforts of all those involved in 

overcoming T1D  will be needed for the years to come. 



GENERAL DISCUSSION AND SUMMARY

111

6

REFERENCES
1. Dogra, R. S. et al. Alternative splicing of 

G6PC2, the gene coding for the islet-
specific glucose-6-phosphatase catalytic 
subunit-related protein (IGRP), results 
in differential expression in human 
thymus and spleen compared with 
pancreas. Diabetologia 49, 953-957,  
doi:10.1007/s00125-006-0185-8 (2006).

2. Rosmalen, J. G., van Ewijk, W. & Leenen, 
P. J. T-cell education in autoimmune 
diabetes: teachers and students. Trends 
in immunology 23, 40-46 (2002).

3. Vafiadis, P. et al. Insulin expression in 
human thymus is modulated by INS 
VNTR alleles at the IDDM2 locus. Nat 
Genet 15, 289-292 (1997).

4. Pugliese, A. et al. The insulin gene is 
transcribed in the human thymus and 
transcription levels correlate with allelic 
variation at the INS VNTR-IDDM2 
susceptibility locus for type 1 diabetes. 
Nat Genet 15, 293-297 (1997).

5. Noble, J. A. & Valdes, A. M. 
Genetics of the HLA Region in 
the Prediction of Type 1 Diabetes. 
Current diabetes reports 11, 533-542,  
doi:10.1007/s11892-011-0223-x (2011).

6. Reijonen, H. et al. Detection of GAD65-
Specific T-Cells by Major Histocompatibility 
Complex Class II Tetramers in Type 1 
Diabetic Patients and At-Risk Subjects. 
Diabetes 51, 1375-1382 (2002).

7. Novak, E. J., Liu, A. W., Nepom, G. T. 
& Kwok, W. W. MHC class II tetramers 
identify peptide-specific human CD4+ 
T cells proliferating in response to 
influenza A antigen. The Journal of 
Clinical Investigation 104, R63-R67, 
doi:10.1172/JCI8476.

8. Unger, W. W. et al. Islet-specific CTL 
cloned from a type 1 diabetes patient 
cause beta-cell destruction after 
engraftment into HLA-A2 transgenic 
NOD/scid/IL2RG null mice. PloS 
one 7, e49213, doi:10.1371/journal.
pone.0049213 (2012).

9. Unger, W. W. J. et al. Human Clonal 
CD8 Autoreactivity to an IGRP Islet 
Epitope Shared between Mice and Men. 
Annals of the New York Academy of 
Sciences 1103, 192-195, doi:10.1196/
annals.1394.024 (2007).

10. Mallone, R. et al. Differential recognition 
and activation thresholds in human 
autoreactive GAD-specific T-cells. 
Diabetes 53, 971-977 (2004).

11. Bian, M. L. et al. Reactivated 
CD4<sup>+</sup>Tm Cells of T1D 
Patients and Siblings Display an 
Exaggerated Effector Phenotype With 
Heightened Sensitivity to Activation-
Induced Cell Death. Diabetes 64, 2161-
2171, doi:10.2337/db14-1151 (2015).

12. Malhotra, D. et al. Tolerance is 
established in polyclonal CD4(+) T 
cells by distinct mechanisms, according 
to self-peptide expression patterns. 
Nature immunology 17, 187-195,  
doi:10.1038/ni.3327 (2016).

13. Lieberman, S. M. et al. Identification 
of the β cell antigen targeted by 
a prevalent population of pathogenic 
CD8+ T cells in autoimmune diabetes. 
Proceedings of the National Academy of 
Sciences 100, 8384-8388, doi:10.1073/
pnas.0932778100 (2003).

14. Han, B. et al. Prevention of diabetes by 
manipulation of anti-IGRP autoimmunity: 
high efficiency of a low-affinity 
peptide. Nature medicine 11, 645-652, 
doi:10.1038/nm1250 (2005).

15. Anderson, B., Park, B.-J., Verdaguer, J., 
Amrani, A. & Santamaria, P. Prevalent 
CD8+ T cell response against one 
peptide/MHC complex in autoimmune 
diabetes. Proceedings of the National 
Academy of Sciences 96, 9311-9316, 
doi:10.1073/pnas.96.16.9311 (1999).

