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Contents

1 Signs of universality in the structure of culture 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The formal representation of culture . . . . . . . . . . . . . . . . . 10
1.3 Long-term cultural diversity and short-term collective behavior . . 12
1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.A Empirical data formatting . . . . . . . . . . . . . . . . . . . . . . . 25
1.B Feature-feature correlations . . . . . . . . . . . . . . . . . . . . . . 29
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Evidence for mixed rationalities in preference formation 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Model Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 59
2.A Controlling the generation of prototypes . . . . . . . . . . . . . . . 60

2.A.1 Integer partition probabilities . . . . . . . . . . . . . . . . . 60
2.A.2 Integer partition generation . . . . . . . . . . . . . . . . . . 62

2.B Analytic calculations of model average inter-vector distance . . . . 64
2.C Fitting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.C.1 First level fitting . . . . . . . . . . . . . . . . . . . . . . . . 69
2.C.2 Second level fitting . . . . . . . . . . . . . . . . . . . . . . . 72
2.C.3 Used functions . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.C.4 Algorithm usage . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Ultrametricity increases the predictability of cultural dynamics 87
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2 Ultrametricity and cultural dynamics . . . . . . . . . . . . . . . . . 92

5



3.3 Partition-specific quantities . . . . . . . . . . . . . . . . . . . . . . 94
3.4 Predictability of the final state . . . . . . . . . . . . . . . . . . . . 97
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.A Ultrametric-generation method . . . . . . . . . . . . . . . . . . . . 101
3.B Detailed results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.C Dendrogram geometry . . . . . . . . . . . . . . . . . . . . . . . . . 108
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 A random matrix perspective of cultural structure 113
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2 Eigenvalue distributions for empirical data and null models . . . . 117
4.3 Two interpretations of structural modes . . . . . . . . . . . . . . . 125

4.3.1 The feature-feature correlations scenario . . . . . . . . . . . 128
4.3.2 The group structure scenario . . . . . . . . . . . . . . . . . 129
4.3.3 Mathematical comparison of the two scenarios . . . . . . . 131

4.4 Discriminating between the two interpretations . . . . . . . . . . . 135
4.5 Revisiting the empirical data . . . . . . . . . . . . . . . . . . . . . 141
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.A The fully-connected Ising (FCI) model . . . . . . . . . . . . . . . . 147
4.B The symmetric two-groups (S2G) model . . . . . . . . . . . . . . . 149
4.C The structure of the FCI and S2G models . . . . . . . . . . . . . . 151
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Samenvatting 155

Summary 159

Rezumat 163

List of publications 166

Curriculum vitæ 169

Acknowledgments 171

6



Chapter 1

Signs of universality in the
structure of culture

Understanding the dynamics of opinions, preferences and of culture as a whole
requires more use of empirical data than has been done so far. It is clear that
an important role in driving this dynamics is played by social influence, which
is the essential ingredient of many quantitative models. Such models require
that all traits are fixed when specifying the “initial cultural state”. Typically,
this initial state is randomly generated, from a uniform distribution over the set
of possible combinations of traits. However, recent work has shown that the
outcome of social influence dynamics strongly depends on the nature of the initial
state. If the latter is sampled from empirical data instead of being generated in
a uniformly random way, a higher level of cultural diversity is found after long-
term dynamics, for the same level of propensity towards collective behavior in the
short-term. Moreover, if the initial state is randomized by shuffling the empirical
traits among people, the level of long-term cultural diversity is in-between those
obtained for the empirical and uniformly random counterparts. The current study
repeats the analysis for multiple empirical data sets, showing that the results are
remarkably similar, although the matrix of correlations between cultural variables
clearly differs across data sets. This points towards robust structural properties
inherent in empirical cultural states, possibly due to universal laws governing
the dynamics of culture in the real world. The results also suggest that this
dynamics might be characterized by criticality and involve mechanisms beyond
social influence.

This chapter is based on the following scientific article:
A. I. Băbeanu, L. Talman and D. Garlaschelli Eur. Phys. J. B 90: 237 (2017).
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1.1 Introduction

1.1 Introduction

Quantitative, interdisciplinary research on social systems has recently seen a dra-
matic increase [1, 2], which is largely motivated by large amounts of data becoming
available as a consequence of online and mobile phone activity. Such data sets
allow one to map out large social networks [3, 4], consisting of connections and
interaction patterns between humans, as well as to keep track of how these net-
works evolve with time [5]. This stimulated a series of empirical and theoretical
studies of the structure and dynamics of social networks [6, 7, 8, 9]. Less attention
has been payed to another, complementary aspect of social systems, having to do
with the presence and evolution of opinions and preferences: the structure and
dynamics of “culture”. This aspect particularly suffers from a lack of empirical
research [10], which is what this article aims at partly compensating for.

This study makes use of quantitative tools developed within an interdisci-
plinary “cultural dynamics” research paradigm, which mostly consists of theoret-
ical, model-driven studies, with significant input from physics [11]. In addition
to embracing the dynamical nature of culture, this paradigm also embraces its
multidimensional nature, although similar research focusing on single-dimensional
dynamics also exists, in which case it is referred to as “opinion dynamics” [11] – in-
teresting parallels between opinion dynamics and statistical physics were pointed
out already in Ref. [12]. For cultural dynamics, the so-called Axelrod model [13]
is very representative. In this setting, an individual (or agent) is encoded as
a sequence of cultural traits (opinions, preferences, beliefs) commonly referred
to as a “cultural vector”. Every entry of the vector corresponds to one dimen-
sion of culture, also referred to as one “cultural variable” or one “cultural fea-
ture”. All vectors evolve in time, driven mainly by social influence interactions,
along with other ingredients, depending on which version of the model is actually
used [14, 15, 16, 17, 18, 19, 20, 21, 22]. Any such model requires that all traits
of all agents in the initial state are somehow specified, which is usually done ran-
domly, using a uniform probability distribution over the set of possible cultural
vectors – a uniform “cultural space distribution”. This choice is natural if the aim
is understanding the (effect of the) dynamics by means of the structure present
in the final state, in the absence of any structure in the initial state.

Taking a somewhat different perspective, Refs. [23, 24] explored alternative
classes of initial conditions, trying instead to understand the effect that the initial
state has on the dynamics and on the final state. It became apparent that the
final state is rather sensitive to the initial state. In particular, an initial state
constructed from an empirical social survey behaved significantly different from
an initial state that was generated in a uniformly random way [23]. This implies
that cultural dynamics is sensitive to the structure inherent in empirical data.
Such sensitivity is worth exploiting, in order to better understand the empirical
structure. Thus, if the cultural vectors in the initial state correspond to real
individuals, the outcome of social influence models can be used as a quantitative
tool for gaining insight about how real individuals are distributed in cultural

8



Signs of universality in the structure of culture

space, and indirectly about cultural dynamics in the real world, since the initial
cultural state can be regarded as a partial snapshot of the real world dynamics.
This is, to a great extent, the perspective of the research presented here, which
makes use of a quantitative technique developed in Ref. [23].

On one hand, this technique incorporates the idea of social-influence cultural
dynamics, which is encoded by a measure of long-term cultural diversity (LTCD),
which makes use of an Axelrod-type model [13] of cultural dynamics with a mini-
mal set of ingredients. The LTCD quantity estimates the extent to which discrep-
ancies between opinions survive after a long period of cultural dynamics governed
by consensus-favoring social influence, in the absence of any other process. For
any given set of cultural vectors (or cultural state), the values of LTCD are shown
in correspondence with those of another quantity, which is a measure of short-
term collective behavior (STCB). The STCB quantity estimates the propensity
of the agent population to short-term coordination in terms of their opinions with
respect to only one topic. This is done using a modification of the Cont-Bouchaud
model [25] of social coordination, which employs, in a more implicit way, the idea
of one-dimensional opinion dynamics driven by social influence, supposedly taking
place on a much shorter time-scale. As described in Sec. 1.3, both the LTCD and
the STCB quantities are, additionally, functions of the same free parameter, the
bounded confidence threshold ω, which controls the maximal distance in cultural
space for which social influence can operate. The common dependence on this
parameter is what allows for LTCD to be plotted as a function of STCB.

On the other hand, this technique also incorporates the comparison between
the empirical cultural state, a uniformly random cultural state and a shuffled one
– the latter is constructed by randomly permuting the empirical traits among
vectors, thus retaining only part of the empirical information. Each of the three
cultural states induces, in the LTCD-STCB plot, a curve parametrised by the
bounded confidence threshold. In Ref. [23], for the random cultural state, the
curve was such that at least one of the two quantities attained a close-to-minimal
value for any value of the bounded confidence threshold ω, meaning that STCB
and LTCD were mutually exclusive. This apparently called for a more complicated
description or otherwise suggested a paradox, since real-world societies seem to
allow for both short-term collective behavior and long-term cultural diversity.
However, for the empirical cultural state, the two aspects became clearly more
compatible, with both quantities attaining intermediate values for a certain ω
interval, which appeared a parsimonious way of reconciling LTCD and STCB.
At the same time the shuffled state entailed a compatibility of LTCD and STCB
which was intermediate between those obtained for the empirical and random
states.

The current study is dedicated to checking the robustness of the LTCD-STCB
behavior identified in Ref. [23] across different empirical data sets. As shown in
Sec. 1.4, this behavior appears to be universal, robust across geographical regions
and independent of the details of the feature-feature correlation matrix. These
results are based on multiple sets of cultural vectors, constructed from several
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1.2 The formal representation of culture

empirical sources and examined using the technique briefly described above. The
LTCD and STCB quantities employed by this technique are explained in more
detail in Sec. 1.3. Moreover, Sec. 1.2 gives more details about the formalism
behind “cultural states” and related concepts. Finally, Sec. 1.5 discusses the
results presented throughout the study, possible criticism and questions that can
be further investigated. The manuscript is concluded in Sec. 1.6. Note that,
although the definitions in Sec. 1.2 and Sec. 1.3 are effectively the same as in
Ref. [23], in view of their importance for this manuscript, they are explained
again here from a somewhat different angle, while emphasizing certain aspects
that previously were only implicit.

1.2 The formal representation of culture

The way a cultural state is encoded here is inspired by models of cultural dynam-
ics, in particular by Axelrod-type models [13]. In this paradigm, one deals with a
set of variables, called “cultural features”, which encode information about vari-
ous properties that individuals can have, properties that are inherently subjective
and that can change under the action of “social influence” arising during person-
to-person interactions. By construction, these variables are allowed to attain only
specific values which are here called “cultural traits”. The interpretation here is
that cultural traits encode “preferences”, “opinions”, “values” and “beliefs” that
people can have on various topics, where each topic is associated to one feature.

A “cultural space” consists of the set of all possible combinations of cultural
traits entailed by the set of chosen cultural features, together with a measure
of dissimilarity between any two combinations. Moreover, this dissimilarity, also
called the “cultural distance”, is defined in such a way that it satisfies all the
properties of a metric distance (non-negativity, identity of indiscernibles, sym-
metry and triangle inequality). The so-called “Hamming” distance is commonly
employed for this purpose, which is meaningful as long as there is no obvious or-
dering of the traits of any feature. A cultural space is thus an abstract, discrete,
metric space, where each point corresponds to a specific combination of traits.
However, the cultural space is mathematically not a vector space, since there is
no notion of additivity attached to it.

A cultural state is essentially the selection of points in the cultural space that
needs to be specified for the initial state of cultural dynamics models. Such a
selection is also referred to here as a “set of cultural vectors” (SCV), where one
“cultural vector” is one possible combination of traits. Formally, this is not a set
in the rigorous sense, but a multiset, since it may contain duplicate elements –
identical sequences of traits. However, duplicate elements will rarely occur in the
initial states constructed for this study, since the number of cultural vectors is in
practice much smaller than the number of possible points of the cultural space.
On the other hand, they will often occur in the final state. This manuscript uses
“SCV” interchangeably with “cultural state”.
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Signs of universality in the structure of culture

It is also convenient to consider the notion of “cultural space distribution”
(CSD), as a discrete probability mass function taking the cultural space as its
support. If the SCV is constructed in a uniformly random way, one implicitly
assumes that the underlying cultural space distribution is constant – all combina-
tions of traits are equally likely. If, however, the SCV is constructed from empirical
data, the inherent structure may be thought to correspond to non-homogeneities
in an underlying CSD, for which the data is representative.

Here, empirical SCVs are mainly constructed from social survey data. Cultural
features are obtained from the questions that are asked in the survey, while the
traits of each feature correspond to the possible answers associated to the question.
Thus, a cultural vector represents a sequence of answers that one individual has
given to the list of questions in the survey. Importantly, a question is selected
and encoded as a feature only if it is reasonably subjective, meaning that it does
not ask about demographic or physical aspects concerning the individual (like
place of residence, marital status, age), and that every allowed answer should
be plausible at least from a certain perspective of looking at the question, or
for people with a certain background or a certain way of thinking. Moreover,
a question is disregarded if the survey is defined in such a way that its list of
a-priori allowed answers depends on what answers are given to other questions.
All features remaining after this filtering – see Sec. 1.A of the Appendix for more
details – are assumed to contribute equally to the cultural distance, but the way
they contribute depends on whether they are treated as nominal or as ordinal
variables. Specifically, the cultural distance dij between two vectors i and j is
computed according to:

dij =
1

F

F∑
k=1

[
fknom

(
1− δ(xki , xkj )

)
+ (1− fknom)

|xki − xkj |
qk − 1

]
=

1

F

F∑
k=1

dkij , (1.1)

where F is the number of cultural features with k iterating over them, fknom is a
binary variable encoding the type of feature k (1 for nominal and 0 for ordinal),
qk is the range (number of traits) of feature k, δ(a, b) is a Kroneker delta function
of traits a and b (of the same feature) and xki is the trait of cultural vector i
with respect to feature k. This definition reduces to the Hamming distance in
case there are only nominal variables present. The second equality sign gives a
formulation of the cultural distance as a sum over feature-level cultural distance
contributions dkij/F .

These feature-level contributions allow one to formulate, following Ref. [23], a
notion of feature-feature covariance:

σk,l =
〈dkijdlij〉

i<j

i,j∈1,N
− 〈dkij〉

i<j

i,j∈1,N
〈dlij〉

i<j

i,j∈1,N

F 2
(1.2)

valid for any two features k and l, regarldess of fknom and f lnom. Note that the
averaging is performed over all N(N − 1)/2 distinct pairs (i, j), i 6= j of cultural
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1.3 Long-term cultural diversity and short-term collective behavior

vectors, rather than over all N cultural vectors. The feature-feature covariances
can be used to define the associated feature-feature (Pearson) correlations via:

ρk,l =
σk,l√
σk,kσl,l

(1.3)

which measures the extent to which large/small distances in terms of feature k
are associated to large/small distances in terms of feature l. One can definitely
see the F × F correlation matrix ρ as a reflection of a CSD that is compatible
with the data. In general, however, the correlation matrix will only retain part
of the information encoded in the CSD, first because ρk,l retains only part of the
information in the 2-dimensional contingency table of features k and l, second
because a CSD is essentially an F-dimensional contingency table, which might
entail all kinds of higher-order correlations.

Assuming the definition of cultural distance given by Eq. (1.1), a cultural
space is already specified by the list of features taken from an empirical data set,
together with the associated ranges and types. In this empirically-defined cultural
space, it is meaningful to talk about several types of SCVs. First, an empirical
SCV is constructed from the empirical sequences of traits of the individuals se-
lected from those sampled by the survey. Second, a shuffled SCV is constructed
by randomly permuting the empirical traits among individuals, independently for
every feature. Third, a random SCV is constructed by randomly choosing the
trait of every person, for every feature. Note that the shuffled SCV exactly repro-
duces, for each feature, the empirical frequency of each trait, while disregarding
all information about the frequencies of co-occurrence of various combinations of
traits of two or more different features. Thus, shuffling destroys all feature-feature
correlations ρk,l, as well as any higher-order correlations entailed by the empirical
SCV, retaining only the information encoded in the marginal probability distribu-
tions associated to individual features. On the other hand, a random SCV retains
nothing of the information inherent in the empirical SCV.

Finally, note that the mathematical definition of cultural distance illustrated
by Eq. (1.1), already used in Refs. [23] in [24], is neither unique nor very sophisti-
cated. Other definitions might capture differences in opinions, preferences, values,
beliefs, attitudes and associated behavior tendencies in better, more precise ways
– see Ref. [26] for a sophisticated approach. However, the current definition is
arguably good enough for the problems explored in this study and for how they
are attacked.

1.3 Long-term cultural diversity and short-term
collective behavior

This section focuses on two quantities that are evaluated on sets of cultural vec-
tors, namely the LTCD and STCB quantities mentioned above. These are based
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Signs of universality in the structure of culture

on the ideas of cultural and opinion dynamics, respectively, driven by social influ-
ence in a population of interacting agents – as explained below, multidimensional
cultural dynamics is explicitly implemented in LTCD, while unidimensional opin-
ion dynamics is implicitly implemented in STCB. Each agent is associated to one
of the cultural vectors in the SCV that is studied. For simplicity, both quantities
assume that there is no physical space nor a social network that would constrain
the interactions between agents. In both cases, the interactions are assumed to
only be constrained by how the agents are distributed in cultural space. Specifi-
cally, only if the distance between two cultural vectors is smaller than the bounded
confidence threshold ω are the two agents able to influence each other’s opinions
in favor of local consensus: there needs to be enough similarity between the cul-
tural traits of two people if any of them is to convince the other of anything.
This picture is inspired by assimilation-contrast theory [27], Ref. [17] being the
first study that explicitly uses the bounded-confidence threshold in the context
of cultural dynamics, after having already been in use in the context of opinion
dynamics for some time – see Ref. [28] for an overview. The bounded confidence
threshold ω functions like a free parameter on which both the LTCD and the
STCB quantities depend, for any given SCV.

The LTCD quantity is a measure of the extent to which the given SCV favors
cultural diversity on the long term, namely a survival of differences in cultural
traits at the macro level, in spite of repeated, consensus-favoring interactions at
the micro level. In the real world, boundaries between populations belonging to
different cultures appear to be resilient with respect to social interactions across
them [29, 30, 31]. The measure relies on a Axelrod-type model [13] of cultural
evolution with bounded confidence, which is applied on the SCV. This is meant
to computationally simulate the evolution of cultural traits under the action of
dyadic social influence, in the absence of other processes that may be present in
reality. According to this model, at each moment in time, two agents i and j
are randomly chosen for an interaction. If the distance dij between their cultural
vectors is smaller than the threshold ω, then, with a probability proportional to
1 − dij , for one of the features that distinguishes between the two vectors, one
of the agents changes its trait to match the other. With time, agents become
more similar to those that are within a distance ω in the cultural space. The dy-
namics stops when several groups are formed, within which agents are completely
identical to each other, but too dissimilar across groups for any trait-changing
interaction to occur. These groups are called “cultural domains”, term formu-
lated in the context of the original Axelrod model [13], which also included a
physical/geographical, 2-dimensional lattice but no (explicit) bounded confidence
threshold. The normalized number of such cultural domains for a given value of
ω, averaged over multiple runs of the model, defines the LTCD quantity:

LTCD(ω) =
〈ND〉ω
N

, (1.4)

where ND is the cultural domains in the final (or absorbing) state of this model,
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1.3 Long-term cultural diversity and short-term collective behavior

the normalization being made with respect to N , the size of the SCV.

The STCB quantity is a measure of the extent to which the given SCV fa-
vors collective behavior (or social coordination) on the short term, namely the
extent to which the agents associated to the cultural vectors in the set would,
due to social influence, tend to take actions or make choices in a similar, coor-
dinated way rather than independently from each other. Bursts of fashion and
popularity [32, 33, 34], rapid diffusion of rumors, gossips and habits [11, 35] and
speculative bubbles and herding behavior on the stock markets [25, 36] are real-
world examples of collective behavior on the short term. The measure relies on a
Cont-Bouchaud type model [25], which deals with an aggregate choice or opinion
of the entire agent population on one issue, which for simplicity is assumed here
to be represented by a binary variable, which could encode, for instance, liking
vs disliking an item. According to the model, when collectively confronted with
this issue, the agents within a connected group effectively make the same choice
or express the same opinion. In this context (where physical space and social
network are disregarded), a connected group is a subset of agents that form a
connected component in the graph obtained by introducing a link for every pair
(i, j) of agents that are culturally close enough to socially influence each other
dij < ω. Based on this approximation, the aggregate, normalized choice of the
entire population is expressed as a weighted average over the choices of the con-
nected components, where the weight of the Ath component is the size SA of this
component. However, the group choices themselves are still assumed to be binary,
equiprobable random variables with values {−1,+1}. Thus, the aggregate, nor-
malized choice is also a random variable, but one that is non-uniformly distributed
over some set of rational numbers within [−1, 1], in a manner that depends on
the set of group sizes {SA}ω induced by a specific value of the ω threshold. The
spread of this aggregate probability distribution provides the coordination mea-
sure that defines the STCB. It turns out that this quantity can be analytically
computed, for a given ω, according to [23]:

STCB(ω) =

√√√√∑
A

(
SA
N

)2

ω

, (1.5)

where the summation is carried over the cultural connected components labeled
by different A values. Note that only the sizes SA of the components enter the cal-
culation, which are in turn determined by the cultural graph obtained by thresh-
olding the dij matrix by ω. Also note that STCB is higher when the agents are
more concentrated in fewer and larger components.

There is a crucial difference between the LTCD and the STCB measures: while
the former assumes that agents move in cultural space under the action of social
influence, the latter assumes that the agents remain fixed in cultural space while
they make their decision on one issue which is external to the cultural space.
Although the STCB implicitly assumes that social influence occurs within the
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Figure 1.1: The interplay between long-term cultural diversity and of short-term
collective behavior for a random set of cultural vectors. Showing the LTDC(ω)
dependence (a), the STCB(ω) dependence (b) and the ω-induced LTDC-STCB
correspondence (c), for a random set of N = 500 cultural vectors, in the cultural
space of the Eurobarometer (EBM) data set (see Sec. 1.4).

cultural components, this influence is supposedly too superficial and too short-
lived too also alter the cultural vectors themselves. Thus, the LTCD and STCB
quantities are concerned with two different time-scales: a long time-scale for which
cultural vectors and distances are dynamic and a short time-scale for which cul-
tural vectors and distances are fixed. Moreover, while LTCD requires computer
simulations, the STCB is computed in an analytical way. Thus, LTCD can be
seen as a characteristic of the final cultural state resulting from a long, cultural
dynamics process, while the STCB can be can be seen as a property of the initial
cultural state.

It is worth explicitly illustrating, with Fig. 1.1, the behavior of the LTCD
and the STCB quantities for a random SCV. The SCV is defined with respect
to the cultural space of one of the data sets introduced in Sec. 1.4. Figs. 1.1(a)
and 1.1(b) show, respectively, the dependence of the LTCD and STCB measures
on the bounded-confidence threshold ω, while Fig. 1.1(c) shows the correspon-
dence between the LTCD and STCB measures obtained by eliminating ω. The
same data points are used for all 3 plots, where each point records all the 3 quan-
tities (LTCD, STCB and ω). The LTCD quantity is averaged, for each point, over
10 runs of the cultural dynamics model, with the associated standard deviations
shown by the error bars.

Fig. 1.1(a) shows that LTCD decreases with ω: for large N , LTCD goes from
1 to 0 as ω goes from 0 to 1. This is doe to ω controlling the range of interaction
in the cultural space. In general, convergence of agents happens in parallel in
several regions of the cultural space, towards several points that are out of range
of each other. Thus, ω also controls the expected number of such convergence
points, which in turn determines the expected number of cultural domains in the
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final state and thus the LTCD value – the latter three quantities decrease with
increasing ω. If ω is small enough, there is effectively no successful interaction
and thus no movement in cultural space, so each agent “converges” to one, dis-
tinct point (assuming that all vectors are different from each other in the initial
state). If ω is large enough, all agents tend to converge to the same point in the
cultural space. Note that, in terms of ω, these two extreme cases are actually
two regimes, separated by a sharp decrease of LTCD over some intermediate ω
interval. This sharp decrease can actually be understood as an order-disorder
phase transition, where the disordered phase corresponds to low ω, while the or-
dered phase corresponds to high ω. This type of transition has been previously
studied in the context of the Axelrod model [37, 21], although in terms of a dif-
ferently defined control parameter – the (average) feature range q rather than the
bounded-confidence threshold ω.

Fig. 1.1(b) shows that STCB is decreasing with ω: in the limit of large N ,
STCB goes from 0 to 1 as ω goes from 0 to 1. This is due to ω controlling the extent
to which agents are culturally connected to each other. Higher ω implies fewer, but
larger connected components in the cultural graph, thus a higher predisposition
for coordination. If ω is small enough, there is one connected component for every
agent, while if ω is small enough, there is one connected component containing all
agents. Similarly to above, these two cases correspond to two regimes separated
by a sharp increase of STCB, which can be again understood as a phase transition
– it is actually a symmetry breaking phase transition, as explained in Ref. [23].

Fig. 1.1(c) shows that, as ω increases, one goes from the upper-left corner (high
LTCD, low STCB) to the lower-right corner (low LTCD, high STCB), by first
passing through the lower-left corner (low LTCD, low STCB). In other words, the
sharp decrease of LTCD happens before the sharp increase of STCB, meaning that
the critical ω of the LTCD phase transition is lower than that of the STCB phase
transition. This is also visible at a close, comparative inspection of Figs. 1.1(a)
and 1.1(b). The ω-region for which both the LTCD and the STCB attain low
values corresponds to a special situation for which there is a relatively high level
of convergence in the final cultural state (low LTCD), in spite of a relatively low
level of connectivity in the initial cultural state (low STCB). This is apparently
explained by the fact that movement in cultural space at a certain point in the
cultural dynamics simulation facilitates further movement that would not have
been possible at an earlier moment, so it is enough to have a few pairs of agents
that can initially influence each other to gradually set a large fraction of the other
agents in motion and in the end achieve a large amount of convergence. In any
case, Fig. 1.1(c) shows that at least one of the two quantities has to attain a
close-to-minimal value, regardless of the bounded-confidence threshold ω.

According to the considerations above, long-term cultural diversity and short-
term collective behavior seem to be mutually exclusive, suggesting a paradox [23],
at least if one accepts that real socio-cultural systems allow for both aspects.
However, the above calculations make use of a random SCV, which assumes that
the underlying cultural space distribution is uniform. Ref. [23] showed that an
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empirical SCV allows for much more compatibility, with both quantities attaining
intermediate values for a certain ω interval – as shown in Sec. 1.4, this translates to
a higher LTCD-STCB curve than the one shown in Fig. 1.1(c) – meaning that the
apparent paradox is solved by using realistic data about cultural traits. Moreover,
a shuffled SCV entails a compatibility level that is in between those entailed by
a random and by an empirical SCV. Thus, Ref [23] showed that an empirical
SCV has enough structure to dramatically affect the behavior of social-influence
dynamics acting upon it, aspect which had been neglected in the past.

1.4 Results

The findings of Ref. [23] are based on one data set. It is important to understand
whether the observed properties are in fact robust across different populations and
across different topics. This is accomplished by repeating the analysis of Ref. [23]
on four data sets. These are taken from different sources, thus containing different
cultural features and recording the traits of different people. The four data sources
are: the Eurobarometer (EBM), containing opinions on science, technology and
various European policy issues of people in EU countries [38]; the General Social
Survey (GSS), containing opinions on a great variety of topics of people in the
US [39]; the Religious Landscape (RL), containing religious beliefs and attitudes
on certain political issues of people in the US [40]; Jester, containing online ratings
of jokes [41].

Fig. 1.2 suggests that the properties highlighted by the LTCD-STCB curves
are indeed universal. The 4 panels correspond to the 4 empirical data sets that
are used. In each panel, the 3 curves correspond to the 3 levels of preserving the
empirical information: full information (red), corresponding to the empirical SCV;
partial information (blue), corresponding to the shuffled SCV; no information
(black), corresponding to the random SCV. Note that, for every data set, the
empirical SCV allows for more compatibility between LTCD and STCB than the
shuffled SCV, which in turn allows for more compatibility than the random SCV.
Also note that the empirical LTCD-STCB correspondence is always close to the
second diagonal. These qualitative observations constitute the basis for the claim
of there being universal structural properties underlying empirical sets of cultural
vectors.

In relation to aspects discussed at the end of Sec. 1.2, the change of the LTCD-
STCB curve when going from the random to the shuffled and further to the
empirical CSV visible in Fig. 1.2 is related to the LTCD phase transition coming
closer to the STCB phase transition. As ω increases, for the random case, the
LTCD phase transition is almost over when the STCB phase transition begins, for
the shuffled case there is more overlap between the high-ω part of the former and
the low-ω part of the latter, while for the empirical case there is an almost perfect
overlap between the two. The empirical behavior is illustrated by Fig. 1.3: within
the ω ∈ [0.2, 0.4] interval, the decrease in LTCD is systematically accompanied
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Figure 1.2: The correspondence between long-term cultural diversity (LTCD) and
short-term collective behavior (STCB) for the empirical (red), shuffled (blue) and
random (black) sets of cultural vectors, for four data sets: Eurobarometer (EBM),
General Social Survey (GSS), Religious Landscape (RL) and Jester (JS). Error
bars denote standard deviations over multiple cultural dynamics runs. There are
N = 500 elements in each set of cultural vectors.
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Figure 1.3: The interplay between long-term cultural diversity and short-term
collective behavior for an empirical set of cultural vectors. Showing the LTDC(ω)
dependence (a), the STCB(ω) dependence (b) and the ω-induced LTDC-STCB
correspondence (c), for an empirical set of N = 500 cultural vectors, constructed
from the Eurobarometer (EBM) data set.
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Figure 1.4: The correspondence between long-term cultural diversity (LTCD)
and short-term collective behavior (STCB) for empirical and shuffled sets
of cultural vectors constructed from country-level and state-level samples of
Eurobarometer-nominal (EBMn) data (left) and Religious Landscape (RL) data
(right) respectively. There are N = 500 elements in each set of cultural vectors.
For visual clarity, error bars are omitted and the same colors are used for both
the empirical and shuffled cases, while the LTCD-STCB curve is also shown for
one random set of cultural vectors in each case.
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Figure 1.5: Distribution of feature-feature correlation ρ for the empirical (left)
and shuffled (right) versions of each of the four data sets (legend). Each histogram
is normalized such that its integral is equal to 1, after being initially filled with
F (F − 1)/2 entries, where F is the number of features in the respective data set,
each entry corresponding to one pair (k, l) of distinct features. For the normaliza-
tion, the integral multiplies the bin content with the bin width δρ (the same for
all histograms): the ordinate value of each bin is its relative frequency multiplied
by a factor of 1/δρ.

by an increase in STCB. If one accepts that real-world systems are favorable for
both LTCD and STCB and that the respective quantities used here are defined
in a sensible way, this reasoning suggests that real-world systems function close
to criticality, from the perspective of both measures: only at criticality or close
to it are both quantities allowed to attain non-vanishing values in the empirical
case. In order to stay away from criticality, the system would need to abandon
either the propensity towards LTCD or the propensity to STCB. This suggests,
as a speculation or conjecture, that the concept of self-organized criticality [42]
might actually play an important role in a complete theory of cultural dynamics.
If this is correct, then a complete theory of cultural dynamics should have no need
of fine-tuning the ω parameter.

Another important aspect is the robustness of the LTCD-STCB curves of
Fig. 1.2 when switching from one geographical region to another, which is illus-
trated here by Fig. 1.4. This is done by focusing on the two data sets which
allow for division of the sample in terms of geographical regions, namely the Eu-
robarometer and the Religious Landscape. Moreover, only the nominal-variable
information in the Eurobarometer is being used, for reducing the computational
time required to run the cultural dynamics model, as well as for illustrating the
robustness of the results with respect to the sample of cultural variables that are
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used. The empirical and shuffled LTCD-STCB curves are being shown for 5 EU
countries (left) and for 5 US states respectively (right). Only one random curve is
shown, because, for a specific data set, the country/state-level SCVs are defined
with respect to the same cultural space, which is fully determined by the types
and ranges of variables in the empirical data, which are the same regardless of the
sample of people. Note that, for both data sets, the empirical and shuffled curves
fall into clearly distinguishable bands. The empirical curves are systematically
above the shuffled ones, while being again close to the second diagonal. This
also suggests a geographical universality of the structural properties inherent in
empirical data.

When confronted with these results, one thinks of unavoidable similarities
between questions in the survey, which induce correlations between cultural fea-
tures. Since these correlations are destroyed by the shuffling procedure, it is
tempting to invoke them as an explanation for the discrepancy between an empir-
ical LTCD-STCB curve and its shuffled counterpart. However, there is no reason
to believe that such similarities are equally present in different empirical data
sets, or that they are similarly distributed among the pairs of questions in the
data set, since different data sets rely on completely different sets of variables.
In fact, the measured feature-feature correlations ρk,l, defined via Eq. (1.3) are
quite different across the four data sets used here. This is illustrated by Fig. 1.5,
which shows how the values of these correlations are distributed for the differ-
ent empirical SCVs (left), while also showing, for comparison, the distributions
for their shuffled counterparts (right), which, as expected, are strongly peaked
around 0 (the empirical and shuffled correlation matrices are shown in Figs. 1.6
and 1.7 of Appendix Sec. 1.B). The departure of the empirical distribution from
its shuffled counterpart is clearly different across data sets, whereas the departure
of the empirical LTCD-STCB curve from its shuffled counterpart is very similar
across data sets, as shown in Fig. 1.2. Moreover, feature-feature correlations are
typically small, given that any ρk,l can take values within the [−1, 1] interval.
These are indications that the properties captured by the LTCD-STCB plot are
not (or not exclusively) due to feature-feature correlations, and that additional
information destroyed by shuffling (including higher-order correlations) plays an
important role. Such considerations enforce the idea that the observed properties
are due to a more subtle, dynamical and universal mechanism.

1.5 Discussion

The findings above stem from analyzing conventional social survey data in an
unconventional way. Specifically, data from different sources is converted to em-
pirical cultural states obeying a unified format, which does not retain the meanings
of the questions in the survey, nor the meanings of their associated answers, but
just the frequency distribution of respondents in cultural space. The LTCD and
STCB quantities that are applied on the formatted data are also independent of
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the meanings of used variables and values, although highly sensitive to the dis-
tribution in cultural space. This “semantically-invariant” nature of the analysis
(invariance with respect to any relabeling of the cultural space that preserve all
distances) is what allows one to potentially uncover universal properties in the
structure of culture.

The results of the analysis suggest that there is something universal about how
real people are distributed in cultural space. Empirical cultural states seem to
induce a correspondence between LTCD and STCB that is highly robust across
data sets, while significantly and consistently different from those induced by
shuffled and random cultural states. If empirical cultural states are regarded
as partial snapshots of this dynamics, the supposedly universal behavior could
be seen as a consequence of general laws governing the dynamics of culture in
the real world. This rises the question of what these laws actually are: what is
the mechanism giving rise to distributions in cultural space that are compatible
with the above results. Answering this question might mean achieving a full
understanding of cultural dynamics. If one thinks in terms of snapshots of culture,
this is equivalent to finding a general theory of preference formation, which is a
fundamental challenge for the social sciences [43], with important implications
for properly understanding decision making and economic behavior [44, 45, 46].
It appears that an important role for such a theory should be played by social
influence, as its role in the aggregation of individual opinions and the formation
of collective opinions has been extensively studied [12, 47, 48]. However, most
of these studies focus on one-dimensional systems, while the empirical signatures
presented are extracted from data with high dimensionality.

From a theoretical perspective, bringing together multidimensional opinion
spaces and the notion of social influence is achieved by Axelrod-like models of
cultural dynamics. Initializing the Axelrod dynamics with a random cultural
state and studying the outcome goes along with understanding the type of struc-
ture that social influence can dynamically give rise to, assuming a structureless
initial state. If social influence alone is responsible for the structure observed
in empirical data, one would expect that an empirical cultural state is an inter-
mediate outcome of the Axelrod dynamics. Thus, applying this dynamics to an
empirical state would lead to an absorbing states that are statistically compatible
with those obtained by applying the same dynamics to random states. However,
the analysis presented here, whose LTCD quantity incorporates full simulations of
an Axelrod-like model, shows a clear and robust discrepancy between the random
and the empirical states. This suggests that social influence is not enough for ex-
plaining the generic empirical structure highlighted by the analysis. Nonetheless,
the Axelrod model used by the LTCD quantity is highly simplistic, disregarding
geographical space, social networks, influence of media and other aspects that are
present in the real world. Moreover, the empirical cultural vectors correspond to
individuals that are typically not interacting with each other directly in the real
world, while they do so in the Axelrod model. Checking whether such consider-
ations are sufficient for explaining the systematic discrepancies between random,
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shuffled and empirical cultural states is an interesting topic for further research.
It these are not sufficient, more exotic model ingredients should be considered,
such as cognitive processes [49] or logical constraints across cultural features [50].

Contrary to the reasoning above, one can argue that the difference between
the empirical and the shuffled regime of the LTCD-STCB analysis may simply
be due to the presence of feature-feature correlations, which in turn are sup-
posedly due to “design details” of the social survey, having to do with certain
questions being similar to each other. Consequently, there would be no need to
think about dynamical mechanisms responsible for the empirical structure. How-
ever, the a-priori expectation is that design-induced correlations are relatively
weak: collecting social survey data is expensive, so the survey should be designed
such that it captures as much as possible of the relevant degrees of freedom,
by minimizing the similarities among questions. Moreover, remaining similarities
should be specific to each data set, whereas the LTCD-STCB analysis gives highly
similar results for different data sets. To better illustrate this counterargument,
feature-feature correlations were measured in Sec. 1.4 and explicitly shown to be
specific to each social survey, which is compatible with the idea that they largely
depend on “design details” – see Appendix Sec. 1.B for more remarks along these
lines. In fact, feature-feature correlations can be seen as one of several manifesta-
tions of a non-uniform cultural space distribution, which is certainly also affected
by a-priori, survey-dependent similarities between features, but arguably not in
an essential way. It is also worth noting that one cannot say to what extent a
correlation between two features is caused by an a-priori similarity between the
two questions and to what extent it arises dynamically due to the combination
of processes taking place in the real world. One can even argue that trying to
disentangle the a-priori contribution is entirely meaningless, partly because the
questions themselves are formulated by humans who interact with each other and
with society.

