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Abstract

Objective: Although lower brain volume has been routinely observed in individuals with 

substance dependence compared with nondependent control subjects, the brain regions exhibiting 

lower volume have not been consistent across studies. In addition, it is not clear whether a 

common set of regions are involved in substance dependence regardless of the substance used or 

whether some brain volume effects are substance specific. Resolution of these issues may 

contribute to the identification of clinically relevant imaging biomarkers. Using pooled data from 

14 countries, the authors sought to identify general and substance-specific associations between 

dependence and regional brain volumes.

Method: Brain structure was examined in a mega-analysis of previously published data pooled 

from 23 laboratories, including 3,240 individuals, 2,140 of whom had substance dependence on 
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one of five substances: alcohol, nicotine, cocaine, methamphetamine, or cannabis. Subcortical 

volume and cortical thickness in regions defined by FreeSurfer were compared with nondependent 

control subjects when all sampled substance categories were combined, as well as separately, 

while controlling for age, sex, imaging site, and total intracranial volume. Because of extensive 

associations with alcohol dependence, a secondary contrast was also performed for dependence on 

all substances except alcohol. An optimized split-half strategy was used to assess the reliability of 

the findings.

Results: Lower volume or thickness was observed in many brain regions in individuals with 

substance dependence. The greatest effects were associated with alcohol use disorder. A set of 

affected regions related to dependence in general, regardless of the substance, included the insula 

and the medial orbitofrontal cortex. Furthermore, a support vector machine multivariate 

classification of regional brain volumes successfully classified individuals with substance 

dependence on alcohol or nicotine relative to nondependent control subjects.

Conclusions: The results indicate that dependence on a range of different substances shares a 

common neural substrate and that differential patterns of regional volume could serve as useful 

biomarkers of dependence on alcohol and nicotine.

The social and economic costs associated with problematic use of drugs and alcohol place 

an enormous burden on the individual and society (1−5). In the United States alone, the 

National Institute on Drug Abuse estimates that the costs associated with problematic 

substance use—including medical care, law enforcement, and lost productivity—exceed 

$700 billion per year (6). Substance dependence is characterized by a loss of control over 

drug and alcohol taking behavior, which contributes to high relapse rates (7−10). The 

therapeutic landscape would be radically altered by the identification of a set of biomarkers 

that could be used to estimate risk at various stages of the disorder—for example, the risk of 

transition from occasional to problematic patterns of use or risk of relapse after treatment—

and to prescribe the most appropriate treatments on the basis of the individual patient’s 

specific functional vulnerabilities (11, 12).

It remains to be determined whether regional differences in brain volume measured by MRI 

can provide clinically useful biomarkers of substance dependence. Although brain 

volumetric studies have routinely observed lower gray matter volume in individuals with 

substance dependence compared with healthy control subjects who do not have a substance 

dependence, the brain regions associated with dependence on a specific substance have not 

been consistent across studies (13−15). Since volumetric studies have tended to focus on one 

substance at a time, it is also not clear from this literature whether a shared set of brain areas 

will exhibit altered volume in all individuals with substance dependence regardless of the 

substance used. Human twin studies suggest that genetic vulnerability to substance 

dependence is accounted for principally by a shared set of variations regardless of the 

substance used, with proportionately smaller substance-specific effects (16). On the basis of 

preclinical research and data from other imaging modalities, several candidate brain regions 

have been proposed as playing a central role in substance dependence, including the 

striatum, the insula, and parts of the frontal cortex (reviewed in references 17−19).

