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1. General Introduction and Computational 

Tools 

Abstract 

In this chapter the context for this thesis is introduced. Furthermore a brief 

outline is given of the computational methods used, as well as supporting theory.  
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1.1. The search for sustainable energy solutions 
World-wide, there is an increasing amount of attention being invested into 

sustainable energy solutions,1–3 one of which is hydrogen. A critical hurdle is 

securing a sustainable supply of hydrogen.4 Not only can hydrogen replace fossil 

fuels as a combustible source of energy, it is an essential part of the Haber-Bosch 

process, and plays an important role in carbon chemistry. The Haber-Bosch 

process uses hydrogen to produce ammonia which, as an agricultural fertilizer, is 

responsible for food production for a significant percentage of the global 

population.5 Indeed, around half of the hydrogen produced globally is used for 

ammonia production.6,7 As the global population increases, the need for food, and 

therefore hydrogen, must surely increase. Furthermore, unprecedented amounts 

of hydrogen will be needed within the chemical industry: hydrogen can be reacted 

with CO2, both from the atmosphere as well as from industrial emissions, to 

produce useable hydrocarbons. However, this must occur on the gigatonne scale.8 

Considering that around 95 % of hydrogen is currently generated via steam 

reforming of natural gas,6,7 new hydrogen generation methods must be explored. 

One of the most promising methods of generating hydrogen is via artificial 

photosynthesis. A schematic representation of an artificial photosynthetic system 

is shown in Figure 1.1.9 An antenna component absorbs sunlight which is used to 

excite an electron in the photosensitiser, after which excitation energy is 

converted into electrochemical energy. This electrochemical energy is used as 

redox potential by a WOC to catalyse water splitting. This splitting results in 

oxygen, hydrogen ions, and electrons which are stored as reducing equivalents. 

These reducing equivalents are then transferred via an electron transfer system  

 
Figure 1.1 The basic components of a solar fuel production system 
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and a second photosensitiser to a secondary catalytic system which then reduces 

the hydrogen ions to molecular hydrogen. This secondary catalytic system may 

also be used in the generation of hydrocarbons. Although this may sound straight 

forward, challenges include rapid and efficient water splitting, efficient visible-

light absorption and stable charge separation.10 Stable charge separation is one 

of the greatest challenges, which the natural photosynthetic system achieves by 

means of a highly complex electron transfer system that prevents back reactions 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 1.2 (a) The changes in free energy for the four PCET steps of a 
heterogeneous WOC, where * indicates the adsorbents. Adapted from Rossmeisl 
et al.22 (b) The four PCET steps between the catalytic intermediates I1 – I0. Vertical 
lines denote electron transfer, horizontal lines proton transfer. The ligand 
exchange I0 + H2O → I1 + O2 is shown in the top right corner. (c) The decoupled 
PCET reactions of the Mn complex, where vertical lines denote electron transfer 
and horizontal lines proton transfer. The stable states are shown in black: I1, I1+, 
I2+ and I0, which correspond to S1

n, S2
+, S3

+ and S0
n in Dau’s notation shown in (d). 

(d) The water oxidation mechanism for the Mn complex in the natural 
photosynthetic system, as reproduced from Dau et al.19 We note that two of the 
stable states shown in (c) are off-diagonal when compared to (b), these represent 
the interchange of transition states and intermediates. The start of the cycle (Io, 
I1) has intermediates on the diagonal, while the I1+ and I2+ are off-diagonal. This 
leads to a mismatch between the end and the start of the reaction coordinate that 
requires a rearrangement involving the exchange of O2 by 2H2O in an energetically 
downhill process. This supplies a molecular level heat pulse at the right time and 
location for the release of the gaseous O2. 
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and electron-hole recombination, by matching time, length and energy scales.11 

Water splitting forms an important challenge in the move towards a fully 

sustainable energy infrastructure,12–14 which has led to an explosion in the WOC 

research field.10,15–18 The primary function of a WOC is to drive water oxidation. 

To do so, it must be able to process four electrons, according to  

  2𝐻2𝑂 → 𝑂2 + 4𝐻+ + 4𝑒−. (1.1) 

The thermodynamic potential 𝐸0 of water oxidation is 1.23 V. In the natural 

photosynthetic system this reaction proceeds via PCET steps.19 The water 

oxidation mechanism for many heterogeneous catalysts also features four PCET 

steps. The pH-independent changes in free energy throughout the catalytic cycle 

are often depicted as shown in Figure 1.2 (a). Although at longer time scales one 

might consider these steps concerted, i.e. that proton and electron transfer occurs 

simultaneously, on short enough timescales these processes will be decoupled. If 

we consider Figure 1.2 (b), the diagonal arrows would denote the concerted 

reaction. If we were to decouple the electron and proton transfer processes, 

proton and electron transfer could occur in varying sequences throughout the 

catalytic cycle. For example, one could first transfer one electron (I1 → I1
+) in 

Figure 1.2 (b) followed by two protons (I1
+ → I2

-). This technique is also employed 

in the natural photosynthetic system, as shown in Figure 1.2 (c), yielding a total 

of 9 decoupled states (Figure 1.2 (d)),20 in contrast to the four intermediates S0-

S3 of the Kok model.21 Though the second step is PCET, the first catalytic step 

involves only the transfer of an electron (I1 → I1
+ in Figure 1.2 (c)). These 

sequences could therefore be modified in the search for an optimal water 

oxidation catalyst.  

In the search for the optimal water oxidation catalyst, one should bear in mind 

the energetic relationships between catalytic intermediates. It has been 

established, using heterogeneous catalysis, that a scaling relationship exists 

between the adsorption energies of the OH and OOH groups (see Figure 1.3, 

left).23,24 Because the OH and OOH groups bind to surfaces in similar ways, the 

stabilisation or destabilisation of one intermediate will affect the other in the 

same way. For various oxide surfaces the difference in energies between the OH 

and OOH intermediates remains roughly constant at 3.2 eV.24 This introduces a 

minimum overpotential for WOCs, where the overpotential is the difference 

between the potential at which a WOC operates and 1.23 V. Plotting negative 

overpotential as a function of the descriptor ∆𝐺𝑂
0 − ∆𝐺𝑂𝐻

0  yields a volcano plot (see 

Figure 1.3, right), which can be used to evaluate WOCs. The apex of the volcano 

indicates the minimum overpotential needed to overcome both O and OH binding 

energies.24  
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In designing a biomimetic WOC, there are two energetic properties that should 

be aimed for. The first is to have differences in energy between catalytic 

intermediates that would place the WOC on the apex of the volcano plot shown 

in Figure 1.3 (right). The second is to design the WOC so that intermediates 

occupy both diagonal and off-diagonal positions when considering the four PCET 

steps as shown in Figure 1.2 (c). In addressing these challenges, computational 

techniques will prove essential. 

Computational techniques are increasingly employed to test the energetic 

properties of proposed WOCs.25–31 Traditionally, catalytic cycles are examined 

computationally by comparing the free energies of the proposed catalytic 

intermediates and then, usually, assigning the thermodynamically most 

favourable cycle as the most likely catalytic cycle.25–30 This examination often uses 

an implicit solvent model or correction factors to account for protons and 

electrons removed in the catalytic step itself.25,27,29,32–35 Using correction factors 

prevents direct comparisons of the energy of intermediates as the compared 

intermediates usually contain different numbers of protons and electrons. In the 

case of PCET processes,36 it is also becoming increasingly clear that explicit 

solvent molecules are needed to obtain realistic descriptions of reaction 

pathways.37–39 

The aim of this thesis has been to further examine the catalytic mechanisms of 

WOCs within an explicit solvent environment, to compare this to the status quo, 

and to propose a novel approach with which to explore the reaction process and 

free-energy profile from one catalytic intermediate to the next.  

  

Figure 1.3 (left) Adsorption energy of OOH plotted against the adsorption energy 
of OH on perovskites, rutiles, anatase, MnxOy, Co3O4, and NiO oxides. (right) 
Activity trends towards oxygen evolution plotted for perovskites. Both reproduced 
from Man et al., 24 where the PS II data point in (right) has been added (in green) 
for this thesis. 
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1.2. Computational Tools 

1.2.1. Density Functional Theory 

The BOA arises from the large mass difference between electrons and nuclei. 

