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Jeroen B. Guineé,† and Reinout Heijungs†,⊥

†Institute of Environmental Sciences (CML), Department of Industrial Ecology, Leiden University, Einsteinweg 2, 2333 CC Leiden,
The Netherlands
#EarthShift Global LLC, 37 Route 236, Suite 112, Kittery, Maine 03904, United States
‡UCL Institute for Sustainable Resources, University College London (UCL), WC1H 0NN London, United Kingdom
§Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden
∥WorldFish, Jalan Batu Maung, 11960 Penang, Malaysia
⊥Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV Amsterdam,
The Netherlands

*S Supporting Information

ABSTRACT: Interpretation of comparative Life Cycle Assess-
ment (LCA) results can be challenging in the presence of
uncertainty. To aid in interpreting such results under the goal
of any comparative LCA, we aim to provide guidance to prac-
titioners by gaining insights into uncertainty-statistics methods
(USMs). We review five USMsdiscernibility analysis, impact
category relevance, overlap area of probability distributions, null
hypothesis significance testing (NHST), and modified NHST−
and provide a common notation, terminology, and calculation
platform. We further cross-compare all USMs by applying
them to a case study on electric cars. USMs belong to a con-
firmatory or an exploratory statistics’ branch, each serving
different purposes to practitioners. Results highlight that common uncertainties and the magnitude of differences per impact are
key in offering reliable insights. Common uncertainties are particularly important as disregarding them can lead to incorrect
recommendations. On the basis of these considerations, we recommend the modified NHST as a confirmatory USM. We also
recommend discernibility analysis as an exploratory USM along with recommendations for its improvement, as it disregards the
magnitude of the differences. While further research is necessary to support our conclusions, the results and supporting material
provided can help LCA practitioners in delivering a more robust basis for decision-making.

■ INTRODUCTION
One of the main applications of life cycle assessment (LCA) is
to support a comparative assertion regarding the relative envir-
onmental performance of one product with respect to other func-
tionally equivalent alternatives.1 In such a comparative LCA,
claims can be tested by comparing the inventory and/or impact
assessment results for any given set of alternative products.2 To
date, practitioners usually calculate and compare point-value
results, an approach described as deterministic LCA.3 This
practice allows one to draw conclusions such as “alternative B
causes 45% larger impacts than alternative A” or “alternatives B
and C have strengths and weaknesses, but both outper-
form alternative D”. Typically, deterministic comparative LCAs
find trade-offs between alternatives and across environmental
impacts (from here on referred to as impacts). While uncertainty
estimations can be useful in understanding trade-offs between
alternatives, deterministic LCAs lack an assessment of
uncertainties.4

Uncertainty appears in all phases of an LCA5−7 and orig-
inates from multiple sources. Some of the more prevalent are
variability, imperfect measurements (inherent uncertainty8), gaps,
unrepresentativeness of inventory data (also known as parameter
uncertainty),5 methodological choices made by practitioners
throughout the LCA (also known as scenario uncertainty or uncer-
tainty due to normative choices),5 and mathematical relationships
(also known as model uncertainty).5 Using analytical and stochastic
approaches, e.g., Monte Carlo (MC) simulations and first order
Taylor series expansion,9 LCA practitioners have propagated
these sources of uncertainty to LCA results.9,10 Unlike deterministic
LCA, the quantification of uncertainties related to LCA results
allows for associating a level of likelihood to and confidence in

Received: December 10, 2017
Revised: January 19, 2018
Accepted: January 24, 2018
Published: February 6, 2018

Article

pubs.acs.org/estCite This: Environ. Sci. Technol. 2018, 52, 2152−2161

© 2018 American Chemical Society 2152 DOI: 10.1021/acs.est.7b06365
Environ. Sci. Technol. 2018, 52, 2152−2161

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/est
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.7b06365
http://dx.doi.org/10.1021/acs.est.7b06365
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


the conclusions drawn. However, interpreting overlapping ranges
of results is complex and therefore requires sophisticated inter-
pretation methods.10 To this end, various statistical methods
have been applied within the field of LCA, including: discernibility
analysis,11,12 impact category relevance,13 overlap area of prob-
ability distributions,14 null hypothesis significance testing
(NHST),15,16 and modified NHST.17

The application of statistical methods to uncertainty analysis
results, hereafter referred to as “uncertainty-statistic methods”
(USMs), can aid practitioners in various ways. First, they help
to establish a level of confidence behind the trade-offs between
alternatives and across environmental impacts while considering
various sources of uncertainty. Second, they go beyond the
practice of one-at-the-time scenario analysis by integrating a series
of otherwise independent sensitivity analyses into an overall
uncertainty assessment of results.4 For instance, they enable the
exploration of a broad range of possible combinations of all
sorts of input data known as the scenario space.12 Third, they
allow for comparisons of alternatives in the context of common
uncertainties, a crucial aspect in comparative LCAs.15 Lastly,
they help to identify the relative importance of different impacts
for the comparison of alternatives.18

