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Abstract

A natural way to benchmark the performance of an analytical experimental setup is to use samples 

of known composition and see to what degree one can correctly infer the content of such a sample 

from the data. For shotgun proteomics, one of the inherent problems of interpreting data is that the 

measured analytes are peptides and not the actual proteins themselves. As some proteins share 

proteolytic peptides, there might be more than one possible causative set of proteins resulting in a 

given set of peptides and there is a need for mechanisms that infer proteins from lists of detected 

peptides. A weakness of commercially available samples of known content is that they consist of 

proteins that are deliberately selected for producing tryptic peptides that are unique to a single 

protein. Unfortunately, such samples do not expose any complications in protein inference. Hence, 

for a realistic benchmark of protein inference procedures, there is a need for samples of known 

content where the present proteins share peptides with known absent proteins. Here, we present 

such a standard, that is based on E. coli expressed human protein fragments. To illustrate the 

application of this standard, we benchmark a set of different protein inference procedures on the 

data. We observe that inference procedures excluding shared peptides provide more accurate 

estimates of errors compared to methods that include information from shared peptides, while still 

giving a reasonable performance in terms of the number of identified proteins. We also 

demonstrate that using a sample of known protein content without proteins with shared tryptic 

peptides can give a false sense of accuracy for many protein inference methods.
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INTRODUCTION

Shotgun proteomics offers a straightforward method to analyze the protein content of any 

biological sample. The method involves proteolytic digestion of the proteins into peptides, 

which greatly improves the efficiency of the technique but also introduces a problem for the 

subsequent data processing. As the mass spectrometers are detecting ions from peptides 

rather than proteins directly, the evidence for the detection of the peptides has to be 

integrated into evidence of the presence of proteins in the original sample, using a protein 
inference algorithm.1

This protein inference procedure is complicated by the homology within most proteomes; 

many proteins share constituent proteolytic peptides, and it is not clear how to best account 

for such shared peptides. For example, should we see shared peptides as evidence for all, a 

subset, or none of its potential aggregate proteins? While the field of computational 

proteomics starts to reach a consensus on how to estimate the confidence of peptide-

spectrum matches (PSMs) and peptides, there is still relatively little work done in 

establishing standards that evaluate how much confidence we can give reported protein 

inferences or even what the best methods to infer proteins from shotgun proteomics data are.

Currently, there are two available methods to determine the accuracy of inference procedures 

and their error estimates: (i) simulations of proteomics experiments and (ii) analysis of 

experiments on samples with known protein content. By simulating the proteolytic digestion 

and the subsequent matching of mass spectra to peptides,2–4 one can obtain direct insights 

into how well the simulated absence or presence of a protein is reflected by a protein 

inference procedure. However, there is always the risk that the assumptions of the 

simulations are diverging from the complex nature of a mass spectrometry experiment. For 

instance, there is currently a lack of accurate tools to predict which peptides typically would 

be detected in an experiment or how well their spectra will be matched by a typical search 

engine. Hence, accurate predictions on simulated data can only be viewed as a minimum 

requirement for a method to be considered accurate.4

A more direct characterization of protein inference procedures can be obtained by analyzing 

experiments on samples of known protein content.5 For such experiments, a protein standard 

is assembled from a set of isolated and characterized proteins and subsequently analyzed 

using shotgun proteomics. Normally, the acquired spectra are searched against a database 

with sequences from proteins known to be present, as well as absent proteins.6 Two notable 

protein standards are available today, the ISB185 and the Sigma UPS1/UPS2 standard. Both 

standards consist of a relatively limited set of proteins, 18 proteins in the ISB18 and 48 

proteins in the UPS. However, neither of those standards produce tryptic peptides shared 

between multiple protein sequences. Hence, these standards are a poor fit for benchmarking 
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protein inference algorithms, as the real difficulty of protein inferences is proteolytic 

peptides shared between multiple proteins.

