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Purpose: The task-based assessment of image quality using model observers is increasingly used for the 

assessment of different imaging modalities. However, the performance computation of model observers needs 40 

standardization as well as a well-established trust in its implementation methodology and uncertainty estimation. 

The purpose of this work was to determine the degree of equivalence of the channelized Hotelling observer 

performance and uncertainty estimation using an intercomparison exercise.  

Materials and Methods: Image samples to estimate model observer performance for detection tasks were 

generated from two-dimensional CT image slices of a uniform water phantom. A common set of images was 45 

sent to participating laboratories to perform and document the following tasks: (1) estimate the detectability 

index of a well-defined CHO and its uncertainty in three conditions involving different sized targets all at the 

same dose, and (2) apply this CHO to an image set where ground truth was unknown to participants (lower 

image dose). Additionally, and on an optional basis, we asked the participating laboratories to (3) run a model 

observer that they assumed to be a good estimate of the human observer on an independent set of images where 50 

ground truth was unknown, and (4) estimate the performance of real human observers from a psychophysical 

experiment of their choice. Each of the 13 participating laboratories was confidentially assigned a participant 

number and image sets could be downloaded through a secure server. Results were distributed with each 

participant recognizable by its number and then each laboratory was able to modify their results with 

justification as model observer calculation are not yet a routine and potentially error prone. 55 

Results: Detectability index increased with signal size for all participants and was very consistent for 6 mm 

sized target while showing higher variability for 8 mm and 10 mm sized target. There was one order of 

magnitude between the lowest and the largest uncertainty estimation. 

Conclusions: This intercomparison helped define the state of the art of model observer performance 

computation and with thirteen participants, reflects openness and trust within the medical imaging community. 60 

The performance of a CHO with explicitly-defined channels and a relatively large number of test images was 

consistently estimated by all participants. In contrast, the proposed uncertainties associated with this model can 

vary up to a factor of 10. 

Keywords: Image quality, Model observers, Intercomparison, Computed Tomography, Channelized Hotelling 

observer 65 
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1. Introduction 

The use of X-ray technology in medical imaging involves tradeoffs: while enabling the diagnosis of disease, the 

unavoidable cost is the dose to the patient. With the increasing use of volumetric imaging like X-ray computed 

tomography (CT), the collective dose to the population increases as well1, making dose management a priority in 70 

radiological imaging2, 3. However, reducing the dose without accounting for any potential degradation of image 

quality could reduce the benefit for the patient in the form of a misdiagnosis. 

The task-based assessment of image quality, as proposed by Barrett and Myers4, helps overcome this issue as it 

relates image quality to reader performance for diagnostic tasks of interest. Furthermore, replacing readers with a 

mathematical observer makes this method less time-consuming and usable in routine image quality assurance. 75 

Over the last two decades, model observers, and in particular the Channelized Hotelling Observer (CHO)5–8, 

have been increasingly investigated for the assessment of different imaging modalities: mammography9, Digital 

Breast Tomosynthesis (DBT)10, fluoroscopy11, CT12–14 and nuclear medicine15, 16, and for different tasks: 

detection13, localization17 and estimation18, 19. Recently, the US Food and Drug Administration (FDA) proposed 

using CHOs in virtual clinical trials as evidence of device effectiveness10. The reasons that explain the success of 80 

channelized observers are essentially that they can be computed with a limited number of images and, depending 

on the choice of the channels, that they can be tuned to mimic human or ideal observers. 

The increasing use of model observers by the medical imaging community raises concerns common to all 

metrological quantities that become mature. The absence of an overall strategy to assess image quality with 

model observers can make their use difficult by parties such as accreditation bodies, regulatory authorities, or 85 

practical users. Consequently, model observer computation needs standardization as well as a well-established 

trust in its computational methodology and uncertainty estimation, like what is done for other metrological 

quantities used in medicine (e.g. absorbed dose, air kerma, activity, luminance, etc.). In addition, the robustness 

of anthropomorphic model observers relies on their good correlation with human observers. Many studies have 

investigated model observer accuracy to predict human performance with different modalities and tasks7, 13, 20  90 

resulting in different model observer formulations. However, less is known about the accuracy of these model 

observers and the degree of equivalence that exists between different laboratories that perform a given 

evaluation. 

In this paper, we present a first step towards building consensus about model observer methodology in the form 

of an inter-laboratory comparison of the performance computations of model observers for a simple case. The 95 

approach was similar to what is done between national metrology laboratories21, 22: a common sample of image 
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data was sent to several laboratories for evaluation. This exercise aimed at answering the following questions: 

(1) How consistent is model observer implementation across different laboratories? (2) How consistent are 

uncertainty estimates? Ultimately, this work aims at establishing a standardized framework and guidance for the 

evaluation of medical image quality based on model observers.  Some anticipated practical outcomes of this 100 

exercise are: increasing the robustness of model observer computations, building mutual trust among laboratories 

performing model observer computations, and generating confidence from the authorities, such as manufacturers 

and the medical community, regarding the practical applications of model observers in day-to-day practice. 