16. Mallone, R. et al. CD8+ T-Cell Responses 
Identify β-Cell Autoimmunity in Human 
Type 1 Diabetes. Diabetes 56, 613-621, 
doi:10.2337/db06-1419 (2007).



CHAPTER 6

112

17. Velthuis, J. H. et al. Simultaneous Detection 
of Circulating Autoreactive CD8+ T-Cells 
Specific for Different Islet Cell–Associated 
Epitopes Using Combinatorial MHC 
Multimers. Diabetes 59, 1721-1730, 
doi:10.2337/db09-1486 (2010).

18. Coppieters, K. T. et al. Demonstration of 
islet-autoreactive CD8 T cells in insulitic 
lesions from recent onset and long-term 
type 1 diabetes patients. The Journal 
of Experimental Medicine 209, 51-60, 
doi:10.1084/jem.20111187 (2012).

19. Buckner, J. H. Mechanisms of impaired 
regulation by CD4(+)CD25(+)FOXP3(+) 
regulatory T cells in human autoimmune 
diseases. Nature reviews. Immunology 
10, 849-859, doi:10.1038/nri2889 (2010).

20. Schneider, A. et al. The effector T cells 
of diabetic subjects are resistant to 
regulation via CD4+FOXP3+ Treg. 
Journal of immunology (Baltimore,  
Md.: 1950) 181, 7350-7355 (2008).

21. Gantier, M. P. et al. Analysis of microRNA 
turnover in mammalian cells following 
Dicer1 ablation. Nucleic Acids Research, 
doi:10.1093/nar/gkr148 (2011).

22. Frazer, K. A., Murray, S. S., Schork, N. J. 
& Topol, E. J. Human genetic variation 
and its contribution to complex traits. 
Nat Rev Genet 10, 241-251 (2009).

23. Eichler, E. E. et al. Missing heritability 
and strategies for finding the underlying 
causes of complex disease. Nat Rev 
Genet 11, 446-450 (2010).

24. Manolio, T. A. et al. Finding the missing 
heritability of complex diseases. 
Nature 461, 747-753, doi:10.1038/ 
nature08494 (2009).

25. Clayton, D. G. Prediction and interaction 
in complex disease genetics: experience in 
type 1 diabetes. PLoS genetics 5, e1000540, 
doi:10.1371/journal.pgen.1000540 (2009).

26. Goldstein, D. B. Common Genetic 
Variation and Human Traits. New England 
Journal of Medicine 360, 1696-1698, 
doi:10.1056/NEJMp0806284 (2009).

27. Vrijens, K., Bollati, V. & Nawrot, T. S. 
MicroRNAs as potential signatures 
of environmental exposure or effect: 
a systematic review. Environmental 
health perspectives 123, 399-411, 
doi:10.1289/ehp.1408459 (2015).

28. Barrett, J. C. et al. Genome-wide 
association study and meta-analysis 
find that over 40 loci affect risk of type 
1 diabetes. Nat Genet 41, 703-707, 
doi:http://www.nature.com/ng/journal/
v41/n6/suppinfo/ng.381_S1.html (2009).

29. Onengut-Gumuscu, S. et al. Fine 
mapping of type 1 diabetes susceptibility 
loci and evidence for colocalization 
of causal variants with lymphoid gene 
enhancers. Nat Genet 47, 381-386, 
doi:10.1038/ng.3245 (2015).

30. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, 
J. The long-range interaction landscape 
of gene promoters. Nature 489, 109-113, 
doi:10.1038/nature11279 (2012).

31. Thabit, H. & Hovorka, R. Coming 
of age: the artificial pancreas for 
type 1 diabetes. Diabetologia,  
doi:10.1007/s00125-016-4022-4 (2016).

32. Agulnick, A. D. et al. Insulin-Producing 
Endocrine Cells Differentiated In Vitro From 
Human Embryonic Stem Cells Function in 
Macroencapsulation Devices In Vivo. Stem 
cells translational medicine 4, 1214-1222, 
doi:10.5966/sctm.2015-0079 (2015).