Mackey et al. Page 2

Am J Psychiatry. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The authors of the present study joined to form an international working group within the 

framework of the Enhancing Neuro-Imaging Genetics Through Meta-Analysis (ENIGMA) 

project (20, 21) to overcome issues related to low statistical power in individual 

neuroimaging studies. This first project of the Addiction Working Group has pooled data 

from 23 laboratories in 14 countries and represents the largest study of brain volumetric data 

in substance dependence research to date. The objective was to identify general and 

substance-specific associations between dependence and regional brain volumes. The large 

sample size facilitated the adoption of a rigorous cross-validation method to address the 

widespread failure to replicate neuroimaging results, which has been noted in several recent 

influential reports (22, 23). In addition, a support vector machine classifier was used to 

explore patterns of regional brain volume that could potentially serve as disease biomarkers.

METHOD

Behavioral Phenotyping

All procedures were performed in accordance with the Declaration of Helsinki. Data sets 

from the working group were selected that assessed individuals for dependence on one of 

five substances: alcohol, nicotine, cocaine, metham-phetamine, and cannabis. A variety of 

diagnostic instruments were used to assess substance dependence (see Table S1 in the online 

supplement). Case and control data were gathered from 23 laboratories on 3,240 individuals, 

of whom 2,140 were diagnosed with current dependence on at least one of the five 

substances of interest. Individuals were excluded if they had a lifetime history of 

neurological disease, a current DSM-IV axis I diagnosis other than depressive and anxiety 

disorders, or any contraindication for MRI. Control subjects may have used addictive 

substances recreationally but were not diagnosed as dependent. Summary demographic 

statistics (sex distribution and mean age) on participants whose data passed the quality 

control steps described below are provided in Table 1. Site-specific summaries are provided 

in Table S1 in the online supplement.

Preparation of Structural MRI Data

Structural T1-weighted MRI brain scans were acquired from all participants. Scanner and 

acquisition details at each site are provided in Table S1 in the online supplement. Data were 

prepared in FreeSurfer (version 5.3), a fully automated MRI processing pipeline that 

identifies seven bilateral subcortical and 34 bilateral cortical regions of interest (24, 25). A 

majority of the data sets were prepared using CBRAIN, a network of high-performance 

computing facilities in Canada (26). The volume of subcortical regions of interest and mean 

thickness of cortical regions of interest served as the dependent measure in all analyses. The 

use of FreeSurfer in multisite analyses has been validated in previous ENIGMA studies 

(27−30) that established a standardized protocol of quality control procedures performed at 

each site (http://enigma.ini.usc.edu/protocols/imaging-protocols/). This includes detection of 

outliers and visual inspection of all data in a series of standard planes (for more details, see 

the Supplemental Methods section in the online supplement). An additional level of visual 

inspection was performed centrally at the University of Vermont on a randomly selected 

subsample of participants to ensure uniformity of quality control across sites.
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Linear Mixed-Effects Models With Cross-Validation

Differences in region-of-interest thickness or volume between substance-dependent 

participants and nondependent control subjects were assessed in each region of interest with 

two linear mixed-effects models, using SPSS Statistics for Windows, version 21.0 (IBM, 

Armonk, N.Y.). The linear mixed-effects model effectively accounts for site effects, 

including sites that did not collect data on nondependent control subjects (31). In model 1, 

substance-dependent individuals were treated as one group regardless of the substance used; 

individuals dependent on any of the five substances of interest were coded as “dependent” 

and control subjects as “nondependent.” Model 1 permitted inclusion of individuals who 

were dependent on more than one substance. In model 2, dependence on the five substances 

was coded as individual categories in a single fixed factor: individuals were coded as 

belonging to one and only one of six categories: “nondependent” or dependent on “alcohol,” 

“nicotine,” “cocaine,” “methamphetamine,” or “cannabis.” Model 2 did not permit inclusion 

of individuals who were dependent on more than one substance. In both models, MRI site 

was entered as a random factor, and sex, age, and total intracranial volume were included as 

covariates. Further analyses were performed to disconfirm the existence of a site-by-

diagnosis interaction (see the Supplemental Methods section in the online supplement).

The replicability of neuroimaging results has recently been brought into question (22, 23). 

