
ORIGINAL RESEARCH
published: 06 June 2018

doi: 10.3389/fneur.2018.00419

Frontiers in Neurology | www.frontiersin.org 1 June 2018 | Volume 9 | Article 419

Edited by:

Marina Bentivoglio,

University of Verona, Italy

Reviewed by:

Rachel Paes Guimarães,

Universidade Estadual de Campinas,

Brazil

Benito de Celis Alonso,

Benemérita Universidad Autónoma de

Puebla, Mexico

*Correspondence:

Johan Marinus

j.marinus@lumc.nl

Specialty section:

This article was submitted to

Movement Disorders,

a section of the journal

Frontiers in Neurology

Received: 14 February 2018

Accepted: 22 May 2018

Published: 06 June 2018

Citation:

de Schipper LJ, Hafkemeijer A, van

der Grond J, Marinus J,

Henselmans JML and van Hilten JJ

(2018) Altered Whole-Brain and

Network-Based Functional

Connectivity in Parkinson’s Disease.

Front. Neurol. 9:419.

doi: 10.3389/fneur.2018.00419

Altered Whole-Brain and
Network-Based Functional
Connectivity in Parkinson’s Disease
Laura J. de Schipper 1, Anne Hafkemeijer 2,3,4, Jeroen van der Grond 2, Johan Marinus 1*,

Johanna M. L. Henselmans 1,5 and Jacobus J. van Hilten 1

1Department of Neurology, Leiden University Medical Center, Leiden, Netherlands, 2Department of Radiology, Leiden

University Medical Center, Leiden, Netherlands, 3Department of Methodology and Statistics, Institute of Psychology, Leiden

University, Leiden, Netherlands, 4 Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands,
5Department of Neurology, Antonius Hospital, Woerden, Netherlands

Background: Functional imaging methods, such as resting-state functional magnetic

resonance imaging, reflect changes in neural connectivity and may help to assess the

widespread consequences of disease-specific network changes in Parkinson’s disease.

In this study we used a relatively new graph analysis approach in functional imaging:

eigenvector centrality mapping. This model-free method, applied to all voxels in the

brain, identifies prominent regions in the brain network hierarchy and detects localized

differences between patient populations. In other neurological disorders, eigenvector

centrality mapping has been linked to changes in functional connectivity in certain nodes

of brain networks.

Objectives: Examining changes in functional brain connectivity architecture on a whole

brain and network level in patients with Parkinson’s disease.

Methods: Whole brain resting-state functional architecture was studied with a

recently introduced graph analysis approach (eigenvector centrality mapping). Functional

connectivity was further investigated in relation to eight known resting-state networks.

Cross-sectional analyses included group comparison of functional connectivity measures

of Parkinson’s disease patients (n = 107) with control subjects (n = 58) and correlations

with clinical data, including motor and cognitive impairment and a composite measure

of predominantly non-dopaminergic symptoms.

Results: Eigenvector centrality mapping revealed that frontoparietal regions

were more prominent in the whole-brain network function in patients compared

to control subjects, while frontal and occipital brain areas were less prominent

in patients. Using standard resting-state networks, we found predominantly

increased functional connectivity, namely within sensorimotor system and visual

networks in patients. Regional group differences in functional connectivity of

both techniques between patients and control subjects partly overlapped for

highly connected posterior brain regions, in particular in the posterior cingulate

cortex and precuneus. Clinico-functional imaging relations were not found.
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Conclusions: Changes on the level of functional brain connectivity architecture might

provide a different perspective of pathological consequences of Parkinson’s disease. The

involvement of specific, highly connected (hub) brain regions may influence whole brain

functional network architecture in Parkinson’s disease.

Keywords: Parkinson’s disease, resting-state, functional magnetic resonance imaging, eigenvector centrality

mapping, network, connectome

INTRODUCTION

Parkinson’s disease (PD) is characterized by a broad spectrum
of motor and non-motor symptoms, which are linked to a
progressive formation of α-synuclein (α-SynA) aggregates in
presynaptic terminals, Lewy neurites and Lewy bodies in neurons
of the central and peripheral nervous system (1, 2). α-SynA
are not randomly distributed in the brain, but appear in select
regions, which likely are affected because of shared anatomical
and functional properties among neurons (3, 4). Depositions are
most distinct in the midbrain, pontine and medullary nuclei and
limbic structures, but are also found in the neocortex in the more
advanced stages of the disease (1, 4). Compelling evidence shows
that α-SynA-related synaptic dysfunction antedates nerve cell
loss, suggesting that altered neuronal connectivity is a key feature
in PD (5).