Another aspect that this study pointed out is the strong dependence of social
influence cultural dynamics and its final outcome on the initial cultural state.
This is dependence becomes manifest in the analysis presented in Sec. 1.4 as the
systematic departure of the LTCD-STCB curve corresponding to empirical data
from those corresponding to the shuffled and random counterparts. confirming
and expanding the results of Refs. [23, 24]. The dependence on initial states is
rarely studied in the literature on cultural/opinion dynamics. A notable exception
is Ref. [51]: upon analysing the Metropolis dynamics of the Ising model using an
analytic technique developed in the context of opinion dynamics, a regime is found
that allows for several, qualitatively different equilibrium states to be reached, de-
pending on the initial configuration. It is also worth noting that, for studying the
Axelrod model, Ref. [37] is using a non-uniform distribution in cultural space for
randomly generating its initial states. Still, it is a distribution that can be factor-
ized as a product of Poisson, feature-level distributions, encoding no structure in
addition to that entailed by the feature-level non-uniformities. Refs. [23, 24] also
suggest that initial state dependence can be understood in terms of an ultrametric
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appearance of real cultural data, observation which Ref. [24] exploits for develop-
ing static models of cultural states characterised by a hierarchical organization in
cultural space. Although this line of reasoning has not been used here, it should
be further explored by future work.

Defining a (probabilistic) model of cultural states would be equivalent to speci-
fiying a cultural space distribution, the model being more realistic when the em-
pirical data is better representative of this distribution. Such future research is
further motivated by the robust behavior identified by this study, and by the ob-
servation that the three types of cultural states appear to roughly fall into three
equivalence classes, in terms of the shapes of the associated LTCD-STCB curves.
The purpose would be to design a model that generates artificial SCVs falling
under the empirical equivalence class. Once the model is in place an properly
tunned, the anlysis of SCVs can in principle be extended to regimes that are not
empirically accessible, due to limitations on F and N . This should allow for more
detailed, statistial physics work to be done in relation to the phase transitions
described in Sec. 1.3 and Sec. 1.4, such as finite-size scaling analysis and measure-
ment of critical exponents. One might also achieve a better understanding of the
extent to which the notion of self-organized criticality is important, by analysing
the distribution of cluster sizes in cultural space for interesting ω values. At
this point, this is highly speculative, based on the apparent complementarity be-
tween the LTCD and STCB transitions for empirical data, as well as on accepting
that real-world systems are favourable for both long-term cultural diversity and
short-term collective behavior. One can object by arguing that the shape of the
LTCD and STCB transitions are sensitive to the exact mix of ingredients going in
evaluating the two quantities – for instance, one can imagine using a more sophis-
ticated Axelrod-type mode for evaluating LTCD. However, in the manner used
here, LTCD and STCB are defined in a very similar, minimalistic way: adding
more ingredients, such as geographical space and social networks, should be done
in parallel for both quantities. It is plausible that additional ingredients would al-
ter the two transitions in the same way, such that the relationship between LTCD
and STCB is preserved.

1.6 Conclusion

This study is an additional step towards understanding the dependence of social-
influence cultural dynamics on the initial cultural state state. At the same time,
it provides insights about the structure inherent in empirical cultural data by
means of its effect on cultural dynamics, evaluated by the LTCD quantity, con-
ditional on its effect on shorter time-scale opinion dynamics, evaluated by the
STCB quantity. It turns out that the LTCD-STCB combination, together with
comparisons between empirical data and randomized counterparts, suggest the
existence of universal properties characterising how real people are distributed in
cultural space. These properties seem to be present in spite of the variabilities of
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the feature-feature correlation matrix across data sets. Further work is needed to
understand in more depth the nature and implications of these properties.

Appendices

1.A Empirical data formatting

This section explains various details concerning the formatting of empirical data.
As previously mentioned, four data sets were employed, each of which was col-
lected by different entities, for different purposes and in different formats. In
order for the analysis and modeling conducted here to be carried out consistently,
the important information had to be extracted from each data set and expressed
in one, unified format. Essentially, this format dictates that each data set has
to provide a certain number of ordinal features and a certain number of nominal
features, where each feature has a certain number of possible traits (the range q
of the feature), and that the traits of every individual in the data set are recorded
with respect to all these features. This unified format can be effectively thought
of as a table of traits, where the rows correspond to the features and the columns
correspond to the individuals. There are various challenges involved when con-
verting the data into this format. It is worth explaining first the challenges that
are more generic, relevant for several data sets and scond the challenges specific
to each data set.

One of the difficulties consists in deciding, for each variable, whether it should
be used as cultural feature or not. The following is a (not entirely exhaustive) list
of types of variables which are worth mentioning in this regard:

• demographic variables, such as those encoding “age”, “place of residence”
or “ethnicity” are discarded, as they do not record subjective human traits;

• certain variables, that were not seen as demographic variables by the survey
authors, are also discarded if they recorded information about something
that is too much in the respondent’s past, or about something that can-
not be easily related to subjective preferences, opinion, values, beliefs or
behavioral tendencies that can be conceivably altered via social influence
in a reasonably easy way; often, the boundary between what is subjective
and what is objective not clear; nonetheless, one can strive to make these
decision consistently at the level of every data set, which is what was done
here;

• there are questions that ask opinions with respect to something that is
differently defined for different people in the survey, such as: “how satisfied
you are about how the the economy of this country is going recently?” – if
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there are people from different countries in the data set, or “how satisfied
you are with your life?”; these questions are also discarded;

• questions asking the respondent to self-evaluate a certain, personal trait,
such as “would you say about yourself that you are more conservatory or lib-
eral on political affairs”, are retained, assuming that the respondent mostly
self-evaluates, in a reasonably objective way, a personal (subjective) trait,
rather than expressing a subjective opinion about the personal trait;

• certain variables containing relevant information are also discarded if, due
to the survey format, they can only be answered when certain answers are
given to other variables, or if the set of possible answers explicitly depends
on answers given to other questions, regardless of whether these ”other”
variables themselves are selected or not; including such variables would in-
troduce inconsistencies in the encoding of cultural vectors, the definition of
cultural distance and the shuffling and randomization procedures.

The variables that are retained for further analysis need to be encoded ei-
ther as nominal or ordinal cultural features. Deciding between the two encoding
options was done here using the following criterion: if there are more than two
possible answers that are not “neutral” (see next paragraph) and they can all be
conceivably ordered along the real axis, then the variable is encoded as ordinal;
if, instead, there are only two answers (typically “Yes” and “No”) in addition to
the neutral ones, or if the non-neutral answers cannot be ordered along the real
axis in a consistent way, then the variable is encoded as nominal.

Most variables retained from the data sets also allow for one or more “neutral”
answers (often called “missing values” in social science research, although this
term usually is somewhat more general). These are usually labeled as “Don’t
know”, “Refused” or “Not Answered”. For further analysis, these neutral answers
are merged (if more than one are present). If the variable is to be encoded as
nominal, neutral answers are mapped to one, additional cultural trait, side-by-side
with traits originating from non-neutral answers. If the variable is to be encoded
as ordinal, they are mapped to the middle of the ordinal scale – if there is an
even number of possible answers, for each person, the choice is randomly made
between the two answers closest to the middle of the scale.

Note that some data sets (GSS and EBM below) formally allow for another
type of answer, labeled as “IAP” or “INAP” (inapplicable), which is here regarded
as separate from neutral answers (although in social science research they are often
all placed under the “missing values” umbrella term). IAP values are recorded,
for certain respondents, when answers to a specific question are not expected from
those respondents, for reasons having to do with the design of the survey. This
happens for question that are only asked conditionally on answers given before.
However, as mentioned above, these conditional variables are anyway discarded.
Similarly, IAP values are also recorded for questions that are only asked to a
certain sub-sample of the people, although not being conditional on some other
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question, in which case those questions are either removed or, if the sub-sample
is large enough, the formatting is restricted to it. Finally, IAP values are also
recorded for split-ballot or split-form variables (see GSS and EBM explanations
below), in which case specific procedures are followed, which effectively discard all
IAP answers before further analysis. Thus, regardless of how exactly they occur,
one does not need to map IAP answers to any trait, as they are all filtered out as
a consequence of other formatting rules. Note that for the RL data set, although
IAP answers are not explicitly mentioned anywhere, this could have been the
case, since there are questions that are conditionally asked on other questions
– instead of IAP answers, system-missing values are present in the SPSS file,
typically marked by the “.” dot character.

First, this study made use of the Jester 2 (JS) data set [41], which consists
of online ratings of jokes collected between November 2006 and May 2009. There
are around 1.7 million continuous ratings (on a scale from -10.00 to +10.00) of 150
jokes from 59,132 users. For most users however, of the 150 jokes, only 128 are
provided as items to be rated, as the other 22 were eliminated at a certain point
in time. For this study, each of the 128 items is converted into an ordinal feature
with 7 traits (by splitting the [−10, 10] interval into 7 bins of equal size, while
assuming that everything falling within one bin constitutes the same answer).
Moreover, only the 2916 users that had rated all items were retained for further
analysis – although this introduces some bias in the sample, one can argue that
it is desirable to focus on individuals that have rated everything, as this is an
indication of commitment on the respondent’s side.

Second, the research used the Religious Landscape (RL) data set [40],
which consists of opinions and attitudes on various religious topics, but also on
various political an social issues. These data were collected in 2007 via telephone
interviews from all states of USA – this study only used the data obtained from
the continental part of the USA (without Hawaii and Alaska). There are multiple
questions asking about the religious affiliation of respondents, which were all
discarded. This is partly based on the assumption that religious affiliation is
closer to a demographic variable than to a feature that can be easily altered
via social influence, partly based on the very large number of answers and the
nested, hierarchical nature of how they are organized. For this study, 36 cultural
features were constructed (18 nominal and 18 are ordinal), for a number of 35558
respondents.

Third, the research used the Eurobarometer 38.1 (EBM) data set [38],
which consists of opinions on science, technology, environment and various EU
political issues (mainly related to the open market and the economy). The data
were collected during November 1992, from 12 countries of the EU, via face-to-
face interviews. In this survey, there are several blocks of “coupled” variables
which are all discarded: within each block, there are explicit internal constraints
on how answers can be given (such as answering “yes” to at most 3 questions out
of 8 that are available), which do not allow for a consistent encoding as a set of
nominal or ordinal features.
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Another challenge when formatting the EBM data set is posed by the split-
ballot procedure: the sample of people is split into 2 ballots, and certain questions
are asked in slightly different versions (small differences in formulation, answers
listed in different orders etc.) to the two ballots, while both versions are present
in the SPSS file for all individuals – for every respondent, an IAP answer is
recorded for the version that is not used for that respondent. The most mean-
ingful approach is to merge the two versions and eliminate all IAP answers – if
both versions are kept, strong structural artifacts arise in the matrix of cultural
distances [24]. Most of the split ballot variables are encoded as ordinal and have
the same range (same number of non-neutral answers) in both versions, such that
a one-to-one correspondence can be made, similarly to Ref. [24]. Some of them
are still ordinal but have different ranges in the two versions. In all these cases,
there is a difference of only one trait among the two versions, such that one range
is an even number while the other is odd. In this case, the odd version is kept
for the merging, which guarantees the existence of a middle trait to which all
neutral answers can be directly assigned. The non-neutral answers from the even
version are mapped to the closest answers in the odd version, in terms of the
distance from the lowest-value answer, assuming that the distance between the
lowest-value and highest-value answers is the same in the two versions (consistent
with the definition of cultural distance in Eq. (1.1)). There is one split ballot
variable which is encoded as nominal, in which case the difference consists in a
second question being asked for one of the ballots, which is simply discarded.
After all the formatting, 144 cultural features are constructed from this data set
(54 nominal and 90 ordinal), for a number of 13026 respondents.

Fourth, the study used the General Social Survey (GSS) data [39], col-
lected during 1993 in the USA via face-to-face interviews. The overall scheme of
how questions are asked to respondents is arguably more complicated than for the
EBM data set. First, there is a split-form procedure involved, which is equivalent
to what is called “split-ballot” in the case of EBM: the respondents are split into
two groups, with certain questions being asked in two, slightly different versions.
All these questions are ordinal and have the same ranges in the two forms; they
are handled like in the case of EBM. Independently of the split-form procedure,
there is another procedure called “split-ballot”, which is methodologically some-
what different: the sample of respondents is split in 3 ballots (A,B,C), while some
questions are only asked to 2 of the 3 ballots (A and B, B and C or A and C).
This is handled by discarding the questions asked to only 2 of the 3 ballots. Inde-
pendently of the split-ballot and split-form procedures, there is a set of questions,
also used within the International Social Survey Program (ISSP), which are not
asked to a small fraction of respondents (49 out of 1608 respondents). This is
handled by discarding the 49 people not exposed to the ISSP questions. All in
all, 133 cultural features are constructed from the GSS data (8 nominal and 125
ordinal), for a number of 1559 respondents.
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Figure 1.6: Matrix of feature-feature correlations in empirical sets of N = 500
cultural vectors obtained from the four sources: Eurobarometer (EBM), Religious
Landscape (RL), Jester (JS) and General Social Survey (GSS). Each grid point
shows the correlation ρk,l between cultural features k and l.

1.B Feature-feature correlations

This section illustrates in detail the correlations between cultural features, com-
puted according to Eq. (1.3). The feature-feature correlation matrices of the four
empirical SCVs are shown in Fig. 1.6, while those of the four shuffled counter-
parts are shown in Fig. 1.7. The ordering or rows and columns is consistent
with the actual ordering of questions in the four data sets. This leads to a par-
tial block-diagonal aspect of the matrices associated to the Eurobarometer and
Religious Landscape data sets, for which questions that deal with similar topics
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Figure 1.7: Matrix of feature-feature correlations in shuffled sets of N = 500 cul-
tural vectors corresponding to the four empirical sources: Eurobarometer (EBM),
Religious Landscape (RL), Jester (JS) and General Social Survey (GSS). Each grid
point shows the correlation ρk,l between cultural features k and l.
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tend to appear next to each other. Note that, empirical correlations rarely show
strong deviations from their shuffled counterparts. Interestingly, the largest level
of correlation is visible for the Jester (JS) data set, which is certainly the least
expensive to collect, since respondents provide their answers online, via an auto-
mated platform. Moreover, the second-largest level of correlation is present in the
Religious Landscape (RL) data set, which is arguably the second-least expensive
to collect, since it relies on telephone interviews, while the other two data sets
rely on face-to-face interviews. This is supports the idea that such correlations
are survey specific, that they tend to be minimized by survey design and that they
are not responsible for the generic structural properties identified by this study.
There is a clear discrepancy between the Eurobarometer correlation matrix shown
here and that shown in the Supplementary Information of Ref. [23]. However, the
current study used a different, much more rigorous procedure of formatting the
empirical data.
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[51] Serge Galam and André C. R. Martins. Two-dimensional ising transition
through a technique from two-state opinion-dynamics models. Phys. Rev. E,
91:012108, Jan 2015.

35



1.2 Bibliography

36



Chapter 2

Evidence for mixed
rationalities in preference
formation

Understanding the mechanisms underlying the formation of cultural traits is an
open challenge. This is intimately connected to cultural dynamics, which has been
the focus of a variety of quantitative models. Recent studies have emphasized the
importance of connecting those models to empirically accessible snapshots of cul-
tural dynamics. In particular, it has been suggested that empirical cultural states,
which differ systematically from randomized counterparts, exhibit properties that
are universally present. Hence, a question about the mechanism responsible for
the observed patterns naturally arises. This study proposes a stochastic structural
model for generating cultural states that retain those robust empirical properties.
One ingredient of the model assumes that every individual’s set of traits is partly
dictated by one of several universal “rationalities,” informally postulated by sev-
eral social science theories. The second, new ingredient assumes that, apart from
a dominant rationality, each individual also has a certain exposure to the other
rationalities. It is shown that both ingredients are required for reproducing the
empirical regularities. This suggests that the effects of cultural dynamics in the
real world can be described as an interplay of multiple, mixing rationalities, pro-
viding indirect evidence for the class of social science theories postulating such
a mixing. The model should be seen as a static, effective description of culture,
while a dynamical, more fundamental description is left for future research.

This chapter is based on the following scientific article:
A. I. Băbeanu and D. Garlaschelli, Complexity, Article ID 3615474 (2018).
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2.1 Introduction

A solid theoretical understanding of how preferences form is currently lacking.
There is little doubt that preferences, opinions, values and beliefs, which are
generically referred to as “cultural traits”, are dynamical entities, and that inter-
personal social influence plays an important role in driving their dynamics, among
other factors. Moreover, a complete theoretical understanding should account for
the fact that the dynamics of traits takes place in parallel along multiple dimen-
sions, namely that opinions and preferences can develop in relation to multiple
topics or aspects of life. Along these lines, various dynamical models been devel-
oped and studied [1], such as the Axelrod model [2], which is very representative
for studies of multidimensional dynamics, commonly referred to as “cultural dy-
namics”, in contrast to studies of unidimensional dynamics, commonly referred
to as “opinion dynamics”. Various studies of cultural dynamics extending the
Axelrod model can be found in the literature [3, 4, 5, 6, 7, 8, 9, 10, 11]. Re-
cent studies [12, 13, 14] (Chap. 1) have shown that models of cultural dynamics
are sensitive to the initial conditions, namely to how the initial vectors of agents’
traits are chosen: initial cultural states constructed from empirical data show sys-
tematic deviations from their shuffled and random counterparts. In fact, Ref. [14]
(Chap. 1) argues that such deviations point towards universal structural proper-
ties inherent in empirical cultural states. More insights about the formation of
cultural traits should be achievable by studying these states, since they can be
regarded as partial snapshots of cultural dynamics in the real world.

The universal properties mentioned above are expressed in terms of the effects
the empirical cultural state has on social influence models whose initial condi-
tions are specified by this state – here, a “cultural state” is a set of cultural
vectors (SCV), where each cultural vector encodes the sequence of cultural traits
associated to one agent in the model. On one hand, an Axelrod-type model [2]
of (multi-dimensional) cultural dynamics is used to evaluate the propensity of
the cultural state to long-term cultural diversity (LTCD). On the other hand, a
Count-Bouchaud-type model [15] of (one-dimensional) opinion dynamics is used
to evaluate the propensity of the cultural state to short-term collective behavior
(STCB). Both measures are functions of a common parameter ω, controlling for
the range of social influence in cultural space, which allows for an LTCD-STCB
correspondence to be drawn for a given cultural state. It turns out that an em-
pirical cultural state generally induces an LTCD-STCB curve that is close to the
second diagonal (LTCD(ω) ≈ 1 − STCB(ω),∀ω), while exhibiting, for a given
STCB value, higher LTCD values than a trait-shuffled cultural state, which in
turn exhibits higher LTCD values than a randomly generated counterpart [12, 14]
(also see Chap 1). These results seem universal [14] (Chap. 1), namely inde-
pendent of the data set used for constructing the cultural vectors composing the
empirical cultural state, suggesting that real-world cultural dynamics is governed
by universal laws. Moreover, as argued in Ref. [14] (Chap. 1), this type of anal-
ysis suggests that inter-agent social influence, the essential ingredient of cultural
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dynamics models, is insufficient for explaining the observed structure. Although
it is meaningful to incorporate additional ingredients into social influence models,
while attempting to give rise to empirical-like structure in a dynamical setting,
this study does not aim for that. Instead, it aims at providing an effective, phe-
nomenological, static description of the observed structure, which should provide
additional insights before developing a more fundamental, dynamical description.

The purpose of this study is to develop a structural stochastic model that
would generate realistic cultural states, while incorporating plausible ingredients
from social science. Specifically, these states should retain the universal properties
inherent to empirical cultural states that are observed in Ref. [14] (Chap. 1). In
fact, Ref. [13] has already investigated various ways of generating sets of cultural
vectors in random, but non-uniform ways. A method that appeared particularly
promising relied on the notion of “cultural prototypes”: a few underlying, abstract
sequences of logically compatible, self-enforcing cultural traits, which govern the
way the generated vectors are distributed in cultural space. According to the
method, each cultural vector is partly a copy of one of the prototypes and partly
random. The implicit claim is that each cultural prototype is induced by one of a
few (3 to 5) fundamental and universal “principles of social life”, or “rationalities”,
that would strongly affect any process of trait formation in any social system. Such
entities are postulated, under different names and in slightly different numbers,
by several theoretical frameworks in social science [16, 17, 18, 19, 20]. The exact
number of such entities depends on the exact theory that is considered, as different
theories are built on somewhat different arguments and pieces of evidence. It is
important that the number is larger than 1 but not too large, while independent
of system size. From a natural science perspective, such ideas are attractive,
since they exhibit a certain reductionist tendency of trying to understand the
observed socio-cultural variability in terms of combinations of a few, elementary
and universal building blocks. Various parallels and similarities between these
theories are discussed in the literature [21, 22, 23]. For the purpose of the current
study, all these theories are equivalent. Still, for creating an instructive and
compact context, the discussion is restricted to one of them, namely to Plural
Rationality Theory, chosen for reasons discussed in Sec. 2.5.

Plural Rationality Theory (PRT), also referred to as “(Grid-Group) Cultural
Theory” [16], is a qualitative description of socio-cultural structure and dynamics
as an interplay between a small number of irreducible “ways of life”, or “rationali-
ties”. These ways of life are understood as abstract, “elementary building blocks”
of societies and are supposedly recognizable regardless of the geographical context,
of the historical context or of the scale of the system that is studied. It is believed
that the ways of life go along with different perceptions of risk [24, 25] and, inter-
estingly, that they always coexist, although either of them is often dominant for
a given period of time, for a given (part of) the system that one studies1. Such

1It may be useful to think of the ways of life as being the elements of a complete, orthogonal
basis of some abstract vector space. One may then associate a vector in this space to a certain
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ideas appear compatible with recent empirical findings concerning the existence
of a small number of behavioural phenotypes in dyadic games [26]. In PRT, each
way of life is understood as a self-enforcing combination of a “pattern of (social)
relations” and a “cultural bias”. On one hand, a pattern of relations is often
understood as a tendency of organizing the social ties between people in a certain
way, thus a connectivity pattern in the social graph. On the other hand, a cultural
bias is a combination of preferences, opinions, values and beliefs that are compat-
ible with each other and with the associated pattern of relations. By comparison
to the definitions in Ref. [14] (Chap. 1), one can easily realize that a cultural bias
can be thought of as a point or a region in “cultural space” that is representative
for the respective “way of life”. A cultural bias is formally represented here by
the notion of “cultural prototype”, previously used in Ref. [13].

This notion is at the core of two stochastic, structural models of culture that
are defined and studied here. The first model, called “Prototype Generation”
(PG), postulates that each cultural vector is partly a copy of one of the k proto-
types and partly random. This generation method is similar to the “Prototype
Evolution” method of Ref. [13], although with small technical differences. The
second model, called “Mixed Prototype Generation” (MPG), postulates that each
cultural vector is an asymmetric mixture (or combination) of all the prototypes.
From the perspective of PRT, this “mixing” is a formal realization of the idea that
every person combines the ways of life in a unique way, such that preferences and
opinions related to different aspects of life – cultural traits of different cultural
features (or variables) – are due to the “influence” of different cultural biases,
though at any given moment in time one cultural bias is usually dominating. In
the literature concerned with PRT and the other, similar, theories, this mixing as-
pect often goes under the name of “the multiple self”, and was not implemented
in Ref. [13]. The importance of mixing for correctly interpreting (and testing)
PRT has been already stressed on [25], while the general importance of multiple
selves for social science has also been extensively discussed [27]. Moreover, re-
search on preferences in economic contexts also suggests that the multiple self is
important [28, 29, 30]. On the other hand, research in cross-cultural psychology
appears to be divided: some studies seem to ignore the multiple self [31], while
others seem to acknowledge it [32, 33]. This study provides further insights on
this matter, by directly comparing the PG and MPG models with each other and
with empirical data,

Sec. 2.2 explains the models in detail, while Sec. 2.3 describes how the free pa-
rameters are tuned, as to reproduce some lower-order properties of one empirical
cultural state. Cultural states generated with the two models are then evaluated,
in Sec. 2.4, by means of the LTCD-STCB analysis of Refs. [12, 14] (Chap. 1).
It is shown that cultural states generated by PG are structurally dissimilar to

part of a certain socio-cultural system, at a given moment in time. It is not clear to what
extent such vectors would be related to the cultural vectors used in this study. This is only
a semi-formal analogy that is not exploited further here, nor in any other study so far, to the
extent that the authors are aware of.
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the empirical ones, as they do not exhibit the universal LTCD-STCB behavior,
after tuning the free parameters to empirical data in terms of simpler, but mean-
ingful quantities. On the other hand, cultural states generated with MPG are
structurally similar to the empirical ones, as they reproduce the universal LTCD-
STCB behavior, after applying an analogous tuning procedure. This suggests that
the mixing, multiple self ingredient is crucial for describing the effects of prefer-
ence formation in terms of cultural prototypes, and that MPG should be regarded
as the successful model. Sec. 2.5 further discusses the results, their limitations,
as well as extensions of this work and questions that are worth investigating in
the future. The manuscript is concluded in Sec. 2.6.

2.2 Model description

This section describes the two stochastic models of culture: the Prototype Gener-
ation (PG) model and the Mixed Prototype Generation (MPG) model, which are
used below for generating sets of cultural vectors (SCVs) that can be quantita-
tively studied with the LTCD-STCB tool, previously applied to empirical SCVs
in Refs. [12, 14] (Chap. 1). Both models rely on the concept of cultural prototype
introduced above.

An SCV can be visualized as a table of cultural traits, where the columns
correspond to cultural vectors (or sequences) and the rows correspond to cul-
tural features (or variables). If the SCV is constructed from empirical data, the
columns correspond to real people that are sampled by a social survey, while the
rows correspond to questions that are asked in the social survey. This is illus-
trated by Fig. 2.1, which is explained in detail below. Consistently with Ref. [14]
(Chap. 1), a “cultural space” is the set of all possible cultural vectors (or combi-
nations of traits) allowed by the given set of cultural features: one combination of
traits is one point in this discrete space. For the purpose of this work, the general
set-up is restricted to cultural spaces defined in terms of features that are exclu-
sively nominal. In this setting, distances between points in the cultural space are
given by Eq. (2.5) of Sec. 2.3. Disregarding ordinal features makes the modeling
paradigm compatible with the (arguably strong) assumption that one prototype
corresponds to one point in cultural space, meaning that a prototype picks up one
and only one trait of any given feature. Other limitations of this assumptions are
extensively discussed in Sec. 2.5, together with possible ways of relaxing it, for
the purpose of generalizing the current modeling paradigm in future work.

The two models are schematically illustrated in Fig. 2.1. The figure first shows
a sketch of an empirical SCV, where the rows correspond to cultural features, the
columns correspond to cultural vectors and the letters correspond to cultural traits
– the n’th row shows the traits of the N agents that are expressed (or formulated)
with respect to the n’th feature. Then, it shows a set of 3 cultural prototypes
(their number could have been different), in 3 different colors, all of them spanning
over all features (or questions) relevant for the empirical set of vectors. Finally,
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Figure 2.1: Schematic illustration of the two stochastic models, showing (from left
to right): an empirical SCV with N vectors (x1 to xN ) and F nominal variables
(Q1 to QF ); a set of k = 3 cultural prototypes for the same F variables; a SCV
with N vectors generated, from the prototypes, using the PG model; a SCV with
N vectors generated, from the same prototypes, using the MPG model. For the
PG and MPG sketches, red, green and blue denote the copies of cultural traits
from one of the first, second and third prototype respectively, while black denotes
the explicitly random generation of traits.

it illustrates a typical set of vectors generated using the PG method, followed
by one generated using the MPG method. The colors distinguish between the
prototypes, while indicating how the traits are copied from the prototypes to the
cultural vectors, while black denotes traits that generated in an explicitly random
way (uniform distribution, independently of the prototypes).

There are several things worth noting in relation to Fig. 2.1. First, the pos-
sibility that two or more prototypes pick the same trait for a certain feature is
allowed by the current modeling paradigm (note that any of the traits that can be
copied from one of the prototypes can also be generated via explicit randomness).
This is essential for controlling the average prototype-prototype distance, as will
become apparent below. Second, a PG vector is partly copied from one prototype
and partly generated in an explicitly random way, while a MPG vector is a mix-
ture of copies from all the prototypes, with one dominating prototype and with
few traits generated in an explicitly random way. Third, both models make use of
another type of randomness, in addition to the explicitly random trait generation
and to the randomness involved in generating the prototypes. This randomness
has to do with assigning every trait of every vector to a “prototype of origin”, once
the random generation fraction and the influence fractions of the prototypes are
specified. In the case of MPG, it is mainly this trait-assignment randomness that
allows for the generation of a multitude of distinct cultural vectors from a small
set of fixed prototypes, in the presence of little explicitly random trait generation.

The procedure for generating the cultural prototypes is the same for both the
PG and the MPG models. One needs to specify the number of prototypes k, as
well as the value of another parameter α ∈ (0, 1), which controls for the expected
cultural distance between the prototypes. This parameter governs the expected
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number of overlaps (or coincidences) between prototypes in terms of how they are
distributed over the traits of a specific feature. In the extreme case of α → 1,
all prototypes pick the same trait for every feature, yielding the smallest possible
separation between the prototypes in cultural space (which coincides with the
minimum of 0 allowed by the cultural distance definition in Eq. (2.5)). In the
other extreme case of α → 0, the prototypes are distributed as uniformly as
possible over the traits of every feature, yielding the largest possible separation
between the prototypes in cultural space (which only coincides with the maximum
of 1 allowed by Eq. (2.5) if the number of traits q is larger or equal to the number
of prototypes k for every feature). This is achieved by a formulation in terms of
the set of integer partitions Iqk describing the possible ways of distributing the
k prototypes over the q traits of a certain feature. The α parameter actually
controls the probability distribution over the set Iqk , via the “compactness” of the
integer partitions in this set. Sec. 2.A.2 precisely describes how these probabilities
are assigned and how the set Iqk is computationally generated in the first place,
for any combination of k and q. Once the prototypes are chosen, everything else
is conditional on them, for both models.

According to the Prototype Generation (PG) model, each cultural vector
is a partial realization of one of the prototypes. Each of the N cultural vectors is
generated by copying a random sequence of traits from one of the k prototypes,
while generating the other traits in a uniformly random way – choosing the pro-
totype is done randomly for every vector. Then, a subset of the F features of
length round(β · F ) is randomly and independently selected for each vector and
the traits of these features are copied from the prototype to the vector. Here,
“round” returns the integer that is closest to its argument, while β ∈ [0, 1] is a
third model parameter, in addition to k and α (which are already needed for the
purpose of specifying the prototypes, in the manner described above). The β pa-
rameter specifies the fraction of traits that are directly copied from the prototype,
thus controlling for the expected distance between a vector and its prototype. The
traits for the remaining features are generated randomly and independently, ac-
cording to uniform feature-level probability distributions – the explicit random
generation mentioned above. Thus, β also controls for the amount of explicitly
random generation of traits. The PG method effectively specifies that there are k
“classes” of cultural vectors and those of a certain class are located at a certain,
β-controlled average distance from the associated cultural prototype. This is sim-
ilar to the “Prototype Evolution” method of Ref. [13], although there are small
differences in how exactly the vectors are generated in the two cases. Moreover,
the method of Ref. [13] did not allow for controlling the expected cultural distance
between the prototypes.

According to the Mixed Prototype Generation (MPG) model, each cul-
tural vector is a combination of all prototypes, although an unbalanced combina-
tion, meaning that the numbers of traits copied from the different prototypes are
deliberately unequal. The extent of this discrepancy is explicitly controlled via
the third model parameter, which, like for PG, is called β. Although the exact
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definition and usage of the β ∈ (0, 1) parameter is different in MPG than in PG, its
role is quite similar. Specifically, also in the context of MPG, β (indirectly) con-
trols for the fraction of traits copied from the dominating prototype to the vector:
more traits are copied from the dominating prototype if the discrepancy between
the prototypes is higher. In addition to traits copied from the prototypes, there
are traits that are generated in an explicitly random way, but in a small number.
For each generated vector, this number is by construction not higher than the
number of traits copied from the lowest-contributing prototype. Consequently, if
there are k prototypes, the number of traits generated via explicit randomness
does not exceed F/(k+ 1). Thus, 1/(k+ 1) is an upper bound for the fraction of
explicit randomness in an entire set of cultural vectors generated with MPG. It is
also important to note that, like for PG, this fraction is controlled by β and that
the upper bound is reached when β is in the limit of minimal imbalance. The
limited usage of explicitly random trait generation by MPG means that cultural
vectors are more strongly constrained by the prototypes, compared to PG. Still,
MPG allows for generating a large variety of possible cultural vectors, since the
k prototypes can mix in many different ways.

The MPG model needs a procedure of specifying, for each generated vector,
the k values of the numbers of traits that are to be copied from the k proto-
types, along with the number associated to explicitly random generation. These
k + 1 positive, integer numbers should add up to F and have their discrepancy
controlled by the β parameter. Moreover, there is no reason to believe that the
sequence of numbers associated to one β value should be the same across all
generated vectors, so randomness should be involved in choosing these numbers.
Therefore, the model needs a probabilistic way of drawing k+ 1 random, positive
integers {t1(β), .., tk+1(β)} satisfying

∑k+1
l=1 tl(β) = F , such that their expected

discrepancy is controlled via a single parameter β. The procedure chosen for this
purpose is described below.

This procedure heavily relies on isometrically mapping the discrete {0, 1, .., F}
set of integers to the [0, 1] interval of the real axis. For each generated vector, the
latter interval is split into k+1 parts, by performing “cuts” in k randomly chosen
points. In this manner, a sequence of k + 1 preliminary weights {W1, ...,Wk+1},
subject to

∑k+1
l=1 Wl = 1 is numerically obtained. These weights are obviously

independent of β and have a fixed expected discrepancy. A β-dependent transfor-
mation (explained below) is applied on the preliminary weights {W1, ...,Wk+1},
thus providing a sequence of β-dependent weights {w1(β), ..., wk+1(β)} satis-

fying
∑k+1
l=1 wl(β) = 1, with expected discrepancy controlled by β. Finally,

the sequence of β-dependent weights is converted back to the desired sequence
{t1(β), .., tk+1(β)}. This final operation is non-trivial, requiring a self-consistent,
joint rounding procedure, which is generally difficult to choose, since one cannot
generally ensure that wl = round(tl/F ),∀l – a non-trivial problem of weight dis-
cretization. Here, a simple, pragmatic choice is made: converting the lowest k
weights to the closest, lower integer, while converting the highest weight to the
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integer needed for satisfying the summation constraint – this ensures that the
highest weight, which should correspond to the dominating prototype, is con-
verted to the highest integer.

The only aspect of MPG remaining to be explained is how the β-dependent
weights {w1(β), ..., wk+1(β)} are obtained from the preliminary weights. This is
done by raising the latter to a common power p(β) and then normalizing:

wl(β) =
(Wl)

p(β)∑k+1
l′=1(Wl′)p(β)

, (2.1)

where the common power p(β) ∈ (0,+∞) controls for the average discrepancy
between these weights and maps to β ∈ (0, 1) via:

p(β) = tan
(
β
π

2

)
, (2.2)

where the tangent is a convenient choice of a smooth, continuous function, with
the appropriate domain and range. Thus, a value β > 0.5 implies a value p > 1
and a higher discrepancy of {wp1 , ..., w

p
k+1} than that of {W1, ...,Wk+1}, while a

value β < 0.5 implies a value p < 1 and a lower discrepancy of {wp1 , ..., w
p
k+1}

than that of {W1, ...,Wk+1}.
Before describing the fitting and the outcomes of the PG and MPG models, it

is worth summarizing a few important aspects. Both models rely on the notion of
cultural prototypes, which is currently formalized in a simplistic manner, which is
only sensible for cultural spaces defined exclusively in terms of nominal features.
The procedure for generating the prototypes is the same for both models and
relies on two parameters, k and α, which specify, respectively, the number of
prototypes and the expected distance between them. The differences between PG
and MPG consist in how the cultural vectors are generated conditionally on the
prototypes: for PG, every vector is in part a copy from one of the prototypes
and in part explicitly random; for MPG, every vector is an imbalanced mixture
of all prototypes and explicitly random to a much lower extent, which is how
the “multiple-self” ingredient is implemented. Nonetheless, in both cases, there
is a third model parameter, β, which governs, in different ways, the lengths of
the randomly selected subsets of features whose traits that are copied from the
prototypes. In both cases, β effectively controls for the expected distance between
a vector and its (dominating) prototype, as well as for the fraction of explicit
randomness.

2.3 Model fitting

Before applying the LTCD-STCB analysis on SCVs generated with either the
PG or MPG models, it is useful to somehow constrain some of the free model
parameters. This is done in terms of statistical quantities simpler than the LTCD
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and the STCB measures, that can be evaluated on both empirical SCVs and on
the model SCVs. On the empirical side, the quantities are averaged over several,
empirical SCVs constructed by randomly selecting N = 500 cultural vectors from
the 13000 available ones in Eurobarometer data set [34], while restricting to the
nominal features – let “(EBMn)” stand for the nominal part of the Eurobarometer
data set. The empirical data is formatted according to the procedure explained in
Ref. [14] (Chap. 1). On the model side, these quantities are averaged over many
SCVs, of the same size N , that are realizable in the cultural space of (EBMn), for
the given combination of parameters – the prototypes are independently generated
upon creating every model SCV.

