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Abstract

In this study we design, develop, implement and test an analytical framework and measure-

ment model to detect scientific discoveries with ‘breakthrough’ characteristics. To do so we

have developed a series of computerized search algorithms that data mine large quantities of

research publications. These algorithms facilitate early-stage detection of ‘breakout’ papers

that emerge as highly cited and distinctive and are considered to be potential breakthroughs.

Combining computer-aided data mining with decision heuristics, enabled us to assess struc-

tural changes within citation patterns with the international scientific literature. In our case

studies we applied a citation impact time window of 24–36 months after publication of each

research paper.

In this paper, we report on our test results, in which five algorithms were applied to the

entire Web of Science database. We analysed the citation impact patterns of all research

articles from the period 1990–1994. We succeeded in detecting many papers with distinct-

ive impact profiles (breakouts). A small subset of these breakouts is classified as ‘break-

throughs’: Nobel Prize research papers; papers occurring in Nature’s Top-100 Most Cited

Papers Ever; papers still (highly) cited by review papers or patents; or those frequently men-

tioned in today’s social media. We also compare the outcomes of our algorithms with the

results of a ‘baseline’ detection algorithm developed by Redner in 2005, which selects the

world’s most highly cited ‘hot papers’.

The detection rates of the algorithms vary, but overall, they present a powerful tool for

tracing breakout papers in science. The wider applicability of these algorithms, across all

science fields, has not yet been ascertained. Whether or not our early-stage breakout papers

present a ‘breakthrough’ remains a matter of opinion, where input from subject experts is

needed for verification and confirmation, but our detection approach certain helps to limit

the search domain to trace and track important emerging topics in science.

Keywords: scientific breakthroughs, computerized search algorithms, early stage detection,

citation impact patterns, Nobel Prizes
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1. Introduction

Scientific and scholarly research may result in a new discovery1. The nature and impact

of such a discovery on the cognitive structure and evolution of science may vary consider-

ably. Some of those discoveries, each showing a major impact on future scientific research,

are considered to signal possible breaches, focus shifts, or even turning points in science.

The term breakthrough is usually used for those discoveries that have such a major impact

on science. The impact of discoveries may extend beyond the domain of science and may

be crucial steps towards technological applications, and to innovations and products. In line

with Grupp and Schmoch (1992) several other well-known studies for instance the Hindsight

study (Isenson, 1969), the studies conducted by Jewkes et al. (1958), studies (Heilbron, 1972;

IIT Research Institute, 1968, 1969) by the Illinois Institute of Technology Research investig-

ating the research and development process leading to innovation, the Battelle study (Globe

et al., 1973), the Retrosight project (Wooding, 2007) and also the TRACES study (Walsh,

1973) searched for the impact of scientific discoveries on the development of technology2.

A conclusion in all these and other studies is that it can take many years before a scientific

discovery finds its way into new or adapted technology3. Scientific discoveries and their

incorporation in technology are often interlinked in complex ways within research and de-

velopment (R&D)4 systems, and may span several years, decades, or even centuries.

Given the vast number of scholarly publications published each year an automated com-

puterised selection system might be a preferable method to harvest databases with biblio-

graphic data of scholarly publications and to search for high-impact publications. Such a

generalized and transparent method should facilitate the early and unbiased detection of

potentially important new directions in science and technology. An objective method, con-

sisting of one or more algorithms, is relevant as human beings who carry out the evaluation

of new developments might be forced to follow a set of strict protocols. The role of these

protocols is to prevent preconceptions that could influence this process of evaluation. Fore-

IThese authors contributed equally to this work.
∗Corresponding author

Email address: winninkjj@cwts.leidenuniv.nl (J.J. Winnink)
1Discovery - An observation or finding of something unknown prior to that discovery
2Technology – the application of scientific knowledge for practical purposes
3An example is Graphene. Based on theoretical physical calculations the properties to be expected for a mater-

ial currently known as ‘graphene’ were presented in 1947 by Wallace (1947). It was not until 2004 however, with
the publication by Novoselov et al. (2004) when ‘freestanding’ graphene became a reality and the predicted prop-
erties could be experimentally verified. The Nobel Prize Physics was awarded in 2010 to Konstantin Novoselov
and André Geim for this discovery

4R&D — general term for activities in connection with corporate or governmental innovation
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casting the changes that discoveries may bring about, and monitoring or nowcasting5 the

evolution of emerging areas in science or technology, presents us with a series of conceptual

and methodological challenges.

In this paper we focus on methods to detect discoveries that change the fabric of science

itself, more specifically the immediate impacts within the first two to three years after the

discovery was published. Such early-stage detection of major discoveries is relevant not only

to scientists themselves, but also to government policy-makers and corporate R&D execut-

ives as they may signal significant focus shifts in industrial R&D systems. On the basis of

such information funding strategies can be adapted knowing a possible major new devel-

opment exists. Policy-makers and funding agencies have a particular interest in knowing in

which direction research6 and innovation7 are heading to gain or sustain economic growth

and prosperity, or to allocate scarce resources for R&D. These R&D decision-makers usually

only oversee the areas of science and technology they focus on, and therefore they might

easily miss or misinterpret relevant (fast moving) developments outside their focal area. The

newest developments with possible large and immediate impacts on ‘upstream’ science and

technology in later ‘downstream’ stages of development are of particular importance.

This paper further discusses on the identification at early stage publications that have

the potential to stimulate areas to evolve into ‘hot spots’ in science. In this paper the re-

search objectives, the theoretical framework that is used as a basis, the methodology and

data sources, empirical results, conclusions and insights are presented. Detailed additional

supporting information in relation to this research can be obtained from the authors and

can also be found in Winnink (2017).

2. Method and data sources

2.1. Theoretical and conceptual framework

Science as a dynamic system. Science can be considered a dynamic system8 in which schol-

ars and their research activities play a dominant role, and discoveries can act as events that

change the nature, shape or direction of scientific progress — either in terms of new know-

ledge production, or an interpretation or reinterpretation of existing knowledge, ideas and

know-how. In general, systems operate in the vicinity of a certain equilibrium state and

are considered to be stable unless factors force the system to undergo larger-than-usual

5Nowcasting - the activity of estimating the current situation on the basis of historic data
6Research – studious inquiry or examination; especially: investigation or experimentation aimed at the discov-

ery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical applic-
ation of such new or revised theories or laws. Source: http://www.merriam-webster.com/dictionary/research

7Innovation – the act or process of introducing new ideas, devices, or methods. Source:
http://www.merriam-webster.com/dictionary/innovation

8System – a group of related parts that move or work together Source:
http://www.merriam-webster.com/dictionary/system
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changes and to enter a state from which it cannot readily return to the previous situation.

Such changes from one stable state to another are also called ‘phase transition’ or ‘phase

change’, in analogy to comparable processes in physics, chemistry and biology. The dy-

namic behaviour of complex systems is covered extensively in the scholarly literature for

instance (von Bertalanffy, 1969). All systems, not just the large ones, can undergo irrevers-

ible9 changes (Mandelbrot, 1982). Several empirical studies (Scheffer et al., 2009; Scheffer,

2010, 2009; Lade and Gross, 2012) have shown that dynamic systems can transmit early-

warning signals indicating a ‘phase transition’ is about to happen; a transition to a new state

in which it stays until a new event forces the system to move to yet another state. Such a

major transition stands out between the more common ‘minor’ changes a system undergoes

frequently. Whether or not a scientific discovery should be considered a minor or major

change — a breakthrough or not — has been a topic of study and academic debate during

the last 50 years.

Progress in science. There is a general notion that science progresses on the basis of work

done by scholars, researchers and scientists that builds on prior achievements (often by oth-

ers); as described by the motto “If I have seen further it is by standing on the shoulders of

giants”10. The evolution of science, however, does not follow a linear, continuous, cumulat-

ive unified path, which is the impression of the development of science as it emerges from

textbooks (Kuhn, 1962), where the knowledge is ordered in such a way that it can serve edu-

cation. Kuhn distinguishes ‘normal’ science and ‘revolutionary’ science and argues that the

development of science alternates between these two states. In normal science discoveries

fit within an existing paradigm11 and are expected12. Revolutionary science deals with those

discoveries that are at odds with the then existing paradigm.

Normal science, in Kuhnian terminology, is scientific research conducted within a single

paradigm. Within normal science the foundations of the paradigms and the paradigms them-

selves are not argued, and science research functions as a ‘puzzle-solving’ activity inside

a framework of common understandings and starting points. At the point when tension

between the then current paradigm and observations from scientific research occurs, a new

paradigm might come into existence, in which case a ‘paradigm shift’ can be observed. Wray

(2011, p.202) argues: “. . . According to Kuhn’s mature view, a new theory is developed in a

field in an effort to account for an anomaly that the accepted theory was unfit to account

9Without external influence the system is incapable of returning to the previous condition or state
10This metaphor is usually attributed to Sir Isaac Newton, but should be ascribed to Bernard of Chartres as it

was first recorded in the 12th century (Merton, 1965, p.267)
11Kuhn (1962) defines a paradigm as “. . . that which the members of a scientific community, and they only

share. . . ”
12Although there is a sense that a discovery is forthcoming the exact moment it will happen is uncertain
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for . . . ”. The new paradigm enables the resolution of previously unsolvable problems and

replaces the old one. Paradigm shifts proliferate slowly as the relevant scientific community

needs to be convinced to alter its views and approaches. This process will go on forever.

