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inflammation in vein Graft Disease
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Bypass surgery is one of the most frequently used strategies to revascularize tissues 
downstream occlusive atherosclerotic lesions. For venous bypass surgery the great 
saphenous vein is the most commonly used vessel. Unfortunately, graft efficacy is low 
due to the development of vascular inflammation, intimal hyperplasia and accelerated 
atherosclerosis. Moreover, failure of grafts leads to significant adverse outcomes and 
even mortality. The last couple of decades not much has changed in the treatment of 
vein graft disease (VGD). However, insight is the cellular and molecular mechanisms of 
VGD has increased. In this review, we discuss the latest insights on VGD and the role 
of inflammation in this. We discuss vein graft pathophysiology including hemodynamic 
changes, the role of vessel wall constitutions and vascular remodeling. We show that 
profound systemic and local inflammatory responses, including inflammation of the 
perivascular fat, involve both the innate and adaptive immune system.

Keywords: cardiovascular disease, bypass graft, saphenous vein, vein graft disease, inflammation, innate 
immunity, atherosclerosis

iNTRODUCTiON

Occlusive atherosclerotic disease is a leading cause of mortality and morbidity worldwide. The most 
commonly used revascularization strategies to unblock or circumvent atherosclerotic lesions are 
balloon angioplasty (with or without stenting), endarterectomy and bypass surgery. For patients with 
left main coronary artery disease (CAD), three-vessel CAD and patients with late-stage peripheral 
artery occlusive disease (PAOD) bypass surgery is the primary standard of care (1–4). For patients 
receiving a single graft the left internal mammary artery is the graft of choice, since these give the best 
patency rates (5, 6). However, for bypassing multiple lesions, complex lesions or long diffuse lesions 
(especially in peripheral artery disease) veins are frequently necessary as a conduit, Figure  1A. 
Among veins the great saphenous vein is the most obvious conduit and is almost exclusively used as 
graft in patients with PAOD (7). Advantages of the saphenous vein include the length, which allows 
the use for multiple grafts, its superficial location for easy accessibility and the expendability (after 
removal of the vein the surrounding tissue is still perfused by other vessels). Unfortunately, patency 
rates of vein grafts are poor compared to arterial grafts (1). Due to acute thrombosis patency rates 
of vein grafts decrease with 10% within the first month (1). Intimal hyperplasia and accelerated 
atherosclerosis lead to a 40% overall patency after 10–20 years, Figures 1B,C (8, 9). Risk factors 
associated with vein graft disease (VGD) include age, race, gender, hypercholesterolemia, diabetes 
mellitus, and chronic kidney disease (10–14). Also factors associated with the surgery contribute 
to reduced patency. These include the location and quality of the artery where the bypass will be 
attached, and quality and handling of the venous conduit. Collection of venous conduits with the so 
called “no touch technique” in which veins are harvested including perivascular fat improve patency 
rates (15).
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FiGURe 1 | Human vein grafts in macroscopic and microscopic views. (A) 3D reconstruction of a heart. In this CT scan, a saphenous vein segment (black arrow) is 
grafted from the aorta to the ramus circumflexus. The left internal mammarian artery graft (white arrow) is connected to the left anterior descending coronary artery. 
(B) A failed human saphenous vein graft displaying in the intimal hyperplasia, extensive smooth muscle cell accumulation, and extracellular matrix deposition.  
(C) Accelerated atherosclerosis in a human vein graft lesion is characterized by a decellularized necrotic core with cholesterol crystals and calcification (NC) and 
neovessels (arrow).
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In this review, we emphasize the role of inflammatory pro-
cesses during vein graft remodeling and show how inflammation 
is involved in all phases leading to VGD, Figure  2. Currently, 
statins and aspirin are the only treatment options recommended 
for both CAD and PAOD patients (4, 16–18). Although a lot of 
research is performed on new targets and therapies it is somewhat 
disappointing that no effective new strategies that prevent VGD 
have come up. The recent published results of IL1β inhibition 
with canakinumab resulting in positive effects on atherosclerosis 
(19) are very encouraging for new studies targeting inflammation 
in VGD. In this review, we discuss the pathophysiology of vein 
grafts and the role of inflammatory mediators during this process 
based on preclinical and clinical research.