Functional imaging methods, such as resting-state functional
magnetic resonance imaging (fMRI), reflect changes in neural
connectivity andmay help to assess the widespread consequences
of disease-specific network changes in neurodegenerative
diseases (6). Former fMRI studies indicate decreases as well as
increases in functional connectivity in PD patients (7, 8). Most
of these studies focused on functional connectivity of (multiple)
brain regions or networks of interest, thus precluding inferences
on a whole-brain level of integrated networks that are spatially
distributed, but functionally linked.

A relatively new graph analysis approach in functional
imaging concerns eigenvector centrality mapping (ECM). ECM
identifies prominent regions in the brain network hierarchy and
detects localized differences between patient populations (9).
Since this model-free method is applied to all voxels in the
brain it does not require a priori selection of potentially involved
networks and is not restricted to one area (regions of interest) of
the brain. The main difference between the method used in our
study and other graph analysis studies in PD is that our approach
counts the neighbors of each vertex, weighted by their centralities
(9). ECM has been linked to changes in functional connectivity
in certain nodes of brain networks that might contribute to
depression in patients with PD (10). Changes in ECM have also
been linked to cognition in APOE ε4 carriers (11), but also to
neurodegenerative changes in type 1 diabetes mellitus (12), and
cognitive dysfunction and physical disability in multiple sclerosis
(13).

Abbreviations: α-SynA, α-synuclein aggregates; ECM, eigenvector centrality
mapping; MDS-UPDRS, Movement Disorder Society Unified Parkinson’s Disease
Rating Scale; SENS-PD, SEverity of Non-dopaminergic Symptoms in Parkinson’s
disease; SCOPA-COG, SCales for Outcomes in PArkinson’s disease-COGnition;
LDE, levodopa dose equivalent; DA, dopamine agonists.

The aim of this study was to evaluate and compare the
consequences of PD on the resting-state functional connectivity
on a whole-brain level of integrated networks and on eight
explicit brain networks. We hypothesized that these combined
approaches can identify regionally specific differences in
functional connectivity of the brain between PD patients and
control subjects.

PATIENTS AND METHODS

Study Design and Participants
The present cross-sectional study in PD patients is part
of the PROfiling Parkinson’s disease (PROPARK) study. PD
patients were recruited from the outpatient clinic for Movement
Disorders of the Department of Neurology of the Leiden
University Medical Center (LUMC; Leiden, the Netherlands)
and nearby university and regional hospitals. All participants
fulfilled the United Kingdom Parkinson’s Disease Society Brain
Bank criteria for idiopathic Parkinson’s disease (14). Evaluations
occurred between January 2013 and 2016. Exclusion criteria
were: previous or other disorders of the central nervous system,
peripheral nerve disorders influencing motor and/or autonomic
functioning, and psychiatric comorbidity not related to PD.
Patients were matched at group level for age and gender with a
group of healthy control subjects. Control subjects were recruited
from the Leiden Longevity Study (LLS), a study set up to identify
genetic and phenotypic determinants of longevity in healthy
long-living families (15).

Clinical Assessments
All patients underwent standardized assessments, including an
evaluation of demographic and clinical characteristics. Almost
all patients, except for 13 individuals (twelve de novo patients,
defined as dopaminergic drug-naïve patients with a disease
duration shorter than 5 years; one other dopaminergic drug-
naïve patient), were tested while on dopaminergic medication.
The Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) motor scale (part III) was used
to quantify the severity of motor symptoms (16). Additionally,
the SEverity of Non-dopaminergic Symptoms in Parkinson’s
disease (SENS-PD) scale was used, which is a composite score
comprising three items with four response options (0–3) from
each of the following six domains: postural instability and gait
difficulty, psychotic symptoms, excessive daytime sleepiness,
autonomic dysfunction, cognitive impairment and depressive
symptoms (total range: 0–54) (17). These six domains represent
a coherent complex of symptoms that largely do not improve
with dopaminergic medication, that is already present in the
early disease stages, and increases in severity when the disease
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advances (17). Higher scores on both scales reflect more severe
impairment. The SCales for Outcomes in PArkinson’s disease-
COGnition (SCOPA-COG; cognitive functioning; range 0–43)
was used to assess cognitive performance. The SCOPA-COG is a
valid and reliable instrument examining the following domains:
memory, attention, executive functioning and visuospatial
functioning (18); lower scores reflect more severe impairment.
A levodopa dose equivalent (LDE) of daily levodopa (LDE-
Dopa), dopamine agonists (LDE-DA), as well as a total LDE
was calculated according to the formula developed by Tomlinson
et al. (19).