Kuhn’s observation of discontinuities in the development of science is now widely accepted.

Results of scientific research that can only be explained by changing an existing paradigm are

characteristic for revolutionary science, according to Kuhn. Radical novel approaches, new

information and discoveries, which are incompatible with the current dominant theoretical

framework and beliefs within a science field, may suddenly appear on the scene and revo-

lutionize the cognitive structure of that field (Andersen et al., 2006). These are the ‘phase

transitions’ that have a large impact on science within a relatively brief span of time.

Discoveries in science. Identical or related discoveries frequently come in a manifold — “. . . It

is an interesting phenomenon that many inventions13 have been made two or more times by

different inventors, each working without knowledge of the other’s research. . . ” (Ogburn

and Thomas, 1922). Such ‘multiple discoveries’ may differ in appearance, and occur at dif-

ferent points in time, or at different geographical locations. Merton (1961, Ch.II, p.478), who

confirms the observations made by Ogburn and Thomas (1922) expands on the notion of

manifold discoveries concluding that “. . . singletons, rather than multiples, are the exception

requiring distinctive explanation and that discoveries in science are, in principle, potential

multiples. . . ”. Merton (1961, p.480) also refers to his study on historical incidents of mul-

tiple discoveries in which he reported on the occurrence of up to five and six-fold discoveries.

Price (1963, p.65–66) also discusses this phenomenon and links it with Kuhn’s concept of

normal science in which discoveries in a sense are to be ‘expected’ from time to time. Si-

monton (1978, 1979) and Brannigan and Wanner (1983) analysed historic data on sequences

of discoveries in science to uncover the mechanism behind the phenomenon of multiple

discoveries. Brannigan and Wanner (1983) conclude that of the several possible stochastic

models that can be used to describe the distribution of the grade of multiples, models based

on a Poisson distribution gives adequate results.

Scholarly communication. Scientists generally use the results achieved by other researchers

as a starting point for their scientific insights, as is expressed by the already mentioned

metaphor “If I have seen farther, it is by standing on the shoulders of giants”. A discovery can

only contribute to advances in science when it is codified in a way that allows communication

to others. The principal means of scholarly communication is by text; in modern-day times

13Nowadays the terms ‘discovery’ and ‘invention’ have distinctive and separate meanings. In the past these
terms were used interchangeably, and ‘invention’ was also used in situations where currently the term ‘discovery’
is preferred
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usually by research articles in scholarly or technical journals (‘research publications’) or in

books. Price (1963, Ch.3, p.68) discusses the role of scientific publications, and concludes

that “. . . The scientific paper therefore seems to arise out of the claim staking brought on

by so much overlapping endeavour. The social origin is the desire of each man to record

his claim and to reserve if for himself. . . ” Sharing and claiming research findings is a ma-

jor reason for communication within the scientific community. Communication in science

takes place in several forms. Formal means of communication are scholarly publications,

conference proceedings, and books. Less formal14 ways of communication play a role within

teams of collaborating researchers who have close working relations in which information

sharing is obligatory for the team to be able to function optimally. Crane (1972) concludes,

that as scientists rely on research results of other researchers, they group together in ‘in-

visible colleges’. The citing-cited relations between scholarly publications form the fabric

of these invisible colleges. Formal means of communication within the virtual colleges are

publications (Lievrouw, 1989). Price (1965) argues that the pattern of bibliographic refer-

ences reflects the nature of the scientific research front. Lievrouw (1989, p.616) examines

the relationship of bibliometric techniques, especially citation analysis, with communication

theory and research, and argues “. . . However, it15 is of particular interest here because it is

possibly the best-known model of scientific communication. . . ”.

Citation analysis — e.g. Moed et al. (2004) — acts as an important framework for the ana-

lysis of various aspects of the scientific community, and is a central theme in bibliometrics16

Developments in science can be monitored using citation relations between scholarly pub-

lications. Citation relations between patent publications and scholarly publications provide

an — albeit partial — view on the influence of scientific research on technological evolution.

Citations are biased in the sense that they are influenced by several mechanisms that are not

directly related to the contents of the publication. Price (1963, p.87) mentions that in certain

situations where the results of team research are reported “. . . The participating physicists

are not mentioned, not even in a footnote. . . ”. Merton (1968) points to psychosocial condi-

tions that have an impact on citation behaviour, for instance already eminent researchers

are given disproportionate credit in some cases. Crane (1972, p.83) concludes that social

factors within a research field have an effect on the diffusion of knowledge in the field, and

that these factors furthermore determine which information is to be used in later publica-

tions. Notwithstanding the limitations, citation relations can be used as a proxy to reveal the

14Data from social media is not taken into account in this study as this is (1) a recent development and (2) the
value for the analysis such as those carried out in this study is not yet evident

15[Added by the author] with ‘it’ Liefrouw refers to the concept of ‘invisible colleges’
16Pritchard (1969, p.349) defines ‘bibliometrics’ as “. . . the application of mathematics and statistical methods

to books and other media of communication. . . ”, and by Broadus (1987, p.376) as “. . . the quantitative study of
physical published units, or of bibliographic units, or of the surrogates for either. . . ”
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evolution of science and technology.

The bibliographic information of scholarly publications is used in this study as a major

information source. These publications do not form a homogeneous group as they present

various forms of dissemination of information between scholars. A document type is as-

signed to each scholarly publication when the accompanying bibliographic information is

stored in a database. One of the assigned classes is ‘article’. Articles are considered to be

the publications that contain the results of original scientific research. These publications

are often multi page publications published in a scientific journal. The concept of an article

seems obvious at first sight but consists of several types of publications and contains multi

page publications as well as shorter publications known as, for instance, ‘letters to editor’ or

‘opinion letters’. Such shorter publications may also contain the results of original research

or can contain original ideas17.

Discoveries and breakthroughs. Scientific practice can be seen as a system that continuously

undergoes changes as a result of discoveries that influence the science system. Every ‘open’

scientific discovery - one that is properly documented and communicated to others within

the relevant research community - is likely to have an impact, although (at first) possibly

negligible, on (r)evolutionary changes in science. The discoverers and other subject experts18

are able, usually with the benefit of hindsight, to identify and value those impacts after a

period of time.

When studying the evolution of science fields, the flow of publications is often used

as an approximation of the dissemination of the knowledge related to a scientific finding

and of the way other researchers follow-up on this finding. Knowledge diffusion does not

guarantee a continuous gradual evolution of science because the diffusion process changes

parameters in the system and can therefore result in unexpected high-impact changes. Some

discoveries might not be noticed for some time, for many reasons.19 Some might even be

totally neglected where the result is not properly documented or communicated – the result

is forgotten or its implications overlooked. Only a small number of scientific discoveries lead

to large, structural changes in science fields, and pave the way for novel insights and further

productive research. For a discovery to be qualified as a distinctive ‘major’ discovery not

only requires the judgement by a wider range of subject experts, but also needs sufficient

length of time to allow extensive validation and general appreciation. Becattini et al. (2014)20

17Koshland (2007) is an example of a two-page manuscript typified as ‘opinion letter’ containing relevant ori-
ginal ideas to which the document class ‘article’ is assigned

18Subject expert - An expert in the field; someone who has specific knowledge concerning a subject
19The fact that a discovery might remain unnoticed by the scientific community for some time, but is later

considered a breakthrough, is for instance described by Ciechanover (2009, p.2)
20Becattini et al. (2014) “. . . After 1985 about 15% of physics, 18% of chemistry, and 9% of medicine prizes were
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analysed the time lag between discoveries and the awarding of a Nobel Prize and conclude

that Nobel prizes are awarded only very rarely within 10 years of a discovery.

The term ‘breakthrough’ is usually applied to such discoveries, a term frequently used

for events that are considered major discoveries. Major journals like National Geographic,

Nature and Science regularly publish overviews of what they regard as the major scientific

discoveries in a previous period or specific year; these lists are usually based on expert

opinions. What exactly is meant by a breakthrough or major discovery is not specified,

and for good reason: there is no generally accepted, let alone a universal, definition that

can count on full support throughout the scientific community. In particular the notion

“. . . new way of thinking about a problem. . . ” is an essential property of a breakthrough put

forward by Hollingsworth (2008, p.317). The term breakthrough is not only used for the

nature of the transition (‘What exactly did change?’) but is also used for the point in time the

event occurred (‘When did the change occur?’) or to the impact the discovery had on other

systems. The fact that the same term is used for closely related phenomena is elucidated in

(Hofstadter and Sander, 2013, Ch.1).