The two simple quantities in terms of which the models are tuned to empirical
data are the average and the standard deviation of the inter-vector distances in
the SCV, which are here denoted by “AIVD” and “SIVD” respectively:

AIVD =
2

N(N − 1)

∑
i<j

dij , (2.3)

SIVD =

√
2

N(N − 1)

∑
i<j

(dij −AIVD)2, (2.4)

where N is the number of cultural vectors and dij is the cultural distance, as
defined and used in Refs. [14, 13, 12] (and Chap. 1). The notation i < j denotes
that the respective summation is carried out over all distinct pairs (i, j). In the
case of a fully-nominal cultural space, with which this study is dealing, dij reduces
to the Hamming distance between the two sequences of symbols encoding cultural
vectors i and j:

dij = 1− 1

F

F∑
l=1

δ(xli, x
l
j) =

1

F

F∑
l=1

dlij , (2.5)

with, dij taking values within the [0, 1] interval. Here, l iterates over the F nom-
inal features, xli, x

l
j are the traits of vectors i and j with respect to feature l and

δ stands for the Kroneker-Delta function. The second equality shows that the
cultural distance can be expressed as an average over feature-level contributions,
which becomes useful below. Previous work has shown that an empirical SCV is
characterized by a lower AIVD than its random counterpart and a higher SIVD
than both its random and shuffled counterparts [12, 13]. The AIVD and SIVD
quantities, which incorporate pairwise distance information, are conceptually dif-
ferent than what is often used in the context of cultural dynamics and of the
Axelrod model, namely the size of the largest connected component, which can
be regarded as an overall measure of similarity. Instead, the latter is somewhat
similar to the STCB quantity explained and used in Sec. 2.4.

It is instructive to see that the expressions of AIVD and SIVD can be rewritten
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in the following way:

AIVD =
1

F

F∑
l=1

2

N(N − 1)

∑
i<j

dlij , (2.6)

SIVD =

√√√√√ 1

F 2

F∑
l,l′=1

 2

N(N − 1)

∑
i<j

dlijd
l′
ij −

4

N2(N − 1)2

∑
i<j

dlij
∑
i′<j′

dl
′
i′j′

, (2.7)

by using a feature-level cultural distance dlij introduced via Eq. (2.5) – the tran-
sition from (2.4) to (2.7) was suggested by the SI of Ref [12].

Note that the AIVD can be understood as an average over feature-level AIVD
contributions, which are represented by the expression within the l-summation of
Eq. (2.6). It can be checked that the (nominal) feature-level AIVD contribution
is a measure of how uniformly the N vectors are distributed over the possible
traits of that feature. This is more obvious when expressing the expected value
of the AIVD contribution in terms of probabilities associated to the traits, which
is shown in Eq. (2.8) below. Thus, for an empirical SCV containing only nominal
features, the AIVD is a measure of average uniformity of the empirical frequency
distributions associated to the features. Consequently, the AIVD is also a measure
of how subjective the questions/topics associated to the features are on average
– when the frequencies of possible answers are more similar to each other, there
is less justification to talk about a “better”, a “more correct” or a “more agreed
upon” answer, so the question is inherently more subjective.

Also note that, in Eq. (2.7), the quantity inside the average over pairs of
features (k, l) is the covariance between features k and l, defined in terms of
the feature-level cultural distances. Given that this quantity is averaged over
all possible pairs of features and that the square-root is a monotonous function,
the SIVD encodes information about the pairwise correlations between features,
although in a somewhat indirect way.

For both models, the choice made here is that of:

• tuning the α parameter in terms of the AIVD quantity (Eqs. (2.3), (2.6)),
for any combination of values of the β and k parameters;

• tuning the β parameter in terms of the SIVD quantity (Eqs. (2.4), (2.7)),
for any value of the k parameter, based on the previous fitting of α in terms
of AIVD;

• simply repeating the tuning (and the LTCD-STCB analysis in Sec. 2.4) for
several values of k.

This implies that, for every value of k, the tuning (or fitting) is done at two
levels: the α-AIVD level and the β-SIVD level, the former being nested into the

47



2.3 Model fitting

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

PG, k=2

A
IV

D

α

β=0.11

β=0.30

β=0.50

β=0.70

β=0.91
EBMn

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

MPG, k=2

A
IV

D
α

β=0.11

β=0.30

β=0.50

β=0.70

β=0.91
EBMn

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

PG, k=4

A
IV

D

α

β=0.11

β=0.30

β=0.50

β=0.70

β=0.91
EBMn

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

MPG, k=4

A
IV

D

α

β=0.11

β=0.30

β=0.50

β=0.70

β=0.91
EBMn

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

PG, k=6

A
IV

D

α

β=0.11

β=0.30

β=0.50

β=0.70

β=0.91
EBMn

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

MPG, k=6

A
IV

D

α

β=0.11

β=0.30

β=0.50

β=0.70

β=0.91
EBMn

Figure 2.2: Dependence on model AIVD on the α parameter, for several values
of the β parameter (legend), for k = 2 (top), k = 4 (center) and k = 6 (bottom)
prototypes, for the PG (left) and MPG (right) models. The horizontal lines show
the empirical AIVD uncertainty range (one standard error on each side of the
mean).
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latter. In practice, the fitting is carried out automatically, using a nested, 2-levels
algorithm that relies on a modified bisection-type method for each level. The
algorithm is precisely described in Sec. 2.C. In order to work, this approach relies
on the assumption that there is one, unique solution for the fitting problem, for
every value of k. This uniqueness is demonstrated via Figs. 2.2 and 2.3, which
are also used for providing a general intuition of how the fitting works and of how
the AIVD and SIVD quantities depend on α, β and k, for the two models.

Before entering this description, it is worth mentioning that the computer
time for the fitting algorithm is greatly reduced by being able to evaluate the
average (model) AIVD quantity analytically, in a manner that properly accounts
for all SCVs that can be generated for any combination of k, α and β. While
the calculation is described in detail in Sec. 2.B, a schematic understanding can
already be provided here. The essential ingredient of the calculation is a simple,
exact formula for the expected AIVD contribution of one feature of range q:

〈AIVD ({p1, ..., pq})〉 = 1−
q∑
i=1

p2
i , (2.8)

which assumes that the probabilities of its traits {p1, ..., pq} are all known – see
Sec. 2.B for the proof. For a discrete probability distribution, Eq. (2.8) is a
measure of uniformity very similar to the Shannon entropy. Conditional on a
specific choice of the prototypes, this set of probabilities (thus the feature-level
probability distribution) is fully determined by the integer partition describing
how the prototypes are distributed over the traits and by the fraction of traits
that are randomly generated, the latter being controlled by β. In this context,
Eq. (2.8) already assumes that an averaging is performed over SCVs generated
from the same set of prototypes. One still needs to perform an average of this
expression over integer partitions (Eq. (2.20) of Appendix Sec. 2.B), according to
the probability distribution controlled by α (Eqs. (2.12) and (2.13) of Appendix
Sec. 2.A.1), followed by another average over all features (Eq. (2.19) of Appendix
Sec. 2.B), since different features will in general have different ranges q. At a
superficial inspection, using a similar approach for analytically computing the
SIVD quantity appears very complicated, if at all possible. Numerical calculations
are instead employed for computing the (model) SIVD.

Fig. 2.2 deals with the first-level fitting. It shows the dependence of the
analytically computed AIVD quantity (see above) on the α parameter, for several
β values, for several k values and for both the PG and MPG models. Moreover,
it shows the empirical AIVD uncertainty range2 via the horizontal bands in the
six panels. Thus, a solution of the first-level fitting is indicated by an intersection
between a model curve of a given combination of k and β and the horizontal
band. Note that, for either of the two models and for any combination of k and
β, if a solution exists, this solution is actually unique. In order to understand

2An uncertainty range, as defined in Sec. 2.C, is the interval spanned by one standard mean
error on each side of the mean.
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Figure 2.3: Dependence of model SIVD on the β parameter, for several values of
the number of prototypes k (legend), for the PG (left) and MPG (right) models,
where the α parameter is tuned such that the empirical AIVD is reproduced.
The error bars of the points show the numerical uncertainty ranges, while the
horizontal lines show the empirical SIVD uncertainty range (one standard error
on each side of the mean).

the behavior implicit in Fig. 2.2, which is explained below, one should keep in
mind that AIVD measures the average uniformity of the feature-level probability
distributions.

First, it is worth focusing on the AIVD dependence on the α and β parameters.
Note, on one hand, that for a given combination of k and β, the AIVD generally
decreases with α, or at least remains constant. This is due to the fact that the
AIVD decreases with decreasing distance between prototypes, thus with increasing
α. For PG, this decrease is stronger for higher β values, since for low β value the
uniformity is anyway high, because of the large fraction of randomly generated
traits. For MPG, this β-dependence of the decrease is not that strong, since the
fraction of randomly generated traits cannot exceed 1/(k+1). On the other hand,
for a given combination of k and α, the AIVD generally decreases with increasing
β. This is due to the fact that the AIVD decreases with decreasing fraction of
randomly generated traits, thus with increasing β.

Second, it is worth focusing on the AIVD dependence on the number of proto-
types k. For PG, for a given α, a larger number of prototypes k implies a higher
AIVD, since traits copied from prototypes are more uniformly distributed, but
this has a significant effect only for large β values, again due to the uniformity
being anyway in place for small β values. For MPG, the corresponding behavior
is more subtle. While for large, β → 1 values, the AIVD still increases with
increasing k at a given α (for the same reason as for PG), the AIVD(α) curves
corresponding to small β approach the AIVD(α) curve corresponding to large
β → 1 with increasing k, rather than remaining in place (which is the case for
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PG). This is related to the fact that the upper bound on the fraction of ran-
domly generated traits 1/(k+ 1) decreases with increasing k, thus decreasing the
role of β in controlling the AIVD via the uniform component of the feature-level
probability distributions.

Fig. 2.3 deals with the second-level fitting. Everything shown in this figure
relies on α already being tuned (at the first level) such that the empirical AIVD
is matched – as apparent from Fig. 2.2, the tuned α value depends on β and on k.
Fig. 2.3 shows the dependence of the numerically computed SIVD quantity (with
uncertainty ranges) on the β parameter, for several k values and for both the
PG and MPG models. Moreover, it shows the empirical SIVD uncertainty range
via the horizontal bands in the two panels. Thus, a solution of the second-level
fitting is indicated by an intersection between a model curve of a given k and the
horizontal band. Note, again, that for either of the models and either of the k
values, if a solution exists, this solution is actually unique. The exact technical
procedure employed for producing any of the model points in Fig. 2.3 is described
at the end of Sec. 2.C, followed by the explanation of the final choice of values for
the α and β parameters, for use in the analysis of Sec. 2.4.

Note that the SIVD increases with β for both models and for all k values,
suggesting that the extent of feature-feature correlation increases with decreasing
distance between vectors dominated by the same prototype. For PG, all SIVD(β)
curves meet for some β ≈ 0.45, at which point they also end. No points are
plotted for lower β because α cannot be tuned in terms of AIVD, which can be
understood from Fig. 2.2 when noticing the AIVD(α) curves of low β that do not
cross the empirical line. For MPG, the SIVD(β) curve of k = 2 ends at a value of
β ≈ 0.5, before crossing the empirical line, meaning that the MPG model cannot
be entirely tuned when only 2 prototypes are used. No points are plotted for
higher β because α cannot be tuned in terms of AIVD, which can be understood
from Fig. 2.2, by noticing the AIVD(α) curves of k = 2 and high β that do not
cross the empirical line. This is due to certain limitations of the current modeling
paradigm, which are further discussed in Sec. 2.5.

2.4 Model Outcomes

Here, the most important results of this work are presented. The focus is on
the LTCD-STCB analysis, applied to sets of cultural vectors generated with the
PG and MPG models. The aim is to assess how well the two models reproduce
the universal empirical patterns described in Ref. [14] (Chap. 1). Fig. 2.4 illus-
trates the results obtained with the two models, whereas Fig. 2.5 summarizes, for
comparison purposes, the empirical results, focusing on the nominal part of the
Eurobarometer dataset (EBMn) – formatted according to the procedure explained
in Ref. [14] (Chap. 1).

Before describing the results, it is worth recalling the main ingredients of
the LTCD-STCB analysis. This is essentially a two-dimensional plot showing
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Figure 2.4: The correspondence between Long-term cultural diversity (LTCD)
and short-term collective behavior (STCB) for a model-generated (red), a shuffled
(blue) and a random (black) SCV obtained via the PG model (left) and MPG
model (right), for k = 3 (top), k = 4 (centre) and k = 5 (bottom) prototypes.
Error bars denote standard deviations over multiple trait dynamics runs. There
are N = 500 elements in each set of cultural vectors.
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Evidence for mixed rationalities in preference formation

the correspondence between the LTCD quantity vs the STCB quantity, both of
them being evaluated on empirical, on shuffled and on random SCVs. Drawing
the LTCD-STCB correspondence is made possible by the fact that, for each of
the three scenarios, both quantities depend on the bounded-confidence threshold
ω, which controls the maximal cultural distance over which social influence can
act. On one hand, the LTCD quantity is a measure of cultural diversity after
a long-term process of cultural dynamics driven by ω-bounded social influence,
starting from an initial cultural state specified by the respective SCV. Essentially,
it counts the number of distinct points in cultural space (commonly referred to
as “cultural domains”) towards which the agents converge in the final state of
a minimalisitic, bounded-confidence Axelrod model. The STCB quantity is a
measure of collective behavior (or social coordination) after a short-term process
of opinion dynamics driven by ω-bounded social influence. Essentially, it is the
standard deviation of the aggregate opinion distribution of the agent population,
resulting from a minimalistic Cont-Bouchaud-type model applied to the (cultural)
graph obtained by drawing a link for each pair of agents separated by a cultural
distance smaller than ω. Mathematically, the two quantities, as functions of the
bounded-confidence threshold ω, are captured by the following two expressions:

LTCD(ω) =
〈ND〉ω
N

, STCB(ω) =

√√√√∑
A

(
SA
N

)2

ω

, (2.9)

where ND is the number of cultural domains in the final state of the Axelrod-type
model, N is the number of agents (and cultural vectors) and SA is the size of the
A’th of connected components in the ω-determined cultural graph. The average in
the LTCD formula is taken over multiple simulations of the Axelrod-type model.
The STCB quantity is calculated analytically, once the cultural connected com-
ponents are found, based on the assumption of independent opinion-agreement
within each connected component. An essential difference between the two quan-
tities, reflected in the long-term/short-term distinction, consists of an idealized
separation between two time-scales, in terms of the role that the SCV specified
as input plays: cultural vectors, together with the distances between them, are
assumed to be dynamical by the LTCD definition and static by the STCB defini-
tion, such that one deals with dynamics of vectors and with dynamics on vectors
in the two cases respectively. The interested reader is referred to Refs. [14, 12]
(and Chap. 1) for more details and remarks about the LTCD-STCB analysis.

For both the PG and the MPG models, the α and β parameters are tuned
in the manner described in Sec. 2.3 for every value of the number of prototypes
k, while the latter is simply iterated over. In Fig. 2.4, the LTCD-STCB plot is
shown for the values k = 3, k = 4 and k = 5, for the PG (left) and the MPG
(right) models. The value k = 2 is omitted since the α and β parameters could
not be both tuned for MPG with two prototypes. All SCVs are generated using
the cultural space of EBMn, whose empirical SCVs also served for providing the
AIVD and SIVD values in terms of which the tuning was conducted (Sec. 2.3).

53



2.4 Model Outcomes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

L
T
C
D

STCB

EBMn

empirical
shuffled
random

Figure 2.5: The correspondence between long-term cultural diversity (LTCD) and
short-term collective behavior (STCB) for the empirical (red), shuffled (blue) and
random (black) sets of cultural vectors, for the nominal part of the Eurobarometer
data set (EBMn). Error bars denote standard deviations over multiple cultural
dynamics runs. There are N = 500 elements in each set of cultural vectors

When looking at Fig. 2.4, one should ask whether the universal, empirical pat-
terns are reproduced by any of the six illustrated model scenarios. Qualitatively,
the patterns are defined first in terms of a higher compatibility between LTCD
and STCB in the model-generated SCV than in the shuffled SCV and a higher
compatibility in the shuffled SCV than in the random one, second in terms of the
model-generated LTCD-STCB curve being close to the second diagonal. These
empirical features are visible in Fig. 2.5. It is clear that PG does not satisfy these
criteria for any value of k. Indeed, the model-generated curve is far below the sec-
ond diagonal for most of the relevant interval and often below the shuffled curve.
MPG, however, appears to satisfy all these criteria for all k values, although for
k = 3 it is not obvious that the shuffled curve is indeed above the random one,
due to the lack of points in the lower-left corner. This has to do with the effective
discreteness of the bounded-confidence threshold ω spectrum, due to the finite
number of nominal features available – in other words, it is meaningless to split
the ω axis into intervals that are smaller than the nearest-neighbor spacing of the
cultural space lattice. For a direct comparison with analogous empirical curves,
one should use Fig. 2.5, which shows the results of the LTCD-STCB analysis ap-
plied to EBMn data. However, it is only meaningful to compare the qualitative
nature of the empirical and the model curves, rather than the exact values, since,
as discussed in Sec. 2.5, neither model has a maximum-likelihood nature, due to
a certain simplicity in the way prototypes are formalized and chosen here. Still,
MPG apparently does generate SCVs that are structurally similar to the empirical
ones. Thus, the notion of cultural prototypes, even if implemented in a simplistic
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way, can be used to reproduce the important, universal properties of empirical
cultural states, as long as mixing of prototypes is in place.

2.5 Discussion

The purpose of this study was to develop a way of generating cultural states
that reproduce the apparently universal properties of the empirical ones, namely
those described by Ref. [14] (Chap. 1). This naturally calls for input from social
science, in particular from social science theories that are intended to describe
universal aspects of culture and society. There is an entire “class” of social science
theories that appear relevant for this purpose, originating from either psychology
or cultural anthropology [16, 17, 18, 19, 20], some of them being explicit attempts
at unifying social science. All of them make use of cultural prototypes, although in
somewhat different ways, under different names and numbers. Moreover, they had
all been overlooked by previous studies of cultural dynamics, on which Ref. [14]
(Chap. 1) largely builds: Ref. [13] was the first study that connected quantitative
studies of cultural dynamics with these theories, via the generic, formal notion of
cultural prototypes. For creating an instructive and compact context, this work
focused on one of these theories, namely on Plural Rationality Theory (PRT).

There are several aspects justifiying the focus on Plural Rationality Theory.
First, its informal notion of cultural bias matches very well the more formal no-
tion of cultural prototype, in the manner used in Ref. [13] and here. Second,
it is more appealing from a natural science perspective than the others, in par-
ticular from a physics and complex systems perspective. This is largely due to
various concepts that are qualitatively (and sometimes just implicitly) invoked
by PRT, such as: energy landscapes, symmetry breaking, graph/network theory,
dynamical systems, crossovers (possibly phase transitions), self-organization and
fractals. Third, it explicitly claims to provide some insight into how preferences
form: preferences are formed in the process of building social relations, while
different patterns of relations (and types of institutional settings) go along with
different conglomerates of preferences (the cultural biases). Finally, this dualism
between patterns of relations on one hand and cultural biases on the other hand
comes along with distinguishing between a “social plane” and a “cultural plane”
of interacting human systems, while acknowledging the dynamical nature of both,
as well as the strong coupling and interdependency between the two. Thus, PRT
seems to resonate well, on one hand to research on social network structure and
dynamics, on the other hand to research on cultural structure and dynamics.

Up to now, little work has been done to explore either of these two connec-
tions. While Ref. [13] and the present work are the first steps in exploring the
latter connection, some steps have also been taken in exploring the former con-
nection [35, 36]. Note, however, that Ref. [13] refers to several theories similar to
PRT, without explicitly mentioning PRT, that Ref. [36] focuses on a social theory
similar to PRT, while still discussing a connection with PRT and that Ref. [35]
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works with an earlier, more rudimentary version of PRT, which gave less impor-
tance to the notions of “way of life”, “rationality” and “cultural bias”. Although
the coupling between social dynamics and cultural dynamics is recognized and
studied by quantitative complex systems research (for instance Refs. [9, 37]), this
has been carried out in isolation from PRT.

In loose terms, each rationality of PRT has, as a “projection” on the cultural
plane, one distinct cultural bias. These cultural biases correspond to the cultural
prototypes used in this study. In agreement with Ref. [13], a cultural prototype is
a combination of cultural traits, thus one point in cultural space – the limitations
of this assumptions are extensively discussed below. Relying on these notions, two
stochastic, structural models of culture are developed and studied here: Prototype
Generation (PG) and Mixed Prototype Generation (MPG). It is important that,
regardless of which model is used, once the prototypes and the remaining free
parameters (parameter β, for either PG or MPG) are specified, one implicitly
defines a cultural space distribution (CSD): a probability mass function taking
the cultural space as a support, as defined in Ref. [14] (Chap. 1). Generating
a set of N cultural vectors is then equivalent to selecting N points at random
according to this distribution. Thus, the resulting cultural states are generated in
a non-uniformly random way, with non-uniformities depending on the prototypes
and on other model specifications.

For this study, the usage of both stochastic models is restricted to cultural
spaces constructed only from sets of nominal features. This is due to the assump-
tion that every prototype picks one and only one trait in any feature, which from
a PRT perspective means that, upon answering a question under the influence of
one cultural bias, a respondent can only provide one specific answer. In reality,
even a specific cultural bias would generally point towards several answers, al-
though with different probabilities, so it would be more realistic to say that every
prototype corresponds to one probability distribution defined over that feature.
Not allowing for this freedom makes this modeling paradigm incompatible to or-
dinal features, whose associated traits are by construction sorted along an axis,
in which case it is not reasonable to assume that a prototype points to one trait
of a feature with full probability and to its nearest-neighbors with zero probabil-
ity. Nonetheless, the paradigm is reasonably compatible with nominal features, in
which case the distance between any two traits of one feature is anyway assumed
to be the same.

The current study belongs to a preliminary, simplistic paradigm which makes
use of what one may call “sharp prototypes”. A more realistic paradigm, which
would account for the probabilistic nature of the cultural biases, would make use of
what one may call “diffuse prototypes”. Using sharp prototypes comes at the cost
of not having enough flexibility to reproduce the empirical, feature-level frequency
distributions, with either of the two models, since every prototype corresponds
to a probability distribution entirely peaked on one trait. Instead, using diffuse
prototypes would allow this by enforcing, for every feature, that the empirical
distribution is a linear combination of the prototype distributions. Nonetheless,
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as shown in Sec. 2.3, both models are still able to reproduce the empirical average
uniformity of the feature-level frequency distributions, namely the AIVD quan-
tity. This is partly due to both models making some use of uniformly-random
trait generation, independently of the prototypes. This translates to a flat noise
component in the probability distribution of every feature, which in a sense com-
pensates for the rigid peaks of the sharp prototypes. When also considering the
results of Sec. 2.4, the usage of sharp prototypes restricted to nominal variables
appears to be enough as a proof of concept. This justifies further research to-
wards the more sophisticated paradigm relying on diffuse prototypes. Although
this is left for future studies, it is worth contemplating upon, in order to better
understand the purpose, greater context and limitations of the current paradigm.

Working with diffuse prototypes should go hand in hand with a method of
inferring them from data. One can imagine doing this by applying a sensible
clustering method on the empirical set of cultural vectors, followed by a sensible
method of constructing one diffuse cultural prototype from every cluster, as a
probabilistic entity that is representative of that cluster. The main advantage of
this approach is that once the prototypes are constructed and provided as input
to a sensible stochastic model, the artificial SCVs generated with this model
would be close-to-representative of the same distribution in cultural space as the
empirical SCV on which the method is applied in the first place. This means
that the model would have a maximum-likelihood flavor, and could be used for
generating synthetic data, which would also reproduce the feature-level frequency
distributions.

By contrast, the approximation of sharp prototypes used here is too strong to
be employed together with a method of inferring them from data. Instead, sharp
prototypes are being assigned to randomly chosen positions in the given cultural
space. On one hand, the fact that the prototypes are randomly chosen makes any
model symmetric up to any permutation of the traits of any feature, as long as all
features are nominal, which is the case here, a symmetry which is broken by an
empirical SCV and also by an artificial SCV generated from a specific choice of the
prototypes. On the other hand, the fact the prototypes are sharp does not allow
for the exact frequency distribution of a specific feature to be reproduced, not
even up to a permutation of the traits. Still, after parameter tuning, one should
expect from a good model to provide a cultural space distribution whose rough
“shape” is compatible with the empirical data, though the “orientation” and the
structural details implied, for instance, by the feature-level distributions would not
be compatible. This should reflect in roughly reproducing the universal LTCD-
STCB patterns emphasized in Ref. [14] (Chap. 1): one one hand, the formulation
of the LTCD and STCB observables is also symmetric up to permuting the traits
of any feature, and thus independent of the “orientation”; on the other hand,
the empirical, feature-level frequency distributions should heavily depend on the
specific data set, thus being of little relevance for the universal patterns.

There are various aspects that make the random generation of prototypes
sensible for the purpose of the present work. First, results are evaluated for
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various values of the number of prototypes k, which is considered a free parameter
for both the PG and MPG model. Second, the expected prototype-prototype
distance is controlled for via parameter α. Third, for every choice of parameters,
the prototypes are independently drawn for each realized cultural state in the set
used for computing the model AIVD and SIVD quantities for fitting purposes.
These compensate somewhat for not inferring the prototypes from empirical data.

In order to give an example of how the sharp prototypes approximation can
be pushed beyond its limits, it is worth recalling that fitting the MPG model
is not possible for k = 2 prototypes, as pointed out at the end of Sec. 2.3: the
α parameter can be successfully tuned in terms of the AIVD only for small β
values, which do not allow for the subsequent fitting of the β parameter in terms
of the SIVD. This is related to there being at least q = 3 traits associated to
every nominal feature selected from the Eurobarometer data set, while there are
only two, prototype-induced peaks in the model probability distribution of every
feature, on top of the uniform component. Since the integrated probability of the
uniform component cannot exceed 1/k by construction, all the distributions are
bound to be relatively non-uniform, such that the empirical average uniformity is
only attained for small-α (few coincidences between the prototype-induced peaks)
and small-β (large uniform component) combinations. This does not hold for the
PG model, as in this case the integrated probability of the uniform component
can attain any value between 0 and 1. Nonetheless, if k > 2, the fitting of the
MPG leads to generated cultural states that reproduce much better the universal
empirical patterns than PG. This justifies considering MPG the successful model,
while emphasizing the importance of the mixing ingredient, which validates the
multiple self assumption.

When thinking in terms of the feature-level probability distributions, it might
seem that the MPG and PG models are not that different from each other. As
mentioned above, for both models, if there are k prototypes, the probability distri-
bution of a certain feature would consist of k peaks of equal probability contents
and of a uniform component associated to the explicitly random trait generation.
Although the probability content of the uniform component of MPG is bounded
from above, that of PG is not bounded in any way, so one might think that MPG is
just a particular realization of PG. However, this reasoning is misleading, as it fo-
cuses on partial information encoded in the feature-level probability distributions,
disregarding the rest of the information encoded in the complete cultural space
distribution. With PG, a cultural vector whose trait, with respect to a certain
feature, is generated under the probability peak of a certain prototype will have
its trait generated, with respect to another feature, under the well-determined
probability peak of the same prototype or under the uniform component. By
contrast, with MPG, a cultural vector whose trait, with respect to a certain fea-
ture, is generated under the probability peak of a certain prototype, will have
its trait generated, with respect to another feature, under the probability peak
of any prototype – though with a higher likelihood under the peak of the domi-
nating prototype – or under the uniform component. Thus, for the same choice
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of the prototypes and the same extent of explicitly random generation of traits
(and consequently the same AIVD), PG implies a different level of cross-feature
correlation and a different shape of the cultural space distribution than MPG.
This conceptually explains the impact of the mixing ingredient.

Although this study does not attempt at providing a complete mathemati-
cal theory of trait dynamics and formation, one can argue that the MPG model
qualifies as a good effective, 3 static description of (generic snapshots of) trait
dynamics. This static description is inspired by Plural Rationality Theory which,
although originating in cultural anthropology, does seem to integrate notions of
both psychology and of a (complex) systems based understanding of society. Al-
though it is formulated in an a qualitative, informal way, Plural Rationality The-
ory and related research should be of use for developing a complete formal theory
of trait dynamics, at least as a source of guidance and inspiration.

2.6 Summary and conclusions

This study was dedicated to developing and testing a stochastic model for gener-
ating cultural states that would be structurally similar to the empirical ones. The
aim was to reproduce the universal, empirical properties pointed out in Ref. [14]
(Chap. 1), while relying on some social science hypothesis. Following up on pre-
vious work, the idea of cultural prototypes was used for this purpose. The study
first tested the hypothesis that each cultural vector is a partial realization of one
prototype and random for the rest, which is what was previously assumed. This
turned out to be insufficient for reproducing the empirical patterns. Instead, one
has to assume that each cultural vector is a combination, or mixture of all proto-
types, although still dominated by either of them, which is what the MPG model
encodes. This additional, mixing ingredient is actually suggested by the same
social science theories that inspired the prototypes idea in the first place. In this
specific, social science context, this aspect is often referred to as “the multiple-
self”. These results provide indirect evidence for social science theories like PRT,
that postulate, in one way or another, some notion of cultural prototypes, along
with some associated notion of mixing.

Still, there is a certain rigidity in the way prototypes are currently formalized
(Sec. 2.5), related to the assumption that every prototype corresponds to one and
only one value of every cultural variable, instead of corresponding to a probability
distribution over the variable. This makes the cultural space distribution induced
by the successful, MPG model generally incompatible with the cultural space
frequency distribution with respect to which it is fitted. As it stands, MPG is
is far from being a maximum-likelihood type of model and thus cannot be used
to generate synthetic data. Nonetheless, this is arguably achievable once diffuse

3Note that “effective description of” stands for “description of the effects of”, for “approxi-
mate description” or for “phenomenological description”, as used in the physics literature, rather
than for “successful or “efficacious”.
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prototypes are used instead of sharp ones, while being inferred from the data
rather than randomly chosen. In this sense, this work can be seen as an important
step towards a realistic, maximum-likelihood model of empirical cultural states,
and towards generating synthetic sets of cultural vectors. Moreover, MPG can
be considered an effective description of the outcome of trait dynamics, since the
generated cultural states seem to reproduce the generic structure of the empirical
ones. The LTCD-STCB analysis, used for validating this effective theory, could
also be used for validating a more fundamental, dynamical theory of culture.
It appears likely that Plural Rationality Theory has more to say for aiding the
development of such a theory.

Appendices

2.A Controlling the generation of prototypes

This section describes the calculation of probabilities attached to sets of cultural
prototypes employed by the PG and MPG models defined in Sec. 2.2. These prob-
abilities are collectively controlled via a parameter (α), which effectively dictates
the expectation value of the average prototype-prototype cultural distance for one
set of prototypes. The assignment of traits to prototypes is conducted indepen-
dently for every feature, so the discussion is reduced to assigning probabilities to
prototype-to-trait mappings at the level of a single feature. Furthermore, since
prototype generation neglects empirical occurrence frequencies of specific traits,
the problem is symmetric with respect to permutations of the traits, so the dis-
cussion is further reduced to assigning probabilities to “topologies” of prototype-
to-trait mappings at the level of a single feature. Mathematically, such a topology
is an “integer partition”. Integer partitions turn out to be the mathematical ob-
jects to which elementary probabilities are to be assigned. Sec. 2.A.1 explains the
procedure for assigning the probabilities to integer partitions, while Sec. 2.A.2
explains the procedure for generating the integer partitions.

2.A.1 Integer partition probabilities

Let Ik be the set of all integer partitions of k elements, where an integer parti-
tion of k elements is an ordered sequence of integers that add up to k, also called
“parts”. Let the ordered sequence (k1, ..., ks) ∈ Ik be one generic element of this
set, where s counts the number of non-zero parts. This notation implies that
the parts are sorted for descending values ki ≥ ki+1∀i ∈ {1, .., s − 1} and that
they add up to k =

∑s
i=1 ki. For instance, (3, 2, 2, 1) is an integer partition of 8

elements with 4 parts. For the purpose of this work, an element of the integer
partition corresponds to one prototype. For a specific choice of the prototypes
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and a specific feature, an integer partition is a representation of how the proto-
types are distributed over the traits of this feature, up to a permutation of these
traits. Thus, when the fraction of traits that are randomly generated vanishes,
the probabilities of the traits are just the normalized part sizes – in the exam-
ple above, the ordered sequence of probabilities associated to the traits would
be ( 3

8 ,
2
8 ,

2
8 ,

1
8 ). Random trait generation then simply introduces a uniform, noise

component to the feature probability distribution, whose contribution increases
with the fraction of traits that are randomly generated. Thus, the integer parti-
tion is in any case a proxy for the feature probability distribution, regardless of
which stochastic model is used.

Let c(k1, ..., ks) be the “compactness” of integer partition (k1, ..., ks), defined
by:

c(k1, ..., ks) =

s∑
i=1

ki(ki − 1)

2
, (2.10)

which counts the number of pairs of elements belonging to the same part. For
instance, the compactness of integer partition (3, 2, 2, 1) is c(3, 2, 2, 1) = 32 + 12 +
12 + 02 = 11. The compactness thus counts the prototype-prototype coincidences
for one feature. In light of the above paragraph, a small compactness implies a
high uniformity for the feature probability distribution and thus a high value of
the associated (feature-level) AIVD contribution.

Let Iqk be the set of integer partitions of k elements of at most q parts (which
implies that Iqk ⊆ Ik). This definition is needed for working with features with
range q < k. Furthermore, let cmin

k,q and cmax
k,q be the minimal and maximal

compactness values attainable by the elements of Iqk . These notions are needed
for normalizing generic compactness values. They formally read:

cmin
k,q = c(λ′).(λ′ ∈ Iqk ∧ @λ ∈ Iqk .(c(λ) < c(λ′))),

cmax
k,q = c(λ′).(λ′ ∈ Iqk ∧ @λ ∈ Iqk .(c(λ) > c(λ′))), (2.11)

where the “.” (dot) notation stands for “with the property that”.

At this point, it is possible to define an non-normalized probability mass func-
tion parametrized by α over the discrete set of integer partitions Iqk , function
whose shape would depend on α. High α values correspond to integer partitions
of high compactness values being favored over those of low compactness values,
while low α values correspond to integer partitions of low compactness values
being favored over those of high compactness values. For simplicity, the function
is chosen to be monotonous when re-expressed in terms of compactness. A simple
choice for such a function, denoted here by ραk,q, is given by:

ραk,q(λ) = exp

{
tan

[
(2α− 1)

π

2

]2c(λ)− cmax
k,q − cmin

k,q

cmax
k,q − cmin

k,q

}
, (2.12)
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where the inner fraction linearly maps the compactness c(λ) from interval [cmin
k,q , c

max
k,q ]

to interval [−1, 1], while the argument of the tan function linearly maps α from
interval (0, 1) to interval (−1, 1), from where it is further mapped to (−∞,∞) by
the tan function. In this manner, the function is increasing with c(λ) for α > 0.5
(implying a relatively low expectation value of average prototype-prototype sep-
aration), the function is decreasing with c(λ) for α < 0.5 (implying a relatively
high expectation value of average prototype-prototype separation) and the func-
tion is a constant of c(λ) for α = 0.5. The actual probability Pαk,q(λ) associated
to integer partition λ can then be obtained via the normalization:

Pαk,q(λ) =
ραk,q(λ)∑

λ∈Iqk

ραk,q(λ)
, (2.13)

with the sum in the denominator being taken over all integer partitions in Iqk .

2.A.2 Integer partition generation

Let I
d
= {0I , 1I} ∪ I1 ∪ I2 ∪ ... be the set of all integer partitions of any size,

together with a “null” element 0I and a “unity” element 1I , which are meaningful
in relation to the ⊕ operation defined below and are needed for keeping some of
the following definitions compact and self-consistent.

Let the integer partition “merging” ⊕ : I × I → I, acting on two integer
partitions of ka and kb elements, with sa and sb parts respectively, be defined in
the following way:

(ka1 , ..., k
a
sa)⊕ (kb1, ..., k

b
sb

) = (k1, ..., ks), (2.14)

producing another integer partition of k = ka+kb elements and s = sa+sb parts,
such that the sequence of parts in the resulting partition is a sorted merging of the
two original sequences of parts. For instance: (3, 2, 2, 1)⊕ (4, 2) = (4, 3, 2, 2, 2, 1).
Moreover, any integer partition λ ∈ I satisfies λ⊕ 0I = 0I and λ⊕ 1I = λ.

Let the integer partition “multi-merging” ⊗ : I × P(I) → P(I), where P(I)
is the set of all subsets of I, be defined by:

α⊗ {α1, ..., ασ} = {α⊕ α1, ..., α⊕ ασ}, (2.15)

where α, α1, ..., ασ ∈ I are all integer partitions. The ⊗ operation produces a set
of integer partitions of σ elements from an initial set of integer partitions of the
same size and another integer partition α, by merging α with each element αi in
the initial set via the ⊕ operation.

Relying on the notions above, the following recursive definition of function
sip(k,mL,mV ) : N × N∗ × N∗ → P(I) encodes the procedure for generating the
set of integer partitions of k elements, of maximally mL parts, with maximal part
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value mV :

sip(k,mL,mV ) =

=


{1I} k = 0,

{0I} k > mL ·mV ,

{(mV , ...,mV )mL entries} k = mL ·mV ,⋃
x∈1,min(k,mV )

[(x)⊗ sip(k − x,mL − 1, x)] else.

