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ABSTRACT Despite substantial research carried out over the
last decades, it remains difficult to understand the wide range of
pharmacological effects of dopaminergic agents. The dopami-
nergic system is involved in several neurological disorders, such
as Parkinson’s disease and schizophrenia. This complex system
features multiple pathways implicated in emotion and cogni-
tion, psychomotor functions and endocrine control through
activation of G protein-coupled dopamine receptors. This re-
view focuses on the system-wide effects of dopaminergic agents
on the multiple biochemical and endocrine pathways, in par-
ticular the biomarkers (i.e., indicators of a pharmacological
process) that reflect these effects. Dopaminergic treatments de-
veloped over the last decades were found to be associated with
numerous biochemical pathways in the brain, including the
norepinephrine and the kynurenine pathway. Additionally,
they have shown to affect peripheral systems, for example the
hypothalamus-pituitary-adrenal (HPA) axis. Dopaminergic
agents thus have a complex and broad pharmacological profile,
rendering drug development challenging. Considering the
complex system-wide pharmacological profile of dopaminergic
agents, this review underlines the needs for systems pharmacol-
ogy studies that include: i) proteomics and metabolomics anal-
ysis; 11) longitudinal data evaluation and mathematical model-
ing; 1ii) pharmacokinetics-based interpretation of drug effects;
1v) simultaneous biomarker evaluation in the brain, the cere-
brospinal fluid (CSF) and plasma; and v) specific attention to
condition-dependent (e.g., disease) pharmacology. Such ap-
proach is considered essential to increase our understanding
of central nervous system (CNS) drug effects and substantially
improve CNS drug development.
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ABBREVIATIONS

3-MT 3-methoxytyramine;

5-HT Serotonin

5-HIAA  5-hydroxyindoleacetic acid

a-MSH  Alpha-melanocyte stimulating hormone
ACh Acetylcholine

ACTH  Adenocorticotropic hormone

BBB Blood-brain-barrier

Braingcr  Brain extracellular fluid

CNS Central nervous system

CRH Coorticotropin releasing hormone
CSF Cierebrospinal fluid

DOPAC  3,4-dihydroxyphenylacetic acid
DRN Dorse raphe nucleus

EPN Entopeduncular nucleus

EPS Extrapyramidal symptom

FSH Follicle stimulating hormone
GABA Gamma-aminobutyric acid
GnRH Gonadotropin releasing hormone
GPe External globus pallidum

GPi Internal globus pallidum

HPA Hypothalamic-pituitary-axis
HVA Homovanillic acid

LH Luteinizing hormone

MSN Medium spiny neuron

NAc Nucleus accumbens

NMDA  N-methyl-D-aspartate

NOS Nitric oxide synthase

PFC Prefrontal cortex

PNS Peripheral nervous system

PVN Paraventricular nucleus

SN Substantia nigra

VMAT Vesicular monoamine transporter
VTA Ventral tegmental area
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INTRODUCTION

Over the last decades, the development of therapies targeting
diseases affecting the central nervous system (CNS) has been
facing numerous challenges while the number of people suf-
fering from CNS disorders has tremendously grown, exceed-
ing one billion worldwide nowadays (1,2). The challenges
mostly rely on the insufficient knowledge of biomolecular
mechanisms underlying many CNS-related diseases, as well
as the poor understanding of mechanisms of action of many
CNS drugs. In order to improve drug efficacy, both
pharmaceutical industry and academic community have
fostered the implementation of biomarker-based ap-
proaches for translational pharmacology and dose
decision-making in clinical settings. A biological or biochem-
ical marker represents a measurable sign with regard to a
pharmacological or pathological process, providing a clinical-
ly meaningful endpoint in predicting the effect of a chosen
treatment (3-5). Biological markers are recognized as a valu-
able tool in drug development, allowing for further elucida-
tion of both drug efficacy and side effects. CNS drug discovery
and development faces multiple challenges, including the
large number of drugs that fail in late phases of clinical trials
due to poor understanding of processes underlying the dose
response relation (6). In this context, biomarkers represent an
attractive alternative approach to support identification of
most promising compounds, guide the dosing strategies in
early clinical trials, and help recognizing a patient population
that 1s most likely to benefit from a specific treatment.

This systematic and exhaustive review presents all bio-
chemical indicators that have been previously reported
as being related to dopaminergic drug effects, as well as
their potential role in biomarker-driven CNS drug develop-
ment, focusing on biomarkers in rodents biofluids, specifically
brain extracellular fluid (braingcg), cerebrospinal fluid (CSF),
plasma and urine.

Anatomy and Physiology of the Dopaminergic System

Dopamine is a neurotransmitter that belongs to the catechol-
amine family and is primarily synthesized in the brain and the
kidneys. In the brain, dopamine is produced in the cell bodies
of dopaminergic neurons located in the substantia nigra
(SN), the ventral tegmental area (VTA) and the hypo-
thalamus. These neurons send projections to multiple brain
areas where dopamine is stored and released, including the
striatum (nigrostriatal pathway), the prefrontal cortex
(PFC) (mesocortical pathway), the nucleus accumbens
(NAc) (mesolimbic pathway) and the pituitary gland
(tuberoinfundibular pathway), as illustrated in Fig. 1. It should
be noted that these pathways do not represent all dopamine
systems in the brain. Other systems, such as the thalamic do-
pamine system, are increasingly recognized as important
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additional components of the brain dopamine pathways (7).
The presence of dopamine in the mesolimbic pathway is re-
lated to positive reinforcement, reward and/or pleasure, while
in mesocortical pathway it is involved in cognitive control of
behavior. Furthermore, the role of dopamine in the
nigrostriatal pathway, transmitted from the SN (midbrain) to
the putamen in the dorsal striatum, is to simulate reward-
related cognitive processes as well as psychomotor function.
The tuberoinfundibular pathway projects dopaminergic neu-
rons from the hypothalamus to the pituitary gland to modu-
late secretion of hormones, including prolactin. Dopaminergic
pathways also project from the VTA (midbrain) to the amyg-
dala, the hippocampus, and the cingulate cortex. As such,
dopamine is simultaneously involved in both emotional and
memory processing. Dopaminergic neurons form a tight net-
work with a number of other neuronal pathways, including
choline, glutamate and gamma-aminobutyric acid (GABA)
systems, showing its possible role in multiple complex process-
es. Therefore, any drug targeting the dopaminergic neurons
may influence multiple transduction pathways including both
the dopaminergic and other systems.

Five dopamine receptor subtypes, often referred to as D5
receptors, have been reported in the CNS, all being G-protein
coupled receptors that may function independently but of
which the downstream pathways may also interact (8).
Dopamine receptors are divided into D,- and Do-like receptor
classes, the D; receptor class including D, and Dj receptors
while Dy receptor class includes Dy, D3, and Dy receptors. D,
receptor and Dy receptor classes have opposing effects with
regard to adenylyl cyclase activity, cAMP concentrations, as
well as phosphorylation of proteins, resulting in either stimu-
latory or inhibitory action on voltage-gated and ion channels
in synapses (9). D) receptor are highly expressed in the stria-
tum, NAc, SN, frontal cortex and amygdala, while lower ex-
pression of D, receptor is found in the hippocampus, thala-
mus, and cerebellum. Dy receptor are mainly localized in the
striatum, NAc, SN, hypothalamus, cortical areas, amygdala
and hippocampus. Although dopamine receptors are most
densely expressed in the brain, they are also found in the
periphery in different patterns of expression (10), highlighting
the system-wide effects of dopamine that are crucial in main-
taining homeostasis.

Dopaminergic Agents for Treatment of Neurological
Disorders

The dopaminergic system has been exploited for treatment
opportunities in a large variety of disorders. Due to its broad
implication in pathophysiology, the current pharmacological
efforts mostly focus on targeting both the dopamine receptors
and subsequent post-receptor mechanisms. Different types of
dopaminergic drugs have been developed so far, primarily
dopamine agonists and dopamine antagonists.
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Fig. | Overview of the dopaminergic system. A Representation of the dopamine pathway architecture in the brain. B lllustration of the dopamine

production and degradation, as well as the synaptic signaling.