The large sample size of the present study facilitated the adoption of an optimized split-half 

strategy to verify the reliability of effects. The data were split into two halves (a discovery 

data set and a replication data set) with statistically matched stratification for age, sex, and 

intracranial volume within each site and dependence status. Since each region of interest was 

analyzed separately, a false discovery rate method (the Benjamini-Hochberg procedure) was 

used to control for multiple comparisons on the first half of the data (the discovery data set). 

Associations discovered in the first half of the data are reported here as significant only if 

they were replicated in the second half of the data (the replication data set), that is, if the 

sign of the difference in means was the same and the null hypothesis had a probability 

<0.05.

General Versus Substance-Specific Dependence Effects

Model 2 permitted a comparison of the estimated marginal mean region-of-interest volume 

or thickness between nondependent control subjects and participants dependent on each 

substance. Significance was defined as in model 1. The large impact of alcohol dependence 

on the data (see the Results section) influenced the decision to examine whether dependence 

on any of the substances other than alcohol was related to differences in region-of-interest 

volume or thickness compared with nondependent control subjects. This was assessed with a 

secondary linear contrast within model 2 that grouped dependence on nicotine, cocaine, 

metham- phetamine, and cannabis (but not alcohol) in a comparison with nondependent 

control subjects.

Past-30-Day Use

Linear mixed-effects models were used to determine whether past-30-day nicotine or 

alcohol use was related to the volume or thickness of regions of interest identified by model 
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1 or 2 (i.e., those brain regions listed in Tables 2 and 3). (See the online supplement for more 

details.)

Support Vector Machine Classification

Support vector machine classification was implemented in MATLAB (MathWorks, Natick, 

Mass.) with a radial basis function kernel, tuned by parameter sweep in a 10-fold inner loop 

nested within an optimized split-half cross-validation (32) (for details, see the Supplemental 

Methods section in the online supplement). The radial basis function kernel facilitates the 

inclusion of nonlinear relationships in the classifier. In other words, the support vector 

machine can detect informative patterns in the data that may not be identified by traditional 

linear analyses such as models 1 and 2. To mitigate site, sex, age, and intracranial volume 

effects, region- of-interest data were residualized prior to classification. Five studies without 

control participants were excluded. Area under the receiver operating characteristic curve 

and corresponding p values based on equivalence with the Mann-Whitney U test were 

calculated to estimate generalizable classifier performance on the independent half of the 

data for each of two train-test scenarios (i.e., train on the first half, test on the second, and 

vice versa). A greater area under the receiver operating characteristic curve, which plots true 

positive rate against false positive rate, indicates a better separation of the substance-

dependent and nondependent groups. The significance threshold for area under the curve 

was defined as a p value of 0.05 in both classification scenarios. The top 20 features of each 

classification were determined by the greatest change in cost function resulting from their 

individual removal from the classification (33).

RESULTS

Basic demographic information (sex distribution and mean age) is provided in Table 1 and 

by site in Table S1 in the online supplement.

Model 1: Dependent Versus Nondependent Subjects

Subcortical volume in dependent individuals was significantly lower in the left and right 

hippocampus, the left and right amygdala, and the right nucleus accumbens (Table 2). Lower 

cortical thickness was observed in several areas, including the left and right insula, 

precentral gyrus, and supramarginal gyrus and the right medial orbitofrontal cortex. See 

Table 2 for a complete list and Supplemental Table S2 in the online supplement for an at-a-

glance summary.

Model 2: Substance Dependence Groups Compared Separately to Nondependent Control 
Subjects

All subcortical regions of interest identified in model 1 plus the right thalamus, the left and 

right putamen, the right globus pallidus, and the left nucleus accumbens had significantly 

lower volume in model 2 when alcohol-dependent participants were compared with 

nondependent control subjects. In addition, alcohol-dependent participants exhibited lower 

average thickness in 27 cortical regions of interest (Table 3, Figure 1). Cocaine dependence 

was associated with lower cortical thickness in only one brain region (see Table 3, Figure 1). 