(2.16)

definition inspired by Ref. [38], where the order of the four cases matters, in the
sense that one case is considered only if none of the conditions of the above cases
is valid. The last line returns the set resulted from the reunion “∪” of all sets of
integer partitions of type (x)⊗ sip(k− x,mL− 1, x), where x spans the indicated
interval. This general formulation, which also takes the maximal part value mV

as argument, is required for a compact recursive definition. But of actual interest
for this work is the set of integer partitions of k elements and maximal part value
q, Iqk , given by:

Iqk = sip(k, q, k)− {0I , 1I}, (2.17)

where the last part of the expression takes out the null and/or the unity ele-
ment, which might be present in the set of integer partitions as leftovers from the
computation. Here we explicitly show how the sip function works when calcu-
lating the set of integer partitions of 4 elements of maximally 3 parts, given by
I3
4 = sip(4, 3, 4)− {0I , 1I}, where:

sip(4, 3, 4) =
⋃
x∈1,4

(x)⊗ sip(4− x, 2, x) =

= [(1)⊗sip(3, 2, 1)]∪[(2)⊗sip(2, 2, 2)]∪[(3)⊗sip(1, 2, 3)]∪[(4)⊗sip(0, 2, 4)] =

= [(1)⊗ {0I}] ∪ [(2)⊗
⋃
x∈1,2

(x)⊗ sip(2− x, 1, x)]∪

∪ [(3)⊗ (1)⊗ sip(0, 1, 1)] ∪ [(4)⊗ {1I}] =

= {0I}∪[(2)⊗[[(1)⊗sip(1, 1, 1)]∪[(2)⊗sip(0, 1, 2)]]]∪[(3)⊗(1)⊗{1I}]∪{(4)} =

= {0I} ∪ [(2)⊗ [[(1)⊗ {(1)}] ∪ [(2)⊗ {1I}]]] ∪ [(3)⊗ {(1)}] ∪ {(4)} =

= {0I} ∪ [(2)⊗ [{(1, 1)} ∪ {(2)}]] ∪ {(3, 1)} ∪ {(4)} =

= {0I} ∪ [(2)⊗ {(1, 1), (2)}] ∪ {(3, 1), (4)} =

= {0I} ∪ {(2, 1, 1), (2, 2)} ∪ {(3, 1), (4)} =

= {0I , (2, 1, 1), (2, 2), (3, 1), (4)}, (2.18)

yealding I3
4 = {(2, 1, 1), (2, 2), (3, 1), (4)}, which is the expected result.
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2.B Analytic calculations of model average inter-
vector distance

This section explains the analytic calculation for the expectation value of the
average inter-vector distance (AIVD) for sets of cultural vectors generated using
either the PG or MPG model. The first part of this section just gives the essential
formulas – Eqs. (2.19) and (2.20)) are common for the two models; the difference
between the model becomes apparent when comparing Eq. 2.21 with Eq. 2.22.
The second part gives the proof Eq. (2.8), which is the basis for Eq. (2.20).

The expectation value of the AIVD, as a function of the three model param-
eters k, α, β is given by the average over the feature-level expectation values:

〈AIVD〉kα,β =
1

F

∑
q

nq 〈AIVD〉k,qα,β , (2.19)

where the sum goes over all possible values ranges q and nq is the number of
features with range q, with

∑
q nq = F being implicitly satisfied, where F is the

number of features. Note that the feature-level contribution also depends on q.
In turn, this contribution is given by:

〈AIVD〉k,qα,β = 1−
Iqk∑

(k1,...,ks)

Pαk,q(k1, ..., ks)·

·


s∑
i=1

[
πkβ,F

ki
k

+
(
1− πkβ,F

) 1

q

]2

+ (q − s)

(
1− πkβ,F

q

)2
 , (2.20)

which is essentially a weighted averaging of Eq. (2.8) over the set of integer
partitions (k1, ..., ks) ∈ Iqk , where the weights are the integer partition probabili-
ties Pαk,q(k1, ..., ks). These are calculated in the manner described in Sec. 2.A.1,
while the integer partitions themselves are generated in the manner described in
Sec. 2.A.2. The set of pi’s of Eq. (2.8) depends on the integer partition in the
manner illustrated between the braces of Eq. (2.20), where the first term accounts
for the s traits that are covered by the (non-zero) elements of the integer partition,
namely those under the peak(s) of one (or more) prototype and under the flat
noise component, while the second term accounts for the remaining q − s traits,
namely those that are only under the flat noise component. The dependence on
whether the PG or the MPG model is used is captured by πβ,F , which is the
average fraction of traits directly copied from prototypes, given by:

πkβ,F =
round(βF )

F
, (2.21)

for PG, where the “round” function accounts for the fact that only integer numbers
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of traits can be copied, and:

πkβ,F =
1

|W β
k+1|

Wβ
k+1∑
w

w, (2.22)

for MPG, where w iterates over all values of W β
k+1, which is a large sequence

of lowest MPG discrete weights (see Sec. 2.2), which are numerically generated

during a previous step, for each used combination of (k, β) values. |W β
k+1| is

the number of elements in this sequence of discrete weights. For this study,
|W β

k+1| = 105 elements were generated for every (k, β) combination, which allows

for a very precise numerical calculation of πkβ,F in the case of MPG.
The consistency between the analytical AIVD calculation explained above and

the numerical calculation is illustrated here via Fig. 2.6. The expected AIVD value
is shown as a function of the β parameter, for 5 values of the α parameter and
3 values of the k parameter, for both the PG and MPG models. The analytical
values are shown by the lines, while the numerical ones are shown by the dots,
which have small, almost indiscernible error bars attached. For the numerical
case, 50 sets of N = 500 cultural vectors are generated for each combination of
parameters. Note that the numerical profiles follow closely the analytical ones,
with small deviations that are consistent with the expected fluctuations of the
mean.

It is now worth presenting a proof of Eq. (2.8), on which Eq. (2.20) is based.
Consider a feature with q traits and a set of a-priori probabilities {p1, ..., pq}
attached to them. Then, the entry of each cultural vector generated with respect
to this feature is an independent, random choice from the q traits, according to
the probability mass function (p1, ..., pq). Thus, the expected AIVD contribution
from N cultural vectors is given by:

〈AIVD ({p1, ..., pq})〉 = 1− 2

N(N − 1)
·

·
x1+...+xq=N∑
x1,...,xq

q∑
i=1

xi(xi − 1)

2
f
(
N , x1,...,xq

p1,...,pq

)
= 1− 2

N(N − 1)
·

·
q∑
i=1

xi≤N∑
xi

xi(xi − 1)

2

x1+...+xi−1+xi+1+...+xq=N−xi∑
x1,...,xi−1,xi+1,...,xq

f
(
N , x1,...,xq

p1,...,pq

)
=

= 1 − 2

N(N − 1)

q∑
i=1

xi≤N∑
xi

xi(xi − 1)

2
Si, (2.23)

where f
(
N ,

x1,...,xq
p1,...,pq

)
denotes the probability that the N independent, random

variables fill the q traits with the frequency distribution (x1, ..., xq), given the
associated probability distribution (p1, ..., pq), where

∑q
i−1 xi = N . This is con-

ventionally called the multinomial distribution. In the above derivation, Si stands
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Figure 2.6: Comparison between numerical (dots) and analytical (line) expected
AIVD as a function of β, for the PG (left) and MPG (right) models, with k = 2
(top), k = 4 (center) and k = 6 (bottom) prototypes, for several values of α
(legend).
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for the summation over all elements of the multinominal except that which has a
certain, xi number of entries for the ith trait, which can be further manipulated:

Si =

x1+...+xi−1+xi+1+...+xq=N−xi∑
x1,...,xi−1,xi+1,...,xq

f
(
N , x1,...,xq

p1,...,pq

)
=

x1+...+xi−1+xi+1+...+xq=N−xi∑
x1,...,xi−1,xi+1,...,xq

N !

x1!...xi−1!xi!xi+1!...xq!
px1

1 ...p
xi−1

i−1 p
xi
i p

xi+1

i+1 ...p
xq
q = pxii

N !

xi!(N − xi)!
·

·
x1+...+xi−1+xi+1+...+xq=N−xi∑

x1,...,xi−1,xi+1,...,xq

(N − xi)!
x1!...xi−1!xi+1!...xq!

px1
1 ...p

xi−1

i−1 p
xi+1

i+1 ...p
xq
q =

=
(
N
xi

)
pxii (1 − pi)N−xi . (2.24)

This shows that Si is just a term of the binomial distribution. By inserting the
final expression of Eq. (2.24) in the final expression of (2.23), one gets:

〈AIVD ({p1, ..., pq})〉 = 1− 1

N(N − 1)

q∑
i=1

xi≤N∑
xi

(x2
i−xi)

(
N
xi

)
pxii (1−pi)N−xi =

= 1− 1

N(N − 1)

q∑
i=1

[Npi(Npi − pi + 1)−Npi] = 1−
q∑
i=1

p2
i , (2.25)

which concludes the proof of Eq. (2.8), after using the well known expressions
for the first and second moments 〈xi〉 and 〈x2

i 〉 of the binomial distribution. Note
that the dependence on N cancels out during the derivation.

Another, arguably shorter proof can be formulated with the aid of indicator
functions of the type Ii(x), which gives 1 if cultural vector x is an entry of trait
i and gives 0 otherwise. One can express the feature-level AIVD of one, generic
set of cultural vectors in terms of indicator functions and write the expected,
feature-level AIVD as an average of this expression. The p2

i part of Eq. (2.8)
then appears from an averaging of the Ii(x)Ii(y) product, where x and y are two
arbitrary cultural vectors.

2.C Fitting algorithm

This section explains the procedure used for simultaneously tuning the α and β
parameters of either of the two stochastic models of culture, such that a match is
obtained between the model and the empirical data, in terms of the averages of
the AIVD and SIVD observables:

〈AIVD(α, β)〉 = AIVDemp, (2.26)

〈SIVD(α, β)〉 = SIVDemp,
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for a fixed number of prototypes k, assuming that either of the two equalities above
is satisfied when there is an overlap between the uncertainty range associated to
the quantity on the left side and that associated to the quantity on the right side.

There are multiple reasons why this problem is challenging:

• an analytical formula for the 〈SIVD(α, β)〉 quantity could not be found

• although an analytical formula for the 〈AIVD(α, β)〉 quantity was found
(Eqs. (2.19) to (2.22)) 4, it does not allow for inverting the function and for
analytically solving the system

• the 〈SIVD(α, β)〉, AIVDemp and SIVDemp quantities have non-vanishing
uncertainty ranges attached to them

Assuming that there exists a unique solution to the above system, a numerical
approach for solving it is in order. The method used here relies on a nested, 2-
level, adapted bisection method. The first (inner) level of the method takes care of
fitting, via bisection, the first quantity for a fixed β – it finds the α value for which
〈AIVD(α, β)〉 = AIVDemp is satisfied for a given β. The second (outer) level of
the method takes care of fitting, via bisection, the second quantity – it finds the β
for which 〈SIVD(α(β), β)〉 = SIVDemp is satisfied, where α(β) is provided by the
first level. This choice of assigning the AIVD and SIVD observables and the α and
β parameters to the two levels in this manner is numerically convenient for several
reasons. First, the AIVD can be much more easily computed via the analytical
formula, such that assigning it to the first level, which is repeated multiple times
(once for each value of β that the second level samples) is more effective. Second,
the model AIVD turns out to be relatively insensitive to β for relatively many
combinations of values for the k and α parameters, such that fitting AIVD in
terms of α within the first level makes more sense.

In addition to adaptations required by the 2-level scheme, other adaptations
with respect to the traditional bisection method are needed for allowing it to work
with model and empirical uncertainties, as well as to enhance the numerical preci-
sion for the 〈SIVD(α, β)〉 quantity when needed, to the extent needed. Moreover,
in addition to statistical errors originating directly in the empirical uncertainties
of the AIVDemp and SIVDemp quantities and in the numerical uncertainty of the
model SIVD quantity, the second level of the method is also affected by “system-
atic errors” on 〈SIVD(α(β), β)〉, originating in the fitting procedure at the first
level, and indirectly in the empirical uncertainty of AIVDemp – which for all prac-
tical purposes can be assumed fixed, thus motivating using the term “systematic”
for its propagation to the model SIVD at the second level.

In order to address all these challenges in a self consistent way, the method
developed here turns out to be quite sophisticated, which is why it is explained
in detail in the following four sections. Specifically, Sec. 2.C.1 focuses on the first
fitting level, Sec. 2.C.2 focuses on the second fitting level, Sec. 2.C.3 describes how

4Which implies that the specific uncertainty range of 〈AIVD(α, β)〉 has a null width.

68



Evidence for mixed rationalities in preference formation

various sub-problems invoked by the previous two sections are addressed, while
Sec. 2.C.4 describes how the tools presented in Sections 2.C.1, 2.C.2 and 2.C.3
are used for producing some of the results presented in Sections 2.3 and 2.4.
The method is potentially of use for addressing other problems that are formally
similar to the problem presented here, although certain adaptations might be
needed.

Since the method has mostly an algorithmic nature, much of it is explained via
pseudocode, such that a few conventions that will be extensively used below and
that are not necessarily standard are worth mentioning. First, the “=” symbol
is used with double meaning: in a normal statement (such as “a = b”) it is to
be interpreted as an assignment (of the value of variable b to variable a); in the
header of an if or while statement (such as “if a = b”) it is to be interpreted as a
check (of whether the values of a and b are equal). A variable is implicitly declared
when it first appears, either on the left side of an assignment or in the header
of a function definition (in which case it is also called an argument or function
parameter); the scope of the variable is the part of the function below and to the
right of the place where it first appears. Functions are distinguished from each
other through their names, their numbers of arguments and the types of those
arguments 5 On the other hand, the arguments of a function are distinguished
from each other via their order. Some variables are actually ordered sequences of
other variables, which in turn are denoted by (x1, .., xn) notation. In the same
spirit, an assignments of the type X = (x1, .., xn) is referred to as a “variable
compression”, while one of the type (x1, .., xn) = X is referred to as a “variable
decompression”. These allow for keeping the pseudocode compact, while still
rigorous. An uncertainty range refers to an interval [x− δx, x+ δx], where x is a
mean and δx is an error relying (directly, or indirectly) on a standard mean error
calculation, the uncertainty range being formally encoded by the sorted (x, δx)
sequence. Note that the square brackets “[,]” are consistently used to denote an
interval of real numbers, while the round brackets “(,)” are used to denote an
ordered sequence of two or more elements. Finally, it is worth noting that the
pseudocode relies heavily on function calls and on recursive definitions, and that
there is a certain parallelism between the functions defined in Sec. 2.C.1 and those
defined in Sec. 2.C.2.

2.C.1 First level fitting

This section presents the algorithm part concerned with the first fitting level.
The algorithm is split in three main functions: Fit-1, Bisect-1, Displace-1, all
of them returning the same type of information. Fit-1 always calls Bisect-1,
while the latter may or may not call Displace-1 at any stage, which in turn may

5Sometimes this can be confusing, since the types of the arguments are only mentioned in
the text before the definition of the function. In these cases however, the reader is guided by the
names of the arguments, which in the function definition are kept as close as possible to those
in the function call(s).
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or may not call Bisect-1. The pseudocode also invokes two constants, which
are assumed to be known a-priori and available for use anywhere in these three
functions. The first constant is δα, which controls the desired resolution (δα is
essentially a grid-spacing) in the α parameter, which is here set to the inverse
of the number of features: δα = 1

F
6. The second constant is AIVDemp, which

stands for the AIVD uncertainty range for the empirical data.
Function Fit-1 acts as an interface for the first-level fitting, which consists of

tuning the α parameter, for given values of β and k, such that the AIVD quantity
matches the empirical value. Here, β is a real number belonging to [0, 1] while
k is a strictly positive integer number. The method returns the left (αL) and
right (αR) margins of the tightest α interval found, together with the estimated
α match within this interval assuming linearity (αfit) and an associated error
(αerr). It assumes that the empirical AIVD can actually be uniquely matched by
varying α, for the given values of β and k. The method essentially carries out
some initializations (Lines 2,3), before passing the task to Bisect-1.

1: function Fit-1(β, k)
2: (αL, αR) = Init-1(δα) . initializing the α-interval
3: AIVDL = 〈AIVD〉kαL,β ; AIVDR = 〈AIVD〉kαR,β . analytics (Eq. (2.19))
4: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k)
5: end function

Function Bisect-1 is mostly a typical, recursive implementation of the bisec-
tion method. This sequentially narrows down the [αL, αR] interval, such that at
each stage the empirical AIVD is contained, namely that min(AIVDL,AIVDR) <
AIVDemp < max(AIVDL,AIVDR) is satisfied, where the AIVDL and AIVDR

values correspond to the left and right margins of the α interval. Here, αL, αR,
AIVDL and AIVDR are real numbers belonging to [0, 1] while β and k are of the
same type as in Fit-1. It returns the same type of information as Fit-1. The
method converges, the fitting being considered complete, when the interval has
reached the δα resolution limit, in which case estimations for an “ideal” α inside
this interval αfit and its error αerr are made and returned together with the bound-
aries of the interval (lines 3-6). Moreover, the method may also call Displace-1
in case the AIVDM value corresponding to the computed midpoint αM happens
to fall within the AIVDemp uncertainty range (lines 8-10) – this is needed in order
to keep the output format consistent and the final α interval relatively narrow.
Otherwise, the method decides to zoom in (by calling itself) on either the left or
right halves of the interval, depending on the position of AIVDemp with respect
to AIVDL, AIVDM and AIVDR (lines 11-16).

1: function Bisect-1(αL, αR,AIVDL,AIVDR, β, k)
2: αM = Middle(αL, αR, δα) . computing midpoint on the α grid

6 There is no clear lower bound on δα, regardless of which stochastic model is used, but 1
F

is a lower bound on δβ when PG is used, so for simplicity the choice δα = δβ = 1
F

is made.
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3: if ¬Distinct(αM , αL, αR) then
4: (αfit, αerr) = InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
5: return (αL, αR, αfit, αerr) . fitting complete
6: end if
7: AIVDM = 〈AIVD〉kαM ,β . analytics (Eq. (2.19))
8: if Match-1(AIVDM ,AIVDemp) then
9: return Displace-1(αL, αR, αM ,AIVDL,AIVDR, β, k)

10: end if
11: if Ord-1(AIVDL,AIVDR) = Ord-1(AIVDM ,AIVDemp) then
12: αL = αM ; AIVDL = AIVDM . selecting right interval
13: else
14: αR = αM ; AIVDR = AIVDM . selecting left interval
15: end if
16: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in
17: end function

Function Displace-1 attempts to displace the midpoint αM previously cal-
culated at some stage in Bisect-1, in a way that its associated AIVD would
fall outside the empirical uncertainty range. This function has all the arguments
of Bisect-1 and αM as an additional one, which is a real number belonging
to [0, 1]. It returns the same type of information as Fit-1. The method first
computes a “secondary” midpoint α′M to the left of αM and its corresponding
AIVD′M value. If the resolution limit δα is not reached and AIVD′M falls outside
the AIVDemp range, Bisect-1 is applied further to the [α′M , αR] interval (lines
2-11). Otherwise, the analogous procedure is applied on the right side (12-21). If
the procedure fails to provide a convenient, secondary midpoint on either side, the
fitting is considered complete with the current [αL, αR] interval and the αfit, αerr

estimates made like in Bisect-1 (lines 22-23).

1: function Displace-1(αL, αR, αM ,AIVDL,AIVDR, β, k)
2: α′M = Middle(αL, αM , δα) . trying displacement to the left
3: if Distinct(α′M , αL, αM ) then
4: AIVD′M = 〈AIVD〉kα′M ,β . analytics (Eq. (2.19))

5: if ¬Match-1(AIVD′M ,AIVDemp) then
6: if Ord-1(AIVDL,AIVDR) = Ord-1(AIVD′M ,AIVDemp) then
7: αL = α′M ; AIVDL = AIVD′M
8: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in
9: end if

10: end if
11: end if
12: α′M = Middle(αM , αR, δα) . trying displacement to the right
13: if Distinct(α′M , αM , αR) then
14: AIVD′M = 〈AIVD〉kα′M ,β . analytics (Eq. (2.19))

15: if ¬Match-1(AIVD′M ,AIVDemp) then
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16: if Ord-1(AIVDL,AIVDR) 6= Ord-1(AIVD′M ,AIVDemp) then
17: αR = α′M ; AIVDR = AIVD′M
18: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in
19: end if
20: end if
21: end if
22: (αfit, αerr) = InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
23: return (αL, αR, αfit, αerr) . fitting complete
24: end function

2.C.2 Second level fitting

This section presents the algorithm part concerned with the second fitting level.
Each of the three functions of the first fitting level (Sec. 2.C.1) has a correspondent
here: Fit-2, Bisect-2, Displace-2, all of them returning the same type of
information 7, each of them having a similar, structure, purpose and role to the
correspondent within the first fitting level. Additionally, this section presents the
pseudocode for a fourth function, NumSIVD, which carries out the numerical
SIVD calculations. In addition to the two constants introduced at the first level,
the second level pseudocode invokes two other constants, which are also assumed
to be known a-priori and available for use anywhere in these four functions. First,
δβ is the desired resolution in the β parameter, which is here set to the inverse
of the number of features: δβ = 1

F . Second, SIVDemp is the SIVD uncertainty
range for the empirical data.

In relation to the first three functions, the descriptions below attempt to
mostly emphasize the elements that come in addition with respect to their first-
level correspondents. Some of these elements have a repetitive nature and are
worth explaining before moving to the specific description of each function. First,
the (generic) β̄X notation (where “X” can stand for “L”, “R” or “M”) denotes the
(generic) “composite fitting information” β̄X = (β, αL, αR, αfit, αerr)X, which is a
5-tuple consisting of a β value together with the associated four values returned by
a (generic) call Fit-1(β, k) for that specific β and some arbitrary k. Second, when-
ever an “SIVDX” variable appears in the first three functions (where “X” is again
a generic label), except for SIVDemp, it actually denotes the (generic) “composite

SIVD information” SIVDX = ((SIVDfit
L ,SIVDerr

L ), (SIVDfit
R ,SIVDerr

R ))X, which is
a pair of pairs of real numbers, each inner pair corresponding to a model SIVD
uncertainty range associated to one margin of an α interval returned by a call to
Fit-1, while both inner pairs have the same β. This schematically reads:

(β, αL)→ (SIVDfit
L ,SIVDerr

L ),

(β, αR)→ (SIVDfit
R ,SIVDerr

R ),

7The type of information returned by the three functions at a second-level fitting is different
than that of the three functions at the first-level fitting, and actually more complex.
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Third, any (generic) call NumSIVD(β̄, k) is necessarily preceded by an associated
(generic) call Fit-1(β, k) and by an associated (generic) variable compression
β̄ = (β, αL, αR, αfit, αerr), the last two being needed for producing the composite
fitting information β̄. Fourth, whenever a piece of composite SIVD information
appears in a call to Ord-2 or Match-2, it is accompanied by an associated piece
of composite fitting information, which allows for the mean, statistical error and
systematic error of in the model SIVD to be all reconstructed within, for a given
combination of β and k.

Function Fit-2 acts as an interface for the second-level fitting, which consists
of tuning the β parameter, for a given value of k, such that the SIVD quantity
matches the empirical value, relying on an underlying tuning of the α parameter
in terms of the AIVD quantity (using Fit-1). Here, k is a strictly positive, integer
number. The method returns the composite fitting information associated to the
left (β̄L) and right (β̄R) margins of the tightest β interval found, together with
the estimated β match within this interval (βfit) and its associated error (βerr).
It assumes that the empirical SIVD can actually be uniquely matched by varying
β and α, for the given value of k. After checking that there exists a meaningful
[βL, βR] interval for which the first-level fitting is possible (lines 2,3), the method
conducts the numeric SIVD calculations on both sides of the interval (line 6),
preceded, on each side, by the first level fitting and the decompression (lines 4,5,
as explained above), in order to finally pass the task to Bisect-2.

1: function Fit-2(k)
2: (βL, βR) = Init-2(δβ, k,AIVDemp) . initializing the β-interval
3: if βL < βR then
4: (αLL, α

R
L , α

fit
L , α

err
L ) = Fit-1(βL, k); (αLR, α

R
R, α

fit
R , α

err
R ) = Fit-1(βR, k)

5: β̄L = (βL, α
L
L, α

R
L , α

fit
L , α

err
L ); β̄R = (βR, α

L
R, α

R
R, α

fit
R , α

err
R )

6: SIVDL = NumSIVD(β̄L, k); SIVDR = NumSIVD(β̄R, k) . numerics
7: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k)
8: end if
9: return FittingImpossibleError

10: end function

Function Bisect-2 is another recursive implementation of the bisection method,
which sequentially narrows down the [βL, βR] interval, such that at each stage the
empirical SIVD is contained. Here, β̄L, β̄R are 5-tuples of real numbers encoding
the left and right pieces of composite fitting information, SIVDL,SIVDR are the
pairs of pairs of real numbers encoding the left-β and right-β pieces of compos-
ite SIVD information, while k is of the same type as in Fit-2. It returns the
same type of information as Fit-2. Like Bisect-1, the function consists of a
part concerned with convergence (lines 4-7), a part concerned with the jump to
Displace-2 (lines 11-13) and a part concerned with choosing between the left
and right β subintervals and with zooming in on the chosen one (lines 14-19).
Note the additional statements concerned with decompressing the composite fit-
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ting information (line 2) and with preparing the numeric SIVD calculations at
the midpoint (lines 8-9).

1: function Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k)
2: (βL, α

L
L, α

R
L , α

fit
L , α

err
L ) = β̄L; (βR, α

L
R, α

R
R, α

fit
R , α

err
R ) = β̄R

3: βM = Middle(βL, βR, δβ)
4: if ¬Distinct(βM , βL, βR) then
5: (βfit, βerr) = InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
6: return (β̄L, β̄R, βfit, βerr)
7: end if
8: (αLM , α

R
M , α

fit
M , α

err
M ) = Fit-1(βM , k)

9: β̄M = (βM , α
L
M , α

R
M , α

fit
M , α

err
M )

10: SIVDM = NumSIVD(β̄M , k) . numerics
11: if Match-2(β̄M ,SIVDM ,SIVDemp) then
12: return Displace-2(β̄L, β̄R, β̄M ,SIVDL,SIVDR, k)
13: end if
14: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) = Ord-2(β̄M ,SIVDM ,SIVDemp) then
15: β̄L = β̄M ; SIVDL = SIVDM . selecting right interval
16: else
17: β̄R = β̄M ; SIVDR = SIVDM . selecting left interval
18: end if
19: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in
20: end function

Function Displace-2 attempts to displace the midpoint βM previously calcu-
lated at some stage in Bisect-2, in a way that its associated SIVD uncertainty
range does not overlap with the empirical one. This function has all the arguments
of Bisect-1 and β̄M as an additional one, which is a 5-tuple of real numbers en-
coding the midpoint composite fitting information. It returns the same type of
information as Fit-2. Like Displace-1, the function consists of a part that at-
tempts a displacement to the left (lines 4-15), one that attempts a displacement
to the right (lines 16-27) and one that takes care of the convergence (lines 28-29).
Note the additional statements concerned with decompressing the composite fit-
ting information (lines 2-3) and with preparing the numeric SIVD calculations for
the left/right secondary midpoint (lines 6-7/18-19).

1: function Displace-2(β̄L, β̄R, β̄M ,SIVDL,SIVDR, k)
2: (βL, α

L
L, α

R
L , α

fit
L , α

err
L ) = β̄L; (βR, α

L
R, α

R
R, α

fit
R , α

err
R ) = β̄R;

3: (βM , α
L
M , α

R
M , α

fit
M , α

err
M ) = β̄M

4: β′M = Middle(βL, βM , δβ) . trying displacement to the left
5: if Distinct(β′M , βL, βM ) then
6: (α̇LM , α̇

R
M , α̇

fit
M , α̇

err
M ) = Fit-1(β′M , k)

7: β̄′M = (β′M , α̇
L
M , α̇

R
M , α̇

fit
M , α̇

err
M )

8: SIVD′M = NumSIVD(β̄′M , k) . numerics
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9: if ¬Match-2(β̄′M ,SIVD′M ,SIVDemp) then
10: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) = Ord-2(β̄′M ,SIVD′M ,SIVDemp)

then
11: β̄L = β̄′M ; SIVDL = SIVD′M
12: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in
13: end if
14: end if
15: end if
16: β′M = Middle(βM , βR, δβ) . trying displacement to the right
17: if Distinct(β′M , βM , βR) then
18: (α̇LM , α̇

R
M , α̇

fit
M , α̇

err
M ) = Fit-1(β′M , k)

19: β̄′M = (β′M , α̇
L
M , α̇

R
M , α̇

fit
M , α̇

err
M )

20: SIVD′M = NumSIVD(β̄′M , k) . numerics
21: if ¬Match-2(β̄′M ,SIVD′M ,SIVDemp) then
22: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) 6= Ord-2(β̄′M ,SIVD′M ,SIVDemp)

then
23: β̄R = β̄′M ; SIVDR = SIVD′M
24: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in
25: end if
26: end if
27: end if
28: (βfit, βerr) = InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
29: return (β̄L, β̄R, βfit, βerr)
30: end function

Function NumSIVD numerically generates a piece of composite SIVD infor-
mation with a precision that is as high as possible. Here, β̄ is a 5-tuple of real
numbers encoding a composite fitting information, while k is a positive integer
number. One sequence of SIVD values is numerically generated (lines 4-5 and
12-13) for each of the two margins of the α interval (contained in β̄), for the
given β (also contained in β̄) and the given k. An uncertainty range is obtained
from each of the two sequences (lines 6 and 16). These two uncertainty ranges
are used together with the information in β̄ to produce estimates for an average,
a statistical error and a systematic error that are β̄-specific rather than (α, β)-
specific (lines 7,8 and 17,18). The number of SIVD values in the two sequences
is increased and the calculations are repeated as long as the condition in line 10
remains true, namely as long as: the statistical error is higher than the system-
atic error, the desired separation between the model and empirical (statistical)
uncertainty ranges is not reached and the maximal SIVD sequence length is not
reached. The desired separation and the SIVD sequence length are controlled via
variables s and n, initialized in line 2 – the initial values of these variables, as well
as the upper bound on the latter are hard-coded, as visible in the pseudocode, and
have been decided after some experimentation with NumSIVD, but they are not
essential for the actual outcome. Also note the decompression of the composite
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fitting information (line 3) and the decompression of SIVD uncertainty ranges
(lines 9 and 19).

1: function NumSIVD(β̄, k)
2: n = 20; s = 5 . initial number of realizations and desired separation
3: (β, αL, αR, αfit, αerr) = β̄
4: SIVDseq

L = GenSeqSIVD(αL, β, k, n)
5: SIVDseq

R = GenSeqSIVD(αR, β, k, n)
6: SIVDL = CompAvgErr(SIVDseq

L ); SIVDR = CompAvgErr(SIVDseq
R )

7: SIVD = Interpol(αL, αR, αfit,SIVDL,SIVDR)
8: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
9: (SIVDavg,SIVDstat) = SIVD; (SIVDavg

emp,SIVDstat
emp) = SIVDemp

10: while SIVDstat > SIVDsyst∧(SIVDstat+SIVDstat
emp > |SIVDavg

emp−SIVDavg|/s)∧
n < 350 do

11: n = 2 · n
12: SIVDtmpSeq

L = GenSeqSIVD(αL, β, k, n)

13: SIVDtmpSeq
R = GenSeqSIVD(αR, β, k, n)

14: SIVDseq
L = Merge(SIVDseq

L ,SIVDtmpSeq
L )

15: SIVDseq
R = Merge(SIVDseq

R ,SIVDtmpSeq
R )

16: SIVDL = CompAvgErr(SIVDseq
L ); SIVDR = CompAvgErr(SIVDseq

R )
17: SIVD = Interpol(αL, αR, αfit,SIVDL,SIVDR)
18: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
19: (SIVDavg,SIVDstat) = SIVD
20: end while
21: return (SIVDL,SIVDR)
22: end function

2.C.3 Used functions

This section describes functions that are used by the pseudocode in sections 2.C.1
or 2.C.2 but are not described there. The following is a list of functions for which
the pseudocode is also provided, following each text description.

Function InterfitLin-1 fine-tunes the α parameter such that AIVDemp is
matched, relying on a linear approximation of the model AIVD as a function of
α within the (αL, αR) interval, using the boundary values AIVDL and AIVDR.
Its arguments are of the same type as those of InterFitLin (described below),
except that AIVDL and AIVDR are real numbers rather than uncertainty ranges.
The output structure is entirely the same as that of InterFitLin. It is essentially
a first-level fitting interface for InternFitLin, which is called after specifying
that the errors associated to AIVDL and AIVDR are zero.

1: function InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
2: AIVD′L = (AIVDL, 0); AIVD′R = (AIVDR, 0)
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3: return InternFitLin(αL, αR,AIVD′L,AIVD′R,AIVDemp)
4: end function

Function InterfitLin-2 fine-tunes the β parameter such that SIVDemp is
matched, relying on a linear approximation of the model SIVD as a function of β
within the [βL, βR] interval, using the boundary information stored in SIVDL and
SIVDR. Its arguments are of the same type as those of InterFitLin (described
below), except that β̄L and β̄R are 5-tuples or real numbers rather than real num-
bers and SIVDL and SIVDR are pieces composite SIVD information rather than
uncertainty ranges. The output structure is entirely the same as that of Inter-
FitLin. It is essentially a second-level fitting interface for InternFitLin, which
is called after carrying out the following two operations: computing the mean,
statistical error and systematic error on each of the two margins of the β interval,
using the right combination of composite fitting information and composite SIVD
information (lines 2,3); compressing information into an SIVD uncertainty range
for each of the two margins, after choosing the highest among the two errors for
each margin.

1: function InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
2: (SIVDavg

L ,SIVDstat
L ,SIVDsyst

L ) = MeanStatSyst(β̄L,SIVDL)

3: (SIVDavg
R ,SIVDstat

R ,SIVDsyst
R ) = MeanStatSyst(β̄R,SIVDR)

4: SIVD′L = (SIVDavg
L ,max(SIVDstat

L ,SIVDsyst
L ))

5: SIVD′R = (SIVDavg
R ,max(SIVDstat

R ,SIVDsyst
R ))

6: return InternFitLin(βL, βR,SIVD′L,SIVD′R,SIVDemp)
7: end function

Function Match-1 checks whether AIVD (real value) falls within the uncer-
tainty range specified by AIVDemp. It acts as an interface for Match (described
below) within the first-level fitting scheme.

1: function Match-1(AIVD,AIVDemp)
2: AIVD′ = (AIVD, 0)
3: return Match(AIVD′,AIVDemp)
4: end function

Function Match-2 checks whether there is an overlap between the model
SIVD uncertainty range obtained from β̄ (composite fitting information) and
SIVD (composite SIVD information) and the empirical one encoded by SIVDemp.
It acts as an interface for Match (described below) within the second-level fitting
scheme.

1: function Match-2(β̄,SIVD,SIVDemp)
2: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)
3: SIVD′ = (SIVDavg,max(SIVDstat,SIVDsyst))
4: return Match(SIVD′,SIVDemp)
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5: end function

Function Ord-1 (first version) checks whether AIVDL (real value) is smaller
than AIVDR (real value), acting as an interface for Ord within the first-level
fitting scheme.

1: function Ord-1(AIVDL,AIVDR)
2: return Ord(AIVDL,AIVDR)
3: end function

Function Ord-1 (second version) checks whether AIVD (real value) is smaller
than the average stored in AIVDemp (uncertainty range), acting as an interface
for Ord within the first-level fitting scheme.

1: function Ord-1(AIVD,AIVDemp)
2: (AIVDavg

emp,AIVDerr
emp) = AIVDemp

3: return Ord(AIVD,AIVDavg
emp)

4: end function

Function Ord-2 (first version) checks whether the average stored in the SIVD
uncertainty range obtained from β̄L (composite fitting information) and SIVDL

(composite SIVD information) is smaller than the average stored in that obtained
from β̄R (composite fitting information) and SIVDR (composite SIVD informa-
tion), acting as an interface for Ord within the second-level fitting scheme.

1: function Ord-2(β̄L, β̄R,SIVDL,SIVDR)
2: (SIVDavg

L ,SIVDstat
L ,SIVDsyst

L ) = MeanStatSyst(β̄L,SIVDL)

3: (SIVDavg
R ,SIVDstat

R ,SIVDsyst
R ) = MeanStatSyst(β̄R,SIVDR)

4: return Ord(SIVDavg
L ,SIVDavg

R )
5: end function

Function Ord-2 (second version) checks whether the average stored in the
SIVD uncertainty range obtained from β̄ (composite fitting information) and
SIVD (composite SIVD information) is smaller than the average stored SIVDemp,
acting as an interface for Ord within the second-level fitting scheme.

1: function Ord-2(β̄,SIVD,SIVDemp)
2: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)
3: (AIVDavg

emp,AIVDerr
emp) = AIVDemp

4: return Ord(SIVDavg,AIVDavg
emp)

5: end function

Function MeanStatSyst estimates a mean, a statistical error and a system-
atic error from a piece of composite fitting information and an associated piece
of composite SIVD information, which are the two arguments of the function.
It returns the 3-tuple comprising of the three computed real numbers. Note the
decompression of composite fitting information (line 2) and the decompression of
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composite SIVD information (line 3).

1: function MeanStatSyst(β̄,SIVD)
2: (β, αL, αR, αfit, αerr) = β̄
3: (SIVDL,SIVDR) = SIVD
4: SIVD′ = Interpol(αL, αR, αfit,SIVDL,SIVDR)
5: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
6: (SIVDavg,SIVDstat) = SIVD′

7: return (SIVDavg,SIVDstat,SIVDsyst)
8: end function

The following is a list of functions for which only text explanations are provided
in schematic way, sometimes accompanied by figures.