Here, we present a data set specifically designed for benchmarking proteoform inference 

algorithms. Two different samples of defined content were created from pairs of proteins that 

share peptides. These protein standards are a byproduct from the antibody production from 

the Human Proteome Atlas project (http://www.proteinatlas.org/),7 where protein fragments, 

referred to as Protein Epitope Signature Tags (PrESTs), are expressed in recombinant E. coli 
strains as antigens to be injected into rabbits to raise polyclonal antibodies. We demonstrate 

that such protein fragments can be used for benchmark protein inference procedures and for 

evaluating the accuracy of any confidence estimates such methods produce. This data set has 

also previously been made available in anonymized form as a part of the iPRG2016 study 

(http://iprg2016.org) inference. Here, we also evaluated a set of principles for proteoform 

inference with the sets.

METHODS

Data Generation

To generate the data sets, recombinant protein fragments (PrESTs) from the Human 

Proteome Atlas project were scanned for a total of 191 overlapping PrEST sequences after 

in-silico trypsin digestion. PrEST fragments were cloned into the expression pAff8c and 

thereafter transformed into an E. coli strain for recombinant protein production following 

verification by DNA sequencing. Cells containing expression vectors were cultivated as 

previously described.8 Cell cultures were harvested and the QPrESTs were purified using the 

N-terminal quantification tag that included a hexahistidine tag used for immobilize metal ion 

affinity chromatography (IMAC) and stored in 1 M urea, 1xPBS. Each protein fragment is 

thereafter individually evaluated by SDS-PAGE analysis, and the molecular weight is 

verified by LC-MS analysis. The total library of PrESTs produced within the Human Protein 

Atlas program was used for selection, and all available pairs were included in this study. All 

PrESTs are fused together with a solubility tag (Albumin Binding Protein, 163 aa), and all 

PrEST sequences are of a similar length ranging between 50 and 150 aa.

To generate the data sets, the PrEST sequences of the Human Proteome Atlas-project were 

scanned for a total of 191 overlapping pairs of PrEST sequences. The resulting protein pairs 

share at least one identical fully tryptic peptide. Each pair originates from different human 

genes, and flanking amino acids around the tryptic termini are thereby not shared between 

them. Each recombinant protein was randomly assigned into one of the pools (A or B) that 

were created (Figure 1).

A third pool was created by mixing pools A and B, resulting in a pool A+B. An amount of 

1.8 pmol of each PrEST was added to either pool A or pool B, and an amount of 0.9 pmol of 

all PrESTs was added to pool A+B. The total protein amount of 10 μg from each of the 

pools was reduced with dithiothreitol and alkylated with iodoacetamide prior to trypsin 

digestion overnight, and each pool was mixed into a background of a tryptic digest of 100 ng 

Escherichia coli [BL21(DE3) strain], resulting in three mixtures, Mixture A, mixture B, and 

mixture A+B. In effect, the resulting concentrations of tryptic peptides shared between 
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mixture A and mixture B were the same across all three mixtures, while peptides unique to 

mixture A or mixture B appear in half the concentration in mixture A+B.

The E. coli digest was generated from a nontransformed bacterial strain cultivated and 

harvested alongside the PrEST producing strain. Cells were dissolved in Lysis buffer (100 

mM Tris-HCl, 4% SDS, 10 mM DTT, pH 7.6) and incubated at 95 °C in a thermomixer for 5 

min at 600 rpm and thereafter sonicated at 50% amp (1s pulse, 1 s hold) for 1 min. The 

lysate was diluted with denaturing buffer (8 M urea, 100 mM Tris- HCl, pH 8.5) and 

centrifuged through a 0.22 μm spin filter (Corning, Corning, NY, USA). Trypsin digestion 

was performed using a previously described filter-aided sample preparation (FASP) method.
9

A per sample amount of 1.1 μg of each of three mixtures was analyzed in triplicate by LC-

MS/MS in random order. The digests were loaded onto an Acclaim PepMap 100 trap 

column (75 μm × 2 cm, C18, 3 μm, 100 Å), washed for 5 min at 0.25 μL/ min with mobile 

phase A [95% H2O, 5% DMSO, 0.1% formic acid (FA)], and thereafter separated using a 

PepMap 803 C18 column (50 cm × 75 μm, 2 μm, 100 Å) directly connected to a Thermo 

Scientific Q-Exactive HF mass spectrometer. The gradient went from 3% mobile phase B 