Practically, we report on a comparison among 13 different laboratories from 6 different countries that estimated 

the performance of model observers for a detection task with two-dimensional CT image slices of a uniform 105 

water phantom. The exercise was coordinated by the Institute of Radiation Physics in Lausanne, Switzerland and 

each participating laboratory received the exact same image sets and was asked to perform and document the 

following tasks: (1) estimate the performance of a well-defined CHO and its uncertainty in three conditions 

involving different sized targets, and (2) apply this CHO to an image set where ground truth was unknown to 

participants. Additionally, and on an optional basis, we asked the participating laboratories to (3) run a model 110 

observer that they assumed to be a good estimate of the human observer on an independent set of images where 

ground truth was unknown, and (4) estimate the performance of real human observers from a psychophysical 

experiment of their choice. 

2. Materials and methods 

2.1 Image Dataset 115 

2.1.1 CT acquisition 

We considered the practical situation of a medical physicist that assesses image quality from a CT device with a 

dedicated test object. We obtained the image datasets by performing 15 repeated acquisitions of a cylindrical 

water tank (Figure 1) with no embedded object for a CTDIvol equal to 7.5 mGy and 45 repeated acquisitions at 15 

mGy. The two levels of dose were used to generate two independent image datasets. The 15 mGy acquisition 120 

corresponds to local dose reference level for abdominal imaging23 and is therefore representative of clinical 

practice. The scans were acquired and reconstructed with an abdominal protocol used routinely for clinical 

imaging on a multi-detector CT (Discovery HD 750, GE Healthcare). Acquisition and reconstruction parameters 

are detailed in Table 1. 
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 125 
Figure 1. Cylindrical water tank phantom. Diameter: 20 cm; length: 25 cm. 

Table 1. Acquisition and reconstruction parameters 

Parameter Value 

Acquisition 

Pitch 1.375 

Rotation time (s) 1 

Tube voltage (kVp) 120 

Tube current (mA) 130 260 

CTDIvol (mGy) 7.5 15 

Collimation width (mm) 40 

Reconstruction 

Matrix size (pixel) 512x512 

Reconstruction algorithm Filtered backprojection 

Kernel Soft tissue 

Slice interval (mm) 2.5 

Slice thickness (mm) 2.5 

Field of view (mm) 300 

Pixel size (mm) 0.59 

 

2.1.2 Image samples and signal 

For simplicity, and because it was the first such exercise, we considered 2D image slices from CT acquisition. 130 

All image samples used were non-overlapping squared regions of interest (ROI) of 200x200 pixels cropped from 

the original CT scans using only one slice every three slices to minimize any axial noise correlation. The 

investigated task was a binary classification in which the signal was present with 50 % prevalence. Signal 

present images were generated by inserting 6, 8 and 10 mm low contrast disk-shaped signal mimicking 

hypodense focal liver lesion at the center of the image (location-known-exactly) with an alpha blending 135 

technique24. Figure 2 shows ROIs for 6-mm, 8-mm, and 10-mm signal sizes. The signal radial profile was fitted 

to real liver lesion profile using a contrast-profile equation25 and checked for its realism by an experienced 

radiologist. To ensure a non-trivial task with human observers, the signal intensity was set to reach 90% to 95% 

of the correct answer in a pre-study 2-alternative forced-choice experiment (2-AFC) with a 10-mm signal size 

involving 3 human observers. The same signal intensity was used for the two smaller signals. 140 
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2.1.3 Image Dataset for observer study 

We generated two Datasets. Dataset1 was intended to compare implementation of CHO model observer when 

the ground truth is available and Dataset2 was intended to assess model observers when the presence or absence 

of the signal in the image sample is unknown. Dataset1 contained images explicitly labeled in terms of presence 145 

or absence of the signal and corresponded to the 15 mGy dose level scans. Three image subsets were provided (1 

for each signal size) and contained both 200 signal present and 200 signal absent samples. Dataset1 was 

provided in two versions: one without location cues for a model observer computation and another with location 

cues for human observer psychophysical experiments. Dataset2 was composed of 400 images obtained at half 

the dose of Dataset1 (CTDIvol = 7.5 mGy) to provide a different dose condition with an 8-mm signal with a 150 

prevalence of 50%. The sequence of signal present and signal absent images was randomly defined and was 

different for each participating laboratory. The ground truth was kept unknown to each participant (including the 

coordinating laboratory). 

 
Figure 2. 200x200 pixel size ROIs for a) 6-mm, b) 8-mm and c) 10-mm signal size. These images were obtained by increasing 155 
signal contrast for visualization purposes. 

2.2 Task descriptions 

All participating laboratories were asked to perform four tasks. The first two tasks were mandatory and consisted 

of computing the performance of a defined model observer. The two other tasks were optional and consisted of 

estimating the performance of the human observer, with an anthropomorphic model of their choice and/or with a 160 

psychophysical experiment.  

2.2.1 Performance computation with a defined model observer and Dataset1 

Participants were asked to compute the performance of a defined model observer with Dataset1. We chose the 

CHO5–8, which is defined by a template derived from optimal weighting of a limited set of channel outputs. To 

get the template, each image is preprocessed by a set of J channels which reduces image dimension to the 165 

number of channels. Channel outputs are weighted to maximize detection performance using the dot product 
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between the inverse of the covariance matrix and an estimation of the mean difference signal in the channel 

space. The decision variable from an image sample is derived from the dot product between the CHO template 

and the image sample vector in the channel space. 