Dopamine Agonists

Dopamine agonists have been developed for treating
Parkinson’s disease, a progressive neurodegenerative disorder
presenting both motor and non-motor symptoms. The pathol-
ogy of the Parkinson’s disease is characterized with an exten-
sive loss of dopamine neurons in the SN and accumulation of
the protein a-synuclein in Lewy bodies within nerve cells in
specific brain regions (11). Although the underlying mecha-
nisms leading to Parkinson’s disease remain poorly under-
stood, a strong association between low dopamine brain levels
and Parkinson’s disease symptoms has been frequently report-
ed (12). Dopamine receptor agonists, introduced first in 1970
for the treatment of Parkinson’s disease, act directly on dopa-
mine receptors to mimic endogenous neurotransmission.
Levodopa (L-DOPA), a pro-drug crossing the blood-brain
barrier (BBB), was the first therapeutic option available for
treating Parkinson’s disease. Various other agonists, e.g.,
apomorphine, bromocriptine and pramipexole, have been
later developed and commercialized, showing comparable
effectiveness (13).

Dopamine Antagonists

While most of the currently available dopamine agonists are
used for Parkinson’s disease, the vast majority of dopamine
antagonists have been developed for the treatment of schizo-
phrenia. Multiple studies using animal models of schizophre-
nia have elucidated a pattern of persistent hyperdopaminergic
state, accompanied with altered stimulus recruits of dopamine
in different brain regions. Cognitive impairments during

psychosis might thus be explained by a rapid release of dopa-
mine into the mesolimbic and the nigrostriatal regions (14).
Chlorpromazine was the first and extremely potent antagonist
of Dy receptor discovered, which considerably fostered anti-
psychotic drug development. Nevertheless, chlorpromazine
treatment is accompanied with pronounced adverse effects,
including neuroleptic malignant syndrome and extrapyrami-
dal symptoms (EPS) such as tardive dyskinesia. Other Dy re-
ceptor antagonists, e.g., haloperidol, risperidone and cloza-
pine, have been developed to exhibit comparable or greater
effectiveness with fewer of these side effects, in particular EPS
(15,16).

Many of dopaminergic agents were discovered with incom-
plete understanding of their modes of action, often resulting in
unpredictable side effects and/or off-target effects. It is only
after having been introduced to market that studies were con-
ducted to elucidate their modes of actions, which revealed
multiple pathways affected (17-19).

Selectivity of Dopaminergic Drugs

Clozapine is currently the “gold standard” for the treatment
of schizophrenia(15). Interestingly, this is one of the least se-
lective Dy receptor antagonists (16,20). Indeed, schizophrenia
is a polygenic disease, and therefore a ‘shotgun-approach’
may be more successful than a ‘magic-bullet approach’ (16).
Many Dy receptor antagonists have therefore affinity for more
receptors, including serotoninergic, adrenergic, muscarinic,
and histaminergic receptors (16,20). Also many Dy receptor
agonists were found non-selective, with affinity for other do-
paminergic, serotonergic, adrenergic and histaminergic
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receptors (21). This should be taken into consideration when
evaluating the effects of these agents on the system-wide bio-
chemical pathways.

This review aims to further improve the understanding of
mechanisms of action by providing an extensive overview of
the pathways that are affected by dopaminergic agents, with
the hope to increase our understanding of system-wide dopa-
minergic pharmacology, as well as to provide directions on
how to improve pharmacological biomarker strategies during
early drug development.

METHODS

A systematic overview of literature over the past 25 years
has been built, focusing on dopaminergic treatment effects
on central and peripheral biomolecular pathways in rats. A
search of the PubMed database was conducted in September
2017 by using the following key words: dopamine antagonists,
dopamine agonists, biogenic amine, amino acid, hormone, cytokine, lipid,
neurotransmtter, cerebrospinal flurd, intracerebral microdialysate, plasma,
urine, rat (see Supplementary Data S1 for the exact search
code), yielding to 1058 articles (English only). Only stud-
tes describing the effects of dopaminergic agents and
elucidating a potential biochemical indicator of drug
action in rats were included. In vitro studies, experimen-
tal studies focusing only on behavioral changes and/or
reactions, studies of cognition patterns or event-related
potentials, and studies that only included pharmacoki-
netic information were excluded. Furthermore, studies
including functional imaging techniques or electroen-
cephalography, investigating dopamine receptor affini-
ties, functions, and synthesis, exploring the effect of do-
paminergic agents in combination with other pharmaco-
logical agents, under pathological conditions, after sur-
gical procedures such as adrenalectomy or ovariectomy,
with pregnant or lactating animals, and with animals
under long-term food restriction were excluded as well.
Finally, prolactin, being considered a standard marker
of dopaminergic activity with well-explored functions
and relationship with dopamine (22-24), has been ex-
cluded. After selection, 260 articles were included.

DOPAMINERGIC TREATMENT EFFECTS
ON ENDOGENOUS METABOLITES LEVELS
IN THE CNS

The CNS-wide effects of dopamine receptor agonists and an-
tagonists reported in the selected studies are shown in Table I
and Fig. 2. Although information was also gathered from
studies involving intracerebral administration, only data after
systemic administration is presented to obtain insights into
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clinically relevant effects. Moreover, a distinction is
made between short-term and long-term treatment ef-
fects. Most of the effects reported in the CNS have
been mainly observed in braingcy, using microdialysis,
leading to deeper insights into neurotransmitter path-
ways. Overall, the reported literature emphasizes the
CNS-wide effects of dopaminergic agents, including do-
pamine pathway but also norepinephrine, cholinergic,
GABA-glutamate, serotonin, kynurenine, nitric oxide
and endocannabinoid pathways.

Several considerations have to be taken into account for the
discovery of easily accessible biomarkers that reflect these sys-
tematic effects, notably (Fig. 3):

1) detectability in CSF, plasma or/and urine;

1)  simultaneous evaluation together with other markers of
the pathway of interest to understand the dynamics be-
tween the drug and the pathway;

1) Sufficient understanding of central and peripheral
response

1v)  Identification of distribution rates between brain, CSF,
plasma and urine to understand the temporal relation
between the biomarker peripheral concentration and
effects in the brain.

Effects on the Dopamine Pathway
Metabolism and Signaling of the Dopamine Pathway

The synthesis of dopamine involves the conversion of tyrosine
into L-DOPA, the precursor of dopamine. It is stored into
vesicles in the presynaptic neuron, following uptake via the
vesicular monoamine transporter (VMAT). These vesicles re-
lease dopamine into the synaptic cleft, where it may bind to
pre- or postsynaptic dopamine receptors to pass on neuronal
signals to the post-synaptic neuron. The dopamine present in
the synaptic cleft is eliminated through conversion to its me-
tabolites homovanillic acid (HVA), 3,4-dihydroxyphenylacetic
acid (DOPAC) or 3-methoxytyramine (3-MT), or by uptake
into the presynaptic neuron via the dopamine transporter. In
the latter case, dopamine is stored into vesicles, or degraded to
HVA or DOPAC.

Effects of Dopaminergic Agents on the Dopamine Pathway

Dopamine receptors are located pre- and postsynaptically,
thereby influencing local concentrations of dopamine and its
metabolites upon the presence of agonists and antagonists
(Table I, Fig. 2). Short-term treatments with Dy receptor an-
tagonists such as haloperidol, sulpiride, risperidone,
olanzapine and clozapine have shown to stimulate the dopa-
mine pathway (26,28), whereas administration of Dy receptor
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Tablel CNS-Wide Effects on Endogenous Metabolites by Dopamine Receptor Agonists and Antagonists
D1-like receptor D2-like receptor Dosing
period
Pathway Marker Agonist Antagonist Agonist Antagonist Matrix References
DA * + Short-term Braingor (25-33)
DOPAC + Short-term Braingcr (28,29,34-40)

; HVA + Short-term Braingcr (28,34-36,40-43)
Dopamine 3-MT 0 + Short-term Brainger (36,42,43)
pathway ba R Cong-ierm Braincor (85.44-47)

DOPAC + Long-term Braingor (48-51)
HVA + Long-term Braingcr (48-51)
HVA + Long-term Urine (41,52)

. . NE | ] * Short-term Braingcr (27,53-56)
Norepinephrine NE I Short-term Plasma (57)
pathway E + 0 Short-term Plasma (57,58)

NE B Congterm Braingor (59)116

VMA + Long-term Urine (41,52)
Acetylcholine

Choline® Short-term Braingcr (60,61)
pathway Acetylcholine® + 0 + Short-term Braingor (60-68)
GABA-gl utamate GABA® +¢ Short-term Braingce (28,53,69-71)

Glutamate® [} 0/+ Short-term Braingcr (25,28,53,72-74)
pathways GABAS 0 Long-term Braingcr (75-78)

Glutamate® — 0/+ Long-term Braingcr (25,76,77,79)
Serotonin 5-HT o 0 Short-term Braingcr (28,32,80-82)
pathway
Kynurenine .