veiN GRAFT ReMODeLiNG

Remodeling of the vessel wall of the vein grafts is a crucial process 
during all subsequent stages of VGD. The initial remodeling event 
is the distension of the venous segment during surgical harvest-
ing and subsequent controlling for proper ligation of all side 
branches. Usually this is done by checking the lack of leakage of 
fluids via these side branches when pressure is inflicted on the 
isolated venous segment, leading to a profound distension of 
the venous segment. In the next stage, directly after grafting the 
venous segment in the arterial circulation, the vein graft will be 
distended again due to the exposure to the arterial blood pressure. 
Both forms of distension lead to serious damage of the vessel wall 
(20). Not only endothelial cells become damaged or activated but 

also the media becomes activated due the distension injury, lead-
ing to activation of smooth muscle cells (SMCs) and degradation 
of several components of the extracellular matrix (ECM) in the 
media as well as the adventitia. These degradation products of 
matrix elements like hyaluronic acid, proteoglycans and fibronec-
tin are damage-associated molecular patterns (DAMPs), which 
can act as endogenous ligands for toll-like receptors (TLRs), 
thus triggering an initial inflammatory response in vein graft 
remodeling. Moreover, the ischemia-reperfusion period during 
and after surgery can lead to generation of DAMPs and as well 
as reactive oxygen species, resulting in damage of vascular cells 
and upregulation of cytokines (1). Within the first days to weeks 
this results in influx of inflammatory cells in the vein graft vessel.

The next step in vein graft remodeling relates to the adaptation 
of the venous segment to the arterial blood pressure. In the media 
an arterialization process is initiated based on the proliferation of 
SMCs. This initially beneficial vascular remodeling process, how-
ever, may result in an uncontrolled proliferation and migration 
of SMCs and even myofibroblasts originating from the adventitia 
and triggers intimal hyperplasia (1). The concomitant outward 
remodeling of the vein grafts usually compensates for the patho-
logical lumen loss. However, outward remodeling does not occurs 
always, resulting in situations in which neointima formation leads 
to inward remodeling as a result of pathological intimal hyperpla-
sia and lumen loss, Figure 3 (21, 22). This is often accompanied 
or even enhanced by infiltration of inflammatory cells, mainly 
macrophages, into the vein graft wall (23). Moreover, in the 
later stage of vein graft remodeling, under hypercholesterolemic 
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FiGURe 2 | Time course of vein graft development. As a result of the vein graft procedure the endothelial layer is damaged resulting in coverage of the luminal 
surface by fibrin. White blood cells (neutrophils, monocytes, and lymphocytes) attach and infiltrate the fibrin layer and intima. Next activated smooth muscle cells in 
the media and fibroblasts in the adventitia are and start migrating toward the intima, forming the intimal hyperplasia. Migration and proliferation of smooth muscle 
cells is enhanced by growth factors and cytokines released by cells in the vessel wall, and especially inflammatory cells. Growth factors and cytokines also induce 
extracellular matrix deposition, resulting in further growth of the intimal hyperplasia. The lower part of the figure describes the process of vein graft remodeling as it 
occurs under atherosclerotic conditions (lower part). Typically macrophages in the vessel wall engulf lipids and become foam cells. Subsequently a necrotic core is 
formed by dying cells and cholesterol depositions. Hypoxia in the vessel wall induces the growth of plaque neovessels.

FiGURe 3 | Vein graft remodeling. Damage caused by graft handling and distension during the high-pressure check for leakage as well as implantation in the high 
blood pressure surrounding of the arterial circulation results in distention of the venous graft. Depending on local and systemic influences like inflammatory factors, 
this can result in inward remodeling characterized by intimal hyperplasia and a reduced lumen or outward remodeling characterized by moderate intimal hyperplasia 
and an increased lumen.
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conditions, uptake of lipids cause macrophages to turn into foam 
cells. Macrophage apoptosis leading to necrotic core formation 
and intraplaque hemorrhage further accelerates the process of 
VGD by formation of atherosclerotic lesions with an unstable 
phenotype (1). These accelerated atherosclerotic lesions in the 
vein grafts represent an end stage in vein graft remodeling which 
cause long-term (>2 years) vein graft failure (8, 24).

CONTRiBUTiON OF veSSeL wALL 
CONSTiTUTiONS TO vGD

endothelial Cells
One of the first critical events that a vein has to withstand is a 
period of ischemia followed by reperfusion during and directly 
after surgery. In addition graft handling also causes damage to the 
grafts as well as distension that occurs during the high-pressure 
check for leakage (1). This leads to increased oxidative stress and 
cytotoxic activation, which on its turn results in endothelial cell 
loss (25, 26). Remaining endothelial cells can become apoptotic, 
damaged, or activated, as shown by expression of ICAM 1, 
VCAM1, and selectins (27–29). Damaged endothelium shows 
impaired vasorelaxation as a result of reduced endothelial nitric 
oxide synthase and NO production (30). The increase in oxidative 
stress and damage to the endothelium is in particularly seen in 
vein grafts compared to arterial graft (31, 32).

