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Chapter 1

General introduction

Colorectal cancer (CRC) is the third most common cancer in men and second most common
in women, with an incidence of 1.4 million cases worldwide in 2012.! An estimated 25-35% of
all CRCs have heritable components, either pathogenic variants in high-risk CRC susceptibility
genes (3-5%) or a positive family history (20-30%).>* The underlying genetic cause in the
patients without penetrant mutations but with family history is not well understood, but is
expected to be a combination of environmental and inherited genetic factors with common,
low-penetrant genetic alterations.>* With large genome-wide association studies (GWAS)
more of these CRC susceptibility loci are being identified. These loci, often single-nucleotide
polymorphisms (SNPs), slightly increase colorectal cancer risk. With information about the
combined risk of multiple of these SNPs a personal CRC-risk profile can be created. An effort
to calculate personal cancer risk scores (with a polygenic risk model) by combining risk scores
of multiple (moderate) cancer susceptibility loci is already being done for breast cancer, and
could be a possibility for colorectal cancer, if more CRC susceptibility loci are mapped.>”

Colorectal carcinomas usually start as benign polyps that grow from normal colonic mucosa.
The progression of normal colonic epithelial cells to adenocarcinomas usually follows the
classical progression of precursor lesions with somatic, genetic and epigenetic changes. These
changes often confer a growth advantage leading to clonal expansion of the altered cells. This
process is better known as the adenoma-carcinoma sequence and typically spans over 15
years.>® One fundamental aspect of the tumorigenesis process is the acquisition of genomic
instability, which can be present in one of these forms: microsatellite instability (MSI),
chromosomal instability (CIN) or CpG island methylator phenotype (CIMP).>* MSI is caused
by defects in the mismatch repair system, a characteristic of Lynch Syndrome tumors. CIN is
described to be caused by a combination of oncogene activation (e.g. KRAS and PICK3CA) and
tumor suppressor gene inactivation (e.g. APC, TP53 and SMAD4)."> " Over 80% of adenomas
and CRCs are found to have inactivating APC variants.'*"* These pathogenic variants result in
Wnt signaling activation, a key early event in CRC tumorigenesis. CIMP is a subset of CRCs
that result from epigenetic changes and that are characterized by the inactivation of multiple
tumor suppressor genes and other tumor-related genes.'***

The three different types of genomic instability are a result of heritable factors, environmental
factors and random mistakes during normal DNA replication.'* Known heritable factors often
increase the number of variants per replication of the cell by disabling correct proofreading,
or by affecting one of the multiple DNA repair pathways present in the cell. Besides genetic
variants directly affecting protein function, CRC susceptibility can occur through other forms
of transcriptional silencing. The best known transcriptional silencer is epigenetic promoter
methylation, described in MLHI, MGMT, APC and P16/CDKNZ2A, but transcriptional
silencing can also occur through microRNAs (miRNAs).'” *® MiRNAs are small nucleotide
sequences that participate in the regulation of cell differentiation, cell cycle progression, and
apoptosis.'>?° Dysregulation of miRNAs has been shown to play a role in CRC tumorigenesis."
2122Tn an effort to create one consensus method to classify CRC subtypes, a large international
consortium classified CRCs based on gene expression profiles.”* Four consensus molecular
subtypes (CMS) were defined: CMS1: MSI, hypermutated and strong immune activation,
CMS2: epithelial with Wnt and Myc signaling activation, CMS3: epithelial with metabolic
dysregulation and CMS4: TGF-b activation, stromal invasion and angiogenesis.” This
classification was based on gene expression profiles and not on underlying genetic causes.
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Chapter 1

Familial syndromes

A number of different hereditary colorectal cancer and polyposis syndromes have been
defined on the basis of distinct clinical, pathological and molecular characteristics. Each of
these has been linked to, or even named after, (a) specific gene(s) (Table 1), but the genotype-
phenotype connection has become considerably more complicated in recent years. The most
common familial colorectal cancer syndromes are discussed separately below.

Lynch Syndrome

Lynch Syndrome is the most common form of hereditary CRC, accounting for 2-5% of
all CRCs in the general population, and is caused by heterozygous pathogenic germline
variants in one of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6 and PMS2.**%
In addition, in approximately 20-25% of patients with immunohistochemical MSH2 loss but
without pathogenic MSH2 variants a germline deletion of the 3" end of the EPCAM gene is
found, resulting in allele-specific hypermethylation and transcriptional inactivation of MSH2
that is directly upstream from EPCAM.?®# The function of the MMR pathway is to check
DNA replication fidelity and repair DNA mismatches that occur due to replication errors.**-*
This is necessary for maintaining genome stability. Although functioning in the same cellular
pathway, the MMR proteins form distinct heterodimers. The MutS complex (MSH2/MSH6
or MSH2/MSH3) is responsible for recognition of mismatches and small insertions/deletions
(indel). The MutL complex (MLH1/PMS2, MLH1/PMS1 or MLH1/MLH3) is responsible
for forming a MutS/MutL/DNA complex, for endonuclease activity and for termination
of mismatch-provoked excision.** Because MLH1 and MSH2 can heterodimerize with
multiple proteins, these proteins are shown to be essential MMR components, while MSH6,
PMS2, PMS1, MSH3 and MLH3 are important but partially redundant.’>** When MMR
ability is lost, cells develop a ‘mutator’ phenotype characterized by a 100-1000 times increase
in mutation rate.**** Microsatellites, repetitions of small DNA sequences, are more mutation-
prone and become unstable if the MMR system is defective.””**** This mutational signature
known as microsatellite instability (MSI) is characteristic of MMR-deficient tumors.”” **
** Other characteristics of MMR-deficient tumors are a high density of tumor infiltrating
lymphocytes (TILs) and a proximal location in the colon.** TILs are related to a specific
antigen-driven immune response, have been described to be activated and to have a cytotoxic
nature and are associated with improved prognosis.*®

Approximately 15% of colorectal cancers display the MSI phenotype of whom the majority
(>85%) are sporadic and result from somatic MLHI promoter hypermethylation.’ !
These sporadic MLHI methylated tumors commonly occur at relatively advanced age, and
typically do not show a family history of CRC.**** MLHI methylated cancers often carry the
somatically acquired BRAF V600E variant. While BRAF testing has low specificity, it is still
used in some centers as a pre-screening method to select cancers with methylated MLH1
promoters.*>*” Pathogenic germline MMR variants and somatic MLHI hypermethylation are
usually described to be mutually exclusive, although rare cases of LS have been described with
somatic promoter hypermethylation as a genetic ‘second hit.*>* Furthermore, though rare,
germline MLHI promoter hypermethylation has been described in young CRC patients with
MLH]1 promoter hypermethylated tumors.”” Inheritance of a constitutional epimutation has
been previously described in at least three unrelated families.***!
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General introduction and thesis outline

LS is inherited in an autosomal dominant fashion, with an average cumulative risk of
developing CRC at the age of 70 years ranging from 34-67% for MLHI and MSH2 mutation
carriers®®%, 22-69% for MSH6 mutation carriers®* % and 11-20% for PMS2 mutation carriers.®®
¢ Additionally, female mutation carriers have an average cumulative risk of developing
endometrial cancer of 31-60% for MLHI and MSH2 mutation carriers®*”}, 44-70% for MSH6
mutation carriers® * 7' and 12-15% for PMS2 carriers.® ® Other cancer types, including
small bowel, stomach, pancreas, ovary and bladder cancer occur, but less frequently.®* 72
Recent studies also indicate an increased risk for prostate and breast cancer.”>”* For patients
carrying a pathogenic MMR variant, colonoscopy is recommend every 1 to 2 years starting at
ages 20 to 25 years to reduce the incidence and mortality of this tumor.”®”” Previous studies
have shown that MMR-deficient tumors have a better clinical prognosis and possibly a better
response to novel regiments such as immunotherapy.® 3757

In the past, a set of criteria (Amsterdam Criteria) were used to clinically diagnose Lynch
Syndrome families.*® These criteria considered age of onset, number of CRC patients within
a family and the relation between the affected family members (one should at least be a
first-degree relative of the other).** However, even after inclusion of other LS-associated
non-colorectal cancers (Amsterdam II Criteria), these diagnostic criteria were found to
lack sensitivity and specificity in diagnosing Lynch Syndrome.*>® In 1996 the Bethesda
guidelines were introduced to identify individuals who should receive genetic testing for
Lynch Syndrome.* These guidelines advised to screen patients fulfilling one of the following
criteria: (1) individuals in families that meet Amsterdam Criteria, (2) patients with two
Lynch-associated cancers, (3) patients with CRC and a first-degree relative (FDR) with an
LS-associated cancer before age 45, (4) patients with right-sided undifferentiated or signet-
ring cell type CRC before age 45 or (5) patients with adenomas before age 40.% % The
Bethesda guidelines showed a high sensitivity (96%), an improvement on the previously used
Amsterdam Criteria, but still a low specificity (27%).%

The introduction of the MSI analysis and immunohistochemical staining led to the revised
Bethesda guidelines and a more sensitive method to determine MMR-deficiency.%*
Immunohistochemical staining of tissue slides from formalin-fixed paraffin-embedded tumors
is used to determine the presence and location of a protein. The first step, tissue preparation,
includes deparaffinization of the tissue slides, blocking of endogenous enzymatic activity and
(heat-induced) antigen retrieval. After antigen retrieval specific primary and then secondary
antibodies are added to the slides. Antibodies are detected with a chromogenic reaction, in
which an enzyme label conjugated to the antibody reacts with a substrate to yield a colored
precipitate. Horseradish peroxidase (HRP) is often used for this reaction, and the precipitating
substrate DAB shows a typical brown-colored precipitate at the protein localization site.
Finally, the slide is counterstained, commonly with hematoxylin, a compound creating a blue
color. Brown-colored precipitate will indicate the presence of the target protein at a specific
location, while only the blue counterstain will be seen when the protein is absent (see Figure
1). Importantly, non-tumor cells present in the sample should always show staining, since
the target protein is still present in these cells. This allows these cells to be used as a positive
control, i.e. to confirm that lack of staining is due to loss of protein and not due to technical
artifacts.
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Chapter 1

For MSI analysis the National Cancer Institute microsatellite panel, consisting of at least 5
microsatellite markers, is recommended, although commercially available mononucleotide
panels are routinely used.®” Tumors are characterized to be MSI-low (MSI-L) if one marker
shows instability, MSI-high (MSI-H) if two or more markers show instability and MSI-stable
(MSS) when no markers show instability.5”*

The revised Bethesda guidelines advise genetic testing of all CRCs with an age of onset younger
than 50, as well as all MSI-H CRCs before 60 years. Furthermore, patients with one FDR with
an LS-associated CRC before 50, or two or more first or second degree relatives regardless of
age should also be tested for genetic variants. Combining revised Bethesda criteria with MSI
analysis and IHC was found to result in a sensitivity of 82% and a specificity of 98%.°* However,
more recent studies advocate routine molecular screening of patients under 55 or even under
70, regardless of Bethesda criteria.”>** This molecular screening is then often combined with
BRAF V600E or MLHI promoter hypermethylation testing to exclude sporadic MLH1 loss.*>
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Figure 1: Colon high grade villous adenoma, IHC of the four MMR proteins

Immunohistochemical staining of [A] MLHI, [B] MSH2, [C] MSH6, [D] PMS2. Staining shows loss of
MLH]I and PMS2 expression, and positive MSH2 and MSHG6 expression.
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General introduction and thesis outline

Unexplained suspected Lynch Syndrome

A 2014 study estimated that up to 60% of MMR-deficient colorectal cancers do not carry
germline MMR variants, nor can be explained by somatic MLH I promoter hypermethylation.®*
These patients are referred to as ‘suspected Lynch Syndrome’ (sLS) ** or ‘Lynch-like Syndrome’
(LLS)*>*, and failure to determine the underlying (genetic) cause of disease has a major impact
on the clinical management of these patients. Three potential reasons for MMR-deficient and/
or MSI-H cancers of sLS patients discussed in literature are (1) missed variants in the MMR
genes, (2) biallelic somatic inactivation of the MMR genes or (3) variants in other genes that
can drive MSL?® These possible explanations are comprehensively discussed in Chapter 7
(concluding remarks). The cancer risk in families with sLS is found to be lower than that of
families with LS but higher than that of families with sporadic CRCs and more research is
needed into the potential (genetic) causes of these CRCs.> 1

Currently, many high-throughput screening efforts are being done to find the genetic cause in
these sLS families, resulting in many (MMR) variants of uncertain clinical significance (VUS).
These are the variants for with evidence is lacking to classify them as either (likely) benign or
(likely) pathogenic. Characterization of MMR variants is done according to the standardized
five-tiered scheme of the International Society for Gastrointestinal Hereditary Tumors
(InSiGHT).'* According to this scheme, variants can be classified to be not pathogenic (class
1), likely not pathogenic (class 2), uncertain (class 3), likely pathogenic (class 4) or pathogenic
(class 5). While the scheme provides clear clinical guidelines for classes 1, 2, 4, and 5, many
variants are assigned to class 3 for lack of good classification evidence, and clinical impact
of these variants remains uncertain. In addition to clinical data (such as family history, co-
segregation, immunohistochemistry, etc.), functional tests, such as minigene splicing assays
or in vitro MMR assays, may help to interpret the clinical impact of these variants.!**1%

Constitutional MMR-deficiency

Patients with homozygous or compound heterozygous variants in the MMR genes show
a different phenotype than classical LS patients, known as constitutional MMR-deficiency
syndrome (CMMRD).!** % CMMRD patients develop a diverse spectrum of childhood
cancers, including CRC but also hematological and brain malignancies.'® ' Another
characteristic of CMMRD is café-au-lait maculae (CALM).!*> % Most CMMRD families have
homozygous/compound heterozygous PMS2 variants, but families with biallelic MLHI or
MSHE6 variants have also been described.'®>'” The mean age at diagnosis in patients with
CMMRD is 7-9 years for brain tumors, 16 years for CRC and 5-12 years for hematological
cancers.'*> 1 Recommended surveillance consists of MRI scanning of the brain starting at the
age of 2 years at an interval of 6-12 months and colonoscopies every 6 months from the age of
8 years.'*> 1% Siblings of CMMRD patients have a 25% risk of having the same genotype, and
50% chance of carrying a heterozygous MMR variant with an increased risk for LS-associated
tumors in adulthood.'® CMMRD is a severe disorder with a large spectrum of cancers.
Depending on the type of pathogenic variant patients can have a severe phenotype with brain
tumors in early childhood, or a milder phenotype with later age of onset.*> % Surveillance
will aid in early detection of tumors and guide proper treatment, but most patients will die
from cancers in early childhood.*> 1
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Chapter 1

Muir-Torre

Muire-Torre syndrome (MTS) is an autosomal dominant skin condition characterized by
sebaceous gland tumors or keratoacanthoma, with colorectal, endometrial, urological or
upper gastrointestinal neoplasms.''*'"* Clinical evidence suggests there might be two types
of MTS, one with MMR-proficient/MSS and one with MMR-deficient/MSI-H tumors.'® The
latter is possibly a clinical variant of Lynch Syndrome, and is often caused by pathogenic
variants in the MSH2 gene."® "> Identical MSH2 variants have been found in LS- and
MTS-patients, and a possible explanation for the different phenotype could be that the MSH2
variant in MTS-patients co-segregates with variants in other modulator genes involved in
skin carcinogenesis or that inactivation of MSH2 could result in molecular changes in other
genes."'> > 11 For the MMR-proficient type of MTS the genetic cause is still unknown, but
biallelic MUTYH germline variants have been implicated as one of the possible genetic
causes.''> !¢

Familial colorectal cancer type X

Approximately half of the families positive for the Amsterdam I criteria carry MMR-proficient
and MSS colorectal cancers."”!"* These families are classified as familial colorectal cancer type
X (FCCTX) and the molecular mechanism underlying these tumorsis not wellunderstood.!”1%°
Specific clinical features of FCCTX (compared to LS) include absence of endometrial cancers
and high prevalence of rectal cancers, lower incidence of CRC and diagnosis at a higher mean
age (57.3 years, compared to 49.7 for LS)."**** FCCTX cancers have not (yet) been linked to
one specific gene.'” Recent studies indicate SEMA4A and BMPRIA as possible underlying
genetic causes, explaining a small percentage of FCCTX cases.'** Other candidate genes are
CENPE, KIF24, GALNTI2, ZNF367, GABBR2 and BMP4, but evidence for the involvement
of these genes in FCCTX-tumorigenesis is lacking.'” * One study suggests that FCCTX is
not a single entity, but rather a name for a combination of multiple entities.'” Surveillance
recommendations currently include colonoscopies every 3-5 years, starting 5-10 years before
the earliest age of onset in the family."*® %

Familial adenomatous polyposis

Familial adenomatous polyposis (FAP) is a rare autosomal dominant disease accounting
for ~1% of colorectal cancers.” !> FAP is caused by germline heterozygous variants in the
APC gene and is associated with the development of hundreds to thousands of colorectal
adenomas at an early age.** ' On average, cancers develop a decade after the first appearance
of adenomas and the average age of CRC diagnosis if left untreated is 39 years.*'**'* De novo
pathogenic APC variants are responsible for approximately 25% of FAP patients.* 332 APC s
a tumor suppressor gene involved in the Wnt signaling pathway, which functions by negatively
regulating the B-catenin oncoprotein.'?®** The 310 kDa protein has four p-catenin binding
domains, and seven domains involved in binding and down-regulating p-catenin.* ***% In
absence of APC B-catenin accumulates in the nucleus and interacts with factors that upregulate
transcription of genes involved in cell cycle, proliferation, differentiation, migration, apoptosis
and progression.'** Notably, when APC is inactivated in the tumor, B-catenin overexpression
is still kept in check by unknown mechanisms. Apparently, some residual downregulation is
of great importance for tumor formation.'** In addition, APC stabilizes microtubules and loss
of APC leads to chromosomal instability, defective chromosome segregation and aberrant
mitosis.'*

14



General introduction and thesis outline

Somatic inactivation of APC is a common molecular event in sporadic colorectal cancer
and is present in about 80% of sporadic colorectal cancers.'”” The majority of pathogenic
APC variants are truncating variants, either nonsense (26%), small insertions (10%) or small
deletions (46%).1*

FAP can be present in the classical, more severe form, or as attenuated FAP (AFAP) a milder
form with fewer adenomas (<100) and a later age of onset. The severity of FAP is associated
with the location of the APC variant within the APC gene. Variants resulting in an AFAP
phenotype are located before codon 157, after codon 1595 and in the alternative spliced
region of exon 9.°* '3 Variants located in the DNA binding domain of the APC gene are
described to lead to a severe type of FAP (>thousands of adenomas). The location of the
variant however, is not the only predictive factor of the severity of polyposis. APC variants
in a mosaic fashion are described to lead to an (attenuated) form of polyposis, irrespective
of the variant's location.”**"*® The severity of polyposis in patients with mosaic APC variants
depends on timing and origin of the mutation.”** ¥ Patients with FAP should be examined
by colonoscopy every 1-2 years, beginning at age 10-14.* ** Once adenomas are detected,
annual follow-up is recommended.* Management of FAP includes endoscopic polypectomy
and surgery."** Colectomy should be considered when more than 20 adenomas develop, when
adenomas >1 cm are found, or when advanced histology (ulcerated, high grade dysplasias)
appears.> %

MUTYH-associated polyposis

Besides FAP, another possible diagnosis for patients presenting with 10-100 adenomas is
MUTYH-associated polyposis (MAP)."* ! MAP is an autosomal recessive disorder caused
by biallelic variants in the base excision repair gene MUTYH, accounting for approximately
0.3 - 1% of all CRCs.!? 13+ 140145 The base excision repair (BER) pathway has an important
role in preventing variants associated with oxidative damage.'® " ¢ Reactive oxygen
species (8-0x0-7,8-dihydro-2’-deoxyguanosine or 8-oxodG) can be incorporated in the DNA
through direct oxidation of guanine or via incorporation of 8-oxodGTP from the nucleotide
pool.'** DNA polymerase incorporates adenosine opposite 8-oxodG, leading to G:C>T:A
transversions.'* The function of MUTYH within this pathway is to scan the daughter strand
after replication and to remove adenosine residues mispaired with guanose or 8-0x0G.**!

Pathogenic germline variants in the MUTYH gene were first detected in 2002 in one family
in which 11 tumors from 3 affected siblings were screened for somatic APC variants."* In
these 11 adenomas and carcinomas 18 inactivating somatic variants were found, of which the
majority (n=15) were G:C>T:A variants. This was taken as a strong indication of a BER defect,
previously described in yeast."*>'*" %8 Sequencing of leukocyte DNA for variants in the BER-
genes MUTYH, OGGI and MTH, led to the discovery of pathogenic compound heterozygous
variants in MUTYH. Another hallmark of these tumors is the KRAS ¢.34G>T variant, found
in 64% of MAP colorectal cancers.'# 14130

MAP is characterized by a greatly increased risk of lifetime colorectal cancer (43-100%), often
in combination with colonic adenomas.'"”? Monoallelic variants in MUTYH are present in
1-2% of the general population,'** ' and the cancer risk of these heterozygous carriers is still
under debate.””*'*” Surveillance for MAP consists of colonoscopy every two years starting at
age 18-20 years.'