33. Kleijwegt, F. S. et al. Tolerogenic 
dendritic cells impede priming of 
naive CD8(+) T cells and deplete 
memory CD8(+) T cells. European 
journal of immunology 43, 85-92,  
doi:10.1002/eji.201242879 (2013).

34. Bluestone, J. A. et al. Type 1 diabetes 
immunotherapy using polyclonal 
regulatory T cells. Science translational 
medicine 7, 315ra189, doi:10.1126/
scitranslmed.aad4134 (2015).

35. Orban, T. et al. Reduction in CD4 central 
memory T-cell subset in costimulation 
modulator abatacept-treated patients 
with recent-onset type 1 diabetes 



GENERAL DISCUSSION AND SUMMARY

113

6

is associated with slower C-peptide 
decline. Diabetes 63, 3449-3457, 
doi:10.2337/db14-0047 (2014).

36. Couri, C. E. et al. C-peptide levels 
and insulin independence following 

autologous nonmyeloablative 
hematopoietic stem cell transplantation 
in newly diagnosed type 1 diabetes 
mellitus. Jama 301, 1573-1579, 
doi:10.1001/jama.2009.470 (2009).





& NEDERLANDSE SAMENVATTING

CURRICULUM VITAE

LIST OF PUBLICATIONS

DANKWOORD 





NEDERLANDSE SAMENVATTING

117

&

NEDERLANDSE SAMENVATTING
Type 1 diabetes mellitus (T1D) is een auto-immuunziekte waarbij β-cellen in de alvleesklier 

worden vernietigd door een nog onvolledig begrepen auto-immuunreactie.  β-  cellen 

zijn sterk gedifferentieerde neuro-endocriene cellen en de enige bron van het glucose-

regulerende hormoon insuline.  Het verlies van β-cellen leidt in patiënten met T1D tot 

een tekort aan absoluut insuline en daardoor aan inadequate glucoseregulatie. Zonder 

insuline zijn vet-, lever- en skeletspiercellen niet in staat glucose uit de bloedbaan op te 

nemen, wat zowel leidt tot een tekort aan de belangrijkste energiebron voor de perifere 

weefsels als tot een verhoogde bloedsuikerspiegel (hyperglycemie). Onder normale 

fysiologische omstandigheden wordt glucose door de nieren volledig uit de pre-urine 

geresorbeerd en komt het niet in de urine terecht. Bij ernstige hyperglycemie wordt het 

resorberend vermogen van de nieren voor glucose overtroffen en is glucose aantoonbaar 

in de urine (glycosurie). Dit fenomeen is verantwoordelijk voor de naam van T1D; diabetes 

mellitus betekent zoete doorstroom in het Grieks. Door het osmotische effect van glucose 

in de nierbuisjes veroorzaakt glycosurie een gelijktijdig verlies van grote hoeveelheden 

water en elektrolyten, wat het pathognomonische symptoom van veel urineren (polyurie) 

verklaart. Polyurie veroorzaakt op zijn beurt dehydratie en daarmee overdreven dorst wat 

het tweede  pathognomische  kenmerk van diabetes mellitus verklaart; polydipsia (veel 

drinken). In de diabetische toestand is glucose niet meer beschikbaar als energiebron 

voor perifere weefsels en stapt het lichaam over naar alternatieve mechanismen van 

energieproductie om vitale cellulaire processen te handhaven, zoals de oxidatie van 

vetzuren. Als bijproduct van de oxidatie van vetzuren worden zure ketonenlichamen. Het 

verlies van circulerend volume en elektrolyten die het gevolg zijn van de glycosurie, 

gecombineerd met de verhoogde productie van zure ketonenlichamen, kan leiden tot een 

levensbedreigende verstoring van het zuur-base evenwicht in het lichaam, een medische 

noodgeval dat wordt aangeduid met de diabetische ketoacidose. Als de metabole acidose 

niet snel wordt gecorrigeerd met intraveneuze toediening van vloeistoffen en exogeen 

insuline, leidt de aandoening tot een comateuze toestand van de patiënt en uiteindelijk 

de dood. 