Electrons usually move much faster than nuclei, so may be considered to readjust 

instantaneously to changes in nuclear configuration. In this way nuclear and 

electronic motion may be considered independently from each other. The 

electronic ground-state can then be studied with DFT. DFT is a well-established 

computational method which obtains the electronic energy as a functional of the 

density 𝜌(𝒓) of electrons in the system. We consider a system of 𝑁 nuclei and 𝑛 

electrons, where the 𝐾th nucleus is positioned at 𝑹𝐾 and the 𝑖th electron at 𝒓𝑖. KS 

orbitals 𝜑𝑖(𝒓), being one-electron wave functions, may be used to obtain the 

density of the non-interacting system 

 𝜌𝑆(𝒓) = ∑|𝜑𝑖(𝒓)|2,

𝑛

𝑖=1

 (1.2) 

in atomic units. In atomic units the physical quantities (4𝜋𝜀0)-1, known as 

Coulomb’s constant with 𝜀0 the vacuum permittivity; 𝑚𝑒, the mass of an electron; 

𝑒, the elementary charge; and ℏ, the reduced Planck’s constant are defined to be 

1.  

The energy functional  

 
𝐸 = 𝐸[𝜌(𝒓)] 

= 𝑇[𝜌] + 𝑉[𝜌] 
= 𝑇[𝜌] + 𝑉𝑒−𝑒[𝜌] + 𝑉𝑛−𝑒[𝜌] + 𝑉𝑛−𝑛[𝜌], 

(1.3) 

includes a kinetic energy term, 𝑇[𝜌], and a potential term 𝑉[𝜌] which has three 

contributions. The potential due to nuclear electron interactions 𝑉𝑛−𝑒[𝜌] can be 

generalised to the potential due to an external field, as integrated over all space 

ℝ3, 

 𝑉𝑛−𝑒[𝜌] = ∫ 𝜌(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝒓,
ℝ3

 (1.4) 

which depends solely on changes in geometry. The potential due to nuclear 

interactions 𝑉𝑛−𝑛[𝜌], with 𝑍𝐽 the atomic charge of nucleus 𝐽 

 𝑉𝑛−𝑛[𝜌] = ∑
𝑍𝐽𝑍𝐾

|𝑹𝐽 − 𝑹𝐾|
,

𝑁

𝐽=1,𝐾>𝐽

 (1.5) 
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is constant for a given nuclear conformation, within the BOA. 

𝑇[𝜌] and 𝑉𝑒−𝑒[𝜌] are dependent on the electrons in the system and therefore are 

universal functionals once the number of electrons is fixed. In 

 

𝑇[𝜌] + 𝑉𝑒−𝑒[𝜌] 

= −
1

2
∑⟨𝜑𝑖

∗|∇2|𝜑𝑖⟩

𝑛

𝑖=1

+
1

2
∫

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′

ℝ3
+ 𝐸𝑥𝑐[𝜌], 

(1.6) 

part of 𝑇[𝜌] is approximated using the one-electron kinetic energy operator and 

part of 𝑉𝑒−𝑒[𝜌] is described by the classical average Coulomb interactions, but the 

quantum contributions due to electron – electron correlation are still not well 

described. These unknown terms are collected in the exchange correlation energy 

functional 𝐸𝑥𝑐[𝜌] and it is this term that DFT tries to approximate. If 𝐸𝑥𝑐[𝜌] was 

given exactly, the KS equations  

 ℎ̂𝑖
𝐾𝑆𝜑𝑖 = 𝜀𝑖𝜑𝑖 (1.7) 

 ℎ̂𝑖
𝐾𝑆 = −

1

2
∇2 + 𝑣𝑒𝑥𝑡(𝒓) + ∫

𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′

ℝ3
+ 𝑉𝑥𝑐[𝜌] (1.8) 

would give the exact ground state energy. In Eqn. (1.8) the term 𝑉𝑥𝑐  is the 

functional derivative of 𝐸𝑥𝑐: 

 𝑉𝑥𝑐[𝜌] =
𝛿𝐸𝑥𝑐

𝛿𝜌
. (1.9) 

Functionals, basis sets, and other approximations 

There are a number of different ways to approximate the 𝐸𝑥𝑐[𝜌] term, which are 

then implemented in a variety of different functionals. GGA approximates 𝐸𝑥𝑐[𝜌] 

per electron as a function of the electron density 𝜌 as well as the first derivative 

of the density 

 𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌, ∇𝜌] = ∫ 𝜌(𝒓)𝑓[𝜌(𝒓), ∇𝜌(𝒓)]

ℝ3
𝑑𝒓. (1.10) 

The GGA functional which is primarily used in this thesis is OPBE.40  
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Hybrid GGA functionals  

 𝐸𝑥𝑐
𝐻𝑦𝑏𝑟𝑖𝑑[𝜌] = (1 − 𝑎)𝐸𝑥𝑐

𝐺𝐺𝐴[𝜌, ∇𝜌] + 𝑎𝐸𝑥
𝐻𝐹[𝜌], (1.11) 

are very widely used. They include part of the exact HF exchange 𝐸𝑥
𝐻𝐹[𝜌] as well 

as GGA exchange-correlation 𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌], where 𝑎 determines the mixing between 

the HF and GGA exchange. Incorporating HF as well as GGA exchange has been 

shown to improve the accuracy of a number of molecular properties.41 Here we 

use the B3LYP functional which has 20% HF exchange.42 

The KS orbitals are usually written in terms of a linear combination of basis set 

functions. Especially in the case of plane wave basis sets, it is customary to use a 

pseudopotential, which describes the core, or non-valence, electrons of an atom 

using an effective potential.43,44 In Gaussian 09 LanL2DZ is used,45–47 which is a 

popular pseudopotential for the larger transition metals.41 In ADF 48–50 Slater-

Type Orbitals are used as basis functions. The basis set used, TZP, describes the 

core electrons using double-zeta, valence electrons using triple-zeta, and includes 

one polarisation function. This is considered the best balance between accuracy 

and computational cost for the systems we consider. In CPMD,51 which uses a 

plane wave/pseudopotential implementation of DFT, PBE pseudopotentials of 

the Kleinman-Bylander form are used.52,53  

Dispersion corrections by Grimme are also added.54 This attempts to 

approximate, and correct for, the effect of van der Waals forces (including 

instantaneous dipole – instantaneous dipole interactions) in the system.  

There are two different methods that are used to simulate the solvation of the 

system in static calculations: in ADF the COSMO,55 and in Gaussian 09 the PCM.56 

Both methods, though having slightly different origins, currently have similar 

implementations.55 The solute molecule is located inside a molecule-shaped 

cavity within a dielectric medium where the dielectric constant is dependent on 

the solvent used. 

1.2.2. Time Dependent Density Functional Theory 

Electronic excited-states are not easily accessible by DFT, which is a ground-state 

theory in its original formulation. TDDFT is a theory which generalises DFT in 

the presence of a time-dependent external field.57–61 Here we focus on linear 

response TDDFT in particular, which makes use of the KS orbitals obtained in the 

ground-state. If we consider an excitation induced by a perturbation due to a 

time-dependent external potential 𝛿𝑣𝑒𝑥𝑡(𝒓, 𝑡), linear response theory applies 

when this perturbation is sufficiently small. The density response depends on 

perturbations at other positions 𝒓′ and earlier times 𝑡′. Time 𝑡 is replaced by 



10 | Chapter One – General Introduction & Computational Tools 

frequency 𝜔 in order to facilitate the extraction of the excitation energies from 

the linear response of the system.61 

The first order change in density  

 𝛿𝜌(𝒓, 𝜔) = ∫ 𝜒𝑠(𝒓, 𝒓′; 𝜔) 𝛿𝜐𝑒𝑓𝑓(𝒓′, 𝜔)
ℝ3

𝑑𝒓′, (1.12) 

features the response function of the non-interacting KS system, 

𝜒𝑠(𝒓, 𝒓′; 𝜔) = ∑ ∑ 2
𝜔𝑎𝑖

𝜔2 − 𝜔𝑎𝑖
2 𝜑𝑖(𝒓)𝜑𝑎(𝒓)𝜑𝑖(𝒓′)𝜑𝑎(𝒓′).

𝑚

𝑎=1

𝑛

𝑖=1

 (1.13) 

𝜒𝑠(𝒓, 𝒓′; 𝜔) depends on the unperturbed KS orbitals 𝜑𝑖(𝒓) and the difference in 

energy eigenvalues 𝜔𝑎𝑖 ≡ 𝜀𝑎 − 𝜀𝑖 of the virtual 𝜑𝑎(𝒓) and occupied 𝜑𝑖(𝒓) KS 

orbitals, both of which may be obtained from the initial DFT calculation. 

Furthermore, 𝜒𝑠(𝒓, 𝒓′; 𝜔) has poles at the excitation energies of the KS system. 

