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Abstract

Background: Community acquired Clostridioides (Clostridium) difficile infection (CA-CDI) is a significant health problem
in human and veterinary medicine. Animals are often considered as potential reservoirs for CA-CDI. In Europe, family
farming is the most predominant farming operation, with a complex interaction between animals and the community.
Therefore, it is pertinent to evaluate transmission patterns of C. difficile on such prominent European farming model.
Fecal samples from calves (n = 2442) were collected biweekly over a period of one year on 20 mid-size family dairy
farms. Environmental samples (n = 475) were collected in a three month interval. Clostridioides difficile was detected
using qPCR in 243 fecal samples (243/2442); positive samples were then quantified. Association between prevalence/
load of C. difficile and age of the calves was estimated with logistic regression model. Most common C. difficile isolate
from calves (n = 76) and the environment (n = 14) was C. difficile ribotype 033, which was further analyzed using
multilocus variable-number tandem-repeat analysis (MLVA) to assess intra- and between-farm relatedness.

Results: Clostridioides difficile was detected in feces of calves less than 24 h old. Results showed a non-linear
statistically significant decrease in shedding load of C. difficile with age (P < 0.0001). A nonlinear relationship
was also established between the number of calves and the farm C. difficile prevalence, whereas the prevalence
of C. difficile ribotype 033 increased linearly with the number of calves. MLVA revealed close intra-farm relatedness
among C. difficile ribotypes 033. It also revealed that the between-farms close relatedness of C. difficile ribotypes 033
can be a direct result of farm to farm trade of calves.

Conclusions: Implementation of better hygiene and management measures on farms may help decrease the risk of
spreading CA-CDI between animals and the community. Trading calves older than 3 weeks would decrease the
possibility C. difficile dissemination in the community because of lower prevalence and lower load of C. difficile in feces.
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Background
The increasing number of community acquired Clostri-
dioides difficile infection (CA-CDI) in the past decade
has prompted investigations into animal source of CDI
[1, 2]. Several studies have shown that Clostridioides diffi-
cile can cause gastrointestinal disease in dogs, horses, pig-
lets and possibly calves [3–9]. It remains unclear, however,
if C. difficile strains found in animals can cause CDI in
humans [9].
Family dairy farms were included in this study. Family

farms are the most common operating farming system
in the European Union. It represents the sustainable
agriculture/agribusiness, and is beneficial for the local
community [10]. To estimate the significance of a possible
infection source, shedding numbers/load of C. difficile had
to be quantified and C. difficile strains phylogenetically
assessed. One of the major risk factor for increased C.
difficile shedding in the environment is the age of the
animal [11–14]. Regardless of the farming management,
the prevalence of C. difficile has been shown to decrease
dramatically with age from 10 to 56% at and near birth, to
0–3.8% at the time of slaughter [11, 14–16].
Several studies evaluated the impact of C. difficile

shedding with calves feces by reporting C. difficile preva-
lence [8, 17–20], using longitudinal models [11, 14–16],
or more recently, enumeration with viable plate counts
from feces and carcasses of newborn calves [21]. None
of them, however, quantified C. difficile in calves in rela-
tion to their age, which would indicate the age related
risk for C. difficile dissemination in the community.
Calves on family farms have been shown to harbor sev-

eral C. difficile ribotypes, with C. difficile ribotype 033 being
the most prevalent [22]. Most previous reports suggest that
C. difficile ribotype 033 is of less clinical importance
compared to ribotypes 078, 027, 014 and 012, which
are frequently isolated from feces of calves raised in big
veal raising operations [6, 11, 14, 15, 18, 23, 24]. In
humans, due to different genotype and phenotype, ribo-
type 033induced CDIs might be underdiagnosed [25].
However, one report has associated C. difficile ribotype
033 with diarrhea and eventually death in an elderly
hospitalized patient in Italy [26], which necessitates further
epidemiological assessment of all C. difficile ribotypes.
Detailed epidemiological investigation can be achieved
employing multilocus variable-number tandem-repeat
analysis (MLVA), which is the method of choice to identify
routes of transmission between patients and the environ-
ment [27–29]. This method shows a high level of discrim-
ination and was proven useful for geographical tracking of
several outbreak strains of bacteria [30–32].
The aim of this study was to quantify C. difficile in

calves’ feces from birth to six months of age, to determine
how much calves contribute to the shedding of C. difficile
into environment, and to evaluate the relatedness of the

most predominant C. difficile ribotype 033 between family
dairy farms.