[90% acetonitrile (ACN), 5% H2O, 5% DMSO, 0.1% FA] to 8% B in 3 min, followed by an 

increase up to 30% B in 78 min and thereafter an increase to 43% B in 10 min followed by a 

steep increase to 99% B in 7 min at a flow rate of 0.25 μL/min. Data were acquired in data-

dependent (DDA) mode, with each MS survey scan followed by five MS/ MS HCD scans 

(AGC target 3e6, max fill time 150 ms, mass window of 1.2 m/z units, the normalized 

collision energy setting stepped from 30 to 24 to 18 regardless of charge state), with 30 s 

dynamic exclusion. Charge states of 2–7 were selected for fragmentation, while charge state 

1 and undefined charge states were excluded. Both MS and MS/MS were acquired in profile 

mode in the Orbitrap, with a resolution of 60,000 for MS and 30,000 for MS/MS.

Each replicate injection of each mixture (rep 1–3) was separated by one wash followed by a 

blank injection (E. coli digest) in order to limit potential cross contamination between 

mixtures. Injections were made in the following order, blank first replicate, Mixture B (X3), 

blank second replicate, Mixture A (X3), blank third replicate, and Mixture A+B (×3).

Data Set

We assembled the data into a test data set consisting of the following:

• Three FASTA-files, containing the amino acid sequence of the Protein fragments 

of mixture A, mixture B. We also include a set of entrapment sequences of 1000 

representative PrEST fragments that were not selected for the mixtures and hence 

were absent from the samples.

• These entrapment sequences had a similar 50–150 amino acid long length 

distribution as the PrEST sequences of our mixtures.

• Twelve runs, consisting of triplicates of analyses of mixture A, mixture B, 

mixture A+B, and “blank” runs without spike-ins, all run in a background of E. 
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coli-lysates. These are provided in Thermo raw data-format. The number of MS2 

spectra per run ranges from 27363 to 28924.

• An evaluation script, written in python.

The FASTA files and scripts can be downloaded from https://github.com/

statisticalbiotechnology/proteoform-standard, and the mass spectrometry data is accessible 

from the pride database under the project accession number PXD008425.

This data set has been made available in anonymized form as a part of the iPRG2016 study 

(http://iprg2016.org) on protein inference. The sample mixtures can be made available on 

request, for evaluation under other mass spectrometers than the one we used in this study.

Data Processing

The raw data files were converted to MS1 and MS2 format using ProteoWizard10 and 

subsequently processed by Hardklor11 followed by Bullseye,12 through the interface of the 

Crux 2.1 package,13 to set monoisotopic masses. The resulting ms2 spectra were then 

matched to separate target and decoy sequence databases (described below) using Tide 

within Crux 2.113,14 (no variable modifications, 10 ppm search tolerance, all other 

parameters kept at their default values) and Percolator v3.01,15,16 deriving peptide-level 

probabilities for each of the mass spectrometry runs.

The target protein database consisted of all three FASTA files combined, and the decoy 

database was constructed by reversing the protein sequences of the target database.

For each of the runs we calculated protein-level Entrapment FDRs6 by counting all matches 

to PrESTs present in their analyzed mixture as correctly matched, and all matches to PrESTs 

absent (i.e., stemming from the set of 1000 nonpresent PrESTs or from the set of the 

mixtures not used in the sample) as being incorrectly matched. As the correct matches only 

map to present proteins, whereas incorrect matches distribute over both present and absent 

proteins, we also normalized the Entrapment FDR by the prior probability of the PrEST to 

be absent, the so-called πΑ.4

RESULTS

We constructed two mixtures, each containing 191 PrESTs, that is one out of each of the 191 

pairs of PrEST sequences with partially overlapping amino acid sequence (Figure 1). We 

analyzed the two samples as well as a combination of the two using LC-MS/MS (see the 

Methods section).

The three data sets make an informative benchmark set. By matching the spectra of the data 

set against a bipartite database containing both the present and some absent PrEST 

sequences, we obtain a direct way to count the number of inferred PSMs, peptides, and 

proteins stemming from nonpresent PrESTs.6 More specifically this allows us to assess the 

fraction of identifications in a set that stems from absent PrESTs, which we here will refer to 

as the Entrapment FDR. However, unlike traditional samples of known content, this standard 
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contains overlapping protein fragments, which allows us to assess the performance of 

protein inference algorithms in the presence of homology.