This absence of a generally accepted definition is illustrated by the fact that various syn-

onyms are in use for the term breakthrough such as ‘advance’, ‘development’, ‘step forward’,

‘quantum leap’, ‘evolution’, and others. The lack of a single definition for a breakthrough

complicates the identification of these phenomena. Hollingsworth (2008, p.317) defines a

breakthrough as “. . . A major breakthrough or discovery is a finding or process, often pre-

ceded by numerous small advances, which leads to a new way of thinking about a prob-

lem . . . This new way of thinking is highly useful to numerous scientists in addressing

problems in diverse fields of science. . . ”. Hollingsworth argues further that science evolves

not just through the occasional breakthroughs but also by means of numerous success-

ive small, incremental advances. The co-existence and interplay between ‘incremental’ and

‘breakthrough’ advances is in line with Kuhn’s idea that after a ‘paradigm shift’ (i.e. revolu-

tionary science) has occurred ‘normal science’ will take over — at least for some period of

time (Kuhn, 1962).

In spite of the lack of proper operationalization and identification, there is general agree-

ment only on the fact that breakthroughs are, by definition, rare events. The precise moment

such a major change occurred is even in retrospect hard to pinpoint and foretelling when

such an event is likely to occur is near possible. Nonetheless, some progress is currently

being made on theoretical and empirical models that may enable forecasting or prediction

methods. For instance, Ball (2004) discusses the fact that systems need a certain ‘critical

awarded within 10 years of the corresponding discoveries. By contrast, before 1940 about 61% of physics, 48% of
chemistry, and 45% of medicine prizes were awarded within 10 years of the corresponding discoveries. . . ”
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mass’ to undergo a major change. Complex dynamic systems can have ‘tipping points’

(Scheffer et al., 2009; Scheffer, 2010). The prediction of such tipping points before they

are reached is, however, extremely difficult. Scheffer et al. (2009) concludes “. . . work in dif-

ferent scientific fields is now suggesting the existence of generic early-warning signals that

may indicate for a wide class of systems whether a critical threshold is approaching. . . ”.

Breakthrough discoveries are events that have a major impact on future scientific re-

search and can be considered a tipping point in science. Several scholars constructed theor-

etical models that focus on the diffusion of knowledge within the scientific community and

connect this knowledge diffusion with the occurrence of discoveries. Andersen et al. (2006)

focus on the cognitive changes that occur in science when a paradigm shift occurs. In the

publications of Bettencourt and colleagues (Bettencourt et al., 2009; Bettencourt and Kaiser,

2011, 2015) a percolation model describing the development of science is proposed. Bon-

accorsi (2008, 2010) hypothesises that new science fields that came into existence after the

1970s follow a different evolutionary development path compared to already established

sciences. Chen et al. (2009) propose an explanatory and computational theory of trans-

formative discoveries in science. Cintron-Arias et al. (2005) tested mean-field deterministic

epidemic models to describe knowledge diffusion. A catastrophe model to develop a formal

non-linear model of scientific change in concordance with Kuhn’s hypotheses is put forward

by Perla and Carifio (2005). Sung (2008) shows that experiments play a crucial role in formu-

lating an explanation of the RNAi anomaly. Vitanov and Ausloos (2012) focus on the uses

of compartmental epidemic models21 — Lottka-Volterra’s model and others — to describe

technology diffusion. These and other theoretical models contain conceptual descriptions of

the evolution of the science system and can therefore be used to identify areas that evolve

into hot spots.

Characterizing discoveries. Time not only picks the winners, it also unmasks discoveries

that turned out to be hypes22, hoaxes and frauds. An example of a hoax is the claim for

the existence of nuclear fusion at room temperature — ‘cold fusion’ (Fleischmann and Pons,

1989). This claim was almost immediately criticized, and it was concluded (Dmitriyeva et al.,

2012) that “. . . According to our calculations, the experimentally measured excess heat can

be accounted for fully by this chemical reaction. . . ”. The Korean researcher Hwang Woo-

Suk was considered one of the pioneering experts in the field of stem cell research until

a publication by Cyranoski (2004) uncovered Hwang‘s fraudulent research. The increasing

incidence of retraction of scientific publications (Cokol et al., 2008) blurs the picture of the

21Compartmental epidemiological models with a name based on the specific compartment structure of the
model, e.g. SIS, SIR, SEIR

22Hype – extravagant or intensive publicity or promotion (source: Oxford Dictionary of English, 2nd edition)
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Table 1: Cha-Cha-Cha typology of discoveries

Koshland
type

Type of discovery Kuhnian type Characterisation

Charge These discoveries solve problems that
are quite obvious, but in which the way
to solve the problem is not so clear

Normal science ‘. . . In these discoveries, the scientist is
called on, as Nobel laureate Albert
Szent-Györgyi put is “to see what
everyone else has seen and think what
no one else has thought before
. . . ”’(Koshland, 2007, p.761)

Challenge These discoveries are a response to an
accumulation of facts or concepts that
are unexplained by or incongruous with
scientific theories of the time.

Revolutionary
science

“Sometimes the discoverer sees the
anomalies and also provides the
solution. Sometimes many people
perceive the anomalies, but they wait
for the discoverer to provide a new
concept.”(Koshland, 2007, p.761)

Chance These discoveries are often called
serendipitous

Revolutionary
science

‘finding the unsought’ (van Andel,
1994), like the discoveries of penicillin
or Teflon R© (Koshland, 2007)

bibliographic data. Clearly the term ‘breakthrough discovery’ should be used with caution.

So, perhaps it is not surprising that in the academic literature there is a lack of convincing

typologies or helpful classification systems of scientific discoveries.

One of the exceptions is the ‘Cha-Cha-Cha’ theory developed by Koshland (2007), who

classifies scientific discoveries into three distinct classes based on the nature of the dis-

covery in relation to already existing scientific knowledge: Charge, Challenge and Chance.

Koshland’s (2007) classification (see Table 1 on page 10), focusing on how a discovery is

different from the then existing scientific knowledge, is just one way of classifying discov-

eries. Scientific discoveries can be classified on the basis of various characteristics. Redner

(2005) for instance classifies discoveries that are documented and presented in a scholarly

publication, according to citations of those publications by other scholars. We will return to

Redner’s interesting approach, which classifies discoveries as either non-breakthrough or a

breakthrough. Discoveries of type Charge are the most common.

Collaboration and research teams. Discoveries are not only about those by individual, prize-

winning ‘giant’ researchers and scholars, those who allegedly “stand on the shoulders” of

other preceding giants, they are also about joint efforts and research collaboration between

individuals benefiting from each other’s knowledge, inspiration and know-how. Watson &

Crick’s discovery of DNA in the 1950s is probably the most well known example in con-

temporary science. As modern science itself has become much more collaborative (Wuchty

et al., 2007), especially ‘big science’ based on large shared research facilities (Price, 1963), the

same is likely to apply to scientific breakthroughs. In an empirical study Uzzi et al. (2013)

conclude that teams are 37.7% more likely than solo authors to insert novel combinations

of prior work into familiar knowledge domains. Publications with such novel and unusual

combinations are rare but are twice as likely to become highly cited works.
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Analysing team collaboration in general one of the main conclusions drawn by Uzzi and

Spiro (2005, p.492) is “. . . Small world networks23 do benefit performance but only up to

a threshold, after which the positive effects of small worlds reverse. . . ”. Whitfield (2008,

p.720–723) concludes that research is becoming more and more a matter of team activity

and the contribution of single authors to science is dwindling. Green and Brendsel (2008)

respond that this observation might be correct, but “. . . Lightning can still strike the solit-

ary explorer whose mind is prepared. . . ”. These results are in line with Wuchty et al. (2007)

who conclude that knowledge-producing teams increasingly dominate over solo authors, and

that their publications are more frequently cited; this citation advantage increases over time.

These authors furthermore conclude that the process of knowledge creation has undergone

a fundamental change in moving from research conducted by individual researchers to re-

search carried out by teams of researchers.

Burt (2004) concludes that the opinion and behaviour of people belonging to a group

are more homogeneous within a group than between groups. Individuals who are part of

multiple groups can therefore bridge cognitive gaps between groups and come up with solu-

tions that otherwise might be unseen. Guimerà et al. (2005) conclude that the forming of a

large group of practitioners can be described as a ‘phase transition‘ after having analysed

more than 4 million publications issued in a period of more than 30 years. Jones et al.

(2008, p.1261) conclude that collaboration in science is increasingly becoming composed

of co-operations spanning university boundaries. According to Skilton (2009) articles co-

authored by teams that include frequently cited scholars and teams whose members have

diverse disciplinary backgrounds are cited more often. Weinberg (1970, p.1056) argues that

the formation of large interdisciplinary teams centred on pieces of expensive equipment

causes the increasing importance of team science, especially since World War II. Such re-

search teams are said to be part of ‘big science’ (Price, 1963). Work groups construct a

common group identity over time through the process of value convergence between group

members (Meeussen et al., 2014). Bettencourt et al. (2008) analyse the quantitative social

structures of collaboration that develop as new scientific fields emerge. An increased in-

teraction between scientists exploring different aspects of a problem creates new concepts,

techniques and a shared research programs resulting in successful new fields.

