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ABSTRACT

PtRh alloys are used as versatile multipurpose catalysts for a number of industrial applications, 

including fertilizer production and ammonia slip catalysts for NOx abatement purposes. For the 

latter, ammonia is oxidized to nitrogen at intermediate temperatures. To optimize the PtRh alloyed 

catalysts and explain the role of Pt and Rh for future intermediate-temperature ammonia oxidation 

operando studies, we prepared a series of distinct RhPt model surfaces. We explore post-annealing 

and high-temperature deposition as two routes for preparation of surface alloys, and compare 

results with literature examples. Scanning tunneling microscopy and X-ray photoelectron 

spectroscopy provide detailed information on surface morphology and composition, and 

demonstrate excellent temperature stability of RhPt/Pt(111) in the temperature range targeted for 

operando catalytic studies. A detailed roadmap summarizes preparation conditions to achieve a 

broad variety of surface structures. 
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Introduction

Bimetallic PtRh surfaces are of high importance in heterogeneous catalysis. For instance, 

rhodium-promoted platinum is essential in industrial high-temperature processes like the Ostwald 

(NO) and the Andrussow (HCN) processes,1 and likewise for intermediate-temperature catalytic 

oxidation of ammonia to nitrogen.  In NOx abatement from exhaust (diesel) combustion engines 

ammonia (urea) is added to achieve selective catalytic reduction (SCR) with N2 as the desirable 

product.2 State of the art de-NOx V2O5-WO3/TiO2 catalysts have an efficiency of 95% at 300 - 400 

oC.3-5 However, SCR technologies with even better efficiency are in progress. One option is to add 

excess ammonia, which in turn requests a second catalyst downstream, i.e. an ammonia slip 

catalyst that selectively oxidizes residual ammonia to nitrogen at intermediate temperatures. 6-7 We 

have shown by means of fixed-bed catalyst performance experiments that supported Pt-, Rh- and 

bimetallic PtRh nanoparticles (Pt-Rh/Al2O3) are well suited for ammonia oxidation at intermediate 

temperatures.8 In terms of activity and selectivity to nitrogen, the alloys show different behavior 

than the monometallic counterparts, Pt and Rh.8 To the best of our knowledge, the underlying 

reasons for why the alloyed PtRh nanoparticles perform differently is unknown. Therefore, 

surface-sensitive experiments to correlate ammonia oxidation product selectivity with PtRh 

surface composition and structure are called for. In order to perform such studies, well-defined 

PtRh surfaces are a prerequisite. In this paper, we present a roadmap for the preparation and 

characterization of well-defined Pt-Rh model catalysts in terms of tailor-made surfaces.

According to the Pt - Rh bulk phase diagram,9  Pt and Rh (both being cubic closed packing, ccp) 

form a complete solid solution above 1033 K. Below 1033 K it is proposed, but not confirmed 

experimentally, that the alloys decompose to a two-phase mixture according to the presence of an 

immiscibility dome, see ref. 10 and references therein. Small-sized colloidally formed PtRh 
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nanoparticles exhibit a complete solid solution when simultaneous reduction of the metal salt 

precursors is facilitated.11 Finally, in the case of PtRh surfaces, computational modeling suggests 

that Rh as solute in a Pt host has no tendency to segregate to the surface, whereas the Pt as solute 

has moderate tendency to segregate from a Rh host.12 Remarkably, the bulk Pt25Rh75(110) crystal 

is shown to exhibit strong Pt enrichment of 84% at the surface.13

When it comes to PtRh surface alloys, no information is readily available in the literature. The 

deposition of metal atoms on metal single crystals as e.g. Pt/Pt(111),14 Rh/Rh(111),15 

