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Perceptual decision-making is biased by previous events, including the history of preceding choices: observers tend to repeat (or alter-
nate) their judgments of the sensory environment more often than expected by chance. Computational models postulate that these
so-called choice history biases result from the accumulation of internal decision signals across trials. Here, we provide psychophysical
evidence for such a mechanism and its adaptive utility. Male and female human observers performed different variants of a challenging
visual motion discrimination task near psychophysical threshold. In a first experiment, we decoupled categorical perceptual choices and
motor responses on a trial-by-trial basis. Choice history bias was explained by previous perceptual choices, not motor responses,
highlighting the importance of internal decision signals in action-independent formats. In a second experiment, observers performed the
task in stimulus environments containing different levels of autocorrelation and providing no external feedback about choice correct-
ness. Despite performing under overall high levels of uncertainty, observers adjusted both the strength and the sign of their choice history
biases to these environments. When stimulus sequences were dominated by either repetitions or alternations, the individual degree of
this adjustment of history bias was about as good a predictor of individual performance as individual perceptual sensitivity. The history
bias adjustment scaled with two proxies for observers’ confidence about their previous choices (accuracy and reaction time). Together,
our results are consistent with the idea that action-independent, confidence-modulated decision variables are accumulated across
choices in a flexible manner that depends on decision-makers’ model of their environment.
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Introduction
It has been known for almost a century that people’s judgments of
sensory stimuli do not only depend on the current sensory input,

but also on their preceding choices (Fernberger, 1920). Several
studies have found that humans and other species repeat (or
alternate) their perceptual judgments more often than expected
by chance (Gold et al., 2008; Busse et al., 2011; de Lange et al.,
2013; Akaishi et al., 2014; Fischer and Whitney, 2014; Fründ et al.,
2014; Abrahamyan et al., 2016; Pape and Siegel, 2016; St. John-
Saaltink et al., 2016; Fritsche et al., 2017; Hwang et al., 2017; Urai
et al., 2017). Such choice history biases occur also in other do-
mains of decision-making (Leopold et al., 2002; Allefeld et al.,
2013; Padoa-Schioppa, 2013).
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Significance Statement

Decisions based on sensory input are often influenced by the history of one’s preceding choices, manifesting as a bias to system-
atically repeat (or alternate) choices. We here provide support for the idea that such choice history biases arise from the context-
dependent accumulation of a quantity referred to as the decision variable: the variable’s sign dictates the choice and its magnitude
the confidence about choice correctness. We show that choices are accumulated in an action-independent format and a context-
dependent manner, weighted by the confidence about their correctness. This confidence-weighted accumulation of choices en-
ables decision-makers to flexibly adjust their behavior to different sensory environments. The bias adjustment can be as
important for optimizing performance as one’s sensitivity to the momentary sensory input.
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Computational models posit that choice history biases result
from the temporal accumulation of signals from past decisions
(Yu and Cohen, 2008; Glaze et al., 2015; Bonaiuto et al., 2016).
Such a mechanism may serve to continuously update the decision-
makers’ prior belief about the upcoming stimulus category and
adjust their choice behavior to structured environments (Yu and
Cohen, 2008; Glaze et al., 2015). In laboratory perceptual tasks,
stimulus sequences are typically uncorrelated by design, so that
across-trial accumulation degrades performance (Abrahamyan et
al., 2016). By contrast, when stimulus sequences exhibit autocorre-
lations (Goldfarb et al., 2012; Glaze et al., 2015; Abrahamyan et al.,
2016; Kim et al., 2017), history biases should improve performance,
provided that the accumulation is context-dependent. Specifically,
the accumulation should switch sign between environments domi-
nated by either stability or change (Glaze et al., 2015).

Perceptual decisions often have to be made under uncertainty
due to weak or ambiguous evidence. This uncertainty (or its com-
plement: confidence) might be important for controlling behav-
ior under conditions, in which the decision-maker receives no
immediate external feedback. Indeed, fluctuations of confidence
play a key role in a normative model, which postulates the accu-
mulation of the internal decision variable over time (Glaze et al.,
2015). The decision variable is the basis of both the categorical
choice (Bogacz et al., 2006; Gold and Shadlen, 2007) as well as the
confidence about its correctness (Kepecs et al., 2008). Correlates
of the decision variable are distributed across many brain regions
(Gold and Shadlen, 2007; Siegel et al., 2011; Brody and Hanks,
2016) and expressed as motor plans (Gold and Shadlen, 2007; Donner
et al., 2009; de Lange et al., 2013) or in action-independent formats
(Bennur and Gold, 2011; Hebart et al., 2012, 2016; O’Connell et al.,
2012). These decision-related neural signals also reflect the graded con-
fidence about the choice (Kiani and Shadlen, 2009; Hebart et al., 2016).

Our current study addressed three questions. First, do choice
history biases originate from signals in motor or action-independent
formats? Second, can these signals be accumulated in a suffi-
ciently flexible manner, so as to adjust history biases to repetitive
as well as alternating environments? Third, is the strength of such
bias adjustment scaled by confidence? We modeled human choice
behavior under experimental manipulations tailored to answering
these questions.

Materials and Methods
Participants
We analyzed data from 28 participants and two experiments (referred to
as Experiments 1 and 2) in total. All participants gave their written in-
formed consent.

Experiment 1. Six healthy participants (2 male and 4 female, mean age:
25; range: 22–29 years) took part in the experiment, which was approved
by the ethics committee of the Department of Psychology of the Univer-
sity of Amsterdam (reference number 2011-OP-1588).

Experiment 2. Twenty-six healthy participants (11 male and 15 female,
mean age: 26, range: 20 –36) took part in the experiment, which was
approved by the local ethical review board (Ärztekammer Hamburg,
reference number PV4714). Four participants were excluded from the
data analysis, so that 22 participants remained for the data analysis. Three
of the excluded participants did not complete all sessions and one exhib-
ited substantially worse performance than the rest of the group (64%
correct overall, 63% correct for the easiest 3 motion coherence levels).

Experimental design
The data from both experiments allowed for quantifying choice history
biases during a random dot motion discrimination (up vs down) task.
We used large random dot motion patterns in both experiments, so as to
minimize stochastic fluctuations in the effective motion energy across
trials (Urai et al., 2017).