Kynurenic acid I Long-term Braingce (83)
pathway
Nitric oxid Citrulline” + + Short-term Braingor (84,85)

Nitrite + Short-term Braingce (86)
pathway Nitrate + Short-term Brainecr (86)

Nitrate + Short-term Urine ®7)
Endocannabinoid Anandamide 0 + Short-term Braingce (88)

system

+ (green): increase; - (red): decrease; +/-, -/0 or +/0 (grey): conflicting results; O (grey): no effect..In case multiple stuglies were identified for the effects of a
particular drug class on a particular marker, only the 4 most recent publications were reported. Only in striatum; Only observations after intracerebral

administration; Few and/or conflicting data;

Measured in the prefrontal cortex

DA dopamine, DOPAC 3,4-dihydroxyphenylacetic acid, HVA homovanillic acid, 3-MT 3-methoxytyramine, NE norepinephrine, £ epinephrine, VMA
vanillylmandelic acid, GABA gamma-aminobutyric acid, 5-HT serotonin, brain®“" brain extracellular fluid

agonists like quinpirole, quinelorane, 7-OH-DPAT, and
apomorphine inhibit this pathway (25,30,40). This has
been observed in braingcy for dopamine as well as for
its major metabolites DOPAC, HVA, 3-MT (Table I).
The influence of D; receptor agents on the dopamine
pathway remains poorly investigated. Only one study
was identified, showing an increase in dopamine levels
after intraperitoneal treatment with the Dy receptor an-
tagonist SCH23390 (33), while no studies reported the
effects after systemically injected D, receptor agonists. The
effects of Dy receptor antagonists and agonists on the dopa-
mine pathway may be explained by the modulation of presyn-
aptic Dy autoreceptors that provide a negative feedback func-
tion on dopamine release (90). Moreover, many of these drugs
have affinity for 5-HT receptors (16,21), which also contribute
to the control of dopamine release (91,92).

After long-term treatment with Dy receptor agonists,
the basal dopamine pathway activity is decreased, simi-
lar to the effect observed after short-term treatment
(25,46). Interestingly, Dy receptor antagonists inhibit
the dopamine levels after long-term treatment, while
the levels of the dopamine metabolites are increased
(44,45,93). This may, first of all, be explained by the
upregulation of Dy receptor expression after long-term

treatment (94), thereby leading to an enhanced inhibition of
dopamine release via the Dy autoreceptor. Second, the
monoamine oxidase (MAO) and the catechol-O-methyl
transferase (COMT), that metabolize dopamine into
DOPAC, HVA and 3-MT, were upregulated (95), pro-
viding another explanation, also supporting the in-
creased concentrations of dopamine metabolites that are
observed with long-term treatment.

Biomarkers for the Dopamine Pathway

Dopamine and its metabolites can be detected in CSF, plasma
and urine (52,96). In contrast to dopamine, HVA is
able to cross the BBB, providing a way to evaluate
central dopaminergic activity in plasma. The difficult
aspect is to distinguish between the central and the pe-
ripheral effects, since the dopaminergic system is also
peripherally active in, for example, the kidney and the
adrenal glands. The origin of the HVA response in
urine after long-term treatment with haloperidol and
clozapine (41,52) is therefore not known. Surprisingly,
no further studies were identified that investigated
CSF, plasma or urine biomarkers of the dopamine path-
way after dopaminergic treatment.
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Fig. 2 Effects of dopamine drugs on |2 biochemical or endocrine pathways. Potential biomarkers are mentioned for each pathway. The
reader is referred to the text for detailed discussion of the interaction between dopamine drugs and each pathway. 5-HIAA: 5-
hydroxyindoleacetic acid; ACTH: adenocorticotropic hormone; Alpha-MSH: alpha melanocyte stimulating hormone; B-end: beta-endorphin; COMT:
catechol-O-methy! transferase; CSF: cerebrospinal fluid; DIR: dopamine |-like receptor; D2R: dopamine 2-like receptor; DA: dopamine; DHPG:
dihydroxyphenylglycol; DOPAC: 3,4-dihydroxyphenylacetic acid; DRN: dorse raphe nucleus; FSH: follicle stimulating hormone; GABA: gamma-aminobutyric
acid; HVA: homovanillic acid; L-DOPA: levodopa; LH: Iuteinizing hormone; MAO: monoamine oxidase; MHPG: 3-methoxy-4-hydroxyphenylglycol; N.
Accumbens: nucleus accumbens; NE: norepinephrine; NO: nitric oxide; NOS: nitric oxide synthase; prolactin: prolactin; VMA: vanillylmandelic acid; VTA: ventral

tegmental area.

Effects on the Norepinephrine Pathway
Metabolism and Signaling of the Norepinephrine Pathway

The largest concentrations of norepinephrine in the brain are
found in neurons in the locus coeruleus. Outside the brain, it is
found in the postganglionic sympathetic adrenal fibers and the
chromatfhin cells in the adrenal glands. Within the norepineph-
rine neurons, VMAT stores dopamine into synaptic vesicles,
where it is converted to norepinephrine through dopamine
beta-hydroxylase, and released into the synaptic cleft.
Norepinephrine may bind to alpha- or beta-adrenergic recep-
tors, the former being mostly inhibitory and located presyn-
aptically, while the latter are stimulatory and located postsyn-
aptically. From the synaptic cleft, norepinephrine undergoes
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reuptake into the presynaptic neuron via the norepinephrine
transporter, or is metabolized to epinephrine,
dihydroxyphenylglycine and methoxyhydroxyphenylglycol.
In the presynaptic neuron, it may be stored into vesicles, or
degraded into its metabolites.

Effects of Dopaminergic Agents on the Norepinephrine Pathway

Norepinephrine release is stimulated by D, receptor antagonists
such as clozapine, olanzapine and risperidone, although this has
not been reported for haloperidol (27,55) (Table I, Fig. 2). While
this may be explained by dopaminergic modulation of norepi-
nephrine release (97), these drugs also exhibit affinity for the
adrenergic receptors (16). Interestingly, in contrast to haloperi-
dol, the other Dy receptor antagonists showed affinity for the oy
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Fig. 3 Conceptual considerations for the use of accessible biomarkers in CSF, plasma or urine to reflect dopamine drug effects in the
brain. The grey solid lines represent the distribution of biochemical pathway components to CSF plasma and urine. Since only part of the pathway components
may distribute to these biofluids, some of the nodes are filled blank. The grey dashed line represents the peripheral nervous system (PNS) that may influence the
peripheral release of biochemical markers through electrical signaling. The grey dotted lines represent the neuroendocrine system (NES), which is electrically
controlled at the level of the hypothalamus and the pituitary, causing the release of hormones into plasma. Feedback mechanisms of these hormones on their own
release may complicate the interpretation of their responses in plasma. The black dashed lines represent the levels at which dopamine drugs may interact with

these systems.

adrenergic receptor. After long-term treatment, haloperidol
caused a reduction of norepinephrine levels in the striatum
(59), which may be explained by reduced conversion from do-
pamine to norepinephrine, since long-term Dy receptor antag-
onist treatment decreased dopamine levels (Table I, Fig. 2).

Plasma norepinephrine concentrations were decreased af-
ter Dy receptor stimulation with the agonist bromocriptine
(57). This effect was blocked by administration of the Dy
receptor antagonist domperidone, which does not cross
the BBB, suggesting the effect to be peripheral (98).
Furthermore, plasma levels of epinephrine were increased up-
on stimulation of Dy receptor, although likely elicited through
direct peripheral action on the adrenal gland and independent
of the effect on norepinephrine (57,58).

Biomarkers for the Norepinephrine Pathway

Norepinephrine and its metabolites have been already ana-
lyzed in CSF, plasma and urine (52,57,96), indicating that the
latter biofluids can be used to estimate the central norepineph-
rine pathway activity. Indeed, reduced levels of the most
downstream norepinephrine metabolite vanillylmandelic acid
were found in urine after long-term treatment with haloperi-
dol or clozapine (41,52). However, as discussed in the previous

paragraph, the effect on plasma (and thus also urine) norepi-
nephrine concentrations are at least partly caused by periph-
eral effects. Further understanding of the relative central and
peripheral effects of dopaminergic agents on the plasma or
urine norepinephrine pathway responses is needed to con-
clude whether they can be used as biomarker for central ac-
tivity. The CSF levels are likely more representative; however,
the evaluation of longitudinal norepinephrine pathway re-
sponses upon dopaminergic treatment is still lacking.