The D-DOG channels in this exercise were those proposed by Abbey and Barrett26, which have the advantage to 170 

be precisely defined, sparse and mimic human observer27. DDOG radial spatial frequency profile functions are 

defined by 

 

where 𝜎𝑗 = 𝜎0𝛼𝑗 is the channel standard deviation of the jth channel, and 𝜎0is the initial standard deviation. We 

used  𝑗 = 10 channels, 𝜎0 = 0.005 pixels-1, 𝛼 = 1.4, 𝑄 = 1.66. 175 

Specific computation concerns how the image samples are used or processed to derive the CHO features (e.g. 

template and mean signal, and decision variable distributions). The CHO computation methodology contains the 

following features: training and testing strategy, number of sample pairs in training and testing sets, ROI size, 

estimation of the covariance matrix with signal-present and/or signal absent image samples, mean signal 

estimation, computation domain for images processing (space or frequency). The participants were free to use 180 

the image dataset as they wanted. The laboratories implementation details are documented in the Results section. 

The participants were asked to estimate the detectability index d', which is the distance between signal present 

and signal absent of decision variables distribution in standard deviation units; according to the definition given 

by Barrett and Myers4. They were also asked to provide their uncertainty as being one standard-deviation of their 

estimated probability density function of d'. In metrology, this uncertainty is called "standard uncertainty"28. For 185 

a Gaussian distribution this corresponds to a confidence level of 68 % that the true value is within the interval. 

No instructions regarding the number of image samples to be used in the training and testing subsets of Dataset1 

were given. 

2.2.2 Performance of the same model observer and Dataset2 

In the second mandatory task, participants were asked to compute test statistics using the same model observer 190 

as in the first task, but for Dataset2. The participant has the possibility to train model observer using images from 

Dataset1, as coordinating laboratory did not provide additional images. As ground truth was unknown to them, 

participants reported the model’s responses to each individual image. The detectability was computed by the 
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coordinating laboratory using the same definition as in 2.2.1. We did not estimate uncertainty, as no consensus 

was available at the time of this exercise. 195 

2.2.3 Best anthropomorphic observer with Dataset2 

A voluntary exercise provided was to compute the performance of an anthropomorphic model observer of each 

participants’ choice. This observer could be trained on Dataset1, but the individual responses had to be given for 

each image of Dataset2. The participants could use an anthropomorphic observer which they knew to match the 

human observer well for this type of task and images. Because the ground truth was unknown with Dataset2, the 200 

participants reported the computed model’s responses to each individual image and the coordinator computed the 

detectability identically to the second mandatory task. In order to have a reference human observer, the 

coordinator of the exercise also performed a multi-alternative forced choice experiment (MAFC) with M = 2 in 

order to estimate d' with same data and 3 study participants. From the percent of correct (PC) answers, we 

derived d´ using a root finding method with the following formula29: 205 

𝑃𝐶 = ∫ ⅆ𝜆𝜙(𝜆 − ⅆ′)𝜙(𝜆)𝑀−1 

where 𝜙 is the standard normal probability density function, 𝜆 is the response to an alternative and M is the 

number of alternatives. All participant individual scores for each trial were pooled to calculate PC. In a 2-AFC 

experiment (M = 2), PC=90% corresponds to d'=1.8, PC=95% corresponds to d'=2.3 and PC=99% corresponds 

to d'=3.3. 210 

2.2.4 Human observer with Dataset1 

For the fourth and final (also voluntary) task, the participants were asked to run human observer experiments 

with Dataset1. Participants could select the method to carry out the human study, and templates of the targets 

were provided together with the images for this task. They were asked to estimate d' and its standard uncertainty 

u(d') for the three signal sizes. For those who ran the experiments with more than one human observer, 215 

individual and pooled results were expected. The results reported in terms of PC from MAFC were transformed 

into d' by the coordinator with the formula described in the previous section. 

2.3 Study design 

Each of the 13 participating laboratories was randomly assigned a participant number from 1 to 13. To guarantee 

some degree of confidentiality, each laboratory only knew its own number. The study packages were distributed 220 

through a secure server and participating laboratories could download them when they wanted. The study 

package contained Dataset1 and Dataset2, a description of the tasks, the study’s milestones and a form to collect 

the raw results. The form content is described in Table 2. The complete form is available in the appendix. 
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Each laboratory had two months to return the results form. One month later, the results were distributed with 

each participant recognizable by its number.  Each laboratory had the possibility to modify their results with 225 

justification within one month. We allowed this because model observer calculation are not yet a routine and still 

error prone. Moreover, as it was the first time that such an exercise was proposed, we needed to build trust in 

order to embark as many laboratories as possible into this study. Modified results are reported in Section 3. 

Results in the corresponding figures and justifications are detailed in a dedicated paragraph in the Discussion 

section. 230 

Table 2. Content of the results form to be filled by every participant. 