15

—
i
o
-
]
=
Q




Chapter 1

Polymerase proofreading associated polyposis

Recently, variants in the exonuclease domains of POLE and POLDI genes have been
described to be associated with colorectal carcinomas (CRC), endometrial cancer (EC)
and colorectal polyposis.”**'® POLE and POLDI are the genes that encode for the catalytic
subunit of polymerases € and §, involved in DNA replication of the lagging and leading
strand respectively. The exonuclease domain provides proofreading capabilities essential
for maintenance of replication fidelity.""*'® The mean age of onset of CRC is 40.7 years for
POLE mutation carriers, and 35.9 years for POLDI carriers.'® In a small percentage of POLE/
POLDI mutation carriers brain tumors are diagnosed.'®*!®* This variable phenotype has
been coined polymerase proofreading associated polyposis (PPAP), a syndrome with high
penetrance and dominant inheritance.'®*'®> Interestingly, in contrast to the classical tumor
development model, only a minority of tumors are found to have loss of the wildtype allele, or
sustain other variants that could act as a ‘second hit’!**'%> 1> Somatic and germline variants in
POLE/POLDI are believed to account for 3% of all CRCs and 7% of ECs.'*"'¢* 1% PPAP tumors
are often MSS but MSI-H PPAP tumors have been described, where the MMR-deficiency
supposedly resulted from somatic secondary MMR variants.'®» ' 1 Guidelines recommend
colonoscopies every 1-2 years starting at age 20-25, combined with endometrial cancer
screening at age 40 for POLDI female carriers.'®®

Pathogenic POLEand POLD1 variants have been described asinherited (PPAP) and somatically
acquired, both leading to an ‘ultramutated’ phenotype with a variant incidence exceeding 100
variants/Mb."**1%* While the majority of somatic variants are C:G>T:A variants, a particular
increase in G:C>T:A transversions are characteristic of POLE/POLDI mutated tumors, with
an elevated TCT>TAT and TCG>TTG mutational pattern.'*®'®* Germline or somatic POLE/
POLDI mutated tumors are significantly more immunogenic with increased lymphocyte
infiltration and cytotoxic T-cell marker expression, and have a favorable prognosis.'**'”°

NTHLI1-associated polyposis

Due to many high-throughput sequencing efforts, new genes predisposing to familial
colorectal syndromes continue to be found. In 2015, whole exome sequencing of 48 families
with colorectal cancer and polyps led to the identification of NTHLI-associated polyposis
(NAP)."”' NAP is a recessive disorder caused by biallelic inactivation of the NTHLI gene.'”""'"*
This gene is part of the base excision repair pathway and encodes for the NTHL1 glycosylase
which is involved in removing oxidative pyrimidine lesions.'” So far, only a few families with
NAP have been described, and the prevalence and the exact phenotype remain unknown.
Families with NTHLI variants appear to have a phenotype predominantly consisting of
colorectal cancer with adenomatous polyposis, although breast, endometrial, duodenal, skin,
prostate and pancreatic cancers have also been described in NAP patients.'?®'”! Furthermore,
the mutational profile of these cancers resembles an MAP phenotype with G:C>T:A
transversions.'”" Currently, only nonsense and splice site variants have been described, often
the NTHLI p.Gln90* hotspot variant.'”"'7*
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MSH3-associated polyposis

In 2016 another new genetic underlying cause of unexplained polyposis was detected through
whole exome sequencing (WES)."7¢ After WES on leukocyte DNA from 102 unrelated
individuals with unexplained polyposis, two individuals with compound heterozygous MSH3
loss of function variants were found.'”® Tumors of both patients showed high microsatellite
instability in di- and tetranucleotides (EMAST) and immunohistochemical loss of MSH3.7¢
Loss of MSH3 protein expression was already shown to be frequent in MSI-H tumors due to
a microsatellite in MSH3, but no MSH3 germline mutation carrier had been described until
2016.

Hamartomatous polyposis syndromes

Hamartomatous polyposis syndromes are a rare heterogeneous group of autosomal dominant
disorders accounting for less than 1% of all hereditary colorectal cancer syndromes."”” 7
Hamartomatous polyps are the main characteristic of these syndromes. While these polyps are
benign they have the potential to become malignant and progress into carcinomas.'””>'”® This
progression is through a hamartoma to carcinoma sequence in which stromal elements create
a local environment that promotes epithelial dysplasia.’”® The different syndromes within this
group all have different clinical phenotypes, each with different frequencies and location of
the polyps, distinct organ-specific manifestations, and predispositions for the development of
other malignancies. Proper distinction between these syndromes is of great importance for
appropriate clinical management.

Juvenile polyposis syndrome

Juvenile polyposis syndrome (JPS) is characterized by the development of multiple
gastrointestinal polyps in the colon.'””82 These polyps generally vary in size from 5 mm
to 50 mm and typically have a spherical, lobulated and pedunculated appearance.!”” JPS
presents in the first or second decade of life, with an average age of diagnosis around 18.5
years.'”® Symptoms for JPS can include rectal bleeding, anemia, abdominal pain, constipation
or change in stool size, shape or color, though some JPS patients remain asymptomatic.'””
178 The cumulative lifetime risk for colorectal cancer is 40-70%."77"" If a pathogenic variant
is present, surveillance with colonoscopy or endoscopy should start at the age of 15 years
and should be repeated every 3 years."”” 7 In about 20-60% of JPS patients a pathogenic
germline variant in SMAD4 or BMPRIA is found."””"®! Both genes are involved in the TGF-
beta signaling pathway. The majority of pathogenic germline SMAD4 and BMPRIA variants
are missense or small deletions and 15% is deletions of one or more exons.'”**#!

Peutz-Jeghers syndrome

Peutz-Jeghers syndrome (P]S) is characterized by the presence of hamartomatous polyps
in the gastrointestinal tract and distinctive mucocutaneous pigmentation.’”” 1#3-1% A typical
dark blue to dark brown pigmentation is present in 95% of PJS patients and is seen on the
vermilion border of the lips, the buccal mucosa, hands and feet.!”” '8 % The small intestine
is most commonly affected, although polyps can be found in colon, stomach, rectum,
bladder, esophagus and gallbladder.'®>'# The polyps are generally between 5 to 50 mm in
diameter.”” 175 1% PJS presents in the second or third decade of life."”” 75 1% Symptoms for
PJS can include rectal bleeding, anemia, bowel obstruction and abdominal pain.'”” #> 1% The
risk of developing any cancer at age 65 is 47-93%, with an especially high risk of developing
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stomach, small intestine, colon and breast cancer but also elevated risk of developing cancer
in the esophagus, pancreas, lung, uterus and ovaries.'s® ' Surveillance of the large bowel is
recommended every three years, starting at age 18 and upper gastrointestinal endoscopies
are recommended every three years starting at age 25."° Notably, since breast cancer risks
are comparable to BRCA1/BRCA2 mutation carriers (40-85% lifetime risk), PJS patients are
recommended equal surveillance with monthly breast self-examination starting at age 18 and
mammography starting at age 25.1 18

Pathogenic germline variants in STK11 gene (also known als LKBI) are found in 30-80% of
PJS patients.'$*15 185192 STK11 is a serine-threonine kinase involved in regulation of cellular
proliferation via G1 cell-cycle arrest, in WASI signaling and P53 mediated apoptosis.'®> A
clinical diagnosis of PJS is made when a patient has at least two PJS polyps or one PJS polyp
with a positive family history or mucocutaneous pigmentation.'s>'*? The mutation detection
rate in patients who meet these criteria is 70-90% and the majority of variants detected are
nonsense or frameshift deletions resulting in a truncated protein.'s> 18191

PTEN hamartoma tumor syndrome

PTEN hamartoma tumor syndrome (PHTS) is an autosomal dominant disorder caused
by germline variants in the tumor suppressor gene PTEN."® PHTS encompasses multiple
overlapping syndromes as Cowden Syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome
(BRRS)."””1 PTEN is a tumor suppressor gene with multiple, but incompletely understood,
functions. As a lipid phosphatase it plays a role in the P13K/Akt signaling, involved in G1 cell-
cycle arrest and apoptosis. As a protein phosphatase it can regulate cell-survival pathways.!9**%
It furthermore might play a role in cellular migration and focal adhesion.'** 1

CS is characterized by macrocephaly, mucocutaneous lesions, acral keratosis, papillomas
and fibromas, and 30-85% of patients develop hamartomatous polyps in the gastrointestinal
tract.!7% 19197, 1% CS patients have an increased lifetime risk of developing breast (25-50%),
endometrial (5-28%), thyroid (3-17%), colon (9-16%), skin (6%) and renal cancers."”® ' With
a range of possible tumors, management recommendations are broad, including yearly breast
examinations from age 25-30, yearly thyroid examination or ultrasound starting at age 18 and
colonoscopies every 5 years from age 35.1”-1* BRRS patients develop lipomas, gastrointestinal
hamartomatous polyps, macrocephaly, hemangiomas and developmental delay.”” In 11 - 80%
of patients meeting clinical criteria for PHTS, a pathogenic variant in PTEN is found."”® >
190198, 199 Tn patients without a PTEN variant, pathogenic germline variants in SDHB, SDHC,
SDHD, AKT, PIK3CA as well as hypermethylation of KLLN are found explaining the PHTS-
like phenotype.'* 2%
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Thesis outline

Over the last few years, advances have been made in discovering the underlying genetic cause
in unexplained CRC and polyposis patients. Three new CRC and polyposis syndromes—
polymerase proofreading associated polyposis (PPAP), NTHL1-associated polyposis (NAP)
and MSH3-associated polyposis—were discovered in the last three years, and new genes are
still being described. The aim of this thesis was to find the underlying genetic cause in a
large cohort of unexplained suspected Lynch Syndrome patients and a cohort of unexplained
polyposis patients. We hypothesized that the suspected Lynch Syndrome (sLS) patients could
be explained by missed variants in the mismatch repair (MMR) genes, by bi-allelic somatic
inactivation of the MMR genes or by variants in other susceptibility genes.

Chapter 2 reports a whole gene capture effort in which we screened sLS patients for variants
in the exonic- or intronic regions of 15 CRC susceptibility genes, including MLHI1, MSH2,
MSHG6 and PMS2. Chapter 3 describes variants in the polymerase genes POLE and POLDI
in sLS patients. Variants in the exonuclease domain of these genes result in hypermutated
tumors. We hypothesize that the MMR-deficiency in these tumors is due to secondary MMR
hits resulting from this hypermutated phenotype. Chapter 4 shows a splicing assay to analyse
the effect of variants (predicted) to result in splicing. For this assay RNA was isolated from
formalin-fixed paraffin-embedded (FFPE) tissue, enabling analysis of somatic variants and
variants in patients of which only FFPE is available. Chapter 5 describes a practical guide
on detecting and analysing variants in the PMS2 gene in DNA isolated from FFPE. Analysis
of this gene is complex due to the presence of many pseudogenes. Chapter 6 focuses on
unexplained polyposis patients. Half of unexplained patients with 20-100 adenomas could
be explained by a mosaic APC variant, either present in leukocyte and colon, confined to
the colon, or only detected in the adenomas but not in normal colonic mucosa of a patient.
Finally, concluding remarks and future perspectives are presented in Chapter 7.
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Chapter 2

Abstract

Background and Aims: Lynch Syndrome (LS) is caused by pathogenic germline variants in
one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal
cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic
MMR germline variant can be identified, which leads to difficulties in clinical management.
We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA
of 34 unrelated sLS patients and 11 patients with MLHI hypermethylated tumors with a clear
family history.

Methods: Using targeted next-generation sequencing, we analyzed the entire non-repetitive
genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility
genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants.

Results: Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was
a pathogenic variant (MLHI c.1667+1delG). Leukocyte DNA of 11 patients with MLHI
hypermethylated tumors was negative for pathogenic germline variants in the tested CRC
susceptibility genes and for germline MLHI hypermethylation. Somatic DNA analysis of 28
sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a
VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic
variant (n=8) or one VUS predicted to be pathogenic (n=1).

Conclusions: This is the first study in sLS patients to include the entire genomic sequence of
CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified
in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect
explaining the MMR-deficiency in their tumors might be found outside the genomic regions
harboring the MMR and other known CRC susceptibility genes.

Keywords: Genetics; Colorectal Cancer; Mismatch Repair Deficiency; Lynch Syndrome
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Introduction

Lynch Syndrome (LS) is the most common form of hereditary colorectal cancer (CRC) and is
caused by heterozygous pathogenic germline variants in one of the mismatch repair (MMR)
genes (MLHI, MSH2, MSH6, PMS2).! In addition, a unique subgroup of LS patients carry
deletions in the 3’ end of EPCAM, a gene immediately upstream of MSH2.>? More than
95% of LS-associated CRCs display microsatellite instability (MSI), the molecular hallmark of
LS.* Immunohistochemical analysis (IHC) of the tumor for loss of MMR protein expression
points to a possible causative gene, with the diagnosis of LS confirmed once a pathogenic
germline variant is identified. Patients suspect for LS are selected for genetic testing on the
basis of clinical characteristics (Amsterdam or Bethesda criteria) and/or molecular diagnostic
testing of the LS-associated tumors (LSAT).>® As opposed to familial colorectal cancer type X
(FCCTX) families,” who also fulfill Amsterdam criteria, the patients suspect for LS do show
MSI and loss of MMR gene expression in the tumor. LS patients have an increased risk of
developing CRC, with estimates of lifetime risk ranging from 36% to 75%.*"' Women who
carry pathogenic variants also face a high risk of endometrial cancer.'? Several other cancer
types, including small bowel, stomach, pancreas, ovary, renal, pelvis, ureter, bladder, brain,
liver, bile duct, gall bladder and skin occur frequently.'> *'> Recent studies also indicate an
increased risk for prostate and breast cancer.'*'® To achieve adequate cancer prevention,
early identification of individuals with LS is essential. Intensive surveillance by colonoscopy
every 1-2 years, starting at age 20 to 25, is now recommended and is known to reduce CRC
morbidity and mortality."” % Accurate and timely identification of LS patients is therefore
crucial to providing the correct treatment.*'

A recent study estimated that, using current approaches, up to 60% of MMR-deficient
colorectal cancer cases remain unexplained.?’ These patients are designated as ‘suspected
Lynch Syndrome’ (sLS)?, or also known as ‘Lynch-Like Syndrome™?, and failure to determine
the underlying cause of disease has a major impact on the clinical management of these
patients. In addition to germline variants, biallelic somatic variants may explain disease in up
to 69% of MMR-deficient tumors that lack pathogenic germline variants or MLHI promoter
hypermethylation.”* MSI due to somatic hypermethylation of the promoter region of
MLH] is also seen in up to 15% of sporadic CRC patients.”® Sporadic MLHI methylated
tumors commonly occur at a relatively advanced age and in absence of family history of
CRC.*# Patients with somatic MLHI promoter hypermethylated tumors rarely carry
germline MMR variants, although exceptions have been published.’*** These studies indicate
MLH]1 hypermethylation as a ‘second-hit’ mechanism already present in adenoma stage
and demonstrate that MLHI hypermethylation does not exclude the presence of germline
pathogenic CRC variants. MLHI hypermethylated tumors in young patients with a family
history of CRC can also be due to germline MLHI hypermethylation. Though very rare, this
phenomenon has been described before.”*! Inheritance of a constitutional epimutation has
been shown in at least three unrelated families.****

The aim of our study was to identify an underlying genetic basis in a cohort of 34 sLS patients
and 11 patients with MLH1I hypermethylated tumors and a clear family history for LS. In an
effort to discover previously undetected germline variants, the entire genomic sequences of
four MMR genes and eleven CRC susceptibility genes were analyzed. In addition, tumor DNA
from 28 sLS tumors was analyzed for somatic variants in the MMR genes.
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Materials and Methods

Study subjects

Between 1998 and 2011, a total of 45 patients were recruited from five academic centers in
The Netherlands, including Leiden University Medical Center (n=20), Maastricht University
Medical Center (n=11), Erasmus Medical Center (n=7), University Medical Center Utrecht
(n=6) and VU University Medical Center Amsterdam (n=1). Demographic and clinical data
and informed consent were obtained during the consultation. Forty-three patients fulfilled
the revised Bethesda criteria.® All patients had been previously screened for germline variants
in the MMR gene that showed loss of expression (as indicated by immunohistochemical
analysis) by Sanger sequencing or denaturing gradient gel electrophoresis (DGGE), without
identification of a pathogenic germline variant. Large deletions/duplications in the MMR
genes were excluded by analysis with multiplex ligation-dependent probe amplification
(MLPA, MRC Holland, Amsterdam), or in some cases, with Southern blot analysis.

Immunohistochemical analysis (IHC) and microsatellite instability testing were routinely
performed at the request of a board-certified Clinical Genetic medical specialist. Because
routine testing of all four MMR proteins only became available around 2004, tumors
recruited before 2004 were not fully tested by MMR immunohistochemistry. Leukocyte and
tumor DNAs were retrieved from the archives for the current study. Immunohistochemistry
data was complete for 18 sLS patients (53%), for 10 cases only PMS2 immunohistochemistry
was missing and the remaining 6 tumors had incomplete IHC results (see Supplementary
Table 1). Ten MLHI hypermethylated tumors (8 colorectal-, 2 endometrium-) showed IHC
loss of MLH1 and PMS2 (PMS2 was not tested in sLS-68 - see Supplementary Table 1)
and normal MSH2/MSH6 expression. The eleventh patient, sLS-81, showed loss of MLH1
expression (other MMR genes were not tested). All tumors except tumor sLS-48 (MSI not
tested) displayed a microsatellite unstable phenotype (high or low instability, see Table 1 and
Supplementary Table 1).

Family history data showed that 82% of the sLS patients and 100% of patients in the MLH1
hypermethylated cohort had a first-degree relative with a Lynch Syndrome-associated tumor
(LSAT). Unfortunately, no DNA could be obtained from these affected family members.
Among the sLS cohort, 28 patients presented with colorectal cancer (CRC) as their first LSAT,
while 5 patients had endometrial cancer (EC) and 1 patient had a sebaceous gland cancer.
In the MLHI hypermethylated cohort, 9 patients presented with CRC and 2 with EC. The
mean age of diagnosis of the first LSAT was 48,6 years for the sLS group and 63,2 years for the
MLH]1 hypermethylated group (See Table 1). Leukocyte DNA isolated from peripheral blood
was available for all patients. The study was approved by the local medical ethical committee
of the LUMC (P01-019E).

Targeted genomic sequencing with next-generation sequencing

Targeted next-generation sequencing of leukocyte DNA was carried out using a custom
designed set of SureSelect 120-mer target enrichment RNA oligonucleotides (baits) for
in-solution hybrid selection (Agilent Technologies, Santa Clara, CA). Baits were designed
against 15 CRC susceptibility genes, spanning the entire non-repetitive genomic region of the
genes, including exons, introns, and UTRs, and 5 kb upstream and 3 kb downstream of the
gene (see Table 2). The average coverage was > 95% for all coding regions, and 43% for overall
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coverage. Libraries were prepared according to the manufacturers’ protocols (NEBNext® and
Ilumina®, San Diego, California, USA). In brief, 2 ug of genomic DNA from each patient
was fragmented to lengths of 300-500 bp using the Covaris $220 single tube sonicator (Life
Technologies, Carlsbad, CA). Fragment ends were repaired and an A-tail added to the 3" end
of the DNA fragments. Illumina® dual-barcoded adaptors (patient-specific) were ligated, and
the adaptor-ligated DNA was then enriched by 10 cycles of PCR. PCR products derived from
4 to 5 patients were pooled in equimolar amounts and hybridized in solution to the custom
baits. Captured targets were subsequently extracted and further enriched by 15 cycles of PCR.
Paired-end sequencing of the PCR products was performed on the Illumina HiSeq® 2000.

Table 1: Clinicopathologic factors sLS- and MLH1 hypermethylated cohort

Clinicopathologic factor

no of patients (%)

sLS MLH1 hypermethylated

Number of patients 34 11
Patient characteristics

Male 17 (50) 3(27)

Female 17 (50) 8 (73)

Age,y 48,6 63,2
Clinical characteristics

No Bethesda/Amsterdam II 1(3) 1(9)

Bethesda only 23 (68) 7 (64)

Amsterdam II 10 (29) 3(27)
Tumor

CRC 28 (82) 9(82)

EC 5(15) 2 (18)

Other 1(3) -
Family History

FDR 28 (82) 11 (100)

NA 3(9) -

No 3(09) -
MSI

MSI-High 25 (74) 9(82)

MSI-Low 4(12) 1(9)

MSI-Stable 4(12) -

Unknown 1(3) 1(9)

Clinicopathologic factors of the 34 sLS- and 11 MLHI hypermethylated patients.
Patients presented with colorectal cancer (CRC), endometrial cancer (EC) or other LS-
associated tumors (LSAT). Family history is defined as first degree relative with a LSAT
(FDR), no family history of LS (No) or family history not available (NA).
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Data analysis

Mumina HiSeq® 2000 sequences were exported as FASTQ files and separated using the
barcodes. The sequence data was checked for quality using the quality control tool for high
throughput sequence data, FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Alignment of the Illumina sequences to the human reference genome (hg19, NCBI
build GRCh37) was performed using the Burrows-Wheeler aligner (BWA) (http://bio-bwa.
sourceforge.net) and sequence duplicates were marked with Picard (http://picard.sourceforge.
net/). Variant calling on the resulting BAM files was performed by VarScan (http://varscan.
sourceforge.net/) using the following settings: minimal coverage of 8, minimal reads of
2, minimal variant frequency of 0.2 and a minimal average quality of 20. Variants were
functionally annotated using ANNOVAR.*

Variant filtering and classification

The full dataset was filtered by targeted region and variant frequency. Variants with a minor
allele frequency (MAF) of >0.05, as reported in the NCBI dbSNP database version 142 (http://
www.ncbi.nlm.nih.gov/projects/SNP/) were excluded from further analysis. Because analysis
of PMS2 variants is difficult due to interference by pseudogenes, variants located in one of the
duplicated regions were excluded from further analysis.

Splice variants

All remaining sequence variants with a MAF<0.05 were analyzed with Alamut software version
2.0 (Interactive Biosoftware, Roven, France), a software package that includes the splice site
prediction algorithms SpliceSiteFinder, MaxEntScan (http://genes.mit.edu/burgelab/maxent/
Xmaxentscan_scoreseq.html), NNSPLICE (http://www.fruitfly.org/seq_tools/splice.html) and
Human Splicing Finder (http://www.umd.be/HSF/). Variants can affect splicing by altering
the canonical splice site sequence, by creation of new splice sites, activation of cryptic splice
sites or by altering splice regulatory elements (SREs) *°. In addition, branch point sequences
and polypyrimidine tracts were investigated for possible variants. As a branch point is usually
located 18 to 50 nt upstream of the splice acceptor site, all variants within 100 nt of the splice
acceptor sites of MLH1, MSH2, MSH6 or PMS2 were visually inspected in Alamut.”