Following endothelial denudation, the ECM components 
underneath the endothelium such as collagen, elastin, and pro-
teoglycans become exposed and can trigger coagulation processes 
leading to fibrin deposition on the luminal surface (33). Fibrin 
formation and fibrin resolution is tightly regulated by thrombosis 
and fibrinolysis.

Re-endothelialization begins rapidly after the initial damage. 
Proliferating endothelial cells are observed within the first week 
after vein graft surgery in experimental models resulting in a 
nearly intact endothelial lining 4 weeks after the surgery (27, 28,  
33, 34). The duration of the re-endothelialization process in 
humans is not exactly known but it is likely that this takes somewhat 
more time. The endothelium-dependent relaxation as observed 
in human vein grafts, indicates that the grafts have seemingly 
functional endothelial cells (35). It is unknown whether graft 
endothelial cells in humans originate from the graft, the adjacent 
arterial tissue or from the circulation progenitor cells or a com-
bination thereof. In a murine vein graft model it was shown that 
endothelial cell originate primarily from host vasculature instead 
of the donor vein (36). Interestingly, in humans allografts both 
host derived and donor derived endothelial cells were found (37).

Both circulating and local (adventitial) progenitor cells have 
been shown to contribute to re-endothelialization (38–40). 
Inducible nitric oxide synthase enhances endothelial progenitor 
cell attachment and differentiation (41). Homing of these pro-
genitor cells is directed by inflammatory-type macrophages and 
is most probably integrin β3 dependent (42, 43).

Despite the fact that enhancement of re-endothelialization 
is beneficial in preventing VGD in preclinical studies, no effec-
tive therapeutic approaches exist to facilitate this process (1). 
Therefore, a potential future therapeutic target in which the 

inflammatory reaction may play a role could be the promotion of 
endothelial progenitor cell homing to the damaged endothelium 
in the grafts.

Smooth Muscle Cells
Proliferation and migration of SMCs are key elements in intimal 
hyperplasia formation. During harvesting and engraftment, 
SMCs within the vein graft are exposed to ischemia resulting in 
SMC apoptosis (25, 44, 45). Remaining SMCs can change from a 
quiescent contractile phenotype to a dedifferentiated, proliferat-
ing synthetic phenotype. These cells can migrate from the media 
to the intima of the graft. Alternatively SMCs may migrate from 
the anastomosed artery toward the intima of the graft (46, 47). 
Both arterial and venous SMC have been shown to contribute to 
the intimal hyperplasia in vein grafts (48, 49). Interestingly, after 
engrafting of a venous segment in the arterial circulation venous 
marker Ephrin B4 was decreased pointing toward a loss of venous 
identity during arterialization (50).

Smooth muscle cells in vein grafts express different growth 
factors such as PDGF, TGF-β, vascular endothelial growth factor, 
and endothelin-1, which are major stimulators of intimal hyper-
plasia formation (51–54). Targeting of growth factors or their 
receptors in preclinical models interfere with this intimal growth 
(55–58). Arterial and venous grafts display a different pattern of 
expression of growth factors and signal transduction pathway 
factors (45, 48, 59), which might contribute to the lower patency 
rates of venous grafts. Venous SMCs show enhanced MAPK 
dependent proliferation in comparison to arterial SMCs (60). 
SMCs and especially activated SMCs produce cytokines such as 
tumor necrosis factor alpha (TNFα) and C-C motif chemokine 
CCL2 (also known as MCP-1) (61, 62), which can increase the 
Rho/Rac GTPase signaling cascade leading to enhanced SMC 
migration and proliferation (63).

Veins possess elastin fibers but lack defined external and inter-
nal elastic lamina. Therefore, fibroblasts when migrating from the 
adventitia to the intima in veins encounter little barriers. These 
adventitial fibroblasts are highly proliferative. Adventitial fibro-
blasts that acquire a smooth muscle-like phenotype are known to 
contribute to intimal hyperplasia formation (64, 65).