𝛿𝜌(𝒓, 𝜔) also contains the perturbation of the effective potential  

𝛿𝜐𝑒𝑓𝑓(𝒓′, 𝜔)  = ∫
𝛿𝜌(𝒓′, 𝜔)

|𝒓 − 𝒓′|
ℝ3

𝑑𝒓′ + 𝛿𝑣𝑒𝑥𝑡(𝒓, 𝜔) + 𝛿𝑣𝑥𝑐(𝒓, 𝜔), (1.14) 

which depends on the two terms 𝛿𝜌(𝒓, 𝜔) and 𝛿𝑣𝑒𝑥𝑡(𝒓, 𝜔), as well as the linearised 

exchange correlation potential  

 𝛿𝑣𝑥𝑐(𝒓, 𝜔) = ∫ 𝑓𝑥𝑐(𝒓, 𝒓′; 𝜔) 𝛿𝜌(𝒓, 𝜔)
ℝ3

𝑑𝒓′. (1.15) 

𝛿𝑣𝑥𝑐(𝒓, 𝜔) contains the time-dependent exchange correlation kernel  

 𝑓𝑥𝑐(𝒓, 𝒓′; 𝜔) =
𝛿𝑣𝑥𝑐(𝒓, 𝜔)

𝛿𝜌(𝒓′, 𝜔)
|

𝜌=𝜌0

, (1.16) 

the functional derivative being computed at the ground state density 𝜌0. 

𝑓𝑥𝑐(𝒓, 𝒓′; 𝜔) is responsible, along with the self-consistency of Eqn. (1.12) and 

(1.14), for the shifting of the KS poles to the exact excitation energies. The 

approximation of 𝑓𝑥𝑐 should technically be linked to the approximation used for 
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the ground-state 𝑥𝑐 potential. However, in quantum chemistry codes they are 

often treated independently. In this thesis the ALDA kernel  

 𝑓𝑥𝑐
𝐴𝐿𝐷𝐴(𝒓, 𝒓′; 𝜔) = 𝛿(𝒓 − 𝒓′)

𝑑2

𝑑𝜌2
(𝜌 ⋅ 𝜀𝑥𝑐(𝜌))|

𝜌=𝜌0

 (1.17) 

is applied,60 where for 𝜀𝑥𝑐(𝜌), the exchange correlation energy density, a 

parameterisation of a homogenous electron gas is used. 

1.2.3. Car-Parrinello Molecular Dynamics 

MD is an established method of investigating the dynamics in a system. In MD it 

is assumed that the nuclei are heavy enough to be described by classical 

mechanics and so Newton’s equations of motion are used. The forces used in the 

evolution of the system are often derived by an effective potential, usually called 

a force field, containing empirical parameters, which is a severe limitation of the 

MD method. As a result, not all molecules will be well described due to the 

transferability problem, and the breaking and making of bonds cannot be 

simulated. The transferability problem describes the inability of force fields that 

have been optimised for one class of systems to be transferred to a different class 

of systems.  

In an attempt to ameliorate this, AIMD has been developed, where the forces are 

calculated at each time step by solving the electronic structure for the nuclear 

configuration at that point in the trajectory. However, this can be 

computationally very demanding. In response to this, CPMD forms an approach 

in which the electronic structure is only solved for the initial configuration, and 

then evolved in time using an extended Lagrangian.62,63 The evolved electronic 

structure then provides the forces needed to drive the nuclear dynamics. As a 

result, the nuclear trajectory and its corresponding electronic ground state are 

calculated simultaneously, which is significantly less computationally expensive. 

Usually the electronic structure problem within AIMD is solved using DFT, since 

this achieves the best compromise between accuracy and computational effort. 

The Euler-Lagrange equations of motions are given by 

 𝑀𝐼

𝑑2

𝑑𝑡2
𝑹𝐼 = −∇𝐼𝐸[𝑹, 𝜑] (1.18) 

for the dynamics of the nuclei with mass 𝑀, and 

 𝜇
𝑑2

𝑑𝑡2
𝜑𝑖 = −

𝛿𝐸

𝛿𝜑𝑖

+ ∑ 𝜆𝑖𝑗𝜑𝑗

𝑗

 (1.19) 

for the evolution of the electrons, where 𝜇 is the fictitious electron mass, 𝜆𝑖𝑗 the 
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Lagrange multipliers associated to the orthonormalisation condition of the KS 

orbitals 𝜑𝑖 , and 𝐸 is the density functional as per Eqn. (1.3). 

1.2.4. Calculating changes in Relative Free Energies 

Changes in free energy calculated using static calculations 

The Gibbs free energy difference, as considered using static calculations, between 

each catalytic intermediate is calculated following the method first proposed by 

Norskov and co-workers.22,64,65 The structures of the intermediates are optimised 

in vacuum. The zero-point energy and entropic contributions are included 

through vibrational analysis performed with the same computational set-up. For 

every structure optimised in vacuum, solvation effects are accounted for by 

performing a single point calculation in a water environment simulated with the 

COSMO model to give 𝐸𝑠𝑜𝑙𝑣. Enthalpies 𝐸, zero-point energies 𝑍𝑃𝐸 and entropies 

𝑆 of O2, H2 and H2O are also calculated in this manner. Furthermore, as the 

catalytic cycle proceeds via PCET steps, the free energy of the proton and electron 

are calculated as a pair: H+ + e-→ ½ H2. 

In other words, considering that 

 ∆𝐺 = ∆𝐸 − 𝑇∆𝑆 + ∆𝑍𝑃𝐸 (1.20) 

and, because ZPE calculations are more consistently achievable in vacuum, 𝐺 is 

approximated by 

 
𝐺 = (𝐸𝑣𝑎𝑐 + 𝑍𝑃𝐸𝑣𝑎𝑐 − 𝑇𝑆𝑣𝑎𝑐) + 𝛿𝐸𝑠𝑜𝑙𝑣 , 
 

𝛿𝐸𝑠𝑜𝑙𝑣 = 𝐸𝑠𝑜𝑙𝑣 − 𝐸𝑣𝑎𝑐 . 
(1.21) 

Then for the first PCET reaction step in Figure 1.2 (b) 

 𝐼𝑖 ⟶ 𝐼𝑖+1 + 𝐻+ + 𝑒−, (1.22) 

the change in free energy is given by 

 Δ𝐺(𝐼𝑖 ⟶ 𝐼𝑖+1) = 𝐺(𝐼𝑖+1) − 𝐺(𝐼𝑖) + Δ𝐺(𝐻+) + Δ𝐺(𝑒−), (1.23) 

where G is approximated by Eqn. (1.21) and H+ + e- by 1

2
𝐻2. 

Using constrained CPMD to calculate changes in free energy 

The Gibbs free energy difference, as considered using dynamic calculations, 

between each catalytic intermediate is calculated following a constrained MD 

method.66–68 By constraining a reaction coordinate (in this case the distance 
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between two atoms) at fixed values along a reaction path, the time-averaged 

constraint force 〈𝜆〉𝑥 for each of these values is obtained. The time-averaged 

constraint force is equal to zero at an equilibrium or transition state (see Figure 

1.4), and it has been shown that 〈𝜆〉 corresponds to the thermodynamic force 
𝜕𝐺

𝜕𝑥
, 

68–70 which may be integrated  

 ∫ ⟨𝜆⟩𝑥  𝑑𝑥

𝑥2

𝑥1

⇒ ∆𝐺(𝑥1 → 𝑥2) (1.24) 

to give the free energy change along the reaction path.68–70  

It should be noted that the time-scale of the events observed using this 

methodology will not be comparable with experiment, though the reaction rate 

can be extracted using transition state theory.71 

 
Figure 1.4 The time-averaged constraint force 〈𝝀〉 as a function of the reaction 
coordinate 𝒙. Here the reaction coordinate is the distance between square and 
circle as the circle is transferred from the square to the triangle, where 𝒙𝟏 and 𝒙𝟐 
are equilibrium states and 𝒙𝑻𝑺 is the transition state.  

1.3. Main Results 
The traditional computational methods for establishing a WOC’s mechanism are 

demonstrated in Chapter Two, where a combined experimental and 

computational analysis is performed on a series of ruthenium-based WOCs. This 

analysis shows that computational techniques allow for a more in-depth 

understanding and interpretation of experimental data.  

The case for the inclusion of an explicit solvent with regard to mechanistic 

considerations is given in Chapter Three. There it is observed that including 

explicit water molecules leads to a different preferred reaction path than would 

be initially expected by following traditional computational methods. The closed 

system approach is also introduced, which allows for the decoupling of proton 
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and electron transfer. 

One of the ruthenium-based WOCs investigated in Chapter Two is examined in 

Chapter Four within an explicit solvent environment including an electron 

acceptor. Furthermore, the case for a closed system approach is made with regard 

to energetics. The energetics of the first two catalytic steps are investigated, and 

taking the energetic contribution of the electron acceptor as constant, these agree 

with experiment to within 0.1 eV. 