Section Content 

1. CHO D-DOG with Dataset1 

Quantitative estimation of detectability d´ and its uncertainty 

u(d´) for 6, 8 and 10 mm 

Qualitative description of model observer computation and 

uncertainty estimation method 

Covariance matrix for 6, 8 and 10 mm 

2. CHO D-DOG with Dataset2 Responses to Dataset2 image samples 

3. Best anthropomorphic model observer with 

Dataset2 (optional) 

Qualitative description and justification of model observer 

computation 

Responses to Dataset2 image samples 

4. Human observer with Dataset1 (optional) 

Quantitative estimation of detectability d´ and its uncertainty 

u(d´) for 6, 8 and 10 mm 

Qualitative description of psychophysical experiment 

(material and settings)  
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3. Results 

Data from returned forms were analyzed and organized into two main sections: observer performances and 

computational methods. Table 3 shows the participation in the study respective to the tasks. 235 

Table 3. Summary of the participation in the four tasks. 

Participant number 

Participation in the study 

Number of human  

observers CHO DDOG 

with Dataset1 

CHO DDOG 

with Dataset2 

Best 

anthropomorphic 

model observer with 

Dataset2 

Human 

observer with 

Dataset1 

1 yes yes - yes 4 

2 yes yes yes yes 10 

3 yes yes - - - 

4 yes yes - - - 

5 yes yes - yes 1 

6 yes yes yes - - 

7 yes yes - - - 

8 yes yes - - - 

9 yes yes yes yes 3 

10 yes yes yes - - 

11 yes yes yes - - 

12 yes yes yes yes 1 

13 yes yes yes yes 3 

Total 13 13 7 6 22 

3.1. Quantitative results: Observer performances 

3.1.1 Performance computation with a defined model observer and Dataset1 

Detectability indexes computed by each laboratory for 6-, 8- and 10-mm signal size are presented in Figure 3. 

Because the actual true detectability is not known, due to the use of actual CT data with an unknown underlying 240 

probability distribution, we chose the reference as being the median of all reported estimations. As expected d´ 

increased with signal size for all participants. The detectability index was very consistent for 6 mm and showed a 

somewhat higher variability for 8 mm and 10 mm for all participants with respectively less than 5 %, 16 % and 

18 % variation between labs. 
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 245 
Figure 3. Detectability indexes for CHO D-DOG with Dataset1 computed by each participant laboratories for a) 6, b) 8 and 

c) 10 mm signal size in increasing order. The dotted line represents the median value for final estimation of d´. For 

laboratories that corrected their estimation, the first estimation of d´ is plotted as a triangle marker. Error bars represent the 95 

% confidence interval for the mean d´. For the laboratories that provided standard uncertainties, the values were multiplied by 

a coverage factor k=2 and are drawn as plus/minus this new value. 250 

Figure 4 presents the uncertainty estimation of d´ computed by each participant for 6-, 8- and 10-mm signal size, 

separately and in increasing order. They are presented as 95 % confidence intervals with mention to the 

estimation method: resampling30, exact 95 % interval31 and repartitioning. For the laboratories who reported a 

standard uncertainty, we implicitly assumed a Gaussian distribution and expanded their value by a coverage 

factor k=2 in order to estimate a 95 % confidence interval (with k=2 instead of the more precise value of 1.96, 255 

we followed the habit of the national metrological institutes, because the "uncertainty on the uncertainty" is 

much larger than the difference between 1.96 and 2). We observed one order of magnitude between the lowest 

and the largest uncertainty estimation. 

 
Figure 4. CHO D-DOG with Dataset1 95 % confidence interval length of the mean d' computed by each participant 260 

laboratory for a) 6-, b) 8- and c) 10-mm signal size in increasing order. For the laboratories that provided 1 standard-

deviation uncertainty, the values have been adjusted as described in the text. 
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The effect of the number of images, N, used to train CHO D-DOG with Dataset1 on d´ for independent and 

resubstitution (the use of the same data for training and testing the CHO) sampling methods, was calculated by 

one of the participating laboratories, and is presented in Figure 5. The plot uses 1/N scale as d´-versus-1/N can 265 

be approached by a linear relationship and d´ for infinite sample size can be estimated by the intercept of a linear 

regression of d´-versus-1/N32. Estimation of d´ uncertainty decreased with increasing numbers of training images 

for both sampling methods. As expected, for resubstitution sampling, d´ decreases with increasing numbers of 

training images. For testing with independent samples, d´ increases with increasing numbers of training images. 

The two sampling methods converge and give approximately the same estimation of d´ from roughly 200 270 

training images.  

 
Figure 5. Effect of the number of samples N used to train the CHO on d´ for independent and resubstitution sampling 

methods with 10-mm signal size. Error bars represent the 95 % confidence interval. The dotted lines are present to facilitate 

the reading of the graph. Courtesy of F. Samuelson and R. Zeng from FDA/CDRH. 275 

3.1.2 Performance of the same model observer and Dataset2 

Detectability indexes of the CHO D-DOG computed on Dataset2 are presented in Figure 6. As expected, due to 

the lower dose of Dataset2, d´ median is lower than the one obtained with Dataset1. They also show a larger 

variability than Dataset1 with less than a 21 % in variation between labs.  
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 280 
Figure 6. CHO D-DOG with Dataset2 d’ for 8-mm signal size in increasing order. The detectability index was computed by 

the exercise coordinator from decision variable responses provided by each participant laboratory using the ground truth of 

the respecting Dataset. The detectability index was estimated as the distance between the mean signal present and absent 

distribution in sigma unit. The dotted line represents the median value. Uncertainty estimates were computed by the 

coordinator by bootstrapping the test cases from the decision variable responses provided by each participant with 1000 285 

iterations. Errors bars represent 2 standard deviations from the bootstrapped d’ distribution. 