Methods To Infer Protein Sequences

We set out to test a set of different protein inference algorithms against our test set. We first 

analyzed the data using Crux13,14 and Percolator,15,16 deriving peptide-level probabilities for 

each combination of triplicate mass spectrometry runs. We subsequently compared the 

performance of the different schemes for inferring proteins and their confidence.

First, there are different ways to infer proteins from peptide sequences. The major difference 

between the methods relates to how they handle so-called shared peptides, that is peptide 

sequences that could stem from more than one protein. The tested inference methods were 

the following:

Inclusion.—Possibly the easiest way to handle shared peptides is to assign any found 

peptide to all its possible causative proteins. Under this assumption, we infer the presence of 

any protein which links to an identified peptide.

Exclusion.—Another method is to remove any shared peptides before any reconstruction 

takes place. Under this assumption, we infer the presence of any protein which links to an 

identified peptide unique to the protein.

Parsimony.—A method that is quite popular for handling shared peptides is to use the 

principle of parsimony, i.e. to find the minimal set of proteins that would best explain the 

observations of the PSMs with a score above a given threshold. This principle has been 

implemented in a couple of well-known software tools such as IDPicker 2.017 and 

MaxQuant.18 In cases where there are multiple such minimal sets of proteins, several 

strategies can be used: do not include any of the sets, apply some form of protein grouping 

(see the Discussion section), or select one of the sets, either at random or based on the order 

the proteins are listed in the database. Here, we have opted to use the latter alternative, to 

select one of the sets at random.

Here, it is worth noting that our benchmark did not include methods aimed at inferring 

protein-groups, as we want to compare the methods ability to infer proteoforms.

Methods To Rank Protein Identifications

More than just inferring the protein sequences, any practically usable protein inference 

strategy has to assign confidence estimates in terms of posterior probabilities or false 

discovery rates. One way to assign such protein-level statistics is by investigating decoy 

ratios, a process that depends on assigning scores to rank our confidence in the different 

protein sequences. The different methods to obtain protein-level scores differ in the way they 

combine the confidence estimates of the proteins’ constituent peptides. We tested five 

different methods to score proteins:

Products of PEPs.—This method summarizes a score for the protein’s constituent 

peptides by calculating the product of peptide-level posterior error probabilities (PEPs).18 
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This method has been extensively used by tools such as MaxQuant,18 PIA,19 and IDPicker.
17

Fisher’s Method.—Another method that relies on an assumption of independence 

between different peptides’ incorrect assignments to a protein is Fisher’s method for 

combining independent p values, which is a classical technique for combining p values.20 

Fisher’s method takes into account all constituent peptides of a protein,21–23 by 

summarizing the individual peptides empirical p values. Unlike the product of PEPs, which 

also combines peptide-level evidence, Fisher’s method explicitly accounts for the number of 

p values being combined and hence normalizes for protein length to some extent.

Best Peptide.—Instead of weighting together peptide-level evidence for a protein, some 

investigators chose to just use the best available evidence for a protein.24 Savitski et al.25 

showed that, on large-scale data sets, taking the best-scoring peptide as the representative of 

a protein was superior to incorporating information from lower-scoring peptides. This 

approach might feel unsatisfying for most investigators, as the method discards all 

information but the best-scoring PSM for each protein.