MRI Acquisition
Imaging was performed on a 3 Tesla MRI scanner (Philips
Achieva, Best, the Netherlands). Resting-state fMRI images were
acquired with the following parameters: repetition time = 2.2 s,
echo time = 30ms, flip angle = 80◦, 37 slices, resulting in a
voxel size of 2.75 × 2.75 × 2.72mm, with a 10% interslice gap,
200 volumes, scan duration 7min and 29 s. Participants were
instructed to lie still with their eyes closed and not to fall asleep
during the scan. For registration purposes three-dimensional T1-
weighted anatomical images were acquired with the following
parameters: repetition time = 9.8ms, echo time = 4.6ms, flip
angle = 8◦, FOV 220 × 174 × 156mm, 130 slices with a slice
thickness of 1.2mm with no gap between slices, resulting in
a voxel size of 1.15 × 1.15 × 1.20mm. Additionally, a high-
resolution echo planar image was obtained with the following
parameters: repetition time= 2.2 s, echo time= 30ms, flip angle
= 80◦, 84 slices, resulting in a voxel size of 1.96× 1.96× 2.00mm
with no gap between slices.

Data Analysis
Before analysis, all MRI scans were visually checked to ensure
that no major artifacts or abnormalities were present in the
data. Analyses were done using the software provided using
the FMRIB’s software library (FSL; version 5.0.8, Oxford,
United Kingdom) and Matlab software (version 6.1, The
MathWorks Inc., Natick, MA, 2000) (20).

Preprocessing
The preprocessing of the resting-state fMRI data consisted of
motion correction using motion correction FMRIB’s Linear
Image Registration Tool (MCFLIRT) (21), brain extraction (22),
spatial smoothing using a Gaussian kernel with a full width
at half maximum of 5mm, high-pass temporal filtering with a
cutoff frequency 0.01Hz, non-linear registration with Boundary-
Based Registration to the 2mm isotropic Montreal Neurological
Institute −152 standard space image (MNI; Montreal, QC,
Canada) and a 10mm warp resolution (23), via the T1-
weighted images, using high-resolution echo planar images
for an additional registration step between functional images
and T1-weighted images (24). ICA-based Automatic Removal
Of Motion Artifacts (ICA-AROMA) was used to identify and
remove residual motion-related artifacts from the resting-state
data (25, 26).

Eigenvector Centrality Mapping
ECM was used to identify prominent nodes in the whole brain
network per group. Localized differences between PD patients
and control subjects were subsequently calculated. Each voxel
is assigned its own value of relevance to the network (27).
Higher EC indicates a more prominent role in the brain network
hierarchy and lower EC a less prominent role.

For each participant, we calculated a whole brain eigenvector
centrality map in standard space, using the fast ECM algorithm
(9, 28). The EC maps of all participants (i.e., PD patients
and control subjects) were concatenated into a single four-
dimensional data set. A gray matter mask was applied to
make sure that only gray matter centrality was studied.
FSL-Randomise permutation-testing tool for nonparametric
permutation inference was used for statistical analysis, with 5000
permutations (29). Group differences in mean EC values were
calculated using a two-sampleT-test. The Threshold-Free Cluster
Enhancement (TFCE) technique was used to correct for multiple
comparisons across space. Statistical threshold was set at p <

0.05, Family-Wise Error (FWE) corrected, applying a minimum
cluster size of 40 mm3 (30).

Resting-State Networks
Eight standard resting-state networks were used as a template
to study whole-brain functional connectivity in a standardized
way: (1) medial visual network; (2) lateral visual network; (3)
auditory system network; (4) sensorimotor system network; (5)
default mode network; (6) executive control network; (7 and 8)
dorsal visual stream networks (31, 32). Resting-state functional
connectivity was studied using the dual regression method of
FSL (33), according to Hafkemeijer et al. (32). In short, this
method results in 10 3D images per individual (eight resting-state
networks and a white matter and cerebrospinal fluid template to
further account for noise) with voxel-wise z-scores representing
the functional connectivity in each of the templates (32). Voxel-
wise group differences between spatial maps of PD patients
and control subjects were tested using FSL-Randomise using
the same design as in the ECM analysis, TFCE-FWE corrected
and a statistical threshold of p < 0.05 (29, 30). The standard
resting-state networks were used as masks in the analyses.