• Init-1(δα):

– gives the left and right boundaries of the largest possible interval for
which the α parameter is compatible with the stochastic model in use,
given the grid spacing δα

– input: δ is a real number

– in practice it returns (δα, 1− δα) regardless of whether PG or MPG is
used

• Init-2(δβ, k,AIVDemp):

– gives the left and right boundaries of the largest possible interval, if
any, for which the β parameter allows for the (first level) fitting of
AIVD(α) to successfully take place, given the grid spacing δβ

– input: δβ is a real number, k is a positive integer and AIVDemp is an
uncertainty range

– assumes that there exists at most one β interval [βL, βR] for which
there exists an α such that 〈AIVD〉kα,β = AIVDemp is satisfied

– starts from the largest interval allowed by the model and independently
adjusts each of the two boundaries via a branching algorithm, until the
desired interval is reached

– returns two (incompatible) boundaries βL > βR if such an interval does
not exist

• Middle(l, r, δ):

– computes the value closest to the average between l and r, on a grid
of spacing δ

– input: l, r, δ are all real numbers

– assumes that the interval length l − r is equal to an integer times δ
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• Distinct(m, l, r):

– checks whether m is different than both l and r

– input: m, l, r are all real numbers constrained constrained to a grid of
constant spacing

• InternFitLin(pL, pR, OL, OR, Oemp):

– adjusts a parameter p such that an observable O attains a value com-
patible with the empirical in Oemp interval, assuming that O is a linear
function of p within the [pL, pR] interval

– input: pL, pR are real numbers, encoding the left and right boundaries
of the interval; OL, OR are mean-error pairs of real numbers encoding
the theoretical uncertainty ranges of the observable for the left and
for the right boundaries; Oemp is a mean-error pair of real numbers
encoding the empirical uncertainty range

– returns the value and associated error of the p parameter resulting
from this fitting process (pfit, perr), computed based on geometrical
considerations, in the manner illustrated in Fig. 2.7(a)

– pfit is calculated first by intersecting the theoretical line with the em-
pirical one, disregarding all errors; then, perr is calculated by assuming
that the theoretical error is constant within the [pL, pR] interval, with
value given by interpolating the errors contained by OL and OR at pfit

– perr takes its origin both in the the empirical error as well as in the
theoretical error, but also depends on the slope resulting from the linear
approximation

• Match(r1, r2):

– checks whether there is an overlap between the uncertainty ranges en-
coded by r1 and r2

– input: r1, r2 are mean-error pairs of real numbers

• Ord(vL, vR):

– checks whether the condition vL < vR is satisfied

– input: vL, vR are real numbers

– assumes that vL 6= vR

• GenSeqSIVD(α, β, k, n)

– numerically generates a sequence of n SIVD values according to the
respective stochastic model, subject to parameter values indicated by
k, α, β
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– input: α, β are real numbers, while k, n are positive integers

• Merge(SIVDseq
1 ,SIVDseq

2 )

– merges two sequences of (real) SIVD values

– input: SIVDseq
1 ,SIVDseq

2 are both sequences of (real) SIVD values

• CompAvgErr(SIVDseq)

– computes the mean and standard error of the mean from SIVDseq

– input: SIVDseq is a sequence of real SIVD values

• Interpol(αL, αR, αfit,SIVDL,SIVDR)

– estimates the mean and error in SIVD corresponding to αfit based on
the values attained for αL

– input: αL, αR, αfit are real numbers, while SIVDL,SIVDR are mean-
error pairs of real numbers

– uses on a linear interpolation within the [αL, αR] interval, separately
for the mean and for the error

• CompSystErr(αL, αR, αerr,SIVDL,SIVDR)

– estimates the systematic error SIVDsyst of the SIVD quantity induced
by the error αerr (associated to fitting the α parameter in terms of the
AIVD quantity), assuming that SIVD is a linear function of α within
the [αL, αR] interval

– input: αL, αR, αerr are real numbers while while SIVDL,SIVDR are
mean-error pairs of real numbers encoding the theoretical uncertainty
ranges on the left and right boundaries

– SIVDsyst is computed based on geometrical considerations, in the man-
ner illustrated in Fig. 2.7(b)

2.C.4 Algorithm usage

This section explain how the formalism presented throughout this document is
effectively used for producing the results shown in Sections 2.3 and 2.4.

First, the formalism is used for producing the plots showing the SIVD(β)
dependence (“Model fitting” section). For either PG or MPG, for a specific k
value and a specific β on-grid value, the drawn model SIVD uncertainty range
(Fig. 2.3) is obtained after the following computational steps:

1: (αL, αR, αfit, αerr) = Fit-1(β, k) . executing 1st-level fitting
2: β̄ = (β, αL, αR, αfit, αerr) . creating composite fitting information
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(a) (b)

Figure 2.7: Illustration of computation carried out by InterFitLin (a) and by
CompSystErr (b), with the output quantities highlighted in red.

3: SIVD = NumSIVD(β̄, k) . numeric SIVD calculations
4: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)

which provides the values of the SIVD average SIVDavg, the SIVD statistical error
SIVDstat and the SIVD systematic error SIVDsyst. One can then place a point at
coordinates (β,SIVDavg), within the respective k curve, with an error bar given
by the maximum between SIVDstat and SIVDsyst.

Second, the formalism is used for providing the best-fitting, on-grid values for
the α and β model parameters, which are used for generating sets of cultural
vectors on which the LTCD-STCB analysis is applied (Sec. 2.4). For either PG
or MPG and for a specific k value, the following procedure is followed:

1: (β̄L, β̄R, βfit, βerr) = Fit-2(k) . Executing 2nd-level fitting
2: (βL, α

L
L, α

R
L , α

fit
L , α

err
L ) = β̄L . Decompressing left-β composite fitting

information
3: (βR, α

L
R, α

R
R, α

fit
R , α

err
R ) = β̄R . Decompressing right-β composite fitting

information
4: if βfit − βL < βR − βfit then
5: β = βL . choosing βL, since it is closer to β
6: if αfit

L − αLL < αRL − αfit
L then

7: α = αLL . choosing αLL, since it is closer to αfit
L

8: else
9: α = αRL . choosing αRL , since it is closer to αfit

L

10: end if
11: else
12: β = βR . choosing βR, since it is closer to β
13: if αfit

R − αLR < αRR − αfit
R then

14: α = αLR . choosing αLR, since it is closer to αfit
R

15: else
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16: α = αRR . choosing αRR, since it is closer to αfit
R

17: end if
18: end if

which provides the best on-grid values for the (α, β) pair.
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Chapter 3

Ultrametricity increases the
predictability of cultural
dynamics

A quantitative understanding of societies requires useful combinations of empiri-
cal data and mathematical models. Models of cultural dynamics aim at explaining
the emergence of culturally homogeneous groups through social influence. Tradi-
tionally, the initial cultural traits of individuals are chosen uniformly at random,
the emphasis being on characterizing the model outcomes that are independent
of these (‘annealed’) initial conditions. Here, motivated by an increasing inter-
est in forecasting social behavior in the real world, we reverse the point of view
and focus on the effect of specific (‘quenched’) initial conditions, including those
obtained from real data, on the final cultural state. We study the predictability,
rigorously defined in an information-theoretic sense, of the social content of the
final cultural groups (i.e. who ends up in which group) from the knowledge of
the initial cultural traits. We find that, as compared to random and shuffled ini-
tial conditions, the hierarchical ultrametric-like organization of empirical cultural
states significantly increases the predictability of the final social content by largely
confining cultural convergence within the lower levels of the hierarchy. Moreover,
predictability correlates with the compatibility of short-term social coordination
and long-term cultural diversity, a property that has been recently found to be
strong and robust in empirical data. We also introduce a null model generating
initial conditions that retain the ultrametric representation of real data. Using
this ultrametric model, predictability is highly enhanced with respect to the ran-
dom and shuffled cases, confirming the usefulness of the empirical hierarchical
organization of culture for forecasting the outcome of social influence models.

This chapter is based on the following scientific article:
A. I. Băbeanu, J. van de Vis and D. Garlaschelli, arXiv:1712.05959 (2017).
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3.1 Introduction

Understanding the self-organization and emergence of large-scale patterns in real
societies is one of the most fascinating, yet extremely challenging problems of
modern social science [1]. A prominent field of research studies the spontaneous
emergence of groups of culturally homogeneous individuals. One of the mecha-
nisms that are believed to play a key role in this process is social influence, i.e. the
gradual convergence of the cultural traits, attitudes and opinions of individuals
subject to mutual social interactions. Stylized models of cultural dynamics under
social influence have attracted the interest of an interdisciplinary community of
sociologists, computational social scientists and statistical physicists [2].

One of the prototypical models in this context is the popular Axelrod model
[3], which has been studied in many variants over the last two decades [4, 5, 6, 7,
8, 9, 10, 11, 12]. The model is multi-agent, with a cultural vector associated to
each agent. One cultural vector is a sequence of subjective cultural traits (opin-
ions, preferences, beliefs) that each agent possesses, with respect to a predefined
set of features (variables, topics, issues). The dynamics is driven by social in-
fluence, which iteratively increases the similarity of the cultural vectors of pairs
of interacting individuals. However, interactions are only allowed among pairs of
individuals whose vectors are already closer than a certain (implicit or explicit)
threshold distance, a mechanism known as bounded confidence and having its
origins in the so-called ‘assimilation-contrast theory’ [13] in social science. The
intuition behind the model, successfully confirmed via numerical simulations and
analytic calculations, is that social influence increases cultural similarity, yet full
convergence is precluded by bounded confidence. The net result is the emergence
of a certain number of cultural domains, each containing several individuals with
identical cultural vectors and mutually separated by a distance larger than the
bounded confidence threshold, thus no longer interacting with each other. The
value of the model is the identification of a viable, decentralized mechanism ac-
cording to which cultural diversity can persist at a global (inter-domain) scale,
even if it vanishes at a local (intra-domain) scale.

Given the focus on the qualitative aspect of such an emergent pattern, the
Axelrod model has been traditionally studied by specifying uniformly random
initial conditions for the cultural vectors of all individuals, i.e. by drawing each
cultural trait independently from a probability distribution that is flat over the
set of possible realizations. Consistently with this uninformative (and deliber-
ately unrealistic) choice, the focus of many studies has been the characterization
of the outcomes of the model that are robust upon averaging over multiple real-
izations of the initial randomness. Since the cultural dynamics evolving the initial
state is also stochastic, a second average over the dynamics is also required. We
may therefore say that this is the ‘annealed’ version of the model. Examples of
quantities that are stable across multiple realizations of uniformly random initial
conditions are the expected number and expected size of final cultural domains.
An obvious counter-example is the values of the vectors ending up in such do-
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mains: as follows from the complete symmetry in cultural space implied by the
uniformity of the initial randomness, such values are by construction maximally
unpredictable.

On the other hand, recent studies have investigated the model starting from
different classes of initial conditions, beyond the uniformly random one. In partic-
ular, emphasis has been put on using initial conditions constructed from empirical
data [14, 15, 16] (Chap. 1) and their randomized, trait-shuffled counterparts – ob-
tained by randomly shuffling, for each component of the cultural vectors, the
empirical values (traits) of all individuals in the sample. These studies have em-
phasized a strong dependence of the final outcome on the initial conditions. For
instance, certain model outcomes that have an interesting interpretation in terms
of enabling the coexistence of short-term social collective behavior and long-term
cultural diversity [14] (more details are provided later in this paper) are found
to vary significantly across the classes of empirical, trait-shuffled, and uniformly
random initial conditions, while remaining largely stable when considering differ-
ent instances belonging to the same class. This stability implies that empirical
cultural data share certain remarkably universal properties, independent of the
specific sample considered and at the same time significantly different from those
exhibited by random and randomized data [16] (Chap. 1). This has stimulated
the introduction of stochastic, structural models aimed at capturing the essential
properties of the empirical cultural data [15, 17] (Chap. 2).

Strong dependence of cultural dynamics on the initial conditions might be a
useful property to exploit in the light of the increasing interest towards forecasting
social and cultural behavior in the real world. Examples include the predictability
of certain aspects of political elections, public campaigns, spreading of (fake) news,
financial bubbles and crashes, and commercial success of new items. If interest
is shifted towards the predictability of future long-term outcomes given certain
initial conditions, then a corresponding change of perspective is implied at the
level of modeling. In particular, the aforementioned ‘annealed’ framework, where
the outcome of models of cultural dynamics is averaged over multiple realizations
of the initial randomness, becomes less relevant. On the contrary, if a specific
(e.g. empirical) initial condition is known, it becomes natural to use it as the
single initial specification of the heterogeneity of the system. Obviously, averaging
with respect to different random trajectories of the social influence dynamics, all
starting from the same initial cultural state, remains important and necessary.
We may therefore call this the ‘quenched’ version of the model.

In this work we focus for the first time on the predictability of the social
content of the cultural domains in the final state of the Axelrod model, given a
certain initial state. By social content we mean the composition of the different
domains in terms of individuals, i.e. we are interested in forecasting ‘who ends
up in which cultural domain’. It should be noted that the social content is one
of those properties that, just like the values of the final cultural vectors, is maxi-
mally unpredictable when considering the usual annealed model under uniformly
random initial conditions. By contrast, we consider the quenched scenario start-

89



3.1 Introduction

ing from specific initial conditions sampled from empirical, shuffled, random, and
an additional, ‘ultrametric’ class of initial conditions.

We find that, remarkably, empirical and random initial conditions are asso-
ciated with the highest and, respectively, lowest degree of predictability, which
we rigorously define in an information-theoretic sense. This means that, as com-
pared with the usual uniform specification of the initial conditions of the model,
empirical data allow for a much more reliable forecast of the identity of the indi-
viduals forming the final cultural domains. We find that this result follows from
the fact that the hierarchical, ultrametric-like organization of empirical cultural
vectors, when coupled with bounded confidence, largely confines cultural con-
vergence within the lower levels of the hierarchy. This result is confirmed using
surrogate data that, while retaining only the ultrametric representation of real
data, are also found to be associated with a higher predictability with respect to
the shuffled and random conditions. The predictability associated to random and
randomized cultural vectors is lower because it is difficult to identify a meaningful
and robust hierarchical structure within the lower levels of which social influence
remains confined.

Even if we do not perform an explicit analysis of the cultural content of the
final domains, the finding that their social content is predictable, coupled with
the fact that the initial cultural vectors of all individuals are known, implies that
each final cultural vector will be a mixture of the traits of the initial vectors of the
individuals ending up in the same cultural domain. This means that, the higher
the predictability of the social content, the higher that of the cultural content
as well. The take-home message is that the empirical hierarchical organization
of culture and its ultrametric representation are very informative and useful for
forecasting the outcome of models of cultural dynamics.
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Figure 3.1: Cultural dynamics with an ultrametric initial state. At the top, a
dendrogram with three leaves is shown, with a distance (or dissimilarity) scale
on the left, with an associated similarity scale on the right and a threshold of
ω = 0.625 applied with respect to the former. The dendrogram is a subdominant
ultrametric representation of distances between three cultural vectors, which are
illustrated below its branches. These vectors are defined in terms of four binary
variables (features), corresponding to the four horizontal rows of disks, whose
possible values (traits) are denoted by the light-gray and dark-gray colors. The
boxes show the initial state partition, formed by two clusters (and connected com-
ponents) obtained by applying the ω = 0.625 cut in the dendrogram. Together,
the three vectors make up an initial cultural state on which the cultural dynamics
model can be applied. For a bounded confidence value is set to ω = 0.625, one
of the possible final states is shown at the bottom. The boxes show the final
state partition, formed by two cultural domains, within which cultural vectors
are identical. The discrepancy between the initial state and final state partitions
is measured with the normalized variation of information quantity nVI, which in
this situation would give a value of 0.0, since the two partitions are identical.
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3.2 Ultrametricity and cultural dynamics

The notion of ultrametricity refers to sets of objects that are hierarchically or-
ganized in certain abstract spaces, with applications in various fields, including
mathematics (p-adic numbers), evolutionary biology (phylogenetic trees) and sta-
tistical physics (spin glasses) [18]. In practice, an ultrametric representation can
be produced as the output of a hierarchical clustering algorithm applied to a ma-
trix of pairwise distances between objects [18]. For the purpose of this work, these
objects are the cultural vectors, whose pairwise cultural distances are computed in
the same manner as in Refs. [16, 17, 15, 14] (also Chaps. 1 and 2) – the following
explanations concerning ultrametricity are mostly restricted to cultural vectors,
although many of the concepts have a wide range of applicability. The ultrametric
representation of N cultural vectors can be visualized as a dendrogram (a binary
hierarchical tree; see the top of Fig. 3.1) with N leaves (one for each vector) and
N − 1 branching points (often referred to as “branchings”, for simplicity), sorted
by N − 1 real numbers that are attached to them. These numbers can be defined
in two, equivalent ways: on a distance scale (top-left axis) or on a similarity scale
(top-right axis) – both quantities take values between 0.0 and 1.0, while adding
up to 1.0. Each number is an approximation for distances between leaves that
are first merged at the respective branching point. These N − 1 numbers and
the the topology of the dendrogram retain part of the information inherent in
the cultural distance matrix (which is specified by N(N − 1)/2 numbers), so the
dendrogram is an approximation of this matrix. The approximation is exact and
algorithm-independent only when the original distances are perfectly ultrametric:
a stronger version of the triangle inequality is satisfied for all triplets of distinct
objects [18]. A cut can be performed at a certain height ω in the dendrogram,
providing an ω-dependent partition of the N cultural vectors (see Fig. 3.1). For a
dendrogram obtained via the single-linkage hierarchical clustering algorithm (See
Ref. [19] and references therein), the ω-dependent partition is the same as that
encoding the connected components obtained by applying an ω-threshold to the
initial matrix of distances.

Ref. [14] pointed out that a dendrogram approximating an empirical cultural
state shows a clearer hierarchical organization than those approximating its shuf-
fled or random counterparts, suggesting that the ultrametric representation is
better suited for empirical data than for shuffled or random data. In addition,
cultural dynamics applied to the empirical cultural state appeared to mostly in-
duce convergence within the clusters of the ω-dependent partition, if ω is equal to
the bounded confidence threshold used in the cultural dynamics model (see be-
low). These observations were made in a qualitative way, by visually inspecting
dendrograms obtained with the average-linkage hierarchical clustering algorithm
[20, 21]. Instead, we perform here a systematic, quantitative comparison be-
tween ω-dependent partitions of initial cultural states and associated partitions
of final states resulting from cultural dynamics, for different classes of initial cul-
tural states. In addition, one of these classes is defined by enforcing, on average,
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Figure 3.2: Relationships between the important diversity and coordination mea-
sures. One sees the dependence of the final, average diversity 〈DF 〉, first (a) on
the initial coordination CI , second (b) on the initial diversity measure DI . This
is shown for one empirical (red), one ultrametric-generated (green), one shuffled
(blue) and one random (black) set of cultural vectors. All sets of cultural vectors
have N = 500 elements and are defined with respect to the same cultural space,
from the variables of the empirical Eurobarometer (EBM) data. The errors of
〈DF 〉 are standard mean errors obtained from 10 cultural dynamics runs.

the ultrametric representation of empirical data, generalizing a method originally
proposed in Ref. [22] for biological taxonomies. Whenever an ultrametric repre-
sentation is constructed within this study, the single-linkage algorithm [19] is used
instead of the average-linkage one, since it provides the subdominant ultrametric,
which is the ‘closest from below’ to the original distances and unique [23], while
also being equivalent to the hierarchical connected-component representation, as
mentioned above. This choice is also common for the purpose of evaluating mea-
sures of ultrametricity, like the cophenetic correlation coefficient, which is done
in Ref. [15].

Cultural dynamics is modeled here by a simple, Axelrod-type model, without
any underlying geometry for a social network or a geographical-physical space: es-
sentially, all N agents are connected to each other. Instead, a bounded-confidence
threshold ω is present, controlling the maximum cultural distance for which so-
cial influence can successfully occur. This is exactly the model used in Refs.
[14, 16, 17] (also in Chaps. 1 and 2) and partly in Ref. [15]. As anticipated in Sec.
3.1, this model converges to a random final, absorbing state, one that consists of
domains of internally identical and externally non-interacting cultural vectors –
distances within such groups are zero, while distances across are larger or equal
to ω.

Fig. 3.1 captures the essence of this study. At the center, the figure shows
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an initial cultural state with 3 vectors, defined in terms of 4 binary features,
with possible traits (values) denoted by the two shades of gray. Each of the three
vectors is matched to a branch of the dendrogram drawn at the top, which encodes
the subdominant ultrametric representation of the initial cultural state. For this
specific case, the distance between the first two vectors is 0.5, while the distances
between any of these two and the third are 0.75, which together make up a
perfectly ultrametric discrete space, thus exactly matching the distances encoded
by the dendrogram. The horizontal line denotes a possible ω-cut that can be
applied to the dendrogram, which induces a splitting into two (in the example
shown) branches and two associated subsets of vectors, which together form a
ω-dependent partition (or clustering) of the initial set. This partition is the same
as that induced by the set of connected cultural components of the ω-thresholded
cultural graph. At the bottom, the figure shows one possible final state resulting
from the cultural dynamics process, for a bounded confidence threshold set to the
same ω value as the dendrogram cut. The groups of identical vectors constitute
another, ω-dependent partition characterizing the cultural state, which exactly
matches, in this case, the initial state partition. Other final configurations are
possible, due to the stochastic nature of cultural dynamics. It is even possible,
although unlikely, that by a succession of convenient interactions the second vector
“migrates” from the cluster on the left to the one on the right during the dynamics.
The abundance of such deviations is quantitatively studied below, for several
classes of initial conditions.

3.3 Partition-specific quantities

The initial and final partitions form the basis of all calculations performed in
this study. Each type of partition is characterized by two types of quantities,
denoted by (DI , CI) for initial partitions and by (DF , CF ) for final partitions.
These quantities are referred to as the coordination (CI and CF ) and the diversity
measures (DI and DF ). They are computed according to the following formulas:

Da(ω) =
Na
C(ω)

N
, Ca(ω) =

√√√√∑
A

(
SaA
N

)2

ω

, (3.1)

where a ∈ {I, F} distinguishes between “initial” and “final”, Na
C is the number of

clusters (connected components if a = I, groups of identical vectors if a = F), and
SaA is the size of cluster A for the given ω value. Note that Da is a measure of di-
versification, while Ca is a measure of non-homogeneity encoded by the respective
partition. Moreover, since cultural dynamics is a stochastic process, it is mean-
ingful to talk about averages over final state partitions (over multiple dynamical
runs), which is particularly useful for the final diversity measure 〈DF (ω)〉.
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The 〈DF (ω)〉 quantity has been interpreted as a measure of propensity to
long-term cultural diversity, while the CI(ω) has been interpreted as a measure of
propensity to short-term collective behavior [14, 16] (Chap. 1). Through their
common dependence on ω, the correspondence between the two quantities is
graphically illustrated in Fig. 3.2(a). Along each curve, different points corre-
spond to different ω values, while different curves correspond to different classes
of initial conditions. It is clear that the empirical cultural state allows for much
more compatibility between the aspects measured by the two quantities than the
shuffled and the random cultural state, as pointed out in Ref. [14]. In fact, this is
the analysis used in Ref. [14] to highlight the structure of empirical cultural data
and in Ref. [16] (Chap. 1) to emphasize the universality of this structure – except
for the “ultrametric” scenario, which is first introduced here. In this scenario,
a set of N cultural vectors is generated such that, on average, the pairwise dis-
tances reproduce those encoded in the subdominant ultrametric representation of
an empirical set of cultural vectors of the same N . This is achieved using an ex-
tension of the method developed in Ref. [22], in the context of genetic sequences.
The extension here allows the method to work with combinations of features of
different ranges and types, where the range stands for the number of traits and
the type indicates whether the feature is ordinal or nominal. This is described in
detail in Appendix 3.A. On the other hand, a shuffled set of cultural vectors is ob-
tained by randomly and independently permuting empirical cultural traits among
vectors, with respect to every feature, thus exactly enforcing the empirical trait
frequencies. Note that the ultrametric cultural state comes closer to the empirical
behavior than the shuffled cultural state, suggesting that empirical ultrametric is
better than empirical trait frequencies at explaining the generic empirical struc-
ture. Finally, a random set of cultural vectors is obtained by drawing each trait at
random, from a uniform probability distribution, while only retaining the empiri-
cal data format, and thus the cultural space – determined the number of features,
together with the range and type of each feature. Eurobarometer 38.1 [24] data
is used here, formatted according to the procedure in Ref. [16] (Chap. 1).

For the same four sets of cultural vectors used in Fig. 3.2(a), the average final
diversity 〈DF (ω)〉 is plotted against the initial diversity DI(ω) in Fig. 3.2(b). This
visualization, previously used [14, 15] without the ultrametric scenario, illustrates
the extent to which cultural dynamics preserves the number of clusters when going
from the initial to the final partition. As observed before, the number of clusters
is well preserved by cultural dynamics acting on empirical data, which happens
much less for shuffled data and even less for random data. This goes along with the
idea that the final partition can be predicted from the initial partition if empirical
data is used for specifying the latter. Note that, like in Fig. 3.2(a), ultrametric-
generated data lies in between the empirical and shuffled scenarios, confirming
that the subdominant ultrametric information, which is directly related to the
sequence of ω-dependent initial partitions, is rather robust with respect to cultural
dynamics.
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Figure 3.3: Visualization of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially
active cultural links Φ at the top; the initial diversity DI at the center-bottom;
the final, average diversity 〈DF 〉 at the bottom. This is shown for one empiri-
cal (red), one ultrametric-generated (green), one shuffled (blue) and one random
(black) set of cultural vectors. All sets of cultural vectors have N = 500 elements
and are defined with respect to the same cultural space, from the variables of the
Eurobarometer (EBM) data. The errors of 〈DF 〉 and 〈nVI〉 are standard mean
errors obtained from 10 cultural dynamics runs.
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3.4 Predictability of the final state

Although informative, the comparison between the 〈DF (ω)〉 and DI(ω) is in-
complete as a way of assessing the predictability of the final partition from the
initial partition: two partitions might have the same number of clusters, but
the sizes and/or contents of these clusters might be very different. In order to
take all this into account in a consistent way, the discrepancy between the initial
and final state partitions is evaluated using the variation of information mea-
sure VI [25], as a function of ω. This is an information-theoretic measure that
acts as a metric distance within the space of possible partitions of a set of N
elements. It is convenient to work with the normalized version of this quantity
nVI(ω) = VI(ω)/ log(N), which retains the meaning and metricity of the original
quantity, as long as N remains the same (N = 500 for all results presented here).

The dependence of 〈nVI〉 on ω is shown in the second panel of Fig. 3.3, for
the same 4 cultural states used in Fig. 3.2, where the averaging is performed
over multiple dynamical runs, like for the 〈DF 〉 quantity. The empirical state
shows the lowest maximal 〈nVI〉 value, followed by the ultrametric, the shuffled
and the random states. This figure shows, in a rigorous way, that the outcome
of cultural dynamics can be predicted relatively well based on the initial state, if
this is constructed from empirical data and comparably well if this is constructed
based on the empirical ultrametric information. On the other hand, shuffled and
random data exhibit lower predictability. Note that, for either scenario, 〈nVI〉
vanishes for the low-ω and the high-ω regions, which is where both the initial and
final partitions consist of N single-object clusters and of one, N -objects cluster
respectively. This can be understood by looking at the dependence of the DI and
〈DF 〉 quantities on ω shown in the in the third and fourth panels: the ω region
for which 〈nVI〉 is significantly larger than 0.0 is roughly the region where either
DI or 〈DF 〉 is substantially different from 1.0 and 0.0.

In parallel, the first panel of Fig. 3.3 shows the ω-dependence of the fraction
of initially active cultural links Φ: the fraction of pairs (i, j) of cultural vectors
whose distance dij < ω in the initial state. This shows that the ω interval that is
non-trivial with respect to DI , 〈DF 〉 and 〈nVI〉 seems to be largely determined
by the shape of Φ, which is nothing else than the cumulative distribution of inter-
vector distances. The properties of this distribution – average lower for empirical
data than for random data, standard deviation higher for empirical data than
for either shuffled or random data – have been studied before [14, 15] and are
recognizable in the first panel of Fig. 3.3. Note that, for the ultrametric scenario,
the interesting ω region and the Φ profile are compressed in a lower-ω region
compared to empirical data. This means that the branchings in the dendrogram
obtained from ultrametric-generated data occur at lower ω values than those in
the dendrogram obtained from the original, empirical data. In turn, this is due to
the distances between the ultrametric-generated cultural vectors reproducing, on
average, the subdominant ultrametric empirical distances, rather than the original
empirical distances, while the former are known to systematically underestimate
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3.4 Predictability of the final state

the latter, particularly for higher distance values, as long as the empirical vectors
are not perfectly ultrametric, which in practice is always the case.

There is another aspect that can be noted when comparing, for either scenario,
the shape of Φ(ω) in the first panel with the shape of DI(ω) in the third panel
of Fig. 3.3: as ω is decreased, most of the cultural links need to be eliminated in
order to reach the abrupt region of the DI(ω) transition, for which the number of
clusters in the initial partition becomes comparable to N . This is not surprising
on general grounds. For instance, the Erdős-Réniy model of random graphs [26]
exhibits a critical link density of 1/N , at which a giant connected component
is present, if N is the number of nodes in the graph, instead of the number of
cultural vectors. Still, this analogy should not be taken too far. The random
graph interpretation is closest to the random cultural state scenario used here,
since the expected pairwise distance entailed by the latter is the same for any pair
of cultural vectors, just like the connection probability entailed by the former is the
same for any pair of nodes. However, even the random scenario has an underlying
metric structure, due to how cultural spaces are defined[16] (Chap. 1), which
should introduce more triangles than expected otherwise, while the shuffled and
empirical scenarios are additionally affected by inhomogeneities in their cultural
space distributions.
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Figure 3.4: Relationship between compatibility of final diversity and initial
coordination (vertical axis) and predictability of the final partition from the initial
partition. Each point corresponds to one cultural state, belonging to one class
and to one empirical source: each color corresponds to one class of cultural states,
while marker type correspond to one dataset, as indicated in the legends. All
cultural state consist of N = 500 cultural vectors.
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The analysis presented in Figs. 3.2 and Fig. 3.3 was repeated for three other
datasets: the General Social Survey [27], Jester[28] and the Religious Landscape
[29], processed according to the formatting rules of Ref. [16] (Chap. 1). For all
four datasets, the results are presented in a joint, compact manner by means of
Fig. 3.4, while more detailed results are shown in Appendix 3.B. Each of the
points in the figure corresponds to a combination of one dataset and one scenario.
The vertical axis corresponds to a measure of compatibility between long-term
cultural diversity 〈DF 〉 and short-term collective behavior CI , namely a measure
of the overall departure of the 〈DF 〉 vs CI curve from the lower-left corner in Fig.
3.2(a). The horizontal axis corresponds to a measure of predictability of the final
state from the initial state, namely an inverse measure of the overall departure of
the 〈nVI〉 vs ω from the horizontal axis in the second panel of Fig. 3.3.

For both measures, simple definitions are employed: rather than integrating in-
formation from every ω value for which some departure is present, both definitions
conceptually rely only on one, representative ω∗ point, for which both departures
are relatively high. Specifically, ω∗ is defined by intersecting the 〈DF 〉 vs CI curve
with the main diagonal 〈DF 〉 = CI . In practice, since just a finite number of ω
values are available for any combination of dataset and scenario, one uses instead
the two ω values that are closest to the main diagonal of the 〈DF 〉 vs CI plot
from either of the two sides. These two values, labeled as ωL and ωR, “bracket”
ω∗ from the left and right respectively: ωL < ω∗ < ωR. The ω∗ itself is never
explicitly calculated, but is conceptually useful for the explanations below.

The compatibility approximates the distance between the (〈DF (ω∗)〉 vs CI(ω
∗))

point and the (〈DF 〉 = 0, CI = 0) point, normalized by the length of the main
diagonal of the 〈DF 〉 vs CI plot. In practice, this is evaluated in terms of ωL and
ωR according to:√

〈DF (ωL)〉2 + C2
I (ωL) +

√
〈DF (ωR)〉2 + C2

I (ωR)

2
√

2
,

while the associated error is evaluated as:√
〈DF (ωL)〉2 + C2

I (ωL)−
√
〈DF (ωR)〉2 + C2

I (ωR)

2
√

2
.

The predictability approximates the distance between the (ω∗, 〈nVI(ω∗)〉) point
and the 〈nVI〉 = 1 line. In practice, this is evaluated as:

1− 〈nVI(ωL)〉+ 〈nVI(ωR)〉
2

,

while the associated error is evaluated as:

|〈nVI(ωL)〉 − 〈nVI(ωR)〉|
2

.
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3.5 Conclusion

Note that compatibility increases with predictability in a roughly linear way,
at least for the cultural states considered here. Moreover, cultural states belong-
ing to the same class tend to cluster together in the compatibility-predictability
space. A notable exception is ultrametric-Jester, which is significantly outside
the ultrametric class in terms of predictability, showing higher predictability than
any of the empirical states. Still, it is clear that cultural states that are closer to
the universal 〈DF 〉 vs CI empirical behavior also allow for better estimates of the
final partition from the initial one.

The observed increase of compatibility with predictability provides some in-
sights about the nature of empirical data, or at least about the shape of an
empirical-like dendrogram characteristic for the upper-right corner of Fig. 3.4.
This can be understood by realizing that the ultrametric and empirical states
approach an ideal, limiting situation of perfect predictability, for which the initial
and final partitions are identical irrespective of ω. This implies that 〈DF (ω)〉 =
DI(ω) and consequently that the 〈DF 〉 vs CI curve is essentially the DI vs CI
curve and thus controlled by the geometry of the subdominant ultrametric den-
drogram. One can then show – see Appendix Sec. 3.C – that this geometry needs
to be highly “unbalanced” in order to explain the close-to-linear 〈DF 〉 ≈ 1 − CI
empirical behavior in Fig. 3.2(a) and the compatibility values of approximately
0.5 following from it. For a perfectly-unbalanced geometry, the kth highest den-
drogram branching separates only one leaf from the remaining N − k, for all
k ∈ {1, ..., N − 1}. By contrast, a perfectly-balanced geometry entails a splitting
into two, equal clusters for each dendrogram branching, which would induce an
inverse square 〈DF 〉 ∝ C−2

I behavior – see Appendix Sec. 3.C – closer to that of
shuffled and random cultural states, with a lower compatibility value. Thus, while
going from the random to the empirical class, by enforcing more and better empir-
ical information, the increasing level of compatibility becomes more suggestive of
an unbalanced dendrogram geometry, while the increasing level of predictability
increases the reliability of this geometric interpretation.

3.5 Conclusion

This study focused on the ultrametric representation of sets of cultural vectors
used for specifying the initial state of cultural dynamics models. On one hand, it
introduced another procedure for randomly generating initial conditions based on
the subdominant ultrametric information of empirical data. On the other hand,
it examined the extent to which the subdominant ultrametric representation can
be used for predicting the final state of cultural dynamics in a simple theoretical
setting. The bounded-confidence threshold parameterising the dynamical model
was used to extract an initial-state partition from the ultrametric representa-
tion. This was systematically compared, in terms of variation if information,
with the corresponding final state partition consisting of groups of identical cul-
tural vectors. The comparison showed that the predictive power of the ultramet-
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ric is relatively high for empirical cultural states, which are closely followed by
ultrametric-generated states, which are followed by the shuffled and then by the
random states. Moreover, higher predictability appears to go hand in hand with
higher compatibility between a propensity to long-term cultural diversity and a
propensity to short-term collective behaviour, which was previously shown to be a
hallmark of empirical structure. This means that ultrametric information is bet-
ter than trait-frequency information at explaining this structure. These results
further advance the understanding of the relationship between ultrametricity and
cultural dynamics. Moreover, it is tempting to speculate that, for the purpose of
forecasting the dynamics of culture in the real world, knowledge about the cur-
rent distribution of individuals in cultural space might be sufficient, with little or
no need for running simulations, at least if one assumes that consensus-favoring
social influence is the essential driving force of this dynamics.

Appendices

3.A Ultrametric-generation method

This section explains the method for generating sets of cultural vectors belonging
to the “ultrametric” class. The method is an extension of that developed in
Ref. [22]. The description here is somewhat similar to that in Ref. [22], but the
nomenclature specific to cultural vectors is used, instead of that specific to genetic
sequences.

The method takes as input a dendrogram, as well as a target cultural space
– the number of cultural features F , together with the range (number of traits)
q and type (nominal or ordinal) of each feature. This information is taken from
empirical data and the single-linkage hierarchical clustering alorithm is employed
for constructing the dendrogram whenever the method is used in this study. Upon
every use, the method generates, in a stochastic way, a set of N cultural vectors
associated to the N leaves of the dendrogram, such that, on average, the pair-
wise similarities between cultural vectors match the similarities encoded by the
dendrogram.

More precisely, for each cultural feature in the target space, the method en-
forces:

E[sqij ] = ραij , (3.2)

where E[...] stands for “expectation value”, αij is the lowest branching in the
dendrogram joining leaves i and j, ραij is the similarity encoded by this branching
and sqij is the partial contribution to the similarity between cultural vectors i and
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j of a feature of range q, which is computed according to the following formula:

sqij =

{
δ(xki , x

k
j ) if nominal,

1− |x
k
i−x

k
j |

qk−1
if ordinal,

(3.3)

which depends on whether the feature is nominal or ordinal, where δ stands for
the Kroneker delta function, xki and xkj are the traits of vectors i and j with

respect to feature k with range qk – for ordinal features k, the traits are marked
with integers between 1 to qk. Eq. (3.3) is consistent with the cultural distance
definition in Refs. [14, 15, 16, 17] (and Chaps. 1 and 2) – as mentined above:
similarity = 1.0− distance.