Choosing the most appropriate statistical method(s) to
interpret the results of uncertainty analysis in the light of the
goal and scope of individual LCA studies can be challenging.
There is a lack of applications of these methods in real case studies,
a lack of support in standard LCA software, incomprehensive
and scattered documentation, and inconsistent terminology and
mathematical notation. Moreover, literature is devoid of recom-
mendations for LCA practitioners about which method(s) to
use, under which LCA goal, to interpret the meaning of the
uncertainty analysis results in comparative LCAs. Thus, our
research question queries: “Which statistical method(s) should
LCA practitioners use to interpret the results of a comparative LCA,
under the light of its goal and scope, when considering uncertainty?”
In this study, we answer this question by (1) critically reviewing
the five above-mentioned USMs, (2) comparing them for a
single illustrative case study on passenger vehicles with a com-
mon calculation platform and terminology, and (3) by pro-
viding guidance to practitioners in the realm of application of
these methods via a decision tree. It is the focus of this study to
test the applicability and value of different USMs, including the
visualization of results and the limitations encountered during
their implementation. Testing and analyzing differences in
methods to quantify and propagate uncertainties is out of the
scope of this study, although we use some of them (e.g., Monte
Carlo simulations as propagation method) for the uncertainty
analysis.

■ METHODS AND CASE STUDY

Statistical Methods for Interpretation of Comparative
LCA with Uncertainty. In chronological order of publication,
the methods we study are discernibility analysis,11,12 impact cat-
egory relevance,13 overlap area of probability distributions,14

null hypothesis significance testing (NHST),15,16 and modified
NHST.17 The scope was narrowed to these statistical methods
based on two criteria:

(1) The method has been developed and published in peer
reviewed journals and contains transparent and accessible
algorithms. Consequently, the first-order reliability method
(FORM)3 could not be included due to incompletely
documented optimization procedures.

(2) The method is applied to interpret the results of uncer-
tainty analysis of comparative LCAs with two or more
alternatives and one or more emissions or impacts. This
excludes studies addressing different impacts, but not in a
comparative way,19 and studies focusing on methods for
quantifying and/or propagating uncertainty sources through
LCA. Studies developing and describing methods such as
global sensitivity analysis20 are also excluded as they are
not comparative and focus on just one emission or impact
at a time. Finally, we have not revisited the enormous body
of statistical literature, as the authors of the selected
methods have already done this exercise.

To increase transparency in our comparison of methods and
their features, we use a uniform terminology (Table S.1, Appendix I
of the Supporting Information, SI), and a common mathematical
notation (Table 1). We interpret the state of the art for each

method, and in some cases go beyond the original mathematical
proposals by the authors. When this is the case, we indicate the
differences.
We reviewed the methods according to the following aspects:

the number of alternatives compared and approach to compare
them, the inputs used by the method, the implementation, the
purpose and the type of outputs. Table 2 summarizes the fea-
tures of each method according to these aspects.
Some features that are consistent for all methods include: (1)

they can be applied to dependently or independently sampled
MC runs, meaning that the uncertainty analysis results are (depen-
dently) or not (independently) calculated with the same tech-
nology and environmental matrices for all alternatives con-
sidered for each MC run; (2) they can be used to interpret LCA
results at the inventory, characterization, and normalization level,
although in our case study we only apply them at the char-
acterization level as their use at other levels is trivial in the absence
of additional uncertainties; (3) they all compare alternatives per
pairs (pairwise analysis); and (4) they all originate from the
idea of merging uncertainty and comparative analysis.

Discernibility. We refer to discernibility as the method
described by Heijungs and Kleijn11 as the basis of comparative
evaluation of Gregory et.al12 is the same as that proposed by

Table 1. Mathematical Notation for Comparison of
Uncertainty-Statistics Methods (USMs)

symbol description

j,k index of alternatives e.g. products, services, systems, etc.
(j = 1,···, n, k = 1,···, n)

i impact category (climate change, eutrophication, acidification,···)
r index of Monte Carlo simulations (r = 1,..., N)
X random variable
x realization
μ parameter of centrality (mean)
σ parameter of dispersion (standard deviation)
X̅ statistic of centrality (estimator of mean μ)
S statistic of dispersion (estimator of standard deviation σ)
x ̅ obtained value of centrality (estimate of mean μ)
s obtained value of dispersion (estimate of standard deviation σ)
f i,j,k fraction of runs with higher results on impact category i in

alternative j compared to k
#(x) count function, counts the number of runs fulfilling condition x
ϒi,j,k relevance parameter for the pair of alternatives j, k on impact

category i
Ai,j,k overlap area of two probability distributions for the pair of

alternatives j, k on impact category i
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Heijungs and Klein.11 Discernibility compares two or more
alternatives, using a pairwise method as the comparison takes
place by pair of alternatives, comparing the results of alternative
j with alternative k per MC run. It assesses the stochastic
outcomes on whether the results of one alternative are higher
or lower than another alternative. The purpose of discernibility
is to identify whether the results of one of the alternatives are
higher than (irrespective of how much higher) the results of the
other. This method disregards the distance between the mean
scores (or other centrality parameters). For its operationalization,
practitioners count how many realizations per pair of alternatives
per impact, i.e., xi,j,r and xi,k,r for r = 1,···, N meet the “sign test”
condition. The counting function is indicated by the symbol
#(·), where the argument of the function specifies the “sign
test” condition. We interpret these condition as the evaluation
of whether the difference between the results per run for a pair
of alternatives is bigger than zero. Equation 1 shows the cal-
culations of the discernibility approach for each impact.