Experiment 1. The following description summarizes the aspects of the
experimental design that were most important to the current paper; a
comprehensive description can be found in (Tsetsos et al., 2015). Ran-
dom dot kinematograms (Fig. 1A) were composed of 785 (average) white
dots on a black screen. The dots were moving within a circular aperture of
9.1° radius. A red fixation cross of 0.4° � 0.4° was centered in the middle
of the circle. The dot density was 12.07 dots/deg 2. The population of dots
was split into “signal dots” and “noise dots”. The signal dots moved either
upward or downward with a velocity of 2.6°/s. The noise dots changed
position randomly from frame to frame. The percentage of signal dots
defined the motion coherence, a measure of motion strength. On each
trial, three different sequences of dot motion (at the same coherence and
direction) were presented in an interleaved fashion, making the effective
speed of signal dots 0.87 °/s. One of six different levels of motion coher-
ence (0.05, 1.26, 3.15, 7.92, 19.91, and 50%) and one of six different
viewing durations (150, 300, 600, 1200, 2400, and 4800 ms) were chosen
randomly, under the constraint that they occurred equally often within a
block of 144 trials. Stimuli were presented on a 22 inch CRT monitor with
a resolution of 800 � 600 pixel and a frame rate of 100 Hz at a viewing
distance of 68 cm. The participants were instructed to maintain their gaze
on the red cross throughout the trial and judge the net motion direction.
The motion viewing interval was followed by a variable delay (uniform
distribution ranging from 200 to 400 ms), after which the observers had
to report their choice by pressing one of two buttons on a computer
keyboard, with either the left or the right index finger. Participants re-
ceived auditory feedback after incorrect responses (a 1000 Hz tone of
100 ms). Perceptual choices (“up” vs “down” motion direction) were
decoupled from motor responses (left vs right button press) by varying
their mapping from trial to trial. This mapping was instructed before
motion viewing in one condition (“Pre” condition) and after motion
viewing in the other (“Post” condition), by means of a visual cue that
presented each direction (as an arrow) on the left or right side (i.e., two
possible mappings). This mapping cue was randomly selected on each
trial. Conditions alternated across blocks. Observers 1–5 participated in
both conditions. Observer 6 participated only in the Post condition. The
analyses of participants 1–5 presented here were collapsed across both
conditions. We obtained the same pattern of results when analyzing the
data from both conditions separately (data not shown).

Experiment 2. To test for the adaptability of choice history biases, we
manipulated the sequential stimulus statistics between experimental ses-
sions, to make people perform the task in “Repetitive”, “Neutral” (no
sequential dependence), or “Alternating” environments (Fig. 1B). Stim-
uli, task, and procedure for Experiment 2 were identical to Experiment 1,
with the following exceptions. The circle within which the dots were
moving had an outer radius of 12° and an inner radius of 2°. The density
of dots was 1.7 dots/deg 2 and each dot had a diameter of 0.2°. The dots
moved with a velocity of 11.5°/s. Signal dots had a maximum lifetime of
six frames. We used the following coherence levels: 0, 5, 10, 20, 40, and
60% (equally many trials per coherence level). A red bullseye fixation
target at the center of the screen as well as randomly moving dots (0%
coherence) were presented throughout each block. The first trial of each
block started with a baseline interval of 5 s. A beep (duration: 50 ms, sine
wave at 440 Hz) indicated the onset of the evidence interval with variable
coherence levels and directions after a fixed duration of 0.75 s. A second
beep indicated the offset of the evidence interval and prompted the ob-
servers’ response. Observers reported their perceptual choices by press-
ing one of two keyboard buttons, with the index finger of the left or right
hand. After button press or a response deadline of 3 s, the intertrial
interval started. Intertrial intervals were uniformly distributed between 1
and 5 s. Observers received auditory feedback during the training ses-
sions, but no feedback during the subsequent six sessions of the main
experiment. The motion viewing duration of 0.75 s was selected because
previous work in monkeys (Kiani et al., 2008) and humans (Tsetsos et al.,
2015) found little integration of motion information beyond that dura-
tion. We used a fixed mapping between choices and motor responses,
whereby the two possible mappings (right-hand button for up, left-hand
for down, or vice versa) were counterbalanced across participants. Ex-
periment 2 consisted of seven sessions per participant (1 for training and
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6 main sessions), whereby each session was divided into 10 blocks of 60
trials.

Critically, the transition probabilities between the two alternative
stimulus categories (i.e., up vs down regardless of coherence) over trials
were manipulated across experimental sessions (Fig. 1B, right). Specifi-
cally, the probability of a repetition was defined as follows:

P�stimulus repetition� � 1 � P�stimulus alternation�

� P�stimulusn � up�stimulusn�1 � up�

� P�stimulusn � down�stimulusn�1 � down�, (1)

whereby n indexes trials. The repetition probability was held constant
within each session, but varied across the main experimental sessions
between the following values: 0.5 in the Neutral condition, 0.8 in the
Repetitive condition, and 0.2 in the Alternating condition. The Neutral
condition allowed for quantifying observers’ intrinsic choice history bias,
which we used as a baseline for quantifying their adjustment to the biased
sequential statistics of the Repetitive and Alternating conditions.

During the training session, the motion direction on each trial was chosen
randomly and independently. All participants started with the Neutral con-
dition in Session 1 of the main experiment, which was repeated in Session
4. Half of the participants then performed the Repetitive condition in
Sessions 2 and 5 and the Alternating condition in Sessions 3 and 6 and
conversely for the other half of participants.

Observers were instructed to maintain stable fixation and perform the
motion discrimination task as accurately as possible. They were informed
that the sequential statistics of the stimulus identities would change from
session to session, but stay constant within each session. To this end, we
told them that the stimulus sequences could be “as if produced by a coin
flip” (Neutral), “more likely repeating than alternating” (Repetitive), or
“more likely alternating than repeating” (Alternating). Observers were
not informed about (1) the order of these conditions, (2) the exact tran-
sition probabilities, and (3) the use of this information for optimizing
their behavioral performance.

Modeling choice history bias
We used logistic regression to model observers’ choice history biases under
the different experimental conditions. The basic approach consisted of add-
ing a linear combination of different components of trial history (which
depended on the experiment), as a bias term to a logistic function model
of the choice probability (Fründ et al., 2014; Urai et al., 2017). We here
used a variant that quantified the relative contributions of previous stim-
uli, choices, and (for Experiment 1) motor responses.

Basic choice model using psychometric function fit. The probability of
making one of the two choices rt � 1 (rt � 1 for “choice up”, rt � �1 for
“choice down”) on trial t, given the signed stimulus intensity s̃t (i.e.,
motion coherence times stimulus category; up or down, coded as 1 and
�1) was described by the following:

P�rt � 1� s̃t� � � � �1 � � � �� g�� � � s̃t�, (2)

where � and � were the lapse rates for the choices rt � 1 and rt � �1, and

g�x� �
1

1 � e�x was the logistic function. The bias term �, the offset of

the psychometric function, described the overall bias for one specific
choice. � was the slope of the stimulus-dependent part of the psychomet-
ric function, quantifying perceptual sensitivity.