Missense prediction
All missense variants were filtered based on the predictions of in silico protein prediction
software packages including Align GVGD, SIFT (http://sift.jcvi.org/), PolyPhen-2 (http://
genetics.bwh.harvard.edu/pph2/), MutationTaster  (http://www.mutationtaster.org/) and
MutationAssessor.*®

Promoter variants

Using the UCSC Genome browser, the putative promoter regions of MLH1, MSH2, MSH6 and
PMS2 (as indicated by the histone mark H3K4me3 that is generally found near promoters)
were analyzed for variants.

Variant classification

The Leiden Open Variation Database (LOVD, http://www.lovd.nl/3.0/home) and ClinVar¥
were consulted to identify previously described and classified variants. Variants that were not
described in above-mentioned databases were classified according to the five-tiered InSiGHT
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scheme: benign (class 1), likely benign (class 2), variant of unknown significance (class 3),
likely pathogenic (class 4), and certainly pathogenic (class 5).>°

Validation

All (likely) pathogenic or splice variants were visually inspected in the Integrative Genomics
Viewer (IGV, https://www.broadinstitute.org/igv/home) and confirmed with Sanger
Sequencing. Germline variants found in this study have been submitted to the appropriate
LOVD database, available at http://www.lovd.nl/3.0/home.

MLH]1 promoter hypermethylation

Methylation of the MLHI promoter region was analyzed using methylation specific PCR
(MSP), with previously described primers.” Bisulfite conversion of tumor DNA was car-
ried out using the EZ DNA methylation Gold kit (Zymo Research, Orange, US), following
the manufacturer’s standard protocol. Bisulfite-converted DNA was amplified using specific
methylated and unmethylated primers in a PCR reaction, following a LUMC diagnostics pro-
tocol.®

Functional RNA analysis

To determine the effect on splicing of one splice site variant (MLHI c.1667+1delG), patient
RNA was analyzed for aberrant splicing. RNA was isolated from short-term cultured peripheral
blood lymphocytes, and analyzed with and without inhibition of nonsense-mediated decay.*
In addition, a minigene splicing assay was performed to confirm the splicing patterns seen in
the RNA of the patient as described by van der Klift et al.*

Somatic variant screening

DNA from 28 sLS tumors, isolated from formalin-fixed paraffin embedded tissue blocks,
was screened for variants in the coding regions of MLHI, MSH2, MSH6 and PMS2 with the
Ion PGM™ (Life Technologies, Carlsbad, CA). Next-generation sequencing was carried out
according to the Ion PGM™ protocol, with supplier’s materials. Primers were obtained from
Life Technologies. The complete panel consisted of 162 amplicons, covering 98%, 90%, 98%
and 75% of MLHI, MSH2, MSH6 and PMS2, respectively.

Raw data analysis, alignments, and variant calling were carried out using the default parameters
in Torrent Suite v4.0. The Variant Caller Parameter Setting was set on ‘Somatic - PGM - Low
Stringency’. Variants were functionally annotated using ANNOVAR.* Variants were visually
inspected with IGV and (likely) pathogenic variants were confirmed with Sanger sequencing.
The annotated dataset from the somatic screening was filtered in the same manner as the
germline targeted next-generation sequencing dataset. For assessment of pathogenicity, the
catalogue of somatic mutations in cancer (COSMIC, http://cancer.sanger.ac.uk/cosmic) was
used additionally. Loss of heterozygosity (LOH) was determined as previously described.*
Somatic data on 20 sLS tumors and 3 MLHI hypermethylated tumors (see Supplementary
Table 1) has been described previously.”> These twenty-three patients were also tested for
variants in the POLE/POLDI exonuclease domain (EDM). Patient sLS-07 and sLS-09 were
found to carry POLE-EDM variants, previously described to be pathogenic (respectively
POLE ¢.2131 G>T and POLE ¢.857 C>G).>*%
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Results
Germline targeted next-generation sequencing

Coding variants

Targeted next-generation genomic sequencing of 15 CRC genes was performed in leukocyte
DNA of 34 unrelated sLS patients and 11 patients with MLHI hypermethylated tumors.
The average coverage was 101x. In total, 1,979 nucleotide variants were detected within the
targeted region with a MAF < 0.05. All 15 genes were first analyzed for coding variants. After
filtering, 52 coding variants remained, of which 16 were synonymous, 33 were missense
and 3 were small (in-frame) insertions or duplications. All in-frame insertions/duplications
occurred within a stretch of Ala-repeats in exon 1 of MSH3 and were present in multiple
patients and were classified as variants of unknown (clinical) significance (VUS). Eight of the
33 missense variants were found in the coding sequences of MLHI, MSH2, MSH6 or PMS2
and were described in the LOVD database as (likely) benign (class 1 or 2), except MLHI
¢.277A>G, which was classified as VUS (class 3). Of the remaining 25 missense variants, 20
were predicted to be benign by at least four out of five protein prediction programs. One of
the remaining five variants, EPCAM c¢.50C>A was predicted to be pathogenic by two out of
five prediction programs but was described to be benign.* The final 4 variants were found in
AXINI, AXIN2, MSH3 and MUTYH and were classified as variants of uncertain significance
(VUS), or as pathogenic (n=1; MUTYH c.1187G>A) (see Table 3).

Table 3: Patients with germline coding VUS or germline pathogenic variants

Patient lunoy IHC MSI Wi Gene Variant Protein Class
tested tumors
MUTYH c.1187G>A p-(G396D) 5
sLS-22 CRC54 MLH1! H -
MLHI c.277A>G p-(S93G) 3
MSH2/
sLS-44  CRC41 MSHS6 H - AXIN2 c.1168A>G p-(S390G) 3
sLS-56  CRC64 ﬁggé/ H CRC64 AXIN1 c.2566G>A p-(G856S) 3
MSH2/ Br60,
sLS-72  CRC73 MSH6 H EC68 MUTYH c.1187G>A p-(G396D) 5
sLS-88  CRC51 gll\?;zl/ H Pr64 MSH3 c.982C>T p-(R328W) 3
sLS-117 CRC20 PMS2 NP - MLH]1 c.1667+1delG  p.(S556ins29) 5

Istaining of MSH6 and PMS2 was not performed. Tumor tested represents tumor type, followed by the age
of onset. Patients presented with colorectal- (CRC), endometrial cancer (EC), breast cancer (Br) and/or
prostate cancer (Pr). MSI-status is defined as MSI-High (H) or not performed (NP). Classification of class 3
(VUS) and class 5 (pathogenic) is based on in silico protein predictions, as well as the LOVD Database. All
variants were found in sLS patients.
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Splice variants

For three variants the splice prediction algorithms predicted deviating splicing efficiencies
compared to the wildtype sequences. An MLH]I variant, in patient sLS-117 (see Table 3), was
predicted to abolish the consensus splice site sequence (c.1667+1delG). Functional analysis of
patient RNA revealed a mutant MLH1 transcript 87 nucleotides longer than the expected wild
type transcript.* The 87 nt sequence corresponded to the intron sequence downstream of the
splice variant, indicating activation of a cryptic donor splice site 88 nucleotides downstream
of the canonical splice site. Translation of the aberrant mRNA leads to the in-frame
incorporation of 29 amino acids in the protein-interacting domain of the MLH1 protein.
The other variants predicted to affect splicing, a synonymous APC ¢.1959G>A change and
the MUTYH ¢.1187G>A variant described above, only slightly lower the splicing efficiency
according to prediction software. The APC variant is described in the LOVD database as
having ‘no known pathogenicity’

In addition, branch point sequences and polypyrimidine tracts were investigated for possible
variants with branch site prediction software SpliceSiteFinder. None of the variants found
were predicted to change the existing consensus sequence or to create new branch points.

Promoter variants

Of the 22 promoter variants, 8 were known polymorphisms. The remaining 14 variants were
present in single patients of which three were actually present in the specific MMR gene that
showed loss of protein expression in the tumor: MLHI c.-1019A>C, MLHI c.116+730C>T
and MSH2 ¢.211+550G>C. These variants have not been described before, and functional
significance of these variants is unknown according to the INSIGHT classification.*

Germline MLH1 methylation

Leukocyte DNA of patients with MLHI hypermethylated tumors were also investigated for
possible germline methylation. No evidence of germline methylation was found in any of the
patients

Somatic variant screening

Tumor DNA from 29 of the 34 sLS tumors was available for somatic DNA analysis. Patient
sLS-117 was excluded from somatic variant screening due to the detection of a pathogenic
germline MLH]I variant (MLH1 c.1667+1delG). Tumor and normal DNAs from the remaining
28 patients were sequenced for somatic MMR variants.

In total, two pathogenic somatic events were detected in eight tumors (29%), including either
two variants (n= 3) or one variant together with LOH (n=5) (see Table 4 and Supplementary
Table 1). One tumor was found to carry a VUS (predicted to be pathogenic) together with
LOH. Nine tumors (32%) revealed one pathogenic somatic variant (n=8), or VUS predicted
to be pathogenic (n=1), while no (likely) pathogenic somatic variants were found in seven of
the tumors (25%) (see Table 4). Three tumors (11%) could not be analyzed due to poor tumor
DNA quality. Seventeen out of the twenty-two somatic MMR variants were nonsense or
frame shift variants and were classified as pathogenic (class 5). Of the remaining five somatic
variants, two (MLHI ¢.790+1 G>A and MLHI ¢.2059C>T) were previously described to be
pathogenic in the LOVD database; two (MSH6 ¢.2876 G>A, and MSH2 c.1166G>A) were not
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previously described and were predicted to have a deleterious effect on function by at least
four out of five protein prediction programs (See Table 4) and one was an in-frame deletion of
three nucleotides (MSH6 ¢.3974_3976delAGA), which was classified as having an uncertain
effect on function (VUS, class 3).

Patient sLS-22 was previously found to carry a germline MLHI VUS (MLHI ¢.277 A>G), and
analysis of the tumor DNA revealed an somatic MLH1 frameshift variant located nearby the
germline variant (MLH1 c¢.281delT). NGS analysis showed that both variants were located on
the same allele. Moreover, the tumor DNA displayed LOH with retention of both variants.

MMR mosaicism
To investigate the possibility of mosaic MMR variants, all cases in which a somatic MMR
variant was identified were tested for mosaicism in the corresponding leukocyte DNA. The

average coverage of the leukocyte DNA samples was more than a thousand reads per amplicon
and no mosaic variant was detected.
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Discussion

In this study we carried out an extensive sequencing analysis of the genomic regions of the
four MMR and 11 other CRC susceptibility genes, including MUTYH, EPCAM and MSH3.
We anticipated that this type of broad analysis, well beyond the boundaries of conventional
mutation screening, would identify variants previously missed by standard techniques or
would identify variants in genes other than the previously diagnostically tested MMR genes.
As our patient cohort consisted mainly of cases with a first-degree relative with a LS-associated
tumor, cancer susceptibility due to an underlying germline defect in these families seemed the
most plausible explanation.

The approach used, Whole Gene Capture, yielded an average sequence depth up to 5-fold
greater than whole exome sequencing, with sufficient depth to allow detection of mosaic and
de novo variants. In total, 1,979 initial variants were detected. Many variants were classified
as of uncertain significance and follow-up studies might reveal novel functional effects. After
filtering by function and predicted pathogenicity, two likely pathogenic variants remained.
An MLHI1 splice site variant, ¢.1667+1delG, was found in patient sLS-117, who was diagnosed
with CRC at age 20. Patient sLS-117 presented with solitary PMS2 protein deficiency in the
tumor and only PMS2 had been previously screened with conventional mutation screening.
IHC showed solitary PMS2 loss of expression, since the MLHI frame shift variant leads to
a 29 amino acid insertion in the protein-protein interacting domain, resulting in an MLH1
transcript which is unable to bind PMS2. Analysis of family members demonstrated the
variant in the patient’s affected mother (CRC at age 44), whereas the patient’s unaffected
daughter tested negative for the variant.

The second pathogenic variant, MUTYH p.Gly396Asp, was present in a heterozygous state
in two patients (patient sLS-22 and sLS-72, see Table 3). Monoallelic variants in MUTYH
are present in 2% of the general population and are not found at increased frequencies in
sLS patients.”* ** The role of monoallelic MUTYH variants is still under debate, and while
some studies have indicated an increased cancer risk for carriers of a single MUTYH variant,
the p.Gly396Asp variant alone is unlikely to be the explanation for the MSI-H and/or IHC
status of the tumors in our patients®*’. Moreover, both patients were found to have (likely)
pathogenic somatic MMR variants (Supplementary Table 1) explaining the MMR-deficient
phenotype.

In addition to the 34 sLS patients, eleven colorectal cancer patients with somatic MLH1
hypermethylation and a family history suspected of LS were analyzed for possible underlying
germline defects. MLHI promoter methylation in Lynch Syndrome patients has been
described before, either co-occuring with a pathogenic germline MSH6 variant in a patient
with a urothelial carcinoma at age 70*, in a patient with a pathogenic germline MLH1 variant
in a CRC at the age of 59! or with pathogenic germline MSH6 variant in a patient with multiple
primary cancers, from the age of 56%. Another study describes MLHI hypermethylation
in three LS-tumors, hypothesizing methylation is the second hit inactivating the wildtype
allele.’® These studies indicate that MLHI hypermethylation does not always exclude a
diagnosis of LS. In our study we have not found support for above findings. Moreover, three
families with germline MLHI hypermethylation in multiple affected family members have
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been reported***, indicating epigenetic inheritance of constitutional epimutations with a risk
of transgenerational inheritance. All eleven patients with MLHI hypermethylated tumors in
our cohort were tested for germline methylation, but no germline methylation was found.

Although this intensive study enabled the detection of variants within the intronic regions,
UTRs and regions up- and downstream of the target genes, some limitations have to be
considered. While the average coverage of the coding regions is over 95%, the overall average
coverage is 43% (See Table 2). The lower overall coverage is due to the method used in which
no baits were designed for the repetitive sequences such as the Alu- and Line-repeats within
the introns. Therefore, missed intronic variants in these regions cannot be excluded. Moreover,
we cannot exclude the possibility of large genomic rearrangements within the genes tested,
which is a limitation of the method used in this study.

Screening of tumor DNA from 28 sLS patients for somatic variants revealed almost a third
with two somatic variants (n=3) or a combination of a somatic variant and LOH (n=6). The
frequency of biallelic inactivation in our cohort is lower than previously described*#, and
might be due to differences in patient selection in the different study cohorts. While previous
studies screened sLS patients irrespective of family history, the majority of patients in the
present cohort had first-degree relatives with LS-associated tumors (see Supplementary
Table 1) and eight families even fulfilled the Amsterdam II criteria. However, while biallelic
somatic events may explain the MMR-deficiency of the tumor of the index patient, they
cannot explain a family history of CRC. Ideally, a second affected family member in these
families should be tested to see whether these patients can also be explained by somatic MMR
inactivation. Unfortunately, no DNA could be obtained from affected family members. An
underlying pathogenic germline gene variant outside these 15 CRC-susceptibility genes
cannot be excluded in these families.

Besides somatic MMR variants, two sLS patients (sLS-07 and sLS-09) were recently found to
carry somatic hotspot POLE-EDM variants (see Supplementary Table 1).>> As POLE/POLDI
EDM pathogenic variants give rise to ultramutated tumors, the somatic MMR variants
apparently represent a second hit. Screening for germline or somatic POLE/POLDI -EDM
variants, but also for variants in other genes recently described to be mutated in sLS CRCs
such as BRCAI/BRCA2, ATM and CHEK2, may explain some of these sLS patients.” ¢

In conclusion, sequencing of the entire genomic region of 15 CRC susceptibility genes in
34 unrelated sLS patients and 11 patients with MLHI hypermethylated tumors, together
with assessment of somatic variants, provides a broad impression of possible genetic causes
of tumor formation in MSI-H and/or MMR-deficient tumors. No likely pathogenic MMR
gene variants or germline MLHI hypermethylation were found that explained the familial
aggregation of cancer susceptibility in any of the families with MLHI hypermethylated
tumors. With the MMR-deficiency of around one-third of the 34 sLS tumors now explained,
MMR-deficiency in two-thirds of sLS tumors remains genetically unaccounted for. A logical
next step is whole exome sequencing (WES) or whole genome sequencing (WGS) to further
elucidate the causative genetic defect(s) in the remaining patients.
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Abstract

Many suspected Lynch Syndrome (sLS) patients who lack mismatch repair (MMR) germline
gene variants and MLHI or MSH2 hypermethylation are currently explained by somatic MMR
gene variants or, occasionally, by germline POLE variants. To further investigate unexplained
sLS patients, we analyzed leukocyte- and tumor DNA of a cohort of 62 sLS patients using gene
panel sequencing including the POLE, POLDI and MMR genes. Forty tumors showed either
one, two or more somatic MMR variants predicted to affect function. Nine sLS-tumors showed
a likely ultramutated phenotype and were found to carry germline- (n=2) or somatic variants
(n=7) in the POLE/POLD]1 exonuclease domain (EDM). Six of these POLE/POLDI mutated
tumors also carried somatic MMR variants. Our findings suggest that faulty proofreading
may result in loss of MMR and thereby in microsatellite instability.

Keywords: POLE; POLD1; suspected Lynch Syndrome; Colorectal Cancer; Mismatch Repair
Deficiency
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Introduction

Inactivation of the mismatch repair (MMR) genes MLHI, MSH2, MSH6 and PMS2
causes Lynch Syndrome (LS), an autosomal dominant predisposition for colorectal
and endometrial cancer.! Inactivation of the mismatch repair pathway can also occur
sporadically, through somatic MLHI methylation' or by acquired bi-allelic somatic
inactivation (variant affecting function or loss of heterozygosity (LOH)) of the MMR
genes.”* Inaccurate DNA repair leads to a high frequency of somatic variants, with
loss of MMR leading to ‘hypermutated’ tumors with 10-100 variants/Mb.* LS tumors
are characterized by microsatellite instability (MSI) and immunohistochemical loss of
expression of MMR proteins.! However, germline variants affecting function cannot be
detected in up to 59% of patients displaying MSI and/or loss of MMR, referred to as
‘suspected LS’ (sLS).
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Recently, germline and somatic variants in the exonuclease domains (EDM) of DNA
polymerase € (POLE) and polymerase § (POLD1) were described.®** These POLE/POLD!
variants affect proofreading function and lead to an ultramutated phenotype with a
variant incidence exceeding 100 variants/Mb. Germline POLE-EDM variants can result
in a LS phenotype and microsatellite unstable CRCs.*"* The exact role of somatic POLE/
POLDI variants in tumors with high microsatellite instability (MSI-H) remains unclear.

The aim of our study was to identify the underlying genetic cause of disease in a cohort
of 64 suspected LS cases - selected on the basis of MSI, loss of MMR, young onset and
often a family history for LS - by screening the MMR, POLE and POLDI genes in both
leukocyte and tumor DNA.
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Subjects and Methods

This study included 64 patients with Lynch-associated tumors recruited in four academic
centers in the Netherlands between 1990 and 2014: Leiden University Medical Center
(n=36), Maastricht University Medical Center (n=11), Erasmus Medical Center (n=9) and
University Medical Center Utrecht (n=7). Demographic and clinical data, as well as informed
consent, were obtained at the time of diagnosis. Patients were selected based on loss of MMR
(as indicated by immunohistochemical staining) and/or microsatellite instability (MSI).
Unexplained tumors with low microsatellite instability, or tumors with inconclusive THC
results were also included in this study (See Supplementary Table 1 and Supplementary
Methods).

Fifty-six (90%) patients fulfilled Bethesda criteria'¢, and families of twenty-two (34%) patients
also fulfilled Amsterdam II criteria.'” Patients were previously screened in a diagnostic setting
for germline MMR variants. While 58 patients showed no disease causing germline variants,
six patients were found to have a germline variant of unknown significance (VUS). Of the total
cohort, 75% of patients presented with colorectal cancer (CRC, n=48), 14% with endometrial
cancer (EC, n=9), and 11% with another LS-associated tumor (See Supplementary Table 1).

The average age of onset was 52.1 years. Two patients were excluded from the analysis due to
poor DNA quality. Of the remaining 62 tumors, tumor- and leukocyte DNA was sequenced
for variants in the exonic regions of MLHI, MSH2, MSH6, PMS2, POLE and POLDI using
the Ton PGM™ System (Life Technologies, Carlsbad, CA). Raw data analysis, alignments,
and variant calling was carried out using the default parameters in Torrent Suite v4.0 (see
Supplementary information for detailed description). Variants were functionally annotated
using ANNOVAR."

The full dataset was filtered and prioritized by variant frequency (>10%) and coverage (>50x).
Interesting variants under the 10% were manually curated. In silico prediction programs were
used to predict pathogenicity (see Supplementary Methods). All variants (likely) affecting
function, including two variants with a 9% variant frequency, were validated with Sanger
sequencing. For all PMS2 variants, PMS2 specific primers were created, to validate that the
variant is present in PMS2 and not in a PMS2 pseudogene.

Loss of heterozygosity (LOH) was determined for every heterozygous SNP by comparing
the ratio of allele A to allele B in leukocyte and tumor DNA samples. Furthermore, for every
heterozygous SNP the allelic imbalance factor (AIF) ' was calculated and a Fisher exact test
was performed to determine whether the difference between normal and tumor is significant.
If all heterozygous SNPs of one gene showed loss of heterozygosity with an AIF>2 and Fisher
exact p-value <0.05 LOH was called. (Supplementary Table 1).
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Results

Six patients with a germline MMR VUS (class 3) were included in this study (Supplementary
Table 1). In all cases, the variant is detected with NGS, in leukocyte and tumor DNA.
During the course of the study, three of these germline variants were reclassified as class 4
or 5 ((probably) affects function) by the International Society for Gastrointestinal Hereditary
Tumors Incorporated (InSiGHT). Three of these patients displayed a second somatic MMR
variant predicted to affect function. One tumor displayed LOH (Supplementary Table 1). Six
cases with somatic MLH1 hypermethylation fulfilling Revised Bethesda criteria (three from
families fulfilling Amsterdam II criteria) were sequenced for underlying hereditary defects
explaining the family history, but no germline variants were found. One of these MLHI
methylated tumors carried a somatic MLH]I variant likely to affect function and one displayed
MLH]I1 LOH (Supplementary Table 1).