=
# − >=f

x x

N

( 0)
i j k

r
N

i j r i k r
, ,

1 , , , ,

(1)

The results of eq 1 help assert that “Alternative j has a larger
impact than alternative k in 100 × f % of runs”.
Impact Category Relevance. This approach evaluates

trade-offs using the relevance parameter (ϒi,j,k), as introduced in
Prado-Lopez et al.,13 and it is not intended to calculate sta-
tistical significance. It stems from the idea that similar impacts
among alternatives do not influence the comparison of alternatives
as much as impacts for which alternatives perform very different.
It uses the mean (statistics of centrality, X̅i,j, X̅i,k) and standard
deviation (statistic of dispersion, Si,j, Si,k) calculated from the
obtained values for each impact (Xi,j,r and Xi,k,r), thus not per
MC run. The value of ϒi,j,k, has no meaning on its own, rather
its purpose is to help explore the comparison of two alternatives
by means of sorting according to the extent of the differences
per impact. This approach is therefore exclusive to analysis with
more than one impact. When uncertainties increase (as indi-
cated by larger standard deviations) or the difference between

the means of two alternatives gets closer to zero (as indicated
by nearly equal means), it becomes harder to distinguish between
the performance of two alternatives for an environmental impact
and hence this aspect is deemed to have a lower relevance in
the comparison. A higher relevance parameter for a specific impact
indicates that this impact is more important to the comparison
than others. The relevance parameter works as a pairwise anal-
ysis, as shown in eq 2.

ϒ =
| ̅ − ̅ |

+

x x

s s( )
i j k

i j i k

i j i k
, ,

, ,
1
2 , , (2)

In this formula we interpret (in comparison to the original
description of the method13) μ as x,̅ because μ is unknown and
only estimated by x.̅ Further, we interpreted the ambiguous SD
in the original publication,13 into s, which is an estimate of σ.

Overlap Area of Probability Distributions. This method
follows the same idea as the relevance parameter, but instead
provides an indicator based on the overlap area of probability
distribution functions (PDF). Similar to the relevance param-
eter, this method is not calculated per run, and there is no sig-
nificance threshold value in the overlap that defines statistical
significance. The overlap area approach is exclusive to analysis
with more than one impact.14 It measures the common area
between PDF of the stochastic impact results (Xi,j and Xi,k) of
two alternatives j and k, for a specific impact i. By doing this,
the overlap area approach can technically apply to diverse types
of distributions as opposed to assuming a normal distribution.
The shared area between distributions ranges from one, when
distributions are identical, to zero, when they are completely
dissimilar. The smaller the overlap area, the more different two
alternatives are in their performance for an impact. To compute
the overlap area (Ai,j,k), two strategies can be followed. A con-
ventional way is to assume a probability distribution for both
Xi,j and Xi,k (for instance, a normal or log-normal distribution),
to estimate the parameters (μi,j, μi,k, σi,j, σi,k) from the MC sam-
ples, and to find the overlap by integration. This is the approach
followed by Prado-Lopez et al.,14 using log-normal

Table 2. Features of the Different Uncertainty-Statistics Methods (USMs) in Comparative LCA

methods
alternatives compared

(approach)

type of input
(from uncertainty

analysis) implementation purpose (type of question) type of output reference

deterministic LCA
(comparison
of point values)

as many as required
(all together)

none overall (i.e., based
on one run or
point-value)

which alternative displays
the lower results?
(exploratory)

point-value abundant in literature.
included as standard
result in LCA software
packages

discernibility as many as required
(pairwise analysis)

Monte Carlo runs
(dependently or
independently
sampled)

per run how often is the impact i
higher for j than for k,
or vice versa? (exploratory)

counts meeting
“sign test”
condition (eq 1)

Heijungs and Klein11

impact category
relevance

as many as required
(pairwise analysis)

estimates of statistical
parameters
(i.e., mean and
standard deviation)

overall (i.e., based
on statistical
parameters)

which are the impacts
playing a relatively more
important role in the
comparison of j and k?
(exploratory)

measure of
influence of
impacts in the
comparison (eq 2)

Prado-Lopez et al.13

overlap area of
probability
distributions

as many as required
(pairwise analysis)

moments of the fitted
distribution
(e.g., maximum
likelihood estimates)

overall (i.e., based on
moments of the
fitted distribution)

which are the impacts playing
a relatively more important
role in the comparison of
j and k? (exploratory)

overlap of
probability
distributions of
j and k (eq 3)

Prado-Lopez et al.14

null hypothesis
significance
testing (NHST)

as many as required
(pairwise analysis)

Monte Carlo runs
(dependently or
independently
sampled)

per run is the mean impact of j
significantly different
from the mean impact of k?
(confirmatory)

p-values fail to
reject (no)
or reject (yes)
the null hypothesis

Henriksson et al.15

modified NHST as many as required
(pairwise analysis)