For visualizing the effect of previous on current choice (Fig. 1D), we
separated the trials from Neutral into two subsets, conditioned on the
choice from the previous trial, and fitted the psychometric function sep-
arately to the observed proportion of upward choices in both subsets.
Results from three example observers are shown in Figure 1D and dis-
cussed in Results.

Modeling the contributions of past stimuli, choices, and motor responses
to current choice bias. We estimated the contribution of the previous
seven stimulus categories and choices by adding a history-dependent bias
term to the argument of the logistic function (Fründ et al., 2014):

P�rt � 1� s̃t, ht� � � � �1 � � � �� g���ht� � �s̃t�, (3)

0.75 s
Evidence

or

Fixation Response
max. 3 s1 - 5 s

up

down

A

Neutral0.5

0.5

0.5

0.5

0.8

0.2

0.8

0.2

Alternating0.2

0.8

0.2

0.8

B

DC

116 118 120 122 124 126 128 130

Trial number

−0.6

0.0

0.6

U
pw

ar
d 

m
ot

io
n 

co
he

re
nc

e

down

up
C

ho
ic

e

Fixation
0.4 - 0.5s

Fixation
0.4 - 0.5s

Mapping cue

Mapping cue
       1s

Delay
0.2 - 0.4s

Evidence
0.15 - 4.8s

Response

Evidence
0.15 - 4.8s

Delay
0.2- 0.4s

Response

Pre

Post
Repetitive

−0.6−0.3 0.0 0.3 0.6

0.0

0.5

1.0

P
ro

ba
bi

lit
y 

up
 c

ho
ic

es

Repetition bias, S20

−0.6−0.3 0.0 0.3 0.6

Upward motion coherence

No history bias, S09

−0.6−0.3 0.0 0.3 0.6

Alternation bias, S11

All choices

Previous choice:
 up

Previous choice:
 down

Choice history bias, S20

Time
Time

Figure 1. Quantifying choice history bias and behavioral task. A, B, Behavioral tasks. Observers judged the net direction (up vs down) of a dynamic random dot pattern of variable direction and
coherence. A, Experiment 1, decoupling choice and motor response. After a blank fixation interval, a choice-response Mapping cue was shown before (Pre) or after the presentation (Post) of the
motion stimulus, which also varied in duration. Observers responded after dot motion offset in the Pre-condition and after Mapping cue offset in the Post-condition. Auditory feedback was provided
after incorrect responses. B, Experiment 2, manipulating stimulus repetition probabilities. Left, Random-dot motion and fixation cross were shown throughout the trial. A beep indicated the onset
of the evidence interval, which contained some level of coherent motion (0% on some trials). A second beep indicated the evidence offset and start of the response interval (deadline: 3 s). Right, Three
repetition probabilities between motion directions across trials yielded three environmental conditions: Neutral (repetition probability of 0.5), Repetitive (repetition probability of 0.8), and
Alternating (repetition probability of 0.2). C, Signed motion coherence levels (cyan) and categorical choices (purple) from a sequence of 15 trials recorded in Neutral in Experiment 2. Positive values
of stimulus intensity correspond to upward motion and negative ones to downward motion. D, Psychometric functions conditioned on previous choice in Neutral exhibit history biases in three
example participants. See main text for details.
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��ht� � �� � �hist �ht� � �� � �
k�1

14

	khkt. (4)

The history bias �hist �ht� � �k�1
14 	khkt consisted of the sum of the pre-

ceding seven responses rt�1 to rt�7 and the preceding seven stimulus
categories zt�1 to zt�7, each multiplied with a weighting factor 	k. The
vector ht was written as follows:

ht

� �rt�1, rt�2, rt�3, rt�4, rt�5, rt�6, rt�7, zt�1, zt�2, zt�3, zt�4, zt�5, zt�6, zt�7�.

All terms in ht were coded as �1 or 1, with the exception of terms coding
for stimuli with zero coherence, which were set to 0. The weighting
factors 	k thus modeled the influence of each of the seven preceding
responses and stimulus categories on the current choice. Positive values
of 	k indicated a bias to repeat the choice or stimulus category at the
corresponding lag, and negative values of 	k indicated a tendency to
alternate. In this and all subsequent analyses, the parameters of the
logistic regression model were fit by maximizing the log-likelihood
L � �t log P�rt � 1�s̃t, ht� using an expectation maximization algo-
rithm (Fründ et al., 2014).

In Experiment 1, perceptual choices and motor responses were further
decoupled through a mapping that varied from trial to trial. Thus, we
could independently estimate the relative contribution of previous
choices and motor responses to the current choice bias. We added the last
seven choices ct�1, ct�2, ct�3, ct�4, ct�5, ct�6, ct�7, each one multiplied
with a separate set of history weights 	k

� , to the history bias term
�hist �ht, ct�.

� �ht, ct� � �� � �hist �ht, ct� � �� � �
k�1

14

	khkt � �
k�1

7

	�kckt . (5)

Experiment 1 contained not only trial-to-trial variations in motion
direction and coherence, but also in the duration of the dot motion
stimulus. To assess the effect of this manipulation, we first fitted the
psychometric functions separately for each of the six different motion-
viewing durations (on the current trial) and compared the resulting
weights within each observer. The viewing duration had only negligible
impact on the history weights (data not shown), indicating that the his-
tory contributions were invariant across viewing durations. Consequently,
we fitted the psychometric functions to the data from all trials, and ana-
lyzed the history weights, regardless of viewing duration.

Experiment 1 also contained two conditions (Pre and Post) in
which observers were instructed about the required mapping between
choice and response either before or after the presentation of the
sensory evidence. The analyses presented in Results collapsed across
both conditions, but we also verified that there were no differences
between these conditions when analyzing them separately (data not
shown).

Modeling the contributions of past correct (and incorrect) choices to cur-
rent bias. The weights for previous correct and incorrect choices were
estimated by recombining the weights for previous stimuli and choices
estimated by means of Equations 3 and 4. Specifically, the weights for
correct choices were computed as the sum of choice and stimulus weights
and the weights for incorrect choices were computed as the difference
between choice and stimulus weights (Fründ et al., 2014). Please note
that this is equivalent to fitting a regression model with predictors en-
coding correct or incorrect choices, along with the chosen category
(Busse et al., 2011; Abrahamyan et al., 2016).