Proton diffusion within explicit solvent is further investigated in Chapter Five, 

where appropriate water wires were observed to facilitate highly rapid proton 

migration. Furthermore, the inclusion of an OH- ion as a proton acceptor 

significantly decreased the thermodynamic barrier of the O – O bond formation 

step of the earlier investigated ruthenium-based WOC. 
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2. The Fundamentals: A Combined Experimental 

and Theoretical Study 

Abstract 

When designing a WOC it is crucial to establish the catalytic mechanism and the 

intermediates of the catalytic cycle, but a full description is often difficult to 

obtain using only experimental data. A combination of DFT, radiation chemistry, 

spectroscopic techniques and electrochemistry is used to establish the water 

oxidation mechanism of a series of mononuclear ruthenium water oxidation 

catalysts. The comparison between the calculated absorption spectra of the 

proposed intermediates with experimental ones, as well as free-energy 

calculations with electrochemical data, provides strong evidence for the proposed 

catalytic pathway: a water oxidation catalytic cycle involving four PCET steps. The 

thermodynamic bottleneck is identified in the third PCET step involving the O-O 

bond formation. The good agreement between the optical and thermodynamic 

data with DFT predictions further confirms that this methodology should be 

considered fundamental for the characterisation of water oxidation catalysts. 

 

  

This chapter is based on 
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“Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A 

Combined Experimental and Theoretical Investigation.”  

ACS Catalysis, 2016, doi: 10.1021/acscatal.6b02345 
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2.1. Introduction 

A full description of WOC mechanisms underlying catalytic activity is not always 

accessible experimentally. A computational description of each intermediate 

state plays a crucial role in the prediction of catalytic behaviour throughout the 

entire cycle and provides complementary information for the interpretation of 

experimental observations. Concurrently, the computational approach also needs 

to be validated with experimental data. Initially, it was supposed that only 

multinuclear complexes would be able to supply the oxidation potential needed 

to catalyse water splitting, in analogy with the four Mn complex in the oxygen 

evolving centre of PS II.1,2 As a result, several molecular catalysts have been 

developed with two or more metal sites.1,3–8 However, an increasing amount of 

effort has been directed towards developing mononuclear WOCs.1,9 A large 

number of ruthenium1,10–18 and iridium1,5,19–25 based catalysts have been reported. 

DFT has been used extensively to predict the reaction mechanisms and the 

electronic properties of several multi- and mono-nuclear molecular 

catalysts.5,6,11,15,16,25  

We recently investigated the WOC [Ru(cy)(bpy)(H2O)]2+ (cy = p-cymene, bpy = 

2,2’-bipyridine; Scheme 2.1 (Ru-bpy)).14,26 It has been shown that the 

immobilization of this Ru-based catalyst, modified with surface anchoring units, 

on a BiVO4 light-absorber enhances the performance of this photoanode.26 The 

proposed catalytic cycle for water oxidation involves four PCET steps as depicted 

in Scheme 2.1.27 Here we study this Ru-bpy catalyst and several derivative 

catalysts of the form [Ru(cy)(L)(H2O)]2+ (Figure 2.1) by means of a combination 

of theoretical and experimental techniques, expanding on previously described 

strategies.15  

We verify the stability of this class of catalysts under oxidative conditions using 

 
Scheme 2.1 Proposed catalytic cycle for water oxidation by Ru-bpy. Inset: 
Schematic structure of Ru-bpy. 
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OLEMS and SERS.28 The proposed catalytic mechanism is validated by 

comparing the computed free-energy differences between the intermediates in 

the catalytic cycle and those derived from electrochemical measurements. The 

absorption spectra predicted by TDDFT calculations for each intermediate in the 

catalytic cycle are used to interpret the results obtained from stopped-flow and 

pulse radiolysis measurements, confirming that the proposed cycle can explain 

experimental observation. Finally, the ability of TDDFT calculations to reproduce 

absorption spectra for three derivative catalysts confirms the general applicability 

of this methodology as a powerful tool for the characterisation of WOCs and for 

the interpretation of experimental observables. 

2.2. Experimental Methods 

The synthesis of the starting compounds has been described in an earlier thesis 

published by this group.29 

Online Electrochemical Mass Spectrometry (OLEMS) 

OLEMS experiments were performed using a set up that has been previously 

described.28,30 The electrochemical cell used for these experiments is a two 

compartment cell with three electrodes: a gold bead electrode (diameter 3 mm) 

and a gold wire were used as the working and counter electrodes, respectively; 

the reference electrode was an RHE separated from the main cell by a Luggin 

capillary. Before each measurement, the working electrode was electrochemically 

cleaned: the electrode was first oxidised in 10% sulfuric acid by applying 10 V for 

 

 
Ru-bpc 

 
Ru-bpy Ru-mbpy 

  
Ru-dnbpy Ru-bpm 

Figure 2.1 Schematic structures of the investigated catalysts: 2,2′-bipyridine (Ru-
bpy), 4,4′-disubstituted-2,2′-bipyridine (Ru-bpc, Ru-mbpy, Ru-dnbpy) and 2,2′-
bipyrimidine (Ru-bpm) Ru(p-cymene) complexes. 
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30 s, using a graphite bar as the counter electrode. Subsequently the gold oxide 

formed was removed by dipping the working electrode in a 6 M HCl solution for 

30 s. The electrode was then flame annealed and cycled 200 times from 0 –  

1.75 V (vs. RHE) at 1 V/s in 0.1 M HClO4. The gold counter electrode was flame 

annealed. A 0.1 M solution of phosphate buffer (pH 7) was prepared from 

Na2HPO4 and NaH2PO4. Ru-bpc was dissolved in the buffer solution at a 

concentration of 1 mM and OLEMS measurements were made with the catalyst 

in solution. 

Surface Enhanced Raman Spectroscopy 

In situ SERS electrochemistry was performed on a set up that has been previously 

described.28,31,32 The electrochemical cell has two compartments and three 

electrodes: a roughened gold surface as the working electrode, a gold wire as the 

counter electrode, and the reference electrode was an RHE separated from the 

main cell by a Luggin capillary. The gold working electrode was first 

electrochemically cleaned using the process described above for the OLEMS 

measurements and then subsequently electrochemically roughened by 25 

oxidation−reduction cycles in a 0.1 M solution of KCl. The oxidation−reduction 

cycles were performed between −0.30 and 1.20 V vs SCE, during which the 

potential was held for 30 s at the negative limit and for 1.3 s at the positive limit, 

a method reported to give a brownish surface that is SERS active.33 1 mg Ru-bpc 

was dissolved in methanol. A neutral Na-exchanged Nafion solution was 

prepared by mixing one part of Nafion (5% wt, 1000 equiv/g, Sigma-Aldrich) with 

one part of 0.05 M NaOH.34 One part of the catalyst solution was mixed with one 

part of Na-exchanged Nafion solution. 15 μL of this mixture was dropcast on the 

gold working electrode and dried under vacuum for use in the in situ SERS 

electrochemical measurements. 

UV-Vis Spectroscopy and Stopped Flow analysis 

Absorption spectra of the [Ru(cy)(L)(H2O)]2+ complexes (c = 5×10-5 M) for both 

molar absorptivity measurements and kinetic analysis were recorded with a 

Perkin-Elmer Lambda 950 UV/Vis/NIR spectrophotometer. The kinetic analysis 

was performed using an Applied Photophysics stopped-flow system configured 

for two-syringe mixing (RX.2000 Stopped-Flow Mixing Accessory). The initial 

concentrations of reactants in the syringes were fixed to 10-4 M for Ru(II) 

complexes in every experiment and from 1×10-4 M to 10×10-4 M for CeIV 

([Ce(NH4)2(NO3)6], CAN, Sigma-Aldrich), depending on the different Ru/Ce ratio 

(1:1; 1:2; 1:4 and 1:10). The spectral evolution was recorded after equal amounts 

of both solutions were mixed in a 1 cm optical path length stopped-flow cell. The 

dead time of the mixing setup was 8 ms. 