Monte Carlo runs
(dependently or
independently sampled)

per run is the difference between
the mean impact of
j and k at least as different as
a threshold? (confirmatory)

p-values fail to
reject (no)
or reject (yes)
the null hypothesis

Heijungs et al.17

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b06365
Environ. Sci. Technol. 2018, 52, 2152−2161

2154

http://dx.doi.org/10.1021/acs.est.7b06365


distributions. The second approach does not require an assump-
tion on the distribution, but uses the information from the empir-
ical histogram, using the Bhattacharyya coefficient.21 To our
knowledge, the latter approach has not been used in the field of
LCA. Here, we calculate the overlap area using the first approach.
In our case, the statistic of centrality (X̅i,j, X̅i,k) and dispersion
(Si,j, Si,k) of the assumed lognormally distributed stochastic impact
results were calculated by means of the maximum likelihood
estimation of parameters. The lower intercept (θ) and the upper
intercept (ψ) of the two PDFs, are calculated using these param-
eters and used as a base to calculate the overlap area between two
distributions (eq 3). Details on the calculation of θ and ψ, as
well as the maximum likelihood estimation of parameters μ and
σ, and the PDF Φ are described in the SI (Appendix II).

θ μ σ θ μ σ

ψ μ σ ψ μ σ

= − |Φ − Φ |

− |Φ − Φ |

A 1 ( ; , ) ( ; , )

( ; , ) ( ; , )

i j k i j i j i k i k

i j i j i k i k

, , , , , ,

, , , , (3)

This method uses a pairwise analysis, yet when more than a pair
of alternatives is compared, Prado-Lopez et al.14 proposed an
averaging procedure for the overlap areas between all pairs. For
reasons of comparability with the other methods, we did not
pursue this extension and concentrate instead on the compar-
ison per pair.
Null Hypothesis Significance Testing (NHST). This

method is delineated in Henriksson et al.15 and applied in
Henriksson et al.16 It largely relies on established null hypoth-
esis significance tests. In comparative LCAs, a generally implicit
null hypothesis presumes that two alternatives perform environ-
mentally equal: H0: μi,j = μi,k. This method’s purpose is to show
whether the centrality parameter (mean or median) of the rel-
ative impacts of two alternatives are statistically significantly dif-
ferent from each other. It builds on the quantification and prop-
agation of overall dispersions in inventory data8 to stochastic
LCA results (Xi,j and Xi,k). From the stochastic results per impact,
the difference per pair of alternatives per MC run is calculated
(xi,j,r − xi,k,r). This distribution of differences can then be statis-
tically tested using the most appropriate statistical test with regards
to the nature of the data, as proposed by Henriksson et.al.15 For
instance, for normally distributed data, a paired t-test is appro-
priate to determine whether the mean of the distribution signif-
icantly differs from zero (the hypothesized mean). For non-
parameterized data, more robust statistical tests, such as Wilcoxon’s
rank test, can be used. When three or more alternatives are
compared, a two-way ANOVA can be used for normally dis-
tributed data, while a Friedman test can be used in more gen-
eral cases. In both of these cases a posthoc analysis is also required
to establish significantly superior products. The null hypothesis
of equal means (or medians) may then be rejected or not,
depending on the p-value and the predefined significance level
(α), e.g., α = 0.05. For our case, we apply a paired t-test to the
distribution of the difference per pair of alternatives and MC
run, because the mean is expected to be normally distributed as
the number of runs is relatively large (1000 MC runs).22 We
also explored a Bonferroni correction of the significance value from
α = 0.05 to αb = 0.05/30 = 0.0016 as the chance of false
positives is rather high when multiple hypothesis tests are per-
formed.23 The factor 30 is explained by the ten impacts and the
three pairs of alternatives.
Modified NHST. Heijungs et al.17 proposed this method as

a way to deal with one of the major limitations encountered
while applying NHST to data from simulation models:

significance tests will theoretically always reject the null
hypothesis of equality of means since propagated sample sizes
are theoretically infinite. It is a method that attempts to cover
significance (precision) and effect of size (relevance). Thus,
from the classic H0 in NHST that assumes “no difference”
between the parameters (μi,j = μi, k), this method includes a “at
least as different as” in the null hypothesis, which is stated as
H0: Si,j,k ≤ δ0 where Si,j,k is the standardized difference of means
(also known as Cohen’s d24) and δ0 is a threshold value, con-
ventionally set at 0.2.17 So far the method has not been applied
in the context of comparative LCA outside of Heijungs et al.17

For its operationalization, the authors proposed the following
steps:17 (1) set a significance level (α); (2) set the difference
threshold (δ0); (3) define a test statistic D (see eq 4, which is a
modification from the original proposal17); and (4) test the null
hypothesis H0: δ ≤ δ0 at the significance level α.

∑

δ
μ μ

σ
= ̅ − ̅ =

−

=
−

− − ̅ − ̅
=

d
x x

s

s
N

x x x x
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1
1

(( ) ( ))

i j k
i k i j

i j k
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, ,
1
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2
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In eq 4, si,j,k is the standard deviation of the difference between
alternatives j and k. We further estimate the t-value from the
value of d as shown in eq 5. The t-value is a test statistic for
t-tests that measures the difference between an observed sample
statistic and its hypothesized population parameter in units of
standard error.