Two peptides.—A simple way to combine evidence at the peptide level is the widely used 

two-peptide rule.26 This approach requires evidence for a second peptide to support a 

protein inference, thereby preventing so-called “one-hit wonders”, i.e., cases where a single, 

potentially spurious PSM yields a spurious protein detection.24 Furthermore, the recently 

published Human Proteome Project Guidelines for Mass Spectrometry Data Interpretation 

version 2.1 requires “two non-nested, uniquely mapping (proteotypic) peptides of at least 9 

aa in length”, to count a protein sequence as being validated with mass spectrometry.27

Fido.—A more elaborate method to estimate the confidence in inferred proteins is to use 

Bayesian methods, represented here by Fido,28 which calculates posterior probabilities of 

proteins’ presence or absence status given the probabilities of peptides correctly being 

identified from the mass spectrometry data. Such methods are normally seen as inference 

procedures, but due to the design of our study, we listed it as a confidence estimation 

procedure to be used in combination with Inclusion inferences. Fido’s use requires selection 

of prior probabilities for protein presence, present proteins emitting detectable peptides, and 

mismatches. These probabilities were set using grid searches, as implemented when running 

Fido through Percolator.15

In Supporting Information Table S-4 we have mapped a set of commonly used protein 

inference tools according to the names of the inference and ranking principles we use in this 

paper.

Benchmark

We wanted to distinguish the measurement of the performance of the inference methods, i.e. 

the ability of the methods to accurately rank protein inferences, from the accuracy of the 

methods, i.e. the calibration of the methods reported statistics. We hence have divided the 

benchmark of the tested inference methods into two subsections below.
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Performance

First, we measured the performance of the permutations of inference and confidence 

estimation procedures, in terms of the number of identified proteins at a 5% protein-level 

entrapment- FDR (see Table 1 and S-1, as well as Figure S-1). It is worth noting that there is 

a fundamental difference between the different benchmark sets,; for the set A+B all proteins 

that share tryptic peptides are present. However, the sets A and B contain tryptic peptides 

shared between absent and present proteins.

Comparing the different methods of dealing with shared peptides, we found that the 

Inclusion and Parsimony methods reported more proteins than the Exclusion method when 

investigating the A+B set that contains peptides shared between present proteins. However, 

for the A set that contains peptides shared between the present and absent proteins, the 

Exclusion reports more proteins than the Inclusion methods (except Fido) and the Parsimony 

methods.

For the different confidence estimation procedures, we noted that the TWO PEPTIDES 

method reported fewer proteins than the other methods, whereas FIDO reports more proteins 

than the other methods.

Many implementations of Parsimony are two-step procedures, which first threshold on 

peptide- or PSM-level FDR and subsequently infer the most parsimonious set of proteins. In 

such implementations, one ends up controlling the list of proteins at both peptide and 

protein-level. We chose to make a more extensive test series of Parsimony for 1%, 5%, and 

10% peptide- level FDR (see Figure S-3, Table S-2, and Table S-3). A trend is observable for 

such data; for the A+B set, more proteins are observed for similar protein-level FDRs when 

using a higher peptide-level FDR (e.g., 10%) than when using a lower peptide- level FDR 

(e.g., 1%). However, the inverse is true for the A set; more proteins are observed for similar 

protein-level FDRs when using a 1% peptide-level FDR than when using a 10% peptide- 

level FDR. This is a consequence of the cases where the algorithm has to select one of many 

minimal sized subsets explaining the observed peptides at random. Such a selection is not 

harmful to the performance if all minimal subsets consist of present proteins, but it might be 

harmful if one or more of the minimal subsets contains absent proteins.29

Accuracy of Confidence Estimates

Subsequently, we set out to estimate the accuracy of the different confidence estimates of the 

protein inference procedures and hence plotted the entrapment FDR as a function of the 

methods’ reported FDR in Figure 2 and Supplementary Figure S-2.

All the tested methods reported acceptable and similar accurate statistics for the sets where 

the shared peptides stem from proteins that are all present (set A+B). However, when 

comparing the decoy and entrapment FDR for the sets with peptides shared between present 

and absent proteins (set A) we see that none of the inference methods using Inclusion or 

Parsimony reported satisfying decoy-derived FDRs.

The Exclusion principle, on the other hand, seemed to handle the sets with peptides shared 

between present and absent proteins in a satisfying manner, and particularly the Fisher’s 
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method and the Products of PEPs gave quite accurate statistics for such data without 

reducing the number of reported proteins.

DISCUSSION

Here we have described a protein standard that can be used for comparing different 

algorithmic approaches to inferring sets of proteins from shotgun proteomics data. The 

standard is particularly useful for determining how to handle protein inferences in cases 

where a peptide could stem from multiple different proteoforms. We used the data set to 

compare a set of approaches for protein inference and protein scoring models, and we found 

that the reliability of protein inferences became more accurate when excluding any peptides 

shared between multiple proteins as compared to, e.g., inferring the most parsimonious set 

of proteins.