Results
Overall, 243 fecal samples positive for C. difficile were
collected from 155 calves. A hundred and seven calves
(n = 107/155, 69%) were positive only once (Additional
file 1 and Additional file 2). Forty eight calves (n = 48/
155, 31%) were positive multiple times (2-6×) (Table 1).
Clostridioides difficile prevalence in calves feces de-
creased significantly with the increasing age of the calves
(P < 0.0001) (Fig. 1).

Association between C. difficile prevalence and the
number of calves
A nonlinear association between the number of calves
and the farm prevalence was established for C. difficile
(P < 0.0001, Table 2). A steady increase in C. difficile
prevalence is observed when the number of calves on the
farm is up to eight (8), whereas for larger number of
animals the C. difficile prevalence seems to be only
mildly affected by the number of calves (Fig. 2). The
prevalence of ribotype 033, however, increases linearly
with the number of calves on a farm (P = 0.032, Table 2).

Quantification
The load of C. difficile/g of calves feces decreased with
age (P < 0.0001) (Fig. 3). One day old calves had the
highest load of C. difficile in feces (mean 3.4 × 106 cells/g
feces; 453–13.7 × 106 C. difficile cells/g feces), followed
by calves that were 8, 11 and 12 days old with the mean
of 1.8–1.9 × 106 cells/g feces (50–10.8 × 106 C. difficile
cells/g feces). Some calves (less than 24 h old) were also
positive for C. difficile and had a mean of 6.2 × 103 C. diffi-
cile cells/g feces (126–2.2 × 104 C. difficile cells/g feces).

MLVA
The minimum spanning tree (Fig. 4) revealed close re-
latedness among most C. difficile ribotype 033. Isolates
from calves from the same farm (farm 4, 17 and 18) or
local community (farms 5 and 6; farms 14, 15 and 16)
were mostly clonal (STRD = 0) or in one clonal complex
(STRD≤2). Most calves that were positive for C. difficile
ribotype 033 several times during the sampling period,
harbored the same C. difficile clone (T2, T10, T11, T15,
T16, T20, T34, T39, T44), had C. difficile isolates in the
same clonal complex (T40, T41, T42), or were genetically
related with STRD≤10 (T27, T28). Two male calves, T20
and T39, from farms 15 and 16 were sold to farm 14. Both
were positive with the same clone of C. difficile ribotype
033 before and after their relocation. The C. difficile clone
from calf (T20) was found subsequently in calves born on
farm 14 (T21 and T23). Same clone was not present on
farm 14 before introduction of calf T20. Clostridioides
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Table 1 Quantification results for C. difficile in feces of calves that were positive multiple times

Calf

1 Age (days) 10 24 38 52 66 80 94 108

No. CD 102 0 0 0 0 0 88 0

2 Age (days) 11 25 39 53 67 81 95

No. CD 0 3716 0 0 0 LOQ 0

3 Age (days) 12 27 40 54 68 82

No. CD 147 578 0 LOQ 194 0

4 Age (days) 10 24 38 52 66

No. CD 0 0 318 174 0

5 Age (days) 6 20 34

No. CD 2758 732 0

6 Age (days) 5 19 33 47

No. CD 0 3300 110 0

7 Age (days) 2 16 30 44

No. CD 684 0 LOQ 0

8 Age (days) 3 17 31 45 59

No. CD 295 0 0 LOQ 0

9 Age (days) 2 16 30

No. CD 1530 441 0

10 Age (days) 5 19 33 47 61 75

No. CD 135,486 92 0 183 LOQ 0

11 Age (days) 5 19 33 47 61 75 89 103 117

No. CD 2676 572 241 0 209 0 0 LOQ 0

12 Age (days) 9 23 37 51 65

No. CD 805 0 942 129 0

13 Age (days) 9 22 36 50 92 106 120

No. CD 662 408 1189 0 0 610 0

14 Age (days) 1 15 29 43 57 71

No. CD 96,398 37,640 0 0 LOQ 0

15 Age (days) 11 25 39 53 67

No. CD 3569 2683 1901 LOQ 0

16 Age (days) 1 15 29 43 57

No. CD 13,705,988 32,219 1623 368 0

17 Age (days) 0 14 28 42 56 70 84

No. CD 1519 0 LOQ 0 41 198 0

18 Age (days) 0 14 29 42 56 70 0

No. CD 0 0 333 0 274 0 0

19 Age (days) 12 26 40 54 67 82

No. CD 0 0 890 65,507 2867 0

20 Age (days) 59 73 87 101 115 129 143 157 171

No. CD 0 242 0 0 0 0 0 LOQ 0

21 Age (days) 3 17 31

No. CD 3937 4115 0

22 Age (days) 1 15 29 43 57 71 85

No. CD 114 0 287 0 0 356 0
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Table 1 Quantification results for C. difficile in feces of calves that were positive multiple times (Continued)