In Eq. (3.2), the expectation E[...] implies averaging over multiple runs of the
method, for the same dendrogram and the same cultural feature. Although in
practice the method is used only once (and independently) for each feature, the
fact that a large number F of features are present makes this approach sensible:
the expectation E[sij ] of the complete similarity sij will also match ραij (since
the complete similarity is the arithmetic average of the feature-level similarities),
while the fluctuations of sij around ραij will decrease with F . In other words, as
pointed out in Ref. [22], the expectation in Eq. (3.2) can be interpreted in two
idealized ways: averaging over infinitely many runs or averaging over infinitely
many features.

In order to enforce Eq. (3.2) for every pair (i, j), the method controls for the
extent to which the traits of different vectors are choosen independently of each
other. For every feature, all the N choosen cultural traits originate in independent
random draws from a uniform probability distribution, but the number of draws
is smaller or equal to N . Thus, the traits of vectors i and j either originate in the
same draw, with probability Pij , or originate in different draws, with probability
1 − Pij . In the former case the two traits are identical, with a well-determined
feature-level similarity sqij = 1. In the latter case, the two traits may be identical
or different, so that sqij fluctuates around an expectation value f(q). Taking both
cases into account, the expectation value of sqij is:

E[sqij ] = Pij + [1− Pij ]f(q), (3.4)

where the expectation for different draws f(q) reads:

f(q) =

{
1
q if nominal,
2q−1

3q if ordinal,
(3.5)

which is the expression of the expected, feature-level similarity between two traits
drawn at random from a uniform probability distribution, obtained analytically
from Eq. (3.3) for either type of features. The choices of traits and the associated
random draws are mangaged by the stochastic-algorithmic part of the method
(briefly explained at the end of this section), which is designed to ensure that:

Pij = ρIαij (3.6)
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is satisfied, where ρIαij is a corrected version of the similarity ραij implicit in the
αij branching:

ρIαij = ραij − h(ραij , q), (3.7)

where h is a correction function chosen such that Eqs. (3.2) holds, subject to
(3.4) and (3.6). Specifically, by combining Eq. (3.6) with Eq. (3.4) and then with
Eq. (3.2), one obtains:

ρIαij + [1− ρIαij ]f(q) = ραij . (3.8)

By inserting Eq. (3.7) in Eq. (3.8) and further manipulations, one obtains the
following expression for the correction function:

h(ρα, q) =
1− ρα

1− f(q)
f(q). (3.9)

Note that Eq. (3.6) identifies ρIαij with a probability, meaning that ρIα > 0 should
be satisfied for all branchings α. This implies, given Eq. (3.7) and Eq. (3.9), that
ρα > f(q) for all branchings α of the given dendrogram and for all features in
the target space. This condition needs to be satisfied in order for this method to
be valid and is actually satisfied by all four empirical dendrograms used in this
study. Also note that the method in Ref. [22] is recovered as a special case of the
above, by restricting to nominal features of constant q via Eq. (3.5).

Finally, it is worth describing the stochastic-algorithmic part of the method.
For each of the F features in the target space, the following steps are carried out:

• the dendrogram is recursively explored starting with the root branching;
for every branching α reached by this exploration, one of the following two
things happens:

– one of the q traits is randomly chosen, according to a uniform distribu-
tion and assigned to all cultural vectors corresponding to leaves under
branching α, without further exploring any branching below α;

– the exploration is continued with each of the two branches emerging
from α, if that branch leads to another branching, instead of leading
to a leaf;

with probability Qα for the former and probability 1 − Qα for the latter,
where:

Qα =
ρIα − ρIp(α)

1− ρIp(α)

, (3.10)

where p(α) is the parent branching of α, if α is not the root, while ρIp(α) = 0
if α is the root.
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• for each of the leaves whose traits are not assigned during the above step,
one of the q traits is randomly chosen, according to a uniform distribution
and assigned to the respective cultural vector.

This algorithmic procedure ensures that Eq. 3.6 holds, for reasons that are fully
explained in Ref. [22].

It is worth noting that the ultrametric-generation method described in this
section makes use of all the information inherent in the geometry of the dendro-
gram that it receives as input – both the topology and the similarities ρ encoded
by the branching points of the dendrograms are used. However, the generated
sets of cultural vectors will in general not be precisely ultrametric, in the strict
mathematical sense [18] (unless it is applied in the limit of F being much larger
than N). Still, they are generated based on the empirical ultrametric information
and are arguably as close as they can be to reproducing the ultrametric set of
pairwise distances.

3.B Detailed results

This section shows the complete results concerning the ω-dependence of relevant
quantities, for the other three data sets that are used in this study in addition to
the Eurobarometer (EBM [24]): the General Social Survey (GSS [27]) data in Fig.
3.5, the Religious Landscape (RL [29]) data in Fig. 3.6 and the Jester (JS [28])
data in Fig. 3.7. Each of these three figures follows the format of Fig. 3.3 above,
with four panels and four scenarios. Although, for each type of scenario, there is
a certain variability in the width and location of the non-trivial ω interval, the
results are qualitatively similar to those obtained for EBM data, with a notable
exception visible for the analysis of Jester data in Fig. 3.7: the second panel shows
that the discrepancy between the initial and the final partition, as measured by
〈nVI〉, is clearly smaller for the ultrametric cultural state than for the empirical
cultural state, so the overal predictability is higher. This is in agreement with the
observation made in relation to Fig. 3.4 about the relatively high predictability
value of the Jester-ultrametric point.
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Figure 3.5: Vizualisation of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially
active cultural links Φ at the top; the initial diversity DI at the center-bottom;
the final, average diversity 〈DF 〉 at the bottom. This is shown for one empiri-
cal (red), one ultrametric-generated (green), one shuffled (blue) and one random
(black) set of cultural vectors. All sets of cultural vectors have N = 500 elements
and are defined with respect to the same cultural space, from the variables of the
General Social Survey (GSS) data. The errors of 〈DF 〉 and 〈nVI〉 are standand
mean errors obtained from 10 cultural dynamics runs.
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Figure 3.6: Vizualisation of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially
active cultural links Φ at the top; the initial diversity DI at the center-bottom;
the final, average diversity 〈DF 〉 at the bottom. This is shown for one empiri-
cal (red), one ultrametric-generated (green), one shuffled (blue) and one random
(black) set of cultural vectors. All sets of cultural vectors have N = 500 elements
and are defined with respect to the same cultural space, from the variables of
the Religious Landscape (RL) data. The errors of 〈DF 〉 and 〈nVI〉 are standand
mean errors obtained from 10 cultural dynamics runs.
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Figure 3.7: Vizualisation of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially ac-
tive cultural links Φ at the top; the initial diversity DI at the center-bottom; the
final, average diversity 〈DF 〉 at the bottom. This is shown for one empirical (red),
one ultrametric-generated (green), one shuffled (blue) and one random (black) set
of cultural vectors. All sets of cultural vectors have N = 500 elements and are
defined with respect to the same cultural space, from the variables of the Jester
(JS) data. The errors of 〈DF 〉 and 〈nVI〉 are standand mean errors obtained from
10 cultural dynamics runs.
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3.C Dendrogram geometry

This section gives some analytical insight on how the dendrogram geometry is
related to the behaviour of the two measures of initial diversity DI and initial
coordination CI . As functions of ω, the two measures only change (in steps)
when ω crosses the distance value associated to any of the branchings of the
dendrogram. Thus, one can replace the dependence of DI and CI on ω with a
dependence on k, which counts the number of dendrogram branchings above a
given ω, in terms of their associated distance values – k increases from 0 to N − 1
as ω decreases from 1.0 to 0.0. Based on Eq. (3.1), one can thus write:

DI(k) =
N I
C(k)

N
, CI(k) =

√√√√∑
A

(
SIA
N

)2

k

. (3.11)

There are two, extreme types of dendrogram geometries that are worth con-
sidering, the ”perfectly-unbalanced geometry” and the ”perfectly-balanced geom-
etry”. These are illustrated in Fig. 3.8.

For the perfectly-unbalanced geometry, shown on the left side of Fig. 3.8, the
number of connected components is:

N I
C(k) = k + 1, (3.12)

while the sizes of the connected component are:

SIA(k) =

{
N − k, ifA = 1

1, ifA ∈ {2, 3, ..., k + 1}
. (3.13)

Figure 3.8: Sketch of a “perfectly balanced” (left) dendrogram geometry and a
“perfectly unbalanced” (right) one, for N = 4 leaves. The values of k indicate the
number of branchings above any cut that would be applied to the dendrogram
within the respective horizontal band.
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From Eqs. (3.11) and (3.12), one obtains the behaviour of the initial diversity
measure:

DI(k) =
k + 1

N
, (3.14)

while from Eqs. (3.11) and (3.13) one obtains the behaviour of the initial coordi-
nation measure:

CI(k) =

√(
N − k
N

)2

+ k

(
1

N

)2

, (3.15)

from which it follows that:

CI(k) =

√
1− 2

k

N
+
k2

N2
+

k

N2
, (3.16)

where one can neglect the k
N2 term in the limit of large N , thus obtaining:

CI(k) ≈ 1− k

N
. (3.17)

From Eqs. 3.14 and 3.17 it follows that:

CI(k) ≈ 1−DI(k)− 1

N
, (3.18)

which can be rephrased, after neglecting the 1
N term in the limit of large N , to:

DI(k) ≈ 1− CI(k), (3.19)

which describes the second-diagonal empirical behaviour of Fig. 3.2(a), under the
assumption that DF (k) = DI(k),∀k.

For a perectly-balanced geometry, shown on the right side of Fig. 3.8, the
only relevant values of k (those corresponding to non-vanishing ω intervals) are

k =
∑l−1
i=0 2i, with l ∈ {0, 1, 2, ..., log2N}. For these values of k, the number of

connected components, like in the unbalanced case, is described by Eqs. (3.12),
while the sizes of the connected components are:

SIA(k) = N/(k + 1),∀A ∈ {1, 2, ..., k + 1}, (3.20)

from which it follows that the initial coordination measure is:

CI(k) =

√
(k + 1)

(
1

k + 1

)2

=
1√
k + 1

. (3.21)

Since the k-dependence of the initial diversity measure DI , like in the unbalanced
case, is described by Eq. (3.14), it follows that:

DI(k) =
1

NC2
I (k)

, (3.22)
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which, under the assumption that DF (k) = DI(k),∀k, entails a curve more similar
to that of the shuffled or random curves of Fig. 3.2(a), than to that of the empirical
curve. Moreover, this curve comes arbitrarily close to the lower left corner as N
increases.

To sum up, the above reasoning shows that, as long as DF (ω) = DI(ω),∀ω, an
unbalanced dendrogram geometry fits the empirical DF (CI) behaviour very well,
while a balanced dendrogram geometry does not. Although the latter entails a
DF ∝ C−2

I behaviour quite similar to that observed for shuffled or random data,
one cannot say that a balanced geometry is a good description for either of these
two cases, since the assumption that DF = DI is false for both these cases, for
the interesting ω intervals.
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Chapter 4

A random matrix
perspective of cultural
structure
Recent studies have highlighted interesting structural properties of empirical cul-
tural states: collections of vectors of cultural traits of real individuals, based on
which one defines matrices of similarities between individuals. This study provides
further insights about the structure encoded in these states, using concepts from
random matrix theory. For generating random matrices that are appropriate as
a structureless reference, we propose a null model that enforces, on average, the
empirical occurrence frequency of each possible trait. With respect to this null
model, the empirical similarity matrices show deviating eigenvalues, which may
be signatures of cultural groups that might not be recognizable by other means.
However, they can conceivably also be artifacts of arbitrary, dataset-dependent
correlations between cultural variables. In order to understand this possibility,
independently of any empirical information, we study a toy model which explicitly
enforces a specified level of correlation in a minimally-biased way, in the simplest
conceivable setting. In parallel, a second toy model is used to explicitly enforce
group structure, in a very similar setting. By analyzing and comparing cultural
states generated with these toy models, we show that a deviating eigenvalue, such
as those observed for empirical data, can also be induced by correlations alone.
Such a “false” group mode can still be distinguished from a “true” one, by eval-
uating the uniformity of the entries of the respective eigenvector, while checking
whether this uniformity is statistically compatible with the null model. For em-
pirical data, the eigenvector uniformities of all deviating eigenvalues are shown to
be compatible with the null model, suggesting that the apparent group structure
is not genuine, although a decisive statement requires further research.

This chapter is based on the following scientific article:
A. I. Băbeanu, arXiv:1803.04324 (2018).
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4.1 Introduction

Understanding the complex behavior of social systems greatly benefits from con-
structively combining the increasing amount of empirical data with a variety
of quantitative, theoretical approaches, often originating in the natural sciences
[1, 2]. Although much of this interdisciplinary research focuses on the network
and connectivity aspects of social systems [3], efforts are also being made for un-
derstanding a complementary aspect: the formation and dynamics of opinions,
preferences, attitudes and beliefs, more generally referred to as “cultural traits”
[4]. In particular, recent studies have placed a stronger emphasis on using empir-
ical data about the cultural traits of real individuals [5, 6, 7, 8, 9] (Chaps. 1, 2
and 3). Such data is typically recorded within a short period of time from a ran-
dom sample of people in a population, via a social survey with a large number
of questions, so that a vector (or sequence) of cultural traits can be constructed
for every individual, where each trait is an answer to one of the questions. The
collection of all cultural vectors constructed from one empirical source is called
an empirical “cultural state”, or an empirical “set of cultural vectors”, since it
can be used to empirically specify the initial conditions of an Axelrod-type model
of cultural dynamics [10]. Using previously developed tools [5, 6] that relied on
models of cultural and opinion dynamics, Ref. [7] (Chap. 1) showed that empir-
ical cultural states are characterized by properties that are highly robust across
different data sets. These properties have been further explored [8, 9] (Chaps. 2
and 3) but not entirely understood. This generic structure present in an empirical
cultural state is largely retained by the person-person matrix of cultural similari-
ties that can be defined based on the cultural vectors, allowing for this structure
to be further investigated by means of a random matrix approach.

Random matrix theory [11, 12] has been successfully for a variety of applica-
tions, such as the analysis of financial systems [13]. The framework deals with
the properties of random matrices, under certain distributional assumptions. The
associated statistical ensembles of matrices are used to compute the expected
values (or even the probability distributions) of interesting, matrix dependent
quantities. These theoretical expectations can be compared to empirical counter-
parts evaluated on matrices that encode information about the real world systems
that are being studied. Statistically significant deviations of the empirical quan-
tities are then interpreted as interesting, non trivial structural properties of the
respective systems. The focus is on the eigenvalue spectrum of the empirical
matrix, which can be, for instance, a correlation matrix between the time se-
ries recording the price dynamics of stocks [14] or the activity neurons [15]. In
such cases, the appropriate assumptions of randomness are captured by the the
Marchenko-Pastur [16] law, which gives a limiting distribution for the spectrum.
The eigenmodes whose eigenvalues are significantly larger than what is expected
based on the Marchenko-Pastur law are interpreted as joint dynamical patterns in
terms of which the non-trivial behavior of the system can be understood, while the
other are interpreted as the noise components of the system. Recently, Ref. [17]
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extended this approach to similarity matrices constructed from categorical data,
where an entry of the matrix is a similarity between two time series of discrete
symbols. For instance, for one of the data sets of Ref. [17], each sequence of
symbols corresponds to an electoral constituency of India, with different symbols
associated to different winning parties and successive time steps associated to
successive elections.

In this study, this random matrix approach is applied to spectra of empir-
ical matrices of cultural similarities, constructed from data previously used in
Refs. [5, 6, 7, 8, 9] (Chaps. 1, 2 and 3). Instead of relying on analytic formu-
las for estimating and filtering the noise, we make extensive use of numerical
methods. This allows for a detailed investigation of three null models (Sec. 4.2),
among which the uniformly random generation is the simplest and conceptually
closest [17] to the approach of Marchenko and Pastur. As a second null model,
we make use of trait shuffling, which is known to be important for understanding
empirical cultural states, independently from spectral decomposition and random
matrix notions [5, 6, 7, 8, 9] (Chaps. 1, 2 and 3), since it reproduces exactly the
empirical trait occurrence frequencies. We propose an additional null model which
also reproduces these empirical trait frequencies on average, while also incorporat-
ing some mathematically desirable properties of the uniform random generation.
We name this procedure ”restricted random generation”. These null models are
compared in terms of how well they reproduce the upper boundary of the noisy
spectral region (“the bulk”), as well as the position of the highest eigenvalue.
This is a strong outlier which can be understood as a “global mode”, which for
similarity matrices is guaranteed to be present even under the uniformly ran-
dom scenario [17]. As shown in Sec. 4.2, the restricted random generation turns
out to be more appropriate and is thus selected for further analysis. Based on
restricted randomness, we numerically evaluate the probability distribution of
the upper noise boundary, showing that there are several empirical eigenvalues
significantly above this boundary. These correspond to modes that capture the
structure in empirical data, since they are incompatible with null hypothesis be-
hind restricted randomness. Hence, this manuscript will often refer to them as
“structural modes”.

It is tempting to interpret these deviating eigenmodes as signatures of group
structure, in a manner similar to time series analysis [14], in the sense that the
individuals are organized in terms of several cultural groups or categories. This
is particularly intriguing, given that Ref. [8] (Chap. 2) provides indirect evidence
for cultural structure being governed by a small number of cultural prototypes
supposedly induced by universal “rationalities”. However, it is important to keep
in mind that the empirical data also shows pairwise correlations between cultural
variables, that are at least partly induced by arbitrary, dataset-dependent simi-
larities between how the corresponding items are defined, as previously pointed
out [5, 7, 6] (Chap. 1). Since these correlations are not retained by restricted
randomness and shuffling, it is possible that deviating eigenmodes are a direct
consequence of them. This rises the question of whether these eigenmodes are
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signatures of authentic group structure or are just artifacts of arbitrary correla-
tions between variables. First, we explicitly show that, at least in principle, one
can differentiate between the “correlations scenario” and the “groups scenarios” –
this is not trivial, since group structure also entails, to a certain extent, pairwise
correlations between features. This is done in Sec. 4.3 by studying, in a highly
simplified, abstract setting, consisting of only binary features, two probabilistic
models for generating (sets of) cultural vectors. The first model, labeled “FCI”
(Sec. 4.3.1), explicitly enforces a certain pairwise coupling between all features, in
a manner that gives rise to a certain level of correlation, without introducing any
additional assumption or bias in the underlying probability distribution. This is
ensured by a maximum-entropy derivation [18], which leads to a statistical en-
semble that is mathematically equivalent to the canonical ensemble of the Ising
model on a fully-connected lattice [19], where each feature corresponds to one
lattice site and each cultural vector corresponds to a spin configuration. The sec-
ond model, labeled “S2G” (Sec. 4.3.2), explicitly enforces a dual group structure,
whose strength can be analytically tuned to match the first model in terms of the
level of feature-feature correlations that arise as a side effect. More details about
these models and about the interpretation of deviating eigenmodes are given in
Sec. 4.3.

For any given level of feature-feature correlations, the two models are used for
generating sets of cultural vectors. The structure of the resulting similarity matri-
ces is captured by the subleading eigenvalue and its eigenvector. However, Sec. 4.4
shows that the expected strength and significance of the subleading eigenvalue is
exactly the same for the FCI and S2G models, for any given correlation level,
so the subleading eigenvalue does not discriminate between the two scenarios,
confirming that the presence of deviating eigenvalues does not necessarily imply
the presence of group structure. We show that the essential difference between
the FCI and S2G is captured by the entries of the eigenvector associated to the
subleading eigenvalue. In particular, the uniformity of these entries, quantified
by the “eigenvector entropy” (see Sec. 4.4), shows a clearly different behavior as
a function of correlation for the two models, with S2G showing an increasingly
higher uniformity as the correlation level increases. Moreover, the dependence
of the second-highest eigenvector entropy on the correlation level reproduces well
the symmetry-breaking phase transitions that characterize the two models. In
each case, the eigenvector entropy suddenly jumps from a regime of compatibility
to a regime of incompatibility with the null model, exactly when the probability
distribution associated to the respective model becomes bi-modal. The critical
correlation associated to this transition is almost ten times smaller for S2G than
for FCI. This further justifies the use of eigenvector entropy as an indicator of
group structure in empirical data, as a complement to eigenvalue information.

Along these lines, Sec. 4.5 presents an enhanced analysis of empirical data,
showing how the eigenmodes are distributed in terms of eigenvalue and eigenvec-
tor entropy, in comparison to expectations based on restricted randomness. In-
terestingly, all the structural modes previously identified in empirical data (based
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on eigenvalues) are actually compatible with the null model in terms of eigen-
vector uniformity (based on eigenvector entropy). This is the case for all three
datasets used in this study, suggesting that structural modes of culture are actu-
ally artifacts of arbitrary correlations between cultural variables. However, such a
conclusion is conditional on the S2G model introduced here being representative,
in a qualitative way, for any type of authentic cultural groups that empirical data
might capture. As explained in Sec. 4.6, this might actually not be the case, so
the presence of groups cannot be entirely rejected based on this study, especially if
these groups are highly entangled. In particular, the S2G model does not account
for the “mixing”, “multiple-self” ingredient that has been shown to be crucial [8]
(Chap. 2) for an interpretation of cultural structure in terms of a small number
of prototypes [6], inspired by social science frameworks such as Plural Rationality
Theory [20]. In fact, it appears likely that structural modes induced by mixing
prototypes would not exhibit higher eigenvector uniformities than expected based
on the null model, while they should still qualify as group modes. More research
is needed to establish whether this is indeed the case and, if so, to find a way of
distinguishing structural modes induced by mixing prototypes from those induced
by correlations.

4.2 Eigenvalue distributions for empirical data
and null models

In this section, the eigenvalue spectra of empirical matrices of cultural similarities
are evaluated. At the same time, three null models are evaluated and compared.
Each null model is used to numerically generate similarity matrices, by randomly
sampling from the associated statistical ensemble, which enforces, to a certain
extent, the empirical information that is expected to not be of interest – this is
information that, on a priori grounds, clearly has more to do with arbitrary survey
design choices than with any authentic cultural structure. One of these models,
namely the “restricted random” model, which is first introduced here, is chosen as
a good benchmark with respect to which interesting structure is to be measured,
as explained below. Before presenting the actual results, some mathematical
clarifications are given with respect to the computation of similarity matrices, the
spectral decomposition procedure and the definitions of the null models.

A cultural similarity matrix is a square, N×N matrix obtained fromN cultural
vectors, which are all defined with respect the same set of F cultural features
(variables or dimensions). Each feature can take one of qk possible, discrete
values, called “cultural traits”, where k labels the features, according to some
order that is arbitrary, but consistent across all vectors. Moreover, each feature
can be either nominal, marked as fknom = 1, or ordinal, marked as fknom = 0, which
affects how its similarity contribution is defined. Each entry sij of the similarity

117



4.2 Eigenvalue distributions for empirical data and null models

matrix is then computed according to:

sij =
1

F

F∑
k=1

[
fknomδ(x

k
i , x

k
j ) + (1− fknom)

(
1−
|xki − xkj |
qk − 1

)]
, (4.1)

encoding the similarity between vectors i and j, where δ stands for the Kronecker
delta function and xki and xkj denote the traits recorded with respect feature k

in vectors i and j respectively – for the ordinal case, it is important that xki and
xkj take discrete, rational values between 1 and qk, while for the nominal case
they only need to take symbolic values from any (feature-specific) alphabet. Note
that the similarity measure in Eq. (4.1) is an arithmetic average of the similarity
contributions of the F cultural features, in agreement with Refs. [5, 6, 7, 8, 9]
(Chaps. 1, 2 and 3) – although in these studies most concepts are presented in
terms of cultural distances dij , these have a trivial relationship to cultural sim-
ilarities: dij = 1 − sij . For an empirical matrix, each vector i corresponds to
one individual in the real world, each feature k to one question or item in the
questionnaire used to collect the data, so that the realized trait xki , which lies at
the intersection between vector i and feature k, corresponds to the answer/rating
given by individual i to question/item k. For a matrix generated based on a null
model, the N vectors are generated according to the specified random procedure,
while retaining (at least) the empirical data format, namely the type fknom and
range qk of each feature k. Note that, in contrast to the empirical symbolic se-
quences used in Ref. [17], cultural vectors have no axis of time, so everything
is equivalent up to a reordering of the cultural features, as long as this is done
consistently for all cultural vectors. This is irrelevant for any of the mathematical
operations involved by the analysis here, but it is relevant for the interpreta-
tion: cultural vectors capture no time-evolution, and should be interpreted as
instantaneous, multidimensional opinion profiles, rather than as dynamical, one-
dimensional dynamical profiles.

From Eq. (4.1) it follows that such a similarity matrix is real and symmetric,
from which it follows, according to the spectral theorem, that it has N real eigen-
values with N associated orthonormal eigenvectors with real entries. This implies
that the matrix can be decomposed in the following way:

sij =

N∑
l=1

λlv
i
lv
j
l , (4.2)

where “λl” and “vl” are used to denote the lth highest eigenvalue and, respec-
tively, the eigenvector associated to it, while vil is the ith entry of eigenvector
vl. Throughout this study, special attention is payed to λ1 and λ2, the highest
and second highest eigenvalues of various similarity matrices, also denoted as the
“leading” and “subleading” eigenvalues respectively. In parallel, “λ” is used to
denote any generic eigenvalue. More notation will be introduced below, as needed.
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Figure 4.1: Eigenvalue spectra of cultural similarity matrices. The first panel
correspond to an empirical cultural state (a) with N = 100 vectors constructed
from Eurobarometer (EBM) data, while the other three correspond to associated
cultural states generated with the uniform random (b), the shuffled (c) and the
restricted random (d) null models, using partial information from the empirical
cultural state and the same N = 100. For each panel, the inset shows the leading
eigenvalue of the respective spectrum. For comparison purposes, the axis ranges
and bin widths are the same across the four panels, for the main plots as well as
for the insets.
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All similarity matrices used in this study are based on sets of N = 100 cultural
vectors, regardless of whether they are empirical, generated with one of the three
null models introduced below or with one of the toy models introduced in Sec. 4.3.
At the same time, the number of features F is always larger than N , which ensures
that the information in every similarity matrix is not redundant, since its number
of entries N×N is smaller than the number of entries in the set of cultural vectors
F ×N .

Fig. 4.1(a) shows the eigenvalue spectrum of an empirical similarity matrix
computed based on N = 100 cultural vectors extracted from Eurobarometer
(EBM) data, which records attitudes and opinions of European Union citizens
on various topics concerning technology, the environment and certain policy is-
sues [21]. The data is formatted according to the procedure described in Ref. [7]
(Chap. 1), which makes F = 144 cultural features available. The vertical axis
gives the number of eigenvalues occurring in each bin along the horizontal axis.
The inset focuses on the higher λ region of the horizontal axis, where the lead-
ing eigenvalue λ1 is located. The high value of λ1 is expected based on purely
mathematical grounds [17], due to the overall positivity of any such similarity
matrix. In most cases, all entries of the eigenvector associated to λ1 have the
same sign and very similar absolute values, meaning that, according to Eq. (4.2),
the λ1v

i
1v
j
1 captures a large, highly uniform, positive component of the matrix

entries sij . The λ1 eigenmode thus accounts for the overall tendency towards
similarity of the entire system, which is partly due to how similarity is defined
and partly (see below) due to feature-level non-uniformities. For this reason, the
λ1 mode will also be referred as the “global mode”, term which originates from
time-series analysis [14] based on correlation matrices, for which a global mode
may or may not be present, depending on the system. Using exactly the same for-
mat as Fig. 4.1(a), each of the other three panels of Fig. 4.1 shows the spectrum
of a similarity matrix generated from each of the three null models: “uniform
randomness”, “shuffling” and “restricted randomness”.

First, Fig. 4.1(b) shows the spectrum of a similarity matrix generated via
uniform randomness (abbreviated as “u-random”). Specifically, for every vector,
each trait is chosen independently at random from the traits available at the level
of the respective feature, with equal probability attached each possible trait. This
means that uniform randomness retains minimal information from the empirical
cultural state used for Fig. 4.1(a): only the number of features, the type and the
number of traits of each feature. Note that the leading eigenvalue of this matrix
is comparable to that of the empirical matrix. Ref. [17] showed that the analytic,
limiting distribution given by the Marchenko-Pastur formula has a shape that
is qualitatively similar to the bulk of the u-random spectrum. Quantitatively
however, the analytic and numerical distributions become truly similar only if an
important parameter controlling the former is left free and fit to the numerical
results, instead of being directly set to F/N , which can be done when dealing
with matrices of correlations between N time series with F numerical entries
each. Moreover, the Marchenko-Pastur formula completely fails to describe the
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Figure 4.2: Leading and subleading eigenvalue distributions for random matrices.
The figure shows the subleading eigenvalue λ2 distribution (a) and the leading
eigenvalue λ1 distribution (b), for the three null models (legends), implementing
uniform randomness (black), shuffling (blue) and restricted randomness (green),
in comparison to the empirical eigenvalues, whose positions are marked by the
vertical (red) lines in the upper bands. For each distribution, n = 1000 similarity
matrices are numerically generated from the respective null model. Everything
is based on the same set of N = 100 vectors constructed from Eurobarometer
(EBM) data used in Fig. 4.1.

leading eigenvalue.

Second, Fig. 4.1(c) shows the eigenvalue spectrum of a similarity matrix gen-
erated via shuffling. Specifically, with respect to every feature, the traits realized
in the empirical state are randomly permuted among the vectors, such that every
permutation is equally likely. This is done independently for every feature, so
that all types of correlations between features are destroyed. The procedure pre-
serves exactly the number of times each trait is empirically realized, in addition
to preserving the data format of the empirical state in Fig. 4.1(a). Note that, by
construction, the assignment of traits to vectors is not entirely independent across
vectors, implying that the number of vectors N resulting from shuffling has to be
exactly the same as the number of empirical vectors used.

Third, Fig. 4.1(d) shows the spectrum of a similarity matrix generated via
restricted randomness (abbreviated as “r-random”). Specifically, for every vec-
tor, each trait is chosen independently at random from the traits available at the
level of the respective feature, with different probabilities attached to the possible
traits, these probabilities being directly proportional to the empirical occurrence
frequencies of the respective traits. This means that, like the shuffling procedure,
restricted randomness also reproduces the empirical trait frequencies, but on av-
erage. Moreover, it also retains the independent generation specific to uniform
randomness, which allows for an arbitrary number N of cultural vectors to be
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Figure 4.3: Detailed comparison in terms of the leading eigenvalue. The figure
shows in detail the distributions of the leading eigenvalue λ1 for the shuffled
(blue) and restricted random (green) null models, in comparison to the empirical
value (vertical red line). For each distribution, n = 1000 similarity matrices are
numerically generated from the respective null model. Everything is based on the
same set of N = 100 vectors constructed from Eurobarometer (EBM) data used
in Fig. 4.1. For visual purposes, the bin size of the shuffled histogram is ten times
smaller than for the restricted random histogram.
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Figure 4.4: Empirical structure in other datasets. The figure shows the sublead-
ing eigenvalue λ2 distribution for the three null models (legends), implementing
uniform randomness (black), shuffling (blue) and restricted randomness (green),
in comparison to the empirical eigenvalues, whose positions are marked by the
vertical (red) lines in the upper band, based on General Social Survey data (a)
and for Jester data (b). In each case, N = 100 cultural vectors are constructed
from the respective dataset. For each null model, n = 1000 random matrices of
N = 100 vectors are generated for drawing the associated distribution.
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generated, regardless of how large this number is for empirical data. The inde-
pendent generation should also make the analytic tractability of the model easier.
Although neither of these two advantages are directly exploited in this study, they
suggest that restricted randomness is conceptually more appropriate than either
uniform randomness or shuffling, as it incorporates the desirable properties of
both.

The rough shape of the eigenvalue histogram is quite similar across the four
panels of Fig. 4.1, which means that empirical data contains a large amount of
noise, which can be described reasonably well by any of the three null models.
Interesting discrepancies are present in terms of the leading eigenvalue: the em-
pirical value is very similar to the shuffled and r-randomn values, while higher
than the u-random value. This shows that the overal tendency towards similar-
ity is smaller in the uniformly-random case than in the other three cases. This
is understandable given that shuffling and restricted randomness reproduce the
feature-level non-uniformities, which in turn are responsible for an overal level
of similarity which is higher than what is expected from uniform randomness [8]
(Chap. 2), leading to an enhanced global mode.

Very important are the empirical outliers in Fig 4.1(a), which encode empirical
structure that is independent of feature-level nonuniformities. The two higher
outliers are larger than the bulk boundary as predicted by any of the three null
models, while the other two appear compatible with the random bulk predicted by
uniform randomness. This highlights the importance of choosing the appropriate
null model, since this determines the position of the boundary between noise
modes and structural modes along the λ axis, which in turn decides how many
empirical eigenmodes are to be regarded as structurally relevant on the higher λ
side of this boundary. It appears that the position of this boundary is somewhat
different for the three null models, but this is hard to evaluate only based on
Fig. 4.1, due to limitations inherent in the binning.

Fig. 4.2(a) overcomes these limitations by showing the subleading eigenvalue
distribution for the three null models, in parallel with the leading eigenvalue
distributions in Fig. 4.2(b), where the colors associated to the three null models
are the same as those in Fig. 4.1. For comparison, the empirical eigenvalues are
shown by the vertical (red) lines in the upper bands of Fig. 4.2. Each λ1 and λ2

distribution is produced numerically by sampling n = 1000 sets of cultural vectors
from the statistical ensemble of the respective null model. It appears that shuffling
and r-random show essentially the same λ2 distribution, while for u-random this
is located at higher values. Since λ2 sets the boundary for the random bulk, more
empirical eigenmodes are to be regarded as structurally relevant with respect to
a null model based on shuffling or restricted randomness, rather then on uniform
randomness. Choosing between shuffling and r-random appears appropriate, since
they are consistent with empirical data in terms of the leading eigenvalue, as noted
before, now confirmed in a more statistically reliable way by Fig. 4.2(b). Such
a choice is compatible with the idea of focusing on the empirical structure that
is present independently of feature-level non-uniformities, which are expected to
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4.2 Eigenvalue distributions for empirical data and null models

strongly depend on how the associated questions and the possible answers are
formulated and much less on authentic properties of the real social system from
which the data is extracted. With respect to either the shuffled or the r-random
λ2 distribution, all four empirical outliers noted in Fig. 4.1(a) appear statistically
significant, with a departure of at least two standard deviations from the mean.

On the other hand, based on Fig. 4.2(b), the empirical leading eigenvalue also
appears statistically compatible with both shuffling and restricted randomness,
but closer to the mean of the former. This, however, deserves a closer inspection,
due to the limitations inherent in the binning of Fig. 4.2(b). Fig. 4.3 focuses
on the shuffled and r-random λ1 distributions, giving a better impression of how
well either null model predicts the empirical leading eigenvalue based on partial
information about trait frequencies. It appears that, due to the sharpness of the
shuffled λ1 distribution, the empirical value is actually not statistically compatible
with it, while it is clearly compatible with the r-random distribution. For this
reason, we choose restricted randomness as the appropriate null model. Note
that, for visual purposes, the bins are chosen to be much smaller for the shuffled
than for the r-random distribution – both histograms contain n = 1000 entries,
one for each random matrix sampled from the respective ensemble.

Finally, it is worth repeating the analysis on empirical cultural states con-
structed from two more datasets, namely the General Social Survey [22] (GSS) –
Fig. 4.4(a) – and Jester [23] (JS) – Fig. 4.4(b). Both datasets are also formatted
according to the procedure described in Ref. [7] (Chap. 1), leading to F = 122
features for GSS and to F = 128 features for JS. The two figures follow the for-
mat of Fig. 4.2(a), since this emphasizes the empirical outliers and their departure
from the subleading eigenvalue distributions of the three null models – although,
at this point, the choice has already been made in favor of restricted random-
ness, the other two distributions are also shown for consistency. Both the GSS
and JS eigenvalue spectra show outliers that are significantly larger than what
is expected based on the r-random null model: three such outliers are present
for GSS and four for JS. The deviating eigenvalues are, on average, larger for JS
than for EBM, and higher for EBM than for GSS. – note that the axis ranges of
Figs. 4.4(a), 4.4(b) and 4.2(a) are not the same.

Based on the results above, one can say that the empirical structure captured
by matrices of cultural similarity is generally recognizable via eigenvalues that are
significantly larger than what is expected based on a null hypothesis accounting
for empirical trait frequencies: they are significantly higher than the subleading
eigenvalue and much lower than the leading eigenvalue expected from this null
hypothesis. For the rest of this study, the eigenpairs (eigenvector-value pairs)
associated to these deviating eigenvalues will often be referred to as “structural
modes”.
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4.3 Two interpretations of structural modes

This section explores possible ways of interpreting the structural modes of culture
described above. To begin with, certain aspects of linear algebra are emphasized,
in relation to the diagonalization of similarity matrices, which justify an inter-
pretation of structural modes as group modes, like in the context of correlation
matrices. Then, two hypotheses are formulated: first, that structural modes
are just the effect of correlations between cultural features, thus only retaining
information about how the associated questions/items are chosen; second, that
structural modes are an effect of genuine groups or grouping tendencies among the
individuals, thus retaining information about the social system from which the
data is extracted. This leads to probabilistic formulations of the two hypotheses
in a very simplistic setting: the correlations-only scenario is realized as the “fully-
connected Ising” (FCI) model in Sec. 4.3.1, while the groups scenario is realized
as the “symmetric two-groups” (S2G) model in Sec. 4.3.2. Finally, in Sec. 4.3.3,
the mathematical properties of the two models are studied in order to check that
they behave as expected and to better emphasize their differences.