One (n=27, 44%) or two (n=13, 21%) somatic aberrations (variant or LOH) in a MMR gene
were found in a total of 62 tumors (See Supplementary Table 1). Bi-allelic inactivation was
concordant with IHC. Twelve of the thirteen tumors with two somatic aberrations had variants
in MLHI or MSH2 and were MSI-H. The thirteenth tumor, sLS-07, showed expression loss of
MSH6 and was MSS. While the majority (81%) of tumors showed less than 10 somatic variants
in the genomic region analyzed, ten cases displayed a larger number of somatic variants,
ranging from 16 to 375 somatic variants within the sequenced area of 31 kb. Nine out of ten
tumors showed a POLE or POLDI variant which (probably) affects function (Table 1). Of the
highly mutated tumors, two carried novel germline heterozygous POLE/POLDI variants that
are predicted to affect proofreading (Supplementary Table 2). Of these two germline cases,
tumor sLS-67, was also found to carry two somatic MLH]I variants, explaining the tumor
phenotype (loss of MLH1 expression and MSI-H). The second tumor, sLS-16, was MSI-L,
showed positive MMR expression and had no somatic MMR variants.

Seven of the highly mutated tumors showed somatic POLE/POLDI variants likely to affect
function. Six tumors carried a somatic POLE/POLD1-EDM hotspot variant (POLE: ¢.857C>G,
¢.856C>T, ¢.1231G>T, ¢.1366G>C, ¢.1367C>T or ¢.1376C>T and POLDI c.1433G>A) that
has previously been described to impair proofreading * In the seventh tumor (sLS-105)
a novel POLE ¢.846_847delinsTT variant was detected. This variant lies close to a known
POLE hotspot site (POLE c.857) and is predicted to be affect function by 2 out of 3 prediction
programs (Supplementary Table 2). All POLE variants were heterozygous, in agreement with
previous research ”. Four POLE/POLDI-EDM mutated tumors displayed additional somatic
nonsense POLE variants outside the exonuclease domain (See Supplementary Table 3). Only
one of these was upstream of the exonuclease domain (sLS-16).

Eight of the nine POLE/POLDI1-EDM mutated tumors in our study showed microsatellite
instability (3 MSI-H and 5 MSI-L). In six of these tumors THC detected loss of at least one of
the MMR proteins and all six tumors displayed somatic variants in the affected MMR gene
likely to affect function. well as two somatic PMS2 aberrations, while IHC showed solitary
loss of PMS2 expression. Reanalysis of staining also showed ambiguous MLHI1 staining
(cytoplasmic enhancement and vague, focal nuclear staining). Tumor sLS-19 with two POLE
variants, was found to have two somatic MLHI aberrations, as well as two somatic PMS2
aberrations, while IHC showed solitary loss of PMS2 expression.
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Table 1: Overview of patients with a POLE/POLDI1-EDM mutated tumor

Patient IHC MSI (i F?mlly # var Gene Variant Ammq s %
age  history alteration
Somatic POLE/POLDI1-EDM variant
POLE c.1367C>T p-(A456V) 28%
sLS-05 None L 62 FDR 330 MLHI LOH - -
PMS2 LOH - -
POLE  c.1231G>T p.(V411L) 44%
sLS-07 MSH6 S 39 TDR 37 MSH6 c.2735G>A p-(W912*) 10%
MSH6 c.2876 G>A p-(R959H) 14%
POLE ¢c.857C>G p-(P286R) 38%
sLS-09 MSH6 L 42 FDR 16
MSH6 ¢.2539G>T p-(E847%) 36%
POLE c.1376C>T p-(S459F) 21%
POLE c.856C>T p-(P286S) 9%
MLHI c.199G>A p-(G67R) 19%
sLS-19 PMS2 H 45 FDR 221
MLHI LOH - -
PMS2  c.308C>T p.(T1031) 11%
PMS2 LOH - -
sLS-24 None L 34 FDR 115 POLE ¢.1366G>C p-(A456P) 28%
POLDI  ¢.1433G>A p-(S478N) 32%
sLS-66 MSH6 L 66 SDR 25
MSH6 ¢.3600_3601del p-(L1201Hfs*13)  28%
POLDI  c.1429G>A p.(V477M) 26%
sLS-80 Il\\/I/ISSI;IIZG/ H 52 FDR 5 MSH6 c.3961A>G** p.R1321G 52%
MSH6 c.3186C>A p.C1062* 25%
POLE c.1218C>G p-(N406E) 16%
sLS-87 1;\44851;26/ H 49 FDR 9 MSH6 ¢.3473_3475del*™* p-(C1158del) 53%
MSH6  c.3311_3312del p.(F1104Trpfs*3)  21%
POLDI  c.1003A>G p.(1335V) 22%
sLS-101 PMS2 H 55 FDR 5
PMS2 c.1687C>T p-R563* 30%
POLE c.846_847delinsTT p.(L283F 13%
sLs-10s MUHIp g No 184 - p-(L283E) ’
PMS2 MLHI c.1614G>A p-(W538*) 13%
Germline POLE/POLD1-EDM variant
sLS-16 None L 41 FDR 185 POLD1 c961G>A p-(G3215) 55%
POLE c.861T>A p-(D287E) 50%
sLS-67 1\311\4/[%;/ H 53 SDR 91 MLHI c.208-1G>A p.? 14%
MLHI  c.440_447del p.(G147Dfs*22)  19%

EDM, exonuclease domain. MSI-status is defined as MSI-H (H), MSI-L (L) or MSS (S). Onset age is the age
at which the first LS-associated tumor occurred. All patients presented with colorectal cancer, except patient
sLS-87 and sLS-101 which presented with endometrial cancer. #var depicts the number of somatic variants
with a frequency >10% identified in the sequenced region of 31 kb. Stop codons are indicated with an asterisk
(*). Germline variants of unknown significance (VUS) are indicated with a double asterisk (**) % shows the
percentage of variant reads. Family history is defined closest relative with LS-associated tumor, FDR: first-
degree relative, SDR: second-degree relative, TDR: third-degree relative or no LS in the family (No).
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Reanalysis of staining also showed ambiguous MLHI1 staining (cytoplasmic enhancement and
vague, focal nuclear staining). In three POLE/POLDI mutated tumors with positive MMR
expression and MSI-L phenotype, no somatic MMR variants (likely) to affect function were
found. However, in one of those three tumors (sLS-05) solitary MLHI LOH and PMS2 LOH
without variants was found (See Table 1).

In three non-ultramutated tumors a POLE/POLD1-EDM variant was found (sLS-80, sLS-87
and sLS-101, see Table 1). These variants have not been described before, but are predicted to
affect function (See Supplementary Table 2). Two variants co-occur with a germline MSH6
VUS and somatic MSH6 variant (sLS-80 and sLS-87), while one (sLS-101) co-occurs with
a somatic PMS2 variant. Four additional non-ultramutated tumors showed POLE -(sLS-18,
sLS-21) or POLD1 LOH (sLS-12, sLS-49) in all heterozygous SNPs (Supplementary Table 1),
without germline or somatic POLE variants. None of these tumors displayed an ultramutated
phenotype.

Discussion

POLE-EDM variants are reported to be the mutagenic factor driving ultramutation in tumors.?
The number of variants detected in the sequenced area in the present study implicates an
ultramutated phenotype, with >100 variants/Mb in all POLE/POLDI1 mutated tumors in
this cohort. Since only a limited region (31 Kb) was sequenced, we can only extrapolate
the total number of variants per Mb. In our cohort the POLE/POLDI1 mutated MMR-
deficient tumors display two deficient pathways increasing the mutational load. Comparing
frequencies of the different variants found in these tumors, it might be concluded that faulty
proofreading may be the initiating event in these tumors, possibly resulting in loss of MMR
and thereby in microsatellite instability. Interestingly, four tumors show POLE/POLD1 LOH
without germline or somatic POLE/POLD] variants. These tumors however do not show the
typical ultramutated phenotype, whereas single variants without LOH do show that. This
phenomenon of LOH without variants affecting the exonuclease domain has not yet been
described. Possible the remaining allele is enough to maintain proofreading. Furthermore,
three tumors show somatic POLE/POLDI variants, without the ultramutated phenotype.
All three variants are missense, but are predicted to affect function (Supplementary Table
2). Since these variants are not found in ultramutated tumors, evidence of pathogenicity is
lacking.

In conclusion, targeted next-generation sequencing of 62 sLS cases led to the detection of nine
higly mutated tumors with a germline- (n=2) or somatic- (n=7) POLE/POLDI-EDM variant.
Even though POLE germline variants have previously been shown to co-occur with somatic
MMR variants', in this study we found germline and somatic POLE/POLDI variants in a
cohort selected for sLS characteristics. Importantly, while current literature mainly addressed
POLE/POLDI variants in MSS tumors, somatic POLE/POLDI1 variants in sLS patients are
likely to be overlooked. Screening of POLE/POLDI should be added to the current germline
and somatic diagnostic screening for MSI-H and MMR-deficient cases and could resolve the
causal defect in these presently unexplained cases.

Supplementary information accompanies this paper on European Journal of Human Genetics
website (http://www.nature.com/ejhg)
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Supplementary Methods

Study subjects

This retrospective cohort was collected between 1997 and 2014. Leukocyte DNA isolated from
peripheral blood was available for all patients. Tumor DNA was isolated from formalin-fixed
paraffin-embedded tumor tissue (FFPE) at time of diagnosis. Two patients were excluded
from the analysis due to poor quality DNA. This study was approved by the local medical
ethical committee of the LUMC (P01-019E).

Immunohistochemical analysis (IHC) and microsatellite instability testing was performed
previously at request of board certified Clinical Genetics medical specialists. Routine testing
of all four MMR proteins became available only around 2004. Therefore not of all tumors
in our cohort complete MMR immunohistochemical results are available. At time of the
current study leukocyte- and tumor DNA was retrieved from our archives. In a minority
of cases FFPE-blocks were still available for retrospective testing. In 38 patients (61%)
immunohistochemistry data was complete. In 11 tumors PMS2 immunohistochemistry was
not performed. The remaining 13 tumors had one of more inconclusive immunohistochemical
results. Patient sLS-05 and sLS-24 were initially included due to negative MSH6 staining, but
reanalysis during the study showed no MSH6 expression loss. Patient sLS-11 was included
due to a reported MSI-H status, but reanalysis showed no instability.

Targeted next-generation sequencing

Tumor and leukocyte DNA was sequenced for variants in MLHI1, MSH2, MSH6, PMS2,
POLE and POLDI using the Ion PGM™ System (Life Technologies). Ion AmpliSeq™ Custom
Panels were designed with the Ion AmpliSeq™ Designer tool. The complete sequencing panel
consisted of 307 amplicons (31094 bp), covering 98%, 90%, 98%, 75%, 95%, and 78% of the
coding regions of MLHI1, MSH2, MSH6, PMS2, POLE, and POLDI, respectively. Libraries
were prepared with Ion AmpliSeq™ Library Kit 2.0 according to the manufacturer’s protocol.
For template preparation the Ion OneTouch™ 2 System and the Ion Chef™ System were used.

Data analysis

Raw data analysis, alignments, and variant calling was carried out using the default
parameters in Torrent Suite v4.0. The Variant Caller Parameter Setting was set on ‘Somatic
- PGM - Low Stringency’ Variants were functionally annotated using ANNOVAR." The
following Genbank reference sequences were used: NM_000249.3 for MLHI1, NM_000251.2
for MSH2, NM_000179.2 for MSH6, NM_000535.5 for PMS2, NM_006231.2 for POLE and
NM_001256849.1 for POLDI. Recommendations of the Human Genome Variation Society
(HGVS) to use the terms “variant” and “likely to affect function” instead of “mutation” and
“pathogenic” were followed (http://www.hgvs.org/mutnomen/recs.html). Classification of the
functional effects of the variants was done according to the five-tiered InSiGHT scheme.?

Variant filtering and validation

The full dataset was filtered by variant frequency (>10%) and coverage (>50x). Variants with
a minor allele frequency (MAF) >0.05, as reported in the exome-database (http://www.ncbi.
nlm.nih.gov/projects/SNP/), or a MAF >0.01, as reported in the Genome of the Netherlands
(http://nigenome.nl), were excluded from further analysis. In addition, coding variants
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were filtered further based on predictions by in silico missense prediction software Align
GVGD?, SIFT (http://sift.jcvi.org/), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/),
MutationTaster (http://www.mutationtaster.org/) and MAPP (http://mendel.stanford.edu/
SidowLab/downloads/MAPP/index.html). The Leiden Open Variation Database (LOVD) was
consulted to find variants previously described and classified (http://www.lovd.nl/3.0/home).
All predicted to affect function were visually inspected with the Integrative Genomics Viewer
(https://www.broadinstitute.org/igv/home).Variants predicted to affect function were validated
with Sanger sequencing. Germline variants of this study are submitted to the Leiden Open
(source) Variation Database (LOVD) available at http://www.lovd.nl/3.0/home and somatic
variants are submitted to the COSMIC database (http://cancer.sanger.ac.uk/cosmic) .
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Chapter 4

Abstract

High-throughput sequencing efforts in molecular tumor diagnostics detect increasing
numbers of novel variants, including variants predicted to affect splicing. In silico prediction
tools can reliably predict the effect of variant disrupting canonical splice sites; however,
experimental validation is required to confirm aberrant splicing. Here, we present RNA
analysis performed for 13 canonical splice site variants predicted- or known to result in splicing
in the cancer predisposition genes MLHI, MSH2, MSH6, APC and BRCA1I. Total nucleic acid
was successfully isolated for 10 variants from eight formalin-fixed paraffin-embedded (FFPE)
tumor tissues and two B-cell lines. Aberrant splicing was confirmed in all six variants known
to result in splicing. Of one known variant in the B-cell line, aberrant splicing could only be
detected after formalin fixation, which indicated that formalin fixation could possibly inhibit
RNA degradation. Aberrant splicing was concluded in three of four predicted splice variants
of uncertain significance, supporting their pathogenic effect. With this assay, somatic splice
variants can be easily and rapidly analysed, enabling retrospective analysis to support the
pathogenicity of variants predicted to result in splicing when only FFPE material is available.

Keywords: Colorectal cancer; splice site; splice prediction; FFPE; RNA
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Introduction

Most mammalian genes consist of multiple exons interspersed by long intronic sequences.!
To create mature mRNA, the introns must be correctly identified and ‘spliced out, and the
exons joined together.! The spliceosome, the splicing machinery responsible for this process,
recognizes conserved motifs at or near the intron ends and a branch site within the intron.!
Splice regulatory elements (SRE) near exon-intron boundaries, such as SR (serine-arginine
rich) or hnRNP (heterogeneous nuclear ribonucleoparticle) proteins, are indispensable for
correct splice site identification.? These elements can enhance or repress splicing and play an
important role in alternative splicing.>2

Of the variants that cause disease, 15-60% are proposed to disrupt splicing.* Included are
variants in the canonical splice site, which directly alter the canonical splice site efficiency, but
also intronic and exonic variants that alter the SREs or result in creation of a new splice site
or activation of a cryptic splice site.>* The latter could result in inclusion of a pseudoexon, an
intronic sequence wrongly interpreted as an exon. Exon skipping or inclusion of a pseudoexon
often results in a shift of the open reading frame, resulting in a premature stop codon or
leading to a non- or less-functional protein. The mechanism of nonsense-mediated decay
(NMD) in which mRNAs with a premature termination codon are degraded can remove
aberrant mRNAs encoding for truncated proteins, ensuring mRNA quality.®

Current assessment whether variants result in aberrant RNA transcripts often consists of
in silico prediction with bioinformatics prediction tools, sometimes followed by reverse
transcriptase PCR (RT-PCR) analysis of RNA extracted from blood®® or functional splicing
reporter minigene assays.*® Splicing microarrays can be used for large-scale identification of
splicing differences but are not always implemented in current diagnostics.’ Although high-
quality patient RNA analysis is usually preferred, this RNA is not always available, or the
analysis is hampered because of degradation of aberrant transcripts through NMD.!

With the current high-throughput sequencing methods applied in molecular tumor
diagnostics, many variants are found, most of uncertain significance (VUS); hence, functional
tests are required to classify these variants. Of these unclassified variants, a percentage is
predicted to affect splicing. Specific kits are available to isolate RNA from formalin-fixed
paraffin-embedded (FFPE) tissue blocks, and previous studies show that PCR, RT-PCR and
even next-generation sequencing (NGS) are possible on these RNA samples.'” " RNA analysis
on RNA isolated from FFPE tissue is currently not standardly performed but would enable
analysis of somatic splice site variants.

In the current study, the effect of splice site variants was examined in multiple cancer
susceptibility genes, MLHI1, MSH2, MSH6, APC and BRCA1. MLHI, MSH2 and MSHG6 are
part of the mismatch repair (MMR) pathway. Pathogenic heterozygous germ line variants in
the MMR genes cause Lynch Syndrome, an autosomal dominant predisposition for colorectal,
endometrial and other cancers.'> Other known causes of MMR-deficiency are somatic MLHI
promoter hypermethylation and the recently described biallelic somatic inactivation of the
MMR genes caused by somatic variants."*"> Pathogenic germ line variants in the APC gene
are known to result in familial adenomatous polyposis, a dominant disorder characterized
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by the occurrence of hundreds to even thousands of adenomas throughout the colon.'®
In a small percentage of patients, the tumor phenotype can be explained by mosaic APC
variants.’*?* These variants can be easily detected by screening multiple adenomas, because
the APC variant is present with a higher variant allele frequency in the tumor."*' Pathogenic
variants in the BRCA1 gene, a key player in the nucleotide excision repair pathway, result in
a high susceptibility to breast and ovarian cancers.”>* Because BRCA-mutation status affects
treatment strategies (PARP-inhibitors); the ability to detect and functionally assess both germ
line and somatic mutations in BRCAI and BRCA2 must increase.”>* With the shift towards
increased diagnostic screening of tumor tissue for all three syndromes, more somatic variants
are found, which require functional tests to assess their pathogenicity.

The aim of our study was to investigate the possibility of analysing RNA isolated from FFPE
tissue to assess the effect of germ line and somatic variants predicted to affect splicing. We
hypothesized that formalin fixation could inhibit RNA degradation, enabling the detection of
aberrant RNA in FFPE tissues.

Materials and methods

Selection of variants

In total, 13 variants of the cancer susceptibility genes MLH1, MSH2, MSH6, APC and BRCA1
were tested for their effect on splicing (Supplementary Table 1). Of all variants, eight were
somatic variants found between 2014 and 2017 with next-generation sequencing in a previous
study” or through molecular tumor diagnostic NGS, with all having a variant allele frequency
of at least 12%. Five were germ line splice site variants, all previously demonstrated to result in
aberrant RNA (Supplementary Table 1). The MLHI c.454_545del, a germ line genomic exon
six deletion, was added as a positive control.

RNA isolation and cDNA synthesis

For eleven variants, total nucleic acid was obtained from tissue cores punched from FFPE
blocks embedded between 2009 and 2016. Tumor areas were marked on a hematoxylin and
eosin stained slide by a pathologist. Tissue cores from the corresponding area on the FFPE
block were punched with a 0.6 mm biopsy needle. Total nucleic acid was isolated from the
obtained punches and microdissected areas with a Tissue Preparation System with VERSANT
Tissue Preparation Reagents (Siemens Healthcare Diagnostics, Tarrytown, NY, USA).?” For
two variants (MLHI ¢.791-1G>C and MSH2 c.1511-2A>G), no FFPE tissue was available,
but EBV-transformed B-cells were cultured. Additionally, RNA from the MSH2 c.1511-2A>G
B-cell line was isolated after incubating the cells with 4% formalin for five hours. RNA from
the B-cell lines and three colorectal cancer cell lines (SW480, SW837 and LS180) was isolated
using a Nucleospin RNA isolation kit (Macherey-Nagel-06/2015, Rev.17, Diiren, Germany)
according to the manufacturer’s protocol. Colorectal cancer cell lines were used as a positive
control for RNA expression.

All ¢cDNA was synthesized using OligoDT’s and random primers with a SuperScript VILO

cDNA synthesis Kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol.
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Splice site prediction/variant nomenclature

For (canonical) splice site prediction, Alamut (Interactive Biosoftware, Rouen, France) was
used. This software package includes the in silico splice site prediction algorithms SpliceSite
Finder (SSF), MaxEntScan (MES) (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_
scoreseq.html), NNSPLICE (http://www.fruitfly.org/seq_tools/splice.html) and Human Splicing
Finder (HSE, http://www.umd.be/HSF/). Variants were annotated according to the Human
Genetics Variation Society (HGVS) guidelines. Recommendations of the Human Genome
Variation Society (HGVS) were followed to use the term “variant” instead of “mutation”
(http://www.hgvs.org/mutnomen/recs.html). The following Genbank reference sequences
were used: NM_000249.2 for MLHI, NM_000251.2 for MSH2, NM_000179.2 for MSHS,
NM_000038.5 for APC and NM_007294.3 for BRCA1.