δ
=

−
t

d
i j k

i j k

N

, ,
, , 0

1
(5)

For our case, we consider the default values suggested by Heijungs
et al.17 where α = 0.05 and δ0 = 0.2, and we calculate the test
statistic D for the three pairs of alternatives (eqs 4 and 5). We also
explored the significance with αb = 0.0016 as done for the NHST.

Case Study for Passenger Vehicles. A case study for a
comparative LCA that evaluates the environmental performance
of powertrain alternatives for passenger cars in Europe is used to
illustrate the USMs. Comparative assertions are common among
LCAs that test the environmental superiority of electric powertrains
over conventional internal combustion engines.25 Several LCA
studies have comparatively evaluated the environmental perfor-
mance of hybrid, plug-in hybrid,26,27 full battery electric,28,29

and hydrogen fuel cell vehicles.30,31 Many of these studies
describe multiple trade-offs between environmental impacts:
while electric powertrains notably reduce tailpipe emissions from
fuel combustion, various other impacts may increase (e.g., toxic
emissions from metal mining related to electric batteries32).
Against this background, electric powertrains in passenger vehi-
cles are an example of problem shifting and a sound case to test
comparative methods in LCA.

Goal and Scope. The goal of this comparative LCA is to
illustrate different USMs by applying these methods to the uncer-
tainty analysis results for three powertrain alternatives for pas-
senger cars in Europe: a full battery electric (FBE), a hydrogen
fuel cell (HFC), and an internal combustion engine (ICE) pas-
senger car. The functional unit for the three alternatives corre-
sponds to a driving distance of 150 000 vehicle-kilometers (vkm).
The scope includes production, operation, maintenance, and end
of life. The flow diagram for the three alternatives can be found
in the SI (Figure S.1, Appendix III). The case has been
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implemented in version 5.2 of the CMLCA software (www.
cmlca.eu), and the same software has been used to propagate
uncertainty. The five USMs have been implemented in a Microsoft
Excel (2010) workbook available in the SI.
Life Cycle Inventory. The foreground system was built

using existing physical inventory data for a common glider as
well as the FBE and ICE powertrains as described by Hawkins
and colleagues,32 whereas the HFC power train data is based on
Bartolozzi and colleagues.33 The background system contains
process data from ecoinvent v2.2, following the concordances
described by the original sources of data. A complete physical
inventory is presented in the SI (Table S.2, Appendix IV). The
uncertainty of the background inventory data corresponds to
the pedigree matrix34 scores assigned in the ecoinvent v2.2 data-
base. In addition, overall dispersions and probability distributions
of the foreground inventory data have been estimated by means
of the protocol for horizontal averaging of unit process data by
Henriksson et al.8 Thus, the parameters are weighted averages
with the inherent uncertainty, spread, and unrepresentativeness
quantified. Specifically, unrepresentativeness was characterized
in terms of reliability, completeness, temporal, geographical, tech-
nological correlation, and sample size,35 to the extent possible
based on the information provided in the original data sources.
Further details of the implementation of parameter uncertainty
are presented in the SI (Appendix IV).
Life Cycle Impact Assessment (LCIA). The environmental

performance of the selected transport alternatives is assessed
according to 10 midpoint impact categories, namely: climate
change, eutrophication, photochemical oxidation, depletion of
abiotic resources, acidification, terrestrial ecotoxicity, ionizing
radiation, freshwater ecotoxicity, stratospheric ozone depletion,
and human toxicity. The characterization factors correspond to
the CML-IA factors without long-term effects (version 4.7),36

and exclude uncertainty. No normalization or weighting was per-
formed, and the results are presented at the characterized level.
Uncertainty Calculations. Uncertainty parameters of back-

ground and foreground inventory data were propagated to the
LCA results using 1000 MC iterations. We provide a conver-
gence test for the results at the characterized level for all
impacts and alternatives considered to show that this amount of
MC runs is appropriate for this case study (SI, Appendix VI).
Although other sources of uncertainty could be incorporated by
means of various methods,37,38 we did not account for uncer-
tainty due to methodological choices (such as allocation and
impact assessment methods) or modeling uncertainties, neither
due to data gaps that disallow the application of such methods.
Also, correlations between input parameters was not accounted

for.39 In our experimental setup, the same technology and
environmental matrix was used to calculate the results for the
three alternatives for each MC run. Thus, dependent sampling
underlies the calculations of paired samples. This experimental
setup is important because it accounts for common uncertainties
between alternatives15,40 that are particularly important in the
context of comparative LCAs.15,41 Although the five statistical
methods under study could be applied to independent sampled
data sets, it would lack meaning as common uncertainties would
then be disregarded. Thus, only dependently sampled MC runs
were explored for the purpose of the present research. These
MC runs per impact are available in the Microsoft Excel (2010)
workbook in the SI.
The five USMs are applied to the same 1000 MC runs

dependently sampled for each of the three alternatives and for
each impact. As all methods are pairwise, we apply them for
three pairs of alternatives: ICE/HFC, ICE/FBE, and FBE/HFC.