In een van de oudste medische geschriften, de Ebers Papyrus,  wordt al een 

ziektebeeld met de typische kenmerken van T1D beschreven door de geneesheren uit 

het oude Egypte. Ondanks dat de ziekten al duizenden jaren bekend is, betekende het 

stellen van de diagnose een onherroepelijk doodvonnis voor de patiënt totdat Banting, 

Best en collegae in 1921 als eersten insuline wisten te isoleren uit de alvleesklier van 

een hond. Deze doorbraak baande de weg voor de eerste werkelijke behandeling van 

T1D, de insuline-vervangende therapie, waarmee een dodelijke ziekte veranderde in een 

chronische aandoening. Ondanks de vooruitgang van de kwaliteit van de behandeling, 

met name door de ontwikkeling van nieuwe insuline-analogen, verbetering van  

de toedieningsmethoden en de algehele verbetering van de gezondheidszorg,  

blijft insuline-vervangende therapie een symptomatische behandeling en geen 
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genezing. Patiënten met T1D blijven   levenslang afhankelijk van exogene insulinetoediening 

en lopen daarmee continue gevaar op de acute complicaties van deze therapie. Een 

teveel aan toegediende insuline leidt tot een te laag bloedsuikerniveau (hypoglycaemie) 

en indien ernstig genoeg een hypoglycemisch coma. Een tekort aan toegediende 

insuline leidt tot een diabetische ketoacidose. Beiden complicaties kennen een mogelijk 

dodelijke afloop. Naast de acute complicaties van hun behandeling lopen T1D patiënten 

het risico om op lange termijn complicaties als oog- hart- nier- en zenuwaandoeningen 

te ontwikkelen. Dit komt doordat insuline-vervangende therapie qua glucoseregulatie 

helaas de precisie mist van β-cellen. Door de behandeling zelf, die bestaat uit meerdere 

keren per dag glucose meten middels en het toediening van insuline, en de complicaties 

van hun behandeling, ervaren T1D patiënten een verminderde kwaliteit van leven 

evenals een verminderde levensverwachting.  Opheldering van het ziekteproces van 

T1D is noodzakelijk voor de ontwikkeling van een definitieve genezing en daarmee een 

gewild doel in de moderne geneeskunde. Momenteel wordt het ziekteproces van T1D 

nog onvolledig begrepen, maar bekend is dat zowel omgevingsfactoren als genetische 

eigenschappen bijdragen aan het risico om de ziekte te ontwikkelen.  Hierbij is er een 

grote heterogeniteit in ziekteprogressie, waarmee het waarschijnlijk is dat er waarschijnlijk 

verschillende optimale therapieën bestaan voor verschillende patiënten. Het ophelderen 

van de genetische mechanismen die bij de ziekteontwikkeling betrokken zijn zal bijdragen 

aan gepersonaliseerde geneeskunde en is belangrijk voor de ontwikkeling van nieuwe 

therapieën en een mogelijke curatieve behandeling. Het doel van dit proefschrift is 

hieraan bij te dragen door nieuwe inzichten te geven in zowel transcriptionele als post-

transcriptionele genregulatie in het ziekteproces van T1D. 

Hoofdstuk 2
In hoofdstuk 2 van dit proefschrift wordt de rol van differentiële splicing van G6PC2 tussen 

alvleesklier en de thymus bij de ontwikkeling van auto-immuniteit beschreven. Het gen 

G6PC2 codeert voor het eiwit islet-specific glucose-6-posphatase catalytic subunit-related 

protein (IGRP), een bekend doelwit van autoreactieve CD8+ T cellen in patiënten met T1D. In 

een eerdere wetenschappelijke publicatie werd gesuggereerd dat bepaalde isovormen 

van G6PC2, met name degene die exon 3 en 4 van G6PC2 bevatten, niet in de thymus 

tot expressie komen en dat dit in bijdraagt aan de autoimmuun-reactie tegen IGRP. Om te 

onderzoeken wat het daadwerkelijk effect van differentiële splicing op auto-immuniteit zou 

zijn hebben we eerst  isovorm-specifieke primers voor G6PC2 ontwikkeld om de expressie 

van G6PC2 in de thymus en alvleesklier te kunnen kwantificeren. Hiermee toonden we 

aan dat, in tegenstelling tot eerdere aannames, alle  conventionele G6PC2  isovormen  

in de thymus te vinden zijn, al ware het in aanzienlijk lagere hoeveelheden dan in  

de alvleesklier. Vervolgens hebben we de  autoreactiviteit  tegen de verschillende 