Calf

23 Age (days) 13 27 41

No. CD 23,470 322 0

24 Age (days) 3 17 31

No. CD 54,900 4,278,134 0

25 Age (days) 1 15 29 43 57 71 85 99 113

No. CD 103,235 1177 0 0 0 0 0 LOQ 0

26 Age (days) 11 25 39 53 67 81 95 109 123

No. CD 274,108 0 0 0 0 0 0 631 0

27 Age (days) 12 25 40

No. CD 10,811,054 938 0

28 Age (days) 2 16 30 44 58 72

No. CD 0 105,727 0 0 LOQ 0

29 Age (days) 9 23 37 51

No. CD 2919 0 LOQ 0

30 Age (days) 7 21 35

No. CD 2,589,994 1152 0

31 Age (days) 4 18 32 46

No. CD 0 806 38,702 LOQ

32 Age (days) 7 21 35

No. CD 9630 1827 0

33 Age (days) 6 20 34

No. CD 1,587,504 5278 0

34 Age (days) 9 23 37 51 65 79 93

No. CD 3,906,984 1316 1055 0 0 783 0

35 Age (days) 13 27 42 55 69 83 97

No. CD 53,735 66,424 LOQ 20,396 0 LOQ 0

36 Age (days) 12 26 40 54 68

No. CD 842,730 1084 0 304 0

37 Age (days) 3 17 31 45 59

No. CD 7,260,792 1346 632 LOQ 0

38 Age (days) 5 19 33 47 61 75

No. CD 11,629 137 3715 0 723 0

39 Age (days) 34 48 62 76 90

No. CD 294 0 0 LOQ 0

40 Age (days) 9 23 37 51

No. CD 207 LOQ LOQ 0

41 Age (days) 10 24 38

No. CD 428 401 0

42 Age (days) 6 20 34

No. CD 28,022 779 0

43 Age (days) 20 34 48 62 76 90 104 118 132

No. CD 0 30,971 0 0 0 0 0 0 LOQ

44 Age (days) 9 22 37

No. CD 3,593,368 4064 0
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difficile ribotype 033 clone recovered from calf T39 was in-
troduced from farm 15 to farm 14. However, the same
clone wasn’t found in any other calves born on farm 14.
The same MLVA profile (n = 6) that was identified from

the environmental samples, could be linked to the C. diffi-
cile ribotype 033 isolated form calves of the same farm or
from the same geographical area (Fig. 4). Several (n = 7)
were more genetically related to isolates from other unre-
lated farms. Interestingly, C. difficile ribotype 033 recovered
from a barn fly on farm 5, had the same MLVA profile as
the C. difficile recovered from calves (T19, T26) on an epi-
demiologically unrelated farm (farm 16).

Discussion
The aim of the study was to quantify C. difficile in feces
of calves and to evaluate the relatedness of the most

common C. difficile ribotype 033 between economically
related and unrelated family dairy farms.
We also established that the C. difficile prevalence is

non-linearly related to the number of calves on the farm.
While a steady increase in C. difficile prevalence is ob-
served up to a certain number of animals, it then re-
mains roughly at the same level, when the number of
animals increases further. The prevalence of C. difficile
ribotype 033, however, is linear to the number of calves
on the farm.
Newborn calves had the highest prevalence and load of

C. difficile /g feces, which decreased over time. The de-
crease in prevalence over the increasing age of animals
has previously been established [11, 14]. However, this is
the first report associating the fecal load of C. difficile with
age of calves. Repeated sampling of the same calves over
their first 6 months of life has also shown that calves can

Table 1 Quantification results for C. difficile in feces of calves that were positive multiple times (Continued)