Modeling the contribution of past decision confidence to current bias. We
used a model of statistical decision confidence based on signal detection
theory (Kepecs et al., 2008; Sanders et al., 2016; Urai et al., 2017) to define
two behavioral proxies of confidence that could be used in the present
study. The model assumes that choices are made based on an internal
decision variable (dv), which is computed as a transformation of sensory
input, corrupted by noise. A choice is made by comparing dv to a crite-
rion c. Confidence is a function of the distance between dv and c. When
dv is far from c, the choice is likely to be correct; the probability of the
choice being correct approaches chance as dv approaches c. Specifically,

confidencei � f��dvi � c�� where f�x� �
1

2�1 � erf� x


�2�� is a

monotonic sigmoid function that maps the distance metric x on the
probability of making a correct choice (Kepecs et al., 2008; Lak et al.,
2014). The model predicts that confidence (1) is larger on correct than on
error trials, and (2) scales oppositely as a function of stimulus strength for
correct and error trials. We used two behavioral proxies of the so-defined
confidence to investigate its impact on the adjustment of choice history
biases: (1) choice accuracy, with correct choices being associated with
larger confidence than incorrect choices for all levels of evidence strength
in the model described above; and (2) reaction times (RTs), which have
been found to reflect decision confidence as defined above in empirical
work (Sanders et al., 2016; Urai et al., 2017).

When assessing the confidence dependence of the bias adjustment
(i.e., changes in history weights), we restricted the model to the immedi-
ately preceding trial (Lag 1), at which the bias adjustment was expected to
be strongest, but we now estimated the weights separately for each of the
different levels of previous motion coherence. This enabled us to control
for the trial-to-trial variations of stimulus strength, thus isolating the
impact of internal trial-to-trial fluctuations of confidence.

In our analysis of the impact of choice accuracy, separate predictors
coded for the choice or stimulus categories for each level of (non-zero)
previous motion coherence. Because choice accuracy was undefined at
0% coherence, we estimated a single choice weight for previous trials
where no decision-relevant sensory evidence was presented. Specifically,
we included six regressors in the model that each coded for the previous
choice at a given coherence level (zero elsewhere) and we included five
regressors that each coded for the previous stimulus category at a given
non-zero coherence level (zero elsewhere). To assess the impact of choice
accuracy, the stimulus and choice weights were transformed into weights
for correct and incorrect choices by recombining the stimulus and choice
weights as described in the section Modeling the contributions of past
correct (and incorrect) choices to current bias.

To assess the effect of RTs, we first normalized RT to make it scale
positively with confidence, because of its negative scaling with decision
confidence (the shortest RTs correspond to the most confident trials;
Sanders et al., 2016; Urai et al., 2017): for each observer and condition, we
transformed single-trial RTs as follows:

RTconf � z�max�log�RT�� � log�RT��, (6)

where z denoted z-scoring per individual and condition. This transforma-
tion was only applied to simplify the interpretation of the corresponding
history terms in terms of confidence-weighting. Without this transforma-
tion, the resulting weights were qualitatively identical but sign-flipped,
thus reflecting the complement to confidence, decision uncertainty (data
not shown).

We added a modulation by the above-defined RTconf variable to the
logistic regression model, as introduced by Urai et al. (2017). To this end,
we added a term describing the interaction between choice and stimulus
category at Lag 1 with the previous trial’s RTconf separately for each
previous coherence level: �k�1

11 	�k htRTconfkt. Specifically, the interaction
terms in this model were six regressors for previous choice multiplied by
previous RTconf (1 for each coherence level) and five regressors for pre-
vious stimulus category multiplied by previous RTconf (1 for each non-
zero coherence level), and a nuisance covariate �k�1

6 		k RTconfkt for the
main effect of RTconf. The full bias term in this model was as follows:

��ht, RTconft� � �� � �hist�ht, RTconft� � �� � �
k�1

11

	khkt

� 	�k hktRTconfkt � �
k�1

6

		kRTconfkt. (7)

Modeling history contributions in synthetic, non-adjusting observers. We
performed two sets of simulations to ensure that the context-dependent
shifts in the history weights exhibited by participants in Experiment 2
were not just passively “inherited from” the correlated stimulus sequences in
the Repetitive and Alternating conditions. The rationale of these simula-
tions was to fit the behavior of synthetic observers. These were matched
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to the behavior of each of our participants in all parameters, except for
the history weights displayed in the biased conditions.

In the first set of simulations, we constructed observers, who based
their decisions only on the current stimulus. For each participant, we
estimated the parameters of the psychometric function described by
Equations 3 and 4 from the data of the respective biased conditions. This
“memory-less observer model” was the set of fitted parameters, but with
history bias �hist (ht) set to 0; it allowed us to compute the probability of
making an “up”-choice (rt � 1) for any given stimulus intensity in the
absence of any influence of past events. To simulate the model’s perfor-
mance in the two biased experimental conditions (Alternating and Re-
petitive), we used the original sequences of stimuli (motion coherences
times directions) seen by each observer in these two conditions, and
computed the choice probability for each trial by putting the model
parameters and stimulus categories in Equation 2. Based on these choice
probabilities, we then drew the choices on each trial by a weighted coin-
flip, resulting in a sequence of choices generated by the model. We then
fitted this choice and stimulus sequence, again using the model specified
in Equations 3 and 4 allowing us to estimate the synthetic observers’ stimulus
and choice weights. The resulting values served as a reference for the
history biases expected as a result of discriminating a biased sequence of
stimuli without memory.

The second set of simulations was as the first set of simulations, with
the exception that the synthetic observers had the same (non-zero) his-
tory weights estimated for the real participants in the Neutral condition,
but did not adjust these biases to the biased environments. Again, this
enabled us to simulate choice patterns of the synthetic observers exposed
to the stimulus sequences used in our actual experiment, and to use these
choice patterns to estimate the simulated observers’ choice and stimulus
weights, as described for the first set.

In both sets of simulations, we presented the same stimulus sequence
50 times, to average out the effect of binomial noise that was needed to
generate choices from the logistic function. This yielded more precise
estimates of the model parameters than was possible in the human
observers.

Statistical tests
We used parametric two-tailed t tests for all statistical comparisons of
regression weights reported in this paper. The rationale was that we could
then also provide Bayes factors (Bf ), to quantify the posterior belief in the
null hypothesis given the evidence (Rouder et al., 2009). Bf10 
 1/3
indicates evidence in favor of the null hypothesis, Bf10 � 3 indicates
evidence for the alternative hypothesis, and Bf10 � 1 indicates inconclu-
sive evidence. When performing multiple t tests of regression weights
(e.g., across seven lags or coherence levels), false discovery rate correction
(Benjamini and Hochberg, 1995) was applied to correct for multiple
comparisons.