Ag/Ag(111),16 and Ru/Pt(111)17-18 exhibit similar epitaxial growth patterns, which we will 

describe through the Pt/Pt(111) system. The morphology of the obtained Pt layer(s) depends 

strongly on the substrate temperature,19 presence of impurities20 and deposition rate. The mobility 

of Pt atoms on Pt(111)21 is controlled by a range of barriers for diffusion (terrace, corner, step, 

intra-layer diffusion) and dissociation (kink, step, dimer dissociation).22 Owing to the six-fold 

symmetry of an fcc(111) surface, the formation of a hexagon-like island with six-fold symmetry 

is expected. In such a hexagon-like island, two types of steps can be distinguished: A and B steps, 

exhibiting <111> and <100> microfacets, respectively.23 Both experiments and DFT calculations 

show that the A and B steps have different free energies of formation and diffusion coefficients 

along and across the step.16, 22-25 The consequence of this is that the island shape is extremely 

sensitive to deposition and annealing temperature. In particular, at lower temperatures one type of 

facets exhibits faster growth, favoring a corresponding triangular structure with three-fold 

symmetry.26 At ca. 500 K, the diffusion coefficient along the two types of steps is equal, both steps 

advance at the same speed, resulting in an equilibrium hexagonal shape.26

Here we report the first study on the nucleation, growth, and alloying properties of 

nanostructured RhPt/Pt(111) surfaces with a range of diverse morphologies suited for (operando) 
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catalytic studies by means of near-ambient-pressure X-ray photoelectron spectroscopy (NAP-

XPS) and Reactor-scanning tunneling microscopy (STM) (see Figure S1). We explore two routes 

to obtain alloyed surfaces: post-annealing after room temperature deposition of Rh on Pt(111) and 

direct Rh deposition at higher temperature. We show that the obtained morphologies depend on 

the preparation method. Additionally, we investigate the temperature stability of the obtained 

model surfaces, which is of high relevance for systematic studies of catalyst performance.

Experimental details

The experiments were performed in two setups: an in-house built ReactorSTM at Leiden 

University27 and a recently installed commercial ReactorSTM system (Leiden Probe Microscopy 

B.V., LPM) at the University of Oslo (UiO). The UiO machine is based on the previously reported 

Leiden ReactorSTM,27 and  contains a preparation and an STM chamber, both with a base pressure 

of ~1×109 mbar. The preparation chamber allows flexible high-quality sample preparation via 

Ar+-sputtering (IQE 11-35, SPECS), vacuum annealing (up to 1300 K), metal deposition through 

a four-pocket e-beam evaporator (EBE-4, SPECS), and three leak valves for gas co-feeding. 

Equipment for Auger electron spectroscopy and low-energy electron diffraction (ErLEED 3000D, 

SPECS) is integrated to evaluate sample purity and crystallinity. The STM chamber is housing an 

STM system that is capable of scanning from ultrahigh vacuum (UHV) to high pressure (up to 6 

bar). The unique design is described in detail by Herbschleb et al.27

Sample preparation. A Pt(111) single crystal (99.999 %; Surface Preparation Laboratory 

(SPL), the Netherlands) was cleaned in repetitive cycles of Ar+-sputtering with an energy of 1 kV 

for 5 min followed by annealing at 1150 K in both O2 (106 mbar, 5 min) and in UHV (5 min). 

Crystal quality in terms of cleanness, crystallinity, and flatness was verified by means of AES, 

LEED, and STM. Rhodium was subsequently deposited onto the Pt(111) single crystal using the 
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e-beam evaporator. The depositions were done at ambient temperature and at selected temperatures 

in the range from 300 to 700 K. Rh (99.9%, Goodfellow) evaporation was conducted in UHV at a 

pressure less than 2×109 mbar, using a flux of 0.05 - 0.08 ML/min for 4 - 15 min, as estimated 

from STM images. Pt evaporation (99.95%, Goodfellow) was conducted in UHV at a pressure 

below 2×109 mbar, using a flux of 0.04 ML/min for 12 min. For studies of the effect of post-

annealing, the sample was first prepared at room temperature (RT), then heated to selected 

temperatures between 400 and 1050 K, kept at the targeted temperature for 5 min, cooled down to 

RT and investigated using STM.