Calf

45 Age (days) 8 21 36

No. CD 678,040 1627 0

46 Age (days) 11 25 39 53 67 81

No. CD 129 13,724 0 0 537 0

47 Age (days) 0 14 28 42 56

No. CD 0 3,200,151 7897 2160 0

48 Age (days) 12 26 40

No. CD 48,901 8297 0

LOQ under the limit of quantification; CD Clostridioides difficile

Fig. 1 C. difficile prevalence rates in calves from 0 to 180 days old per 100 and 95% confidence intervals
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be positive for C. difficile more than once with the same
or different ribotype or MLVA profile.
In this study calves aged 1 day and around 12 days

had the highest load of C. difficile cells/g feces. Interest-
ingly, some calves sampled in the first 24 h after birth,
were also shedding C. difficile with feces (meconium).
This is in concordance with Hopman et al. [33], who
demonstrated CD shedding in piglets after their first
hour of life and the prevalence at day one increased
from 8.3 to 62%.
The predominance of C. difficile ribotype 033 on sam-

pled farms gave us the opportunity to investigate the
epidemiology of C. difficile between economically related
and unrelated family dairy farms. Most studies to date
were performed on big veal farms which congregate
large numbers of calves of different geographical origins

[11, 34]. Our study included only family farms located in
a driving distance between each other (≤ 2 h from farm
to farm), where some are economically connected with
trading of calves or products. As expected the C. difficile
isolates 033 from the same farm sampled on different
dates or different calves were clonal or in the same clonal
complex as was recently found also in piglets [35]. The
similarity was also shown in C. difficile isolates from farm
sharing the same private farm road (farm 5 and 6) or trad-
ing of the male calves (farm 14 and 15; farm 14 and 16).
We even suggested a possible transmission of C. difficile
from one farm (farm 16) to another (farm 14) through a
colonized calf, where the calf remained colonized for sev-
eral weeks, shedding C. difficile in the environment. Two
other calves, born on the farm (farm 14), and later through-
out the study placed in the same individual box as the

Table 2 The association between the prevalence of C. difficile and ribotype 033 and the number of calves

Outcome Variable Estimate SE p (Exp)estimate 95% CI

C. difficile Number of Calves < 0.0001

linear 0.33 0.08 < 0.0001 1.39 1.18–1.66

non-linear −0.39 0.16 0.0174 0.68 0.48–0.93

Time of sampling 0.02 0.01 0.0251 1.02 1.01–1.04

Ribotype 033 Number of Calves 0.13 0.06 0.0323 1.13 1.01–1.27

Time of sampling 0.01 0.01 0.4932 1.01 0.98–1.04

The time of sampling is included only to control for the effect of the meteorolical season. The linear/non-linear effect of C. difficile prevalence should be estimated
from Fig. 2
SE Standard error

Fig. 2 Expected prevalence of C. difficile positive calves versus the total numer of calves on the farms
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colonized calf, were found colonized with the same clonal
C. difficile isolate. This is the first suggestion of a possible
calf to calf and farm to farm transmission of C. difficile.
However, due to lower sensitivity of the culture method
compared to qPCR [36] and the history of calf trading be-
tween these two farms, we could also assume that transmis-
sion of this clonal C. difficile isolate could have happened
before the start of our study.
Interestingly, one calf (T19 from farm 16) was positive

for three consecutive times with C. difficile ribotype 033,
which were not related (STRD≤10) or clonal (STRD ≤2).
Calves have been shown to harbor different C. difficile
ribotypes during different life stages [14]. Results of this
study also indicate that they can be colonized with differ-
ent MLVA types of the same C. difficile ribotype. Some
environmental C. difficile strains (farm 5 and farms 2, 13,
14, 15) were clonal to strains from calves found on seem-
ingly unrelated farms (farms 2, 4, 16 and farms 5, 6).
There might be some epidemiological connection that we
are unaware of, since farms have fields scattered across
the area and sometimes cross paths with each other. Or
simply, the high relatedness of all the samples tested could
be the consequence of less natural variability in ribotype
033 than in other ribotypes as stated in the article from
Bakker et al. [28]. Another possibility that could con-
tribute to the spreading of different MLVA types of
C. difficile in the community is flying insects. In our
study, we found a fly on farm 5 to harbor the same
clone of C. difficile as calves on farm 16 (distance be-
tween farms approximately 5 km).