When testing correlation coefficients computed for individual partic-
ipants (the so-called “adaptivity indices” defined in Results) against zero,
we first Fisher z-transformed the Pearson correlation coefficients and
then submitted them to simple t tests. We used the parametric two-tailed
Steiger’s test (Steiger, 1980) for comparing across-subjects correlations
between individual adaptivity indices (correlation coefficients) and their
proportion of correct choices with the corresponding correlations between
individual perceptual sensitivity and the proportion correct choices.

Finally, we used circular statistics, specifically Rayleigh’s test, to assess
the clustering of orientations of the lines connecting the weights from
Neutral with those from either Repetitive or Alternating conditions,
respectively. A Hotelling test (van den Brink et al., 2014) was used to
assess the difference in mean directions of adjustment between these
two conditions.

The results from all regression weights and individual adaptivity indi-
ces (correlation coefficients) in Experiment 2 were analogous when re-
placing the parametric tests with nonparametric permutation tests
(Efron and Tibshirani, 1998) with N � 10,000 permutations.

Results
We here report results from two experiments (referred to as
Experiments 1 and 2) quantifying choice history biases during the

random dot motion discrimination task that is widely used in
neurophysiological studies of perceptual decision-making (Gold
and Shadlen, 2007; Siegel et al., 2011; Kelly and O’Connell, 2015).
The two experiments aimed to manipulate different aspects of
choice behavior. Analyses of behavior from Experiment 1 were
previously published (Tsetsos et al., 2015), but those analyses did
not assess sequential effects. Here, we reanalyzed these data to
quantify the dependence of choice on previous stimuli, choices,
and motor responses. Figure 1C and D, illustrates behavioral pat-
terns generated by choice history biases in example observers
from the Neutral condition of Experiment 2 (i.e., no correlations
among successive stimuli). Figure 1C shows, for one observer,
a “streak” of eight repeats of the same choice, followed by five
repeats of the other choice. These streaks occur in the face of
trial-to-trial variations of the direction of the random stimuli.
Critically, such apparent biases toward one or the other choice
emerge only locally in time. Choice history biases are therefore
distinct from the “global” biases toward one particular choice
that result from uneven probabilities of the two stimulus catego-
ries or uneven payoffs for the two options (Bogacz et al., 2006;
Mulder et al., 2012; de Lange et al., 2013). One way to isolate choice
history biases is to fit, for each observer, two separate psychomet-
ric functions (relating signed stimulus strength to choice proba-
bility), each conditioned on the choice the observer made on the
previous trial. Choice history biases are then evident as horizontal
shifts between these two functions. Figure 1D displays the result-
ing functions of three example observers (Neutral condition
from Experiment 2) with an intrinsic bias to repeat (left; same
observer as Fig. 1C) or to alternate choices (right), or no bias
(middle). A more comprehensive approach is to explicitly model
the relative contribution of previous choices, or other experi-
mental variables from previous trials, to current choice bias
(Busse et al., 2011; Fründ et al., 2014; see Materials and Methods,
Modeling choice history bias). We used this statistical modeling
approach throughout this paper.

Our analyses pursued two main objectives. First, we aimed to
disentangle and compare the contribution of decisional and mo-
tor processing stages to the history biases. Second, we aimed to
quantify the adjustment of choice history biases to the environ-
ment, as a function of varying levels of decision confidence, in the
absence of external feedback.

Experiment 1: disentangling the impact of previous stimuli,
choices, and motor responses
In laboratory tasks, perceptual choice and motor response used
for reporting the choice are typically coupled, but can be decoupled
with little effect on performance on the current trial (Tsetsos et al.,
2015). Although there is evidence for either decisional or motor
origin of history biases (Akaishi et al., 2014; Pape and Siegel, 2016;
St. John-Saaltink et al., 2016), their relative contributions have
not yet been systematically compared across several trials in the
past. To do so, we reanalyzed data from a previously published
study (Tsetsos et al., 2015), in which observers performed a
random dot motion task under trial-to-trial variations in the
mapping between choice and motor response. The direction of
motion was chosen randomly and independently on each trial, so
that maximizing performance required basing choices solely on
the current stimulus and not on its history (i.e., previous stimuli,
choices, or motor responses).

Observers showed a significant tendency to repeat their pre-
vious choices (indicated by positive choice weights), but not their
motor responses (Fig. 2A). The effect of the previous choice on
current choice was positive and stronger than the effect of the
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previous motor response (Fig. 2A). The response weights did not
differ significantly from zero for any lag (Bf10 
 0.45 for all lags).
Preceding stimulus categories (up/down) exhibited negative, al-
beit not statistically significant, weights at longer lags (Fig. 2B),
possibly reflecting the impact of long-lasting, repulsive effects
of direction-selective sensory adaptation mechanisms (Kohn,
2007) on choice behavior.

These results indicate that the commonly observed choice
repetition biases are specifically due to previous choices and
not the motor responses used to the report them, which has im-
plications for their neural bases (see Discussion). We next inves-
tigated the adjustment of choice history biases (under fixed
mapping) to varying environmental statistics to gain deeper in-
sights into their functional origin and adaptive utility.

Experiment 2: confidence-dependent adjustment of choice
history biases to the environment
In laboratory tasks used to study perceptual choice, it is common
to generate random sequences of the two alternative stimulus cate-
gories. But the states of natural environments, and hence the sensory
signals generated by them, often exhibit significant autocorrelations
across time, so that it might be beneficial for decision-makers to
adjust their choice history biases to this correlation structure (Yu
and Cohen, 2008). In Experiment 2, we tested for such adjust-
ments, by systematically manipulating the repetition probabili-
ties between the two possible motion directions across three
conditions blocked by experimental session: Repetitive, Alternat-
ing, and Neutral (two sessions per condition; Fig. 1B; Materials
and Methods). Importantly, observers received no external feed-
back about the correctness of their choices. This enabled us to
study the impact of their decision confidence on the adjustment
of their choice history biases to environmental statistics.

Adjustment of choice history biases to environmental
statistics
The manipulation of the environmental statistics had robust
effects on observers’ history biases. We visualized those in two
complementary ways focusing on different aspects of the data.
Both our approaches were guided by the statistical structure of
the Repetitive and Alternating conditions, which yielded character-
istic profiles of the probability of stimulus repetitions as a function of
lag: for both Repetitive and Alternating conditions, repetition prob-
ability was most strongly biased (i.e., different from 0.5) at Lag 1, and

progressively approaching 0.5 for larger lags
(Fig. 3A). Thus, the strongest effects were
expected for events from the preceding trial
(i.e., Lag 1).