It is instructive to first consider some elementary, but important mathemat-
ical properties of the eigenvalues λl and the associated eigenvectors vl satisfying
Eq. (4.2), since they provide important hints towards how the structural modes
are to be interpreted. For the sake of clarity, the following explanations make use
of the term “individual” as a replacement for “cultural vector”, although most
of the concepts presented are also valid, at least mathematically, for similarity
matrices constructed from randomly generated cultural vectors, based on any
probabilistic model.

Since the eigenvectors vl have only real entries and form an orthonormal basis,
one can write any real vector w with N entries as a linear combinations of the
eigenvectors:

w =

N∑
l=1

αlvl, (4.3)

with real coefficients αl. The rest of this argument is restricted to unit vectors w,
which satisfy

∑N
i=1 w

2
i = 1, which can be translated as

∑N
l=1 α

2
l = 1 in terms of

the eigenvectors’ coefficients. This encompasses all the eigenvectors w = vl,∀l as
special cases. Moreover, let us define the following scalar quantity:

S =

N∑
i=1

N∑
j=1

wisijwj , (4.4)

as the double contraction of the similarity matrix s with the vector w. By means
of Eq. 4.4 and Eq. 4.3, for any vector w (including the special cases when this
entirely matches one of the eigenvectors vl) every entry of w becomes associated to
one of the individuals based on which the similarity matrix s is computed. Thus,
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w can be seen as a (normalized) linear combination of the N individuals. S can
be then interpreted as the self-similarity of any normalized linear combination w,
since every pairwise similarity sij is multiplied by the numbers wi and wj attached
to individuals i and j. For any normalized w, one can show that:

S = 1 + 2

N−1∑
i=1

N∑
j=1+1

wisijwj , (4.5)

which immediately follows from the fact that sii = 1,∀i, which is a direct conse-
quence of how the similarity is defined in Eq. (4.1). Note that S = 1 whenever
w gives a strength of 1 to one individual and 0 to all the other, which supports
the interpretation of S as a self similarity. It is also important to note, from
Eq. (4.5), that S is larger when w is such that pairs of entries (i, j) with the same
sign correspond to higher values of sij and higher values of |wiwj |, while pairs
with opposite signs correspond to lower values of sij and lower values of |wiwj |.

The largest self-similarity S is attained when the linear combination w, among
all unit vectors, takes the form of the eigenvector v1 with the largest associated
eigenvalue λ1, corresponding to αl = δ1

l ,∀l. This largest self-similarity value is
actually equal to the largest eigenvalue: S = λ1. This is shown by plugging
Eq. (4.2) and Eq. (4.3) into (4.4) and using the normalization condition, leading
to:

S =

N∑
l=1

α2
l λl. (4.6)

More generally, one can see here that each eigenvector vl with the lth highest
eigenvalue λl, corresponding to αl′ = δll′ ,∀l′, is such that it gives the largest
possible value of S = λl, while also being normalized and orthogonal to all eigen-
vectors vl′ with λl′ > λl When confronting this with the insights provided by
Eq. (4.5), one realizes that any subset of individuals with strong, internal sim-
ilarities is captured by one of the eigenmodes, whose eigenvalue is larger if the
overall level of internal similarity is higher. Moreover, the eigenvector entries of
these strongly similar elements will have the same sign and the highest absolute
values.

By combining the above with the findings of Sec. 4.2, a more complete in-
terpretation is obtained for structural modes: they are the normalized linear
combinations of the individuals, orthogonal to each other and to the global mode,
with the highest possible self-similarities, of which with the lowest is significantly
higher than what is expected from restricted randomness. Each of these struc-
ture modes could indicate the presence of a group of highly similar individuals,
which is why in the context of time-series analysis they are often called “group
modes” [14]. Although it is not clear how a linear combination of individuals (or
of cultural vectors) should be expressed in terms of cultural traits and features,
this is not important for this study and does not affect the above arguments.
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An alternative interpretation of structural modes comes from realizing that
social surveys are imperfect, in the sense that one cannot guarantee the absence
of overlaps or of similarities between the variables that are used. These translate
to correlations between cultural features, which have been noticed in previous
studies [5, 6, 7] (Chap. 1) and which are specific to the design of each dataset. It
is conceivable that feature correlations, if strong enough, could induce artifactual
structural modes themselves. For example, if a large fraction of the associated
items or questions are designed such that they are mostly sensitive to the same
underlying degree of freedom, the similarity between individuals responding to
any of these items in a certain way will be high, since these individuals will likely
respond to all the other similar items in the same way. It appears likely that
this behavior would be captured by a structural mode. If this is the mechanism
behind the structural modes shown in Sec. 4.2, it means that they do not pro-
vide information about the inherent organization of real-world culture, but just
about the design of the “instrument” used to “measure” culture. On the other
hand, to make things more complicated, feature-feature correlations may also be
a consequence of group structure.

It is thus crucial to understand the extent to which structural modes of culture
are due to the details of the experimental setting and to what extent they are due
to authentic groups that are recognizable in the real world regardless of such
details. This study makes a first step in this direction, by translating the two
scenarios as mathematical, probabilistic models capable of generating (sets of)
cultural vectors that are governed either by a coupling between cultural features
(Sec. 4.3.1) or by a grouping tendency (Sec. 4.3.2). These models are designed to
work without any empirical input, in the simplest conceivable setting, consisting
of F binary features – it does not matter whether these features are regarded as
ordinal or nominal, since the two types of similarity contributions are equivalent
if there only q = 2 traits available, as can be seen from Eq. (4.1). For each
feature, the two traits are marked as −1 and +1 – although the former should be
mapped to 0 when computing similarities between vectors, if features are to be
regarded as ordinal. Each of the two models defines a statistical ensemble and an
associated cultural space distribution – in the language of Refs. [7, 8] (Chaps. 1
and 2) – according to which cultural vectors can be drawn in random, but non-
uniform way. Both statistical ensembles are defined such that each feature-level
probability distribution is uniform – the two traits have an equal probability of
0.5 attached. Note that, although both models are probabilistic in nature, neither
of them is intended as a null model, since neither makes use of information from
empirical data nor is it intended for direct, quantitative comparisons to empirical
data, nor to be realistic to any extent. They are toy-models, intended to prove
certain principles and provide certain insights about correlations and groups in
the context of cultural states. Nonetheless, they do provide an arena for studying
and developing certain mathematical tools in a highly controlled setting, tools
that can be later used for studying empirical data.
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4.3.1 The feature-feature correlations scenario

This section explains the “fully-connected Ising” (FCI) model, in the context of
generating (sets of) cultural vectors in a stochastic way. The purpose of this
probabilistic model is to enforce a certain level of correlation across all pairs
of cultural features, controllable via one parameter, but as little as possible in
addition. This can be done by properly choosing the probability distribution
p taking as support the set of possible cultural vectors with F binary features,
or, in other words, the set of possible spin configurations ~S with F lattice sites.
Note that the support of this distribution has 2F elements, which is the number
of sites/points of the “cultural space”, according to the formalism in Ref. [7]
(Chap. 1).

One needs to choose the maximally-random (thus minimally biased) probabil-
ity distribution p that entails a certain level of feature-feature correlations. This is
found by maximizing the Shannon entropy (Eq. (4.15)) subject to two constraints:
one enforcing the normalization of the probability distribution (Eq. (4.16)), the
other enforcing the overall level of pairwise coupling between cultural features
(Eq. (4.17)). This procedure is a realization of maximum-entropy inference intro-
duced in Ref. [18], and is described in detail in Sec. 4.A. The resulting probability
distribution can be expressed as:

p(µ, F, F+) =
1

Z(µ)

F !

F+!(F − F+)!
exp

[µ
2

(
(2F+ − F )2 − F

)]
. (4.7)

This gives the (total) probability attached to all cultural vectors with F+ out of
F traits marked as “+” or “+1”, where µ is the parameter controlling the overall
level of coupling between features. Moreover, Z(µ) is a normalization factor,

namely the partition function in Eq. (4.22). Note that
∑F
F+=0 p(µ, F, F+) = 1.0,

since the expression combines the probability of different possible configurations
with the same F+, which, due to symmetry reasons are equally likely. There are
F !/ (F+!(F − F+)!) such configurations (the “density of states”) for each F+.

The model is mathematically equivalent to the Ising model of magnetism on
a fully connected lattice [19], described in the canonical ensemble, with the pa-
rameter µ replacing the ratio between spin-spin coupling and temperature, which
controls for the overall level of alignment between spins. This parallel does not
come as a surprise: for any statistical physics ensemble defined by the averages of
certain, externally controlled/measured (physical) quantities, the mathematical
derivation can be formulated in terms of maximum-entropy inference [18], which
ultimately provides a statistical, information-theoretic justification of minimum-
bias as a replacement for assumptions like “ergodicity”. Due to this parallel, the
nomenclature related to spins is sometimes used instead of that related to cultural
features.

Based on Eq. (4.7), one can derive the expression for the correlation between
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any two features:

C(µ, F ) =
1

Z(µ)

F∑
F+=0

(F − 2)!
(
(2F+ − F )2 − F

)
F+!(F − F+)!

·

· exp
[µ

2

(
(2F+ − F )2 − F

)]
, (4.8)

based on the entire statistical ensemble. The details of this derivations are also
given in Sec. 4.A.

In Eq. (4.7) and Eq. (4.8), the coupling parameter is positive: µ ∈ [0,∞).
Physically, this corresponds to ferromagnetism, meaning that alignment between
spins is favored, a tendency which is enhanced with increasing µ. Using Eq. (4.7),
one can check that, for vanishing coupling µ = 0, the probability of choosing
a configuration with a given F+ is directly proportional to the number of such
configurations, which is specified by the binomial coefficient preceding the expo-
nential. As µ is increased, more emphasis is given to configurations with unequal
numbers of −1 and +1 traits, at the expense of configurations that are more bal-
anced. Using Eq. (4.8), one can also check that the correlation C(µ, F ) increases
with increasing coupling µ, as expected, and that C(0.0, F ) = 0.0 for any F .

4.3.2 The group structure scenario

This section explains the “symmetric two-groups” (S2G) model, in the context
of generating (sets of) cultural vectors in a stochastic way. This probabilistic
model enforces an organization of cultural vectors in terms of two, equally sized
groups, with high similarities within groups and low similarities between groups.
The model defines a probability distribution p taking as support the same set of
possible cultural vectors as in Sec. 4.3.1: the cultural space defined by F binary
features, with 2F configuration. One of the groups is “centered” around the
configuration with a −1 trait with respect to each feature, while the other group
is centered around the opposite configuration, having a +1 trait with respect to
each feature. The model is designed such that all features contribute equally to
the group structure. As a consequence, this induces a certain level of correlation
over all pairs of cultural features. The strength of these correlations is controlled
by the same free parameter that controls the strength of the group structure.

According to the S2G model, every cultural vector that is generated is first
randomly assigned to one of the two groups, with equal probabilities. These two
groups are denoted as the “−1” group and the “+1” group. Then, at the level
of every feature, the trait is randomly and independently chosen among the two
possibilities, but with unequal probabilities: the trait with the same sign as the
group is chosen with probability 1 − 2ν, while the trait with the opposite sign
is chosen with probability 2ν. Here, ν ∈ [0, 0.25] is the free model parameter
controlling the strength of the group structure: lower ν values imply stronger
group structure and stronger correlations between features, as made more explicit
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by Eq. (4.10). From this procedure, it follows that, at the level of every feature,
each generated trait falls under one of the following situations:

• with probability 0.5 − ν, it is attached to a vector belonging to group −1
and has a value of −1;

• with probability ν, it is attached to a vector belonging to group −1 and has
a value of +1;

• with probability 0.5 − ν, it is attached to a vector belonging to group +1
and has a value of +1;

• with probability ν, it is attached to a vector belonging to group +1 and has
a value of −1.

Note that the probabilities of the four cases add up to 1.0, that the combined
probability of either value is 0.5 and that the probability of either group is also
0.5.

For this model, the probability that a generated configuration has F+ traits
+1 is:

p(ν, F, F+) =

=
1

2

F !

F+!(F − F+)!
(2ν)F+(1− 2ν)F+

[
(2ν)F−2F+ + (1− 2ν)F−2F+

]
, (4.9)

while the correlation between any two features is:

C(ν) = 1− 8ν + 16ν2. (4.10)

The mathematical derivations of Eq. (4.9) and Eq. (4.10) are given in Sec. 4.B.
Note that the correlation in Eq. (4.10) behaves as expected, namely: C(0.0) = 1
(when the two groups are maximally dissimilar the correlation is maximal) and
C(0.25) = 0.0 (when the two groups are indistinguishable the correlation is zero).
Finally, Eq. 4.10 can be written in the form of a quadratic equation, whose solution
reads:

ν(C) =
1−
√
C

4
, (4.11)

after having taken into account that ν ∈ [0, 0.25]. Note that the alternative,
1 +
√
C solution given by the quadratic formula would be valid for the ν ∈

[0.25, 0.5] interval, which is not used here, since it is entirely equivalent (up to an
inversion) with the ν ∈ [0, 0.25] interval, while being relevant only when group
−1 is allowed to be biased towards +1 traits instead of towards −1 traits, and
viceversa, which is not the case here.
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Figure 4.5: Correlation behaviour. The figure shows the dependence of the pair-
wise feature correlation C, first (a) on the feature-feature coupling strength pa-
rameter µ controlling the fully-connected Ising model (FCI), second (b) on the
group strength parameter ν controlling the symmetric two-groups model (S2G).
In the case of FCI, different curves (legend) are shown for different values of the
number of features F , while in the case of S2G, a single curve is shown, which is
valid for any value of F .

4.3.3 Mathematical comparison of the two scenarios

This section deals with the comparison between the FCI and the S2G models, in
terms of properties that can be extracted directly from the equations in Sec. 4.3.1
and Sec. 4.3.2, without the need of randomly sampling from the the two statistical
ensembles. Specifically, we focus on the behavior of the feature-feature correlation
(Fig. 4.5), the shape of the probability distribution (Fig. 4.6) and the symmetry
breaking phase transition (Fig. 4.7) associated to each model.

Fig. 4.5 shows the behavior of the correlation between any two cultural features
for the two models. First, Fig. 4.5(a) shows how the correlation entailed by the
FCI model depends on the model parameter µ controlling the pairwise couplings
between features, based on Eq. (4.8). Different curves correspond to different
values of F . Note that the correlation increases from C = 0.0 to C = 1.0 as
the coupling µ is increased, but it also increases as the number of features F is
increased. Second, Fig. 4.5(b) shows how the correlation entailed by the S2G
model depends on the model parameter ν controlling the group strength, based
on Eq. (4.10). Here, the correlation decreases from C = 1.0 to C = 0.0 as ν is
increased, which is consistent with the fact that, by construction, lower values
of ν correspond to a stronger group structure. Note that the C(ν) behavior is
independent of F , which is obvious from Eq. (4.10).

All the following comparisons are based on a matching of the two models
in terms of the correlation level C. Specific values of µ are chosen, based on
which the correlation level entailed by the FCI model C(µ, F ) is computed via
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Figure 4.6: Shape of probability distribution. The figure shows the probability
associated to configurations with F+ traits +1 for F = 130 features, for different
values of the feature-feature correlation level C (legend), for the fully-connected
Ising model (FCI, top) and for the symmetric two-groups model (S2G, bottom).

Eq. (4.8), for a given F . Then, the corresponding ν(C) of S2G entailing the
same correlation is calculated based on Eq. (4.11). This creates a correspondence
between parameter µ of FCI and parameter ν of S2G by means of the correlation
C. Since C is a number extracted from the full statistical ensemble under a
specific parameterization, it can be regarded as a model parameter, namely as a
replacement or remapping of µ (in the case of FCI) and of ν (in the case of S2G),
which allows for a side-by-side comparison of the two models in terms of other
quantities.

This µ-to-C-to-ν mapping is first exploited by Fig. 4.6, which shows the prob-
ability distributions associated to the FCI and S2G models, as described by
Eq. (4.7) and Eq. (4.9) respectively. In either case, the distribution is shown
for the same values of the correlation C that are listed by the legend at the top.
These C values correspond to the values of the µ and ν parameters that are listed
in Table 4.3.3. The calculations are based on a value of F = 130, which is compa-
rable to the F values associated to the empirical cultural states used in Sec. 4.2
and Sec. 4.5.

Note that, in the limit of vanishing correlation C, the distributions of both
models converge to the uniform probability distribution, which assigns to every
value of F+ a probability that is equal to the fraction of possible configurations
with that many “+” traits . This uniform distribution is characterized by the
existence of one maximum at the center of the F+ axis. As the correlation C
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correlation level C FCI parameter µ S2G paramter ν

0.000 0.000 0.250
0.003 0.002 0.237
0.014 0.005 0.221
0.129 0.008 0.160
0.540 0.010 0.066

Table 4.1: Parameter mapping. The table shows the correspondence between the
correlation values C shown in Fig. 4.6, the associated µ values used for generating
the FCI probability curves and the associated ν values used for generating the
S2G probability curves. This correspondence is valid when F = 130 features are
used for the FCI and S2G models.

increases, the shape of the distribution becomes wider, with two equal maxima
arising on either side of the F+ axis, whose separation also increases with increas-
ing C. Thus, both models exhibit a symmetry breaking phase transition.

However, a close inspection of Fig. 4.6 reveals that the symmetry breaking
happens later (higher values of C) for the FCI model than for the S2G model,
meaning that there is a non-vanishing C interval for which FCI exhibits a uni-
modal behaviour, while the S2G exhibits a bimodal behaviour, interval which
contains the C = 0.014 value. This C interval is of crucial interest for this study,
since it corresponds to the correlation regime for which the symmetric group
structure built into the S2G model is visible in the shape of the probability distri-
bution, while the feature-feature coupling built into the FCI model is not strong
enough to induce a qualitatively similar shape. Still, even for C values that are
high enough for the FCI distribution to also show maxima, the exact shapes of
the two distributions are also different, with the S2G maxima being stronger than
the FCI ones (visible for C = 0.129 C = 0.540). This is a visual confirmation that
the two statistical ensembles are indeed different and that the S2G ensemble has
a smaller Shannon entropy than the FCI ensemble, for any, non-vanishing value
of C, thus being more biased, more constrained and encoding more structure,
which should manifest itself at the level of higher-order correlations (involving
more than two spins/features).

A more complete picture of the phase transitions exhibited by the two models is
provided by Fig. 4.7. This shows the dependence of two mathematical properties
of the probability distributions in Fig. 4.6 on the model parameters. The first
property, denoted here by O1(γ, F ) ∈ [0, 1], is a normalized departure of either
probability peak from the center of the (horizontal) F+ axis. The second property,
denoted here by O2(γ, F ) ∈ [0, 1], is a normalized height of either probability peak
compared to the probability at the center of the (horizontal) F+ axis. Note that
γ is a placeholder for either the µ parameter or the ν parameter, depending,
respectively, on whether the FCI or the S2G model is used. Both quantities are
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Figure 4.7: Symmetry breaking phase transitions. The figure shows the behavior
of the normalized probability peak departure O1 (top) and of the normalized peak
height O2 (bottom), as functions of the model parameters, for the fully-connected
Ising (FCI, top) and the symmetric two-groups (S2G, bottom) models. Different
curves corresponds to different values of the F paramter, controlling the number
of features (legends). Both the µ parameter of the FCI model and the ν parameter
of the S2G model are remapped to the associated correlation value C, which is
shown along the horizontal axis of each plot.
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zero when symmetry breaking is not present and are positive when symmetry
breaking is present, giving higher values for better defined probability peaks.
They can thus be used as “order parameters” characterizing the phase transition,
although they are evaluated in a a priori way, based on the expression of the
probability distribution, rather than based on configurations sampled from the
associated ensemble. Mathematically, the first quantity is defined as:

O1(γ, F ) =
[0.5F ]− F *

+(γ, F )

[0.5F ]
, (4.12)

while the second quantity is defined as:

O2(γ, F ) =
p∗(γ, F )− p(γ, F, [0.5F ])

p∗(γ, F )
, (4.13)

where the square brackets stand for the “integer part” operation. Moreover,
F *

+(γ, F ) is the (integer) position along the F+ axis of the first (lower-F+) peak
and p∗(γ, F ) is the height of this peak. At the same time, p(γ, F, [0.5F ]) is eval-
uated according to either Eq. (4.7) or Eq. (4.9), depending on whether the quan-
tity is evaluated for the FCI model (γ is replaced by µ) or for the S2G model
(γ is replaced by ν). The value of F *

+(γ, F ) is extracted by iteratively exploring
the lower half of the F+ axis, while evaluating p(γ, F, F+) according to either
Eq. (4.7) or Eq. (4.9). On the other hand, p∗(γ, F ) is essentially an abbreviation
for p(γ, F, F *

+(γ, F )).
The four panels of Fig. 4.7 show the behaviour of O1 for the FCI model

(Fig. 4.7(a)), the behaviour of O1 for the S2G model (Fig. 4.7(b)), the behaviour
of O2 for the FCI model (Fig. 4.7(c)) and the behaviour of O2 for the S2G model
(Fig. 4.7(d)). The dependence of either quantity on the µ parameter (for FCI)
and on the ν parameter (for S2G) is translated in terms of the corresponding
correlation value C, via Eq. (4.8) and Eq. (4.10) respectively. Note that the
two quantities agree in terms of the correlation value for which the transition
occurs, for both the FCI (Fig. 4.7(a) vs Fig. 4.7(c)) and the S2G (Fig. 4.7(b) vs
Fig. 4.7(d)), for any number of features F . It is clear that the transition point
comes closer to C = 0.0 with increasing F for both models. Finally, Fig. 4.7
shows that, independently of F , the transition point of S2G is located at lower
values of C than that of FCI.

4.4 Discriminating between the two interpreta-
tions

This section investigates the signatures of the two structural scenarios introduced
in Sec. 4.3, from a spectral analysis and random matrix perspective, with the
purpose of identifying quantities that can differentiate between the two underlying
hypotheses: feature-feature correlations vs group structure. To this end, sets of
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Figure 4.8: Behaviour of subleading eigenvalue (λ2). The figure shows how λ2

depends on the correlation level C for the fully-connected Ising (FCI, red, upward
triangles) and for the symmetric two-groups (S2G, blue, downward triangles)
models. For each C value, for each of the two models, an averaging is performed
over 80 sets of cultural vectors independently sampled from the respective ensem-
ble – the vertical bar associated to each point shows the interval spanned by one
standard mean error on each side of the mean. The black, horizontal lines show,
for comparison, the mean λ2 expected based on uniform randomness, along with
the width of the λ2 distribution – one standard deviation on each side – where the
calculations are based on 60 sets of cultural vectors generated via uniform ran-
domness – these lines do not imply that, for uniform randomness, the correlation
C (which actually vanishes by construction) can be arbitarily large.

cultural vectors are numerically sampled from the two ensembles and similarity
matrices are computed, based on Eq. (4.1). Since both the FCI and S2G ensembles
are such that the (marginal) feature-level probability distributions are uniform,
restricted randomness (see Sec. 4.2) is equivalent to uniform randomness as a null
model (at least if the number of cultural vectors N is reasonably high) with respect
to which structure is to be evaluated. Thus, for simplicity, uniform randomness (u-
random) is used as a null model in this section. All comparisons made here make
use of matching the feature-feature coupling parameter µ of FCI and the group
strength parameter ν of S2G in terms of the correlation level C, as described in
Sec. 4.3.3. Moreover, the number of features and the number of cultural vectors
are F = 130 and N = 100 for all the FCI, S2G and u-random cultural states
generated and used for the figures of this section.

The most obvious quantity that could conceivably discriminate between the
FCI and the S2G models is the subleading eigenvalue λ2, or the extent to which
this goes above the uncertainty range predicted by uniform randomness. Fig. 4.8
shows the dependence of λ2 on the correlation level C for FCI (red) and S2G
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(blue), while the horizontal black lines show the u-random uncertainty range (the
mean value and 1 standard deviation on each side of the mean), as a compact
replacement of the distributions shown in Fig. 4.2(a), Fig. 4.4(a) and Fig. 4.4(b)
– as mentioned in the figure caption, these lines are not meant to give any infor-
mation about the correlation level of the u-random null model, nor about realized
correlations based on specific sets of vectors sampled from the ensemble. Surpris-
ingly, λ2 does not distinguish between the FCI and the S2G models, for any given
correlation level C, since the average λ2 values clearly overlap. At the same time,
λ2 (for both models) does depart significantly from the null model expectations.
This explicitly shows that empirical structural modes such as those identified in
Sec. 4.2 can actually be triggered be feature-feature correlations alone, at least in
certain cases (those for which the simplistic setting behind the FCI and S2G mod-
els is reasonably representative). Thus, empirical eigenvalues that significantly
depart from what is expected based on the null hypothesis do not automatically
indicate groups. In the light of Sec. 4.3, Fig. 4.8 also implies that the subleading
eigenmodes of matrices produced via FCI are associated, on average, to the same
self-similarity as those of matrices produced via S2G, for a given correlation level.
This appears counter-intuitive, since the low-C presence of symmetry breaking
for S2G makes it much easier to identify two, well separated groups, one for each
side of the F+ axis of Fig. 4.6. However, a closer inspection of the probability
distributions in Fig. 4.6 reveals that FCI is more likely to produce, even in the
absence of symmetry breaking, cultural vectors that are at one extreme or the
other (almost fully populated with +1 traits or with −1 traits). These extremal
configurations are much more representative, or “central”, for the configurations
that are possible on the respective side of the F+ axis. Also note that the val-
ues of C used in Fig. 4.8 are the same for FCI and S2G and the same as those
used in Fig. 4.9 and Fig. 4.10 described below. For each FCI and S2G point in
any of these plots, explicit averaging over the sampled sets of cultural vectors
is only performed with respect to the quantity associated to the vertical axes.
For the correlation level C, associated to the horizontal axes, we simply use the
analytically-computed, ensemble-level value, for the given parameterization of the
model (Eq. (4.8) and Eq. (4.10)).

Sec. 4.C shows, in a manner similar to Fig. 4.8, the behavior of the largest
and and third largest eigenvalues – λ1 and λ3 respectively – for the FCI and S2G
models, in comparison to the u-random null model. The analysis there makes it
clear that the λ1 and λ3 are both compatible with the null hypothesis. Thus,
all or most of the structural information of cultural states generated from either
the FCI or the S2G model is captured by the (λ2, v2) eigenpair. Since λ2 cannot
discriminate between the two scenarios, this means that all or most discriminating
power is encoded in the associated eigenvector v2, which is the focus of the rest
of this section.

Based on Sec. 4.3.3 and in particular on Fig. 4.6, one can say that, for the
interesting correlation interval where FCI does not exhibit symmetry breaking
while S2G does, configurations that are on one side of the F+ axis and are gen-
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Figure 4.9: Behaviour of uniformity H2 associated to subleading eigenvalue. The
figure shows how H2 depends on the correlation level C for the fully-connected
Ising (FCI, red) and for the symmetric two-groups (S2G, blue) models. For each
C value, for each of the two models, an averaging is performed over 80 sets of
cultural vectors independently sampled from the respective ensemble – the vertical
bar associated to each point shows the interval spanned by one standard mean
error on each side of the mean. The black, horizontal lines show, for comparison,
the mean H2 expected based on uniform randomness, along with the width of the
H2 distribution – one standard deviation on each side – where the calculations
are based on 60 sets of cultural vectors generated via uniform randomness – these
lines do not imply that, for uniform randomness, the correlation C (which actually
vanishes by construction) can be arbitarily large.

erated with S2G have a much more equal fraction of traits of a certain sign than
those generated with FCI. These S2G configurations should thus have a much
more equal contribution to the structural mode (λ2, v2) than FCI configurations,
so the associated v2 entries should be much more equal for S2G than for FCI.
Given the symmetric nature of both models, it follows that the absolute values of
all the v2 entries should be much more equal for S2G cultural states than for FCI
ones, while, in either case, the entries associated to cultural vectors on different
sides of the F+ axis would (typically) have different signs. This reasoning suggests
that the difference between FCI and S2G would be captured by a quantity that
evaluates the overal extent of “equality” of the absolute values of the entries of
the v2 eigenvector, or, in other words, the eigenvector “uniformity”. Since these
entries are normalized via

∑N
i=1 |vil |2 = 1 for any eigenvector vl, the Shannon

entropy is a natural quantity for evaluating the uniformity. This leads to the
definition of “eigenvector entropy” Hl associated to to the lth highest eigenvalue
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λl, as a measure of uniformity:

Hl = −
N∑
i=1

|vil |2 log |vil |2 (4.14)

where vil is the ith entry of the eigenvector associated to λl – note that this
quantity was also used in Ref. [17], which cites Ref. [24].

Fig. 4.9 shows the behavior of the eigenvector entropy H2 associated to the
second highest eigenvalue λ2, in a format very similar to that of Fig. 4.8. This
confirms that H2 discriminates well between the two models, with S2G showing
clearly higher H2 values than FCI as long the correlation level does not come
arbitrarily close to C = 0.0. Moreover, comparing the two profiles with the u-
random one-σ band reveals that the structure of S2G becomes incompatible with
the null-hypothesis for much lower correlation values than the structure of FCI.
However, for either model, the H2(C) curve does not show the sudden increase
that one would expect based on the phase transitions described in Sec. 4.3.3, in
the manner they are exhibited by the more theoretical O1(C) and O2(C) curves
in Fig. 4.7.

The smoothness of the H2(C) curves is actually related to the fact that, for
the low-C regime, where λ2 is highly compatible with the null hypothesis, H2 is
typically not the second highest eigenvector entropy, although it is associated to
the second highest eigenvalue. This suggests a definition of H ′l as the lth highest
eigenvector entropy, independently of the associated eigenvalue. Fig. 4.10 is a
modification of Fig. 4.9, with H ′2 used as a replacement for H2 for the vertical
axis, affecting all the FCI, S2G and u-random calculations. Note that, unlike in
Fig. 4.9, the sudden changes in Fig. 4.7 are now reflected in Fig. 4.10. Moreover,
the transition points at F = 130 in Fig. 4.7 seem to be well reproduced in Fig. 4.10,
while the FCI and S2G shapes of the H ′2(C) curves are quite similar to those
of O2(C), which are related to the height of the probability distribution peaks.
Finally for higher C values, each H ′2(C) curve in Fig. 4.10 is almost identical to
the associated H2(C) in Fig. 4.9, so strong structure makes it very likely that the
eigenvector of the second highest eigenvalue has the second highest entropy, and
H ′2 is effectively equivalent to H2.

The considerations above strongly suggest that a significant departure of the
eigenvector entropy from the null model expectation is a good indication that the
eigenvector encodes information about a group or a grouping tendency. In the
simplistic (binary, marginally-uniform) setting of the FCI and S2G models, one
could define the presence of groups in a theoretical, a priori way via the presence
of maxima (and symmetry breaking) in the probability distribution over the F+

axis: when maxima are present, most vectors sampled from the distribution can
be unambiguously recognized as belonging to one of the two groups, based on
their F+ value. Under this interpretation, within the interesting C inteval for
which S2G exhibits groups and FCI does not, the eigenvector entropy and its
departure from randomness expectations is crucial for deciding, in a a-posteriori
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Figure 4.10: Behavior of subleading uniformity H ′2. The figure shows how H ′2
depends on the correlation level C for the fully-connected Ising (FCI, red) and
for the symmetric two-groups (S2G, blue) models. For each C value, for each of
the two models, an averaging is performed over 80 sets of cultural vectors inde-
pendently sampled from the respective ensemble – the vertical bar associated to
each point shows the interval spanned by one standard mean error on each side
of the mean. The black, horizontal lines show, for comparison, the mean H ′2 ex-
pected based on uniform randomness, along with the width of the H ′2 distribution
– one standard deviation on each side – where the calculations are based on 60
sets of cultural vectors generated via uniform randomness – these lines do not
imply that, for uniform randomness, the correlation C (which actually vanishes
by construction) can be arbitrarily large.

way, whether groups are present or not.
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4.5 Revisiting the empirical data

The findings of Sec. 4.4 point out the importance of the eigenvector entropy,
in addition to the eigenvalue, for deciding whether a structural mode qualifies
as an authentic group mode or not. Thus, the two quantities should be used
together for a second, more detailed inspection of the empirical data in Sec. 4.2.
This is the purpose of the current section. The empirical similarity matrices
are computed based on the same three sets of N = 100 cultural vectors used in
Sec. 4.2, constructed from Eurobarometer (EBM), General Social Survey (GSS)
and Jester (JS) data.

Fig. 4.11 shows a scatter of the empirical eigenpairs of the EBM matrix, where
the horizontal axis is associated to the eigenvalue λ, while the vertical axis is
associated to the eigenvector entropy H. The global mode eigenpair is highlighted
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Figure 4.11: Eigenvalues and eigenvector entropies for empirical data. Every
point corresponds to an empirical eigenpair, with the eigenvalue λ shown along
the horizontal axis and the eigenvector entropy H shown along the vertical axis.
The inset focuses on the leading eigenvalue, which also corresponds to the highest
eigenvector entropy. The vertical lines in the main plot and in the inset show,
respectively, the widths (one-standard deviation on each side of the mean) of the
subleading and leading eigenvalue distributions, based on restricted randomness.
The horizontal lines in the main plot and in the inset show, respectively, the
widths (one-standard deviation on each side of the mean) of the second highest and
highest eigenvector entropy distributions, based on restricted randomness. The
vertical lines are not intended to provide any information about the eigenvector
entropies associated to the respective eigenvalues, while the horizontal lines are
not intended to provide any information about the eigenvalues associated to the
respective eigenvector entropies. The figure is based on the same, Eurobarometer
(EBM) data with N = 100 cultural vectors used in Figs. 4.1, 4.2 and 4.3.
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Figure 4.12: Eigenvalues and eigenvector entropies in other empirical datasets.
Fig. (a) is based on the General Social Survey (GSS) data with N = 100 cultural
vectors used for Fig. 4.12(a), while Fig. (b) is based on the Jester (JS) data
with N = 100 cultural vectors used in Fis. 4.12(b). In each plot, every point
corresponds to an empirical eigenpair, with the eigenvalue λ shown along the
horizontal axis and the eigenvector entropy H shown along the vertical axis. Each
inset focuses on the leading eigenvalue, which also corresponds to the highest
eigenvector entropy. The vertical lines in each main plot and in each inset show,
respectively, the widths (one-standard deviation on each side of the mean) of the
subleading and leading eigenvalue distributions, based on restricted randomness.
The horizontal lines in each main plot and in each inset show, respectively, the
widths (one-standard deviation on each side of the mean) of the second highest and
highest eigenvector entropy distributions, based on restricted randomness. The
vertical lines are not intended to provide any information about the eigenvector
entropies associated to the respective eigenvalues, while the horizontal lines are
not intended to provide any information about the eigenvalues associated to the
respective eigenvector entropies.

by the inset. In the main plot, the vertical lines show the average and the 1-σ
band of what one may expect for the subleading eigenvalue λ2, based on the r-
random null model, which reproduces, on average, the empirical trait frequencies
(see Sec. 4.2). In the inset, the vertical lines show the same type of information
for the leading eigenvalue λ1. The horizontal lines in the main plot and the inset
show the average and the 1-σ band of what one may expect for, respectively, the
subleading entropy H ′2 and the leading entropy H ′1, based on the r-random null
model. Note that, as anticipated in Sec. 4.4, the subleading entropy is usually
not associated to the subleading eigenvalue, while the leading entropy appears to
always be associated to the leading eigenvalue.

The four structural modes identified based on Fig. 4.2(a) are also visible in the
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main plot of Fig. 4.11, to the right of the vertical r-random band. Importantly,
all their eigenvector entropies are below the horizontal r-random band, suggest-
ing that neither of them qualifies as a group mode. Actually, all the bulk EBM
eigenpairs are also below the r-random band, and thus compatible with the null
hypothesis in terms of the uniformity of eigenvector entries. Also note that the
leading eigenvector entropy is significantly smaller than what the null model pre-
dicts, but this difference is much smaller than the difference between the leading
eigenvector entropy and the subleading one. This means that the contributions of
different cultural vectors to the global mode are less equal than expected based on
randomness, but much more equal than the contributions to any of the structural
modes.

The analysis in Fig. 4.11 is also applied to the other datasets and the results
are presented in Fig. 4.12, with Fig. 4.12(a) showing the results for GSS data and
Fig. 4.12(b) showing the results for JS data. In both cases, the results are similar
to those of EBM data: the structural modes do not show a higher eigenvector
uniformity than what is expected based on the null model, nor do any of the
smaller-λ modes, while the eigenvector uniformity of the global mode is smaller
than what is expected based on the null model, but much higher than what is
expected or realized for the structural modes and the random modes. In the light
of Sec. 4.3 and Sec. 4.4, these results suggests that structural modes of empirical
matrices of cultural similarity are not due to authentic group structure, but to
correlations between cultural features originating in arbitrary similarities between
the questions or items composing the dataset. However, as discussed in Sec. 4.6,
such a conclusion would be premature, implicitly relying on assumptions about
cultural groups that might be too strong.