XPS measurements. XPS analysis was carried out in the ReactorSTM system at Leiden 

University, which is equipped with a SPECS spectrometer. The monochromatic Al Kα X-rays 

(1486.6 eV) source was oriented at 54o from the surface normal and electron collection was done 

along the surface normal. The analyzer pass energy was 10 eV, dwell time 0.1 s. XPS spectra were 

analyzed using the least-squares curve-fitting program Winspec.28 Binding energies are reported 

with an uncertainty of ± 0.1 eV and referenced to the Pt 4f photoemission doublet centered at 71.2 

eV, originating from the substrate. Analysis of the Rh 3d spectra included a Shirley baseline 

subtraction and fitting with a convolution of Gaussian and Lorentzian functions. STM images (not 

reported) were collected to ensure good correlation between the surfaces studied using XPS at 

Leiden University and STM at the ReactorSTM at UiO.

STM measurements. Scanning tunneling microscopy was conducted using cut Pt80Ir20 0.25 mm 

diameter tips (Goodfellow). The CAMERA 4.3 software package developed at Leiden University 

was used for data recording.29,30  Imaging was performed in constant current mode at a typical 

sample bias of 0.5 V and a tunneling current of 0.1 nA.
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Particle analysis. Statistics on cluster density, coverage, and height of particles were obtained 

from STM images using the Gwyddion software package.31 The Rh surface coverage is reported 

as total amount of Rh contained in any of the Rh layers, and is estimated by measuring the 

projected area of the layers. The contribution of the first to third layer was estimated by marking 

grains with 0.22 and 0.44 nm thresholds, corresponding to heights of one or two atomic layers, 

respectively.31

Results and discussion

Morphology of Rh/Pt(111) as prepared at 300 K

A representative STM image of 0.50 ML Rh deposited on Pt(111) at 300 K is shown in Figure 

1a. Rh islands nucleate and grow on the Pt terraces and at the steps uniformly. As can be seen from 

the line profile (Figure 1b), the height of a Rh single layer (0.22 nm) almost coincides with the 

height of a Pt step (0.23 nm); i.e. the exact location of a (pure) Pt step is not readily distinguishable 

at RT. Most of the Rh islands are composed of two layers, sometimes with atoms also present in a 

third layer. In agreement with this, the height histogram (Figure 1c) has three peaks in intervals of 

0.22 nm, corresponding to the three Rh layers, indicating a 3-dimensional growth mode at room 

temperature. Similarly to Pt/Pt(111),14 the islands have a nearly triangular shape, pointing in the 

same direction for both layers, comprising a close packed stacking. We interpret the observation 

of Rh islands attached to the Pt steps as a possibility of elemental mixing already at 300 K. 

Depending on the evaporation rate and duration, isolated islands, bridged triangular clusters (as in 

Figure 1) and networks were formed (see Figure 9).
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Figure 1. a) STM topography of 0.50 ML Rh on Pt(111) prepared at 300 K, showing 

homogeneously distributed triangular Rh islands. Dotted line corresponds to the height profile in 

b). Image size 100×100 nm2, Ub 0.5 V, It 0.1 nA. b) Height profile across the Pt step with Rh 

islands composed of two layers. The approximate location of a Pt step between terraces 0 and 1 is 

indicated by an arrow. c) Height histogram showing the presence of three layers with individual 

height differences of 0.22 nm, measured with respect to Pt terrace level. 

Morphology of post-annealed Rh-Pt/Pt(111) surfaces

To mimic commercial and large-surface-area PtRh alloys, model catalyst surfaces32-36 with a 

high degree of Rh and Pt mixing are needed. However, for surfaces prepared at 300 K, negligible 

mixing of Rh at the Pt steps occurs. Hence, to promote inter-diffusion of Pt and Rh at the top layers 

of the Pt(111) surface, we employed two strategies: i) deposition of Rh at 300 K followed by 

stepwise post-annealing up to 1050 K; and ii) Rh deposition at elevated temperatures (up to 700 

K).
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STM images of 0.50 ML Rh on Pt(111) post-annealed at selected temperatures between 450 and 

750 K (Figure 2) show significant morphological changes. While annealing at 450 K enabled a 

minor growth of islands and healing of kinks, annealing at 550 K induced a drastic reshaping of 

the Rh triangles into hexagons, in which the second layer grew to cover the first one almost fully. 