3.1.3 Best anthropomorphic observer with Dataset2 

 

Detectability indexes for each participant laboratory with best anthropomorphic model observer and Dataset2 are 

presented in Figure 7. As expected, they exhibit a larger variability than what was observed with the fixed D-290 

DOG observer. For example, for 10-mm signal size, there is approximately 20 % difference between minimum 

and maximum estimation of d´ for participating laboratories for CHO D-DOG with Dataset1. There is more than 

a factor two for the best anthropomorphic observer with Dataset2 variation within labs.  

 
Figure 7. Detectability indexes for best anthropomorphic model observers with Dataset2 for 8-mm signal size in increasing 295 

order. The detectability index was computed by the exercise coordinator from decision variable responses provided by each 
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participant laboratory using the ground truth of the respecting dataset. The detectability index was estimated as the distance 

between mean signal present and absent distribution in sigma unit. For laboratories that corrected their estimates, the first 

estimation of d´ is plotted as triangle marker. The star marker represents the reference human observer d´ for Dataset2. 

Uncertainty estimates were computed by the coordinator bootstrapping test cases from decision variable responses provided 300 

by each participant with 1000 iterations. Errors bars represent 2 standard deviations from the bootstrapped d’ distribution. 

3.1.4 Human observer with Dataset1 

 

Human data provided by the participating laboratories with Dataset1 are presented in Figure 8. They show a 

much larger variability than the fixed D-DOG estimation. For example, for the 10-mm signal size, there is a 305 

factor of 1.2 between minimum and maximum estimation of d´ for participating laboratories for CHO D-DOG 

with Dataset1 and there is a factor of 2.5 for human observers with the same images. 

 
Figure 8. Detectability indexes for human observers with Dataset1 for participating laboratories for a) 6-, b) 8- and c) 10-mm 

signal size. All participating laboratories to this task used MAFC experiment paradigm and provided percent of correct 310 

answer (PC) as metric in the form. The coordinator computed d´ from PC-versus-d´ relationship29 using a root finding 

method. Error bars represent 1 standard error of the mean d´ as estimated by participants. 

3.2. Qualitative results: comparison of the computational methods 

The computational methods for CHO D-DOG with Dataset1 are summarized in Table 4. Train-test strategy and 

size of training and testing sets show how participants used image samples to estimate d´ from model observer 315 

decision variables. Eight participants chose resubstitution using the same set for training and testing. Among 

them, two participants (4 and 12) used an alternate resubstitution method with bias correction for the estimation 

of d´31. Four participants employed hold-out using independent sets for training and testing. One participant split 

the testing set into 8 independent samples and averaged d´ from all samples. All participants who applied the 

resubstitution method used a training size of 200 image pairs, and 100 image pairs were used for the hold-out 320 
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training and testing strategy, and one participant used the leave one out strategy. The testing size was 200 image 

pairs for resubstitution and 100 image pairs for hold-out strategy. 

Most of the laboratories used resampling techniques for the estimation of u(d´), the uncertainty of d´. 

Resampling methods were bootstrap13 for 9 participants and jack-knife15 for 1 participant. The main differences 

between resampling techniques were if the training samples were fixed or variable. One participant split the 325 

testing set into 8 independent parts and derived the standard deviation of d’ from all parts as an estimation of 

u(d´). Two participants used an exact formulation of the 95 % confidence interval31 based on a method for the 

interval estimation of the Mahalanobis distance33. 

The estimation of d´ was systematically computed as the distance between the mean of signal present and signal 

absent decision variables distributions in the standard deviation unit as defined in Section 2.2.1, except for 330 

participant 5 who used a close form for the estimation of d´4. For participants who used sampling or resampling 

techniques, d´ was the average d´ across all samples. 

The estimation of the models’ template components, such as the covariance matrix and mean signal, were 

systematically obtained from image samples. Figure 9 presents covariance matrices estimated by each participant 

for the 8-mm signal size. Every covariance matrices presents similar patterns, except for participant 7 and 11. 335 

The general pattern corresponds to high variance with high frequency channels that tend to decrease with lower 

frequency channels. For participant 7, the covariance matrix pattern was flatter than for the other participant and 

no scaling factor was found to explain the differences. For participant 11, all the channels presented a high 

variance. All participants trained their observer on signal-absent and signal-present images together in order to 

estimate the channel covariance matrix, except for participants 10 and 13 who used signal-absent images only. 340 

All participants computed the difference between the mean signal-present and mean signal-absent ensemble 

image sets as seen through the channels to estimate the mean signal. 

For all participants, ROI size was always the original size (200x200). All participants computed templates in the 

image domain. None used Fourier domain estimates. 