Effects on the Acetylcholine Pathway
Metabolism and Signaling of the Acetylcholine Pathway

Acetylcholine (ACh) is produced from choline in the presyn-
aptic neurons and stored into vesicles via the vesicular acetyl-
choline transporter. These vesicles release ACh into the syn-
aptic cleft where it binds to the postsynaptic ACh receptors,
which are subclassified into nicotinic receptors that modulate
neuronal activity and muscarinic receptors that elicit G-
protein dependent signaling. ACh is degraded to choline
and acetate, the former being recycled into the presynaptic
neuron by the sodium-dependent choline transporter.
Interestingly, anticholinergic drugs are typically prescribed
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to decrease the EPS accompanying antipsychotic treatments,
suggesting that the dopaminergic and the cholinergic system
are tightly connected. Cholinergic interneurons in the stria-
tum represent only 1-2% of all neurons, yet they play an
important role in the integration of multiple neurotransmitter
signals (99), thereby contributing to the stabilization of dopa-
minergic signaling in the psychomotor circuit (also cortico-
basal ganglionic system) (100).

Effects of Dopaminergic Agents on the Acetylcholine Pathway

As listed 1n Table I and Fig. 2, ACh release from cholinergic
interneurons in the striatum is inversely related to Do receptor
stimulation or inhibition. On the other hand, choline, the
precursor of ACh, was reduced after Dy receptor antagonist
treatment, probably as a consequence of ACh release, since
the uptake of choline was increased to support ACh
production (62,101).

Contrary to their effect in the striatum, Dy receptor ago-
nists increased ACh levels in the hippocampus and the frontal
cortex (64,102—104). Furthermore, ACh in the PFC and the
hippocampus was increased after treatment with second-
generation Dy receptor antagonists, which was not the case
for first-generation Dy receptor antagonists (28,103,105-108).
ACh levels in the NAc were not affected by Dy receptor an-
tagonism (28). Overall, this indicates that the relation between
the dopaminergic system and cholinergic signaling is region-
specific. Indeed, there is evidence for Dy receptor specific reg-
ulation of ACh in the striatum, while for other regions the
results are conflicting. Dy and Dy receptors are certainly in-
volved, taking into account that several of the Dy receptor
binding drugs discussed here also exhibit affinity for the mus-
carinic receptors (16,103,106).

D, receptor agonists have consistently been reported to lead
to increased ACh levels in several brain regions, including the
striatum (64,66,68,109,110), while D receptor antagonism led
to decreased ACh concentrations (110), or had no effect (64,103).
Cholinergic neurons indeed express the Dy, mostly the D5 re-
ceptor, increasing excitability after receptor stimulation (99).

Biomarkers for the Acetylcholine Pathway

Both ACh and choline can be detected in CSF and plasma
with state-of-the-art analytical methods (111-114).
Furthermore, the plasma levels of these molecules may reflect
central cholinergic activity, since they both can cross the BBB
(115). However, ACh is an important neurotransmitter of the
PNS, sending signals from neural endfeet to muscle cells. This
might confound the plasma levels as a marker of central ac-
tivity. Quantitative understanding of the BBB distribution rel-
ative to the PNS response is essential to be able to interpret the
plasma levels. Moreover, the relation between dopamine
treatment and the cholinergic system appeared brain region
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specific, which may limit the usefulness of CSF and plasma for
cholinergic biomarker detection. No studies have investigated
cholinergic GSF and plasma in relation to dopaminergic treat-
ment so far. Therefore, it is not possible to conclude whether it
1s possible to use these biofluids for biomarker evaluation.

Effects on the GABA-glutamate Pathways
Metabolism and Signaling of the GABA-glutamate Pathways

GABA and glutamate are the main inhibitory and excitatory
neurotransmitters, respectively, in the brain. Glutamate is syn-
thesized from glutamine by the enzyme glutaminase and is
stored in vesicles in glutamatergic neurons via the action of
vesicular glutamate transporters. These vesicles release gluta-
mate into the synaptic cleft where it binds to the glutamate
receptors, 1.e., metabotropic receptor and ionotropic recep-
tors (NMDA, kainate,and AMPA receptors). From the synap-
tic cleft, glutamate distributes into glial cells, using the gluta-
mate transporter 1 or the glutamate aspartate transporter,
where it is metabolized into glutamine. Glutamine 1s subse-
quently released from the glial cells and recycled into gluta-
matergic neurons. Also in GABAergic neurons, glutamate is
produced from glutamine. However, these neurons also con-
tain the enzyme glutamate decarboxylase that converts gluta-
mate into GABA. Vesicular GABA transporters store GABA
into vesicles which release it into the synaptic cleft. There, it
binds to the GABA receptors to inhibit the activity of the
postsynaptic neuron. GABA diffuses to the glial cells via the
GABA transporter where it is metabolized to glutamate via
the Krebs cycle, and subsequently converted to glutamine.
Glutamine is recycled into the presynaptic GABAergic neu-
rons. Although glutamate and GABA have many roles in the
brain and are distinct neurotransmitters, we discuss here their
interconnection in relation to two dopaminergic pathways: the
nigrostriatal pathway and the mesocorticolimbic pathway.
These pathways belong to the so-called circuits that connect
multiple brain regions by neuronal fibers. Concretely, in the
nigrostriatal pathway, activation of the striatal D, receptor
leads to release of GABA into the internal globus pallidum
(GP1) and the substantia nigra reticula (SNr). This subsequent-
ly reduces the release of GABA into the thalamus. Activation
of the striatal Dy receptor inhibits the release of GABA into
the external globus pallidum (GPe), which then stimulates the
release of GABA into the subthalamic nucleus and the GPi.
This also reduces the release of GABA into the thalamus. As
such, these two pathways, also referred to direct and indirect
pathway, enhance the thalamic release of glutamate into the
PFC. Since cortical glutamatergic neurons project to multiple
regions in the midbrain, amongst which the striatum and the
substantia nigra, many functionalities are stimulated. In the
mesocorticolimbic pathway, activation of Dy receptors in the
VTA stimulates GABAergic neurons in the NAc. This leads to
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enhancement of GABA release into the other brain regions
such as VT'A and ventral pallidum. Additionally, Dy receptor
activation in the VTA stimulates the release of dopamine into
the PFC. This enhances the activity of the pyramidal neurons
that release glutamate into other brain regions, including NAc
and VTA.

Effects of Dopaminergic Agents on the GABA-glutamate
Pathways

While these circuits for a large part were unraveled by local
injection of dopaminergic, GABAergic and glutamatergic
agents (116—118), not many studies have been performed
showing the effect of systemically injected dopaminergic
agents (Table I, Fig. 2). Only one D, receptor agent, an an-
tagonist, was systemically injected to show no effect on gluta-
mate levels in the entopeduncular nucleus (EPN) (74). The
cortical GABA levels were increased with systemic injection
of Dy receptor agonists, while glutamate levels in the NAc or
EPN were decreased (25,71,74), contrasting the response ex-
pected from the above-described circuits. Dy receptor antag-
onists typically did not show an effect on GABA levels in the
ST, the GPe, the PFC and the NAc (28,53,70,72), or gluta-
mate levels in the ST, EPN, PFC or NAc (28,53,73-75,77). It
should be noted that the results are not always consistent, since
some studies with Dy receptor antagonists found reduced
GABA levels in the GP, NAc or PFC (70,72,119,120), in-
creased GABA concentrations in the GP or the striatum
(76,79), or increased glutamate levels in the SN, ST, EPN;,
PFC, or NAc (73,75,121,122). These contradictions highlight
the delicate balance of this circuit, which is affected by multi-
ple factors (e.g., target site exposure, experiment time, off-
target effects, etc.) that can cause concentration-, time-, or
drug-dependent differences among the studies. Moreover,
with systemic injection, these circuits are perturbed at multiple
regions, rendering its pharmacological interpretation non-in-
tuitive. Systematic studies that account for these factors, and
that evaluate glutamate, GABA and dopamine in multiple
brain regions simultaneously, are warranted to obtain a
deeper insight into the effects of systemic administration of
dopaminergic agents on such circuits.

Biomarkers for the GABA-glutamate Pathways

Although GABA and glutamate concentrations are well mea-
surable with modern analytical approaches (123), it is not
known how the levels relate to dopaminergic treatment.
GABA and glutamate responses have shown to be region-
dependent, which may confound the CSF and plasma re-
sponse. Further experimental evidence needs to be collected
to evaluate the potential of CSF and plasma to assess the
GABA-glutamate pathway activity in relation to dopaminer-
gic agents.