Pulse radiolysis 

Pulse radiolysis35 with optical absorption detection was performed using a  
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12 MeV linear accelerator, which delivered 100 - 200 ns electron pulses with 

doses between 4 and 82 Gy.36 The pulse irradiations were performed at room 

temperature (22 ± 2 °C) on samples in Spectrosil quartz cells of 2 cm optical path 

length. Solutions were protected from the analysing light with a shutter and cut-

off filters. The bandwidth used throughout the pulse radiolysis experiments was 

5 nm. The radiation dose per pulse was monitored with a charge collector placed 

behind the irradiation cell and calibrated with an N2O-saturated solution 

containing 0.1 M HCO2
– and 0.5 mM methylviologen (MV+•), using G(MV+•) = 

0.7×10-6 mol J-1 at 605 nm, where G(x) represents the number of moles of species 

x formed, consumed or altered per joule of energy absorbed by the system.37  

The radiolysis of water yields solvated electrons (eaq
–), hydroxyl radicals (•OH) 

and hydrogen atoms (H•) as primary radical species, which are responsible for the 

production of the several active species in solution.38 The oxidants used in the 

experiments here were SO4
•– and CO3

•–. They were chosen for their high standard 

redox potentials of 2.43 and 1.5 V (vs. NHE), respectively.39–41 SO4
•– radicals were 

generated by pulse radiolysis of a K2S2O8 (10 mM) solution de-aerated with 

Argon, at pH=1.4 adjusted by adding concentrated HClO4, in the presence of  

0.1 M t-BuOH as •OH radical scavenger. CO3
•– radicals were generated by pulse 

radiolysis of Na2CO3/NaHCO3 (5 mM : 5 mM, pH = 10) solution saturated with 

N2O. The mechanisms for the production of the radicals is described by Polyansky 

et al.41 

2.2.1. Computational method and details 

Geometry optimisations, thermodynamic and TDDFT calculations are performed 

using the ADF software package.42–44 Van der Waals interactions are accounted 

for by using the Grimme3 BJDAMP dispersion correction.45 Unless stated 

otherwise the geometries of the examined molecules are optimised using the 

OPBE functional,46 with the TZP basis set and a small core. This GGA functional 

has shown good performance when describing transition metal complexes.14,47–49 

TDDFT excited state calculations are performed with the B3LYP functional 

combined with the TZP basis set.50 In both the geometry optimization and the 

TDDFT calculations, the solvation effect of water is included by means of 

COSMO.51 All calculations are spin unrestricted and the energetically most stable 

multiplicity is checked when necessary (see Table A2.1).  

This computational set-up is employed in test calculations performed on a 

ruthenium-based benchmark WOC, for which experimental data is available for 

comparison.15 The results shown in the Supporting Information (Figure A2.1 and 

Table A2.2) validate the ability of this method to accurately reproduce the optical 

properties of compounds chemically similar to the WOC of interest in this study. 

The thermodynamics of the catalytic cycle is obtained by calculating the Gibbs 

free energy difference between each catalytic intermediate following the method 



Results and Discussion | 23 

first proposed by Norskov and co-workers.52–54 The structure of each 

intermediate is optimised at the B3LYP/TZP level, in vacuum. Zero-point energy 

and entropic contributions are included through vibrational analysis performed 

with the same computational set-up. For every structure optimised in vacuum, 

solvation effects are accounted for by performing a single point calculation with 

the B3LYP functional in a water environment simulated with the COSMO model. 

Reaction energies, zero-point energies and entropies of O2, H2 and H2O are also 

calculated in this manner. Furthermore, as the catalytic cycle proceeds via PCET, 

the free energy of the proton and electron are calculated as a pair: H+ + e-→  

½ H2. 

Raman frequency calculations, after re-optimisation of the geometries, are 

performed with Gaussian ’09,55 using the B3LYP functional and LANL2DZ basis 

set.56–58 In Gaussian ’09 calculations, this basis set has been shown to be an 

effective descriptor for ruthenium complexes.59,60. Solvation effects are included 

with the PCM model for water,61 while anharmonic corrections were not included. 

The resulting output is visualised with the help of the GaussSum program.62 

2.3. Results and Discussion 

2.3.1. Characterisation of the catalytic intermediates of Ru-bpc 

Catalyst stability 

The stability of similar WOC complexes under oxidative conditions has been 

under scrutiny in the literature due to the possible oxidative degradation and loss 

of the ligands.63,64 In particular, evidence of catalyst degradation has been 

reported for Ir-Cp* complexes (Cp* = cyclopentandienyl).63,64 These results 

appear to be strongly affected by the chemical oxidant used in the study, most 

often CAN or Sodium Periodate NaIO4.63–74 More recently it has been shown that 

the Cp* complex remains intact at the initial stages of the water oxidation reaction 

in the case of [Ir(Cp*)(Me2NHC)(Cl)2].28  

To establish the stability of the Ru-based catalysts analysed in this work, we use 

OLEMS monitoring in situ the production of O2 and CO2 concurrently with time 

dependent electrolysis.28 In this way it is possible to check whether the organic 

moieties in the complex decompose during catalytic oxygen evolution. Figure 2.2 

shows the current signal and the mass signals for O2 (m/z 32) and CO2 (m/z 44).  

Figure 2.2 shows that when the potential is raised to a value above 0.8 V where 

water oxidation begins (see also Table 2.1), then there is a marked increase in 

current and oxygen is evolved. In contrast, there is little change in the CO2 signal. 

These results show that Ru-bpc forms negligible amounts of carbon dioxide under  
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oxidizing conditions, strongly suggesting that the organic ligands are stable, or at 

least do not degradate all the way to CO2. The instantaneous evolution of dioxygen 

as soon as a sufficiently high potential is applied, illustrates that Ru-bpc itself is 

the active species in the oxygen evolution reaction at early stages of the water 

oxidation reaction.75 We cannot rule out that the cymene ligand de-coordinates 

after prolonged electrolysis under the harsh oxidative conditions and the 

decrease in oxygen evolution rates after the initial burst may actually point to 

such an event. Since we do not detect significant amounts of CO2 under these 

circumstances, this indicates that Ru-bpc does not degradate all the way to 

ruthenium oxide under the employed conditions. This is also consistent with our 

previous investigation involving the use of highly sensitive in-situ EQCN 

experiments showing no sign of ruthenium oxide generation during the catalytic 

reaction of water oxidation.30  

 
Figure 2.2 OLEMS signals acquired during electrochemical water oxidation as 
catalysed by Ru-bpc. The potential is initially set at 0.8 V (vs NHE) then increased 
to 1.8 V at 30 s (indicated by the dashed grey line). 
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Electrochemical and Thermodynamic investigation  

Electrochemical investigations and CV had previously been performed for the Ru-

bpc and Ru-bpy complexes.29 To assign a specific redox couple to each electronic 

wave observed in the CV analyses, we compute with DFT the Gibbs free energy 

differences between consecutive catalytic intermediates according to the 

proposed cycle presented in Scheme 2.1. As shown in Table 2.1 and Figure 2.3 the 

theoretical calculations show good agreement with the experimentally observed 

trend. Consistent with the experimental data, the third step from [RuIV=O]2+ to 

[RuIII-OOH]2+ (which involves the formation of the O – O bond) shows the largest 

G, and thereby forms the thermodynamic bottleneck of the system. This 

thermodynamic bottleneck gives an overpotential of about 0.6 V for both Ru-bpc 

and Ru-bpy, as estimated from the electrochemical data (see Table 2.1). As the 

[RuII-OO]2+ intermediate cannot be observed experimentally, it is not possible to 

comment on the redox value calculated for it. It is interesting to note that the DFT 

results predict the final step involving the ligand exchange of O2 with H2O on the 

Ru site to be thermodynamically spontaneous with a G= -0.42 eV for Ru-bpc 

and G= -0.15 eV for Ru-bpy, contrary to the general assumption that this 

exchange is thermodynamically neutral.54  

The comparison of the thermodynamic analysis of the two catalysts Ru-bpc and 

Ru-bpy (see Table 2.1) shows that the substitution of a COOH group for H seems 

to have little effect on the potentials at which the PCET steps occur. The two 

catalysts only differ by around 0.1 eV when comparing the measured G values 

for each catalytic step. We do notice however that the DFT method used seems to 

 
Figure 2.3 Free energy difference between intermediates along the catalytic 
pathway of the Ru-bpy catalyst. DFT results (blue and green) are compared with 
the values extracted from electrochemical data (red and pink). We also show, as 
a visual guide, a constant change of 1.23 eV for all four PCET steps (grey line). 
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over-stabilise the initial state of Ru-bpc leading to a deviation of  

0.45 eV for the [RuII-OH2]2+ → [RuIII-OH]2+ step. This is also reflected in the G 

values calculated for the final ligand exchange mentioned earlier: that calculated 

for Ru-bpc is 0.3 eV more negative than that calculated for Ru-bpy. It is noted 

that the initial state has also been shown to be the most dependent on the choice 

of functional.76 Apart from the steps affected by the over-stabilisation of the initial 

state of Ru-bpc, the calculated G values for both catalysts differ less than 0.1 eV. 