Our first approach, therefore, focused
on the weights for Lag 1. When plotting
the choice weights against stimulus
weights, data points located in the upper-
right triangular part indicated a tendency
to repeat the previous choice or stimu-
lus categories (up/down), whereas data
points in the lower-left triangular part in-
dicated a tendency to alternate (Fig. 3B,
dashed diagonal line). If observers ad-
justed their choice patterns to the Repeti-
tive and Alternating environments, their
history weights should have shifted in the
corresponding directions. This is what we
observed (Fig. 3B, compare dots of differ-
ent colors). The weights were close to zero

in the Neutral condition (group average; red “x”); weights shifted
toward repetition in the Repetitive condition (group average;
Fig. 3B, green arrow), and alternation in the Alternating condi-
tion (group average; Fig. 3B, blue arrow), respectively. The vector
angles of the shift from Neutral were significantly different from
uniform (Repetitive: z � 7.69, p � 0.0003; Alternating: z � 8.64,
p 
 0.0001; Rayleigh’s test), and the shift angles were significantly
different between Repetitive and Alternating (F(2,20) � 60.28, p 

0.0001, Hotelling test). The adjustment of choice history bias was
also evident when fitting the psychometric function conditioned
on the previous choice (as in Fig. 1D). Both conditions were
characterized by a history-dependent shift, in opposite directions
(Fig. 3C; difference in shift between Repetitive and Alternating: t(21)

� 3.21, p � 0.0042). By contrast, previous choice had no effect on
the slope of the psychometric function (difference in history-
dependent change in the slope between Repetitive and Alternating:
t(21) � �0.60, p � 0.5532, Bf10 � 0.2627).

It is noteworthy that the direction of the shift of history weights
between the different environmental statistics was largely along the
positive diagonal (Fig. 3B) that corresponds to equal weights for
previous stimuli and choices. Thus, the bias adjustment was largely
driven by correct choices (where previous choices and stimuli
were identical). We thus used the weight of previous correct
choices (i.e., the sum of choice and stimulus weights; see Materi-
als and Methods) in all subsequent analyses as a single metric of
the bias adjustment. The importance of previous correct choice
for the bias adjustment was indicative of the role of decision
confidence, an aspect that we elaborate on in the section Modu-
lation of choice history bias adjustment by decision confidence.

Our second approach focused on an assessment of the full time
courses of the history weights. The temporal profiles of the stimulus
repetition probabilities in the two biased conditions exhibited mark-
edly different patterns: in the Repetitive condition the temporal pro-
file exhibited a monotonic decay toward 0.5, whereas it exhibited a
damped oscillation �0.5 in the Alternating condition (Fig. 3A). The
correlation between both time courses for Repetitive and Alternat-
ing conditions was negative. In what follows, we refer to these time
courses as “history templates”, to indicate that these characterize the
statistical structure of the environment.

Indeed, participants’ history weights exhibited profiles that
were similar to those of the history templates (Fig. 3, compare D,
A). We use the term “history kernel” to refer to the individual
courses of the weights for correct choices as a function of lag. We
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quantified their similarity with the corresponding history tem-
plates by means of temporal correlation (Fig. 3E). These correla-
tions were significant in both conditions (Repetitive: t(21) � 2.57,
p � 0.0179; Alternating: t(21) � 4.83, p 
 0.0001). Thus, partici-
pants adjusted their history biases to the statistical structure of
their environments with a time course matched to the full envi-
ronmental statistics. In what follows, we refer to this similarity
metric as adaptivity index.

One concern might be that even an observer who only
discriminates the current sensory evidence, without any active
accumulation of past experimental events, might exhibit similar
shifts in the history weights between the Alternating and Repeti-
tive conditions, by virtue of the stimulus statistics propagating
into the history weights without any active adjustment of the
observer. To address this concern, we simulated the performance
of two types of synthetic observers, which were constructed indi-
vidually for each of our participants. These had the same percep-
tual sensitivity as each participant, but without any adjustment of
stimulus and choice weights to the different environmental con-
ditions (see Materials and Methods). The first set of synthetic
observers had stimulus and choice weights of zero. The second set
of synthetic observers had the same history biases (i.e., non-zero

choice and stimulus weights) as our participants in the Neutral
condition, but did not adjust these to the changing environmen-
tal statistics. The choice and stimulus weights obtained for both
these models were not significantly different from zero (Fig. 4A,B; all
p values �0.567 and Bf10 ranging from 0.22 to 0.62).

These simulation results indicate that the effect of the corre-
lations between stimuli on choice patterns was reliably soaked up
by the stimulus-dependent part of our statistical model (i.e., the
slope of the psychometric function). In other words, the system-
atic deviations of the history weights between Repetitive and Al-
ternating conditions evident in the real observers were not just
passively inherited from the correlations evident in the stimulus
sequences, but rather due to an active adjustment of their biases.

History bias adjustment predicts performance in
biased environments
Although the bias adjustment was highly consistent across par-
ticipants, individuals differed in the extent to which they shifted
their history biases between conditions (i.e., the magnitude of
their adaptivity indices; Fig. 3E). We correlated the individual
adaptivity indices with the proportion of correct choices to assess
their predictive value for overall task performance (Fig. 5A). The
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more strongly observers adjusted, the more successful they were
in both, the Repetitive (Fig. 5A, left) and Alternating (middle)
condition. We found no evidence for such an effect in the Neutral
condition (Fig. 5A, right; Bf10 � 0.4276). As expected, perceptual
sensitivity (i.e., the slope of the psychometric function) was also
strongly predictive of individual performance in all three condi-
tions (Fig. 5B). In both biased environments the adaptivity index
was similarly predictive of performance as perceptual sensitivity
(Repetitive: Steiger’s test z � 0.28, p � 0.7791; Alternating: z �
0.4, p � 0.6893), while sensitivity was a better predictor in the
Neutral environment (z � 2.70, p � 0.0068). In other words, the
adjustment to the environmental statistic can be about as impor-
tant for maximizing reward rate as sensitivity to the momentary
sensory evidence.

Together, our results reported so far supported the idea that
participants accumulated internal signals from their previous
correct decisions into biases for their current choice; a process
that adjusted their behavior to the statistics of their environment
and improved performance. Some previous accounts of sequen-
tial effects have postulated the accumulation of external variables,
such as stimulus repetitions (Yu and Cohen, 2008; Meyniel et al.,
2016), performance feedback (Abrahamyan et al., 2016), or re-
ward (Sugrue et al., 2004). Our experimental conditions pre-
cluded any of the above: observers performed under generally
high uncertainty about the veridical stimulus identities, and they
did not receive external feedback about choice outcomes. We
reasoned that, under these conditions, observers may have accu-
mulated the internal decision variables, on which they based their
choices in a context-dependent manner (i.e., with opposite sign
for Repetitive and Alternating environments). This interpreta-
tion is in line with a normative model of sequential effects (Glaze
et al., 2015). In statistical decision theory, as well as in neural
signals observed in the brain, the decision variable not only en-
codes the categorical choice, but also the graded confidence about
that choice (Kepecs et al., 2008; Kiani and Shadlen, 2009; Hebart
et al., 2016). Consequently, we reasoned that the impact of pre-
vious choices on current bias should depend on the confidence
associated with the previous choices. Our final set of analyses
tested this hypothesis.