Annealing to 650 and 750 K induced further growth and a flattening of the islands, i.e. the second 

layer decreased in size while adding more material to the first one. The faceting disappeared upon 

annealing to 900 K, yielding randomly shaped scattered islands (Figure S2).

Figure 2. STM topography of 0.50 ML Rh on Pt(111) flash-annealed to 450 - 750 K and imaged 

at RT. Triangular clusters grow at 450 K, and transform into hexagons by annealing at 550 - 650 

K. Larger single-layered islands are obtained at 750 K. The initially straight Pt steps become 

roughened due to merging with Rh islands and subsequent alloying. All images are 67×43 nm2, 

measured with Ub –0.5 V, It 0.1 nA.

Statistical analysis of the data extracted from the STM images for 0.50 ML (Figure 2) and 0.92 

ML (Figure S2) of Rh on Pt(111) describes the post-annealing process more quantitatively. The 

overall island density decreased from 3×1012 to 0.63×1012 cm2 at 750 K (Figure 3). For the higher 

starting coverage of 0.92 ML a similar trend is observed, where at 650 K islands merged into 
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continuous Rh domains (Figure S2). Despite visible morphological changes during post-annealing 

of Rh/Pt(111), the apparent coverage of Rh is relatively stable up to 900 K (Figure 3b). 

Specifically, the surfaces with 0.50 and 0.92 ML coverage, respectively, at 750 K have lost only 

ca. 20% of their initial coverage due to subsurface diffusion. Notably, at and above 550 K, Rh 

diffusion into the bulk can be accompanied by Pt diffusing towards the surface, compensating 

coverage loss. Thus the coverage estimated from STM may not directly represent the actual surface 

composition (see XPS and Pt/Pt(111) results). In addition to interlayer diffusion, the fact that Rh 

islands merged with Pt steps is a strong signature of an increased tendency of mixing at elevated 

temperature.

The layer distribution within the islands varied with the annealing temperature (Figure 3c). For 

0.50 ML Rh/Pt(111) prepared at 300 K, three layers are distinguishable with populations of 79, 19 

and 2%, respectively. At 550 K layer 2 increased two-fold, exhibiting its maximum proportion 

(38%), correlating with a minimum for layer 1 (62 %). This suggests that upon annealing to 550 

K interlayer diffusion of Rh occurs from layer 1 into layer 2, while subsequent annealing above 

550 K drives Rh back into layer 1, which becomes the sole layer above 700 K. The amount of Rh 

present in layer 3 can be neglected at post-annealing temperatures above 450 K. A similar behavior 

is observed for the 0.92 ML coverage, where two layers remain stable up to 550 K with gradual 

transition to single-layer morphology at higher temperatures. 
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Figure 3. Island statistics as a function of post-annealing temperature estimated from STM images 

presented in Figure 2 and Figure S2 for 0.50 and 0.92 ML Rh/Pt(111). a) Island density; b) 

Coverage normalized to as-prepared value at 300 K; c) Proportions of islands deconvoluted into 

three layers for 0.50 (top panel) and 0.92 ML (bottom panel) Rh/Pt(111).

Composition of post-annealed Rh/Pt(111) surfaces

To extract information on the actual surface composition and possibly induced changes due to 

post-annealing, XPS spectra were measured for 0.36, 0.55 and 1.00 ML Rh/Pt(111) coverages 

stepwise flash-annealed up to 1050 K.