Many algorithms and tools that use Parsimony or Inclusion principles group proteins 

according to the peptide evidence that they share. Particularly in the case of Inclusion, the 

accuracy would increase dramatically if we would have evaluated protein groups rather than 

individual proteins. We have not included this option here for the sake of simplicity, not least 

because it confounds the null hypothesis in a way that complicates a fair comparison 

between methods.29,4

While the set is larger and more complex than other samples of known content (several 

millions of spectra), we see room for future improvements in terms of both more and longer 

protein sequences than our current standard as well as more complicated patterns of shared 

peptides.

Recently, a couple of other benchmarks for protein inference algorithms have been 

published. First, when selecting a protein inference strategy for Percolator, the authors used 

simulations to show that excluding shared peptides and scoring the protein based on the best 

scoring peptide performed overall better than the compared methods. However, on small-

sized data sets, the method of multiplying PEPs had a slight performance advantage.16

Second, a large center study, Audain et al.,30 benchmarked a set of protein inference 

algorithm implementations on “gold standards”, i.e. manually annotated data sets. The 

authors conclude that PIA19 and Fido28 perform better than the other analyzed 

implementations on their data sets. We did not include PIA in our comparisons, but we did 

include Fido. In line with Audain et al., Fido gave an excellent performance and calibration 

and on data sets where all proteins sharing a peptide were present (set A+B). However, 

Fido’s assessment of reliability scores was less than ideal for the data sets where the shared 

peptides’ causative proteins were from both the present and absent groups (set A and set B). 

This behavior could not have been characterized using data sets lacking peptides shared 

between multiple proteins, and it is hence not a surprise that such characteristics have not 

been noted in previous studies.

The two-peptide rule performed poorly, as has been reported by several studies.24,31,32 For 

instance, Veenstra et al. wrote already in 2004 that “Simply disregarding every protein 

identified by a single peptide is not warranted”.24 Similarly, the FDRs reported after using 
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parsimony to handle shared peptides seems, in general, to be anticonservative which is in 

line with what was reported by Serang et al.: “parsimony and protein grouping may actually 

lower the reproducibility and interpretability of protein identifications.”29

In this study we have kept the peptide inference pipeline identical for all protein inference 

pipelines, to enable a ceteris paribus comparison of the protein inference methods. We also 

have tried to benchmark principles rather than implementations but made an exception for 

the Fido inference method, as this was readily available in the Percolator package that was 

used for the peptide inferences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The design of the two mixtures A and B. Two mixtures were generated from 191 

overlapping PrEST sequences. The two mixtures, as well as a combination of the two, A+B, 

were mixed in a background of E. coli-lysate and subject for shotgun proteomics analysis.
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Figure 2. 
Accuracy of the tested confidence estimation procedures for different inference methods. 

The figure plots report q values from the decoy model, the decoy FDR, against the fraction 

of entrapment proteins in the set of identified target proteins, with the observed entrapment 

FDR using a peptide-level FDR threshold of 5%. The dashed lines indicate y = x/1.5 and y = 

1.5x.
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Table 1.

Number of Inferred Proteins at a 5% Protein-Level Entrapment FDR from the Peptides Derived from the 

Triplicate Runs
a

Inference principle Scoring method A A+B

Anticipated number of PrESTs 191 × 1.05 = 201 382 × 1.05 = 401

Inclusion Fisher’s method 112 390

Products of PEPs 124 395

Best peptide 0 395

Two peptides 0 381

Fido 181 388

Exclusion Fisher’s method 182 345

Products of PEPs 184 355

Best peptide 185 355

Two peptides 171 309

Parsimony Fisher’s method 181 365

Products of PEPs 181 365

Best peptide 174 365

Two peptides 181 344

a
Note that, since we are inferring proteins known to be present, any incorrect inferences will be added as additional proteins. Hence the maximal 

number of inferred proteins is 5% higher than the number of proteins in the mixtures.
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