Research teams are not fixed structures and evolve over time. Tuckman (1965) introduces

what has become known as the standard model of small group development in which four

stages are distinguished. McGrew et al. (1999) extend Tuckman’s model with three declining

phases to create a model that describes both the formation and the decay of small groups.

23[Added by the author] A small-world network is a type of mathematical graph in which most nodes are not
neighbours of one another, but most nodes can be reached from every other node by a small number of hops or
steps. Source: https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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Bettencourt and Kaiser (2011) point to the difficulty in defining and comparing science fields

and observe that there seems to be a general sense that the different fields undergo similar

stages of development. Of particular importance in a field’s history are the moments at

which conceptual and technical unification allows the widespread exchange of ideas and

collaboration. These moments mark the point in time when the networks of collaboration

between scholars show the analogue of a percolation phenomenon, and develop a giant

connected component containing most authors of a conceptual framework.

2.2. Analytical framework

Facing the methodological challenge. Bibliographic information within a research publica-

tion that first describes a discovery may refer to it’s relevance or anticipated relevance for

scientific progress, but its true impact depends on its reception and implementation over

time. Subsequent research publications, referring to the discovery and its list of literature

references (‘citations’), will reflect and reveal reactions from peers in the scientific com-

munity to the breakthrough work. As a consequence, bibliographic information can only

help identify breakthroughs in those cases where these scholarly publications receive ex-

ceptional scores on citation-impact metrics24. Publications with a large ‘citation impact’,

or those that are immediately cited, are more likely to be seen - with hindsight - as break-

through publications by the scientific community. But reaching such shared opinion takes

time - often many years or decades. In this thesis, we will refer to highly cited publications

that have not (yet) acquired breakthrough status as breakout publications, or breakthrough

by proxy25. Only after sufficient time has elapsed, and with the benefit of expert opinions,

will some breakouts be considered a breakthrough. As put forward in Section 2.3 on page

15 this study addresses the following methodological challenge:

“Is it possible to design, develop, implement, and test an analytical framework

and measurement model as a general-purpose tool with a range of practical ap-

plications for early detection of breakthroughs in worldwide science?”

In a first step towards operationalization26 we will focus our attention on identifying break-

out publications that are characterised by specific citation impact profiles. To do so, this

study focuses on the observable effects of discoveries on the research community, guided

by the research question:

“What kind of detectable evidence do discoveries leave behind in the research

literature in terms of sudden changes and distinctive structural developments?”

24Metric – a technical system or standard of measurement
25This group is further broken down into subcategories as explained in Section 3.4
26Operationalization is the process of strictly defining variables into measurable factors
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Bettencourt et al. (2009, p.220) hypothesize “. . . there is a universal character in discover-

ies. . . ” and argue that circumstantial evidence for the existence of such universal character-

istics is also supported by several other studies, such as (Gerstein and Douglas, 2007; Uzzi

and Spiro, 2005; Leskovec et al., 2005). Chen et al. (2009) introduce an explanatory and com-

putational theory of ‘transformative discoveries’ science based on the central premise of the

connection of disparate areas of knowledge is introduced. Their theory explains the nature

of these discoveries, and also characterizes the subsequent diffusion process. According to

the authors the primary value of the theory is that it provides both a computational model of

intellectual growth, and concrete and constructive explanations of where insightful inspira-

tions for transformative scientific discoveries can be found.

Tapping into universal characteristics therefore opens up the possibility of designing

early-detection models of breakouts and breakthroughs, either models based on small-scale

case studies or those derived from large-scale quantitative analysis. Julius et al. (1977) is

an early example of the former, using expert knowledge only. The aim of this study is to

tackle this question systematically and in a large-scale ‘macro-level’ fashion, i.e. scanning

world science for breakouts. Obviously, one cannot rely on ‘micro-level’ individual expert

judgements (or expert panels) to identify and check each and every of the hundreds or

thousands of potential breakthroughs. External observers and analysts, who are not experts

in the field under study, will have to resort to other information sources — notably the

citations between research publications. Of course, these citations are also expert based,

albeit indirectly: each citation from a fellow scientists or scholar to that specific publication

describing the discovery can be seen as a ‘vote of relevance’, an expert-based confirmation

that the cited work has been noted or had an impact on follow-up scientific research.

The key methodological challenge is to develop citation-based early-detection algorithms

that enable large-scale scanning of the global scientific literature — computerised algorithms

to identify at an early stage those scientific publications that have, or are likely to have, an

above average impact on science. For a computational perspective, an expanding set of

citation-based algorithms all build on earlier research methodologies aimed at identifying

and monitoring ‘emerging topics’, ‘emerging technologies’ or ‘research fronts’ in scientific

progress, technological development, or R&D-based innovations. These ‘tracing and track-

ing’ methods do not focus on individual publications, but rather on large sets of published

documents (usually research publications and/or patents); they also tend to adopt longer

time periods. The US researcher Henry Small pioneered the large-scale analytical approach

in the 1970s. He introduced the notion that rapid shifts in research focus, as identified in the

scholarly research literature, could be regarded as a signal of ‘revolutionary’ change (Small,

1977). More than 30 years later, his research program is still on-going — Henry Small and his
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colleagues combine direct citations and co-citations helps to adequately identify emerging

topics (Small et al., 2013).

The citation-based algorithms introduced in this paper are closely related to work by Red-

ner (2005) who classified discoveries based on the number of citations of the publications.

More recently, Baumgartner and Leydesdorff (2014) applied ‘group-based trajectory model-

ling’ to citation curves of research publications. Ponomarev et al. (2012) focus on citation

patterns in combination with statistical modelling, while a follow-up study by Ponomarev

et al. (2014) focuses on the effects of interdisciplinarity in the subject categories, and geo-

graphical diversity. Schneider and Costas (2017) also use citation-based methods to detect

potential breakthrough publications. Wang et al. (2016) introduce a measure for the combin-

atorial novelty of a paper to identify those that are likely to have an above average or even

high-impact. The approach adopted in this study differs significantly as it not only takes as

its leading principle the number of citations a publication receives, but also focuses on the

dynamic influence a publication has on the scientific community. This dynamic influence is

expressed not only in the number of citations but also in the sources of the citations, like for

instance authors, science fields, and clustering of citations. Another difference is the focus

on the period from the publication of a paper until three years later.

Designing the early-stage detection algorithms. The research in this study is, as mentioned

earlier, rooted in the assumption that bibliographic information for scholarly publications

can be used as a proxy to analyse and monitor (sudden) developments in science. Citation

links between publications form the basis for measurement. These citation links form the

citation profile of a publication that varies over time as a publication gets more and more

citations. The response of the scientific society on a publication is reflected in the number

of times a publication is cited and reflects the impact a publication has on the evolution of

science, as far as it can be decided on the basis of citation patterns. A basic assumption is

that researchers working in the same area are able to value a discovery in relation to already

existing knowledge. The impact of a publication on science is in this way linked to the way it

is cited27. As a consequence of this approach informal communication that might take place

is not taken into account.

Contrary to earlier work and the methods briefly described above, the focus in this

study is on the citation impact behaviour of individual scholarly publications relatively soon

after publication. The detection method covers a range of citation-based criteria, which are

identified by studying the seminal research publications of generally acknowledged break-

throughs. The underlying distinctive citation impact patterns of these ‘breakthrough exem-

27In this study the citation information is used ‘as is’
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plars’ are unravelled and their key characteristics are used as a ‘citation profile’ to design

computerised algorithms for searching Challenge and Charge types of breakthroughs in the

global research literature. These early detection algorithms should be able to: (1) identify re-

search publications describing discoveries that are now regarded as breakthroughs, (2) track

down ‘breakout’ discoveries that have not yet been recognized as such.

This approach relies on systematic large-scale searches within the worldwide scholarly lit-

erature. Assembling information from large, international bibliographic databases enables

external, independent analysis to identify significant short-term28 changes in publication

and citation patterns. In this study, the bibliographic is extracted from the Web of Science

Core Collection database (abbreviated here to WoS). Further information about this inform-

ation source, and relevant measurement details, are provided in Section 2.4. The analytical

procedure is divided into the following seven steps:

1. Search for characteristic citation patterns of the selected breakthrough publications;

2. Selection of distinctive patterns to construct and test the search algorithms;

3. Selection of WoS-indexed research publications in the period 1990–1994 (focussing

original research findings published in ‘article’, and ‘letter’ document types);

4. Determining ‘optimal’ citation frequency threshold values to pre-select cited publica-

tions;

5. Construction of two datasets with WoS-indexed publications published in 1990–1994,

with publications that belong the top 10% most cited within two years after publica-

tion. These sets are based on two types of research subfields: (1) WoS-related subject

categories29 and (2) in-house defined document clusters30;

6. Application of all the developed detection algorithms to both datasets;

7. Quantitative, statistical analysis of the results.

2.3. Research questions and hypothesis

We advance the hypothesis:

“It is possible to design, develop, implement, and test an analytical framework and measure-

ment model as a general-purpose tool that uses bibliographic information for early detection

of potential breakthroughs in science.”