The [RuIII-OH]2+ → [RuIV=O]2+ step as calculated for Ru-bpc agrees to 0.1 eV with 

the experimental measurement, while a larger deviation (0.2 eV) is observed for 

the [RuIV=O]2+ → [RuIII-OOH]2+ step. This step has the largest deviation between 

calculated and experimental values for the Ru-bpy catalyst, while the 

experimental values for the first two catalytic steps are reproduced with an error 

≤ 0.2 eV. 

In Table 2.1 we also note the computed G associated to the hydrolysis process; 

this corresponds to the sum of all the ΔG contributions in the complete catalytic 

cycle. This result deviates only by 0.1 eV with respect to the experimental value of 

4.92 eV, thereby providing a further indication that the chosen computational 

method and set-up is sufficiently accurate in its description of the water oxidation 

reaction. 

Table 2.1 Calculated ΔG for each catalytic step along the proposed catalytic 
mechanism, as compared to the experimentally measured ΔG for Ru-bpc and Ru-
bpy adjusted to 𝑬𝟎 according to the Nernst equation 𝑬 = 𝑬𝟎 − 𝟎. 𝟎𝟓𝟗 𝒑𝑯, where 
the potential 𝑬 is measured at a certain pH. 

 ΔGcalc Ru-bpc 
(eV) 

ΔGexp Ru-bpc 
(eV) 

[RuII-OH2]2+ →[RuIII-OH]2+ 1.25 0.80 

[RuIII-OH]2+ → [RuIV=O]2+ 1.30 1.36 

[RuIV=O]2+ → [RuIII-OOH]2+ 2.09 1.91 

[RuIII-OOH]2+→ [RuII-OO]2+ 0.81 - 

[RuII-OO]2+ → [RuII-OH2]2+ -0.42 - 

2H2O → 2H2 + O2 5.02 4.92 

   

 ΔGcalc Ru-bpy 
(eV) 

ΔGexp Ru-bpy 
(eV) 

[RuII-OH2]2+ →[RuIII-OH]2+ 0.87 0.67 

[RuIII-OH]2+ → [RuIV=O]2+ 1.38 1.27 

[RuIV=O]2+ → [RuIII-OOH]2+ 2.19 1.83 

[RuIII-OOH]2+→ [RuII-OO]2+ 0.73 - 

[RuII-OO]2+ → [RuII-OH2]2+ -0.15 - 

2H2O → 2H2 + O2 5.02 4.92 
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SERS and Raman frequency calculations 

To verify the presence of the expected catalytic intermediates, SERS 

measurements were conducted stepwise from -0.4 V up to 1.0 V. Owing to the 

oxidation of the gold electrode, it was not possible to measure SERS spectra at 

the potentials needed to drive the catalyst through the bottleneck of the third 

PCET step. After measuring up to 1.0 V, another spectrum was measured at  

-0.3 V that shows recovery of the initial species. This further indicates that the 

catalyst remains intact during the initial stages of the water oxidation reaction. 

When considering the SERS spectra (Figure 2.4) three distinct potential ranges  

(-0.4 – 0.1 V, 0.2 – 0.5 V, 0.6 – 1.0 V) can be identified. The potentials at which 

these ranges change (0.2 and 0.6 V) are the same as the potentials assigned to the 

transition from one catalytic intermediate to the next (adjusted for pH 7.35). 

 
Figure 2.4 (Top) SERS spectra of Ru-bpc. Spectra are obtained by increasing the 
potential stepwise to 1.0 V, after which a measurement is performed at -0.3 V. 
The dotted lines indicate the potential at which significant changes are observed. 
(Bottom panels) Selected regions of SERS spectra of Ru-bpc are compared to 
computed Raman frequencies and intensities for the three intermediates [RuII-
OH2]2+ (black), [RuIII-OH]2+ (red) and [RuIV=O]2+ (blue). The grey dotted lines 
indicate areas in which changes in the Raman spectrum can be linked to different 
intermediates. 
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Considering the potential range for which SERS is conducted, it is expected that 

only the [RuII-OH2]2+, [RuIII-OH]2+ and [RuIV=O]2+ species will be identifiable. 

Raman frequency spectra calculated using Gaussian ’09 for these three species 

are compared to three different selected frequency regions of the SERS spectra in 

the lower panels of Figure 2.4. 

In the region 500 – 680 cm-1, a broad shoulder appears at 0.2 V, then decays 

above 0.6 V. In this region, the theoretical spectra shows only one mode 

attributed to the Ru-OH stretch of the [RuIII-OH]2+ species. The Ru-O stretch of 

the [RuII-OH2]2+ species is expected at lower frequencies and as such is not 

observed experimentally, while the stiffer Ru=O stretch is expected around  

830 cm-1. In the 1010 – 1110 cm-1 region, a peak is observed around 1015 cm-1 at  

-0.4 V, which shifts to higher frequency at 0.2 V, then slowly decays and shifts to 

slightly higher frequencies. Based on the DFT calculations, this peak is assigned 

to the Ru-N stretch, which becomes stiffer as the oxidation state of the Ru 

increases. This trend is also shown in the theoretical calculations (see lower 

panels of Figure 4). 

The effect of the increasing oxidation state of Ru on the bonds to the bipyridine 

ligand is also seen in the region between 1430 and 1670 cm-1. The predicted 

frequencies are ~5 % higher than the measured values, which is within a typical 

error at the DFT/B3LYP level of theory. Nevertheless, the trends between 

calculation and experiment are definitely comparable. Calculation identifies the 

peak around 1475 cm-1 as being due to the carbon-carbon stretch bridging the two 

pyridines. This mode is therefore more influenced by the changing Ru oxidation 

state than the other bipyridine hydrogen wags which are calculated at around 

1600 cm-1. This is demonstrated in the larger shift towards a stiffer mode as the 

oxidation state increases for the 1475 cm-1 peak. Experiment and calculation show 

good agreement in this trend. Comparing the calculated Raman modes of Ru-bpc 

to Ru-bpy (see Figure A2.2) one can notice that the COOH groups lead to a 

number of additional bipyridine modes, due to the additional symmetric and 

asymmetric stretches possible in the COOH group. 

Calculation also correctly predicts the appearance of a shoulder at increasing 

potentials for the peak observed at 1525 cm-1. This shoulder is due to stiffer 

cymene modes resulting from stronger coordination to Ru as the catalyst 

proceeds through the initial steps of the catalytic cycle and Ru becomes more 

positive. Thus, by comparing SERS measurements and Raman frequency 

calculations the presence of the proposed early catalytic intermediates is further 

established.65,77 

Optical absorption and TDDFT calculations 

Further investigation of the expected catalytic intermediates is conducted by 

comparing experimental absorption spectra with TDDFT calculations for the 
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singly- and doubly-oxidised forms proposed for Ru-bpc. The absorption of a Ru-

bpc solution to which an excess of the oxidant CAN is added (Ru/Ce ratio = 1:10) 

is measured over time. After 24 hours two peaks not seen before the introduction 

of the oxidant were observed. It is noteworthy that the addition of a more 

moderate excess of CAN (Ru/Ce ratio = 1:4) produced absorption spectra with 

the same shape as those reported for a ratio 1:10. In Figure 2.5 the experimental 

spectra are compared to TDDFT B3LYP spectra calculated for [RuII-OH2]2+ and 

the catalytic intermediates, [RuIII-OH]2+ and [RuIV=O]2+. The peak characteristic 

of CeIV (around 320 nm) was also investigated over time in experiments 

conducted with Ru-bpy, decreasing in intensity as shown in Figure A2.3. 

Calculated spectra for all the proposed Ru-bpy catalytic intermediates are also 

shown in Figure A2.4.  

The spectrum measured before addition of CAN (Figure 2.5, top, black line) 

shows good agreement with the one calculated for the starting species,  

[RuII-OH2]2+ (Figure 2.5, bottom, black line). In both experimental and calculated 

spectra a signal peaking around 380 nm and tailing over 450 nm is observed. This 

band is commonly detected in arene-RuII complexes with one bidentate bipyridyl 

ligand,78 and is attributed to a MLCT transition. The nature of such transition is 

well described by TDDFT (see Figure A2.5). The intense band at wavelengths 

shorter than 350 nm, assigned to a ligand-centred transition,78 is also well 

reproduced by B3LYP. 