Statistical Analysis
The following statistics were performed in SPSS (IBM SPSS
Statistics for Mac, Version 23.0. Armonk, NY: IBM Corp.).
Differences in demographic data between patients and control
subjects were analyzed with an independent-sample T-test (age)
and a chi-square test (gender). For brain areas with significant
group differences in EC, mean EC values were extracted. Z-scores
were extracted from brain areas with significant group differences
in resting-state functional connectivity networks. Within the
PD group, relationships between mean functional connectivity
measures (i.e., mean EC values and z-scores; dependent variable)
and the MDS-UPDRS motor score, SENS-PD score and SCOPA-
COG were studied using a general linear model. Age, gender
and gray matter volume, normalized for subject head size as
estimated with Structural Image Evaluation using Normalization
of Atrophy Cross-sectional (SIENAX) (20), were included as
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covariates in the model (34). Relationships were subsequently
studied within the group of PD patients who used dopaminergic
medication, while adjusting for the total LDE. Bonferroni
correction was applied to account for multiple comparisons.

RESULTS

Demographic Characteristics
In total, one hundred and sixty-five subjects, of which one
hundred and seven patients and fifty-eight control subjects were
included in the analysis. Demographic and clinical data of all
participants are shown in Table 1. There were no significant
differences in age (p = 0.605) and gender (p = 0.206) between
the patient and the control group.

Eigenvector Centrality Maps
Mean Eigenvector Centrality Maps
The mean EC group map of control subjects and the mean EC
group map of PD patients both showed highest cortical mean EC
values in the precuneus, posterior cingulate gyrus and occipital
lobe. In the control group, highest subcortical mean EC values
were found in the thalamus, hippocampus and caudate nucleus.
In the patient group, highest subcortical mean EC values in
patients were found in the thalamus and hippocampus.

Patient–Control Subject Comparisons (Figure 1)
Compared to control subjects, PD patients had increases in
EC in large areas of the parietal and frontal lobe (opercular
cortex, superior division of the lateral occipital cortex, posterior
cingulate gyrus, precuneus, superior parietal lobe, supplementary
motor area (SMA), pre- and postcentral gyrus, frontal gyrus and

TABLE 1 | Main characteristics of participants.

Characteristic (score range) Patients Controls

N 107 58

Men/women (% men) 68/39 (63.6) 31/27 (53.4)

Age, years 64.6 (6.9) 65.2 (7.5)

Disease duration, years 9.5 (4.8) n/a

MDS-UPDRS motor score (0–132) 33.2 (15.5) n/a

SENS-PD, n = 99 (0–54) 13.5 (6.1) n/a

SCOPA-COG, n = 100 (0–43) 27.5 (5.8) n/a

Total LDE, mg/day, n = 92 995.6 (550.4) n/a

Drug-naïve patients, n = 1 n/a n/a

De novo patients*, n = 12 n/a n/a

LDE-Dopa, mg/day, n = 92 739.8 (486.4) n/a

LDE-DA dose, mg/day, n = 92 184.6 (208.2) n/a

Values are means (standard deviation) for continuous variables and numbers for

dichotomous variables. MDS-UPDRS: Movement Disorder Society-Unified Parkinson’s

Disease Rating Scale; SENS-PD: SEverity of Non-dopaminergic Symptoms in Parkinson’s

Disease; SCOPA-COG: SCOPA cognition; LDE: Levodopa dosage equivalent; DA:

dopamine agonists; n/a: not applicable. *De novo patients: drug-naïve patients with

disease duration shorter than 5 years.

right middle frontal gyrus), right temporal lobe, right thalamus
and a small region of the right hippocampus (Figure 1, red areas).

Further, compared to control subjects, patients had areas of
decreased EC in the occipital lobe (cuneus, intracalcarine cortex,
lingual gyrus, occipital pole), frontal lobe (frontal gyrus, frontal
medial cortex, anterior cingulate gyrus, paracingulate gyrus, and
frontal pole), inferior division of the lateral occipital cortex,
precuneus and right pallidum and anterior putamen (Figure 1).