For 1.00 ML of Rh/Pt(111) as prepared at 300 K, the Rh 3d5/2 core level was observed at 306.9 

eV,36 with the Rh 3d3/2 partially overlapping with the Pt 4d5/2 peak at 314.2 eV (Figure 4a). For all 

coverages post-annealed up to 750 K, the Rh 3d5/2 binding energy was reproduced at 306.9 eV ± 

0.1 eV (Figure S6). To compare several coverages on the same scale we use the intensity ratio of 

the Rh 3p3/2 (497 eV) and the Pt 4f (71.1 eV) peaks, normalized to the starting Rh/Pt ratio (Figure 

4b). Annealing to 550 K led to less than 10% decrease in Rh/Pt ratio, which can be rationalized 

either by Rh subsurface movement or by onset of Pt incorporation into Rh islands and thus Pt 

enrichment at the surface. The latter has been reported previously for Ru/Pt(111) deposited at 523 

K.18 This process is further promoted by post-annealing to 750 K, and results in an approximately 

20% decrease in the Rh/Pt ratio. Notably, after annealing to 750 K, the STM-based coverage 

decreased by 25%. Based on this substantial decrease in coverage we conclude that subsurface 

movement of Rh becomes highly relevant at and above 750 K. Accordingly, with XPS we find a 

dramatic drop in the Rh signal for 0.55 ML after annealing to 950 (32% remains) and 1050 K (ca. 

6% remains).
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Figure 4. a) X-ray photoelectron spectrum of the Pt 4d5/2 and Rh 3d core levels for 1.00 ML 

Rh/Pt(111) prepared at 300 K. b) Normalized intensity ratio of the Rh 3p3/2 peak centered at 497 

eV and the Pt 4f peak at 71.1 eV as a function of post-annealing temperature for 0.35, 0.55 and 

1.00 ML coverages, showing stability of the obtained Rh coverage up to 750 K. Dataset for the 

sample with 0.55 ML Rh/Pt(111) (black squares) features an outlier at 750 K, attributed to an 

instrumental factor. Parallel STM measurement showed a decrease in coverage from 0.55 ML to 

0.45 ML, i.e. by 18%, as seen for 0.36 ML and 1.00 ML samples.

When combining findings from STM and XPS, we conclude that around 550 K islands acquire 

an equilibrium hexagonal shape with a significant amount of Rh located in the second layer. This 

can be facilitated by the onset of Pt diffusion towards the surface, pushing Rh upwards into the 

second layer. Thereafter, at 550 - 600 K a partial enrichment of the surface with Pt occurs, leading 

to the formation of a surface alloy, which becomes substantial for surfaces annealed at 650 - 750 

K. Thus, we chose to denote the surfaces annealed at and above 550 K not as Rh/Pt(111) but as 

RhPt/Pt(111). Our results are coherent with the studies of Ru and Pt on Pt(111), which used STM 

combined with AES to investigate mixing and alloying above 523 K.18 
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Stability of the RhPt/Pt(111) surface at 550 K

It is a prerequisite that a tailor-made nanostructured surface morphology remain stable for the 

duration time of the operando experiment at relevant temperature conditions for the reaction in 

question. In this way, one ensures that any observed surface restructuring can be attributed to the 

presence of gases or adsorbed species. Keeping this in mind, a representative 0.68 ML Rh/Pt(111) 

surface was prepared at room temperature and flash-annealed at 600 K to promote the equilibrium 

hexagonal structure and mixing of Rh and Pt within the islands. The subsequent STM image of 

the RhPt/Pt(111) surface after flash-annealing at 600 K and initial annealing at 550 K for 5 min is 

shown in Figure 5a, where multiple double-layered hexagons are visible. After additional 

annealing at 550 K for 2 h (Figure 5b), no significant changes in morphology were observed 

qualitatively. 