■ RESULTS

Figure 1 shows the results for our comparative LCA following
the classic visualization of deterministic characterization, in which
results are directly superposed for comparison. All impacts con-
sidered are lower for the HFC except for depletion of abiotic
resources. Both the ICE and FBE show various environmental
trade-offs: the ICE performs worse than both the FBE and
HFC in five impacts, while the FBE performs worse than the
ICE and HFC in six impacts. Overall, the HFC performs better
than both the FBE and ICE on most impacts considered. How-
ever, these results bear no information on their significance or
likelihood, as no uncertainties are included.
The complete set of results for the ten impacts considered

and the five methods are found in the Microsoft Excel (2010)
workbook in the SI. The deterministic LCA results shown in
Table 3, correspond to those in Figure 1: HFC shows a better
environmental performance than both the ICE and FBE for all
impacts except for depletion of abiotic resources. In addition,
Table 3 shows the results for the five statistical methods and for
three selected impacts that display discrepant results.
For the discernibility analysis, and taking acidification as an

example, the ICE and FBE vehicles have higher acidification
results than HFC in 100% of the runs (Table 3, white cells under
discernibility). Thus, the ICE and FBE are likely to be discernible
alternatives from the HFC for acidification. For photochemical
oxidation and acidification, there are pairs of alternatives that
are not likely to be discernible as the percentage of runs in
which one alternative is higher than the other is close to 50%
(see Table 3 darker blue cells).

Figure 1. Deterministic results (scaled to the maximum results per impact) for comparative LCA of three alternatives of vehicles.
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The impact category relevance results show the highest rel-
evance parameter for acidification for the pairs ICE/HFC and
FBE/HFC (Table 3, darker red cells). Thus, for the compar-
ison between ICE, FBE, and HFC vehicles, acidification is an
impact that plays the most important role in the comparison. The
lowest relevance parameter was obtained for the pair ICE/FBE
for acidification as well as for the pair ICE/HFC for ionizing
radiation these are impacts for which efforts to refine data would be
most fruitful (Table 3, white cells under impact category relevance).
For the overlap area, the pair HFC/FBE has a large over-

lapping area for ionizing radiation and the pair FBE/ICE has a
large overlap for acidification (Table 3, darker orange cells).
Aspects contributing to the alternatives’ performance in ion-
izing radiation and acidification would be areas to prioritize in
data refinement. Other pairs have almost no overlapping area for
instance HFC/ICE for photochemical oxidation and HFC/FBE
for acidification (Table 3, white cells under overlap area). This
means, that the choice of an alternative between pairs, HFC/ICE
and HFC/FBE, represents a greater effect on photochemical
oxidation and acidification, respectively.
The results for the NHST consist of the p-values for the

paired t-test performed and the decision to reject (yes) or to fail
to reject (no) the null hypothesis. This latter outcome has been
included in Table 3. The p-values for all impacts and pairs of
alternatives are <0.0001, and thus the null hypothesis was rejected
in all cases (see worksheet “NHST” in the Microsoft Excel (2010)
workbook in the SI). Therefore, results for all pairs of alternatives
were significantly different for all impact categories (Table 3, pur-
ple cells). With the corrected significance level (αb) we re-evaluated
the null hypothesis but still rejected the null hypothesis in all
comparisons.
For the modified NHST the comparison between the ICE

and FBE for the acidification impact, cannot reject (no) the
modified null hypothesis. Yet in the case of the NHST method
it is rejected. Table 3 does not correspond to a mirror matrix
for this method because the direction of the comparison matters.
For acidification, we see that the pair FBE/ICE is not significantly
different as well as the pair ICE/FBE. Thus, in both compar-
isons the scores of the first alternative are not at least δ0 signif-
icantly higher than the scores of the second alternative. There-
fore, the distance between the means of both alternatives is less

than δ0, i.e., 0.2 standard error units. With the corrected sig-
nificance level (αb) we re-evaluated the null hypothesis but
found no changes in the outcomes.

Cross Comparison of Methods. Exploring the results
across methods for the same impact shows consistent results for
most impacts, i.e., seven out of ten. A higher relevance param-
eter coincides with a smaller overlap area between distributions,
and this generally coincides with well-discernible alternatives. Like-
wise, pairs of alternatives are more likely to have significantly dif-
ferent mean results when discernible. Below we focus our com-
parison of methods on three impacts (Table 3) that show
discrepancies or conflicting results for some of the five methods.
For photochemical oxidation, the results for the five methods

seem to agree to a large extent. Deterministic results show that
HFC has the lowest characterized results among the three
alternatives. However, according to the discernibility results,
HFC is lower than FBE, for 83% of the runs. This shows that
point-value results can be misleading, because there is a 17%
likelihood that a point value would have given an opposite result.
The overlap area results show a 0.63 overlap between the HFC
and FBE on photochemical oxidation, indicating a mild differ-
ence (given the range of 0 to 1) in their performance. NHST
and modified significance are in agreement with results from
other methods and show significant different means for the two
alternatives.
For acidification, results for some methods are consistent