Effects on the Serotonin Pathway
Metabolism and Signaling of the Serotonin Pathway

Serotonin is produced from the amino acid tryptophan via 5-
hydroxytryptophan and stored into vesicles by VMAT. When
it is released from these vesicles into the synaptic cleft, it binds
to different classes of 5-HT receptors (5-HT—5-HT5). It is
recycled into the presynaptic neuron by the serotonin trans-
porter, where it is stored into vesicles or metabolized to 5-
hydroxyindoleacetic acid (5-HIAA).

Effects of Dopaminergic Agents on the Serotonin Pathway

In contrast, the modulation of serotonin circuits by dopamine
1s mainly restricted to Dy receptor mediated stimulation of
serotonin neuron cell bodies in the dorsal raphe nucleus
(DRN) that control motor activity. This leads to increased
serotonin release in the DRN and other regions such as the
striatum (91), as identified with systemic administration of Dy
receptor agonists (32,81) (Table I, Fig. 2). No effects of dopa-
mine agonists were found on the levels of the metabolite 5-
HIAA (35,124). Additionally, it was suggested that Dy recep-
tor agonists modulate serotonin afferents presynaptically in
the hippocampus (125) or the SN (126). Dy receptor antago-
nists did not show an effect on serotonin levels (28,82,83),
except for atypical antipsychotics such as risperidone and clo-
zapine, likely elicited through presynaptic serotonin receptors
(16,20,82,83,127). Moreover, 5-HIAA was found increased
after risperidone in but not all studies (39,120,128-131).

Biomarkers for the Serotonin Pathway

The serotonin metabolite 5-HIAA, but not serotonin itself, has
been already detected in CSF (96). serotonin, 5-HIAA and the
precursor tryptophan can be also detected in plasma.
Although serotonin cannot pass the BBB, the central serotonin
pathway activity may be inferred from the tryptophan and 5-
HIAA responses. It is, however, important to realize that the
serotonin pathway is also present in peripheral systems, for
example in platelets. Moreover, tryptophan is provided via
food intake. These factors may confound the plasma biomark-
er response to reflect central activity. Experimental evidence is
further needed to investigate the relation between dopaminer-
gic treatments, central serotonin activity and CSF or plasma
biomarker responses.

Interactions Among Neurotransmitter Systems
The above-described effects of dopaminergic agents clearly
show that the neurotransmitter systems of dopamine, norepi-

nephrine, GABA, serotonin, glutamate and ACh are highly
interconnected. Moreover, many of these agents also influence
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these neurotransmitter systems via binding to other receptors,
such as serotonineric and adrenergic receptors. Therefore, in
order to understand the effects of these agents, neurotransmit-
ter responses should be evaluated altogether. Q1 et al. (2016)
established a network of the connections between these neu-
rotransmitters, taking into account the spatial and functional
organization of their neurons and interactions (132) (Fig. 4).
This network was used to understand the neurotransmitter
disbalances in schizophrenia and their normalization upon
antipsychotic treatment. Indeed, disease pathology and drug
action must understood in terms of a disbalance among mul-
tiple signaling pathways, rather than describing pathology and
pharmacology as a single pathway disruption.

Biomarkers that Reflect the Balance
Among the Neurotransmitter Systems

It will become important to identify accessible biomarkers in
CSF, plasma or urine that can reflect the balance among the
neurotransmitter systems. While such approach has been
followed for a glutamate receptor agonist, identifying the turn-
over of the dopamine, norepinephrine and serotonin pathway
in CSF (96), there has not been such attempt for dopaminergic
agents.

Effects on the Kynurenine Pathway
Metabolism and Signaling of the Kynurenine Pathway

Similar to serotonin, kynurenine is a metabolite of tryptophan.
In fact, about 95% of tryptophan in the brain is metabolized
via the kynurenine pathway, further leading to kynurenic acid,
quinolinic acid and 3-OH-kynurenine (133,134). Whereas
quinolinic acid is a pro-glutamatergic molecule, kynurenic
acid has several anti-glutamatergic properties, such as the an-
tagonism of the NMDA receptor and the inhibition of gluta-
mate release through ACh receptors. 3-OH-kynurenine is in-
volved in the generation of free radicals, independent of the
glutamate system (133). 3-OH-kynurenine and quinolinic acid
have neurotoxic properties, while kynurenic acid has proven
to be neuroprotective (135). A disbalance in the kynurenine
metabolism was therefore associated with several neurological
disorders, amongst which Parkinson’s disease and schizophre-
nia (133,136,137).

Effects of Dopaminergic Agents on the Kynurenine Pathway

Kynurenic acid was reduced after long-term (1-12 months), but
not after shorter-term (I week) administration of clozapine,
raclopride and haloperidol (84) (Table I, Fig. 2). Dy receptor
antagonists may potentially interfere with the kynurenine amino
transferase (KAT) enzyme, which converts kynurenine to
kynurenic acid. Indeed, kynurenine and its metabolites other
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than kynurenic acid were not altered after treatment with Do
receptor antagonists (84). It is likely that this effect is Dy receptor
specific, given that raclopride is a highly selective Dy receptor
antagonist (138). Dy receptor antagonists thus likely inhibit the
neuroprotective branch of the kynurenine metabolism, which
could be a potential unwanted effect in the long term.

Biomarkers for the Kynurenine Pathway

Kynurenine and kynurenic acid are present in sufficient
concentration in CSF to be quantified (136,137).
Moreover, 40% of the kynurenine synthesis occurs in
the brain, while 60% takes place in the blood and is
transported over the BBB. It is thus likely that
kynurenine and kynurenic acid in GSF and plasma re-
flect the levels in the brain; however, it is not known to
which extent. GSF and plasma levels changes upon do-
paminergic treatment remain to be investigated.

Effects on the Nitric Oxide Pathway
Metabolism and Signaling of the Nitric Oxide Pathway

Nitric oxide is generated by nitric oxide synthase (NOS)
through the conversion of arginine to citrulline. Nitric oxide
has a short half-life (i.e., few seconds) and is readily oxidized to
nitrite and nitrate, which can then be measured as an indica-
tion of NOS activity. By binding to soluble guanylyl cyclase,
nitric oxide stimulates local postsynaptic excitability via mod-
ulation of voltage-gated ion channels and possibly also presyn-
aptic neurotransmitter release, thereby modulating synaptic
plasticity (139,140). Nitric oxide is tightly connected to gluta-
matergic signaling. Moreover, it contributes to gonadotrophin
and oxytocin release, circadian and respiratory rhythms, loco-
motor and thalamocortical oscillation, as well as learning pro-
cess and memory (139). The nitric oxide pathway is downreg-
ulated in Parkinson’s disease and schizophrenia, indicating a
connection with dopamine (139,141,142).

Effects of Dopaminergic Agents on the Nitric Oxide Pathway

Citrulline, nitrite and nitrate have shown to be upregulated
after short-term treatment with D, receptor and Dy receptor
agonists (Table I, Fig. 2). Only two studies with systemic ad-
ministration have been reported (87,88), while other studies
focused on the effects after intracerebral injections (85,86). A
possible hypothesis for this upregulation is the stimulation of
NOS activity by dopamine, thereby augmenting the produc-
tion of citrulline and nitric oxide (85). The effect on the nitric
oxide pathway was proven to be Dy receptor-specific in the
striatum (86), while the D, receptor was involved in the
NAc (85). Although Dy receptor antagonists blocked
the effect of Dy receptor agonists on nitric oxide
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concentrations (143), they did not exhibit a significant
effect when administered alone (86,144). However, long-
term treatment with haloperidol led to an upregulation
of neuronal NOS in the hypothalamus (94).

Biomarkers for the Nitric Oxide Pathway

Nitrite and nitrate have been measured in the CSF of patients
suffering from neurological disorders (141,142), indicating
their potential as easily-accessible biomarkers. Nitrate urine
levels were found increased after intravenous administration
of fenoldopam, a D, receptor agonist, although this effect
might have been exerted via D, receptors present in the kid-
ney, rendering difficult to discriminate between peripheral
and central effects (88).