Primer design and PCR

For all variants with an (predicted) exon skip, two primer pairs were created to amplify
two exon-exon boundaries. Primers were used in three combinations: Forward1/Reversel,
Foward2/Reverse2 and Forwardl/Reverse2. For all variants with a partial exon skip or
pseudoexon insertion as (predicted) RNA effect, primers were designed to amplify the exon-
exon boundary. All primer sequences are listed in Supplementary Table 2. Real-time PCR
was used to amplify the exon-exon boundaries and to assess the expression of the affected
gene. All PCR reactions were performed on a CFX96 touch Realtime PCR machine (Bio-rad,
Hercules, CA, USA) with the following PCR program: 95 °C for 5 min (1 cycle), 95 °C for 15
s, 60 °C for 30 s, and 72 °C for 30 s (38 cycles), followed by a melt curve from 65 °C to 95 °C
with a 0.5 °C increment for 5 s with plate read. When no PCR product was detected, PCR
was repeated with high cDNA input and 44 instead of 38 cycles. Because of limited cDNA,
only F1/R2 was repeated for variants with two primer pairs, when the first PCR failed. All
PCR products were analysed on a Qiaxcel capillary electrophoresis system (Qiagen, Hilden,
Germany) and sequenced with Sanger Sequencing.

Results

MMR variants

Five MMR splice variants and one MLHI genomic exon deletion in RNA isolated from FFPE
tissue were analysed for their effect on splicing (Table 1). Total nucleic acid was isolated from
FFPE blocks and converted to cDNA using OligoDT’s and random primers. The quality of
cDNA was evaluated by detecting the expression of housekeeping genes (HKG) HNRNPM
and/or CPSF6. From five FFPE tissue blocks, HKG expression was detected, and in three
of the five, cDNA from the affected MMR gene could be amplified and analysed (MLH1
c.454_545del, MLH1 ¢.2104 G>C and MSH6 ¢.3801+1_3801+5del). The amplified products
of the three MMR cDNAs from FFPE tissues were measured with Qiaxcel (Figure 1A) and
sequenced (Figure 1B). Size determination of the cDNAs carrying the MLH]1 c.454_545del and
MSHG6 ¢.3801+1_3801+5del variants showed only a product size smaller than that of the WT
control, whereas MLH1 c.2104-1G>C only showed a product comparable in size with that of
the WT product. Sequencing showed an aberrant product in two of the three FFPE samples,
the MLHI genomic exon 6 deletion and a skip of exon 8 in the MSH6 ¢.3801+1_3801+5del
sample (Figure 1B), whereas for MLHI c.2104-1G>C, sequencing was normal, as was that for
the WT control.

77

.
=
L
=
<
=
Q




Chapter 4

Additionally, RNA isolated from the two EBV-transformed B-cell lines carrying an MSH2
¢.1511-2A>G and an MLH]I ¢.791-1G>C splice site variant was tested. Size determination of
the cDNA from the two cell lines showed a product of approximately 350 bp (comparable with
the WT control) and a product of 250 bp for the MLHI ¢.791-1G>C sample and a product
comparable in size with that of the WT for the MSH2 c.1511-2A>G sample. Sequencing
detected an aberrant product only in the MLHI ¢.791-1G>C sample, which showed a skip
of exon 10. To mimic FFPE conditions, 4% formalin was added to fixate EBV-transformed
cells carrying the MSH2 variant. After fixation, RNA was isolated, and cDNA was synthesized
following the same protocol as that for the non-formalin fixed cells. cDNA from the formalin-
fixed cells was tested and showed a size comparable with that of the WT (Figure 1A), and an
aberrant product was detected with Sanger Sequencing (Figure 1B).

A B
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€3801+2_
454 545del  380145dal  €2104-1G>C S AL O AL GIE T AT T G A
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Figure 1A and B: Size determination and sequencing results MMR
Qiaxcel results showing the size of the MMR variants [A] of patient material (pat), cell lines (Cell) and
control RNA isolated from colorectal cell lines (C+). The MSH2 cell line was analysed with (Cell+) and
without (Cell-) formalin fixation of the cells. [B] Sanger sequencing results of variants showing aberrant
products.

APC variants

Three APC variants were analysed for their effect on splicing (Table 1). RNA was successfully
isolated from all three FFPE blocks, shown by detection of HKG expression. From all three
samples, cDNA from APC could be amplified (Figure 1C) and sequenced (Figure 1D).
Compared with the control without the variant, the difference in size of APC ¢.1548G>A was
almost 125 bp. Sequencing showed an aberrant product for all three variants: a skip of the last
5 nucleotides of APC exon 7 in the APC ¢.834+2 T>A sample; a skip of the first nucleotide of
exon 15 in the APC ¢.1959-1G>A sample; and an exon 11 skip in the APC ¢.1548G>A sample
(Figure 1D).
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BRCA1 variants

Two BRCAI splice site variants were analysed for their effect on splicing (Table 1). RNA was
successfully isolated from both FFPE blocks (shown by HKG detection), and BRCAI ¢cDNA
was amplified and analysed. PCR was performed with the same primers for both variants. Size
determination indicated a smaller (BRCA1 ¢.212+3A>T) and a slightly larger (BRCAI c.213-
12A>G) product compared with that of the wild-type control (C+, Figure 1E). Sequencing
showed a skip of the last 22 nucleotides of exon 5 (BRCAI ¢.212+3A>T) and an inclusion of
the last 11 nucleotides of intron 5 corresponding to the BRCAI ¢.213-11_c.213-1 sequence

(BRCAI c.213-12A>G, Figure 1F).

C
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Figure 1C-F: Size determination and sequencing results APC and BRCA1.

Qiaxcel results showing the size of the APC variants [C] and BRCAI variants [E] of patient material (pat)
and control RNA isolated from colorectal cell lines (C+). The BRCA1 variants were analysed with the same
primers, patl shows the BRCAI ¢.212+3A>T and the pat2 shows the BRCAI ¢.213-12A>G. [D] and [F]
Sanger sequencing results of variants showing aberrant products.
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Discussion

We performed RNA analysis for six splice site variants known to result in aberrant splicing
and five variants predicted to result in aberrant splicing using RNA isolated from FFPE
tissues. For the six variants shown previously to result in aberrant splicing, the reported splice
effect was confirmed for four, and for the other two variants, RNA analysis was not possible
because either RNA isolation from FFPE tissue failed (no expression of HKG) or the affected
gene (i.e., MLHI) did not show expression in the presence of positive HKG expression. In
all four confirmed splice effects, no WT product was identified. For two variants (MLH1
c.454_545del and BRCAI c.213-12 A>G), this result was expected because of the high
variant allele frequencies (100% and 93%, respectively). The APC ¢.1548G>A and MSH6
€.3801+1_3801+5del had variant allele frequencies of 28% and 50%, respectively, but only
aberrant product was detected, which could be due to preferential amplification of the smaller
(aberrant) product or possible FFPE-induced RNA degradation. For the APC variant, the F2/
R2 primers that amplified the boundary of exon 11-exon 12 (with a part of exon 11) produced
a product, which showed that exon 11 was part of the cDNA.

For two variants, MLH]I ¢.791-1G>C and MSH2 c.1511-2A>G, RNA was isolated from EBV-
transformed cell lines because FFPE tissue was not available. Both previously resulted in
an (partial) exon skip,* #** which changed the reading frame and led to a premature stop
codon; however, the aberrant splicing was only confirmed for one of the two variants (MLH1
¢.791-1G>C), whereas only WT transcript was detected for the MSH2 c.1511-2A>G. The
EBV-transformed cells were cultured without NMD inhibitors, and we hypothesized that the
aberrant MSH2 RNA was possibly degraded through nonsense-mediated decay (NMD). NMD
of the MSH2 ¢.1511-2A>G RNA and no NMD of the MLHI ¢.791-1G>C RNA is consistent
with previous studies in which NMD-inhibitors were omitted.*> 3 Notably, the aberrant RNA
was detected after formalin fixation of the EBV cells carrying the MSH2 ¢.1511-2A>G, which
is consistent with our hypothesis that aberrant RNA in FFPE tissue can be detected because
formalin fixation prevents the degradation of RNA.

For the five variants predicted to affect the canonical splice site, three resulted in aberrant
splicing, showing the predicted splice effect. For the other two, in one (MLH]I ¢.2104-1G>C),
only the WT transcript was detected, and in one, no expression of the affected gene (MLHI)
was detected in the presence of normal HKG expression. The APC ¢.834+2T>A and APC
€.1959-1G>A showed WT and aberrant product, which can be explained by the variant
allele frequencies (12% and 40%, respectively). The BRCA1I c.212+3A>T had a variant allele
frequency of 54%, although only aberrant product was detected, which was possibly due to
preferential amplification of the smaller (aberrant) product or because no RNA expression
of the WT allele occurred. However, FFPE-related RNA degradation could not be excluded.
With the detection of aberrant RNA in three of four variants predicted to affect splicing,
this assay confirmed that in silico splice prediction tools are reliable in their predictions,
particularly for variants disrupting the canonical splice site, although experimental analysis
is required.*”* The three predicted splice variants shown to result in aberrant splicing in this
study are currently classified as variants of uncertain significance, but the RNA analysis in this
study supports their pathogenic effect.
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FFPE blocks were collected from the archives and were embedded between 2000 and 2016,
with most (n=9) embedded after 2009. Notably, from the two samples embedded before 2009,
no RNA was successfully isolated from the FFPE block, indicating that isolating RNA from
FFPE tissue might not be possible in older blocks. From eight of nine blocks embedded after
2009, RNA was successfully isolated, showing WT and/or aberrant RNA, and combined
with the formalin fixation results from the cell lines, showed that formalin fixation possibly
inhibited RNA degradation. With analysis of RNA from FFPE tissues, the splicing effect of
somatic variants that are only present in the tumor can be analysed. Furthermore, available
material can be retrospectively analysed, without having to request RNA from leukocyte
DNA, which is not always available.

However, a few limitations of this study deserve discussion. First, RNA from FFPE tissue
blocks is often degraded to fragments less than ~300 bases in length.** To analyse this RNA,
small amplicons must be designed instead of large amplicons containing multiple exons, as is
preferred in leukocyte RNA testing. The design of the primers is very specific for the variant
and is based on splicing prediction software. Although these algorithms are described as
accurate for variants in the canonical splice site,*”* aberrant products that are not predicted
and fall outside the amplification window of the assay will not be detected. Second, when an
aberrant product is not detected, poor RNA quality, a wrongly predicted effect or no splice
effect of the variant can be implicated, but no expression or RNA degradation of the mutant
product by NMD can also occur. Therefore, the assay can confirm aberrant splicing, but from
negative assay results, one cannot accurately conclude that no aberrant splicing occurs or that
lack of aberrant product is due to other factors. Negative results should be confirmed with
other methods, such as a minigene splicing assay.* * Further evidence of FFPE-based RNA
analysis should be obtained from a larger study with more samples and variants. Targeted
RNA-seq of RNA isolated from FFPE tissue might enable high-throughput analysis of somatic
splice site variants.

RNA analysis on total nucleic acid isolated from FFPE tissue blocks is a valuable tool for the
fast and easy detection of aberrant splicing, offering additional support for the pathogenicity
of a (predicted) splice variant. With this assay, we correctly showed the splice effect of six
known splice site variants and showed the splice effect of three variants predicted to affect
splicing. This assay can be used to analyse somatic variants found in FFPE tumor tissue, with
formalin fixation possibly inhibiting RNA degradation, and can be easily implemented in
current molecular tumor diagnostics to help classify the high number of variants of uncertain
significance currently found with high-throughput sequencing.

Supplementary information accompanies this paper on European Journal of Human Genetics’
website (http://www.nature.com/ejhg).
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Supplementary Table 2: Primers

Variant Forward primers Reverse Primers
MLHI F1 GATGGAAAACTGAAAGCCCCT R1 GCCAACAACTTCCAAAATTTTCC
c454_545del F2 TTTTACAACATAGCCACGAG R2 GGTTGAGGCATTGGGTAGTG
o7 é\f _Lllél> c/ F1 TGGATGTGAGGATAAAACCC Rl AGGTACAGGAATGGGTGTGT
.c 793CST F2 AGAAACAGTGTATGCAGCCT R2 CTGGAGGAATTGGAGCCCA
MLHI
F1 AGAAACAGTGTATGCAGCCT Rl CTGGAGGAATTGGAGCCCA
c.885-2A>G
MLH]I
c1731G>A F1 ATACCTTCTCAACACCACCA Rl CATCTCAGCCTTCTTCTTCA
MLHI
F1 AAAGCCTCAGTAAAGAATGC R1 TGTGTTCCACAGTCCACTTC
c.2104-1G>C
MSH2
c1511-2A5G F1 CCTTGTAAAACCTTCATTTGATCC Rl CGAAGGACTTTTTCTTCCTTACA
MSH6
380141 F1 GTGAAACTGCCAGCATACTCA Rl CATATGTCCTAGGCGCACAG
28 01+5del F2 CATTATTTTCAACTCACTACCAT R2 TGGGAGATTAGCAAGCCTTG
APC F1 GGTCATCTCAGAACAAGCAT R1 CAGATGACTTGTCAGCCTTC
c.834+2T>A
APC F1 TCCTGCTGTGTGTGTTCTAA R1 CAAGTTTGTCAAAGCCATTC
c.1548G>A  F2 TTATTGCAAGTGGACTGTGA R2 TAGTTGGGCCACAAGTGC
APC F1 AGCCAGACAAACACTTTAGC R1 GATTCCACAAAGTTCCACAT
c.1959-1G>A
BRCA1
c21243A>T F1 ATGCTGAAACTTCTCAACCA R1 AACCTGTGTCAAGCTGAAAA
c.213-12A>G
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Chapter 5

Abstract

Background and Aims: Germline variants in the DNA mismatch repair (MMR) gene PMS2
represent 1-14% of all MMR gene variants. Correct variant analysis of PMS2 is complex
due to the presence of multiple pseudogenes and the occurrence of gene conversion. The
complexity of analysis increases in highly fragmented DNA from formalin-fixed paraffin-
embedded (FFPE) tissue. We now describe and test a reliable approach to detect true PMS2
variants in fragmented DNA.

Methods: A custom NGS panel meant for FFPE tissue was used targeting four MMR genes,
POLE and POLDI. Amplicon design for PMS2 was based on the position of paralogous
sequence variants (PSV) that distinguish PMS2 from its pseudogenes. We screened 125
MMR-deficient tumors for PMS2 variants.

Results: We present an overview of PSVs that can be used for reliable distinction between
PMS2 and its pseudogenes. PMS2 variants in exons 1-11 can be correctly curated on basis of
this information. For exons 12-15 this is less reliable as these undergo gene conversion. Of the
125 tumors tested, six were unexplained MMR-deficient tumors with solitary PMS2 protein
expression loss. In these six tumors three unclassified variants (class 3) and four (likely)
pathogenic variants (class 4 and 5) were detected in PMS2. One microsatellite unstable tumor
with positive staining for all MMR proteins was found to carry a frameshift PMS2 variant.
No pathogenic PMS2 variants were detected in tumors with other patterns of MMR protein
expression loss.

Conclusions: With a paired-end NGS approach with one or two PSVs in every amplicon,

variants can reliably be detected in exons 1 to 11 of PMS2.

Keywords: PMS2, variant, next-generation sequencing, paralogous sequence variant.
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Introduction

Pathogenic heterozygous germline variants in the MMR genes cause Lynch Syndrome (LS), an
autosomal dominant predisposition for colorectal-, endometrial- and other cancers.! While
the majority of the causal variants are found in MLHI and MSH2, variants in the less frequent
mutated PMS2 represent 1-14% of all MMR gene variants.>*> The colorectal cancer (CRC)
risk of PMS2 variant carriers has shown to be much lower compared to MLHI, MSH2 and
MSHE6, with risk of CRC around 11-19% by the age of 70 years.* Homozygous or compound
heterozygous variants in the PMS2 gene are seen more often in patients with constitutional
mismatch repair deficiency (CMMRD), a recessive disorder characterized by CRC and
childhood hematological- and brain malignancies.®

The analysis of PMS2 is complex due to the presence of multiple pseudogenes.>*” Fourteen
PMS2-pseudogenes share a high homology with the 5’ end of PMS2 (exon 1 to 5), while a
fifteenth pseudogene (PMS2CL) shares high homology with PMS2 exon 9 and exon 11 to
15.27% An additional complexity is added due to ongoing gene conversion events between
PMS2 and PMS2CL."° Germline variant screening strategies propose long-range PCR
with a reverse primer in PMS2 exon 6 or propose designing multiplex ligation-dependent
amplification (MLPA) probes, and PCR primers based on paralogous sequence variants
(PSVs) to distinguish PMS2 exon 1 to 5 from the fourteen homologous pseudogenes.> > !!
These PSVs are specific nucleotides that differ between PMS2 and the pseudogenes, and
enable differentiation between two almost complete homologues sequences.>®? This strategy
is not reliable in detecting variants in exon 12 to 15 due to gene conversion events between
PMS2 and PMS2CL."> "> Through crossover the sequence corresponding to PMS2 or PMS2CL
could be present as the exon 12 to 15 sequence of PMS2, and subsequently expressed.”!* To
determine which sequence is present, and expressed, long-range PCR on gDNA or ¢cDNA
is proposed using primers in the unique exon 10 and a nonspecific reverse primer in the 3’
UTR.9, 10, 12-14

While this strategy is very suitable for reliable detection of PMS2 variants in leukocyte DNA,
it is not applicable when using DNA isolated from formalin-fixed paraffin-embedded (FFPE)
tissue blocks, which is highly fragmented." It has been recently shown that in a large proportion
of MMR-deficient tumors without pathogenic germline MMR variant and without MLH1
promoter hypermethylation, two somatic MMR variants can explain the MMR-deficiency.'***
This occurrence of somatic MMR inactivation also shows the need for reliable detection of
somatic PMS2 variants in DNA isolated from FFPE tissue. Testing DNA isolated from FFPE
furthermore enables detection of variants in (deceased) index patients of which only FFPE
is available. Furthermore, to implement reliable PMS2 variant screening in molecular tumor
diagnostics, a high-throughput strategy should be developed.

Some studies only focus on screening for variants in MLHI, MSH2 and MSH6, possibly
because of the complexity of screening for true PMS2 variants.'® We now describe possible
pitfalls in PMS2 variant detection and a next-generation sequencing (NGS)-based approach
for reliable somatic and germline PMS2 testing in FFPE DNA.
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Chapter 5

Materials and Methods

Study Cohort

Colorectal and endometrial cancers and when available matching normal tissue of 40
patients with unexplained MMR-deficiency was screened for DNA variants with NGS to
detect variants in the MMR genes in a diagnostic setting. All tumors were pre-screened
with immunohistochemical (IHC) staining of the four MMR proteins and the majority
(83%) showed expression loss of one or two of the MMR proteins. Many of these tumors
were previously screened for microsatellite instability and showed to have high microsatellite
instability (MSI-H). All MLH1/PMS2 negative tumors were tested for MLHI promoter
hypermethylation, and somatic NGS was performed if no methylation was detected. Four
tumors had solitary immunohistochemical expression loss of PMS2. Additionally, DNA
isolated from FFPE tissue blocks of 85 unexplained suspected Lynch Syndrome patients
(without germline MMR variants and without MLHI promoter hypermethylation) were
screened with NGS for variants in the MMR genes in a research setting. Two of the latter
tumors showed isolated PMS2 expression loss with THC.

NGS panel

A custom paired end NGS library was designed covering MLHI, MSH2, MSH6, PMS2,
POLE and POLDI. Ton AmpliSeq™ Custom Panels were designed with the Ion AmpliSeq™
Designer tool. Libraries were prepared with Ion AmpliSeq™ Library Kit 2.0 according to
the manufacturer’s protocol. The panel used in a diagnostic setting slightly differs from the
research panel. The diagnostic panel covers the exonic regions with 99.2% coverage of MLH1,
99.3% coverage of MSH2, 100% coverage of MSH6 and 76.5% of PMS2 (exon 1-12) and the
exonuclease domain of POLE (exon 7-14) and POLDI (exon 8-13). The research panel is
comparable but covers 100% of MLHI, 94.9% of MSH2, 97.7% of MSH6, 79.1% of PMS2
(exons 1-11 and exon 14) and POLE and POLD1 completely. Next-generation sequencing was
performed with the Ion Proton™ System (Life Technologies, Carlsbad, CA, USA).

NGS annotation

Raw data analysis, alignments, and variant calling was carried out using the default
parameters in Torrent Suite. The unaligned BAM files generated by the Proton sequencer
were mapped against the human reference genome (GRCh37/hg19) using the TMAP 5.0.7
software with default parameters (https://github.com/iontorrent/TS). A read is assigned to
the genomic location with the highest mapping score. In case that a particular read gets the
same alignment score at multiple locations, it will be randomly assigned to one of the loci.
All (likely) pathogenic PMS2 variants were visually inspected with the Integrative Genomics
Viewer (IGV).* 2 The following Genbank reference sequences were used: NM_000249.3
for MLHI, NM_000251.2 for MSH2, NM_000179.2 for MSH6, NM_000535.5 for PMS2,
NM_006231.2 for POLE and NM_001256849.1 for POLDI. Classification of the functional
effects of the variants was done according to the five-tiered InSiGHT scheme.”!
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Results

A custom paired-end MMR panel was designed for detecting variants in DNA isolated from
formalin-fixed paraffin-embedded (FFPE) tissue. On average, amplicons are 100-175 bp in
size in order to be able to amplify fragmented DNA. For PMS2, a reliable screening panel
could be made covering exons 1-11 only, with one or two paralogous sequence variants (PSV)
in every amplicon. With exons 1-11 as target, a 72.9% coverage can be achieved. An overview
of PSVs present in these eleven exons is shown in Table 1.