We found no significant relations between mean EC values of
brain areas with group differences and the MDS-UPDRS motor
score, SENS-PD score, or SCOPA-COG score.

Resting-State Network Analyses
Voxel-wise group comparisons of the resting-state network
connectivity revealed group differences in functional
connectivity between PD patients and control subjects in
seven out of eight resting-state networks (Figure 2). Group
differences were most pronounced in the medial and lateral
visual network and the sensorimotor system network (Figure 2,
network 1, 2, and 4). Increased functional connectivity in PD
patients compared to control subjects was found between the
cuneus, precuneus, superior division of the lateral occipital
cortex, intra- and supracalcarine cortex and lingual gyrus, and
the medial visual network; between the superior parietal lobe,
superior division of the lateral occipital cortex, lingual gyrus,
occipital pole and the lateral visual network; and between
the superior parietal lobe, SMA, pre- and postcentral gyrus,
precuneus, cingulate gyrus, supramarginal gyrus and the
sensorimotor system network (Figure 2, network 1, 2, and 4).
Smaller regions of increased connectivity were found between the
precuneus, superior division of the lateral occipital cortex and the
default mode network (DMN) and right frontoparietal network
(Figure 2, network 5 and 7); and between the superior division
of the lateral occipital cortex, angular gyrus, supramarginal
gyrus, subcallosal cortex, superior parietal lobe and the left
frontoparietal network (Figure 2, network 8).

Decreased functional connectivity in PD patients compared to
control subjects was found between the insular cortex, opercular
cortex, frontal orbital cortex, precentral cortex, right putamen
and the auditory system network; between the superior division
of the lateral occipital cortex and the right frontoparietal network;
and between the frontal orbital cortex and frontal gyrus and the
left frontoparietal network (Figure 2, network 3, 7, and 8). No
changes in functional connectivity were observed in the executive
control network (Figure 2, network 6).

We found no significant relations between mean z-scores of
regions with group differences and clinical data after applying
correction for multiple comparisons.

DISCUSSION

We used two complementary methods to analyze resting-state
brain functional connectivity to study the cerebral functional
reorganization at a network and whole brain level in patients
with PD. Using the novel graph analysis approach (ECM), we
found that frontoparietal regions display a stronger connectivity
to the whole-brain network function in PD patients compared
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FIGURE 1 | Significant group differences between patients and control subjects in mean EC values. Red: clusters of increased EC in patients compared to control

subjects. Blue: clusters of decreased EC in patients compared to control subjects. Results are corrected for age, gender and voxel-wise gray matter volume per

subject. Images are overlaid on the most informative, sagittal, coronal, and axial slices of the MNI standard anatomical image (MNI coordinates of each slice are given).

to control subjects, while a decreased connectivity was found
for frontal and occipital areas of the brain (Figures 1, 3). In
the resting-state networks of the brain, we found predominantly
increased functional connectivity within the sensorimotor system
and visual networks (Figures 2, 3). Comparing both approaches
highlights a partial overlap of regional alterations of the whole
brain functional connectivity architecture in PD (Figure 3).

Regions of Increased Functional
Connectivity in Parkinson’s Disease
Mean EC values were increased in large frontoparietal brain
regions of PD patients (Figures 1, 3), indicating that these
regions fulfill a more prominent role within the overall brain

network of PD patients. The method used in our study counts
the neighbors of each vertex, weighted by their centralities, while
prior studies often used degree centrality in PD, another graph
analysis technique that estimates the number of connections of a
node. These studies showed higher frontoparietal connectivity in
patients compared to control subjects (7, 35). It was further found
that the efficiency among these connections was increased in PD
patients (35). The frontoparietal regions identified with ECM
partly overlapped with increased regional functional connectivity
identified by standard resting-state network analysis within
the sensorimotor system network, including the sensorimotor,
primary motor and premotor cortex, and SMA (Figures 1–
3). Increased resting-state functional connectivity of regions
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FIGURE 2 | Significant group differences in functional connectivity between

Parkinson’s disease patients and control subjects in resting-state networks.

Analyses were adjusted for age, gender and voxel-wise gray matter volume

per subject. Yellow: Spatial maps of eight standard resting-state networks.