How generic are the algorithms we constructed in terms of their efficacy across all fields of

science? This paper presents the test results, focusing on three research questions:

28In this study ‘short-term’ refers to the period 2-3 years immediately after publication of a research paper
(indexed by the WoS) in which the discovery is first introduced and/or described

29In the WoS 251 different subject categories describing different fields in science are defined
30A document classification method based on citation relations between publications is developed (Waltman

and van Eck, 2012) as an alternative for the WoS subject categories
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1. Can the algorithms be used as a generally applicable method to identify breakout pa-

pers, and if so under what data availability conditions?

2. What are the similarities and differences between the algorithms in terms of their ability

to detect breakouts?

3. Can we determine the effectiveness of each algorithm in terms of identifying breakout

papers that are generally regarded as breakouts and potential breakthroughs?

2.4. Data sources

Our bibliographic database consists of research papers extracted from CWTS’ in-house

off-line version of Clarivate Analytics’31 Web of Science database (WoS). From this database,

we selected all 2,715,651 scientific research publications from the period 1990–1994 that

were tagged with the WoS document types ‘article’ or ‘letter’. These documents are most

likely to report on ‘original research’. We opted for the time period 1990–1994 to track the

effect of a discovery over an extended period of time, and to verify and validate whether se-

lected papers are currently — in retrospect — (still) regarded as breakouts or breakthroughs.

For reasons of citation impact normalisation, we adopt two publication-based delineations

of scientific disciplines: (1) ‘Categories’, the equivalent of the subject categories used in the

WoS32, and (2) ‘Clusters’ derived from a citation-based clustering algorithm developed at

CWTS (Waltman and van Eck, 2012); we refer to this method as the ‘CWTS document cluster-

ing method’. Each of the 251 Categories comprises a set of entire WoS-indexed journals; the

865 Clusters each consist of large numbers of individual research papers. WoS subject cat-

egories and CWTS document clusters represent scientific disciplines that are in line with the

definition used by other scholars (Darden and Maull, 1977); we refer to both as ‘discipline’

in a generic way.

To narrow down our search, we selected those papers that belong to the top 10% most

highly cited during the first 24 months after publication33 per Category (‘Categories’) or

Cluster (‘Clusters’) per year. Categories contains 253,558 highly cited papers and Clusters

214,827. All computations and analyses were carried out separately on both datasets.

3. Results

3.1. Breakout detection algorithms

Our algorithms meet the following general specifications. The algorithms (1) can be dir-

ectly derived from data-analytical results in our case studies; (2) are systematically applicable

31This company comprises of the former division of Thomson Reuters responsible for the WoS that has been
sold (July 2016) to two investment firms: Onex Corporation and Baring Private Equity Asia.

32‘http://mjl.clarivate.com/cgi-bin/jrnlst/jlsubcatg.cgi?PC=D’ presents information on WoS subject categories
33In our opinion this narrowing down of the dataset is allowed given the skewness of the citation distribution

in combination with the fact that we search for potential breakthrough publications, i.e. publications that stand
out, at very early stage
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across the Web of Science; (3) signal a sudden significant increase in one of the parameters of

a paper’s citation impact pattern; (4) are systematically applicable at the level of individual

research papers; and (5) can be implemented without any special pre-processing of biblio-

graphic data. From the case studies we developed, using these criteria, the following five

‘general purpose’ algorithms, each representing a specific characteristic of citation impact

patterns.

Application-oriented Research Impact (ari).

The purpose of this algorithm is to identify papers that bridge ‘discovery-oriented science’

and ‘application-oriented science’ as explained in Tijssen (2010). The algorithm emerged

from the case study in which we noticed remarkable, almost instantaneously, shifts over

time in the ratio of citations from discovery-science papers and applied-science papers in

the field of Introns (Winnink et al., 2013). The focus is on papers having a substantial list

of references and are highly cited within the first 24 months after publication. The majority

of the referenced papers focus on ‘discovery-oriented science’, whereas the citing publica-

tions focus mainly on ‘application-oriented science’. Each breakout paper should meet the

following selection criteria that are based on all papers in Categories and Clusters:

• Number of cited papers ≥30, this is the lower boundary for the top decile of the number

of original-research papers in the reference lists;

• Number of citing papers within 24 months ≥ 49, this is the lower boundary for the

top decile of the number of citations received within the first 24 months by the most-

highly-cited papers;

• Number of citing papers > number of cited papers;

• Majority of the cited papers focus on ‘discovery-oriented science’;

• Majority of the citing papers focus on ‘application-oriented research’.

Cross-Disciplinary Impact (cdi).

Captures the diffusion of citing sources among multiple research disciplines. We expect

to find breakout papers that are cited by an increasingly larger number of disciplines over

time. The level or cross-disciplinary impact is defined as the number of different disciplines

(either Categories or Clusters) that are assigned to each of the citing papers. Given the more

homogeneous disciplinary composition of each Cluster, as compared to each Category, one

would expect less interdisciplinary citation flows between Clusters. This aspect is especially

noticeable during the first few years after publication and then almost disappears. This

algorithm is labelled cdisc when applied to the Categories dataset and cdidc when applied

to the Clusters dataset. Breakout papers meet the following lower threshold values per

citation time window, and that are based on the values for the ‘Hazuda paper’ (Hazuda et al.,
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2000) , which is central in our case study of HIV/AIDS research (Winnink and Tijssen, 2014):

• Categories: 1 year: >9 citing disciplines; 2 years >17 disciplines; 3 years >24 disciplines;

• Clusters: 1 year: >2 citing disciplines; 2 years >5 disciplines; 3 years >8 disciplines.

Researchers-Inflow Impact (rii).

The focus is on the influx of new researchers citing the breakout paper. Our case study on

Graphene research (Winnink and Tijssen, 2015) identified papers that attract a remarkable

increase in unique citing researchers. Here we expect to identify breakout papers that have

an impact on an increasingly large community of research-active scholars in the research

domain. Focusing on the annual number of these unique authors, who are first-authors

on citing research papers, we measure the inflow rate by comparing the increase in the

number of researchers at the end of the 1st year after publication, and at the end of the

3rd year. Selected papers should show an increase of at least 52 new citing first-authors.

This threshold results from the increase in new citing first-authors between the end of the

1st year after publication, and at the end of the 3rd year for the paper on the Graphene

discovery (Novoselov et al., 2004) that was central in the analysis presented in (Winnink and

Tijssen, 2015).

Discoverers-Intra-group Impact (dii).

In our study of Ubiquitin research (Winnink et al., 2016), we found that the breakout pa-

pers that describe the scientific breakthrough received most of their citations, within the

first two years, from papers co-authored by authors from the same ‘core group’. The dis-

covery is at first predominately recognized and built upon by members of the same group.

This algorithm is designed to find breakout papers where many citations are from papers

with authors that share co-authorship relationships with the cited authors. The following

selection criteria were applied:

• 90% of the citations are ‘within-group’ citations;

• Within-group papers are defined as papers of which at least 66% of the authors belong

to the core group. This specific lower threshold avoids the inclusion of those papers

for which only one member of a small group — 3 or 4 members — is (co) author;

• The minimum size of a core group is three, which value is chosen to guarantee that in

combination with the above-mentioned 66% threshold, only papers written by at least

two authors of the core group are considered;

• Citations are tracked within the first two years after publication.

Research-Niche Impact (rni).

Also originating from the Ubiquitin case study, this algorithm searches for sets of citing and
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cited papers, within Categories or Clusters, with above-average rates of citation-interconnect-

edness. A breakout paper creates a ‘citation knot’, i.e. a set of papers that cite the breakout

paper but also cite at least one ‘auxiliary’ paper with direct citation ties to the breakout

paper. This closely-knit set of citing and cited papers represents a ‘research niche’. The

next threshold values are determined by analysing for the period 1980–1982 the network

of papers citing the two breakthrough papers from 1980 that in conjunction describe the

ubiquitin discovery (Winnink et al., 2016).

• The number of citations received by the breakout paper, within this niche and within

the first year, is larger or equal to three times the number of interconnected papers

within a citation cluster;

• The lower threshold for the number of breakout-related papers in the ‘citation knot’ is

8.

ari, cdi and rii are more likely to identify Charge discoveries (i.e. solving well-known and

well-defined problems — Kuhn’s normal science), while dii and rni are better equipped

to find Challenge discoveries (i.e. explaining strange, unexpected phenomena — Kuhn’s

revolutionary science). As for Chance discoveries and breakthroughs, given their random

nature, we discarded the search for generally applicable algorithms that may systematically

identify such cases within a short time-span.

Redner’s algorithm as a benchmark

We further implemented the algorithm to identify breakthrough papers developed by

Redner (2005) and use it as benchmark for our algorithms. We applied this algorithm to all

papers of types article and letter from the period 1990–1994. No restrictions on the size of

the citation-windows or the minimum number of received citations were imposed.