No cross-validated differences in regional volume or thickness were significant for 

Mackey et al. Page 5

Am J Psychiatry. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dependence on nicotine, methamphetamine, or cannabis on their own. Since most effects 

were related to alcohol dependence, a secondary linear contrast was performed to explore 

the effect of removing alcohol from the analysis. The contrast compared participants 

dependent on any substance except alcohol against nondependent control subjects. It 

revealed that the left inferior parietal cortex and the insula bilaterally were significantly 

thinner in dependent individuals (see Table 3).

Substance-Specific Versus Shared Substance-General Effects

Three distinct patterns of results emerged, which are illustrated in Figure 2.

Pattern 1 (substance specific).—In most regions of interest where a significant 

difference was observed, the effect was demonstrated in model 2 to be related specifically to 

dependence on alcohol alone (27 regions of interest)—for example, the right nucleus 

accumbens (Figure 2)—or to both alcohol and cocaine—the right supramarginal gyrus (one 

region of interest) (see Figure 1, Tables 2 and 3).

Pattern 2 (substance general).—Six cortical regions of interest (e.g., the left 

supramarginal gyrus and the right medial orbitofrontal cortex) were associated with 

dependence in model 1 but were not significantly thinner in any one particular substance 

group relative to nondependent control subjects in model 2 (see Tables 2 and 3, Figures 1 

and 2).

Pattern 3 (substance general).—Three cortical regions of interest (the left inferior 

parietal cortex and the right and left insula) were significantly thinner when all dependent 

groups were compared with control subjects (model 1) and when all dependent groups 

except alcohol were contrasted against control subjects (model 2). In addition, the left insula 

was significantly thinner in the alcohol-dependent group alone relative to control subjects 

(Tables 2 and 3, Figures 1 and 2).

Past-30-Day Use

The volume of several subcortical regions of interest were negatively associated with 

past-30-day use of alcohol alter a false discovery rate correction for multiple comparisons: 

the left and right amygdala and nucleus accumbens, the right hippocampus, and the left 

globus pallidus. No brain regions were related to past-30-day nicotine use.

Support Vector Machine

The support vector machine produced a significant classification of alcohol- and nicotine-

dependent individuals relative to nondependent control subjects (Figure 3) in both halves of 

the data (p<0.05). The classification of cocaine-dependent individuals approached 

significance. The top 20 structural predictors distinguishing dependence on each substance 

from nondependent control subjects in each classification are listed in Table S3 in the online 

supplement.
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DISCUSSION

Subcortical volume or cortical thickness was significantly lower on average in substance-

dependent individuals compared with nondependent control subjects across widespread parts 

of the brain (i.e., 22 distinct regions of interest out of a total of 82) (see Table 2; see also 

Table S2 in the online supplement). Some of these differences were substance specific, and 

others appear to constitute a shared neural substrate associated with dependence regardless 

of the substance used (see Table 3 and Figure 1). A majority of the identified regions of 

interest were smaller or thinner specifically in the brains of alcohol-dependent individuals 

(e.g., the left and right posterior cingulate and superior frontal cortex). A more limited set of 

seven regions with lower cortical thickness across substance dependence groups included the 

left and right insula, the left inferior parietal cortex, the right medial orbitofrontal cortex, the 

left and right middle temporal gyrus, and the left supramarginal gyrus. No region of interest 

was significantly larger or thicker in substance-dependent individuals relative to control 

subjects. An unexpected finding of the study was the absence of substance-specific linear 

effects on brain volume related to nicotine, methamphetamine, or cannabis dependence 

despite the collection of large pooled samples. Also, the successful classification of 

individuals dependent on nicotine, alcohol, or cocaine using the support vector machine 

approach suggests that the development of clinically useful neuroimaging biomarkers of 

substance dependence may be more productive if based on broader patterns of brain function 

or structure rather than differences in unique brain regions considered alone.