(Table 3). Discernibility of almost 100% along with a high rel-
evance parameter and a low overlap area are shown for two
pairs of alternatives HFC/ICE and HFC/FBE. Nonetheless, for
the pair FBE/ICE discernibility results show a close call (FBE
scoring only higher than ICE on acidification results for 45% of
the runs) suggesting similar performances in acidification for
FBE and ICE. This outcome is confirmed by the results of the
impact category relevance (0.24), the overlap area (0.88), and
the modified NHST where the null hypothesis is accepted and
therefore no statistical difference can be established. NHST results,
however, show a rejection of the null hypothesis that FBE and ICE
have significantly different means for acidification, confirming that
this pair of alternatives has significantly different acidification
impactsthus opposing the outcome of the other methods. As
the sample size is large (namely 1000 observations), so is the

Table 3. Results for Selected Impacts (Those with Discrepant Outcomes between Some Methods) for the Comparative LCA of
the Full Battery Electric (FBE) Vehicle, The Hydrogen Fuel Cell (HFC) Vehicle and the Internal Combustion Engine (ICE)
Vehiclea

aTables display different results for the comparison of alternatives j and k for the reviewed uncertainty-statistics methods (USMs). The meaning of
results per method is shown in the second row of the table together with the color labels.
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likelihood of significance in NHST.17 The extra feature of the
modified NHST compared to NHST is that the null hypothesis
in the modified NHST is evaluated with a minimum size of the
difference (δ0 = 0.2). It then appears that the difference in mean
acidification results is so small that the null hypothesis cannot
be rejected and that the mean acidification results for the FBE/ICE
pair are not significantly different. The modified NHST results
show how a large number of observations can influence the out-
come of results in a standard NHST. Thereby it is possible to
change the conclusion of a study by sampling more MC runs.
Given that LCA uncertainty data are simulated and does not
represent actual samples, it is recommended to apply the modified
NSHT.
Finally, for ionizing radiation we observe a discrepancy between

the discernibility, NHST, and modified NHST results on the one
hand, and the impact category relevance and overlap area results
on the other hand. The HFC/ICE pair shows a low relevance
parameter (0.34) with a high overlap area (0.79). However, the
discernibility results show that ICE scores higher than HFC on
ionizing radiation for 100% of the runs. NHST and modified
NHST confirm these results and show that, despite the large
overlap and a low relevance parameter, the alternatives are signif-
icantly different. Note that the results of the relevance param-
eter and the overall area is to be used relative to other impact
categories for sorting purposesit is not intended to provide a
confirmation on the difference. Still, results for this impact show
that such high overlap can correspond to significant differences.
Opposing outcomes are due to the overall or per run setup of
the methods. The discernibility analysis, NHST and modified
NHST perform the analysis on a per run basis (accounting for
common uncertainties) and evaluate, per run, whether the per-
formances fulfill a certain relationship. Alternatively, the overlap
area and the relevance parameter look at the overall distribution
of the two alternatives rather than the individual runs. They
take into account the extent of the difference so that the output
falls within a spectrum, e.g., from 0 to 1 for overlap area, as
opposed to a binary type output, e.g. fail to reject or reject the
null hypothesis for NHST and modified NHST. Figure 2 shows
the histogram for the distribution of HFC and ICE outcomes as
well as the discernibility in a scattered plot, for better understand-
ing the contradicting results between overlap area and discernibility.
Here we can see that while the histograms overlap a consider-
able amount, the performance between the alternatives can still
be considered statistically different since all the runs fall within

one side of the diagonal in the scattered plot, which disregards
the distance of each point to the diagonal.

■ DISCUSSION

We have reviewed, applied, and compared different methods
for uncertainty-statistics in comparative LCA. We showed how
deterministic LCA can lead to oversimplified results that lack
information on significance and likelihood, and that these results
do not constitute a robust basis for decision-making. In addi-
tion, we found that, while in most instances (seven out of ten
impacts), the five methods concur with each other, we identified
instances where the methods produce conflicting results. Dis-
crepancies are due to differences in the setup of the analysis
(i.e., overall or per run) which accounts or not for common
uncertainties and due to accounting or not for the magnitude of
the differences in performances. We identify two groups of
methods according to the type of analysis they entail: exploratory
and conf irmatory methods. This division corresponds with the
statistical theories by Tukey,42 in which data analysis initially
requires an exploratory phase without probability theory, so with-
out determining significance levels or confidence intervals, fol-
lowed by a confirmatory phase determining the level of signif-
icance of the appearances identified in the exploratory phase.
Exploratory statistics help delve into the results from uncertainty
analysis and confirmatory methods evaluate hypotheses and iden-
tify environmental differences deemed statistically significant.
The NHST and modified NHST methods belong to the

confirmatory group. Confirmatory methods are calculated per
MC run, account for common uncertainties between alternatives
and provide an absolute measure of statistical significance of the
difference.41 These methods are appropriate for both single impact
and multiple impact assessments and support statistical signif-
icance confirmation. NHST was shown to detect irrelevant dif-
ferences of the means and to label them nevertheless as
significant, while alternatives are considered to be indiscernible
by modified NHST whenever the difference is small. The modified
NHST approach is therefore recommended for confirmatory
purposes and for all propagated LCA results, where the sample
size in theory is indefinite and in practice is very large.
The impact category relevance and the overlap area methods

belong to the exploratory group, as they help to identify some
characteristics of uncertainty results among alternatives and
impacts. These methods account for the magnitude of the