Table 1: paralogous sequence variants (PSVs) in PMS2

Size Amplicons #

Target (bp) needed pseudogenes PSV
Exon 1 - . 5 ¢.-13G>C (4/5) and c.-9G>A (1/5)
¢.1A>T (4/5) and c.-4_-5delinsAG (1/5)
c.24-4C>T (13/13)
c.89A>C (11/13)
Exon 2 140 1lor2 13 c.117A>G (13/13)
c.121G>A (9/13) "
c.125T>A (9/13) 5
c.164-12delT (3/14) and c.209A>G (11/14) &
Exon3 &7 Lora " c.187G>A (10/14) 6
c.195T>C (14/14)
¢.240C>T (3/14) and ¢c.250+8G>A (11/14)
¢251-11C>G (13/14) and ¢.251-13C>T (1/14)
Exon 4 103 2 14 ¢.299A>G (10/14) and ¢.298C>G (3/14)
€.353+22C>T (14/14)
s w2 EEGcmbGcmeTomne
Exon 6 168 2 0 =
Exon 7 98 lor2 0 -
Exon 8 100 lor2 0 -
Exon 9 85 lor2 1 (PMS2CL)  ¢.924G>C, ¢c.932A>G and c.934A>G
Exon 10 156 2 0 -

¢.1238_1239delAAinsGG,
¢.1360_1361delCTinsTC, c.1379G>A,
¢.1556A>G, c.1559C>T, c.1567T>A,
c.1688_1689delGAinsAG, c.1714G>A,
Exon1l 862 8or9 1 (PMS2CL)  ¢.1717A>T, c.1730dupA, c.1732C>T,
¢c.1740A>G, c.1760G>A, ¢c.1771T>C,
¢.1795G>A, c.1798A>G, c.1855G>A,
c.1863_1864delTA, c.1952A>G,
¢.2006+26C>A and ¢.2006+28delC

Overview of paralogous sequence variants (PSVs) in PMS2, #/#; number of pseudogenes with the
variant/total number of pseudogenes for this exon.
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Using the strategy described above and in the Material and Methods, 125 MMR-deficient
tumors and, when available matching normal colonic mucosa, were screened for PMS2
variants. Six tumors showed solitary immunohistochemical PMS2 expression loss. Four
(likely) pathogenic PMS2 variants (class 4 or 5), and three variants of uncertain significance
(VUS class 3) were detected (Figure 1A and Table 2). The class 3 PMS2 ¢.308C>T and
¢.1687C>T variants were both found in tumors with a variant in the exonuclease domain of
POLE, where the PMS2 variant is expected to be secondary to the POLE variant.? Additionally,
one tumor with positive staining for all MMR proteins and an MSI-H phenotype was found to
carry a frameshift PMS2 ¢.325dupG variant. In remaining cases with combined MLH1/PMS2,
combined MSH2/MSHS or solitary MSH6 expression loss no pathogenic PMS2 variant was
detected.

For all variants the IGV was used to determine the presence of PSVs. An example is shown
in Figure 1B for an exon 9 PMS2 ¢.955C>A variant. The NGS amplicon containing the PMS2
¢.955C>A also contains three PSVs, ¢.934A>G, ¢.932A>G and ¢.924G>C. None of the reads
showed any of these three PSVs, indicating that this variant is truly present in PMS2 and not
in the pseudogene PMS2CL. This was done for all eight PMS2 variants shown in Table 2, and
all variants were found to be present in PMS2 and not one of the pseudogenes.

A €325 ¢.486 ¢.619 ¢.903 955 1261 c.1687

2(3/4( 5|6 (78910 11 12 13114 | 15

B 81bp

6.031.630 bp 6.031.640 bp 6.031.650 bp 6.031.660 bp 6.031.670 bp
1 1 1 1 | 1 1 1 1

AACAACAAATGGATACTGGTGTCGATTATACAITIGTIGIGTAGAC|ICITCATTCAC

Figure 1: PMS2 variants detected with NGS

[A] PMS2 variants found with NGS, Class 4 and class 5 variants shown in bold. [B] IGV printout of
the PMS2 ¢.955C>A shown (in red). Arrows show the location of three PSVs present in the amplicon (1.
€.934A>G, 2. ¢.932A>G and 3. ¢.924G>C). All three are absent in the reads, indicating that this variant is
present in PMS2 and not one of the pseudogenes. PMS2 is shown in reverse complement, because PMS2 is
present on the reverse strand.
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Discussion

We now describe how to interpret PMS2 variants present in DNA isolated from formalin-fixed
paraffin-embedded (FFPE) tissue using paired-end targeted NGS with paralogous sequence
variants (PSVs) in every amplicon. Six of the eight PMS2 variants detected were located in
exons that have high homology with one or more of the PMS2 pseudogenes. Of all variants
it could be concluded that they were truly present in PMS2 and not in the pseudogenes by
analysing the presence of PSVs in the amplicon (Table 2). Through automatically assigning
the read to the genomic location with the highest mapping score, a reliable distinction could
be made between PMS2 and the pseudogenes, for PMS2 exon 1 to 11. For exons 12 to 15 of
PMS2 it is not possible to reliably detect variants in FFPE derived DNA due to the existence
of continuous gene conversion targeting these exons. The only solution to this challenge is
long range PCR of fragments covering PMS2 exons 12-15, but this is not applicable on the
fragmented FFPE derived tissue DNA.% 10

Studies that aim to detect PMS2 variants in DNA from FFPE tissues are very limited. Only five
studies describe somatic analysis of PMS2."”'%22* We and others achieve a coverage of 75-
80% and do not sequence PMS2 exon 12 to 15 completely, because variants cannot be curated
in this region due to sequence exchange events. One previous study suggested full sequencing
(100%) coverage of PMS2 in tumor tissue, but did not fully explain how was coped with gene
conversion of exons 12 to 15 (http://tests.labmed.washington.edu/COLOSEQ#Introducing_
ColoSeq.2BISI_Tumor).** One PMS2 splice site variant in intron 12 was shown without
confirmation of its presence in PMS2 and not in PMS2CL through gene conversion (previously
shown to occur in 69% of tested individuals).'” This example typically highlights the existing
problem with sequencing of PMS2 exons 12 to 15. Consensus should be reached whether
it is preferable to test patients for variants in this region, without being able to confirm that
the variant is expressed, or to not sequence this region and possibly missing somatic PMS2
variants. In the currently described research panel exons 12 and exon 14 are included, but
caution is needed when analysing the variants, since it cannot be established whether this
variant is expressed. It could be considered that when a (likely) pathogenic PMS2 exon 12 to
15 variant is detected in a tumor with solitary PMS2 loss of expression with no other PMS2
variants, this variant is likely expressed and the cause of the immunohistochemical loss
of PMS2 expression. Additionally, since expressed genes have elevated mutation rates, if a
somatic variant is detected in PMS2 exon 12-15 it is likely that PMS2 is expressed.> However,
it cannot be confirmed whether PMS2 is truly expressed.

In conclusion, with a custom NGS panel with one or two PSVs we were able to reliably
detect eight variants in PMS2 exon 1 to 11 in six tumors with solitary PMS2 loss, and one
tumor with positive MMR staining and microsatellite instability. Previous studies describe
comprehensive strategies for accurate mutation detecting in PMS2, but mainly focus on
testing genomic DNA extracted from blood.” ** However, since recent studies have shown
biallelic somatic inactivation of the MMR genes, there is a growing need for reliable detection
of somatic variants in PMS2.'*'%2> With this guide we show a reliable method to detect PMS2
variants in DNA from FFPE tissue.
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Abstract

To further unravel mechanisms of APC mosaicism in 27 genetically unexplained patients with
colonic neoplasms, we used deep sequencing to analyze at least two adenomas or carcinomas
per patient. Identical mosaic APC variants were identified in adenomas of 9/18 patients with
21-~100 adenomas. Mosaic variants were then variably detected in leukocyte DNA and
normal mucosa or were confined to normal mucosa. In one patient comprehensive analysis
found no evidence for the mosaic APC variant in normal mucosa. One patient was found to
carry the mosaic APC variant in 10/16 adenomas, underlying the importance of screening >
two adenomas.

Keywords: unexplained polyposis; APC mosaicism
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Main body

Somatic APC mosaicism is estimated to occur in 20% of de novo adenomatous polyposis
cases."” Current methods to detect APC mosaicism are designed to test for germline variants
in leukocyte DNA and the effectiveness of these methods depends on both method-specific
sensitivity and the relative contribution of the mosaic variant to the tissue analyzed. Recently,
a next-generation sequencing (NGS) study of at least two colonic adenomas in twenty patients
found somatic pathogenic APC variants in five patients (25%).* Analysis of leukocyte DNA
confirmed the mosaic APC variant in 4/5 cases, but no other tissues were analyzed.

With the aim of identifying APC mosaicism we analyzed at least two adenomas or carcinomas
with NGS in six patients with 5-20 adenomas, 18 patients with 21-~100 adenomas, one patient
with >1000 adenomas, two patients with multiple primary colorectal carcinomas and two
positive controls.” Nine patients with 21-~100 adenomas (50%) and the two positive controls
(APC-08 and APC-09), showed somatic mosaicism, with identical APC variants in adenomas
tested (Table 1). No difference was observed in location (left/right) or distribution (segmental/
whole colon) of the adenomas in patients with or without somatic APC mosaicism.

Leukocyte DNA was available for 10/11 of the mosaic patients, including one of the controls.
Five of these previously tested negative for a germline mosaic APC variant (APC-03, APC-
08, APC-09, APC-17 and APC-18, Supplementary Table 1). With NGS deep sequencing a
pathogenic variant was identified in three of 10 leukocyte DNAs (APC-03, APC-17 and APC-
18) at a 1-4% variant frequency, indicating the detection limit of previously used techniques.
Initial testing of adenomas allows detection of very low frequency germline variants and
mosaic variants confined to the colon, while initial leukocyte deep sequencing is shown to
result in a high percentage false positives.* Human gastrulation, the process by which the
three germ layers are established, is thought to occur at approximately day 16.*° The presence
of a variant in both leukocyte DNA (mesoderm) and colon mucosa (endoderm) would imply
the appearance of this variant before day 16. Primordial germ cells are thought to arise from
the primary ectoderm during the second week of development. Therefore, the presence of a
somatic variant in both leukocyte DNA and colon mucosa indicates that the variant arose
early enough to potentially also be present in germ cells and therefore transmissible to the
next generation.

In leukocyte DNA of six mosaic APC patients (APC-07, APC-09, APC-15, APC-21, APC-24
and APC-25), the APC variant could not be detected by deep sequencing. In four patients
(APC-07, APC-09, APC-21 and APC-24), with available normal colonic mucosa, the
mosaic APC variant was either not detected in normal mucosa (APC-07) or was present at a
frequency of 2-29% (APC-09, APC-21 and APC-24, Table 1). In patient APC-24 the variant
was present in one of the normal mucosa samples with a 2% frequency, while absent from
the other sample, probably due to sampling bias. Variants only present in adenoma- and
normal colonic DNA, but absent from leukocyte DNA , indicate a somatic event after the
third week of embryogenesis and are unlikely present in the germ cells. For the other two
mosaic patients without positivity in leukocyte DNA (APC-15 and APC-25), normal mucosa
was not available. DNA from buccal mucosa, fibroblasts and urine from patient APC-09 and
APC-21 tested negative for the mosaic APC variant.
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Patient APC-04 and APC-08 were both found to carry an APC c.4666dupA variant in the
adenomas initially sequenced with NGS. This variant islocated in a homopolymeric nucleotide
sequence and could not be reliably detected with the NGS technique alone.” However, the
variant could be confirmed using the less sensitive HRMA and Sanger sequencing, with a
30-70% variant frequency in both adenomas of patient APC-08 and 10/16 tested adenomas
of patient APC-04. In the six adenomas of patient APC-04 not carrying the c.4666dupA
variant, other APC variants were detected with NGS (Supplementary Table 2, APC-04/P4-
P9). The pathology report did not give the exact location of each adenoma and investigating
possible clustering of adenomas with and without the APC c.4666dupA variant was therefore
not possible. Nevertheless, this unusual pattern of adenomas with and without the APC
mosaic variant illustrates the possible co-occurrence of sporadic adenomas within a mosaic
environment, and highlights the importance of screening multiple adenomas. Additionally,
leukocyte DNA of the children of patient APC-04, APC-07 and APC-21 was tested for the
mosaic APC variant detected in the parent (Table 1), but none showed the mosaic variants.
These findings are consistent with the APC variants occurring after primordial germ cell
specification, as would be predicted by the absence of the APC variants in leukocyte DNA in
APC-07 and APC-21.

In three patients (APC-03, APC-07 and APC-17) the mosaic pattern was subjected to a
comprehensive analysis (Figure 1). Deep sequencing of normal mucosa samples identified
an APC variant at frequencies between 0.4-29% (APC-03) and 0.8-15% (APC-17). In patient
APC-07, the APC ¢.3340C>T variant was not found in DNA from the muscularis propria
of the ileum, one draining lymph node of the colon, rectal mucosa, small bowel mucosa or
seven normal colon mucosa samples. The lymph node sample was analyzed to a 700,000
sequence depth, but still the variant was not detected in this sample. A possible explanation
for the anatomically widespread occurrence of the APC variant could be field cancerization,
a process in which the normal cell population is replaced with tumorigenic clones.® This
mechanism has been previously described in patients with inflammatory bowel disease,
in whom “pre-tumor” clones with identical TP53 founder mutations, but different driver
mutations spread throughout the colon. In agreement with this idea, patient APC-07 showed
other additional driver mutations in the different adenomas tested (Supplementary Table 2). A
possible mechanism of this clonal expansion of tumorigenic cells is crypt fission, and chronic
inflammation of the intestine as seen in inflammatory bowel disease patients is a likely growth
stimulus.® It is not known whether chronic inflammation was present in patient APC-07. It
is also conceivable that previous endoscopies may have aided the spread of tumorigenic cells
throughout the intestine, although this does not explain the presence of 20-30 adenomas at
first colonoscopy.® The size gradient from distal to proximal further accords with the notion
that the underlying mechanism of polyposis in this patient was field cancerization developing
from one distal tumorigenic cell in the colon and then spreading more proximally.

In detecting APC mosaic variants we underline the importance of testing at least two but
preferentially more adenomas. We detected remarkable patterns of mosaicism, with either
sporadic adenomas in a mosaic environment or spread of tumorigenic clones throughout the
colon suggesting a mechanism of field cancerization.
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Figure 1: Mosaic patterns of patient APC-03, APC-07 and APC-17

Representation of hemicolectomy patient APC-03(A) and APC-07(B) and rectosigmoid-resection of
patient APC-17(C) with location adenoma-derived (T), normal mucosa (N) and lymph node (LN)
samples. C, cecum; A, colon ascendens; T, colon transversum; D, colon descendens; S, sigmoid colon;
R, rectum. Size of the adenomas in the figure is proportional to real adenoma size, ranging between 4

mm and 3 cm diameter.
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Supplementary Methods

Study subjects

In total, 27 patients and two positive controls were included. Patients presented with 5-20
adenomas (n=6), 21-100 (n=18), 1000 adenomas (n=1) or multiple colorectal carcinomas
(n=2), while the two positive controls both had 21-100 adenomas. All patients were negative
for germline APC/MUTYH variants by Sanger sequencing and Multiplex Ligation-dependent
Probe Amplification (MLPA). In addition, the cohort included patients previously screened
for germline (mosaic) APC variants by denaturing gradient gel electrophoresis (DGGE)', the
protein truncation test (PTT)" and high-resolution melting analysis (HRMA)°. Patients were
also screened for CRC risk-associated SNPs® and POLE and POLD1 hotspot mutations (see
Supplementary Table 1). No pathogenic germline (including mosaic) APC, MUTYH, POLE
or POLDI variants were detected in these patients.

Demographic and clinical data and informed consent were obtained during the consultation.
The study was approved by the LUMC medical ethical committee (PO1-019E). Patients
presented with polyposis affecting the entire colon (n= 12) or segmental polyposis, either
right-sided (n=2) or left-sided (n=9) (see Table 1). The location of the adenomas was unknown
for four patients, and two patients had multiple colorectal cancers but no adenomas.

Of the 29 patients included, 11 patients represented a retrospective cohort collected between
2000 and 2013. Nine of these patients presented with multiple colorectal adenomas (5-100),
while one patient showed 1000 adenomas distributed throughout the colon. The final patient
in this group (APC-12) presented with two primary colorectal carcinomas before the age
of 50. The average age at diagnosis was 46.8 years (range 26 — 63 years). In addition, sixteen
patients were prospectively recruited.

All but one presented with 20-100 adenomas, with an average age at diagnosis of 60.1 years
(range 33-75 years). One patient (APC-11) was diagnosed with four primary colorectal
carcinomas at the age of 53. Adenomas from two positive controls were also included. These
patients (APC-08 and APC-09) were previously tested for mosaic APC variants in a pilot
study using high resolution melting analysis (HRMA).> Patient APC-08 carried an APC
frameshift variant (c.4666dupA) in both adenomas tested, while patient APC-09 displayed
an APC nonsense variant (¢.4057G>T) in both adenomas tested (see Supplementary Table 1).

Twenty-three tumor or adenoma-derived DNA samples from patient APC-07 were analyzed
with Sanger sequencing for six APC hotspot variants (c.3340C>T, ¢.3927_3931delAAAG,
c.4348C>T, ¢.4348C>G, ¢.4391_4394delAGAG and c.4666delA) at the Erasmus MC,
Rotterdam. DNA isolated from the muscularis propria of the ileum, one draining lymph
node from the colon and several normal mucosa samples throughout the colon and near the
adenomas was tested with SNAPshot" and mutation-specific PCR (APC mutation-specific
primers available on request). Additionally, DNA from rectal mucosa, small bowel mucosa
and normal colon mucosa was analyzed by deep sequencing (see Figure 1).
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Tissue micro-dissection and DNA extraction

Formalin-fixed paraffin embedded (FFPE) tissue blocks were collected for all patients.
Hematoxylin and eosin-stained tumor tissue slides were examined for tissue sections with
tumor percentages >20%. After examination, 5 to 10 um sections were prepared and stained
with hematoxylin (eosin staining was omitted to preserve the integrity of the DNA). After
staining, slides were visualized with an inverted microscope and manually microdissected
with a sharp, pointed knife. When frozen tissue was used, tumor enrichment was achieved
by removing non-tumorous tissue as much as possible after frozen section analysis. DNA was
isolated with the Nucleospin® Tissue kit (Bioké, Leiden, the Netherlands). If possible, DNA
from normal colon mucosa was also isolated from FFPE tissue blocks.

Target enrichment, DNA sequencing and data analysis

A custom APC Panel was designed with the Ion AmpliSeq™ Designer tool. The complete
sequencing panel consisted of 115 amplicons (11216 bp), covering 99.3% of the coding regions
of APC. Next-generation sequencing of APC was performed with the Ion PGM™ System (Life
Technologies, Carlsbad, CA, USA). Raw data analysis, alignments, and variant calling was
done using the default parameters in Torrent Suite v4.0. The Variant Caller Parameter Setting
was set on ‘Somatic - PGM - Low Stringency. Variants were functionally annotated using
ANNOVAR." Variants were annotated to the Genbank reference sequence NM_000038.5.
Coding variants were analyzed for their effect on function with in silico protein prediction
software Align GVGD?®, SIFT (http://sift.jcvi.org/), PolyPhen-2 (http://genetics.bwh.harvard.
edu/pph2/) and MutationTaster (http://www.mutationtaster.org/). The Leiden Open Variation
Database (LOVD, http://www.lovd.nl/APC) and the catalogue of somatic mutations in cancer
(COSMIC, http://cancer.sanger.ac.uk/cosmic) were consulted to find variants previously
described and classified. All variants predicted to affect function were visually inspected
with the Integrative Genomics Viewer (IGV, https://www.broadinstitute.org/igv/home) and
confirmed by Sanger sequencing. Loss of heterozygosity (LOH) was called if all APC SNPs
showed a variant frequency between 10 - 30% or between 60-90% (Supplementary Table 2).

Leukocyte and/or DNA from normal colon mucosa of all patients with identical APC variants
in multiple adenomas was screened for a specific mosaic APC variant. Primers amplifying
specific amplicons containing the variant were used for deep sequencing (coverage minimal
1000x). All other available tumor or adenoma-derived DNA was also tested for the mosaic
APC variant in order to study the pattern of mosaicism (Supplementary Table 1).

Confirmation of variants using KASPar or HRMA

Confirmation of the APC c.2493dupA variant (patient APC-18) was done using the competitive
allele-specific PCR (KASPar) assay, following the manufacturer’s protocol (LGC Genomic,
Berlin, Germany). The primers were designed using Primerpicker (KBioscience, Hoddesdon,
UK) and the following primers were used: APC_c.2493dupA_C1; 5 GGC AAC ATG ACT
GTC CTT TCA CCA T-3] APC_c.2493dupA_Al; 5- GAA GGT GAC CAA GTT CAT
GCT CCT CTT GAT GAA GAG GAG CTG GGT A-3" and APC_c.2493dupA_A2; 5> GAA
GGT CGG AGT CAA CGG ATT CTC TTG ATG AAG AGG AGC TGG GTT- 3’ Variants
were identified using CFX manager software v3.0 (Bio-rad, Veenendaal, the Netherlands).
Confirmation of the variant is shown in Supplementary Figure 1.
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The APC c.4666dupA variant (patients APC-04 and APC-08) is a duplication in a
homopolymeric nucleotide stretch and could in many cases be a false positive as the NGS
workflow used (PGM) is known to produce errors in homopolymeric sequences.” This
variant was confirmed by high resolution melting analysis (HRMA). Sixteen adenoma and 11
matched normal mucosa DNA samples (normal colon mucosa isolated from the same FFPE
block as matched tumor) were available for patient APC-04 and were tested for the variant.
HRMA and HRMA data analysis were performed according to the LUMC clinical diagnostics
protocol, as previously described.?