G6PC2 isovormen onderzocht door het niveau van IGRP-specifieke autoantilichamen en  

de frequentie van IGRP-specifieke, HLA-A2 gerestricteerde CD8+ T-cellen in het perifere 
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bloed van de patiënten en gezonde personen te bepalen.  Ondanks dat T-cellen die 

reactief zijn tegen IGRP-afgeleide peptiden gemakkelijk gedetecteerd konden worden 

in het perifere bloed van zowel gezonde individuen als T1D patiënten, wat op zichzelf 

suggereert dat negatieve selectie van reactieve T-lymfocyten van IGRP onvolledig is, 

werd er geen significant verschil gevonden tussen T1D patiënten en gezonde individuen. 

Deze bevinding impliceert dat de defecte negatieve selectie van IGRP-reactieve 

T-cellen opzichzelfstaand onvoldoende is voor de ontwikkeling van T1D. Concluderend 

corrigeerden we een eerdere aanname dat er sprake is van kwalitatief verschil in splicing 

van G6PC2 tussen alvleesklier en thymus. Verder toonden we aan dat de negatieve selectie 

van IGRP specifieke T cellen inherent incompleet is, maar geen directe gevolgen heeft 

voor de ontwikkeling van auto-immuniteit in het kader van T1D. 

Hoofdstuk 3
Zoals reeds beschreven werd in hoofdstuk 2 worden auto-reactieve T-cellen frequent 

aangetroffen in het perifere bloed van gezonde personen.  Een mogelijk verschil 

tussen niet-aangedane individuen en patiënten zou de capaciteit van hun regulerende 

T-cellen (T-reg cellen) kunnen zijn om auto-immuunresponsen te dempen of überhaupt 

te voorkomen dat ze plaatsvinden. Zowel verminderde activiteit van T-reg  cellen, als 

een verhoogde weerstand  auto-reactieve T-cellen voor regulatie zijn beschreven voor 

verschillende auto-immuunziekten, waaronder T1D.  In hoofdstuk  3  van dit proefschrift 

vergeleken we twee auto-reactieve T-cel klonen geïsoleerd uit een T1D patiënt met een 

auto-reactieve T-cel kloon geïsoleerd uit een gezond individu. Daarbij constateerden 

we dat auto-reactieve T-cellen van het gezonde individu maar een beperkt aantal keer 

konden worden gestimuleerd totdat ze stopten met vermenigvuldigen, een kenmerk dat 

niet waargenomen werd in auto-reactieve T-cellen van de T1D patiënt.  Transcriptoom 

analyse van de verschillende T-cel klonen onthulde in de T-cellen van de T1D patiënt 

gereduceerde expressie van TRAIL, TRAIL-R2, FAS en FASLG, genen betrokken bij het 

proces van apoptose (gereguleerde celdood). De gereduceerde expressie van deze genen 

ging gepaard met verhoogde expressie van een drietal microRNA’s, moleculen met een 

belangrijke rol in de post-transcriptionele regulatie van genexpressie. Computermodellen 

voorspelden dat de microRNA’s miR-98, miR-23b en miR-590-5p betrokken waren bij 

de regulatie van TRAIL, TRAIL-R2, FAS en FASLG.  Eerst leverden we het bewijs dat  

de microRNA’s miR-98, miR-23b en miR-590-5p daadwerkelijk de genen TRAIL, TRAIL-R2, 

FAS en FASLG reguleerden met behulp van dual-luciferase reporter assays. Vervolgens 

transfecteerden we de verschillende microRNA’s in primaire T-cellen waarbij een significant 

verminderde expressie van FAS- en TRAIL-mRNA-expressie werd waargenomen. Hiermee 

werd de functionele relevantie van deze microRNA’s bij de weerstand van auto-reactieve 