3.2. Robustness of the algorithms

We define ‘robustness’ of an algorithm as the ability to identify the same breakout pa-

per(s) irrespective of the total number of citations a paper received within two years. We

tested the robustness empirically by implementing citation count thresholds of 1, 2, 4, . . . ,

1024 citations. Table 2 shows the performance and the robustness of the algorithms for

different thresholds values (2 . . .512) when applied to the Categories and Clusters datasets;

for threshold values ≥ 512 the number of publications in the datasets soon drops to 0. As a

point of reference, the results for Redner’s algorithm (Redner, 2005) are also shown. Table 3

shows the overlap in results between Redner’s algorithm and each of our algorithms when

no threshold applied.

The rii and cdi detection algorithms manage to capture many breakouts and are most

effective for both datasets (Categories and Clusters) because these algorithms focus on the
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Table 2: Number of papers in the Categories and Clusters datasets after applying a threshold value for the
number of references a publication received within the first 24 months and per algorithm the number of selected
publications as function of the applied threshold (2, 8, 32, 128, 512)

Categories ari cdisc rii dii rni Redner’s
algorithm

Threshold value Dataset size Number of documents selected

≥ 2 252,316 264 1,276 3,543 576 19 6,150

≥ 8 156,765 264 1,276 3,543 74 19 5,883

≥ 32 13,583 36 1,246 3,543 0 14 3,748

≥ 128 539 0 375 539 0 4 511

≥ 512 7 0 7 7 0 0 7

Clusters ari cdidc rii dii rni Redner’s
algorithm

Threshold value Dataset size Number of documents selected

≥ 2 214,119 60 13,477 3,501 673 8 6,311

≥ 8 137,969 60 13,451 3,501 74 8 5,839

≥ 32 13,369 56 6,930 3,501 0 7 3,748

≥ 128 534 0 486 534 0 4 508

≥ 512 7 0 7 7 0 0 7

Table 3: Overlap of the results of Redner’s algorithm and the five algorithms (ari, dii, rii, cdi, rni) (no threshold
applied)

Categories Clusters

Algorithms Number of papers marked as breakout

Redner 6,150 6,311

Redner ∩ ari 8 11

Redner ∩ cdi 943 3,210

Redner ∩ rii 2,119 2,108

Redner ∩ dii 0 0

Redner ∩ rni 13 6

more frequently occurring of discovery type ‘Charge’. The cdi rates are much higher in

Clusters because the CWTS document-clustering method groups documents together on the

basis of citation relations. These document-clusters may contain papers from multiple WoS

subject categories; this means that diversity is in fact already achieved within a cluster,

thereby reducing inter-cluster relations. The consequence is that a different and lower thre-

shold level is used to select breakouts when cdi is applied to Clusters. In the long run, this

‘vanishing diversity’ effect largely disappears.

ari and especially rni are much more targeted towards rarer types of breakouts, because

ari focuses on breakouts that bridge the gap between discovery-oriented science and more

application-oriented science. The focus of rni is on areas where the fabric of the citation

network is denser. dii sits between these extremes but is by far the most threshold-sensitive
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algorithm, within both Categories and Clusters; it ceases to be effective above the threshold

of 16 citations. By virtue of their search criteria, dii and rni work best within social networks

and micro research areas with low-citation levels.

In contrast, the breakout hit rate of rii is only affected by higher (≥ 64) values of the

threshold, which follows directly from the requirement that in order to be selected as a

breakout paper, it has to be cited by at least 52 papers within 24 months; this high threshold

for rii is explained above. The performance of rni is only slightly threshold sensitive until

a threshold of 64 citations. rni is a very selective algorithm as it searches for sets of citing

papers with relatively large numbers of cross-citation relationships. The results are identical

for Categories and Cluster and decrease above the threshold of 64 citations within 2 years.

ari selects four times more papers in Categories than in Clusters. A possible explanation is

presented in the subsection ‘The ari anomaly’ on (page 28).

cdi-generated hit rates are significantly affected within Clusters, although the number of

identified breakouts remains large, because of the already discussed way the datasets are

constructed. In all, rii is robust up to a threshold value of 32 citations, and for cdi and

rni the robustness starts to break down at a threshold value of 16 citations. Beyond this

threshold value the hit rates start to decrease. For ari this hit-rate breakdown starts for

Categories at a threshold value of 8, but for Clusters at 16 — the same value as for cdi and

rni. The dii algorithm should be considered not to be robust, as its hit rates already start

to decrease at a threshold value of 2 citations.

As an indication of the performance of the algorithms, we calculated on the basis of both

datasets for each algorithm the number of papers recognized uniquely by an algorithm as

well as the number of papers recognized by multiple algorithms. We observe (Table 4) that,

except for rii, the performance of the algorithms varies for the datasets when measured

in absolute numbers of breakout papers. This table also shows the ability of each of the

algorithms, regardless of the dataset, to select papers that are not selected by any of the

other algorithms that we developed. Because papers can be selected by multiple algorithms

the total count is not an add-up of the counts for the individual algorithms.

An increasing threshold for the number of citations a paper received within 24 months

results in a decreasing number of papers in a dataset. Furthermore, it is expected that with

an increasing threshold, each of the algorithms selects less papers. Each algorithm shows

a different response on the increasing threshold levels. Both cdi and rii select above a

threshold value of 128 almost all documents and reach the 100%-level for higher threshold

values.
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Table 4: Performance of the algorithms on the two datasets

Number of
breakout papers

identified

of which
matched by

one algorithm

of which also
matched by one

or more of the other
algorithms

Categories

Total 4,946

ari 264 99,6% 0,4%

cdi 1,276 21,2% 78,8%

rii 3,544 71,4% 28,6%

dii 577 99,8% 0,2%

rni 19 31,6% 68,4%

Clusters

Total 15,074

ari 60 50,0% 50,0%

cdi 13,477 78,9% 21,1%

rii 3,544 20,8% 79,2%

dii 674 100,0% 0,0%

rni 8 12,5% 87,5%

3.3. But is it a potential breakthrough?

As explained, there is no objective measure to qualify or classify a scientific discovery, or

its underpinning papers, as a breakthrough. Concepts or criteria from information science

cannot be used because there is no straightforward or transparent heuristics for decision-

making. One has to rely on assessments based on expert opinion and therefore accept a

degree of subjectivity. Various assessment methods, each with relatively high levels of inter-

rater reliability, offer guidance. The following additional verification metrics were used:

Scholarly publications supporting Nobel Prizes

If a Nobel Prize in physics, chemistry or physiology or medicine is awarded for a

single discovery or invention it considered a ‘breakthrough’. The single publication or

group of closely related publications in which such a discovery is presented signal this

breakthrough. We found eight awarded Nobel Prizes where scholarly work published

between 1990 and 1994 was seen by the Nobel Prize committee as being of seminal

importance. Five of those cases involve at least one of our identified breakout papers,

now verified as a ‘breakthrough’ paper;

Nature’s ‘Top-100 list of papers most cited ever’

The papers appearing on Nature’s ‘Top-100 list of papers most cited ever’ (van Noorden

et al., 2014) are considered by the scientific community of particular importance. Not

all papers on this list display breakthroughs in science by definition as is mentioned in

one of the comments to this list Padhi (2014), but experts are able to judge. Thirteen
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of our breakouts occur on this list. Two of these papers Laskowski et al. (1993) and

Moncada et al. (1991) are not included in our tests because of their document type:

‘software review paper’ respectively ‘review paper’, which were excluded from our ana-

lysis.

Citations from review papers, patents or social media

We apply three additional methods to help verify our identified breakout papers — all

are based again on citation impact, but now these citations are from sources other than

‘articles’ and ‘letters’: review papers, patents and social media.

1. Number of times a paper is cited in WoS-indexed review papers. Review papers

provide an overview of the developments that occurred in a topical field of science

over a certain period of time. Publications that are highly cited by review papers

are seen to be important for the developments in a field of science;

2. Number of times a paper is cited in patents. Scholarly papers cited in patents bare

relevance to the invention described in the patent and are part of the scientific

basis for the developments in a field of technology. These citations link the two

domains ‘science’ and ‘technology’. Only a small number (≈ 6%) of the scholarly

papers are cited in patents. Based on the number of times cited by patents 11 out

of the 60 papers in the test set belong to the top 2% percentile;

3. Number of times a paper is cited in worldwide social media (2012–2014). We

conclude that a breakout paper stands out when it is still cited in social media

20+ years after publication (1990–1994). Such scholarly papers should be at least

looked at to see if they are really special.

For reasons of resource constraints the verification for these three additional methods

could not be applied to the full set of breakouts but was done within a small sample of

breakout papers the 60-paper test set. This test set was constructed by applying the five

algorithms to the two datasets Clusters and Categories separate. From each of these

10 applications, we selected the top-10 most cited papers in terms of citation count

frequencies. This test set included 60 unique papers (40 of the 100 papers occurred

more than once), of which 25 occur both in Categories and in Clusters, 20 exclusively

in Categories and 15 are found only in Clusters.