The set of brain regions identified with substance dependence in general is supported by 

previous evidence. The insula performs a central role in the perception of the internal state 

of the body (34). Disruption of the insula could alter regulation of the intense positive and 

negative bodily states associated with drug taking and withdrawal, biasing the individual 

toward relapse as a maladaptive response to anticipated challenges to physiological 

homeostasis (35). It has been reported that smokers who have suffered brain damage 

involving the insula have subsequently lost the urge to smoke (36). The parietal cortex has 

been associated with attention and working memory (37, 38). Disruption of these processes 

could interfere with self-awareness about a substance use problem and the management of 

stressful situations. The medial orbitofrontal region of interest defined by FreeSurfer (also 

known as the ventromedial prefrontal cortex) encodes the subjective value of future rewards 

during decision making (39). Lesions of this region produce disadvantageous choices on 

gambling tasks that model real-life decisions (40). Altered neural activity in the insula and 

the medial orbital and parietal cortex has frequently been linked to substance dependence 

and may predict greater craving and risk of relapse (41−44). The present results support the 

idea that substance dependence is mediated by a shared set of mechanisms across substance 

groups. Indeed, twin studies suggest that vulnerability to substance dependence is accounted 

for principally by a shared set of genetic variations regardless of the substance used, with 

proportionately smaller substance- specific effects (16).

Although subtle in magnitude, the wide spatial distribution of alcohol-specific effects is a 

striking finding of the study. Alcohol consumption enjoys greater cultural acceptance in the 

countries from which the data for this study were sampled relative to the other substances 

examined (45). Alcohol is legal to buy and consume, and widely publicized government-
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sanctioned guidelines exist for “safe” low-dose use of alcohol. This tolerance of alcohol-

related health risks is unlike the cultural views toward any of the other substances 

investigated here, whose use even in small amounts is discouraged (45). It should be noted 

that lifetime exposure to each substance could not be uniformly assessed in the data sets 

used here. As a consequence, the scope of the alcohol dependence effects may in part be 

related to greater absolute consumption of alcohol relative to the other substances. It was 

possible to assess past-30-day use of nicotine and alcohol, a limited proxy of level of 

exposure, in a sizable minority of the data sets. Several subcortical regions of interest, such 

as the amygdala and the nucleus accumbens, were significantly smaller in individuals who 

reported the highest numbers of alcoholic drinks consumed in the past 30 days, consistent 

with the notion that greater exposure could be responsible for the magnitude of the observed 

alcohol effects. Further studies will be required to clarify whether the greater number of 

observed alcohol-specific effects relative to the other substances is related to differences in 

toxicity or total exposure.

It is also notable that, besides the seven brain regions associated with dependence in general, 

there were no drug-specific effects for dependence on nicotine, methamphetamine, and 

cannabis. Although cross-validation demonstrated that the volumetric differences observed 

were reliable, the effect sizes were uniformly small (see Tables 2 and 3). This suggests that 

the lack of consistency in the literature (13−15) may be related to the insufficient power of 

most studies to detect true effects. Other imaging modalities, such as task-based functional 

MRI (41−44) and higher-resolution structural imaging, may be required to detect reliable 

substance-specific nicotine, methamphetamine, or cannabis effects if they exist. It is also 

possible that substance dependence has multiple, heterogeneous interactions with brain 

volume that are not well assessed by simple linear analyses. Evidence for this is provided by 

the support vector machine classification.