The spectrum measured 24 hours after the introduction of 10 equivalents of CAN 

(Figure 2.5, top, red line) can be interpreted by comparison with the TDDFT 

 
Figure 2.5 (Top) Experimental absorption spectra of Ru-bpc initially in acid (black 
line) and after 24 hours upon addition of 10 equivalents of CAN (red line). This is 
compared to the TDDFT spectra (bottom) of [RuII-OH2]2+ (black), [RuIII-OH]2+ (blue) 
and [RuIV=O]2+ (red). The calculated spectra have a Gaussian width broadening of 
0.3 eV. 
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results obtained for the intermediates [RuIII-OH]2+ (Figure 2.5, bottom, blue line) 

and [RuIV=O]2+ (Figure 2.5, bottom, red line). The best comparison is observed 

with the spectrum calculated for the catalytic intermediate [RuIV=O]2+, obtained 

after two PCET steps, showing a peak around 530 nm which is associated to a 

metal centred d-d transition (see Figure A2.7). This peak is characteristic of the 

intermediate [RuIV=O]2+ and deviates by only ∼0.15 eV from the experimental 

peak observed around 550 nm. This deviation between experiment and theory is 

within a typical average error for TDDFT calculations using the B3LYP functional. 

A small shoulder tails off at 600 nm, which can be associated with the tail of the 

measured spectrum. Furthermore, the energetically higher experimental 

shoulder observed around 400 – 450 nm matches well with a peak calculated for 

[RuIV=O]2+. It should be noted that although a peak around the same wavelength 

is also predicted for the intermediate [RuIII-OH]2+, there is no experimental 

evidence of RuIII formation during chemical oxidation with CAN. This is due to 

its conversion into a [RuIV=O]2+ species at a rate faster than the time resolution 

of the stopped flow apparatus (t < 2 ms).15,74  

This analysis suggests that with the excess CAN oxidant used, the catalytic 

process has stopped after the first two PCET steps at the [RuIV=O]2+ intermediate. 

This result reflects that the third PCET step from [RuIV=O]2+ to [RuIII-OOH]2+ 

requires a driving force larger than the oxidative power of CAN (~1.75 eV).68 

Without a stronger applied overpotential, the catalyst will not be able to cross the 

potential barrier imposed by the formation of the peroxide bond, leaving 

[RuIV=O]2+ as stable final product. 

2.3.2. Derivative catalysts 

The derivative catalysts Ru-bpy, Ru-mbpy, Ru-dnbpy and Ru-bpm are also 

studied using spectroscopic measurements and TDDFT calculations following the 

same procedure described for the Ru-bpc case. The results are shown in Figure 

2.6. Like the spectra discussed earlier for Ru-bpc, each of the derivative 

compounds before addition of 10 eq. CAN (Exp t = 0 in Figure 2.6) show an 

intense peak at wavelengths less than 350 nm, accompanied by a less intense peak 

which appears as a shoulder tailing to 500 nm (see also Table A2.3 and Figure 

A2.8). For Ru-bpy and Ru-mbpy, a clear peak is also observed around 550 nm  

24 hours after addition of CAN (Exp t = 24 h, Figure 2.6). The computed 

absorption spectra for the [RuIV=O]2+ intermediate of these two derivatives also 

show a very good agreement in the position of the peaks seen experimentally after 

24 hours. The values computed for the primary excitations of the [RuIV=O]2+ 

intermediate indicate that the peak arising after 24 hours around 550 nm is 

characteristic of that specific catalytic state (Table 2.2). Overall, these results 

show the importance of TDDFT calculations for the interpretation of the catalytic 

cycle. 
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It should be noted that for Ru-bpm and Ru-dnbpy the characteristic peak around  

550 nm is not observed as distinctly as for Ru-bpc and Ru-bpy. An approximation 

was made as to the wavelength for the Ru-dnbpy absorbance by considering the 

shoulder starting around 625 nm. However, the spectrum of Ru-bpm appears to 

have no significant absorbance in this region, while calculation would suggest 

that the characteristic peak should occur around the same wavelength as that of 

Ru-dnbpy. This would suggest that either the excitation around 550 nm is 

between different molecular orbitals for each of the different catalysts, that less 

[RuIV=O]2+ is present, or that compound with these ligands is just unstable. 

Examination of the molecular orbitals involved in the excitation (see Figure A2.7) 

shows a similar d – d transition localised on the metal centre for each catalyst 

(with the unoccupied orbital featuring some delocalisation onto the aromatic 

ligand). It could therefore be concluded that for the case of Ru-bpm and Ru-

dnbpy, less [RuIV=O]2+ is present after 24 hours.  

 
Figure 2.6 (Top) Experimental absorption spectra of different derivative catalysts 
initially in acid (black line) and after 24 hours upon addition of 10 equivalents of 
CAN (red line). This is compared to the TDDFT spectra (bottom) of [RuII-OH2]2+ 
(black), [RuIII-OH]2+ (blue) and [RuIV=O]2+ (red). The calculated spectra have a 
Gaussian width broadening of 0.3 eV. 
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One might be tempted to attribute this limited presence of [RuIV=O]2+ for Ru-

bpm and Ru-dnbpy to the influence of the different ligand on the oxidation 

potential of the catalyst, such that the redox potential of CAN would no longer be 

sufficient to drive the catalyst to this catalytic intermediate. We have therefore 

computed the energy difference between the first two catalytic steps for all the 

catalysts examined (see Table 2.3). These results show that from a 

thermodynamic point of view there is very little difference among the catalysts, 

and this cannot explain why Ru-bpm and Ru-dnbpy show little or no presence of 

the [RuIV=O]2+ intermediate. Most likely these two derivative catalysts are less 

stable, and have degraded after 24 hours in the presence of CAN. The lower 

stability of Ru-bpm and Ru-dnbpy, and their higher oxidation states in particular, 

may be explained by referring to literature. Ligands such as 2,2’-bipyrimidine are 

weaker -donors and more effective -acceptors than 2,2’-bipyridine; they are 

therefore less able to stabilise upper oxidation states, favouring decomposition 

through ligand loss.79 

Pulse radiolysis characterization of [RuIII-OH]2+ 

Although optical absorption measurements clearly showed the [RuII-OH2]2+ and 

[RuIV=O]2+ intermediates, [RuIII-OH]2+, the first PCET intermediate, was not 

observed. To overcome this problem, pulse radiolysis measurements were made. 

This technique has two key advantages for tackling these types of problems: it 

gives access to a wide range of oxidants that can drive the catalyst through its full 

cycle; and the oxidant can be generated on a time scale of nanoseconds, greatly 

improving the time resolution.41 It is therefore a powerful tool for investigating 

oxidation states that are difficult to access. Here, the derivative catalyst Ru-mbpy 

was used as it reacts with both SO4
•– radicals (produced at neutral and acidic pH) 

and CO3
•– radicals (produced a basic pH). Experiments were performed in acidic, 

neutral and basic conditions. However, in neutral and basic conditions, the 

spectra of the transient oxidised species were not observed, most likely as their 

lifetime at pH  3 is below the instrumental resolution (< 10 ns). But the oxidizing 

CO3
•– (Figure A2.9) or SO4

•– radical did disappear, thereby showing their 

reactivity with the complex.  

The transient spectra of the first PCET intermediate observed at acidic pH are 

shown in Figure 2.7 (similar spectra obtained with a dose per pulse = 80 Gy are 

shown in Figure A2.10). A strong band between 300 and 400 nm can clearly be 

seen. This band is ascribed to ligand-centred π-π* transitions. Two less intense 

peaks are observed: at 480 and, much weaker, at 600 nm. The latter can be 

assigned to LMCT transitions, from π (bipyridyl) to partially filled dπ (eg) orbitals 

of the RuIII centre, as confirmed by DFT calculations (see Figure A2.11).74 On the 

other hand, the absorption bands in the range between 300 and 550 nm can be 

attributed to MLCT transitions (from dπ (t2g) orbitals of the RuIII to π (bpy) 

orbitals), in agreement with the literature.74,80,81  
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By increasing K2S2O8 concentration up to 0.15 M and decreasing Ru-mbpy 

concentration to 7 μM at pH = 1.4, it was possible to follow the decay of SO4
•– as 

a function of [Ru-mbpy]. Under these conditions all the hydrated electrons are 

captured by S2O8
2–. The spectra, reported in Figure A2.12, show only the typical 

band of SO4
•–. From this experiment it was possible to obtain the value of  

k(SO4
•– + Ru-mbpy) = (3.6 ± 0.3) × 109 M-1 s-1. 

TDDFT calculations of [RuIII-OH]2+ 

The spectra for the [RuIII-OH]2+ intermediates were calculated for each catalyst 

as shown in Figure 2.8 . All catalysts show a primary excitation around 420 nm, 

while a less intense peak is observed between 550 – 625 nm. This secondary peak 

is due to a LMCT transition (see Figure A2.11). The differing excitation 

wavelengths are expected because the ligands differ, and thus also the energy of 

 
Figure 2.7 Transient absorption spectra obtained by SO4•– radical oxidation of Ru-
mbpy (c = 10-5 M) after pulse radiolysis of Argon purged solution containing 10 mM 
K2S2O8 and 0.1 M t-BuOH at pH = 1.4. The different curves represent the 
absorption spectra detected at 1.5 μs (black), 3 μs (red), 5 μs (green), and 15-40 
μs (blue) after the pulse. Optical path = 2 cm, dose per pulse = 37.7 Gy.  