The best anthropomorphic model observer computation methodologies with Dataset2 are summarized in Table 5. 345 

Seven participants took part in this task. The main justification for their models is the good fit of human observer 

performance assessed in previous studies with real or synthesized backgrounds: mammography, digital breast 

tomosynthesis (DBT) and lumpy backgrounds. Three participants justified their choice by the good fit of their 

model observer with samples from Dataset1. Except for one participant who used a machine-learning algorithm, 

they all used CHOs with either D-DOG, Gabor or Laguerre-Gauss channels. The participants reported to have fit 350 
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the model responses to human performances by using internal noise34, scaling, channel tuning or machine 

learning algorithm15. Two participants did not fit their model to human performance with Dataset1. Note that for 

participant 6, we could only provide an approximate d´ value. Indeed, decision variables data, as returned by 

participant 6, came with several large negative ratings due to the specificity of his “best anthropomorphic” model 

observer16. With the consent of participant 6 we estimated an approximate d' value by setting these extreme 355 

values to the minimum from the rating set. 

The information concerning the psychophysical experiments performed with Dataset1 is summarized in Table 6. 

Six laboratories provided human data resulting to a total of 22 observers. Among them, 7 were naive and 15 

were experienced. There were no radiologists or otherwise clinically trained readers. All observers were trained 

before testing. All laboratories performed MAFC experiments with M=2 alternatives for 5 participants and M=4 360 

alternatives for 1 participant. The metric derived from MAFC was the percent of correct (PC) answers for a 

given number of trials. For MAFC experiments involving more than one observer, the pool of observer outcomes 

was the averaged pc and the uncertainty was estimated by the standard error of the mean or by bootstrap. 

The material used to perform the psychophysical experiment is summarized in Table 7. Except for one 

laboratory who did not provide a value, the viewing illumination was low for each laboratory and varied from 365 

"dark" to 20 lux. The viewing distance was approximately 50 cm for all observers. Diagnostic and TFT monitors 

from various manufacturers were used with pixel size ranging from 0.20 to 0.60 mm. Minimum luminance 

ranged from 0 to 0.465 cd/m2 and maximum luminance ranged from 405.7 to 1000 cd/m2. All participants used 

diagnostic monitor except for participant 5. 

 370 
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Figure 9. Covariance matrices K in channels space estimated by each participant for 8-mm signal size. In this representation, 

the top left pixel is the variance associated to the output of the lowest frequency channel and the bottom right pixel 

corresponds to the output of the highest frequency channel. All the other pixels describe the inter-class covariance. As the 

exercise used 10 channels D-DOG, K is a 10-by-10 matrix with the following array format: 𝑲 =  [

𝑲𝟏,𝟏 ⋯ 𝑲𝟏,𝟏𝟎

⋮ ⋱ ⋮
𝑲𝟏𝟎,𝟏 ⋯ 𝑲𝟏𝟎,𝟏𝟎

]. 375 
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Table 4. CHO computation methodologies summary. The following features were identical for all participants and are not reported in the following table. ROI size = 200x200, mean signal 

estimation has been made “from samples” and the computational domain is the “image domain” rather than the “Fourier domain”. 

Participant 
Train/Test 

strategy 

Sample pairs 
d' estimation 

1: distance between signal 

present  

and signal absent 

distribution  

2: signal-to-noise ratio 

u (d') estimation 

method 

Source of variance 

1: new training 

images 

2: new test images 

3: new train and test 

images 

Number of 

resampling 

iterations 

Covariance matrix 

estimation 

: signal absent & signal 

present 

2: signal absent 

Training Testing 

1 hold-out 100 100 1 bootstrap 2 1000 1 

2 resubstitution 200 200 1 bootstrap 3 1000 1 

3 resubstitution 200 25 1 repartition 2 - 1 

4 resubstitution 200 200 2 exact 95% CI - - 1 

5 resubstitution 200 200 2 bootstrap 3 1000 1 

6 other 200 200 1 bootstrap 3 100 1 

7 hold-out 100 100 1 bootstrap 3 2000 1 

8 resubstitution 200 200 2 bootstrap 3 1000 1 

9 resubstitution 200 200 1 bootstrap 3 10000 1 

10 hold-out 100 100 1 bootstrap 1 100 2 

11 hold-out 199 1 1 jack-knife 3 200 1 

12 resubstitution 200 200 2 exact 95% CI - - 1 

13 resubstitution 200 200 1 bootstrap 2 100 2 

Table 5. Summary of best anthropomorphic model observer computation methodologies. 

Participant Motivation Channels Channels type 
Fitting procedure 

to human performance 

2 good fit of human observer with Dataset1 yes D-DOG internal noise 

5 good fit with mammographic background yes Laguerre-Gauss scaling 

6 good fit with lumpy background yes D-DOG not fitted to human 

9 
same model as CHO with Dataset1, with pixel values converted to 

luminance values 
yes D-DOG not fitted to human 

10 good fit of human observer with DBT background yes GABOR channel tuning 

11 
machine learning approach minimizing the generalization error in 

predicting individual human observer scores on Dataset135 
no N/A machine learning 

12 good fit of human observer with previous study data yes D-DOG internal noise 

13 good fit of human observer with Dataset1 yes D-DOG internal noise 



19 

Table 6. Psychophysical experiment design and derivation of human observer performance. 