Effects on the Endocannabinoid System
Metabolism and Signaling of the Endocannabinoid System

The most well-known components of the endocannabinoid
system are anandamide, which is synthesized from N-

Norepinephrine

[ @Acetylcholine

With drug

arachidonoyl phosphatidylethanolamine, and 2-
arachidonyl glycerol (2-AG), that is produced from
phosphatidylinositol (145). Anandamide is degraded to
ethanolamine and arachidonic acid by fatty acid amide
hydrolase, while 2-AG is broken down to arachidonic
acid by monoglyceride lipase (145). Arachidonic acid is
the precursor of a wide range of biologically and clini-
cally important eicosanoids and respective metabolites,
including prostaglandins and leukotrienes. The
endocannabinoid system is widely distributed in the
CNS where it reduces synaptic input through retrograde
signaling via cannabinoid receptors, in the brain mainly
the CB; receptor subclass (145).

Effects of Dopaminergic Agents on the Endocannabinoid System

Dopamine influences the endocannabinoid system main-
ly in the nigrostriatal pathway by upregulation of
endocannabinoid system in the striatum and downregu-
lation in the GPe in a Dy receptor dependent manner
(146). Indeed, quinpirole stimulated the release of anan-
damide in the striatum (89), an effect that was blocked

@ Springer




64 Page 12 of 24

Pharm Res (2018) 35: 64

by raclopride (Table I, Fig. 2). This provides evidence
for Dy receptor-dependent involvement of the dopaminergic
system in endocannabinoid signaling. Furthermore, although
the D; receptor agonist SKF38393 did not cause an
effect on anandamide (89), it was found that, with im-
paired dopamine release, the striatal D; receptor may
also affect the endocannabinoid system (146).

Biomarkers for the Endocannabinoid System

Even though anandamide can be detected and quant-
fied in the brain, its levels in CSF and plasma are very
low (147), rendering its quantitation challenging. Moreover,
2-AG 1is chemically unstable in aqueous solution, leading to
the formation of its isomer 1-AG. Nevertheless, ethanolamine
levels can be measured in CSF suggesting this compound as a
potential biomarker candidate to reflect the activity of the
endocannabinoid system (148).

DOPAMINERGIC TREATMENT EFFECTS
ON THE NEUROENDOCRINE
AND THE ENERGY SYSTEMS

Additional to its role in the CNS, the dopamine system
1s widely expressed in peripheral tissues (10), supporting
the importance of evaluating the peripheral effects of
dopaminergic agents. The CNS is connected to the pe-
riphery via the PNS and the neuroendocrine system,
allowing for the opportunity to capture the consequence
of central drug effects in the periphery, as done for
instance with prolactin (23,24). A significant influence
on the hypothalamic-pituitary-adrenal (HPA) axis, the
reproductive system, insulin signaling and the lipid me-
tabolism has been found in this systematic review
(Table II, Fig. 2). With regards to biomarker discovery,
two important aspects can be highlighted (Fig. 3):

1) Biomarkers need to be evaluated together with other
markers of the pathway of interest to understand its
interaction with the drug;

1)  The connection between brain and target pathway must
be quantitatively understood to allow for estimation on
how the biomarker response reflects the central effect.

Effects on the Hypothalamic-Pituitary-Adrenal (HPA)
Axis

Signaling in the HPA Axis

The hypothalamo-pituitary-adrenal (HPA) axis is involved in
the homeostasis of metabolic and cardiovascular systems,
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stress response, reproductive system, as well as immune sys-
tem. It is a complex system of signals and feedback mecha-
nisms between the hypothalamus, the pituitary gland and the
adrenal glands. The hypothalamus releases corticotrophin re-
leasing hormone (CRH) and vasopressin to modulate the se-
cretion of adenocorticotropin hormone (ACTH) by the pitu-
itary gland. AC'TH subsequently stimulates the release of glu-
cocorticoids (corticosterone in rodents, cortisol in humans)
and catecholamines, which control CRH and ACTH release
via a negative feedback loop. ACTH is cleaved from the
prohormone pro-opiomelanocortin, which also yields to a
number of different peptides including alpha-melanocyte
stimulating hormone (a-MSH), beta-endorphin and a few
other peptides that are also secreted from the pituitary gland.

Effects of Dopaminergic Agents on the HPA Axis

A wide range of neural systems influence the HPA axis (185),
including dopaminergic system, both in a D; and Dy receptor
dependent manner (Table II, Fig. 2) (150,151,186). This effect
1s mainly observed after short-term treatment with Dy and D,
receptor agonists, while long-term treatment did not show a
significant effect on basal ACTH levels (161).

Surprisingly, in contrast to haloperidol, the Dy receptor
antagonists eticlopride and remoxipride have been reported
to increase ACTH plasma levels (24,149). However,
remoxipride was 40 times less potent to elicit the ACTH re-
sponse than to induce the prolactin response (24), suggesting
that these observations are explained by off-target effects.

Contrary to their conflicting results for ACTH release, Do
receptor antagonists showed a consistent stimulation of corti-
costerone plasma levels (Table II, Fig. 2), indicating that glu-
cocorticoid release is not only mediated via a central mecha-
nism of ACTH secretion. Additionally, the stimulation of the
PNS was suggested to control the sensitivity of the adrenal
medulla to ACTH, thereby enhancing the release of cortico-
sterone. It is not certain whether this process is under dopa-
minergic control, but catecholamines certainly play a role
(187). Furthermore, Dy receptor antagonists might directly
modulate the release of corticosterone, given that Dy receptors
have been found on the adrenal cortex (188). It is worth men-
tioning that investigations on dopaminergic innervation in the
glucocorticoid release focused on aldosterone release from the
zona glomerula, and not on corticosterone release from the
zona fasciculate and reticularis (188). Whether the effects of
dopaminergic drugs are primarily mediated via dopamine re-
ceptors is not fully elucidated. While the ACTH response to Dy
agonist quinpirole was blocked by the D, antagonist sulpiride,
indicating the involvement of the Dy receptor, the corticoste-
rone response was not evaluated by such approach (151).

In addition to ACTH and corticosterone, a-MSH secre-
tion from the intermediate lobe of the pituitary gland is also
controlled by the dopaminergic system (189). a-MSH levels
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Table Il  Effects of Dopamine Receptor Agonists and Antagonists on the Neuroendocrine and Energy System
D1-like receptor D2-like receptor Dosing
period
Pathway Marker Agonist Antagonist Agonist Antagonist Matrix References
ACTH® + 0 + +0 Short-term Plasma (24,89-91)
HPA axis Corticosterone + 0 + + Short-term Plasma (89,91-94)
Alpha-MSH 0 + Short-term Plasma (95,96)
Corticosterone 0 0 + Long-term Piasma (97-102)
LH 0 +0 Short-term Plasma (24,103)
FSH 0 +0 Short-term Plasma (24,103)
. Progesterone + Short-term Plasma (104,105)
Reproductive Oxytocin + Short-term Plasma (106)
system LH +0 -0 Long-term Plasma (99,102,107-111)
FSH +0 -0 Long-term Plasma (99,107,109-111)
Testosterone® 0 -0 Long-term Plasma (97,101,108,110,112,113)
Progesterone® +I- Long-term Plasma (98,109-111,114)
Estrogen® +- Long-term Plasma (98,110,111,114,115)
Glucose + + Short-term Plasma (94,100,116-119)
P : Insulin 0 + Short-term Plasma (116-120)
Insulin signaling Glucagon 0 Short-term (106)
Giucose” ¥ o Long-term Piasma (99,100,121-124)
Insulin 0 +0 Long-term Plasma (98-100,115,121,122,125)
Glucagon 0 Long-term (99)
Lipid metabolism Cholesterol® +0 Long-term Plasma (98,99,121,125,126)
Triglycerides +0 Long-term Plasma (98,99,121,125,126)

+ (green): increase; - (red): decrease; +/-, -/0 or +/0 (grey): conflicting results; O (grey): no effect. + (green): increase; - (red): decrease; +/-, -/0 or +/0 (grey):
conflicting results; O (grey): ng effect.In case multiple studies were identified for the effects of a particular drug class on a particular marker, only the 4 most recent
publications were reported. Few and/or conflicting data; The atypical antipsychotics risperidone and clozapine showed a positive effect, whereas haloperidol

showed a negative effect

ACTH adenocorticotropic hormone, Alpha-MSH alpha-melanocyte stimulating hormone, LH luteinizing hormone, FSH follicle stimulating hormone

were increased after Dy receptor antagonist treatment
(155,156) but changed not after Dy receptor agonist treatment
(155), suggesting that a-MSH release is under maximal inhib-
itory control of dopamine.