Testing offspring

The offspring above the age of 18 years of all patients within the cohort was offered genetic
screening if a mosaic variant was found in the index patient, irrespective whether the mutation
was present in adenomas, normal mucosa and/or leukocyte DNA. (Supplementary Table 1)
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Supplementary Figure 1: KASPar assay APC c.2493dupA

KASPar assay of the APC ¢.2493dupA variant. In black two positive controls (P1 and P2), the leukocyte
DNA sample (L) with 7% mutant allele and the normal mucosa (NM) sample. Cluster analysis of the
endpoint fluorescence of the KASPar assay shows three distinct clusters. The two adenoma samples cluster
together and display a heterozygous phenotype, containing the wildtype and mutant allele. All negative
controles (in grey) cluster together and are shown to be homozygous wildtype. The normal mucosa sample

falls within this cluster. The leukocyte DNA sample shows a low, but certainly visible percentage of mutant
allele.
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Concluding remarks and future perspectives

In this thesis, underlying genetic causes of unexplained suspected Lynch Syndrome and
unexplained colonic adenomatous polyposis are presented. Furthermore, practical guidelines
are presented to curate variants detected in PMS2 in DNA isolated from formalin-fixed
paraffin-embedded (FFPE) tissue. Additionally, an assay determining the functional effect
of splice site variants using RNA isolated from FFPE is presented, all with the ultimate
goal to determine the underlying genetic cause of colorectal cancer syndromes. New CRC
susceptibility genes and new underlying mechanisms currently explain a portion of the
previously unexplained cases, but still a large part of the seemingly familial colorectal cancers
remains unexplained. The newly discovered causes, current achievements of determining
other susceptibility factors and future perspectives are discussed in this chapter.

Unexplained suspected Lynch Syndrome

In 2014, a study described that in up to 60% of mismatch repair (MMR)-deficient and/or
microsatellite unstable tumors no MLH1 methylation or germline MMR variants are detected.!
These patients are referred to as ‘suspected Lynch Syndrome’ (sLS)" or Lynch-Like Syndrome
(LLS)? and clinical management of these patients remains difficult. Little is known about the
cancer risk for these patients, although one study showed they have a lower risk of cancer
than patients from LS families, but higher than those from families with sporadic CRC.? Still,
without an exact genetic diagnosis, determining surveillance strategies for patients and their
relatives is difficult, and can lead to over- as well as undertreatment of family members, e.g.
intensive cancer screening in those without an increased CRC risk.> Several theories have
been suggested as to what could be the cause of the MMR-deficiency in these tumors. Three
potential reasons for MMR-deficient and/or MSI-H tumors in sLS patients are discussed here.

Missed MMR variants

The most obvious explanation of MMR-deficiency in sLS tumors is missed variants in one of
the MMR genes. Since most diagnostic and research testing only screen the coding regions
of the MMR genes, (intronic) variants can be missed. One study shows a previously missed
deep-intronic MSH2 variant resulting in inclusion of a pseudoexon.* However, as we have
shown in Chapter 2, sequencing of intronic regions results in a large number of intronic
variants of uncertain significance (VUS), and classification of these variants is challenging.®
Furthermore, while some of these intronic variants might affect splicing, this is difficult to
predict using most splice-site prediction software, because these depend strongly on the
presence of a canonical splice site nearby the variant. More experimental data are needed
to optimize existing prediction tools for deep intronic variants.®® According to the variant
classification guidelines created by the InSiGHT (International Society for Gastrointestinal
Hereditary Tumors) variant interpretation committee, intronic variants, but also missense
variants, silent variants and promoter variants, are automatically classified as Class 3
(uncertain significance), until proof of pathogenicity is delivered.

Another category of missed variants are large genomic rearrangements. Detecting large
insertions/deletions (indel) with next-generation sequencing (NGS) has been shown to be
challenging, and these indels might be missed in current molecular tumor diagnostics.” Some
studies describe previously missed inversions'®!' and rearrangements'> * in sLS patients.

114



Concluding remarks and future perspectives

Other explanations include the presence of variants for which the impact on MMR protein
function is presently not clear. For example, many studies have investigated the effect that
promoter variants can have on gene expression. One well studied promoter variant, MLH]I c.-
27C>A, has been described to confer a CRC-risk by dominant inheritance of a constitutional
MLH1 epimutation, to co-segregate with CRC in multiple families affected with CRC and
to lead to reduced MLH1 expression.’*?” While in the past described as pathogenic, it is
currently in the LOVD database classified as a VUS because of ‘insufficient evidence. Other
known promoter variants are the MLHI c.-28A>G/-7C>T and the MLH1I c.-93G>A variants
described to show partial loss of expression (c.-28)* and increased CRC risk due to possible
epigenetic silencing (-93)."%' The latter, however, was classified as benign by the InSiGHT
group in 2013, because of the high minor allele frequency (MAF) in the general population.

Variants of uncertain significance remain a concern and functional assays are needed to assess
pathogenicity, especially for rare variants found in only a few families or moderately penetrant
variants which do not show complete co-segregation in a family. Laboratory efforts capable of
assessing the effect of a VUS on various aspects of MMR protein function are cell-free assays
determining mismatch repair activity*?, cell-based assays showing (lack of) expression in
CRC cell lines*?, nuclear localization assays and RNA splicing assays using patient RNA?*?
or minigene splicing assays.”***! Consensus about pathogenicity of a variant is important for
proper clinical management.

Somatic inactivation

A quite prevalent cause of MMR-deficiency in sLS patients appears to be biallelic somatic
inactivation of the MMR-genes. Multiple studies (Table 1) have shown somatic inactivation
in 11% to 100% of the tested sLS cohort.’>*” Of the 68 patients described with biallelic somatic
inactivation of one of the MMR genes in these six studies, 37 tumors (54%) had one somatic
variant and additional loss of heterozygosity. Patients presented with colorectal, endometrial
or small bowel cancer with a mean age of 54.6 years (range 27 - 81 years). Two studies also
tested for variants in the exonuclease domain of POLE and POLDI** %, in the other four an
underlying variant in one of these genes cannot be excluded. We, and others, have detected

Table 1: Studies on biallelic somatic inactivation in sLS patients
No. of sSLS  No. of biallelic 2 MMR 1MMR/ Average age of

patientst som. MMR LOH onset (years)
Chika et al* 2 2 2 0 75.0
Geurts-Giele et al*® 40 21 5 16 58.9
Haraldsdottir et al** 27* 19 11 8 53.8
Jansen et al® 53 10 5 5 48.1
Mensenkamp et al** 25 13 5 8 47.7
Sourrouille et al*’ 27 3 3 0 55.0
Total 174 68 31 37 54.6

1Only patients without germline MMR variants and without MLH1 promoter hypermethylation are shown
*sLS patients were tested for POLE and POLDI variants, patients with a variant were excluded. 2MMR;
two somatic variants, IMMR/LOH; one variant and loss of heterozygosity (LOH) of the WT-allele.
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two somatic variants in patients with a family history of CRC, showing that biallelic somatic
inactivation does indeed explain the occurrence of a tumor. However, it cannot explain other
occurrences of colon cancer in the family and it could be that another underlying genetic
cause was missed.’> In some cases, the somatic MMR variants are secondary to another
(germline) defect that results in a higher mutational load. This has previously been described
in patients with MMR-deficient/MSI-H tumors, found to carry biallelic MUTYH variants
impairing base excision repair (BER).*** In the studies where further testing was performed
on the MUTYH mutated/MMR-deficient tumors, somatic MMR variants® or MLHI
promoter hypermethylation® explained the MMR-deficiency. The somatic MMR variants
were MAP-specific G>T variants, indicating that the impaired BER was the primary defect
followed by MMR-deficiency.* This mechanism of secondary MMR-deficiency is also seen in
POLE/POLDI tumors. These tumors have a high mutational load, leading to many variants
that could possibly inactivate genes. These findings underline the importance of screening
for variants in other CRC susceptibility genes in patients with biallellic somatic inactivation
of the MMR genes but with a positive family history of CRC, especially if the other family
members do not show MMR-deficiency/MSI in the tumor. Another possibility is that these
somatic variants are present as mosaic variants in the leukocyte DNA, something that has
been (albeit very rarely) described before. Sourrouille et al describes one patient where a
somatic MSH2 variant found in the tumor of the mother (but not in blood) was also detected
in leukocyte- and tumor DNA of the affected son.” No other germinal mosaic MMR variants
have been described.

Variants in other CRC susceptibility genes

Recent advances in next-generation sequencing (NGS) and whole exome sequencing (WES)
or even whole genome sequencing (WGS) resulted in the detection of additional genes possibly
involved in tumorigenesis of LS tumors. As mentioned before, we (Chapter 3), and others,
have shown germline and somatic variants in POLE or POLDI in MMR-deficient tumors.**
34 Varijants in the exonuclease domain (EDM) of these genes encoding for polymerase ¢
and 8 respectively, have been shown to result in a high mutational burden, often with a high
number of C>A transversions.* In sLS tumors it has been hypothesized that a somatic or
germline POLE/POLDI variant can result in somatic MMR variants, subsequently resulting
in microsatellite instability.*>* Notably, a recent study shows synergistic increase in mutation
rate when a pathogenic POLD]1 variant (POLD1 R689W) was combined with MMR-deficiency,
indicating that the POLDI mutator effect results from a high rate of replication errors.* This
variant is not located in the POLDI-EDM but does show impaired nucleotide selectivity,
showing that even variants outside the POLE/POLDI-EDM might confer an increased CRC
susceptibility.*> 4

Other genes that have been implicated as the underlying cause of suspected Lynch Syndrome
tumors are BRCAI, BRCA2, MUTYH, APC, STK11, MLH3 and EXO1.** ¥ As mentioned
before, homozygous and compound-heterozygous MUTYH variants have been described
in multiple sLS patients, some of which were shown to have secondary MMR-deficiency
through somatic MMR variants or MLHI promoter hypermethylation.** BRCA1, BRCA2,
APC and STK11 are known dominant cancer predisposition genes previously described to
be involved in hereditary breast cancer, familial adenomatous polyposis and Peutz-Jeghers
Syndrome respectively.®>* While the increased risk of CRC for BRCAI and BRCA2 mutation
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carriers is still under debate, some studies indicate an up to five fold increased risk of CRC.>*-*
However, the ‘suspected Lynch Syndrome’ patients described in these studies found to carry
these BRCA1, BRCA2, APC and STK11 variants were selected based on personal and family
history of CRC but no IHC of the four MMR genes or MSI was performed.

MLH3 and EXOI are both mismatch repair genes. MLH3 interacts with MLH], is believed
to participate in insertion deletion loop (IDL) repair and has been shown to exhibit MSI
in cell culture.” ® The role of the mismatch repair gene MLH3 in colorectal tumorigenesis
is under debate.®** Whereas one study describes germline MLH3 variants in sLS patients®
(with positive MLH1, MSH2 and MSHS6 staining, but with MSI), more evidence is needed
before it can be regarded as a causal (possible reduced penetrant) Lynch Syndrome gene. The
exonuclease 1 (EXOI) gene encodes a 5’ -> 3’ exonuclease that is involved in multiple DNA
repair pathways.® ¢ In MMR, EXO1 interacts with MSH2 and in yeast it shows a mutator
phenotype when lost. EXOI has been extensively studied in CRC* ¢!, and is often found
not to be associated with (suspected) Lynch Syndrome.*””>”! Single nucleotide polymorphisms
(SNPs) in this gene have been described to confer a slightly increased risk of CRC in the
general population, but have not been associated with LS.® % Wu et al describes germline
EXOI variants in 14 patients fulfilling Amsterdam criteria, with six of the tumors showing
microsatellite instability.*® Twelve of thirteen tested tumors showed loss of heterozygosity
with retention of the wildtype allele. The authors suggest that complete loss of EXO1 is lethal
to the cell, and that a haploinsufficiency effect can give rise to tumors. Other studies screened
for EXO1 variants in sLS patients, but no other carriers were found.”” This, together with the
fact that patients were not screened for variants in established LS/CRC susceptibility genes
(PMS2, POLE, POLD1), shows little evidence to include EXO1I as a LS gene, although a role as
a low penetrant cancer susceptibility gene cannot be excluded at this point in time.

For Lynch Syndrome tumorigenesis, it remains unclear when the MMR-deficient phenotype
(e.g. loss of the second allele in germline MMR carriers) is acquired during tumorigenesis.
Multiple studies tested adenomas from MMR-mutation carriers for immunohistochemical
loss of the MMR proteins or MSI and found a Lynch phenotype in 40-80% of tested adenomas,
often associated with adenoma size.”*® Ahadova et al proposed two pathways in Lynch
Syndrome (see Figure 1), one where adenomatous polyps precede MMR-deficiency with an
initiating event as APC and/or KRAS gene variants and one where MMR gene inactivation
is the initial event leading to non-polypous precursor lesions and secondary CTNNBI hits
are needed for tumorigenesis.** While it can be debated whether polypous growth precedes
MMR gene inactivation in LS tumors, this is probably the preferred pathway in suspected
Lynch Syndrome patients with somatic MMR inactivation. In these patients the underlying
genetic defects (MUTYH, POLE, POLDI) often result in a mutator phenotype, with the
MMR-deficiency acting as a secondary defect resulting in tumorigenesis. It is conceivable
that for these patients adenomas can arise before mismatch repair is completely inactivated.
Immunohistochemical staining and MSI analysis of these tumors gives a bias to expect an
MMR defect, while the true underlying germline defect could be missed. Especially when
patients present with early onset colorectal cancer and a positive family history of CRC, tumors
should be screened for variants in other CRC susceptibility genes. Whole exome sequencing
of unexplained suspected Lynch Syndrome patients might detect CRC susceptibility genes
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Figure 1: proposed pathways of colorectal tumorigenesis in Lynch Syndrome as
described by Ahadova et al, Familial Cancer, 2016.'

or loci which are currently not known, although this may require very large study sizes. The
expectation is that through these approaches, rare genetic variants or high-risk combinations
of CRC susceptibility SNPs can be detected, an effort that is already being done in MMR-
proficient, microsatellite stable tumors.®>#

Unexplained polyposis

In approximately 76-82% of the severe and typical FAP patients a pathogenic germline variant
in APC is found, while the majority of patients with atypical or attenuated polyposis can be
explained by APC or homozygous/compound-heterozygous germline MUTYH variants.®*
Still, in a small fraction of patients no genetic predisposition can be found.

In recent years three new polyposis syndromes have been described which may account for
a part of these unexplained polyposis cases. These syndromes are polymerase proofreading
associated polyposis (PPAP)¥, caused by variants in the proofreading domain of POLE
and POLDI1, NTHL1-associated polyposis (NAP)®, caused by homozygous or compound-
heterozygous variants in the base excision repair gene NTHLI and the recently described
MSH3-associated polyposis® caused by biallelic germline inactivation of the mismatch repair
gene MSH3. Both PPAP and NAP have a variable phenotype with polyps but also with the
occurrence of colorectal cancers and other extracolonic tumors. Both are also described to
confer a specific mutation spectrum, with a POLE/POLDI defect resulting in an ultramutated
phenotype with an increase of C:T>A:G transversions and NTHLI deficient tumors showing
an increase in C:G>T:A transitions.* * Compound-heterozygous MSH3 variants have only
been described in two unrelated individuals, one female with over 40 polyps and a history
of thyroid adenoma (age 35), uterine leiomyoma (age 44) and polyps in corpus uteri and
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duodenum, and one female with multiple adenomas at age 32, astrocytoma (age 26), ovarian
and dermoid cysts and follicular thyroid adenomas at age 42.*° Both also had small intraductal
papillomas in the mammary gland. Whether these neoplasms are specific for an MSH3 defect
is unknown, and can only be concluded after more MSH3 variant carriers are detected.

Of all patients carrying a pathogenic de novo APC variant, explaining the FAP phenotype,
approximately 20% are estimated to have somatic mosaicism.”*? This phenomenon, in which
(APC) variants are only present in a fraction of the cells, was already described in 1999 in a
study where parents of five de novo FAP patients were tested for the APC variant found in the
index patient.”> Multiple studies have been conducted since then, always focusing on testing
leukocyte DNA for variants with a low variant allele frequency, or on analyzing parents of
de novo patients.””*>*** We (Chapter 5) and others have recently shown a high number of
missed mosaic APC patients, by sequencing multiple adenomas of the same patients.'® 1% If
two or more adenomas carry an identical APC variant, this might indicate an underlying APC
mosaicism. This strategy has been proven to be more sensitive and specific than sequencing
leukocyte DNA for variants with a low variant frequency, and can detect mosaicism confined
to the colon.'® !*! Early detection of patients with somatic APC mosaicism is important and
will help guide clinical management. Patients often show an attenuated FAP phenotype but if
the variant is inherited by the patients offspring, they will show a full blown FAP phenotype
with possibly 100 to more than 1000 adenomas.*®* 1%

Besides the recently described colorectal cancer syndromes with POLE, POLD1, NTHLI and
MSH3 germline variants, other genes have been implicated in unexplained familial polyposis
syndromes. Three recent studies performing whole exome sequencing or genome-wide SNP
genotyping in unexplained adenomatous polyposis patients describe variants or copy number
variations in the CNTN6, FOCAD, HSPH1, KIF26B, MCM3AP, YBEY, ARHGAB CTNNBI,
DSC2, PIEZO1, ZSWIM7 and MCM9 genes."**'* Variants in DSC2, PIEZO1 and ZSWIM7
were first detected in a cohort of 7 unrelated polyposis patients with 20-40 adenomas.
Sequencing these three genes in a validation cohort of 191 unexplained polyposis patients
resulted in the detection of 4 additional DSC2 variants and 4 additional PIEZO1 variants.**
Copy number variant (CNV) analysis in 221 unexplained polyposis patients showed rare,
non-recurrent germline CNVs in 77 proteins.'” Targeted NGS found point-mutations in 10
of the 77 investigated genes (CNTN6, FOCAD, HSPHI, KIF26B, MCM3APB, YBEY, CTNNBI
and three genes from the ARHGAP family).'” Of these 10 genes, only FOCAD and CTNNBI,
involved in Wnt signaling, have previously been related to CRC or colorectal adenoma
predisposition.'* ' The third study shows homozygous variants in the MCM9 gene in two
sisters with multiple polyps and metastatic CRC at young age. The MCM9 gene encodes a
DNA helicase involved in homologous recombination (HR) and mismatch repair (MMR).*
However, an independent study sequencing MCMJ9 in suspected Lynch Syndrome patients
only detected variants of uncertain significance.'® For all newly discovered genes more
evidence is needed to establish them as CRC or polyposis susceptibility genes.

Other factors in colorectal cancer

While genetic factors are expected to play an important role in families with multiple affected
patients, other factors are known to increase CRC susceptibility. Diet is an important factor,
and it has been shown that a Western diet characterized by high intake of meat, refined
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sugar and saturated fat, but lacking in fiber, contributes to development of CRC.!***? Other
lifestyle factors contributing to CRC risk are excess body weight, low physical activity, alcohol
consumption and smoking."'""""* Calcium, fiber, milk and whole grains on the other hand,
have been associated with a lower risk of CRC."114

Another factor involved in increased CRC is the gut microbiota. The human intestinal
tract is inhabited by trillions of microorganisms and the presence of specific bacteria or
the dysbiosis of bacteria can aid in development and progression of colorectal cancer.!'> !¢
Bacteria can affect CRC tumorigenesis by secretion of toxins that can induce DNA damage
and secretion of metabolites that affect translation, gene regulation and cell proliferation. !>
¢ The gut microbiome is also shown to affect innate immunity through activation of toll-like
receptors and through influencing T-cell differentiation.!'> !¢ Interestingly, diet and alcohol
consumption have been shown to be able to dysregulate microbiota, possibly explaining the
link between diet and colorectal cancer."'>'"

Abovementioned non-genetic factors can result in believing multiple cancers in a family are
due to an underlying genetic cause, while in fact the affected patients are phenocopies, i.e.
displaying characteristics of a certain genotype but produced by environmental factors. This
underlines a challenge in determining the underlying genetic cause in unexplained families
with CRC. While WES and WGS enable the detection of rare pathogenic variants, it is difficult
to determine whether a family with a few affected family members is indeed the result of one
dominant DNA variation. Colorectal cancer is a common disease, and many environmental,
as well as polygenic, factors can modulate CRC risk. A recent study shows that families with
exactly two first-degree relatives only have a moderate probability of being due to segregating
familial disease and advises to first focus on families with three or more members to increase
the probability of finding genetic factors.®
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Final conclusions

The estimated worldwide incidence of colorectal cancer is 746.000 new cases annually.'”
Approximately 15% of these colorectal cancers will display MSI, while 3% of these CRCs
will carry a germline MMR variant. Routine molecular screening of all early-onset CRCs
with immunohistochemical staining of the four MMR proteins and/or MSI analysis yields
a high number of suspected Lynch Syndrome cases of which the majority will likely remain
suspected after conventional germline mutation screening and MSI analysis. In this thesis
we describe possible genetic causes of unexplained suspected Lynch Syndrome (sLS) and
unexplained adenomatous polyposis. We hypothesize that unexplained sLS patients could
be explained by (1) missed MMR variants (Chapter 2), (2) by biallelic somatic inactivation
(Chapter 2 and 3) or (3) by variants in other CRC susceptibility genes (Chapter 3).

We (Chapter 2 and 3), and others, show that biallelic somatic inactivation could possibly
explain up to half of all unexplained sLS patients. Screening for somatic MMR variants should
be broadly introduced in molecular tumor diagnostics, giving more insight in these sporadic
MMR-deficient cases. Families should be critically assessed, so no underlying genetic variants
are missed in these seemingly sporadic cases. Recent advances in (whole) exome and targeted
next-generation sequencing enable detection of rare variants in previously unknown CRC
susceptibility genes, and show that MMR-deficiency could be due to (secondary) somatic
events, sometimes with underlying germline gene variants in genes such as POLE, POLD1
or MUTYH. In future research it would be interesting to test affected family members of the
patients of whom the tumor occurrence is explained by somatic events, to see whether these
patients also have MMR-deficient tumors and to find a common underlying genetic cause in
these family members.

While missed MMR variants seem a rare event, explaining only a fraction of patients
(Chapter 2), it cannot be excluded that the remaining unexplained sLS tumors still carry
undetected MMR variants. These variants could be currently misunderstood and classified as
uncertain significance (VUS) or could be missed by conventional screening, because they are
in intronic regions or in close proximity to the MMR genes. Functional assessment of VUS
is critical. In Chapter 4 we show an easy method to detect aberrant splicing in formalin-fixed
paraffin-embedded tissue, showing opportunities for the future. However, while this method
enables functional assessment of variants predicted to result in splicing, it cannot detect
aberrant splicing when the mutation status is unknown. A high-throughput NGS-based
assay sequencing all exon-exon boundaries in RNA to detect any possible RNA aberration
could possibly detect the cause of the MMR-deficiency. Also, it could indicate missed deep-
intronic variants resulting in an aberrant RNA product. Furthermore, the current study relies
on in silico prediction tools and effects that fall outside the amplification window will not
be detected, while a high throughput assay would analyse the RNA in an unbiased manner.
Other currently undiscovered mechanisms leading to aberrant RNA could be detected with
this unbiased NGS approach.