Adventitial and bone marrow-derived progenitor cells 
also contribute to the thickening of the vein graft wall (38, 39,  
66, 67). Already during vein graft surgery the bone marrow 
releases functional active CXCR4+ progenitor cells (68). Although 
a substantial portion of the bone marrow-derived cells express 
a SMC phenotype, they do not fully acquire the complete SMC 
lineage phenotype (69). Cytokine dependent activation of Stem 
Cell Antigen-1+ positive bone marrow-derived progenitor cells 
results in enhanced SMC migration and proliferation (70). Vein 
grafting in mice deficient in CXCR4 resulted in reduced vein graft 
thickening (71). Also knock down of fibroblast-specific protein-1 
in bone marrow cells inhibited intimal hyperplasia (72).

extracellular Matrix
In the initial phase after vein graft surgery exposure of compo-
nents of the ECM interact with plasma components and platelets 
and contribute to the thrombogenic luminal surface of the vein 
graft. ECM components such as fibronectin, heperansulphate 
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and other proteoglycans can act as DAMPs which interact with 
pattern recognition receptors like TLRs, thereby initiating a 
proinflammatory response, primarily directed by nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) (73). The 
ECM component hyaluronic acid is especially found in arterial-
ized vein grafts and contributes to vein graft intimal thickening 
by inducing SMC proliferation (74). In the first phases of vein 
graft remodeling, upregulation of TGF-β is linked to increased 
mRNA expression of collagen I, and collagen III (75, 76). In a rab-
bit vein graft model late stage remodeling (>1 month) enhanced 
TGF-β expression was observed which was accompanied by 
increased fibrosis and reduced matrix metalloproteinase (MMP) 
2 and MMP9 activity (77). In rats inhibition of TGF-β signaling 
resulted in reduced intimal hyperplasia as a result of increased 
MMP activity (58). The proteases that degrade collagen and 
other components of the ECM are highly expressed in vein grafts, 
especially MMP2 and MMP are extensively researched (78–81). 
MMPs can be secreted by both macrophages and SMC in the ves-
sel wall, however, most interactions with the MMP system results 
in effects on SMC migration and proliferation and ECM build 
up. Gene therapeutic approaches in saphenous vein SMCs to 
silence expression of MMP2 and MMP9 demonstrated reduced 
SMC migration through a matrigel barrier (82). Moreover, in 
MMP9 knockout mice the lesion composition was changed due 
to an increase in collagen content while intimal hyperplasia was 
similar as in control mice after vein grafting (83). Inhibition of 
MMPs by the general MMP inhibitor doxycycline resulted in 
decreased intimal hyperplasia formation in murine vein grafts 
(80). Overexpression of tissue inhibitors of MMPs (TIMP) 1, 
2, and 3 in vein graft models in various experimental animals 
resulted in intimal hyperplasia formation due to reduced SMC 
migration and proliferation and inhibition of MMP activity as 
well as reduced infiltration and migration of inflammatory cells 
(84–88).

Plasmin, formed by activation of plasminogen by plasminogen 
activators, can contribute to activation of MMPs and can cleave 
ECM components, such as laminin and fibronectin. These ECM 
degradation products subsequently can bind to pattern recogni-
tion receptors (89). Failed human vein grafts demonstrated an 
increased expression of members of the plasminogen activation 
system (90, 91). The plasminogen activation system consists of 
two main PAs, urokinase-type PA (uPA) and tissue-type PA (tPA). 
uPA is essential in extracellular proteolysis, cell migration, and 
matrix remodeling, while tPA is mainly involved in fibrinolysis 
(92). In porcine vein grafts overexpression of tPA reduced early 
vein graft thrombosis (93). Adenovirus mediated overexpression 
in human saphenous explants of a hybrid protein consisting of 
the receptor-binding amino terminal fragment (ATF) of uroki-
nase and bovine pancreas trypsin inhibitor (BPTI) was able to 
potently reduce intimal hyperplasia formation (94). A hybrid 
protein consisting of TIMP1 and the aforementioned ATF was 
constructed to inhibit MMP activity locally at the cell surface 
(95). This construct reduced vein graft thickening and preserved 
the luminal area (96). A third protein was constructed by combin-
ing the three constructs resulting in TIMP1.ATF.BPTI that was 
capable of inhibiting both plasmin and MMP activity at the cell 
surface, which effectively reduced vein graft intimal hyperplasia 

and outward remodeling (97). Plasminogen activator inhibitor 1 
(PAI1), another plasminogen activator, showed also clear effects 
on vein graft remodeling. PAI1-deficient mice showed enhanced 
intimal hyperplasia due to increased thrombin activity (98).