To get more quantitative insight, we estimated the coverage after each annealing cycle (Figure 

5c). Preparation of the surface using initial flash-annealing to 600 K decreased the Rh coverage 

from 0.68 to 0.60 ML, in line with the reduction in Rh surface coverage by 10 - 15% after annealing 

to 550 - 600 K as observed by STM and XPS, see Figure 3 and Figure 4. However, we note some 

minor differences for the surfaces extensively annealed to 500 K (STM images in Figure S4) and 

550 K for 2 - 3 h. Annealing to 500 K resulted in a minor decrease in surface coverage, while 

annealing to 550 K had no apparent effect or possibly a slight (+0.05 ML) increase in coverage 

after 3 h. This result can be explained by more facile Pt embedding into Rh islands at 550 K, 

compensating for minor Rh losses subsurface, as discussed earlier. Overall we conclude that 

RhPt/Pt(111) does not undergo any significant structural and morphological transformations 

induced by temperature alone at 550 - 600 K. However, compositional changes in the morphology 

cannot be ruled out.
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Figure 5. STM topography images of RhPt/Pt(111) prepared at 300 K, flash-annealed at 600 K 

and annealed at 550 K for 5 min, i.e. before (a) and after (b) extensive heating for 2 h at 550 K. Ub 

0.5 V, It 0.1 nA. c) Coverage as a function of surface treatment (based on STM). “Dep” and “PA” 

denote deposition at 300 K and flash annealing at 600 K, respectively. Temperatures for the 

prolonged annealing are indicated on the graph. Coverage of the sample prepared at 500 K, and 

heated at 550 K for 1 h is presented for comparison (red line).

Rh deposition at higher temperatures

To promote Rh and Pt mixing and surface alloying to form the RhPt/Pt(111) surface, we 

explored direct deposition of Rh on Pt(111) at higher temperatures. 0.20 ML of Rh was deposited 

on Pt(111) kept at 400 - 700 K and imaged after cooling to RT (Figure 6). While the RT deposition 

of 0.20 ML Rh did not differ from that of 0.50 ML, deposition at 400 K yielded a mixed 

morphology composed of single-layered triangles, two-layered hexagons, and partially covered 

two-layered islands with some preference for step decoration. Depositions at 450 and 500 K 

resulted in formation of larger (25 nm) single- and double-layered triangles pointing in opposite 

directions (Figure S3). Interestingly, in this temperature range the tendency to nucleate at the Pt 

steps was further enhanced, manifested in formation of an elongated overlayer along the step. 

Small nuclei composed of a few atoms were observed in between the Rh islands (note the peak in 

island density at 450 K in Figure 7c). Deposition at 550 K produced single-layered compact 
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triangles with sharp edges. At 600 K the islands were shaped into hexagons with slight preferential 

growth in one direction. At 700 K the STM topography showed an empty surface.

Figure 6. STM topography images of 0.20 ML of Rh deposited on Pt(111) at 300 - 700 K. 

Measured with Ub 0.5 V, It 0.1 nA.

Figure 7. a) STM topography images of 0.20 ML Rh deposited on Pt(111) kept at 300 - 600 K and 

subsequently flash-annealed to 700 K (deposition temperature indicated in the corner). Ub  0.5 V, 

It 0.1 nA. b) and c) show coverage and island density of as-prepared (red, square) and surfaces 

(black, circle), after flash-annealing to 700 K, as extracted from STM images in Figure 6 and 

Figure 7a.

Some more observations should be emphasized. The maximum Rh coverage on steps was found 

at 450 K. Above 550 K, no overlayers at the steps can be seen, most probably due to subsurface 
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diffusion of Rh through step channels. At 450 and 500 K no significant subsurface diffusion of Rh 

into Pt on terraces occurs, based on observation of small nuclei trapped on the surface between Rh 

clusters (Figure S3), which disappear above 550 K.