Modulation of choice history bias adjustment by confidence
We here use the term “decision confidence” in a statistical sense,
to refer to the posterior probability that a choice is correct, given
the evidence (Kepecs et al., 2008; Pouget et al., 2016; Sanders et
al., 2016; Urai et al., 2017). The key features of a model formal-
izing this construct are reproduced in Figure 6A (Kepecs et al.,
2008; Sanders et al., 2016; Urai et al., 2017; see Materials and
Methods). This definition of confidence is agnostic about the link
to the subjective sense of confidence, or the ability to report this
sense of confidence (but see Sanders et al., 2016).

We used two experimental variables consistent with this def-
inition of confidence: accuracy and RT. Correct choices are over-
all associated with higher confidence for all non-zero evidence
strengths (i.e., coherence levels; Fig. 6A, top). The scaling of RT
with motion coherence exhibited the same characteristic signa-
ture as uncertainty (i.e., the complement of confidence) as re-
ported in previous studies (Sanders et al., 2016; Urai et al., 2017):
RT decreased with coherence for correct choices, but increased
for incorrect choices (Fig. 6, compare D, A). Linear regression
revealed an opposite-signed relationship between motion coher-
ence and RT, separately for correct (� � �0.150, SEM � 0.027,
p � 0.005) and error trials (� � 0.628, SEM � 0.025, p � 0.025).

As predicted, the leverage of the preceding choice on bias
adjustment (i.e., difference between Repetitive and Alternating)
was larger when the previous choice was correct than incorrect,
even when controlling for the level of previous motion coherence
(Fig. 6B,C). There was a significant effect of previous correct choice
at all of the previous coherence levels, whereas there was no such
effect for previous incorrect choices at any of the previous coherence
levels (Fig. 6B; Bf10: 0.23, 0.69, 0.23, 0.34, and 0.28 for previous co-
herence levels: 0.05, 0.1, 0.2, 0.4, and 0.6, respectively).

When pooled across previous coherence levels, the weights for
previous correct choices deviated significantly from zero in both
conditions (Fig. 6C; Repetitive: t(21) � 2.58, p � 0.0174; Alternat-
ing: t(21) � �4.42, p � 0.0002). Again there was no such effect for
previous errors (Fig. 6C; Repetitive: t(21) � �0.13, p � 0.8985,
Bf10 � 0.22; Alternating: t(21) � 0.35, p � 0.7309, Bf10 � 0.24).
The weights were significantly larger for correct than incorrect
previous choices in the Repetitive (t(21) � 3.06, p � 0.0060) and
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the other way around in the Alternating condition (t(21) � �5.19,
p 
 0.0001; Fig. 6C). Please note that although the weights were
averaged across previous coherence levels for visualization in Fig-
ure 6C, they were first estimated separately for each previous
coherence to factor out effects of trial-to-trial fluctuations in sen-
sory evidence strength (see Materials and Methods). These results
were qualitatively identical after random subsampling of the cor-
rect trials, so as to match the smaller number of incorrect trials for
each previous coherence level (data not shown), ruling out the
concern that the stronger bias adjustment after correct choices
may have been due to the larger number of correct than error
trials. In sum, these results were consistent with the idea that the
weight of choices in the across-trial accumulation process de-
pended on internal (i.e., stimulus-independent) fluctuations in
decision confidence.

To assess the modulatory effect of the second confidence proxy,
RT, on the bias adjustment, we built on an extension of the statis-
tical model by multiplicative interaction terms. This quantified
the degree to which the impact of previous correct choices on
current bias was modulated by previous RT (see Materials and
Methods for details). In these model fits, we transformed RT to
scale positively with decision confidence, a variable we refer to as
RTconf (Materials and Methods). Again, we split trials by their
motion coherence to assess the modulatory effect of RTconf on
the impact of correct choices (i.e., the weights for the interaction

term RTconf x correct), over and above variations in evidence
strength.

Larger values of RTconf were associated with a stronger impact
of the previous (correct) choice on the current bias (Fig. 6E,F),
an effect that was robust even when we evaluated each previous
coherence level separately (Fig. 6E). When pooled across previ-
ous coherence levels, the interaction weight was significantly
larger than zero in the Repetitive condition (Fig. 6F; t(21) � 3.84,
p � 0.0009), indicating a confidence-dependent enhancement of
the tendency to repeat correct choices in that condition. Con-
versely, the interaction weight was significantly smaller than zero
in the Alternating condition (Fig. 6F; t(21) � �3.71, p � 0.0013),
indicating a confidence-dependent enhancement of the tendency
to alternate correct choices. Thus, even within the correct choices,
evidence-independent fluctuations in the associated confidence (in-
dexed by RTconf) boosted their impact on future choice bias.

Together, two independent proxies of decision confidence,
choice accuracy and reaction time, both supported the conclu-
sion that decision confidence boosted the adjustment of choice
history biases to the structure of the environment.

Discussion
Choice history biases are a pervasive phenomenon in perceptual
decision-making (Fernberger, 1920; Fründ et al., 2014). Here, we
showed that these biases were largely dominated by categorical
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choices rather than motor responses and could be flexibly ad-
justed to environmental statistics even in the absence of feedback
about choice outcome. In line with recent normative accounts,
the strength of this adjustment was modulated by previous
decision confidence. In environments with strong sequential
structure it governed individual performance to a similar extent
as perceptual sensitivity. Together, our results yield new insights into
the functional origins and adaptive utility of choice history biases,
with direct implications for their neural bases.

An important novel contribution of our study is the discovery
of a confidence-weighted adjustment of choice history biases to
changing environments. We propose that this was due to a context-
dependent accumulation of decision variables across trials. A
similar accumulation process has been proposed to explain se-
quential effects under strong and unambiguous evidence (Yu and
Cohen, 2008; Meyniel et al., 2016). Consequently, those latter
models describe the accumulation of external observables rather
than internal decision variables. The latter are often dissociated
from external observables when the decision-maker is uncertain
about the environmental state due to degraded evidence. Al-
though temporal accumulation is a widely established mecha-
nism in perceptual choice (Bogacz et al., 2006; Gold and Shadlen,
2007; Ratcliff and McKoon, 2008; Wang, 2008; Ossmy et al.,
2013), previous models focus on the within-trial accumulation of
the momentary sensory evidence. Across-trial accumulation of
information is long established in the theory of reinforcement learn-
ing, but there it pertains to the accumulation of rewards (i.e., exter-

nal signals about choice outcome) and spans substantially longer
timescales than sensory evidence accumulation (Sutton and Barto,
1998; Sugrue et al., 2004; Glimcher, 2011). Our current results are
indicative of an accumulation mechanism that operates (1) with a
timescale situated in between those established for sensory evidence
accumulation and action value learning, and (2) on internal decision
variables, which themselves result from the faster (within-trial) ac-
cumulation of sensory evidence.