The introduction of the population-based screening leads to an increasing number of

patients with a low number of polyps (5-40) at older age (60+) which would previously go
undiscovered. We (Chapter 6), and others, recently showed that many of these patients with
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an attenuated FAP (AFAP) phenotype carry somatic mosaic APC variants. Current screening
consisting of screening leukocyte DNA for variants with a low variant allele frequency is shown
to miss many of these patients, because the variant is present with a too low variant allele
frequency or because the mosaicism is confined to the colon. In-depth analyses of adenomas
of AFAP patients could lead to the detection of more mosaic APC carriers, affecting clinical
management of their children, who, if the variant is inherited, will show a full blown FAP
phenotype.

While the exact incidence of biallelic somatic MMR variants, POLE/POLDI variants with
secondary MMR-deficiency and somatic mosaicism still needs to be assessed, a large
fraction of the previously unexplained sLS patients can now be explained and receive proper
clinical management. However, in the remaining, approximately, 20-40% of sLS patients the
underlying (familial) cause is still unknown. Whole exome or genome sequencing in the
future will possibly lead to the detection of more rare gene variants, variants with moderate
increase in CRC susceptibility or variants with moderate penetrance. Joint efforts screening
for variants in larger cohorts and data sharing are essential in finding these (low penetrant)
CRC susceptibility loci and might enable establishment of a CRC polygenic risk model with
a personal cancer risk score.
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Summary

Summary

Colorectal cancer (CRC) is the third most common cancer in men and second most common
cancer in women worldwide. An estimated 20-30% of all CRC patients have a positive family
history of colorectal cancer, which in 3-5% of all CRCs can be explained by inherited germline
variants in highly penetrant CRC genes. The most common form of hereditary CRC is Lynch
Syndrome, caused by pathogenic germline variants in the mismatch repair (MMR) genes,
MLHI1, MSH2, MSH6 and PMS2. MMR-deficient tumors characteristically show instability
in the microsatellites, small repeated sequences in the DNA, and immunohistochemical
loss of the MMR gene that is mutated. Additionally, in approximately 20-25% of patients
with immunohistochemical loss of MSH2 but without a germline MSH2 variant a germline
deletion in the EPCAM gene is found. This deletion results in transcriptional inactivation
of the MSH2 gene, that is directly upstream from EPCAM. MMR-deficiency can also occur
sporadically, through MLHI promoter hypermethylation, shown in >85% of MMR-deficient
tumors. Still, in up to 60% of patients with MMR-deficient tumors without MLHI promoter
hypermethylation no germline pathogenic MMR gene variant is detected. These patients are
referred to as ‘suspected Lynch Syndrome’ (sLS) patients and clinical management of these
patients and their families remains difficult. This thesis focusses on explaining the MMR
deficiencies and finding underlying genetic causes in these patients and their relatives. We
hypothesize that these sLS patients can be explained by (1) missed variants in the MMR
genes, (2) biallelic somatic inactivation of the MMR genes or (3) variants in other genes that
subsequently lead to secondary MMR-deficiency.

Accordingly, in Chapter 2, we describe an effort to detect missed germline intronic or
promoter variants in the MLHI1, MSH2, MSH6 and PMS2 genes, but also germline variants
in other CRC susceptibility genes, such as MUTYH, BMRPIA, PTEN and APC. Whole Gene
Capture on leukocyte DNA of 45 sLS patients showed 1979 germline variants, of which the
majority (97%) was intronic. One patient was found to carry a missed variant in MLHI,
resulting in a 29 amino acid incorporation in the protein-interacting domain. This patient
showed solitary PMS2 protein loss in the tumor, and MLHI had not been screened before.
Additionally, germline variants of uncertain significance (VUS) were found in EPCAM,
MSH3, MUTYH and AXIN1, but no further testing was done to assess the functional relevance
of these variants.

In Chapter 3 we describe a more prevalent explanation for these suspected Lynch Syndrome
patients. Of 62 sLS patients leukocyte and tumor DNA was analysed with next-generation
sequencing (NGS) to detect somatic and germline variants in the MMR genes, but also the
POLE and POLDI genes. Variants in the exonuclease domain (EDM) of these genes encoding
for polymerase € and 8 respectively, had been described in microsatellite stable tumors before
but the prevalence of these type of variants in MMR-deficient/MSI-H tumors was unknown.
With NGS 10 tumors were found to carry two somatic aberrations (two pathogenic variants
or one pathogenic variant with concomittant loss of heterozygosity) in the MMR gene
that showed immunohistochemical loss. Additionally, in nine patients a germline- (n=2)
or somatic (n=7) variant was detected in the EDM of POLE or POLDI. All POLE/POLDI
mutated tumors seemed to show a hypermutated phenotype, concordant with previous
studies on POLE/POLDI1 EDM variants.
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In Chapter 4 we present a method to verify the predicted splicing effect of splice site variants
found in MLHI1, MSH2, MSH6, APC and BRCAI. For 11 variants RNA was isolated from
formalin-fixed paraffin-embedded (FFPE) tissue blocks, and for two additional variants
RNA was isolated from EBV-transformed B-cells. Of the total 13 splice site variants, eight
variants were previously described to result in splicing, while five were only predicted to
result in splicing, but functional evidence was lacking. For all variants specific primers were
designed, and cDNA was synthesized and analysed with PCR. For six out of eight samples
carrying known splice site variants RNA could be successfully isolated, and all six showed
the previously reported aberrant splicing. Notable, one variant for which only RNA from
EBV-transformed cell lines was available only showed an aberrantly spliced product after
formalin fixation of the cells, indicating that formalin fixation inhibits RNA degradation. For
four of the five variants predicted to result in aberrant splicing of RNA ¢cDNA products could
successfully be amplified and aberrant splicing was seen in three. It could be concluded that
these variants should be regarded as (likely) pathogenic and not of uncertain significance. A
simple addition to the analysis toolkit can thus answers the potential pathogenicity of variants
involved in aberrant splicing.

In Chapter 5 we describe a practical guide to detect and analyse variants in PMS2 in DNA
isolated from FFPE tissue. DNA isolated from FFPE is often very fragmented, and the
standard diagnostic routine for sequencing leukocyte DNA is not feasible in these samples.
This brings extra complexity for the analysis of PMS2, which in itself is already complex due to
the presence of multiple pseudogenes. Fourteen PMS2-pseudogenes share a high homology
with the 5" end of PMS2 (exon 1 to 5), while a fifteenth pseudogene (PMS2CL) shares high
homology with PMS2 exon 9 and exon 11 to 15. PMS2 is distinguishable through paralogous
sequence variants (PSVs), a small number of nucleotides that are specific for PMS2 and not
present in the pseudogenes. By designing a custom NGS FFPE-suitable library with small
amplicons containing one or two PSVs each, exon 1 to exon 11 can be reliably sequenced.

In Chapter 6 we aimed to detect the underlying genetic cause in unexplained adenomatous
polyposis patients negative for germline defects using conventional testing for CRC
susceptibility genes. DNA of two or more colonic adenomas of each patient was tested for
APC variants with NGS, with the hypothesis that if multiple adenomas carry an identical
APC variant, this might indicate underlying mosaicism. In nine of 18 patients, and two
positive controls, all with 21 to 100 adenomas an identical APC variant was detected in
multiple adenomas. Testing of DNA from different germ layers (mesoderm, ectoderm and
endoderm) could help identify the approximate time point at which the mosaicism arose.
Different patterns of mosaicism were identified. In three patients the APC variant present in
the adenomas could be detected in leukocyte DNA with a very low variant allele frequency, in
one patient the APC variant was confined to the colon and in six patients the variant was not
present in leukocyte, and no normal colonic mucosa was available or testing was not possible.
In one patient the variant was only detected in adenomas but not in leukocyte DNA or normal
colonic mucosa. In this patient we propose an underlying mechanism of field cancerization
where one tumorigenic clone migrates through the colon. Lastly, there was one patient that
had mixed mosaic adenomas with sporadic adenomas with unique APC variants.

132



Nederlandse samenvatting

Nederlandse samenvatting

Darmkanker is de op twee na meest voorkomende kanker bij mannen en de op één na meest
voorkomende kanker bij vrouwen. Ongeveer 20-30% van alle darmkankerpatiénten heeft een
familiegeschiedenis van darmkanker en 3-5% van alle patiénten kan verklaard worden door
een verandering in het DNA (mutatie) in één van de bekende darmkankergenen. De meest
voorkomende vorm van erfelijke darmkanker is Lynch Syndroom en wordt veroorzaakt door
mutaties in de DNA-herstelgenen: MLH1, MSH2, MSH6 en PMS2. Van deze genen worden de
DNA-hersteleiwitten afgelezen, die er voor zorgen dat foutjes in het DNA worden gevonden
en worden hersteld. Een mutatie in het gen kan ervoor zorgen dat er geen eiwit wordt gemaakt,
wat er voor zorgt dat foutjes in het DNA niet meer hersteld worden. Om te kijken of de DNA
-hersteleiwitten aanwezig zijn in een tumor, wordt er een kleuring gedaan. Hierbij wordt een
stofje toegevoegd dat zich bindt aan één specifiek eiwit. Als het eiwit aanwezig is, en het stofje
zich kan binden, is dat te zien aan een bruine kleur (Figuur 1B). Als het eiwit niet aanwezig is,
is alleen de blauwe achtergrondkleuring te zien (Figuur 1A).

Figuur 1- Kleuring van (A) MLH]1 en (B) MSH2.

Bruin laat zien dat het eiwit aanwezig is, terwijl blauw de achtergrondkleuring is om de cellen zichtbaar
te maken. A en B laten dezelfde tumor zien, maar met negatieve kleuring voor MLHI (A) en positieve
kleuring voor MSH2 (B).

Negatieve kleuring — het ontbreken van een kleur — duidt op het ontbreken van het eiwit. Dit
betekent meestal een onderliggende erfelijke mutatie. Tumoren met een DNA-hersteldefect
hebben daarnaast instabiliteit van hun DNA-microsatellieten. Microsatellieten zijn kleine
stukjes DNA met een herhalend patroon, zoals CACACACA. Als er een defect is in de DNA-
herstelfunctie, kan de lengte van deze microsatellieten veranderen, iets wat we microsatelliet-
instabiliteit of MSI noemen. Somatische, niet erfeljke, mutaties — mutaties die tijdens het
leven ontstaan en niet van de ouders komen — kunnen ook zorgen voor verlies van de DNA-
herstelfunctie. Een veelvoorkomende somatische verandering is hypermethylatie van de
promoter van MLH1. Dithoudtin dat het eerste stukje van het MLH1-gen (de promoter) wordt
afgedekt met methylgroepen (CH,-groepen). Daardoor wordt het hele gen geinactiveerd, en
wordt er geen eiwit gemaakt. Meer dan 85% van de tumoren waarin we geen MLH1-eiwit
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kunnen detecteren, kunnen verklaard worden door MLHI promoter hypermethylatie. In
60% van de tumoren met negatieve kleuring voor de DNA-hersteleiwitten en/of MSI wordt
geen erfelijke mutatie en geen MLHI promoter hypermethylatie gevonden. Deze patiénten
noemen we ‘verdacht Lynch Syndroom’-patiénten. Omdat de oorzaak van de tumoren in deze
patiénten onbekend is, is het moeilijk om screeningsrichtlijnen op te stellen. Ook kunnen
familieleden niet getest worden op dragerschap van een erfelijke mutatie. Dit proefschrift
richt zich op het vinden van de onderliggende erfelijke oorzaak van de darmkanker van deze
‘verdacht Lynch Syndroom’-patiénten en hun familie. We stellen dat dit kan komen door: (1)
mutaties in de DNA-herstelgenen die voorheen gemist zijn, (2) andere (somatische) manieren
van inactivatie van de DNA-herstelgenen, (3) mutaties in andere genen die microsatelliet
instabiliteit kunnen veroorzaken.

Zodoende beschrijft hoofdstuk 2 een poging tot detectie van gemiste erfelijke mutaties in
de DNA-herstelgenen. DNA bestaat uit coderende gedeeltes (exonen) en niet-coderende
gedeeltes (intronen). Van dit DNA (een dubbele helix) wordt eerst RNA gemaakt (een directe
kopie van één van de twee strengen), waarna de intronen eruit ‘geknipt’ worden. Het RNA dat
overblijft wordt ‘gelezen’ en vertaald naar aminozuren, die in een lange keten een eiwit vormen.
Vaak wordt gedacht dat de niet-coderende gedeeltes niet belangrijk zijn voor het uiteindelijke
eiwit, en wordt alleen gekeken naar mutaties in het coderende gedeelte: de exonen. Om te
kijken of we daardoor mutaties missen die de darmkanker wel kunnen verklaren, hebben we
gekeken naar erfelijke mutaties in de exonen én intronen van de DNA-herstelgenen: MLH]I,
MSH2, MSH6 en PMS2 maar ook in elf andere bekende darmkankergenen. Door deze 15
darmkankergenen te analyseren bij 45 verdacht Lynch Syndroom patiénten, vonden we 1979
mutaties, waarvan het grootste gedeelte (97%) in het niet-coderende gedeelte van de genen
lag. In één patiént werd een eerder gemiste erfelijke mutatie in het MLHI-gen gevonden.
Deze mutatie zorgde voor 29 extra aminozuren in het MLH1 eiwit waardoor het niet meer
met PMS2 kon binden, en niet meer als DNA-hersteleiwit kon functioneren. Omdat kleuring
van de tumor alleen liet zien dat er geen PMS2 eiwit was, was er voorheen niet getest op
mutaties in het MLH1-gen. Naast deze mutatie werden erfelijke mutaties met onbekend effect
gevonden in vier andere darmkankergenen, maar er werden geen verdere testen gedaan naar
de het effect van deze mutaties.

In hoofdstuk 3 beschrijven we een veelvoorkomende verklaring voor deze ‘verdacht Lynch
Syndroom’-tumoren, waarbij we de tumoren testen voor somatische mutaties. Recentelijk is
ontdekt dat als er twee somatische mutaties ontstaan in hetzelfde DNA-herstelgen, dit leidt
tot dezelfde soort tumoren als verdacht Lynch Syndroom patiénten hebben. Of verdacht
Lynch Syndroom patienten met een familiegeschiedenis ook verklaard konden worden door
twee somatische mutaties, was voorheen niet bekend. In de studie beschreven in hoofdstuk
3 werden 62 verdacht Lynch Syndroompatiénten getest op mutaties in het DNA geisoleerd
uit bloed (op zoek naar erfelijke mutaties) én de tumor (op zoek naar somatische mutaties)
in de DNA-herstelgenen, maar ook in de POLE en POLDI genen. Mutaties in deze genen
zijn eerder beschreven in een ander type darmkanker, maar zijn niet eerder onderzocht in
tumoren met Lynch Syndroomkarakteristieken. Door analyse vonden we in 10 patiénten
twee somatische mutaties in het DNA-herstelgen, dat verlies van kleuring liet zien. Daarnaast
hadden negen patiénten een mutatie in het POLE of POLDI-gen, waarvan twee erfelijke- en
zeven somatische mutaties waren. Alle tumoren met een mutatie in het POLE- of POLDI-
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gen lieten heel veel somatische DNA-mutaties zien, iets wat eerder beschreven is in dit type
tumoren en we ‘gehypermuteerd’ noemen.

In hoofdstuk 4 is onderzoek gedaan naar mutaties die een effect hebben op RNA splicing.
Als DNA wordt afgelezen wordt eerst pre-RNA gemaakt met alle intronen er nog in. Deze
intronen moeten eruit geknipt worden om RNA te maken. Het eruit knippen van de intronen
noemen we splicing (Figuur 1). Mutaties aan de rand van het exon of het intron kunnen een
effect hebben op de splicing. Ze kunnen ervoor zorgen dat de exon-intron rand niet goed
herkend wordt en er niet correct geknipt wordt. Zo kan het gebeuren dat er per ongeluk een
exon uitgeknipt wordt, of dat een intron blijft zitten. In de studie in hoofdstuk 4 hebben we
gekeken naar varianten die op de rand van het intron of exon liggen. Hierbij zijn niet alleen
de DNA-herstelgenen geanalyseerd, maar ook BRCAI (een bekend borstkanker gen) en APC
(een bekend darmkankergen). Voor 11 mutaties werd RNA geisoleerd uit tumormateriaal.
Dit tumormateriaal was gefixeerd in formaline en daarna omhuld in paraffine, om het te
kunnen bewaren. Sommige tumoren waren al meer dan 20 jaar oud. Daarnaast werd voor
twee mutaties RNA geisoleerd uit gekweekte bloedcellen. Acht van de 13 mutaties waren
bekende mutaties, en eerdere studies lieten zien dat deze invloed hebben op splicing. Van de
overige vijf mutaties was door predictieprogramma’s voorspeld dat ze splicing beinvloedden,
maar dit was nog niet bewezen. Van de acht bekende mutaties kon voor zes mutaties RNA
geisoleerd worden. Alle zes lieten het splice-effect zien zoals eerder beschreven. Eén van
deze mutaties, waarvan het RNA geisoleerd was uit de gekweekte bloedcellen, liet alleen het
specifieke splice-effect zien nadat de gekweekte cellen gefixeerd waren met formaline. Dit laat
zien dat formaline de afbraak van RNA tegengaat. Van de vijf mutaties waarvan voorspeld was

Pre-RNA

Exon 1 Exon 2 Exon 3

Figuur 2: Splicing
Pre-RNA, nog bestaande uit exonen en intronen, wordt omgezet in RNA door de intronen ertussenuit
te knippen.
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dat ze invloed hadden op splicing, kon voor vier mutaties RNA geisoleerd worden, en werd
een afwijkende splicing aangetoond voor drie mutaties.

In hoofdstuk 5 beschrijven we hoe mutaties in het PMS2-gen gedetecteerd en geanalyseerd
kunnen worden. Het gaat hierbij om mutaties in DNA geisoleerd uit formaline gefixeerd
tumorweefsel dat ingebed is in paraffine. DNA uit dit weefsel is vaak erg gefragmenteerd,
waardoor de standaardmethodes die gebruikt worden voor DNA uit bloed niet te gebruiken
zijn op dit materiaal. Dit maakt de analyse van PMS2 complexer, terwijl PMS2 op zichzelf al
een complex gen is. PMS2 heeft namelijk veel pseudogenen. Een pseudogen is een gen dat
heel erg lijkt op een ander gen, maar vaak niet functioneel is, en waar vaak geen eiwit van
wordt gemaakt. PMS2 heeft 14 pseudogenen met bijna dezelfde sequentie als de sequentie
van PMS2 exon 1 tot exon 5, en één pseudogen dat bijna hetzelfde is als PMS2 exon 9 en
exon 11 tot 15. PMS2 is te onderscheiden van zijn pseudogenen door ‘paraloge sequentie
variaties’ (PSVs): een klein aantal specifieke nucleotides die wel in PMS2 zitten, maar niet in
de pseudogenen. We analyseren het DNA stukje voor stukje, en door ervoor te zorgen dat elk
stukje zon PSV bevat, kunnen we zeggen of het bij PMS2 of bij één van de pseudogenen hoort.

In hoofdstuk 6 wilden we de erfelijke oorzaak in een groep patiénten met onverklaarde
polyposis vinden. Polyposispatiénten hebben veel poliepen in de darm, soms wel meer
dan 1000. Vaak hebben deze patiénten een mutatie in het APC-gen. In het verleden zijn
ook patiénten beschreven met een mozaieke mutatie in APC. Een mozaieke mutatie is een
mutatie die ergens tijdens de ontwikkeling is ontstaan, vaak in de embryonale fase. Hierdoor
zit de mutatie niet in elke cel in het lichaam, maar slechts in een deel van de cellen. Om te
zoeken naar een mozaieke mutatie werd er voorheen altijd gekeken naar bloed, en ging men
op zoek naar een mutatie die aanwezig was in een deel van de cellen. In deze studie zijn 27
polyposis patiénten zonder APC-mutatie onderzocht of zij drager waren van een mozaieke
APC-mutatie. Hierbij werd niet gekeken naar DNA uit bloed, maar juist naar DNA geisoleerd
uit de poliepen. De hypothese was dat als twee of meerdere poliepen dezelfde mutatie hadden,
er een onderliggende mozaieke mutatie kon zijn. In negen van de 18 patiénten met 21 tot
100 poliepen in de darm, en in twee patiénten waarvan we wisten dat ze een mozaieke APC-
mutatie droegen, konden we dezelfde APC-mutatie vinden in meerdere poliepen. Om te
kijken of deze mozaieke mutatie in het hele lichaam zat, of alleen in de darmen, hebben we
DNA uit verschillende weefsels (bloed, speeksel, normaal darmweefsel) getest op de APC-
mutatie aanwezig in de poliepen. In drie patiénten was de mutatie die in de poliepen zat
ook terug te vinden in DNA uit bloed, in 1 patiént zat de mutatie niet in bloed maar wel
in normaal darmweefsel en in zes patiénten zat de mutatie niet in DNA uit bloed en was
geen DNA uit normaal darmweefsel aanwezig, of was testen van dit weefsel niet mogelijk. In
één patiént werd een mutatie gevonden in de poliepen die niet aanwezig was in het normale
darmweefsel. Voor deze patiént verwachten we dat 1 gemuteerde cel zich verspreidde door de
darm, zich deelde en uiteindelijk uitgroeide tot een poliep. Uit deze poliep liet dan weer een
cel los die zich verder verspreidde zodat er meerdere poliepen ontstonden.
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