Finally, to compare morphologies obtained at elevated growth temperatures with those obtained 

using post-annealing (Figure 3), a selection of the surfaces imaged in Figure 6 were flash-annealed 

to 700 K (Figure 7). In general, for depositions originally at 300 - 600 K, with subsequent flash 

annealing to 700 K the shape of all islands changed to hexagon-like. The islands varied in size 

around 10 - 30 nm. The most well-defined hexagons with also a narrow size distribution were 

obtained for surfaces prepared at 400 K and flash annealed to 700 K. As expected for post-

annealing, island density decreased substantially with the most significant change evident for 

samples post-annealed after deposition at 300 - 400 K (Figure 7c). Preparation of surfaces above 

450 K results in a significantly lower Rh coverage (75% of that at RT, and dropping down (< 50%) 

as the deposition temperature increases further), which implies that adatoms have less time to form 

(or join) a critical nucleus before diffusion subsurface occurs. This effect is expected to be 

particularly pronounced at the low evaporation rates (0.05 ML/min) employed in this study.

 Comparison with post-annealed Pt/Pt(111)

To compare the morphology of post-annealed Rh/Pt(111) and post-annealed Pt/Pt(111) we 

deposited 0.38 ML Pt on Pt(111) at 300 K and flash-annealed at 450 - 750 K (Figure 8). 
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Figure 8. a - e) STM topography images of 0.38 ML Pt deposited on Pt(111) at 300 K and post-

annealed to 450 - 750 K for 5 min. Image size 160×160 nm2, Ub 0.5 V, It 0.1 nA. f) Coverage of 

layers 1 - 3 obtained from STM images in a - e).

Consistent with literature,14 at 300 K Pt grows into 3D triangle-like structures with all three 

layers pointing in the same direction. Similarly to Rh/Pt(111), step-wise annealing to 750 K causes 

island growth, resulting in a steady decrease in cluster density. Notably the third layer, formed at 

300 K, contributing only to ca. 1% of the total coverage, remains on the surface up to 550 K and 

vanishes after annealing at 650 K. Similar to the evolution of the layers for 0.50 ML Rh/Pt(111) 

in Figure 3, post-annealing of Pt/Pt(111) to 550 K results in a slight growth of the second layer 

(Figure 8f). More interesting, the first layer exhibits a more pronounced increase in the coverage 

after annealing at 550 K. Thus, summarizing the contributions from all three layers, at 550 K the 

coverage of 0.42 ML is 10% higher than the starting coverage, and 17% higher than the coverage 

at 450 K. Subsequent annealing to higher temperatures causes a decrease in coverage from 0.42 to 

0.33 ML (13% relative to starting coverage). The increase in total coverage for both Rh/Pt(111) 

and Pt/Pt(111), Figure 3b and Figure 8f, respectively, is attributed to diffusion of Pt atoms into 
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existing Rh and Pt islands. Annealing to higher temperatures allows atoms from the second or third 

layer to diffuse down into the first layer, and furthermore into the Pt(111) crystal.

Roadmap for preparing RhPt/Pt(111) surfaces

The deposition and annealing of Rh on Pt(111) employing various experimental conditions gave 

rise to a variety of island morphologies as summarized in the roadmap, Figure 9. Starting from 

deposition at room temperature, the major effects of post-annealing are cluster growth, shape 

transformation from triangular to hexagonal, and intermixing of Rh and Pt at steps and terraces 

(Figure 9, middle panel). As illustrated in Figure 2 and Figure S2, annealing of RT-deposited 

samples above 550 K is sufficient for formation of hexagon-shaped structures. In contrast, such 

hexagon-shaped islands are never directly obtained by high temperature deposition of Rh on Pt 

kept at 550 - 600 K, but only via subsequent post-annealing (Figure 7). We also find that room 

temperature deposition combined with post-annealing yields more stable islands, which loose less 

than 20% of the Rh signal at 700 K as indicated by XPS data. This is in striking contrast to high-

temperature deposition, where at 700 K no Rh overlayer was found at the surface, and already at 

550 K the island coverage dropped by 50% (Figure 3b and Figure S4). Furthermore, 

morphologically the post-annealed samples are quite stable (at least 3 h at 550 - 600 K) in UHV, 

which is a prerequisite for systematic studies. 
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Figure 9. Roadmap for achieving distinct alloyed RhPt morphologies on Pt(111) using post-

annealing (top panel) and deposition at higher temperatures (bottom panel). Structures like 3D 

triangles and hexagons, worms, domains, 2D networks, opposing triangles, small nuclei, and 2D 

hexagons can be prepared at the indicated conditions (white font). The starting Rh coverage as 

estimated by STM is indicated for each surface. 