The test results highlight the ability of the rii and cdi algorithms to identify Nature’s

Top 100 most-cited publications. More importantly, all these breakouts were also cited in at

least one review paper. Patents also cite more than half of all breakouts detected by the rii,

cdi and rni algorithms, thus giving an indicator of the technological impact of the scientific

discovery. These three algorithms also captured breakouts that generate, or still generate,
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Table 5: Percentage of papers that belong to the top 3% percentile for all papers (articles and letters) based on
the number of citations received from the different sources for breakout papers and non-breakout papers in the
test set

Cited by

review papers

Cited by

patents

Times cited
within 24
months

Breakout
papers

Non-breakout
papers

Breakout
papers

Non-breakout
papers

Breakout pa-
pers

ari 93% 64% 7% 27% 100%

cdi 100% 39% 41% 0% 100%

rii 100% 50% 42% 6% 100%

dii 6% 95% 0% 30% 6%

rni 92% 67% 17% 23% 100%

a wider societal impact, when measured on the basis of social media (‘altmetrics’) for the

years 2012–2014. The CWTS’ social media database contains social-media data related to

Internet blogs, news, Twitter and Facebook messages collected from the altmetric database

provider Altmetric.com34. The two ‘large-output’ algorithms rii and cdi manage to produce

the largest number of verified breakouts.

Applying each of the algorithms to the test set results in two groups of documents for

each algorithm. One group contains the papers that are selected (breakout papers) and the

other group the papers not selected (non-breakout papers). To search for differences in

the characteristics of the documents in both groups, the share of papers belonging to the

top 3% percentile is used. As the often-used top 10% percentile did not show differences in

behaviour between breakout and non-breakout papers, we chose to use the top 3% percentile.

These top 3% percentiles are based on the distribution of the number of citations received

from the different sources by all papers (letters and articles) published in 1990–1994 that

are covered in the WoS database; Table 5 shows the results.

3.4. Breakout classification

We classified the results of the algorithms across the following two dimensions (1) the

number of times cited by review papers and (2) the number of times cited by patents. The

distribution of papers receiving a certain number of citations within a period of time is highly

skewed. Because of this skewness we classified documents in the four classes ‘Top 1%’ = [99–

100]%, ‘Top 5%’ = [95–99)%, ‘Top 10%’ = [90–95)% and ‘<Top 10%’ = [0–90)%. Nearly 60% of

all papers cited within 24 months are classified on both dimensions ‘Citations by review

papers’ and ‘Citations by patents’ as ‘<Top 10%’. For all publications (articles + letters) from

1990–1994 their share exceeds the 78% mark.

34http://www.altmetric.com
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Applying the algorithms increases the shares of papers in the Top 10% percentiles. Based

on this analysis we conclude that by further zooming in on the Top 10% percentile papers

the breakout papers can be classified as:

Breakthrough: publications that are part of the scientific basis of Nobel Prize

awarded discoveries.

Breakthrough by proxy: publications that belong to the top 1% percentile on the

basis of the number of citations from review publications and at the same

time to the 1% percentile of the number of citations from patents. These

are the publication in the Top 1% row and at the same time in the Top 1%

column.

Science-oriented breakthrough by proxy: publications that belong to the top 1%

based on the number of citations from review publications but are not signi-

ficantly cited from patents. These are the publications in the Top 1% row.

Technology-oriented breakthrough by proxy: publications that are not particularly

highly cited by review publications but are in the top 1% based on citations

from patents. These are the publications in the Top 1% column.

Breakout: a publication identified by at least one of the algorithms that does not

belong to one of the four types defined above, but nevertheless worthwhile

to take a look at.

Non-breakout: a paper not selected by any of the algorithms and therefore most

likely not a (potential) breakthrough

4. Discussion

This developmental study, suffering from inevitable constraints in terms of time and

available resources, left several open questions and unresolved problems that were not (suf-

ficiently) addressed and therefore open for further discussion and follow-up work. This

section reflects on those topics.

4.1. Research questions

Can the algorithms be used as a generally applicable method to identify breakout papers and

if so under what data availability conditions?. Although the algorithms are designed for the

early stage identification of discoveries in science represented by research publications —

as indexed by Clarivate Analytics Web of Science database (WoS) — the detection algorithms

can be applied without alterations to other databases that (1) contain bibliographic data of

scholarly publications, (2) provide citation relations that interlink publications, (3) contain

time stamps to enable systematic tracking and monitoring of temporal developments, and
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(4) provide a representative picture of scientific research over time in all relevant fields of

science.

What are the similarities and differences between the algorithms in terms of their ability to

detect breakouts?. All our detection algorithms are able to identify breakout papers; the

resulting datasets show overlap and differences. Some of the breakout papers also stand out

in citations given in patents and review papers35, and are cited by social media sources. The

five algorithms can be divided into three groups based on the breakout-detection specificity

(recall rate). Group 1 consists of the cdi and rii algorithms. For these algorithms the recall

rate increases with increasing threshold values and reaching above a certain threshold value

(64 for rii, and 128 for cdi) a situation in which the algorithm selects all remaining papers.

The second group consists of ari and rni. These algorithms also show an increasing recall

rate, but above a certain threshold value (32 for ari, and 128 for rni) they break down and

fail to select any documents. dii forms a group by itself as the recall rate continuously

decreases with increasing threshold values.

Redner’s algorithm (Redner, 2005) can be considered a high-performance algorithm and

therefore falls in group 1 together with our cdi and rii algorithms. For threshold values

from 256 citations and above, the algorithms in this group select all papers remaining in the

dataset as breakout paper. Redner’s algorithm selects 6,150 papers in Categories and 6,311

in Clusters; 5,907 of these papers belong to both datasets, 243 belong only to Categories, and

404 only to Clusters. From this we conclude that the performance of Redner’s algorithm is

largely independent of the dataset to which the algorithm is applied. This result is expected,

as ‘disciplines’ are not addressed in Redner’s algorithm, and therefore the differences are

caused by differences in the contents of the datasets.

The outcomes of the robustness calculations show that the algorithms cdi, rii, and rni

are the ones that — up to a threshold value of 32 citations — are almost unaffected by

the value of the threshold. The dii algorithm is the most sensitive of our five algorithms

for thresholds imposed on the data. The behaviour of the dii algorithm is different as it

focuses on research where the discovery involves a paradigm-shift that starts within a small

group of researchers; the core group. Given the short measuring period after publication,

the probability for a publication describing this discovery to get cited by authors outside

of the core group is limited; therefore, the number of papers selected by dii shows a sharp

decrease for larger threshold values.

Both ari and cdi perform different when applied to Categories and to Clusters; this is

not the case for rii, dii, and rni. The fact that the cdi algorithm behaves differently on

35After 20+ years belonging to the ones highly cited by review papers or by patents
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both datasets is to be expected. In 12 cases the cdidc algorithm when applied to the test set

selected a paper, whereas cdisc did not; the situation that a paper was selected by cdisc and

not by cdidc dit not occur. This difference in behaviour is caused by the different definitions

for ‘discipline’ used in both datasets.

As ‘Charge’ breakouts are the more common variant, because there is no change in the

theoretical framework or paradigm shift involved, it comes as no surprise that rii and cdi are

the algorithms that select the most papers as a breakout. There is no ‘overall winner’ among

the algorithms due to the fact that each is developed with a particular type of breakthrough

in mind. The definitive conclusion that a breakout paper really presents a breakthrough

must be based on information other than bibliographic information.

Can we determine the effectiveness of each algorithm in terms of identifying breakout papers

that are generally regarded as breakouts and potential breakthroughs?. The combination of

the five algorithms identified all 11 papers of WoS-type ‘article’ or ‘letter’ published in the

period 1990–1994 that occurred in Nature’s ‘Top-100 list of most cited papers ever’. For

five of the eight Nobel Prizes in Chemistry, Physics, and Physiology or Medicine for which

scholarly work published between 1990 and 1994 forms the scientific basis, at least one of

the founding papers was detected.

Redner’s algorithm selects more breakout papers36 than our algorithms (Table 2) and

the results partially overlap (Table 3). The only exception is the CDI algorithm applied

to the clusters dataset. The method proposed by Redner takes into account all citations,

whereas the algorithms we developed focus on the citation dynamics of a paper within 24–

36 months37 after publication. Redner’s algorithm identifies in total 36 of the 60 papers in

the test set. Except in the case of the dii algorithm there is overlap between the results of

our algorithms and Redner’s algorithm, sometimes a very small one.

Except for the (dii) algorithm the selected papers are ‘high’ or ‘very high’ cited by review

papers, they are cited in patents, and received citations within 24 months.