Conclusions
In conclusion, we demonstrated that calves can shed
high loads of C. difficile from birth and that there is a
non-linear statistically significant decrease of C. difficile
prevalence and load with age. The superior prevalence
of ribotype 033 compared to other ribotypes gained from
a previous study [22] gave us the opportunity to assess
the epidemiology of C. difficile between farms. We have
suggested a farm to farm transmission through trading
of a colonized calf. However, environmental and calves
C. difficile strains from the same farm weren’t always
related. Nevertheless, implementing better hygiene and
management measures may help decrease the risk of
spreading CA-CDI between animals and the community.
Trading calves older than 3 weeks would decrease the
possibility for C. difficile dissemination in the community
not only because of lower prevalence, but also because of
lower load of C. difficile in feces.

Methods
Material
Twenty mid-size family dairy farms with 9 to 40 cows
located in Slovenian Prealps were included in this study.
Farms run by family member only were selected based
on several factors; location, accessibility, farmers compli-
ance and number of dairy cows in production. All data
with regards to the farms characteristics were described
before [22]. Feces from all calves on the farm were col-
lected at the time of sampling. All calves had mandatory
ear tags used for individual identification. Fecal samples

Fig. 3 Predicted log transformed load of C. difficile and age (in days) of calves and 95% confidence intervals
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from calves (n = 2442) were collected individually from
the rectum with clean latex gloves in two weeks intervals
over a period of one year [22]. From these samples, 243
were positive for CD with qPCR and subsequently, 76
were identified as CD ribotype 033 with selective culture
and ribotyping [22].
Environmental samples collected on every farm during

each meteorological season were soil, manure, water, feed,
other animals present on the farm, barn fly (Stomoxys
calcitrans) and droppings from Barn Swallow (Hirundo
rustica) [22]. Fourteen environment samples (manure =
7, soil = 6, barn fly (Stomoxys calcitrans) = 1) that were
used in this study, were identified as CD ribotype 033
by selective culture and ribotyping [22].

Methods
Quantification of C. difficile in calves fecal samples
Calves fecal samples were tested for C. difficile specific
fragment of 16S gene using a quantitative real-time PCR
(qPCR) reported by Bandelj et al. [36] with a LOD and

LOQ of 7.72 CD cells/g feces and 77.2 CD cells/g feces,
respectively. Samples (n = 243) were retested in duplicates
and in 1:10 dilutions to evaluate for possible inhibitory
effects of the matrix.

Multilocus variable-number tandem-repeat analysis (MLVA)
of C. difficile ribotype 033
For MLVA, we used 90 C. difficile ribotype 033 isolates
belonging to 76 calves and 14 environment samples.
The C. difficile isolates were tested for relatedness with
a modified MLVA. All MLVA PCRs for six loci were
performed in singleplex format as described previously
[27, 28]. To determine the genetic distance between iso-
lates the minimum spanning tree was constructed. The
number of differing loci and the summed tandem repeat
difference (STRD) was used as coefficients for the genetic
distance in BioNumerics, version 7.0 (Applied Maths) as
previously described [37]. Genetically related were isolates
with a STRD ≤10, whereas clonal complexes were defined
by a STRD ≤2.

Fig. 4 Minimum spaning tree for C. difficile ribotype 033 isolated from calves feces and environmental samples: Clonal (STRD = 0), clonal complex
(STRD ≤2), genetically related (STRD ≤10). Legend: Tn/n/n – individual calf number/sampling time/farm; Z n – soil sample on farm n; G n – manure
sample from farm n; M n – flies from farm n
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Statistical analysis
The association between the prevalence and load of
bacteria of C. difficile and age was estimated by the logistic
regression model; the unit of analysis was an animal. Re-
stricted cubic splines (using 5 knots) were used to account
for a highly non-linear association between the preva-
lence/load of bacteria and age.
The association between the number of C. difficile and

ribotype 033 positives and number of calves was estimated
with Poisson generalized linear model with log link, includ-
ing farm ID as a random effect (random intercept) and time
of sampling as a fixed effect to account for repeated
measurements; here the unit of analysis was a farm. For
C. difficile a non-linear association was modeled by using
restricted cubic splines with 3 knots. A possible non-linear
association for ribotype 033 was also considered, however
since the non-linear effect was not significant (P > 0.05), the
results assuming a linear association are presented.
A p-value of less than 0.05 was considered as statisti-

cally significant. The analysis was performed with R lan-
guage for statistical computing (R version 3.0.3) [38].

Additional file 1: Quantification results for C. difficile in feces of calves
with single positive sample (0–21 days). (DOCX 35 kb)

Additional file 2: Quantification results for C. difficile in feces of calves
with single positive sample (22–180 days). (DOCX 33 kb)
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