Increased (red) and decreased (blue) network connectivity in patients

compared to control subjects. Images are overlaid on the most informative,

sagittal, coronal, and axial slices of the MNI standard anatomical image (MNI

coordinates of each slice are given).

involved in motor control is a consistent finding in treated PD
patients, which may suggest a role of dopaminergic medication
(7, 36–39). Alternatively, the findings may reflect compensatory

reorganization of basal ganglia thalamo-cortical motor loops
(40, 41), since increased resting-state functional connectivity in
frontoparietal regions has been described in PD patients in the
“off-medication-state” as well (35).

A recurrent finding in this study, identified with both
approaches, was increased functional connectivity of the
precuneus and posterior cingulate cortex in PD patients
(Figures 1–3). Both brain structures are considered as highly
connected and are key nodes in the DMN (31, 42, 43).
Disruption of the DMN seems to be associated with cognitive
deficits in PD patients (8). A recent study further observed
increased connectivity between the precuneus and frontoparietal
regions during task conditions, suggesting that the precuneus
simultaneously interacts withmultiple brain networks depending
on the cognitive status (6, 43). However, the association
of functional connectivity within the DMN with cognitive
performance in the present study did not survive correction for
multiple comparisons.

Regions of Decreased Functional
Connectivity in Parkinson’s Disease
Occipital and frontal parts of the brain showed reduced EC in
PD patients, indicating a diminished role of these regions within
the overall brain functional architecture network in PD. Only
two other studies applied whole brain ECM in PD. The first
study aimed to investigate EC in depressed PD patients and
also reported small frontoparietal regions of decreased EC in the
non-depressed PD group scanned in the “off-medication-state,”
compared to control subjects (10). The second study investigated
ECM changes in PD patients following surgery, and reported
that penetration of electrodes in the subthalamic nucleus was
associated with increased EC in the brainstem, which was related
to motor improvement (44). However, this is the first study
in which whole brain ECM results of mild to moderate PD
patients are compared to healthy control subjects. Resting-state
fMRI studies using other techniques than ECM in PD, report
connectivity reductions of frontal and occipital regions as well
(7, 45), possibly related to cognitive dysfunction (46, 47).

In Alzheimer’s disease, ECM shows decreased EC in the
occipital cortex, but increased EC in frontal brain areas (28).
Decreased occipital EC was associated with a poorer cognitive
performance in Alzheimer’s disease patients, as well as in
control subjects (28). In PD, decreased EC of the occipital
cortex of patients may further be related to disruption of visual
networks (7, 39). Distinct spatial regions of the visual system
that were identified with ECM, showed increased intra-network
connectivity in PD patients within standard resting-state visual
networks in this study (Figures 2, 3). Collectively, these findings
suggest disrupted visual network organization and integration,
which could be related to visual deficits or visuo-spatial attention
deficits (31, 47, 48).

Spatial Distribution of Altered Functional
Connectivity
The regions of altered functional connectivity identified with two
complementary techniques in this study are shown in Figure 3.
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FIGURE 3 | Main cortical differences (eigenvector centrality mapping and standard resting-state network analysis results) in resting-state functional connectivity

between Parkinson’s disease patients and control subjects are shown. Orange: whole-brain functional connectivity differences as measured with eigenvector centrality

mapping; Red: functional connectivity differences in relation to eight standard resting-state networks; ↑: increased functional connectivity; ↓: decreased functional

connectivity.

Post mortem studies show that neocortical deposition of Lewy
pathology occur in the temporo-occipital, temporal and frontal
gyrus and the cingulate, insular and inferior parietal cortex (1, 4).
We found altered functional connectivity in these structures
with known Lewy pathology, but predominant regions of altered
functional connectivity were located posterior in the brain, in
particular the precuneus and posterior cingulate cortex. If the
regionally altered functional connectivity in PD reflects the
selective vulnerability of neuronal regions of the brain to α-SynA,
cannot be assessed from this study. However, it is of interest that
it was shown that the majority of α-SynA are not localized in
Lewy bodies, but are in the form of much smaller aggregates than
Lewy bodies (5, 49). These α-SynA were detected throughout the
cortex of Lewy body disease patients and were most dense in the
cingulate cortex (5, 49). In PD, smaller α-SynA than Lewy bodies
can also be observed at predilection sites (5, 49).