Biomarkers of the HPA Axis

Although the basal mechanisms of the HPA axis are very well
understood, it remains unclear at which levels dopamine
drugs interfere. The dopamine system is active in the hypo-
thalamus, the pituitary gland, as well as the adrenal gland.
While a-MSH and ACTH reflect the response in the pituitary
gland upon hypothalamic stimuli, the corticosterone response
is secondary to AC'TH, or elicited at the adrenal gland direct-
ly. Therefore, the interpretation of biomarker responses
should rely simultaneous evaluation of a-MSH, ACTH and
corticosterone in a longitudinal manner to enable the evalua-
tion of dopamine drug effects at the different levels of the HPA
axis.

Effects on the Reproductive System
Signaling in the Reproductive System

The reproductive system also involves communication be-
tween the brain and the periphery. It is controlled by the
neuroendocrine system through the release of gonadotropin
releasing hormone (GnRH) from the hypothalamus,
which stimulates the secretion of luteinizing hormone
(LH) and follicle stimulating hormone (FSH) in the pi-
tuitary gland. These hormones subsequently modulate

the release of progesterone and estrogens (estrone, estra-
diol and estriol) in females, as well as testosterone in
males from the reproductive glands, which act as a negative
feedback on GnRH release.

Effects of Dopaminergic Agents on the Reproductive System

The role of the dopaminergic system in the reproductive system
is supported by a well-known side effect of Dy receptor antag-
onists, 1.e., sexual dysfunction (190,191). Furthermore, dopa-
mine release in the nigrostriatal, mesolimbic and medial
preoptic area plays a crucial role in mating behavior and cop-
ulation (192,193), providing a mechanistic basis for the involve-
ment of dopamine in sexual function. Other studies have inves-
tigated the dopaminergic drug effects on the sex hormones
testosterone, progesterone and estrogen in plasma (Table II,
Fig. 2). prolactin was excluded from our analysis because of
its well-known relation with dopaminergic agents; however, it
1s an important mediator of sexual function, supported by the
higher frequencies of sexual disorders observed with strong
inducers of prolactin (classical antipsychotics and risperidone)
compared to weak inducers (e.g., clozapine and olanzapine)
(191). The antipsychotic drug-induced disorders are at least
partially mediated via peripheral mechanisms, since the periph-
erally acting Dy receptor antagonist domperidone also caused
significant changes in reproductive hormones (194).

The results observed for testosterone plasma concentrations
were conflicting and mainly associated with high dose levels
(157,160,167). Furthermore, while the Dy receptor antagonists
chlorpromazine and metoclopramide caused a reduction in
progesterone and estrogen levels (169,170,173), sulpiride,
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clozapine, risperidone, and haloperidol led to enhanced con-
centrations (158,163,164,168). Similarly, LH and FSH were
reduced after long-term chlorpromazine and fluphenazine
treatment (166,170), while there was no effect observed after
long-term sulpiride, risperidone and haloperidol treatment
(167,168). After short-term haloperidol treatment, however,
increased levels of LH and FSH were observed (162).
Interestingly, the effect of short-term Dy receptor antagonist
treatment was observed in female but not in male rats (24,162).

The non-selective characteristics of the abovementioned
D, receptor antagonists may explain these conflicting results,
particularly since the effects were associated with large dose
levels (16,20). Moreover, sex hormones show a high degree of
intra-individual variability and impact of treatment duration,
the latter being illustrated by the increased testosterone levels
observed after 5 days of domperidone treatment, while it was
reduced after 30 days (194). This dual effect highlights the
importance of longitudinal sampling upon dopaminergic
treatment.

Finally, in addition to the effects of dopaminergic drugs on
prolactin and the sex hormones, Dy receptor agonists en-
hanced oxytocin secretion, likely in a D3R-specific manner
(165).

Biomarkers of the Reproductive System

The reproductive system has multiple levels, i.e., the hypothal-
amus, the pituitary and the endocrine glands, where further
understanding is required to develop an effective biomarker
strategy. The prolactin response 1s already difficult to inter-
pret. Although some studies indicated that it correlates to drug
exposure in the brain (23,195), another study found plasma
exposure a better predictor (196). A prolactin response has
been also observed with domperidone, which does not cross
the BBB (194). These observations suggest that the prolactin
response 1s a composite of central and peripheral effects.
Similarly, it is not known to which extent LH and FSH rep-
resent a central or a peripheral effect. Oxytocin, however,
represents a biomarker for central effects only, given that the
release 1s solely controlled by the hypothalamus. The testos-
terone and progesterone responses are secondary to LH and
FSH responses, although they may also have been elicited
through a peripheral mechanism. Overall, similar to the
HPA axis, the longitudinal evaluation of such possible bio-
markers is essential to understand the interaction between
dopamine drugs and the reproductive system.

Effects on the Insulin System
Signaling in the Insulin System

It is well known that many antipsychotics, especially atypical,
increase the risks for complicated disorders such as metabolic
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syndrome and type 2 diabetes mellitus (197). Blood glucose
levels are controlled by mainly two hormones; insulin and
glucagon. Upon a rise in glucose levels, insulin is secreted from
pancreatic B-cells, leading to the glucose uptake in the muscles
and storage as glycogen in the liver. As a consequence, the
insulin secretion is reduced. When blood glucose levels fall,
glucagon is released from the pancreatic a-cells, causing glu-
cose release from the liver.

Effects of Dopaminergic Agents on the Insulin System

Although insulin signaling is under PNS control (198), the role
of dopamine is mainly at the periphery. It is argued that do-
pamine and insulin are co-secreted from the pancreatic beta
cells, with dopamine providing a negative feedback on insulin
secretion in a Do-like receptor dependent manner (199).
However, both insulin and glucagon levels were not influence
by short-term Dy receptor agonist treatment (Table II, Fig. 2)
(177), highlighting that this mechanism does not play a major
role. In contrast, glucose concentrations were increased after
treatment with the D3 agonist 7-OH-DPAT, which was an-
tagonized by raclopride. Interestingly, this effect was con-
firmed for quinpirole, but not for bromocriptine (177).
Possibly, off-target mechanisms of bromocriptine normalize
the D receptor mediated effect on glucose. Both glucose
and insulin levels were increased with Dy receptor antagonists
(Table II, Fig. 2). Typically, the dose required to elicit a short-
term glucose response was higher than the one needed for a
corticosterone response (154), indicating that an off-target ef-
fect explains this response.

The results of long-term treatment are conflicting, with in
general no effect on basal fasting glucose or insulin levels
(93,158,160,179), although for some D2 receptor antagonists
a stimulation of the insulin system has been observed
(93,160,180,183). Given the large variation in experimental
design (sex, strain, fasting protocol, dose levels), it is difficult to
identify the source of this discrepancy. Moreover, many D,
receptor antagonists were found to share the off-target affinity
for other receptors, such as serotonine, muscarinic and the
histamine receptor, all involved in weight gain which is asso-
ciated with insulin resistance and hyperglycemia (16,197,200).
Interestingly, the M3 muscarinic receptor was found to be
crucial in the control of insulin release (201). It is thus likely
that the short- and the long-term effects of Dy receptor antag-
onists on the insulin system are mediated via other receptors
than the Dy receptor only.

Biomarkers of the Insulin System

The insulin system has been well described in terms of bio-
markers, including fasting plasma glucose, fasting serum insu-
lin and glycated hemoglobin. Systematic and well-controlled
studies that longitudinally evaluate these biomarkers in
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combination with dopamine treatment are needed to better
understand their potential interaction.

Effects on the Lipid Metabolism
Metabolism and Signaling in the Lipid System

Phospholipid and cholesterol pathways are the main pathways
of lipid metabolism. Both pathways start with acetyl CoA, and
depending on whether the enzyme SREB-1 or SREB-2 is
present, the fatty acid or the cholesterol pathway is activated
(158). Fatty acids are subsequently converted to triglycerides
or phospholipids, amongst others. Cholesterol and phospho-
lipids are notably essential to maintain the cell membrane
integrity (202). A distorted lipid metabolism can lead to the
loss of neural transmission and is involved in brain several
disorders, including schizophrenia (203). Moreover, misbal-
ances in the lipid homeostasis may, for example, cause weight
gain, atherosclerosis and cardiovascular problems. In this re-
gard, the relation between dopaminergic drugs and the lipid
metabolism is closely related to what is observed with the
insulin system (197,204).