The support vector machine classification found that the pattern of regional volume 

differences could be used successfully to distinguish between nondependent control subjects 

and individuals dependent on alcohol and nicotine. The transformation of the data with a 

radial basis function kernel prior to classification facilitated the detection of nonlinear 

patterns that cannot be detected by models 1 and 2. Additionally, the support vector machine 

can identify a multivariate pattern of effects across numerous regions of interest, each of 

which, in isolation, may not pass statistical threshold. Thus, the support vector machine 

detected useful information in the pattern of results that was not apparent from the linear 

analysis. The significant classifications suggest that the overall pattern of volumetric effects 

may contain useful clinical information that would not be apparent if only traditional 

univariate linear analyses were performed. While influential features in the classification 

partly overlapped with the regions of interest identified by the univariate analyses—for 

example, brain regions associated with alcohol dependence, such as the hippocampus and 

amygdala—additional regions not identified by the linear mixed effects analyses (i.e., model 

1 and model 2) were also involved (see Table S3 in the online supplement). Future efforts of 

the Addiction Working Group will include the incorporation of other imaging modalities 

with which it may be possible to distinguish individuals with dependence on additional 

substances, such as methamphetamine and cannabis, from nondependent control subjects. It 

would also be clinically useful to examine whether the support vector machine 
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classifications developed in this study offer an index of the strength of substance dependence 

in individuals who go on to recover or relapse. It is worth noting that current blood and urine 

tests do not identify dependence, as the machine learning classifier in the present study does, 

but rather detect, and to an extent quantify, recent substance use. While the present findings 

are preliminary and the support vector machine classifications should be tested on other 

independent samples, if brain volume is confirmed as a viable biomarker of dependence, or 

of biological risk of dependence, it could be used to plan how prevention and treatment 

resources are allocated to individual patients as well as, potentially, to track intervention 

success. A structural MRI scan in combination with other factors known to be related to 

substance use problems (e.g., change in employment or marital status, health issues) could 

be used to assess risk of transition to problematic patterns of use or to quantify the current 

degree of dependence, which would influence the intervention strategy.

Several factors limit the interpretation of the study findings. Different diagnostic instruments 

were used to assess substance dependence (see Table S1 in the online supplement). Although 

the validity of each of these instruments has been well established, variation between 

instruments could add noise to the measured behavioral phenotype. This, however, could be 

an advantage because the extrapolation of significant findings to the general population is 

also likely to be more robust by virtue of generalizing across different methods of 

assessment. The absence of nutrition and education information, which are potential 

confounders, also limits the interpretability of the results. A perennial concern with multisite 

studies is variation attributable to different scanners and acquisition protocols. This issue 

was mitigated by using a standard data extraction protocol developed by the ENIGMA 

project that has been validated in previous multisite reports (20, 28−30) and by the formal 

consideration of potential site differences in all statistical analyses. As discussed above, the 

degree of exposure to the various substances was not characterized uniformly across studies, 

which limits, for instance, the interpretation of the widespread alcohol effects and whether 

alcohol represents a greater source of toxicity than the other substances examined. It should 

be emphasized, however, that this study examined brain volumetric associations with 

dependence and not with total lifetime substance use. A beneficial outcome of this first 

study of the Addiction Working Group will be to raise awareness of the data needed to 

estimate the relation between brain volume and total exposure and, more generally, of the 

utility of uniform phenotypic data for data pooling. Greater consideration of how data may 

be used in international collaborations may influence the collection of data in future studies, 

which will increase their impact beyond their primary research focus. The PhenX Toolkit 

(https://www.phenxtoolkit.org/), for example, provides an extensive catalog of standardized 

measures expressly intended to facilitate secondary cross-study comparisons. Finally, co-

occurring substance use limits the interpretation of the findings. Pervasive recreational 

substance use is a general issue for all studies of human substance dependence. For example, 

it is likely epidemiologically that a methamphetamine user will be exposed to alcohol. 

Methamphetamine users who do not use any other addictive substance would be an unusual 

group who, in practice, would be difficult to identify but, more importantly, would not be 

characteristic of the real-world population of methamphetamine users—that is, there would 

be a selection bias. Unlike studies in animal models, it is not possible to randomly assign 

humans to groups with restricted exposure to one substance alone. The typical strategy, 

Mackey et al. Page 9

Am J Psychiatry. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.phenxtoolkit.org/


which was used in the data sets included in this study, is to screen subjects for dependence 

on other substances but not to exclude for nondependent use of other substances.