iNFLAMMATiON

The immune system plays an important role during all phases 
in vein graft development (99, 100). Immediately after surgery 
DAMPs are released which via binding to the TLRs activate 
the cells in the vessel wall resulting in the release of growth 
factors and cytokines. DAMPS can also activate platelets and 
thus enhance, due to the platelet expressed adhesion molecules 
P- and E-selectin, the attachment of circulating leukocytes and 
subsequent infiltration into the vessel wall (101). Neutrophils 
are mainly detected on the de-endothelialized lumen within the 
fibrin layer that is formed there (102). Neutrophils are phagocytes 
that also produce MMP2 and MMP9, as well as other proteases 
and a wide array of growth factors with which they can influence 
neighboring cells in the vessel wall (103). Monocytes enter the 
vein graft via adhesion to the luminal surface or via neovessels in 
the adventitia (104). Macrophage colony stimulating factor turns 
these invasive monocytes into macrophages. Macrophages repre-
sent the vast majority of inflammatory cells in the vein graft wall 
and by producing and releasing various cytokines and growth 
factors influence intimal hyperplasia formation (105). Direct 
or indirect inhibition of macrophages, by targeting macrophage 
activating factors have been shown to be successful strategies in 
preventing the inflammatory response and VGD (61, 106, 107).  
In addition, various types of inflammatory cells seem to be 
derived from the adventitia, which consists of loose connective 
tissue, small neovessels, and nerves. Dendritic cells, mast cells, 
natural killer (NK) cells, T, and B cells are primarily found in the 
adventitia (108).

The late phase of vein graft development is characterized by 
oxidized low-density lipoprotein (ox-LDL) retention and subse-
quent lipid accumulation (24, 34). Phosphorylcholine is one of the 
neoantigens exposed by LDL oxidation that can elicit an immune 
response. Passive immunization with anti-phosphorylcholine 
antibodies resulted in a reduced inflammatory phenotype which 
prevents vein graft atherosclerosis in a hypercholesterolemic 
murine model (109). Interestingly, low levels of natural antibod-
ies against phosphorylcholine in humans are associated with 
VGD (110). Phosphorylcholine is one of the many ligands for 
TLRs, like the DAMPs that are expressed upon damage to the 
vein graft wall. TLRs are central in the induction of inflammatory 
responses in vascular cell types, and can activate inflammatory 
cells of both the innate and adaptive immune system (1, 73, 111). 
TLR activation generally lead via the myeloid differentiation 
primary response protein 88 (MyD88) pathway, to activation of 
NF-κB and results in induction of cytokines (112). In general, 
proinflammatory cytokines stimulate vein graft remodeling  
(99, 113–115). These cytokines activate inflammatory cells but 
also stimulate SMC migration and proliferation as well as activa-
tion of endothelial cells.

NF-κB is one of the most important transcription factors for 
promotion of inflammatory responses in vein graft remodeling (1). 
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TABLe 1 | Inflammatory factors involved in vein graft disease (VGD).

Target/treatment effect on 
vGD

experimental 
animal

Reference

Notch ligand delta-
like 4

+ Mouse Koga et al. (107)

Dexamethasone − Mouse Schepers et al. (124)
Annexin A5 − Mouse Ewing et al. (125)
Phosphorylcholine 
antibodies

− Mouse Faria-Neto et al. (109)

Il1 + Mouse Yu et al. (115)
NF-κB + Dog Shintani et al. (116)
NF-κB + Rabbit Miyake et al. (117)
NF-κB + Rat Meng et al. (118)
MCP-1/CCL2 + Dog Tatewaki et al. (119)
MCP-1/CCL2 + Mouse Fu et al. (120)
MCP-1/CCL2 + Mouse Schepers et al. (61)
CCR2 + Mouse Eefting et al. (121)
TNF-R1 + Mouse Zhang et al. (122)
TNF-R2 − Mouse Zhang et al. (123)
TLR4 + Mouse Karper et al. (73)
TLR4 + Mouse Nguyen et al. (126)
RP105 + Mouse Wezel et al. (127)
C1 inhibitor − Mouse Krijnen et al. (128)
C3 + Mouse Schepers et al. (129)
C5a + Mouse de Vries et al. (130)
C5a + Mouse Wezel et al. (131)
Mast cell + Mouse de Vries et al. (130)
Mast cell + Mouse Wu et al. (132)
Natural killer cells + Mouse de Vries et al. (133)
Interferon regulating 
factor 3 and 7