Participant 
Observers 

Training 
Type of 

experiment 
Basic metric 

Pool of observer 

outcomes 
Estimation of uncertainty 

Total Naive Experienced Radiologist 

1 4 2 2 - yes 2AFC percent correct average bootstrap 

2 10 5 5 - yes 4AFC percent correct average standard error 

5 1 - 1 - yes 2AFC percent correct N/A N/A 

9 3 - 3 - yes 2AFC percent correct N/A bootstrap 

12 1 - 1 - yes 2AFC percent correct N/A N/A 

13 3 - 3 - yes 2AFC percent correct average N/A 

 

Table 7. Psychophysical experiment material specifications. 

Participant 
Viewing Illumination  

(lux) 

Viewing Distance  

(cm) 
Type of Monitor 

Pixel Size 

(mm) 

Max. luminance 

(cd/m2) 

Min. luminance 

(cd/m2) 

1 10 50 NDS Dome E3 0.21 1000 0 

2 N/A 40-50 BARCO 3MP LED 0.22 800 0 

5 20 50 Standard TFT N/A N/A N/A 

9 <10 50 BARCO MDNC-3121 0.21 405.7 0.465 

12 dark room 50 BARCO MD1119 0.60 162.9 0.01 

13 dark room 50 EIZO RADIFORCE 0.27 N/A N/A 
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4. Discussion 

This section is divided into different items that are each related with the major findings of the study. 

Good coherence of model observer performance across participant laboratories 

The main result of this study is that the performance of the CHO D-DOG is reproducible across different 355 

laboratories for the three tested signal sizes (Figure 3). This outcome was expected as the model used for this 

exercise was precisely defined. The only degrees of freedom left to the laboratories were essentially how images 

were used to derive the model’s features like the mean signal template and the covariance matrix, as well as how 

the model was trained and tested. With 200 signal-present and 200 signal-absent images, these aspects only had a 

minor effect on d´ as seen on Figure 5. 360 

Concerning the derivation of the models’ template components, mean signal estimation was identical among the 

participants, however some differences for covariance matrices estimation were identified (Figure 9). 

Interestingly, the differences observed for participant 7 are consistent with their underestimation of d´ compared 

with other participants. For participant 11, the differences are explained because the approach used machine 

learning which then minimized the generalization error in predicting individual human observer scores on 365 

Dataset135. While providing a different covariance matrix estimation, participant 11’s d´ estimation was similar 

with other participants. Also, two participants (10 and 13) estimated the covariance matrix with the signal-absent 

images only and did not obtain substantially different results than those who used both image classes. This result 

is consistent with previous results that suggest that both approaches are equivalent if the background is not 

affected by the signal—like for the low contrast detection task as evaluated in this study4. 370 

At first sight, it might be surprising that all participants produced such a coherent estimation of d' since some of 

them used the resubstitution method for training and testing the models, and others used the hold-out method. As 

shown in Figure 5, this may be due to the relative large number of available images. Two-hundred images of 

each class were sufficient to have a similar estimation of d´ whatever the training/testing method. With 50 

images only, the two estimation methods would have been significantly different: the strategies using 375 

resubstitution are expected to over-estimate the performance while the strategies using hold-out would under-

estimate the performance. However, the exact confidence interval estimation approach attempts to correct for the 

resubstitution and hold methods limitation; the resubstitution and hold-out methods are estimating the 

performance of the finitely-trained model and the exact confidence interval estimates a confidence interval for 

the performance of the infinitely trained model. Moreover, it can be seen that d' fluctuates more between 380 

participants at high performances (18 %) than at low performances (5 %). This might be explained by the fact 
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that at a higher performance level, the model observer’s responses distribution present a larger standard 

deviation and are more prone to outliers. Therefore more variability in d’ estimation between participants is 

expected. 

Large range of uncertainty for model observer performance across participant 385 

Because of a finite image sample, d’ is prone to bias estimation and an accurate assessment of its variability is 

important for making inferences. One of the finding of this work is that there is no consensus on what variance to 

present and is a limitation leading to widely disparate results. Figure 4 shows that there is an order of magnitude 

in the uncertainty estimation of the CHO performance among the participants. This reflects the various 

estimation methods and sampling strategies used in this exercise. All participants, except one, used resampling 390 

techniques like bootstrap or jackknife to generate multiple sets and derived the standard-uncertainty as an 

estimation of the measurement uncertainty. However, large fluctuations are present in this group. Among them, 

some used fixed training sets and variable testing sets while others used both variable training and testing sets. 

Two participants (4 and 12) used a method described in Wunderlich & al.31 and estimated the "exact 95 % 

confidence interval" which led to consistent estimations between them. Participant 12 implemented the method 395 

while participant 4 used IQmodelo, a publicly available software package36, to estimate d’ uncertainty. The 

advantage of the exact 95 % confidence interval method resides in the unbiased direct estimation of d´ using the 

entire dataset even when the number of image samples is low.  

More variations in model performances when the testing set is different than the training set 

Our results suggest that this particular CHO-DDOG implementation continues to be coherent when the testing 400 

set is different than the training set. As shown in Figure 6, testing the model on images with an unknown ground 

truth and a dose level 50 % lower than the training set still produces performances that are compatible among the 

different laboratories. 