4.6 Discussion

This was the first study where empirical matrices of cultural similarity between
individuals were analyzed from a random matrix perspective, allowing for a sep-
aration of structurally irrelevant eigenmodes from the structurally relevant ones.
The statistical significance of the latter, here referred to as “structural modes”,
was demonstrated in Sec. 4.2, using a detailed numerical approach of explicitly
sampling configurations from three null models. Among these three, the “re-
stricted randomness” model, first proposed here, was concluded to be the most
appropriate for later use. Restricted randomness enforces, in a flexible way, the
non-uniformity inherent in each cultural feature, as this is assumed to be mostly a
consequence of experimental design rather than a consequence of system-specific
structure. As a consequence, this null model reproduces well the leading eigen-
value of the empirical matrix, which is interpreted as the “global mode”. By
using this null model, meaningful empirical structure is implicitly defined via the
inhomogeneities present in the cultural space distribution [7, 8] (Chaps. 1 and 2)
that cannot be expressed in terms of the feature-level inhomogeneities.
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A central question for the rest of the study was whether the structural modes
identified in Sec. 4.2 are just signatures of correlations between cultural features
or, more interestingly, signatures of cultural groups. The former hypothesis goes
along with the idea that some of the items in the questionnaire are similar to
each other. The latter hypothesis goes along with the idea of coexistence, within
the geographical region from which the empirical data was obtained, of several
types of individuals, where each type could correspond, for instance, to a certain
political affiliation, assuming that each affiliation comes along with a certain set of
values, opinions or beliefs. Even more interesting is the possibility that structural
modes correspond to groups that form around cultural prototypes [6, 8] (Chap. 2)
associated to a small number of universal “rationalities” or “ways of life” [20].
This hypothesis has been shown to be compatible with some generic structural
properties of culture, provided that prototype mixing is in place [8] (Chap. 2).

We approached this question by designing, in the simplest possible setting,
two probabilistic toy models that implement the “correlations” scenario and the
“groups” scenario (see Sec. 4.3) named “FCI” (Sec. 4.3.1) and “S2G” (Sec. 4.3.2)
respectively. These models and the associated scenarios are not mutually exclu-
sive: the presence of groups does induce correlations, while correlations, if strong
enough, can also induce an “impression” of groups. However, the FCI model
is conceived such that only feature-feature couplings are enforced in a manner
that does not introduce any unintended assumption, by means of a maximum-
entropy approach [18]. This is meant to “simulate” an overal level of pairwise
similarity between the questions of a hypothetical survey, assuming that the hy-
pothetical system from which the answers are obtained is otherwise maximally
random. Moreover, there is a non-vanishing correlation interval for which (un-
der a certain, meaningful projection) the S2G model has a bimodal probability
distribution (Sec. 4.3.3), while the FCI model has a unimodal distribution. One
can say that, for this interval, the group structure of S2G is manifested, while
the feature-feature couplings of FCI do not yet create the impression of groups.
The boundaries of this inteval are well defined, via the symmetry breaking phase
transition of S2G on the low-correlation side and the one of FCI on the high-
correlation side.

This correlation region is exploited (Sec. 4.4) for understanding how the pres-
ence or absence of groups becomes visible via spectral analysis. In both cases,
there is one eigenvalue that becomes increasingly separated from the random bulk
when increasing the level of correlations between features. However, this increas-
ing trend is, up to statistical errors arising from finite sampling, exactly the same
for the FCI and S2G models, even for the above-mentioned correlation region.
This suggests that the presence of deviating eigenvalues in empirical data is not
a certain signature of group structure. The difference between the two scenarios
becomes visible if one calculates the uniformities of the eigenvectors by means
of “eigenvector entropy” (inspired by Ref. [17], where it is called “information
entropy”). There is one eigenvector uniformity that, for an increasing level of cor-
relations, becomes increasingly separated from the random bulk. This increasing
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trend is significantly different for the two models, while starting in an abrupt way
and replicating well, for each model, the phase transition expected on theoreti-
cal grounds. Thus, for the interesting correlation region, S2G shows a deviating
eigenvector uniformity, while FCI does not. This suggests that empirical eigen-
modes corresponding to authentic groups should exhibit not only an eigenvalue
that is significantly higher than the null model expectation, but also an eigenvec-
tor uniformity that is significantly higher than the null model expectation.

This motivated a more detailed investigation of empirical data in Sec. 4.5,
which showed that all empirical eigenvalues that are significantly higher than
what can be expected based on restricted randomness are associated to eigenvector
uniformities that are not significantly higher than what can be expected based
on the same null model. This suggests that empirical deviating eigenvalues are
signatures of correlations and not of group structure, since such correlations are
known to be present, although to different extents and differently distributed in
different datasets [7] (Chap. 1). One may even be tempted to reject the “cultural
prototypes” hypothesis previously used in Refs. [6, 8] (Chap. 2). However, Ref. [8]
(Chap. 2) clearly showed that this hypothesis is structurally compatible with
empirical data only when prototype “mixing” is enforced, which means that the
cultural vectors associated to different individuals are random combinations of the
prototype vectors, although each vector is most often dominated by one of the
prototypes. Since the S2G model used here to simulate group structure does not
incorporate mixing, it is possible that group structure resulting from a “mixed
prototypes” scenario is different enough to not exhibit eigenvector uniformities
which are higher than expected based on the the null hypothesis.

Actually, the implementation of the “Mixed Prototype Generation” procedure
of Ref. [8] (Chap. 2) is able to generate, for many parameter choices, vectors that
are arbitrarily similar to one of the prototypes, as well as vectors that are bal-
anced combinations of the prototypes. If a modified S2G model incorporating
such a mixing would be formulated, this would very likely be able to induce, in
the language of Fig. 4.6, probability distributions that are wider than those of
S2G, showing weaker decays when approaching the F+ = 0 and the F+ = F
endpoints, while still different than those of FCI, for a given correlation level.
These distributions might not even show a double-peak structure, and would
likely preserve their shapes in the limit of F → ∞ – assuming that the [0, F ]
interval is mapped to another interval of a constant length when F increases –
while the peaks of the S2G distributions become sharper with increasing F , due
to the central limit theorem. It appears likely that cultural states sampled from
such “mixed-S2G” distributions would only exhibit a subleading eigenvector uni-
formity that significantly deviates from null model expectations for correlation
levels that are higher than those required by FCI: below that level, the vectors
composing each of the two “groups” would have highly different levels of “central-
ity” within the group, leading to non-equal entries in the eigenvector capturing
most of the structure. Certainly, such a mixed-S2G would come with a rather
different meaning of “groups” and of “group structure” than that implicit in S2G
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and recognizable via eigenvector uniformity. One would also need to find a new,
eigenvector-dependent quantity that is sensitive to this different type of group
structure and that can be also used for empirical data. Such considerations are
left for future research.

The fact that this study used multidimensional sociological data, while heavily
relying on eigenvalue decomposition, may raise the question of how the approach
here is different from traditional social science research using principal component
analysis [25]. Although principal component analysis heavily relies on eigenvalue
decomposition, in a social science context, the former most often implies a decom-
position of the matrix of covariances or correlations between the variables, while
this study focuses on the matrix of similarities between individuals. This actually
makes the approach here conceptually more similar to clustering methods [26],
which aim at identifying group structure, while providing an optimal clustering of
the given set of individuals. However, these methods do not attempt to decompose
the similarity matrix and remove the irrelevant eigenmodes. In fact, following the
approach of Ref. [14], the sum of the similarity matrix contributions associated to
the structural modes identified here can be interpreted as a modified modularity
matrix, which could provide a new method for clustering individuals via mod-
ularity maximization. Since this automatically eliminates the noise components
and the common trend encoded in the global mode, such a method should be able
to disentangle clusters that are not recognized by previous approaches. However,
such a method might also be sensitive to false positive cluster splittings, due to
structural modes possibly being artifacts of feature-feature correlations, as shown
in this study (at this point, it is not clear whether this is also a problem for the
method in Ref. [14], intended for matrices of correlations between time series).
These aspects are also left for future research.

4.7 Conclusion

This study examined cultural structure from a new angle, relying on certain no-
tions of random matrix theory. This provided a filtering procedure for matrices
of cultural similarity between individuals, which eliminates, in a statistically rig-
orous way, the structurally-irrelevant components. Much effort was dedicated
to the interpretation of the remaining, structurally-relevant components. Two
possible interpretations were formulated and quantitatively examined. On one
hand, structural components may be a consequence of overlaps between cultural
variables, mainly encoding information about the experimental setup. On the
other hand, they may be a consequence of a modular organization of culture,
thus encoding information about cultural groups. The analysis here favored the
former scenario, but this may be a consequence of the latter scenario having been
formalized in a manner that is too restrictive. More work is needed for entirely
rejecting or accepting the possibility that culture has a modular structure.
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Appendices

4.A The fully-connected Ising (FCI) model

This section gives the details behind the mathematical expressions in Sec. 4.3.1,
which introduced the fully-connected Ising model. Deriving the probability dis-
tribution p associated to this model follows the maximum-entropy approach in-
troduced by Ref. [18]. This crucially relies on the Shannon entropy, which is a
functional of the probability distribution:

H[p] = −
∑
~S

p~S log p~S , (4.15)

where ~S denotes a generic spin configuration with F spins on a fully-connected
lattice, or a generic cultural vector with F binary cultural features whose possible
traits are marked as “−1” and “+1”. The value of the functional H is maximized
subject to two constraints, one related to the normalization of the probability
distribution over the set of possible configurations:∑

~S

p~S = 1, (4.16)

the other related to enforcing, on average, a certain amount K of alignment:∑
a<b

∑
~S

SaSbp~S = K, (4.17)

namely the average number of pairs of similarly labeled traits within a given
configuration ~S, where the first summation is over all distinct pairs of distinct
features (or lattice sites). The maximization is done using the Lagrange multipli-
ers technique for Eqs. (4.15), (4.16), (4.17), which implies that one should find
the extrema of the following functional:

L[p] = H[p]− λ0

∑
~S

p~S − 1

− λ
∑
a<b

∑
~S

SaSbp~S −K

 , (4.18)

where λ0 and λ are free parameters associated to the two constraints. By taking
partial derivatives of Eq. (4.18) with respect to each p~S and further manipulations,
one finds the following probability distribution:

p~S =
1

Z(−λ)
exp

[
−λ
∑
a<b

SaSb

]
, (4.19)
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where Z(−λ) is a normalization factor, known in statistical physics as the “par-
tition function”:

Z(−λ) =
∑
~S

exp

[
−λ
∑
a<b

SaSb

]
, (4.20)

where one can replace the coupling parameter −λ with µ > 0 (whose positive
value favors alignment as opposed to anti-alignment, which corresponds to ferro-
magnetism) and re-express the sum over configurations ~S as a sequence of sums
over the possible traits of each feature Sk, leading to:

Z(µ) =

F∏
k=1

( ∑
Sk=±1

)
exp

[
µ

F−1∑
a=1

F∑
b=a+1

SaSb

]
. (4.21)

In the exponent of this expression, there are F (F − 1)/2 terms, out of which
F+(F −F+) are equal to −1, while the other are equal to +1. Based on this, after
further manipulations and after taking advantage of symmetries, the partition
function can be expressed as as:

Z(µ) =

F∑
F+=0

F !

F+!(F − F+)!
exp

[µ
2

(
(2F+ − F )2 − F

)]
, (4.22)

where the combinatorial factor (binomial coefficient) before the exponential func-
tion counts the number of configurations with the same number F+ of +1 traits
(the density of states). In a way rather analogous to the partition function, the
double summation in the exponent of Eq. (4.19) can also be eliminated. After
multiplication with the density of states, this leads to Eq. (4.7), which gives the
probability of having a configuration with F+ spins up.

On the other hand, using Eq. (4.20), Eq. (4.17) can be written as:

K = −∂(log(Z(−λ)))

∂λ
=
∂(log(Z(µ)))

∂µ
, (4.23)

while the correlation between features/spins a and b is:

Cab =
〈SaSb〉 − 〈Sa〉〈Sb〉√

〈S2
a〉 − 〈Sa〉2

√
〈S2
b 〉 − 〈Sb〉2

, (4.24)

where 〈Q〉 =
∑

~S Q~Sp~S is the expected value of quantity Q with respect to the
statistical ensemble. However, one can easily show, using Eq. (4.22) that 〈S2

a〉 = 1
and that 〈Sa〉 = 〈Sb〉 = 0, so Cab = 〈SaSb〉 =

∑
~S SaSbp~S , which combined with

Eq. (4.17) leads to
∑
a<b Cab = K. But due to symmetry, the expected correlation

Cab is the same for all pairs (a, b), so:

Cab = C(µ, F ) =
2

F (F − 1)
K =

2

F (F − 1)

∂(log(Z(µ)))

∂µ
, (4.25)
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for any pair (a, b), which can also be written in the form shown by Eq. (4.8) –
Eq. (4.23) was used for the last transformation in Eq. (4.25).

One should expect that C(0.0) = 0.0 (null correlations for null coupling),
which based on Eq. (4.8), implies that the following identity holds:

F∑
F+=0

(F − 2)!
(
(2F+ − F )2 − F

)
F+!(F − F+)!

= 0, (4.26)

which, after substitution of F+ with k and of F with N and some further manip-
ulations leads to the following combinatorial identity:

N∑
k=0

(
N

k

)(
(2k −N)2 −N

)
= 0 (4.27)

which can be shown to hold using the expressions for the binomial expansion and
for the first and second moments of a binomial distribution with the probability
parameter set to 0.5.

4.B The symmetric two-groups (S2G) model

This section provides the mathematical derivations of the important mathematical
formulas related to the symmetric two-group model, introduced in Sec. 4.3.2. The
derivations are based on the model description there.

First, we proove Eq. (4.9). On one hand, the probability that a cultural vector
meant to be part of group +1 is assigned to a configuration with F+ traits +1 is:

p+
+(ν, F, F+) =

F !

F+!(F − F+)!
(1− 2ν)F+(2ν)F−F+ , (4.28)

which is a binomial distribution with probability 1−2ν for the +1 possibility and
2ν for the −1 possibility . On the other hand, the probability that a configuration
meant to be part of group −1 has F+ traits +1 is:

p−+(ν, F, F+) =
F !

F+!(F − F+)!
(2ν)F+(1− 2ν)F−F+ , (4.29)

which is the same binomial distribution, but with inverted probabilities. Since
the two groups are by construction equally likely, the combined probability of all
configurations with F+ traits +1 is:

p(ν, F, F+) =
1

2
p+

+(ν, F, F+) +
1

2
p−+(ν, F, F+). (4.30)

Inserting Eq. (4.28) and Eq. (4.29) in Eq. (4.30) leads to Eq. (4.9).
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Second, we proove Eq. (4.10). The correlation coefficient of any two features
a and b is given by Eq. (4.24), which, for symmetry reasons similar to the case of
the FCI model, simplifies to:

Cab(ν) =
∑
~S

SaSbp~S(ν) = C(ν). (4.31)

Moreover, the probability attached to any configuration ~S can be written as:

p~S(ν) =
1

2

(
p−~S (ν) + p+

~S
(ν)
)
, (4.32)

where p−~S (ν) and p+
~S

(ν) are the probabilities of configuration ~S, conditional on
whether it is generated for group −1 or for group +1 respectively. In turn, these
probabilities can be factorized in terms of feature-level probabilities of traits:

p−~S (ν) =

F∏
a=1

p−Sa(ν), p+
~S

(ν) =

F∏
a=1

p+
Sa

(ν), (4.33)

because once the group is chosen, each trait Sa (with possible values −1 and
+1) is chosen independently at the level of the respective feature a. By inserting
Eq. (4.33) in Eq. (4.32) and the result in Eq. (4.31), by carrying out appropriate

algebraic manipulations, while making use of the fact that
∑

~S =
∏F
a=1(

∑
Sa

)

and of the fact that p
−/+
Sa=−1(ν) + p

−/+
Sa=+1(ν) = 1.0, one obtains:

C(ν) =
1

2

[
p−−−(ν)− p−−+(ν)− p−+−(ν) + p−++(ν)

]
+

+
1

2

[
p+
−−(ν)− p+

−+(ν)− p+
+−(ν) + p+

++(ν)
]
, (4.34)

where, for instance, p−−+(ν) is the probability that trait −1 is chosen for one of the
features and that trait +1 is chosen for the other feature, conditional on the given
configuration being generated for group −1. Based on the model description in
Sec. 4.3.2, one can see that:

p−−−(ν) = p+
++(ν) = (1− 2ν)2, (4.35)

p−++(ν) = p+
−−(ν) = (2ν)2, (4.36)

p−−+(ν) = p+
+−(ν) = (1− 2ν)(2ν), (4.37)

p−+−(ν) = p+
−+(ν) = (2ν)(1− 2ν). (4.38)

By plugging these in Eq. (4.34), after simple algebraic manipulations, one obtains
Eq. 4.10.
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Figure 4.13: Behaviour of largest and third-largest eigenvalues λ1 and λ3. The
figure shows how λ1 (a) and λ3 (b) depend on the correlation level C for the fully-
connected Ising (FCI, red, upward triangles) and for the symmetric two-groups
(S2G, blue, downward triangles) models. For each C value, for each of the two
models, an averaging is performed over 80 sets of cultural vectors independently
sampled from the respective ensemble – the vertical bar associated to each point
shows the interval spanned by one standard mean error on each side of the mean.
The black, horizontal lines show, for comparison, the mean λ1 (a) and mean
λ3 (b) based on uniform randomness, along with the width of the λ1 and the
λ3 distributions – one standard deviation on each side – where the calculations
are based on 60 sets of cultural vectors generated via uniform randomness – these
lines do not imply that, for uniform randomness, the correlation C (which actually
vanishes by construction) can be arbitrarily large.

4.C The structure of the FCI and S2G models

This section shows that the structure implicit in cultural states generated with
either the FCI or the S2G model is captured by only one eigenpair of the similarity
matrix, so that there is at most one structural mode. Specifically, as the correla-
tion level is increased for the FCI and the S2G models, there is only one eigenvalue
– the subdominant eigenvalue λ2 – that becomes separated from the random bulk,
while becoming significantly larger than the upper boundary of the bulk that is
expected based on uniform randomness. The behavior of λ2 has already been
presented in Fig. 4.8. The results shown here, via Fig. 4.13, are complementary
to those shown in Fig. 4.8, which uses the same format, while focusing on the
behavior of λ1 in Fig. 4.13(a) and on the behavior of λ3 in Fig. 4.13(b). Note that
λ1, associated to the global mode, remains statistically compatible with the null
model as the level of correlation is increased, for both FCI and S2G. On the other
hand, λ3 decreases, while becoming, for large enough C, significantly smaller than
the upper boundary of the bulk predicted by uniform randomness. All this shows
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4.3 Bibliography

that the structure FCI and S2G is mostly captured by the eigenpair of λ2, which
becomes increasingly stronger as the correlation level increases. This appears to
be a consequence of the fact that each model is controlled by one parameter, while
all the non-uniformity of the associate probability distribution is captured by one
dimension, namely the F+ axis of Fig. 4.6.
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Samenvatting

Samenlevingen vertonen meerdere structurele en dynamische eigenschappen die
interessant zijn vanuit het perspectief van complexe systemen. Zulke eigenschap-
pen kunnen op twee manieren worden benaderd. Bij de sociale benadering gaat
het om de sociale netwerken, waarin verbindingspatronen tussen individuen bekeken
worden. Bij de culturele benadering gaat het om de verscheidenheid aan menin-
gen, voorkeuren en andere culturele attributen onder de individuen. Binnen de
sociale benadering is er zowel datagedreven (empirisch), als modelgedreven (theo-
retisch) onderzoek uitgevoerd, waarbij de nadruk ligt op zowel de structuur als de
dynamiek van sociale netwerken. Dit in tegenstelling tot de culturele benadering,
waarbij voornamelijk theoretisch onderzoek is uitgevoerd, met weinig tot geen
empirische input. Dan gaat het vooral om de manier waarop de culturele karak-
teristieken veranderen door de onderlinge bëınvloeding van de individuen. Dit
proefschrift doet een stap voorwaarts om deze balans te verbeteren, door de focus
te leggen op de structurele eigenschappen van de cultuur, zoals gevangen door
statische, multidimensionele, empirische data uit grootschalige sociale enquetes.

Als eerste stap worden deze data omgezet naar een symbolische keten van
culturele attributen, bekend als “culturele vectoren”, die geassocieerd worden
met verschillende individuen. Hier geldt dat verschillende posities in elke keten
overeenkomen met verschillende vragen van de enquete. Verschillende empirische
bronnen worden gebruikt om meerdere sets van culturele vectoren op te bouwen,
die bekend staan als “culturele toestanden”. Deze worden vervolgens geanaly-
seerd met een eerder ontwikkelde techniek die twee grootheden combineert die
beiden onafhankelijk zijn van de preciese enquetevragen: de neiging tot culturele
diversiteit op lange termijn en de neiging tot sociale coördinatie op korte ter-
mijn. Beiden zijn gebaseerd op de theorie van de dynamica van sociale invloeden.
Deze techniek bevat ook een vergelijking tussen de empirische data en geschikte,
gerandomiseerde, tegenhangers. Deze analyse legt verschillen bloot tussen de
empirische culturele toestanden en de gerandomiseerde tegenhangers, alsmede
opvallende overeenkomsten tussen verschillende datasets. Dit suggereert dat er
niet-triviale, universele eigenschappen ten grondslag liggen aan de structuur van
culturele eigenschappen.

Als tweede stap is het mechanisme achter de robuuste empirische eigenschap-
pen onderzocht. Dit leidt tot het voorstel van een statisch probabilistisch model,
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dat in staat is tot het genereren van culturele toestanden die deze eigenschappen
reproduceren. Het model neemt aan dat iedere individuele reeks van attributen
gedeeltelijk bepaald wordt door een of meerdere, vermoedelijk universele, “ra-
tionaliteiten”, wier bestaan informeel wordt aangenomen door meerdere sociaal-
wetenschappelijke theorieën. Verder neemt het model aan dat, naast een domi-
nante rationaliteit, ieder individu ook affiniteit heeft met de andere rationaliteiten.
Er wordt aangetoond dat beide aannames nodig zijn voor het reproduceren van
empirische regelmatigheden. Dit impliceert dat de generieke structuur van cultuur
in overeenstemming is met het bestaan van meerdere, gemixte rationaliteiten, wat
indirect bewijs levert voor sociaal-wetenschappelijke theorieën gebaseerd op dit
idee.

Als derde stap bekijkt dit proefschrift de beperkingen die de empirische struc-
tuur legt op de culturele dynamica op lange termijn, die wordt aangedreven door
sociale invloeden. Precieser: er wordt berekend in hoeverre de samenstelling van
de groepen in de eindtoestand, geproduceerd door een simpel model van culturele
dynamica, voorspeld kan worden door de culturele vectoren die de begintoestand
specificeren, zonder de dynamica expliciet uit te voeren. Het is aangetoond dat
de voorspelbaarheid, die rigoureus is gedefinieerd in een informatie-theoretische
zin, significant hoger is voor empirische culturele toestanden dan voor geran-
domiseerde tegenhangers vanwege de hiërarchische ultrametriek-achtige organ-
isatie van de eerste, die de culturele convergentie beperkt tot de lagere niveaus
van de hiërarchie. Bovendien gaat hogere voorspelbaarheid hand in hand met
hogere compatibiliteit van de korte-termijn sociale coördinatie en lange-termijn
culturele diversiteit, die een essentieel aspect is van de bovenvermelde empirische
robuustheid. Verder is een nulmodel gëıntroduceerd om culturele begintoestanden
te genereren die de ultrametrieke vorm van de data behouden. Gebruikmakend
van dit ultrametrieke model wordt de voorspelbaarheid sterk verbeterd in vergeli-
jking met de gerandomiseerde tegenhangers. Dit bevestigt dat de hiërarchische
organisatie van werkelijke cultuur zeer belangrijk is voor het voorspellen van het
resultaat van de dynamica van sociale invloeden.

Als vierde en laatste stap wordt de structuur die inherent is aan empirische
culturele toestanden nader onderzocht, met behulp van concepten uit de random
matrix theorie, toegepast op similariteitmatrices tussen culturele vectoren. Voor
het genereren van random matrices die geschikt zijn als structuurloze referentie,
stellen we een nulmodel voor dat de empirische frequentie van elk mogelijk cul-
turele atribuut gemiddeld oplegt. Met betrekking tot dit nulmodel vertonen de
empirische similariteitsmatrices afwijkende eigenwaarden, die mogelijk een teken
zijn van culturele groepen of clusters die mogelijk niet op andere manieren herken-
baar zijn. Ze kunnen echter ook artefacten zijn van willekeurige, datasetafhanke-
lijke correlaties tussen culturele variabelen. Deze mogelijkheid wordt expliciet
gëıllustreerd met behulp van twee eenvoudige modellen. In het eerste wordt het
“groepen-scenario” gëımplementeerd en in het tweede het “correlatie-scenario”.
Ook wordt in deze setting aangetoond dat de twee scenario’s kunnen worden
onderscheiden door de uniformiteit van de waarden van de componenten van de
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eigenvector te berekenen die bij een afwijkende eigenwaarde hoort. Tegelijk wordt
gecontroleerd of deze uniformiteit statistisch overeenkomt met het nulmodel. Voor
empirische data wordt aangetoond dat de eigenvectoruniformiteiten van alle afwi-
jkende eigenwaarden verenigbaar zijn met het nulmodel. Dit suggereert dat de
ogenschijnlijke groepsstructuur niet echt is. Afwijkende eigenvectoruniformiteiten
zouden echter afwezig kunnen zijn voor culturele groepen die worden veroorzaakt
door het mengen van rationaliteiten (de plausibele structurele hypothese hier-
boven genoemd). Verder onderzoek is daarom nodig om een beslissende uitspraak
over de aanwezigheid of afwezigheid van groepsstructuur in cultuur te doen.
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Summary

Human societies exhibit a multitude of structural and dynamical properties that
are interesting from a complex systems perspective. Such properties can be identi-
fied at two levels of analysis. On one hand, one is confronted with social networks,
capturing patterns of connectivity and interactions between social agents – the
“social” level of analysis. On the other hand, one is confronted with distribu-
tions of opinions, preferences and other cultural traits among the agents – the
“cultural” level of analysis. The social level has seen a healthy mix of empiri-
cal, data-driven research and of theoretical, model-driven research, focusing on
both the structure and the dynamics of social networks. By contrast, the cultural
level has mostly seen theoretical, model-driven research, with little or no empir-
ical input, with a strong emphasis on the dynamics of cultural traits, driven by
social influence interactions between agents. This thesis can be seen as a step
towards compensating for this imbalance, as it focuses on structural properties
of culture, captured by static, multidimensional empirical data from large-scale
social surveys.

As a first step, this data is converted into symbolic sequences of cultural traits,
known as “cultural vectors,” associated to different individuals, where different
positions in each sequence correspond to different survey questions. Different em-
pirical sources are used for constructing multiple sets of cultural vectors, where
one such set is also called a “cultural state.” These are analyzed with a previ-
ously developed technique, which combines two quantities whose definitions are
independent of the set of survey questions: a measure of propensity to long-term
cultural diversity and a measure of propensity to short-term social coordination,
both of which are based on theoretical notions of social influence dynamics. The
technique also incorporates a comparison between empirical data and appropri-
ate randomized counterparts. The analysis shows clear deviations of empirical
cultural states from randomized counterparts, as well as remarkable similarities
across different datasets, suggesting that there are non-trivial, universal properties
underlying the structure of culture.

As a second step, the mechanism behind the robust empirical properties is
investigated. This leads to proposing a static, probabilistic model capable of gen-
erating cultural states that reproduce these properties. The model assumes that
every individual’s sequence of traits is partly dictated by one of several supposedly
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universal “rationalities,” whose existence is informally postulated by several so-
cial science theories. In addition, the model assumes that, apart from a dominant
rationality, each individual also has some affinity with the other rationalities. It
is shown that both assumptions are required for reproducing the empirical regu-
larities. This implies that the generic structure of culture is compatible with the
existence of several, mixing rationalities, providing indirect evidence for social
science theories that are based on this idea.

As a third step, this thesis examines the constraints that empirical structure
places on long-term cultural dynamics driven by social influence. More precisely,
it evaluates the extent to which the contents of the final state groups (the subsets
of agents whose cultural vectors are identical in the final state), produced by a
simple model of cultural dynamics, can be predicted based on the cultural vec-
tors that specify the initial cultural state, without explicitly running the dynam-
ics. This predictability, which is rigorously defined in an information-theoretic
sense, is shown to be significantly higher for empirical cultural states than for
randomized counterparts, due to the hierarchical ultrametric-like organization of
the former, which confines cultural convergence within the lower levels of the hi-
erarchy. Moreover, higher predictability goes along with higher compatibility of
short-term social coordination and long-term cultural diversity, which is an essen-
tial aspect of the empirical robustness mentioned above. In addition, a null model
is introduced for generating initial cultural states that retain the ultrametric rep-
resentation of real data. Using this ultrametric model, predictability is highly
enhanced with respect to the randomized cases. This confirms the importance of
the hierarchical organization of real culture for forecasting the outcome of social
influence dynamics.

As a fourth and final step, the structure inherent in empirical cultural states
is further investigated, using concepts from random matrix theory, applied to
matrices of similarity between cultural vectors. For generating random matrices
that are appropriate as a structureless reference, we propose a null model that
enforces, on average, the empirical occurrence frequency of each possible trait.
With respect to this null model, the empirical similarity matrices show deviating
eigenvalues, which may be signatures of cultural groups or clusters that might
not be recognizable by other means. However, they can conceivably also be arti-
facts of arbitrary, dataset-dependent correlations between cultural variables. This
possibility is explicitly illustrated, with the help of two toy models, which imple-
ment the “groups scenario” and the “correlations scenario” respectively, in the
simplest conceivable setting. It is also shown that, at least in this setting, the two
scenarios can be distinguished by evaluating the uniformity of the entries of the
eigenvector associated to a deviating eigenvalue, while checking if this uniformity
is statistically compatible with the null model. For empirical data, the eigenvector
uniformities of all deviating eigenvalues are shown to be compatible with the null
model, suggesting that the apparent group structure is not genuine. However, de-
viating eigenvector uniformities might not be present for cultural groups induced
by mixing rationalities (the plausible structural hypothesis mentioned above), so
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further research is required for a decisive statement about the presence or absence
of group structure in culture.
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Rezumat

Societăţile umane prezintă o serie de proprietăţi dinamice şi structurale care sunt
interesante din perspectiva sistemelor complexe. Astfel de proprietăţi pot fi iden-
tificate pe două niveluri de analiză. Pe de o parte, se poate vorbi despre reţele
sociale, care ı̂ncorporează regularităţi de conectivitate si interacţiune ı̂ntre agenţi
sociali – nivelul “social” de analiză. Pe de altă parte, se poate vorbi despre
distribuţii de opinii, preferinţe si alte trăsături culturale in populaţia de agenţi
– nivelul “cultural” de analiză. În cadrul nivelului social, există atât cercetare
empirică, pe bază de date, cât şi cercetare teoretică, pe bază de modele matemat-
ice, cercetare care se axează atât pe structura cât si pe dinamica reţelelor sociale.
Prin antiteză, ı̂n cadrul nivelului cultural, cercetarea este predominant teoretică,
bazată be modele matematice, cu foarte puţine contribuţii empirice, cercetare
axată preponderent pe dinamica trăsăturilor culturale, datorată interacţiunilor
de influenţă socială ı̂ntre agenţi. Această teză poate fi vazută ca un pas ı̂nainte
către corectarea acestui dezechilibru, deoarece se concentrează pe proprietăţile
structurale ale culturii, accesibile prin date empirice multidimensionale obţinute
prin sondaje de opinie la scară largă.

Ca un prim pas, aceste date sunt convertite ı̂n secvenţe simbolice de trăsături
culturale, denumite “vectori culturali”, asociaţi persoanelor participante la re-
spectivul sondaj de opinie, unde o anumită poziţie ı̂ntr-o secvenţă corespunde
unei anumite ı̂ntrebări din chestionar. Diferite surse empirice sunt folosite pentru
a construi mai multe astfel de seturi de vectori culturali, unde un astfel de set este
denumit şi o “stare culturală”. Acestea sunt analizate cu ajutorul unei tehnici dez-
voltate anterior, care combină două cantităţi ale căror definiţii sunt independente
de setul de ı̂ntrebări din chestionar: prima cantitate masoară predilecţia către di-
versitate culturală pe termen lung, ı̂n timp ce a doua cantitate masoară predilecţia
către coordonare socială pe termen scurt, ambele bazându-se pe noţiuni teoretice
the dinamică sub influenţă socială. Această tehnică ı̂ncorporează şi o comparaţie
ı̂ntre datele empirice si date randomizate asociate. Analiza arată o deviaţie clară
a stărilor culturale empirice faţă de stările randomizate asociate, precum si sim-
ilarităţi remarcabile ı̂ntre diferite seturi de date, sugerând că structura culturală
a societăţilor reale este caracterizată de proprietăţi netriviale si universale.

Ca un al doilea pas, se investighează mecanismul din spatele proprietăţilor em-
pirice robuste. Ca urmare, un model probabilistic este propus, capabil sa genereze
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stări culturale care reproduc aceste proprietăţi. Modelul presupune că secvenţa de
trăsături a fiecărei persoane este dictată parţial de către o “raţionalitate”, dintr-un
set restrâns de raţionalităţi, presupus universale, a căror existenţă este postulată
informal de o serie de teorii aparţinând ştiinţelor sociale. În plus, modelul pre-
supune că, pe lângă o raţionalitate dominantă, fiecare persoană are o oarecare
afinitate si cu celelalte raţionalităţi. Se arată că ambele presupuneri sunt nece-
sare pentru a reproduce regularităţile empirice. Aceasta ı̂nseamnă că structura
generică a culturii este compatibilă cu existenţa mai multor raţionalităţi, combi-
nate si integrate ı̂n mod diferit la nivelul fiecărui individ, ceea ce furnizează dovezi
indirecte pentru teorii sociologice care se bazează pe această idee.

Ca un al treilea pas, această teză examinează constrângerile pe care struc-
tura empirică le impune asupra dinamicii culturale pe termen lung, sub acţiunea
influenţei sociale. Mai exact, se evaluează gradul ı̂n care conţinutul grupurilor
din starea finală (seturi de agenţi ai căror vectori culturali sunt identici in starea
finală), produsă de un model simplu de dinamică culturală, poate fi prezis be baza
vectorilor culturali care specifică starea iniţială, fără a rula dinamica in mod ex-
plicit. Se arată că această predictibilitate, definită riguros prin noţiuni ale teoriei
informaţiei, este semnificativ mai mare pentru stările culturale empirice decât
pentru omoloagele lor randomizate, datorită organizării ierarhic-ultrametrice a
celor dintâi, organizare ce menţine convergenţa culturală preponderent ı̂năuntrul
nivelurilor inferioare ale ierarhiei. Mai mult decât atât, un nivel ridicat de pre-
dictibilitate se asociază unui grad ridicat de compatibilitate ı̂ntre coordonarea
socială pe termen scurt si diversitatea culturală pe termen lung, un aspect defin-
itoriu al structurii empirice menţionate anterior. În plus, un nou model proba-
bilistic este prezentat, care generează stări culturale iniţiale pe baza reprezentării
ultrametrice a datelor reale. Stările culturale generate pe baza acestui model
ultrametric prezintă o predictibilitate semnificativ mărită faţă de omoloagele ran-
domizate. Astfel, se confirmă importanţa organizării ierarhice a culturii pentru
prognoza dinamicii de influenţă socială in sisteme reale.

Ca un ultim pas, structura inerentă stărilor culturale empirice este investigată
mai detaliat, cu ajutorul unor noţiuni ale teoriei matricilor aleatorii, aplicate ma-
tricilor de similaritate dintre vectorii culturali. Pentru a genera matrici aleatoare
adecvate ca un scenariu de referinţă lipsit de structură, propunem un model nul
(model probabilistic bazat pe o ipoteză nulă) care reproduce, in medie, frecvenţa
empirică de apariţie a oricărei trăsături posibile. Prin comparatie cu acest model
nul, matricile empirice de similaritate prezintă valori proprii ce deviază semnifica-
tiv, ceea ce poate semnala prezenţa unor grupuri ce ar putea fi nedetectabile prin
alte metode. Totuşi, este posibil ca prezenţa acestor valori proprii deviante sa fie
o simplă consecinţă a unor corelaţii ı̂ntre variabilele culturale, corelaţii arbitrare,
specifice fiecărui set de date. Această posibilitate este ilustrată in mod explicit, cu
ajutorul a doua modele simpliste, care exemplifică “scenariul grupurilor”, respec-
tiv “scenariul corelaţiilor”, ı̂n cea mai simplă manieră posibilă. De asemenea, se
arată că, cel puţin ı̂n aceste condiţii artificiale, controlate, cele două scenarii pot fi
distinse cu ajutorul uniformităţii elementelor vectorului propriu asociat unei valori
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proprii deviante, verificând dacă această uniformitate este compatibilă statistic cu
modelul nul. Se arată că, pentru datele empirice, vectorii proprii asociaţi tuturor
valorilor proprii deviante sunt compatibili cu modelul nul din punctul de vedere
al uniformităţii, sugerând că nu avem de-a face, de fapt, cu grupuri culturale au-
tentice. Cu toate acestea, grupurile culturale induse de raţionalităţi combinate
(ipoteza structurală plausibilă menţionată anterior) ar putea, la rândul lor, să
nu prezinte uniformităţi deviante ale vectorilor proprii. Drept urmare, mai multă
cercetare este necesară pentru a stabili, ı̂n mod decisiv, prezenţa sau absenţa unor
grupuri autentice ı̂n structura culturii.

165



166



List of publications

[1] Stability of superconducting strings coupled to cosmic strings, A. Babeanu and
B. Hartmann, Physical Review D 85 2 023518 (2012).

[2] Observation of the Λ0
b → J/ψ p π− decay, The LHCb collaboration, Journal

of High Energy Physics 2014 7 103 (2014).

[3] Signs of universality in the structure of culture, A. I. Băbeanu, L. Talman and
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I was born in Constanţa, Romania, on the 28th of September 1989. In Constanţa I
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