The breakthrough publications that form the basis of the four case studies (Winnink

and Tijssen, 2014, 2015; Winnink et al., 2013, 2016) received from review articles within 24

months at least 4 citations, and until the beginning of 2016 at least 73. Of the papers in

the validation test-set 32 belong to the top 1% percentile based on the citations from re-

view papers received within the first 24 months after publication. These 32 publications

in the top 1% percentile after 24 months are also in the top 1% in the beginning of 2016;

36In our opinion is what we call a ‘breakout’ identical to what Redner calls a ‘breakthrough’
37This period of 24–36 months was chosen in order to stay as close as possible to the moment of publication.

Other time periods are possible, e.g. Rogers (2010) uses a five years windows and Ponomarev et al. (2014) use
a two-step forecasting model that combines short citation periods (of 6, 12 or 24 months) where highly-cited
publications are monitored for periods up to 5 years
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this observation is in line with (Adams, 2005). We classify publications that are highly ref-

erenced by review articles — belong to the top 1% percentile — as potential breakthroughs:

‘Breakthrough by proxy’ or ‘Science-oriented breakthrough by proxy’

4.2. Limitations of this study

Does the use of a time window of 24–36 months cause some breakouts to be inadvertently not

recognised?.

By focusing on the first 24–36 months after publication of a paper we ignore ‘sleeping beau-

ties’ (van Raan, 2004, 2015). We also did not address the situation in which the citation

profile of a paper at early stage gives the impression that it presents a ‘breakthrough’ that

later turns out not to be the case.38

Preliminary results of a small follow-up study shows that for almost 92% of the publica-

tions that show ‘breakout character’ during the first 10 years after publication this behaviour

manifests itself in the first year; therefore focussing on the time period of 24–36 months with

the publication date as point of reference seems to be appropriate. Changing the algorithms

so the search for breakouts not only starts at the moment of publication but also one year

after increases the hit rate with an extra 6.4%.

The ari anomaly.

The performance of ari on the two datasets (Clusters and Categories) differs; it detects four

times as many breakout papers in Categories as it does in Clusters. ari searches for papers

that are supposed to act as bridges between discovery-oriented science and application-

oriented science. Approximately 36% of the papers in the source data set (WoS) are char-

acterised as discovery-science oriented. The share of discovery-science oriented papers is

above this average for Clusters and equal to this average for Categories. The fact that ari

selects more breakout in Categories than in Clusters seems counter-intuitive as the datasets

are constructed from the same data source by conceptually equivalent methods. The factors

we believe that play a role in this ‘ari anomaly’ are:

1. The document selection process distributes the papers among 823 clusters (out of 865),

and among 199 categories (out of 251). This results in an average of 106 discovery-

science papers per cluster, and 461 per category;

2. For 60% of the 199 categories, the share of discovery-science papers is above the overall

average of 36%; for the 823 clusters this share is equal to the overall average;

3. Discovery-science papers receive on average 4.7 citations within 24 months compared

to 3.8 for application-science papers;

38An example is Fleischmann and Pons (1989) in which the existence of nuclear fusion at room temperature
— ‘cold fusion’ — is claimed. This claim was almost immediately criticized but it was not before 2012 that in
Dmitriyeva et al. (2012) the definitive conclusion that the claim was false was drawn
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4. Papers can have more than one subject category — on average 1.5 — assigned to them

but can be a member of only one document cluster. Therefore, the same paper might

be selected multiple times (for different subject categories) during the selection of doc-

uments for Categories. The selection method creates a bias towards highly cited papers

to which multiple categories are assigned and in this way preventing other less cited

papers to be selected;

5. On average fewer subject categories are assigned to discovery-science papers than to

the more applied-science oriented papers.

In our opinion, these factors in combination with the method of constructing the two data

sets causes higher cited discovery-science papers to be preferred in the selection of papers

for Categories, and thereby account for the higher performance of ari.

Is there an (implicit) link in the algorithms between science and technology?.

The algorithms developed in this study are constructed on the basis of the outcomes of case

studies. One of the criteria used to select cases was that the scientific breakthrough discov-

eries resulted in new technological developments, as shown by the occurrence of citations

from patents. In this way the algorithms may contain in an implicit form a link between

science and technology that could explain the occurrence of patent citations.

Retracted publications.

The retraction of scientific publications is increasing; the number of retracted papers in

MEDLINE R©39 reached the 1% level in 2006 (Cokol et al., 2008). The mean time to retract

a publication depends on the reason to retract and ranges from 26 to almost 47 months

(Steen et al., 2013, Table 1). Retracted publications do not vanish from the scientific know-

ledge base and are still cited even after their retraction (van Noorden, 2011); in only 8% of the

citations the retraction is mentioned. Retracted articles live on in personal libraries and on

the Internet (Davis, 2012). Retracted publications are therefore in general present as a refer-

enced publication or as a citing document in the first 24–36 month after publication period

that is used in this study. After the identification of breakout papers a check for retractions

should be carried out to prevent such papers to be seen as a potential breakthrough.

4.3. Options for further research

We see at least the following options for further research on in order to improve and

expand the analytical framework presented in this paper:

• Further refinement of the algorithms, e.g. influence of parameter values on an al-

gorithms‘ performance;

39MEDLINE R© is the U.S. National Library of Medicine (NLM) premier bibliographic database that contains more
than 22 million references to journal articles in life sciences with a concentration on biomedicine
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• It is assumed that the algorithms are time invariant; this is however not further in-

vestigated in this study. This point is partly addressed in two preliminary follow-up

studies that use publications from the period 2007–2011; these studies did not show

significant different results. A systematic study should be carried out to resolve this

issue’

• This study shows that the results of the algorithms show overlap. This interdepend-

ency of the algorithms should be further investigated as this might result in insights

in the factors that play a role in the ‘forming’ of discoveries and especially of break-

throughs;

• Construction of new algorithms for early stage identification of breakout papers;

• Sliding window versions of the algorithms to analyse a paper’s breakout character over

time;

• The algorithms focus on different types of discoveries in Kosland-sense. The frame-

work also offers a method to classify scientific publications on the basis of their break-

out character. This classification is presented on page 25. Further research is needed

to find out if these two classifications can be used to analyse the progress of science.

• The remarkable observation that rni, our ‘lowest-output’ algorithm, has such a high hit

rate in terms of selecting breakout papers raises the question ‘How effective is the rni

algorithm in detecting breakthroughs?’ Further in-depth research is needed to answer

this question as no definitive conclusion can be given on the basis of the available

bibliographic information.

• The implemented framework facilitates generating datasets that consist exclusively of

scientific discoveries that are considered to have an above average impact on science.

Such ‘clean’ datasets can be used for, large scale, analysis of the dynamics of the sci-

ence system from the perspective of high-impact discoveries. Especially the search for

general mechanisms that stimulate the emergence of discoveries in science, in particu-

lar breakthroughs, could benefit from such clean datasets.

5. Conclusions

The way the scientific community reacts on a discovery determines if it is to be considered

a ‘breakthrough’. This reaction of the scientific community is reflected in bibliographic time

dependent signals. Guided by general characteristics of a breakthrough — a suddenly oc-

curring event that has a major impact on follow-up scientific research — we searched for

characteristic patterns in the citation profiles of known breakthrough discoveries. Five al-

gorithms each focusing on different aspects of citation profiles of individual publications

were developed and implemented. These algorithms focus on the citation profiles during the
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24–36 months after publication. The algorithms classify publications in five types ranging

from ‘non-breakout’ to ‘breakthrough by proxy’. For a definitive conclusion on the sixth type

— ‘breakthrough’ — the algorithms cannot decide at early stage as additional information,

particularly expert opinions are indispensable. It is argued that the early-stage character-

isation by our algorithms provides is a reliable measure of a papers long-term impact on

science.

The aim of this study was to develop an analytical framework and measurement model

consisting of general applicable algorithms to capture the dynamics of the diffusion of schol-

arly knowledge and conclude at early stage if a paper should be considered a breakout. We

succeeded in detecting many breakout papers with distinctive impact profiles. A small sub-

set of these breakouts is classified as ‘breakthroughs’: Nobel Prize research papers; papers

occurring in Nature’s Top-100 Most Cited Papers Ever; papers still (highly) cited by review

papers or patents; or those frequently mentioned in today’s social media. We also compare

the outcomes of our algorithms with the results of a ‘baseline’ detection algorithm developed

by Redner in 2005, which selects the world’s most highly cited ‘hot papers’.

The analytical framework presented can be seen as an operational, probably incomplete,

definition of a breakthrough. We conclude that “It is possible to design, develop, implement

and test an analytical framework and measurement model as a general-purpose tool that

uses bibliographic information for early detection of potential breakthroughs in science”.

Uncertainty is an integral part of data that comes from observations. As the data sets

increase in size more precise answers can be derived while on the other hand the chances

of false findings increase exponentially (Spiegelhalter, 2014). Spiegelhalter argues that in

order to avoid such false findings statistical analysis of large data sets (Big Data) should be

accompanied by knowledge of the limitations and strengths of the models that are taken into

account. The algorithms developed in this study can help in preventing false findings when

searching for potential breakthrough publications by analysing large bibliographic datasets.
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