Large discrepancy of human observer performances 

Despite the fact that all human observers were well-trained and experienced, and that the task was relatively 405 

easy, the performance varied widely among the participants (Figure 8). This cannot be explained by the type of 

monitors or their pixel size as most of them were similar (Table 7). However, how the participants displayed the 

images surely had an effect. For instance, all participants reported to have displayed the 8-bit images without 

changing the LUT while participant 9 optimized the window width and level using the image histogram in order 

to increase the apparent contrast. This probably explains why participant 9 had the highest value of d´ for all 410 
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signal sizes. Another source of explanation could be that human performances obtained by an MAFC experiment 

is the proportion correct (PC), which is then transformed into d' by assuming Gaussian-distributed internal 

responses. This operation stretches small differences of PC into larger differences in terms of d'. For example, 

for the 10-mm signal size, the estimated d´ ranged between 1.7 to 4.2. This corresponds to a variation between 

89 % to 100 % in terms PC. Finally, and more importantly, the fact that human observers are prone to inter- and 415 

intra-variability has been an important motivation to use model instead of human observers. 

Large discrepancy of anthropomorphic model observer performances 

The "best anthropomorphic" model observer performance proposed by the participants led to a much larger 

range of d’ (Figure 7) than the CHO D-DOG with fixed channels (Figure 3) as there is a factor of two between 

the lowest and the largest estimate. As expected, all estimates are significantly above the performance obtained 420 

with human observers. This result may be explained by the variety of models proposed and probably also by the 

various modalities where these models were initially validated with different image properties (Table 5). This 

also suggests that an absolute predictor of human performance may be modality specific and a single 

anthropomorphic model cannot assess different medical devices at this point.  

A small number of participants chose to update their data 425 

Participants were able to correct their outcomes after the initial release of the results to all the laboratories. Three 

participants took the opportunity to change their results. Participant 5 found an error in their implementation for 

Dataset1 with D-DOG channels expressed in the Fourier domain instead of the image domain. They 

subsequently change their model observer implementation in the image domain. With this change, the model 

observer performance is improved as closer to the other participants. Participant 8 resized the ROIs used for the 430 

calculation of CHO D-DOG model observer with Dataset1 from 64x64 to the original size (200x200). This 

modification had a slight impact on d’ estimation as shown in Figure 3. Participant 6 modified their best 

anthropomorphic model observer with Dataset2. In their first estimation, each image underwent a byte scaling, 

ensuring the pixel values covered the range [0, 255]. This was a coding error and the images were used as 

provided in the second estimation. This change improved the human observer prediction by best 435 

anthropomorphic model observer as estimated by participant 6. 

Limitations 

This study was limited by the simplicity of the task investigated. A low-contrast detection task in a uniform 

background is the simplest diagnostic task we can imagine, and future research could investigate different tasks 

and backgrounds from different imaging modalities. Another limitation is that the tested conditions were not 440 
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very challenging since all three signal sizes reached a d’ larger than 4, which is virtually equivalent to area-

under-the-ROC-curve equal to 1. It can be assumed that more challenging tasks (for example with a textured 

background, an unknown signal position, a smaller signal size or a sample with fewer images) would spread the 

estimation of d' and its uncertainty. Another unchallenging aspect of this study was the relatively large number 

of image samples. With a smaller sample size, the estimation of the model template would be more difficult, and 445 

would probably induce more variation among the different laboratories. In addition, as an absolute prediction of 

human observer performance by an anthropomorphical model observer is difficult, it could have been 

worthwhile to compare the ratio of the performance of the anthropomorphic observers between two signal size 

condition (e.g. 6 mm and 8 mm) and then that with the ratio of the performance of human observers. 

The many possible source of variance and participant variance estimates method could have been more precisely 450 

documented. A possible future investigation could collect and report what source of variance are present in 

model observer methods and discuss the different variance estimates.   

5. Conclusions 

This comparison helped define the state of the art of the performance computation of model observers in a well-

defined situation. With thirteen participants, this reflects openness and trust within the medical imaging 455 

community. 

The main result of this study is that the performance of a CHO with explicitly-defined channels and a relatively 

large number of test images was consistently estimated by all participants. In contrast, the proposed uncertainties 

associated with this model can vary up to a factor 10. 

The number of images is crucial for an accurate estimation of d´. In the present study, the large number of 460 

available images did not lead to significant differences between the resubstitution and the hold-out method. For 

less favorable conditions, exact 95 % confidence interval method31 has the advantage to include both reliable 

uncertainty estimation and bias correction. 

This study also emphasizes the importance of the large variability of the human observer performance in 

psychophysical studies. Given that anthropomorphic model observers are usually validated by comparison with 465 

human-observer performance, this contributes to the variability of their performance. This provides further 

motivation for the development of anthropomorphic model observers that can be used in place of human studies, 

and also suggests that we need further consensus on experimental settings for human-observer studies.  
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Finally, this exercise should be considered a first step in evaluating the consistency of model-observer 

computation for medical image quality assurance. A possible next exercise could involve clinical images with 470 

fewer samples. Meanwhile the images used for this exercise and the model and human scores are freely available 

for interested parties who did not take part and would like to compare their estimate of model observer detection 

performance with the present results. 
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