The identified posterior brain regions further showed highest
mean EC values in healthy control subjects, which is in
line with findings of other studies reporting these regions as
highly connected (hub) regions (28, 42, 50). In Alzheimer’s
disease patients, positon emission tomography amyloid imaging
showed high levels of amyloid-β deposition in cortical hubs
compared to control subjects (50). It is proposed that cortical
hub regions display a preferential vulnerability to pathology in
neurodegenerative diseases, due to their intrinsic high activity

level, or due to the possibility that increased neuronal activity
enhances the process of misfolded protein in the brain (3, 51–53).
Non-invasive imaging of α-SynA has proven more challenging
than imaging amyloid-β deposition, making it difficult to study
the presence and density of α-SynA levels in specific cortical
(hub) regions and test these assumptions in PD.

Increased Functional Connectivity:
Pathogenic and Compensatory
Mechanisms
A prominent finding in this study is the increased functional
connectivity in PD patients. Increased functional connectivity is
a common finding in neurodegenerative diseases (52, 54), but
the mechanism underlying increased functional connectivity is
unclear. It may simply reflect the primary disease process, or
appear secondary in response to altered function elsewhere in
the brain (55). The latter is often explained as a compensation
mechanism in fMRI resting-state and task-based studies that
found increased connectivity associated with lower symptom
scores (52, 54). In PD, for instance, there is evidence for increased
functional connectivity between the putamen and the cerebellum
in mild to moderate stages of the disease, correlating with
better motor performance (56). In the presence of manifested
disease, as in our patient group, increased connectivity can
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indicate unsuccessful or only partial compensation (52) In
this study, we found an altered balance of functional brain
connectivity in symptomatic stages of PD in which α-
SynA pathology involves neocortical areas (1, 4). Longitudinal
fMRI studies are needed to assess if assumingly preserved
neuronal areas show increased connectivity early in the disease
process, if connectivity in these regions changes as the disease
progresses, and if this is related to network levels of clinical
performance.

POTENTIAL LIMITATIONS

Patients were scanned while taking their usual medications
in this study. A potential modulatory role of dopaminergic
medication cannot be ruled out. Several fMRI studies have
reported a normalizing effect of dopaminergic medication
on connectivity in PD, especially of sensorimotor regions,
which might suggest that our findings would have been more
pronounced if patients were scanned in the “off-medication-
state” (57). Moreover, dopaminergic medication may lead to
prolonged motor responses and its chronic use may alter brain
organization (58, 59). Hence, if scanning PD patients after
a certain period of withdrawal of dopaminergic drugs solely
measures the influence of the disease process, is still open
for debate. Further, scanning patients in the “on-medication-
state” may reduce motion-related artifacts, which are especially
problematic in resting-state fMRI studies. To reduce motion-
related artifacts, we additionally visually inspected the data,
performed standard motion correction and included white
matter and cerebrospinal fluid templates in the analyses (21, 25,
26).

After strict correction for multiple comparisons, we found
no relationship between functional connectivity and severity of
motor symptoms (MDS-UPDRS motor scale), predominantly
non-motor (non-dopaminergic) symptoms (SENS-PD scale) and
cognition (SCOPA-COG scale) in PD. Dopaminergic medication
may have attenuated the examined associations through a
decrease of symptom scores that are responsive to dopaminergic
stimulation and through a possible normalizing effect on
functional connectivity in PD (57). However, we used LED as
an additional covariate in our model and this did not alter the
significance of our findings. Moreover, no relations were found
between functional connectivity measures and clinical measures.
Previous studies in PD using structural imaging methods used to
study brain atrophy or changes of white matter tracts (fractional
anisotropy or mean diffusivity), however have revealed moderate
clinico-imaging relationships (6, 60, 61). This likely suggests
that changes of the functional connectivity architecture of the
brain provide a different perspective of the consequences of

the pathobiology of PD, which do not necessarily have to
be associated with clinical measures. This assumption is in
line with studies in other neurodegenerative diseases, such as
Alzheimer’s disease, progressive nuclear palsy and Huntington’s
disease, where no clear associations have yet emerged between
measures of functional connectivity and clinical measures of
disease severity (6).

CONCLUSIONS

The findings in this study on functional brain network
organization in PD indicate a diminished role of frontal and
occipital brain areas, while posterior parietal and frontoparietal
areas display a more prominent connectivity to the whole-brain
network function. We did not find significant correlations
between clinical measures and functional imaging parameters,
suggesting that changes on the level of functional connectivity
architecture of the brain provide a different perspective of the
pathological consequences of PD. Regionally altered functional
connectivity was most pronounced in highly connected
(hub) regions, particularly the posterior cingulate cortex and
precuneus, which may account for the distributed abnormalities
across the whole brain network architecture in PD.
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