Such a context-dependent across-trial accumulation of deci-
sion variables has been postulated by a recent normative account
(Glaze et al., 2015), and shown to account for history biases in simple
saccadic choice (Kim et al., 2017). Little is currently known about the
neural basis of this process. Our current work sets the stage for
probing into its neural basis, by experimentally establishing key
behavioral hallmarks of this accumulation process within the
most widely used task in the neurophysiology of perceptual
decision-making (Gold and Shadlen, 2007; Siegel et al., 2011;
Kelly and O’Connell, 2015). It will now be important to explore
the underlying mechanisms through direct recordings of neural
activity under conditions as used here.

One recent study provided similar evidence for an effective
adjustment of human observers to changing environmental sta-
tistics (Abrahamyan et al., 2016). Our current results and those
from Abrahamyan et al. (2016) complement each other in quan-
tifying the adaptability of human choice history biases. In Abra-
hamyan et al. (2016) the nature of the change in the environment
was different from the one we have used here: in their study,
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observers received unambiguous feedback about the outcome of
each choice, and the manipulation of the stimulus sequence de-
pended on the participants’ success or failure. Consequently, the
process adjusting history biases likely depended on the combina-
tion of choices and their outcome. By contrast, in our study, the
environments differed in their statistical structure independent
of observers’ choices. Furthermore, participants remained uncer-
tain about their choice outcomes, and therefore could only base
their history biases on internal signals. This was likely the key aspect
that mediated the confidence-weighting of the impact of previous
choices on current bias in our present study. Thus, the adjustment
effects in our study and the one from Abrahamyan et al. (2016) likely
resulted from distinct computational mechanisms.

The interpretation provided above as well as the normative
framework by Glaze et al. (2015) offer a natural interpretation of
the modulatory effect of decision confidence on the adjustment
of choice behavior. In statistical decision theory, as well as in neural
signals observed in the brain, the decision variable does not only
encode the categorical choice, but also the graded confidence
about that choice (Kepecs et al., 2008; Kiani and Shadlen, 2009;
Hebart et al., 2016). This quantity is the best proxy for the true
state of the environment available to the decision-maker in the
absence of external feedback. A decision variable large in magni-
tude implies large confidence and predicts accurate as well as fast
decisions (Sanders et al., 2016). Thus, across-trial accumulation
of decision variables into choice history bias predicts that correct
or fast choices have a stronger impact on the history bias adjust-
ment to environmental statistics; just as we observed in our sec-
ond experiment. The same idea can account for the observation
(Urai et al., 2017) that “intrinsic” history biases emerging under
random stimulus sequences, regardless of their direction (i.e.,
toward alternation or repetition), are weaker following low-
confidence decisions (i.e., long reaction times). In such contexts,
corresponding to the Neutral condition in our Experiment 2,
observers’ biases might result from biased internal representations of
the environmental structure (i.e., biased “subjective hazard rates”
in the model by Glaze et al., 2015). Together, confidence-weighting
of the impact of previous choices on current bias may be a diag-
nostic feature of the accumulation of graded decision variables
across trials that we propose as a mechanism underlying the his-
tory bias adjustment in our experiment.

In our account the strength of history bias adjustment de-
pends on the magnitude of the decision variable, which is also the
sole source of variations in confidence in the confidence model
from Figure 6A (Kepecs et al., 2008). According to this model, the
difference in confidence between correct and error trials increases as
a function of stimulus strength. Thus, one would expect the im-
pact of correctness on bias adjustment to also increase as a func-
tion of stimulus strength. Such an increase was not evident in our
data (Fig. 6B). A possible explanation is that choice accuracy was
less closely coupled to the decision variable than postulated by the
confidence model from Figure 6A. For example, some errors will be
caused by noise downstream from the decision variable and con-
sequently not affect the bias adjustment. Thus, motor errors will
counteract the dependence of history bias adjustment on correct-
ness. Because misperception of the true stimulus category be-
comes less likely with stronger evidence, the relative contribution
of motor errors to incorrect choices will increases as a function of
evidence strength. This might explain why the effect of previous
correctness on history bias adjustment did not increase as a func-
tion of previous evidence strength in our data. Similar consider-
ations hold for our second confidence proxy, reaction time.

Our analyses revealed that the contributions of previous stim-
uli, perceptual choices, and motor responses were dissociable in
terms of their strength, sign, and time course. Importantly, the
dominant and consistent bias in standard conditions with ran-
dom stimulus sequences was to repeat preceding choices, rather
than motor responses. Two recent studies similarly decoupled
perceptual choice and motor response (Akaishi et al., 2014; Pape
and Siegel, 2016). One of them (Pape and Siegel, 2016) showed
that a bias to alternate response hands from trial to trial system-
atically contributed to sequential effects, due to activity dynamics
within motor cortex. This motor response alternation bias was
superimposed onto a choice repetition bias in their study, but
Pape and Siegel (2016) did not compare the magnitude and time
course of these two effects directly. When performing such a
direct comparison, we here found the contribution of previous
choices to be significantly stronger, and more prolonged in time.
The predominance of choices over motor responses is consistent
with the results (focusing on the preceding decision only) from
Akaishi et al. (2014). Together, the data by Akaishi et al. (2014)
and our present study indicate that history biases in perceptual
decision-making are governed by decision variables encoded in
an abstract, action-independent format. Such representations of
the decision variable exist in associative brain regions, such as
posterior parietal or prefrontal cortex (Bennur and Gold, 2011; He-
bart et al., 2012, 2016), which also exhibit the short-term memory
dynamics necessary for the persistence of biases in the decision-
making machinery (Wang, 2002; Bonaiuto et al., 2016; Morcos and
Harvey, 2016).

We conclude that human observers accumulate action-indepen-
dent, graded decision variables across trials toward biases for up-
coming choices in a context-dependent manner. This process
enables observers to adjust their choice behavior to environmen-
tal statistics in the absence of unambiguous information about
choice outcome. Our findings are in line with normative theory
and constrain the candidate neural sources of choice history
biases.
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