− Mouse Simons et al. (134)
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Inhibition of NF-κB resulted in reduced inflammatory responses 
and attenuation of vein graft thickening in experimental models 
(116–118). The downstream NF-κB targets CCL2 and TNFα 
both have been linked to VGD (119, 120). Overexpression of 
a dominant negative form of CCL2 reduced accelerated ath-
erosclerosis and monocyte invasion in vein grafts in mice on a 
hypercholesterolemic diet (61). Furthermore, lentivirus mediated 
overexpression of a shRNA silencing the CCL2 receptor, CCR2, 
inhibited SMC proliferation and migration and reduced vein 
graft thickening (121). TNFα is one of the early up-regulated fac-
tors in vein graft development. This induction is thought to be a 
result of the early activation of TLRs. In TNF receptor-1-deficient 
mice, reduced CCL2 expression and SMC proliferation resulted 
in reduced vein graft intimal hyperplasia (122). Furthermore, 
TNF receptor-2-deficient mice also showed reduced vein graft 
thickening as a result of endothelial cell apoptosis (123). An 
overview of the various inflammatory factors that are linked to 
VGD is given in Table 1.

iMMUNe MODULATiON

Toll-Like Receptors
As indicated above, TLRs play a crucial role in the early inflam-
matory triggers that initiate vein graft remodeling. Among the 
first mediators of inflammation in vein grafts are DAMPs such 
as aggrecan and heat shock proteins (135, 136). Endogenous 
DAMPs activate TLRs that are expressed by cells in the vein graft 
wall such as endothelial cells and SMCs (1, 73, 137). Exaggerating 

this response by applying low dose lipopolysaccharide, a strong 
TLR4 ligand, topically on the vein graft resulted in a strong 
induction of the inflammatory response and increased intimal 
thickening (126). Blocking TLR4 in a murine vein graft model, 
either by genetic deletion or by lentiviral mediated local shRNA 
silencing, reduced outward remodeling and intimal hyperplasia 
formation, due to the suppressed inflammatory responses (73). 
Ligation of the carotid artery in TLR4-deficient mice showed 
outward remodeling without intimal hyperplasia formation in 
the non-ligated artery (111). It is therefore suggested that TLR4 
affects hemodynamic adaptations and vascular remodeling 
independently of intimal hyperplasia formation (1). Inhibition 
of the TLR4 homolog radioprotective 105 aggravated intimal 
hyperplasia formation in vein graft by increased proinflamma-
tory macrophage proliferation and enhanced SMC migration 
and proliferation (127). Comparable results were found in vas-
cular remodeling models for restenosis and arteriovenous fistula  
(138, 139). Whereas in atherosclerosis models a reduction of 
atherosclerosis could be observed due to the specific function of 
RP105 on B cells and inhibition of CCR2 dependent macrophage 
migration (140, 141). Next to the role of TLRs, other components 
of the innate immune system such as members of the comple-
ment cascade are linked to vein graft remodeling.

Complement System
The complement cascade is a large family of acute response effec-
tor and regulatory proteins that is a prominent member of the 
innate immunity. Vein graft surgery activates the complement 
system and continues during the vein graft remodeling process 
since complement factors are present and produced locally in the 
vein graft wall (129). Inhibition of the key complement factor 
C3 resulted in reduced intimal hyperplasia by reducing inflam-
matory cell influx in murine vein grafts (129). C1inh a natural 
occurring protease inhibitor of the serpin family and alternative 
pathway component prevented endothelial cell damage in ex vivo 
perfused human saphenous vein segments and reduced vein graft 
intimal hyperplasia in a murine model (128). In the same in vitro 
perfusion model it was shown that the endogenous complement 
inhibitor, the C4b-binding protein, was present in the saphenous 
vein wall and has protective mechanisms to cellular stress and 
inflammation (142). C5a is one of the major biologically active 
components of the complement cascade downstream of C3 and 
exerts its function including chemotaxis of monocytes and mast 
cells mainly via the canonical C5a receptor. Local application of 
C5a on the vein graft resulted in increased intimal hyperplasia in 
a mast cell dependent manner (130). Furthermore, acute applica-
tion of C5a results in enhancement of plaque disruption (131). 
Inhibition of complement factors seems to be a very promising 
strategy for preventing VGD in humans. Most interestingly, the 
mortality in high-risk surgical patients undergoing CABG sur-
gery was reduced by intravenous administration of an antibody 
against complement factor C5 (pexelizumab) (143).