For mimicking a working Pt-Rh alloyed catalyst it is crucial that the two elements form a solid 

solution in the model material, specifically, that a surface alloy RhPt/Pt(111) exists. We found that 

post-annealing to 600 K or deposition above 550 K are needed to induce such mixing of Pt and 

Rh. The mixing takes place within the islands,  on terraces and step edges (Figure 9, middle panel). 
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In the context of alloying within the island, it is important to mention that Pt detachment from 

the Pt step edges and self-diffusion to reach an adjacent Rh island can occur within the temperature 

range studied. In particular, it could explain a small increase in STM-based coverage at 550 K 

(Figure 3 and Figure 8). In contrast, data for the post-annealing to higher temperatures does not 

support this, where no additional coverage due to Pt enrichment arriving from the step edges was 

observed. The presence of islands on top of the step edges, complete islands merged with steps 

and denuded areas adjacent to the edges was interpreted as tendency to mix with the step without 

additional Pt laterally diffusing from the step. 

Near surface alloy (NSA) in which Rh island would reside underneath the first layer of Pt was 

suggested in the literature and at lower temperature it can be excluded based on 3-dimensional 

growth of islands. Formation of NSA may be more likely at elevated temperatures, where 2-d 

growth is observed, however our preliminary STM imaging with chemical contrast does not 

support this hypothesis. STM image obtained after adsorbate-induced tip switching (Figure S5), 

similarly to Varga et al.,13 shows that single layer with uniform topography in fact features a 

complex surface alloy structure when imaged with chemical contrast. 

Obtaining alloying of Pt and Rh in these nanostructures upon gentle annealing is in line with 

what is known for PtRh-based nanoparticles in supported catalysts, and in consensus with 

predictions of Ruban et al. for Pt-Rh surfaces.12 With reference to this work, we expect that Rh 

mixes with Pt as RhPt/Pt(111).

Conclusions 
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Rhodium evaporated onto Pt(111) surfaces was shown to acquire a number of different 

morphologies, which were controlled via the preparation parameters – coverage, deposition rate, 

substrate temperature during deposition, and post-annealing. Structures that resemble triangles, 

triangular networks, worms, hexagons, and domains with hexagon vacancies were obtained. The 

access to a large number of island shapes and compositions is particularly useful for establishing 

structure-performance relationships. The observed morphology and (Rh island – Pt surface) 

mixing is qualitatively similar to the archetypical system of Pt homoepitaxially grown on Pt(111) 

14, 20, 26 and heteroepitaxial examples of Ru/Pt(111), 17-18 and is governed by a combination of inter- 

and intra-layer diffusion barriers. 

For future studies of intermediate-temperature ammonia oxidation, we developed a recipe 

employing post-annealing and high temperature deposition, which resulted in well-mixed RhPt 

surfaces with either triangular or hexagonal island shapes. The optimal window for Rh and Pt 

mixing is found around 550 ± 50 K, which allows Rh diffusion into the top layers of the Pt(111) 

crystal, and Pt diffusion into Rh islands. The post-annealed surfaces exhibited very good 

temperature stability and maintained their initial morphology for at least 3 h without evidence of 

sintering or diffusion subsurface at 550 - 600 K.

In terms of morphologies and degree of mixing, the distinct nano-structuring obtained by 

manipulating the steps in the preparation routes is expected to result in marked differences in 

catalytic activity and selectivity. Hence, we foresee these surfaces to become particularly useful in 

systematic studies to optimize Pt-Rh alloying for catalysis.
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Supporting Information. Detailed description of the experimental setup ReactorSTM, additional 

STM images and XPS spectra are included in the online supporting information. The following 

files are available free of charge.

Supporting information (PDF).
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