T-cellen tegen apoptose onderstreept.  Omdat de expressie van microRNA’s beïnvloed 

kan worden door milieufactoren, zou verdere analyse van het microRNA transcriptoom 

van auto-reactieve cellen mogelijk nieuwe therapeutische opties kunnen verschaffen en 
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inzicht kunnen verschaffen in omgevingsfactoren die betrokken zijn bij de ontwikkeling 

van T1D. Samenvattend toonden we aan dat de verschillen in proliferatieve capaciteit 

tussen auto-reactieve T-cellen van gezonde individuen en patiënten samenhangt met 

verschillen in expressie van pro-apoptotische genen en de post-transcriptionele factoren 

die ze reguleren.

Hoofdstuk 4
In hoofdstuk 4  van dit proefschrift onderzochten we de mogelijke interactie tussen 

zeldzame genetische varianten en functionaliteit van microRNA’s.  Genoom brede 

associatiestudies (GWA’s) hebben onze kennis over de relatie van genomische gebieden 

en het voorkomen van (auto-immuun)ziekten sterk vergroot.  Echter, zelfs als men alle 

geverifieerde ziektegeassocieerde genomische regio’s van T1D in aanmerking neem, 

is het onmogelijk de erfelijkheid van T1D volledig te verklaren.  GWA’s zijn ontworpen 

voor de detectie van frequent voorkomende genvarianten, zo geheten single nucleotide 

polymorphisms (SNP’s). Daarom kunnen zeldzame SNP’s en structurele DNA variaties als 

inserties, deleties en duplicaties niet geanalyseerd worden met de huidige generatie 

GWA’s. Er wordt daarpm verondersteld dat de ‘ontbrekende erfelijkheid’ van complexe 

ziekten als T1D kan worden verklaard door zeldzame en structurele genvariaties. In een 

proof-of-concept-studie hebben we zeldzame polymorfismen in T1D-risicogenen in silico 

onderzocht op hun capaciteit om post-transcriptionele genregulatie te beïnvloeden 

door de binding van microRNA’s te veranderen. Door middel van mutagenese testten 

we deze voorspellingen en toonden in vitro aan dat zeldzame SNP’s, welke we miRSNP’s 

noemen, het vermogen hebben microRNA-gemedieerde genregulatie te beïnvloeden door 

ofwel een bindingplaats voor microRNA te creëren, dan wel deze te verstoren. Hiermee 

geven we bewijs voor een nieuw mechanisme waarmee zeldzame genvariaties het risico 

op het ontwikkelen van T1D kunnen beïnvloeden. Omdat de expressie van microRNA’s 

beïnvloed kan worden door omgevingsfactoren, omschrijft deze studie tevens een manier 

waarop omgevingsfactoren selectief voor individuen met bepaalde DNA eigenschappen 

het risico op T1D kunnen vergroten. Echter zal er eerst meer bekend moeten worden over 

de exacte manier waarop de expressie van microRNA’s zelf gereguleerd wordt voordat er 

duidelijke verbanden uit getrokken kunnen worden tussen omgevingsfactoren, zeldzame 

DNA variaties en de ontwikkeling van T1D.

Hoofdstuk 5
Cytotoxische T-lymfocytenantigen-4 (CTLA-4) is een oppervlaktemolecuul aanwezig op 

geactiveerde T-cellen dat de T-celreceptorsignalering remt. Er wordt gedacht dat variaties 

binnen het  CTLA4-gen het risico op de ontwikkeling van  auto-reactieve  T-cellen, en 

daarmee het risico op auto-immuunziekten als T1D, vergroot. Het CTLA4 locus ligt op een 

genomisch gebied dat als een van de eerste werd geassocieerd met gevoeligheid voor 

de ontwikkeling van T1D. Toch bleef de genetische variant die verantwoordelijk is voor 
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deze associatie, evenals de moleculaire mechanismen die door deze de variatie beïnvloed 