The field of neuroimaging faces a crisis of relevance if published studies cannot be 

replicated, as noted in a series of reviews (22, 23). The authors of the present study joined to 

form a working group within the preexisting framework of the ENIGMA project to assemble 

a sufficiently large sample to overcome issues related to low statistical power that affect 

most individual neuroimaging studies. Using a rigorous cross-validation method, several 

brain regions were found to have a reliable association with substance dependence, including 

a shared set of regions across substances, such as the insula and the medial orbitofrontal 

cortex. Although the univariate analyses failed to identify linear effects in relation to 

dependence on nicotine, methamphetamine, and cannabis specifically, a machine learning 

algorithm, which was also able to detect nonlinear patterns in the data, successfully 

classified individuals dependent on alcohol or nicotine relative to nondependent control 

subjects. This suggests that the overall pattern of volumetric effects may contain more useful 

information with regard to the development of a neuroimaging biomarker of substance 

dependence than is revealed by the magnitude of single brain regions examined in isolation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Cortical Regions of Interest Exhibiting Substance- Specific or Shared Substance-
General Effects Displayed on the Surface of Partially Inflated Average Brainsa

a Substance specific: alcohol alone (green), alcohol and cocaine (purple); substance general: 

pattern 2 (yellow), pattern 3 (orange).
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FIGURE 2. Different Contributions of Dependence on the Five Substances Studied to the 
Association of Lower Volume or Thickness With Substance Dependencea

a For illustration purposes, both halves of the data (serving as the discovery and replication 

datasets) have been combined in the bar graphs. Three different patterns are illustrated. In 

pattern 1 (substance-specific effect), lower volume in the right nucleus accumbens was 

largely accounted for by dependence on alcohol alone. In pattern 2 (substance-general 

effect), volume in the left supramarginal gyrus was significantly lower in dependent 

compared with nondependent individuals (model 1) but was not significantly lower in any 

one particular substance group (model 2) compared with control subjects. In pattern 3 

(substance-general effect), volume in the left insula was lower when either the alcohol-

dependent group or the linear contrast of all substance groups except alcohol was compared 

with nondependent control subjects. Bars represent estimated marginal means expressed as 

percent difference from mean volume or thickness in nondependent control subjects. Error 

bars represent standard error. Meth=methamphetamine.
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FIGURE 3. Plot of Receiver Operating Characteristic Curves for the Support Vector Machine 
Classification of Individuals Dependent on One of Five Substances Relative to Nondependent 
Control Subjectsa

aThe area under the curve (AUC) is significant for alcohol or nicotine dependence when 

trained on the first half of the data and tested on the second half (left) as well as when 

trained on the second half and tested on the first half (right). Meth=methamphetamine.
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TABLE 1.

Sex Distribution and Mean Age of Case and Control Subjects, by Dependence Subgroup, in a Mega-Analysis 

of Gray Matter Volume in Substance Dependence

Group or Dependence
Subgroup

Female Age (years)

Total N N % Mean SD

All Groups

 Control 1,100  449* 40.8 28.5* 9.9

 Case 2,140 731 34.2 33.3 10.6

Alcohol

 Control 292 99 33.9 31.3* 10.2

 Case 898 291 32.4 34.7 10.7

Nicotine

 Control 290 155* 53.4 26.1* 8.0

 Case 602 250 41.5 30.8 9.8

Cocaine

 Control 99 39* 39.4 36.0* 10.3

 Case 227 54 23.8 40.2 7.7

Methamphetamine

 Control 173 71 41.G 31.7 9.3

 Case 228 78 34.2 32.9 10.0

Cannabis

 Control 246 85 34.6 22.7* 7.5

 Case 185 58 31.4 26.5 10.0

*
p<0.05.
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