Figure 2. Histograms (left) and scatter plot (right) for 1000 MC runs for the hydrogen fuel cell (HFC) vehicle and the internal combustion engine
(ICE) vehicle for ionizing radiation. The performances of ICE and HFC show great similarities in the histogram, and thus a large overlap area (i.e.,
0.79). However, the scatter plot shows that for each MC run, the difference between HFC and ICE ≠ 0 (the diagonal line in the scattered plot
represents equal values for both alternatives). Hence, alternatives are discernible in 100% of the runs.
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difference per impact but do not consider common uncer-
tainties or provide a measure of confidence or significance of
the difference. These two methods are exclusively for exploring
the uncertainty results in comparative LCAs with multiple impacts.
Because the calculations are not per MC run, common uncer-
tainties are disregarded and they do not serve confirmatory pur-
poses. Disregarding common uncertainties can lead to instances
where alternatives appear to be similar, while they actually per-
form different (like in ionizing radiation between ICE and
HFC, Figure 2). Overcoming the fact that they do not account
for common uncertainties would require generalization of the
methods to “per run” calculations and could lead to a method
similar to modified NHST accounting for the distance between
means and common uncertainties.
Discernibility belongs to both groups. It accounts for com-

mon uncertainties, but it does not account for the magnitude of
the difference per impact. It can be complimented with a p-value
calculation, to develop its confirmatory potential, that would
generate statistical significance based on the counts of the sign
tests per pair. A proposal for such a procedure can be found in
the SI (Appendix V) and involves the use of the binomial dis-
tribution. As it stands now, we consider it to serve an explor-
atory purpose similar to the impact category relevance or the
overlap area, but with a different mechanism.
Both exploratory and confirmatory methods are valuable and

synergistic in data-driven research,43 yet the specific choice of
method is not straightforward for LCA practitioners given the
discrepancies and characteristics previously discussed. Figure 3
provides guidance on which statistical methods LCA practition-
ers should use to interpret the results of a comparative LCA in
light of its goal and scope, and when considering uncertainty.
Figure 3 is in line with the main findings of this study. That is,
exploratory methods facilitate the decision-making process by iden-
tifying differences and trade-offs in impacts between alternatives as
well as by pointing to places where data refinement could ben-
efit the assessment. Moreover, confirmatory methods effectively
aid in making complex decisions from comparative assessments
but should be used with statistical significance. For instance,
carbon footprints, product environmental declarations, and LCAs
aiming for comparative assertions disclosed to the public, should
use confirmatory methods supporting conclusions with

statistical significance calculations and accounting for common
uncertainties.
Moreover, modified NHST appears to be the most well-

developed method for confirmatory purposes. For exploratory
purposes, however, we do not find a method that considers
both core aspects: accounting for common uncertainties and for
the extent of the differences per impact. Between these two aspects,
common uncertainties are the most crucial aspect to address in
a comparative context. Therefore, we recommend discernibility
as the most suitable method for exploratory purposes while recog-
nizing areas for improvement. Namely, we recommend that
discernibility is further developed by adding a threshold of
acceptable difference (as done in modified NHST) that, despite
of being arbitrary, can better inform the exploration of trade-
offs. We also recommend practitioners to exercise caution when
applying overlap area and impact category relevance, and we
recommend further developments of both methods to account
for common uncertainties. Lastly, we call for caution when applying
NHST regarding the sample size as it has been conceived for real
samples15 and not for propagating uncertainty estimates where the
sample size is in theory indefinite.
We encourage practitioners to use the excel workbook pro-

vided in the SI with the calculations made for the five methods
in this paper which can aid them in delivering a more robust
basis for decision-making.
As the use of statistical methods is becoming more frequent

and increasingly important in environmental decision support,44

the definition of thresholds to determine the acceptable uncer-
tainty demands attention. Arbitrarily set thresholds, such as
p-value = 0.05, should be carefully used accounting for basic
principles addressing misinterpretation and misuse of the p-value,
as recently proposed by the American Statistical Association.45

In the field of LCA, we need practical guidelines to establish
meaningful uncertainty thresholds for different applications.
Methods like modified NHST and extended discernibility (see
Appendix V), require such threshold levels to calculate sta-
tistical significance. We depart from the premise that various
sources of uncertainties of the inputs have been adequately
quantified and propagated to uncertainty results. The effects of
the quality of uncertainty quantification and propagation on the
interpretation of uncertainty results in comparative LCAs

Figure 3. Decision tree to guide LCA practitioners on which uncertainty-statistics method (USM) to use for the interpretation of propagated LCA
uncertainty outcomes in comparative LCAs. Thicker lines indicate recommended methods for confirmatory and exploratory purposes as per the
considerations described in the main text. The type of information available from the uncertainty analysis results (in the following parentheses)
determines the choice between impact category relevance (statistical parameters of the distributions) or overlap area (MC runs).
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requires further study.46 Any outcome of any test is only as
good as the quality of the input data, which for all studied
methods corresponds to the results of an uncertainty analysis.
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