werden, onbekend. Recente studies hebben aangetoond dat de regio gekenmerkt door 

de SNP CT60 (rs3087243) fungeert als risicofactor. Het CT60 polymorfisme bevindt zich 

echter niet in het CTLA4-gen, maar ligt downstream van het gen in een niet-coderend 

gebied. De manier waarop deze variatie de functie van het CTLA4-gen zou beïnvloeden is 

dan ook niet bekend. In hoofdstuk 5 van dit proefschrift tonen we aan dat een structurele 

genvariant, namelijk  de (AT)n  microsatelliet  die zich in de 3’-untranslated region (UTR) 

van CTLA4 bevindt,   oorzakelijk is voor de genetische associatie van  CTLA4  met T1D 

gevoeligheid. Allereerst onderzochten we de associatie van de CTLA4 (AT)n microsatelliet 

met de T1D risicomarker CT60.  Deze analyse toonde aan dat CT60 status en (AT)

n  lengte zeer nauw samenhingen. CTLA4  allelen met langere (AT)n  elementen kwamen 

alleen gekoppeld met het risico haplotype CT60G voor.  Omgekeerd werd het 

beschermende CT60A haplotype vaker gezien in samenhang met wildtype, korte  (AT)

n elementen. Derhalve correleerden lange (AT)n elementen direct met een verhoogd risico 

op β-cel auto-immuniteit. In auto-reactieve T-cellijnen associeerden langere microsatelliet 

lengten met een significant verminderde CTLA4 genexpressie. Tevens leidde de transfectie 

van een lange (AT)n microsatelliet in vitro tot verlaagde reporter mRNA-expressie van een 

reportergen. Het directe effect van de lengte van de (AT)n microsatelliet op genexpressie, 

in combinatie met de uitzonderlijk sterke correlatie met CT60 status impliceert een 

causale rol voor de (AT) n microsatelliet in de genetische associatie van het CTLA4 gebied 

met T1D gevoeligheid. Tevens geeft deze een verklaring voor het mechanisme waarmee 

de variatie de gevoeligheid voor T1D verhoogd, namelijk door de expressie van het 

immuunregulerende gen CTLA4 te verminderen.

TOEKOMSTPERSPECTIEVEN
Onderzoek
De afgelopen decennia hebben (bio)medische wetenschappers een overvloed aan 

informatie over de genetica van complexe ziekten zoals T1D vergaard. Inzicht krijgen in 

hoe genvarianten ziektegevoeligheid beïnvloeden en de interactie tussen milieu, genetica 

en immunologie bepalen, zijn de volgende hindernissen om te nemen. Het bereiken van 

deze doelen kan bijdragen aan het voorspellen van ziekteprogressie, ontwerpen van 

nieuwe behandelmethoden en de ontwikkeling van “gepersonaliseerde geneeskunde”.

Dit werk heeft slechts een klein deel van de vele aspecten van de functionele genetica van 

T1D behandeld. Met recente technologische vooruitgangen is whole genome sequencing, 

een techniek die het volledige genoom van een enkel individu compleet in kaart brengt, 

binnen handbereik gekomen voor onderzoekers.  In de nabije toekomst zal het hiermee 

mogelijk zijn álle genetische variatie van een individu tegelijkertijd te bepalen, en daarmee 

de beperkingen van GWA’s wegnemen. Tegelijkertijd zal deze aanpak een ongeëvenaarde 

hoeveelheid complexe data genereren.  Waarschijnlijk zullen gegevensanalyse  

en -verwerking samen met de statistische analyse hiervan een volgend knelpunt zijn.  
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Nieuwe strategieën voor gegevensbeheer en analyse zijn dus noodzakelijk. Uit  

de celbiologisch perspectief zal het onderzoek naar T1D hoogstwaarschijnlijk profiteren 

van zogeheten single-cell technieken die momenteel (door)ontwikkelt worden. Deze 

technieken maken isolatie en analyse van auto-reactieve cellen direct uit het bloed van 

patiënten mogelijk en verminderen daarmee de kans op artefacten die komen kijken bij  

de, nu nog noodzakelijke, celkweken. Bovendien biedt het direct isoleren en analyseren van 

auto-reactieve cellen de mogelijkheid voor “high-throughput” analyses. Gecombineerd 

met verbeteringen in data-analyse kan deze aanpak van onschatbare waarde zijn bij het 

identificeren van de moleculaire mechanismen die betrokken zijn bij, of mogelijk zelfs 

diegene die voorafgaan aan, β-celvernietiging.