Mast Cells
Mast cells are large granular cells that upon activation by IgE, 
cytokines (TNFα, IL1) and complement factors release granules 
containing tryptase, chymase, and histamine (144). Vein grafts 
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are rapidly repopulated with mast cells; it should be noted that 
resting as well as activated mast cells can be found mainly in the 
perivascular region of vein grafts but not so much in the ves-
sel wall itself (130, 132, 145). Mast cell-deficient mice showed a 
reduction in intimal hyperplasia in vein grafts, as well as a general 
reduction of vascular inflammation (130, 132). Moreover, activa-
tion of mast cells locally resulted in more unstable lesions and 
features of plaque rupture (130). The strong effect of mast cells 
on lesion instability is also seen in native atherosclerosis (146). 
Remarkably, in these lesions, most mast cells were found in the 
close vicinity of plaque neovascularization (146).

NK Cells
Also present in the perivascular region of vein grafts and especially 
in the adventitia are NK  cells (133). Upon activation NK  cells 
secrete lytic granules containing perforin and granzymes and 
various proinflammatory cytokines (147). The NK cell function 
is reduced in BALB/C mice due to the lack of crucial NK cell genes  
of the Ly49 receptor family. When vein graft surgery was per-
formed in BALB/c mice congenic for the C57BL/6 NK gene region, 
these mice displayed a similar degree of intimal hyperplasia as 
C57BL/6 mice, while BALB/c mice showed significantly less vein 
graft remodeling and intimal hyperplasia (133). Furthermore, a 
decrease in inflammatory cells and interferon-γ expression in the 
vein graft wall was observed.

Dendritic Cells
Dendritic cells, originating from Ly-6Clo monocytes, are found 
in all layers of the vein graft and colocalize with T cells as antigen 
presenting cells (148). In vein grafts dendritic cells are capable of 
triggering T cells by costimulation of CD40 (149).

The involvement of adaptive immunity members in VGD is 
less established than the role of the innate immunity. The par-
ticipation of the adaptive immune system in vascular diseases 
is clear and the role in atherosclerosis and restenosis is well 
described (150).

T and B Cells
T and B cells have been identified in vein graft lesions, however, 
no further characterization of subtypes are performed (37, 151). 
It has been shown that T cells are capable of proliferation in vein 
grafts (152). Furthermore, interaction between dendritic cells and 
T cells in a CD40 dependent manner have been observed in vein 
grafts (149). However, little is known about the exact function and 
role of T cells in the pathophysiology of VGD. In a recent study, 
we demonstrated that downstream TLR signaling via interferon 
regulatory factor (IRF) 3 and 7 results in a protective effect on 
vein graft remodeling. This is particularly of interest since IRF3 
and IRF7 activation leads to expression of type1 interferons, that 
are subsequently involved in the activation of CD4 and CD8+ 
T cells (134). Further studies to investigate the role of (subtypes) 
of T as well as B cells in VGD are definitely needed.

PeRivASCULAR ADiPOSe TiSSUe (PvAT)

Most blood vessels, including the saphenous vein, are surrounded 
by PVAT. In the last decades the vasoactive role of PVAT and 

adipokines derived from PVAT on vascular function are more 
and more appreciated (153). PVAT harbors numerous amounts of 
inflammatory cells. Damage to PVAT results in an inflammatory 
response driven by adipocyte-derived factors such as resistin, 
leptin, or the cytokines IL-6, TNF-α, and CCL2 (154). Protective 
effects of adiponectin on NADPH oxidase, superoxide produc-
tion and NO bioavailability in the vessel wall are reduced after 
PVAT damage (155). The “no touch” technique of saphenous vein 
harvesting is in part based on the beneficial effects of preservation 
of PVAT and PVAT derived leptin (155, 156). Interestingly, PVAT 
surrounding different blood vessels differs in its response to 
injury. Different responses are found between PVAT surrounding 
saphenous veins and internal mammary arteries (157) but also 
between internal mammary arteries and coronary arteries (158), 
pointing to a cause of the encouraging patency rates of internal 
mammary arteries.