Effects of Dopaminergic Agents on the Lipid System

The lipid metabolism has shown to be significantly altered
after long-term treatment, while no studies were identified
for short-term treatment (Table II, Fig. 2). For instance, 2—
3 week treatment with the Dy receptor antagonists risperidone
and olanzapine caused an increase in triacylglycerols and a
decrease in free fatty acids plasma levels, which was not the
case for the partial Dy receptor agonist aripiprazole (18).
Another study showed that 4 weeks of treatment with cloza-
pine and risperidone, but not haloperidol, raised the serum
levels of total cholesterol, free fatty acids and triglycerides
via modulation of the pathway that is responsible for their
biosynthesis (158). The fact that the Dy receptor agonist
ergocryptine, although relatively unselective for this receptor,
has been reported to decrease total cholesterol and triglycer-
ides concentrations (159), may indicate that these effects are
mediated via Dy receptors. However, given that not all Dy
receptor antagonists affect the lipid metabolism, other recep-
tors than the Dy receptor may be involved. Further investiga-
tions are needed to investigate through which mechanism
dopaminergic agents affect the lipid metabolism.

Biomarkers of the Lipid Metabolism

Cholesterol, free fatty acids, triacylglycerols and triglyc-
erides can be used as biomarker to evaluate dopamine
treatment effect on the lipid metabolism. Additionally, a
lipidomics-based approach also revealed an increase of

phosphatidylethanolamine as biomarker for antipsychotic
efficacy (18).

RECOMMENDATIONS FOR BIOCHEMICAL
BIOMARKER STRATEGIES IN CNS DRUG
DEVELOPMENT

This review provides an extensive overview into the ef-
fects of dopaminergic agents on multiple biological
pathways in the CNS and the periphery, as well as
the potential of easily accessible biomarkers to reflect
these effects. Overall, there is a strong need for system-
atic searches for biomarkers that together can represent
the system-wide effects of dopaminergic agents. Here,
we provide the following recommendations to account
for system-wide effects in early CNS drug development.

Use Proteomics and Metabolomics-Based Biomarkers
Discovery for CNS Drug Effects

We envision a crucial role for proteomics and metabolomics
approach to further elucidate known and unknown pathways
and to identify drug effect-related biomarkers (205).
Considering the potential lack of insights into the system-
wide effects of a new compound in early drug development,
these methodologies enable preclinical anticipation of wanted
and unwanted effects (206). This information can then be used
to optimize the future dosing strategies. Also, using a targeted
metabolomics approach with monoamines in the brain, it was
shown that risperidone and clozapine are biochemically closer
to the 5-HTy4 antagonist M100907 than to haloperidol
(116,207). Interestingly, this pattern highly corresponded with
behavioral outcome (116). Indeed, many of the dopaminergic
agents described in this review are non-selective.
Pharmacological effects should be seen as a balance between
multiple components of a network of affected biochemical
pathways (Fig. 4) (132). CNS drug discovery should thus aim
for rational development of non-selective drugs to attack the
polygenic CNS disorders (16). Proteomics and metabolomics
will certainly provide additional and valuable tools for the
mvestigation of the # viwo pharmacology (205).

Use Longitudinal Data and Mathematical Modeling

Mathematical modeling to understand CNS drug effects are
further needed. A pharmacological interaction at one or more
receptors will pass on to the neurotransmitter network, caus-
ing the net result on the individual neurotransmitters, as well
as the balance between them, being not so intuitive. A math-
ematical evaluation is therefore needed to understand CNS
drug effects (132,208,209). In this regard, longitudinal data on
biomarker levels is essential to calibrate these models. Indeed,
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the pattern of the response reveals information that cannot be
obtained from single time point measures (4,210). For exam-
ple, it was observed that not only basal levels of dopamine and
norepinephrine were decreased after long-term treatment, but
also the effect size after pharmacological stimulation (44,59).
Moreover, it is also difficult to quantify the effect by a single
time point in short-term treatments.

Evaluate CNS Drug Effects in Combination
with Pharmacokinetics

This temporal pattern not only depends on the dynamic inter-
actions within the biological system, but also on the exposure
pattern of the drug and its possible active drug metabolites at the
site of action. It is therefore important to take into account the
pharmacokinetics when evaluating the pharmacodynamics.
Only one study considered the steady state plasma concentra-
tions of clozapine and its active metabolite N-
desmethylclozapine in combination with a response measure
[75]. The levels of the drug and the metabolite showed high
variability between the animals. Moreover, the ratio between
clozapine and its metabolite was dependent on the sex of the
animal and the dose. Given the fact that the exposure of the drug
and its metabolite drives the response, such variability can have a
significant impact on the biomarker plasma levels. This is par-
ticularly true for CNS drugs, for which the exposure pattern in
the brain is determined by a complex interaction of pharmaco-
kinetics, BBB transport and distribution through the brain (209).
Moreover, the drug exposure is likely to be brain region-specific,
which will lead to quantitative differences in drug-receptor inter-
actions, depending on the brain region (211). Thus, when phar-
macokinetics is taken into account, pharmacodynamics can be
compared between drugs of the same pharmacological class,
excluding the interference of pharmacokinetic differences.

Analyze Brain, Plasma and CSF Biomarkers
Simultaneously

Plasma (or urine) samples are typically used for biomarker
identification, while CSF samples are getting more and more
interest in GNS-related diseases. Interestingly, our literature
search did not reveal pharmacological biomarker evaluations
in CSF, even though it has been used for other drug classes
(96) and discovery of pathological biomarkers (123). Although
plasma and CSF have the advantage to be accessible in
humans, biomarker responses in these biofluids may give a
biased view with regard to the actual effects in the brain.
Many biomarkers, for example dopamine, do not cross the
BBB. Even in the case they do (e.g., HVA) or if the biomarker
1s measured in CSF, it is difficult to know how 1s quantitatively
relates to the effects in the brain. The current overview shows
hardly any studies that simultaneously studied biomarker re-
sponses in braingcr and plasma. One study measured plasma
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and brain cholesterol levels after long-term treatment with
clozapine or haloperidol, but no significant correlation was
found (212). Another study could positively associate serum
progesterone levels with brain allopregnanolone as a reflection
of GABA, potentiation and anxiolytic effect after short-term
treatment with olanzapine and clozapine (163). Systematic
and simultaneous biomarker evaluations in plasma and brain
are recommended to provide a quantitative relation between
the central effect and the accessible biomarker response.

Investigate the Condition-Dependency
of Pharmacological Effects

Dopaminergic effects are highly condition dependent. As an
illustration, dopamine receptors are present on immune cells
to reduce their activation level (213,214), but no effect of do-
paminergic agents was found on immune markers such as C-
reactive protein, interleukin-6 or tumor-necrosis-factor alpha
(160,182,215,216). On the other hand, haloperidol was found
to have immune-modulatory and anti-inflammatory effects in
an animal disease model of rheumatoid arthritis (217). Indeed,
Dy receptor antagonists have been shown to normalize
lipopolysaccharide-induced inflammation (218), indicating
that only in an activated immune system, Dy receptor antag-
onists have an effect on immune markers. Thus, while some
markers may not respond under healthy conditions, these ob-
servations cannot directly be extrapolated to a diseased con-
dition. Patients or diseased animals need to be evaluated as a
population on its own.

CONCLUSIONS

This review highlights that dopaminergic agents, even selective
ones, have a wide array of biochemical effects. Indeed, dopa-
minergic drugs may interfere with at least 8 different systems in
the brain, including dopamine signaling, norepinephrine sig-
naling, ACh signaling, GABA-glutamate circuits, serotonin sig-
naling, kynurenine metabolism, nitric oxide pathway,
endocannabinoid system, and 4 systems in the periphery, 1.e.,
HPA axis, reproductive system, insulin signaling, and lipid me-
tabolism. Moreover, in line with earlier reviews, many dopami-
nergic drugs are non-selective (16,20,21). Therefore, although
we refer to ‘dopaminergic drugs’, the biochemical actions of
these drugs may be elicited via non-dopamine receptors. A
systems pharmacology approach 1s expected to provide deeper
msight into the actions of dopaminergic drugs. With such ap-
proach it will become possible to anticipate unwanted effects,
such as weight gain or sexual disorders. It is stressed that
CNS drug development lacks accessible biomarkers that
represent central effect. Hardly any studies were found
that relate the central effect to an accessible (i.e. CSF,
plasma, urine) biomarker response. Moreover, plasma
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samples were mostly obtained at a single time-point,
thereby missing the insight into the longitudinal pattern
of the effect. Overall, given that other neurotransmitter
systems are similarly interconnected as the dopamine
system and also widely expressed, we highlight the need
for longitudinal system-wide biomarker evaluations to
create greater understanding of CNS and to improve
early CNS drug development.
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