Behandeling
Momenteel zijn er veelbelovende vooruitzichten voor de behandeling van T1D, 

waaronder de kunstmatige alvleesklier, van stamcellen afgeleide (neo) β-cellen en 

immuuntherapieën.  Recente  myeloablatieve  therapieën gevolgd door latere autologe 

stamceltransplantatie resulteerden in gereduceerde insulinebehoefte en in sommige 

gevallen zelfs langdurige insulineonafhankelijkheid. Deze aanpak stelt patiënten 

echter bloot aan hoge risico’s, aangezien chemotherapie een noodzakelijk van deze 

behandeling is. Momenteel wordt er in verschillende onderzoekgroepen gewerkt 

aan een subtielere manier de ongewenste immuunreactie op een weefselspecifieke 

manier te “herprogrammeren”. Aangezien T1D een heterogene ziekte is, is een (semi-) 

gepersonaliseerde benadering in de toekomst gerechtvaardigd  bij de keuze voor  

de geschikte (immuun)therapie. Gedetailleerde kennis over de genetische achtergrond 

en de persoonlijke blootstelling van omgevingsfactoren kan worden gebruikt om per 

patiënt de juiste behandeling te kiezen en kan onnodige blootstelling aan ineffectieve 

therapieën voorkomen. Onderzoek zoals beschreven in dit proefschrift heeft de potentie 

om gepersonaliseerde behandeling ten goede komen.  Derhalve is het van essentieel 

belang dat naast de ontwikkeling van nieuwe therapeutische strategieën in de toekomst, 

ook aandacht wordt besteed aan de (functionele) genetica van T1D. 

Naast onderzoeken die de genezing van T1D nastreven zijn er verschillende initiatieven 

om de huidige behandeling van T1D te verbeteren. De ontwikkeling van geautomatiseerde 

systemen met een “closed-loop”, die het vermogen van de alvleesklier om zelfstandig 

glucose te detecteren en de benodigde insuline vrij te geven nabootsen, belooft 

verbeterde glycemische controle en verhoogde levenskwaliteit voor T1D patiënten. Hoewel  

de kunstmatige alvleesklier de nauwkeurigheid van endogene β-cellen waarschijnlijk 

niet volledig zal bereiken en daarmee dus ook de lange-termijncomplicaties niet geheel 

zal kunnen voorkomen heeft deze ontwikkeling wel de potentie om de levenskwaliteit 

van T1D te verbeteren en de risico’s op acute complicaties van insulinetoediening te 

reduceren. Transplantatie van β-cel bevattende eilandjes van Langerhans lijkt door 

recente vooruitgangen een realistische behandeloptie voor T1D patiënten, maar zoals 
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bij alle transplantaties lijdt deze aanpak sterk onder het tekort aan donororganen en 

bijwerkingen van de afweeronderdrukkende geneesmiddelen die noodzakelijk zijn na 

transplantatie. De ontwikkeling van beschermende capsules die de getransplanteerde 

eilandjes van Langerhans beschermen, belooft betere transplantaatoverleving en daarmee 

succes.  Tegelijkertijd worden er momenteel nieuwe bronnen van β-cellen onderzocht 

en met recente doorbraken in de differentiatie van embryonale stamcellen naar (neo)   

β -cellen en de ontwikkeling van kweekbare β-cellijnen komen hernieuwbare bronnen van 

β-cellen binnen bereik.

Bij al deze benaderingen is de samenwerking tussen (bio)medici, industrie, overheid 

en vrijwilligers essentieel om problemen op het gebied van veiligheid, haalbaarheid, 

efficiëntie en kosteneffectiviteit aan te pakken en zal de continue inspanning van alle 

betrokkenen nodig zijn om de genezing van T1D te bewerkstellingen.
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