ACCeLeRATeD ATHeROSCLeROSiS AND 
LATe STAGe FAiLURe

Comparable to native atherosclerosis, hypercholesterolemia, 
an import driver of VGD and lipid burden, is clearly associated 
with vein graft age (159). Analysis of human vein grafts obtained 
at autopsy has shown that coronary vein grafts undergo rapid 
atherosclerotic lesion development (24). Lesions in coronary 
vein graft differ from native lesions in having a more concentric 
and diffuse appearance. Furthermore, the tendency to rupture 
and occlude due to thrombosis is very high in these vein grafts 
(8). Especially, older vein grafts (>2 years) fail most frequently 
due to accelerated atherosclerosis and rupture of lesions (8, 160, 
161). Coronary bypass graft occlusion is clearly associated with 
presence of necrotic core, calcification and negative remodeling 
(162). Peripheral vein grafts probably suffer less from acceler-
ated atherosclerosis, since these lesions mostly consist of SMCs 
(163). Occlusion of peripheral vein grafts is frequently linked to 
high rates of circulating inflammatory cells (100). Circulating 
inflammatory cells are now being studied as predictors for VGD; 
both ratios of platelet-monocyte reactivity or lymphocytes-to-
monocytes ratios show correlations with VGD (100, 164).

Foam cell formation is already observed in one year old vein 
grafts. This is followed by necrotic core development between 2 
and 5  years after surgery. Intraplaque hemorrhage, most likely 
originating from leaky angiogenic neovessels in the lesion is also 
observed in these advanced lesions (24). Plaque angiogenesis and 
intraplaque hemorrhage are important causes of plaque destabi-
lization and rupture (165). In vein grafts in hypercholesterolemic 
mice various features linked to late phase graft failure are 
observed, including angiogenic neovessels, intraplaque hemor-
rhage, necrotic cores and rupture (1, 88). Especially the presence 
of plaque neovessels and intraplaque hemorrhage in this model 
are interesting, since this is a rare observation in atherosclerotic 
experimental murine models. Improved lesion stability and 
decreased plaque rupture could be achieved by up regulation of 
the MMP inhibitor TIMP-1 (88). Targeting inflammatory factors 
such as annexin A5, mast cells, complement factors and TLRs 
are effective strategies to not only inhibit intimal hyperplasia 
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formation and accelerated atherosclerosis but also to alter plaque 
composition and reduce plaque rupture (125, 127, 130, 131).

CLiNiCAL PHARMACOLOGiCAL AND 
SURGiCAL iNTeRveNTiONAL 
STRATeGieS

Platelet activation and thrombin production are key triggers of 
early vein graft failure. Antiplatelet therapy starting directly after 
surgery to prevent early vein graft thrombosis is recommended 
for both CAD and PAOD patients. Aspirin treatment alone or 
dual antiplatelet (aspirin and clopidogrel) treatment have been 
shown to be effective in preventing graft occlusion (166, 167). In 
both Europe and USA, antiplatelet therapy is recommended to be 
continued until at least 3 months after the surgery and in some 
cases indefinitely (4, 17).

Comparable to native atherosclerosis statins are included in 
the standard of care for patients undergoing vein graft surgery. 
The mode of actions of statins is primarily cholesterol lowering 
by inhibiting HMG-CoA reductase but other mechanisms are 
also described. Statins can improve endothelial function, prevent 
proliferation of SMCs and decrease activation of macrophages 
(168, 169). Statin therapy has been proven to prevent vein graft 
stenosis in both coronary and peripheral grafts (170–172).

A new therapy to prevent VGD is the use of an extravascular 
support. The extravascular support functions as a protective outer 
layer of the vein graft, thereby reducing wall tension, activation 
and stretching of SMCs and endothelial cells (173). Promising 
results are obtained in in  vitro and experimental studies  
(174–177). The recently reported positive preliminary clinical 
results from a study by Ferrari et  al. using an external mesh 

demonstrate the possibility to improve long-term graft durabil-
ity (178). The VEST trial showed an improvement in lumen 
uniformity after external stenting 1 year after CABG surgery 
in comparison to non-stented vein grafts in the same patients 
(173, 179, 180). Further elaboration on these studies is needed 
to solidify the concept of extravascular support on graft patency.

CONCLUSiON

The use of vein grafts as a revascularization strategy is still neces-
sary despite the unfavorable patency outcomes. Constrictive 
remodeling, intimal hyperplasia formation, and unstable athero-
sclerotic lesions are the main causes of VGD in both coronary and 
peripheral vein grafts. Histopathological studies of human vein 
grafts and experimental vein graft models have demonstrated 
that inflammatory components, especially those from the innate 
immune system, are crucial in all stages of vein graft development. 
Additional studies are required to prevent VGD and test new 
strategies for the treatment of vein grafts. Targeting inflammation 
either in a broad form or in a very specific has great potential as 
revascularization strategy for failing grafts.
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