Table 2.4 The two primary excitations for the [RuIII-OH]2+ intermediate calculated 
using TDDFT (Calc), as compared to the two peaks observed in pulse radiolysis 
measurements of Ru-mbpy (Exp). Values are reported both in nm and in eV. In the 
last column we report the difference in the position of the two peaks. 

  λ1  λ2 λ2-λ1 

Wavelength (nm) Exp  480 ~ 620 140 

 Calc 424 573 149 

  E1 E2 E1-E2 

Energy (eV) Exp 2.6 2.0 0.6 

 Calc 2.92 2.16 0.76 
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the orbital localised on the ligand. In the case of Ru-bpm this excitation occurs at 

sufficiently high energies such that it appears as a slight shoulder of the primary 

excitation (see also Table A2.4). We can conclude that the difference in the 

wavelength between these two peaks is characteristic for each catalyst. By 

comparing the calculated TDDFT spectrum of Ru-mbpy to the pulse radiolysis 

spectra (Table 2.4), it can be seen that the difference in the position of the two 

peaks agrees reasonably well, even though the absolute position of the peaks is 

significantly shifted to lower energy in the computed spectrum. This is likely due 

to the environmental effects within the pulse radiolysis experiments, which are 

not included theoretically. This analysis supports the observation of the  

[RuIII-OH]2+ intermediate. 

Recently there have been a number of, initially monomeric, iridium based water 

oxidation catalysts which have been shown to form a dimeric active species. 28,64 

An initial exploration was performed as to the possibility of dimer formation 

using a number of possible dimers (the computationally stable ones are shown in 

the appendix). However, preliminary calculations do not provide clear evidence 

of dimer formation. 

2.4. Conclusions 

A group of mononuclear ruthenium water oxidation catalysts has been analysed 

with the main goal of characterizing their catalytic mechanism. Catalyst stability 

is established using OLEMS and SERS. Electrochemical data combined with free-

energy calculations using density functional theory clearly point to a catalytic 

cycle involving four consecutive proton-coupled electron transfer steps. The most 

 
Figure 2.8 TDDFT spectra of the [RuIII-OH]2+ intermediate for each of the catalysts 
examined in this work. The curves have a Gaussian width broadening of 0.3 eV 
and have, for clarity, been offset in the Y direction. 
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thermodynamic demanding step is the third PCET step starting from the Ru-oxo 

species and involving the oxygen-oxygen bond formation, which shows an 

overpotential of about 0.6 V for all the complexes studied. The comparisons 

between the experimental optical properties and the absorption spectra 

computed with time-dependent DFT, as well as between SERS and Raman 

frequency calculations, provide a convincing validation of the proposed catalytic 

cycle and a clear characterization of the intermediate complexes observed 

spectroscopically. This combination of experimental data with DFT based 

modelling is indeed an ideal strategy, one which can be generally applied in the 

characterisation of water oxidation catalysts. 
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2.A. Appendix 

2.A.1. Calculated multiplicity proposed intermediates 
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2.A.2. Validation of the TDDFT methodology 

The computational set-up employed for the TDDFT calculations in this work 

(B3LYP/TZP/COSMO) is tested using a benchmark ruthenium-based WOC, for 

which experimental data is available for comparison.15 Further calculations were 

also performed with the larger QZ4P basis set for Ru and TZ2P for H,C,N,O. The 

calculated results (Figure A2.1) show a close agreement with the published 

experimental data,15 though the intensities of the peaks around 525 nm and  

625 nm are interchanged. Furthermore, using the larger basis sets does not 

significantly affect the key features. A summary of the key features is given in 

Table A2.2. The computed spectra validate the ability of this method to accurately 

reproduce the optical properties of compounds chemically similar to the WOC of 

interest for this study. 

Table A2.2 Primary excitations for the intermediates of the benchmark catalyst 

calculated using TDDFT, as compared to experiment performed by Polyanski et al.15 

  Wavelength (nm) Energy (eV) 

  Exp Calc Exp Calc 

[RuII-OH2]2+ λmax 605 630 2.05 1.97 

 λshoulder 520 515 2.38 2.41 

[RuIII–OH]2+ λmax 360 355 3.44 3.49 

 λshoulder 450 430 2.76 2.88 

[RuIV=O]2+ λmax 370 380 3.35 3.26 

 λonset 500 500 2.48 2.48 

 

 
Figure A2.1 Calculated TDDFT spectra (left) of the Ru-based WOC investigated by 

Polyanski et al.,15 with [RuII-OH2]2+ in black, [RuIII–OH]2+ in red and [RuIV=O]2+ in 
blue. The dotted lines indicate the calculations done with the larger basis set. 
These calculated curves have a Gaussian broadening of 0.3 eV. The experimental 
data is reproduced at right from Polyansky, D. E.; Muckerman, J. T.; et al. J. Am. 
Chem. Soc. 2011, 133 (37), 14649. 
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2.A.3. Raman frequency calculations 
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2.A.4. Time-dependent UV-Vis absorption of CeIV  

 
Figure A2.3 Spectral evolution of Ru-bpy upon addition of 10 equivalents of CAN 
in H2SO4 1N. Black curve is the spectrum of the Ru complex (c = 5x10-5 M) before 
mixing; red curve is the spectrum of the oxidised species, [RuIV=O]2+, obtained 
after 24 hours upon addition of CAN. 

2.A.5. Calculated absorption spectra entire cycle Ru-bpy 

 
Figure A2.4 TDDFT computed spectra of the entire catalytic cycle of Ru-bpy.  

These calculations may be used to verify the existence of Ru-bpy catalytic 

intermediates when compared to experimental absorption spectra. The 

characteristic peak at 500 nm in the [RuIV=O]2+ spectrum is due to one excitation 

(shown in Figure A2.5), whereas most of the other peaks originate from a mixture 

of different orbital transitions. It is of note that the catalytic intermediates share 

a peak around 410 nm (with [RuIII-OH]2+ and [RuIII-OOH]2+, and [RuIV=O]2+ and 

[RuIV-OO]2+ being relatively similar) while the only peak in the [RuII-OH2]2+ 

spectrum is slightly higher in energy. That the peak in the [RuII-OH2]2+ spectrum 

is higher in energy is likely due to the doubly occupied nature of all the occupied 

valence d orbitals of ruthenium. Comparatively, the other catalytic intermediates 
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have singly occupied d orbitals, which leads to the corresponding unoccupied d 

orbitals forming low lying unoccupied states 

  

 

  
HOMO-2 LUMO  HOMO LUMO 

411 nm  391 nm 

  

 

  
HOMO-1 LUMO  HOMO-2 LUMO 

375 nm  303 nm 
Figure A2.5 Molecular orbitals involved in the excitations calculated for the  
[RuII-OH2]2+ catalytic intermediate of Ru-bpy. 

2.A.6. Calculated spin density localisation proposed intermediates 

 
 

 
[RuII-OH2]2+ [RuIII-OH]2+ [RuIV=O]2+ 

  
[RuIII-OOH]2+ [RuII-OO]2+ 

Figure A2.6 Localisation of electron spin density, calculated for the catalytic 
intermediates of Ru-bpy 
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2.A.7. Orbital comparison of [RuIV=O]2+ intermediates 
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2.A.8. UV-Vis absorption data for [RuII-OH2]2+ complexes 
Table A2.3 Absorption properties of the catalysts in their aqua-form in H2SO4 1N 
solution. 

 λnm,  M-1 cm-1 

Ru-bpy 246 (10800), 307 (10400), 317 (10800), 400 (800) 

Ru-bpc 286 (13400), 323 (12100), 335 (13000), 400 (2100) 

Ru-bpm 250 (15500), 400 (1400) 

Ru-bpn 319 (12200), 400 (3400) 

Ru-phen 278 (23400), 302 sh (8400), 400 (800) 

Ru-mbpy 263 (12300), 304 (10900), 314 (11100), 400 (900) 

 

 
Figure A2.8 Absorption spectra of the catalysts in their aqua-form in H2SO4 1N 
solution 

2.A.9. Elucidation [RuIII-OH]2+ 

Pulse radiolysis in basic solution 

The reactivity of Ru-bpy with CO3
•– was determined by following the decay of the 

carbonate radical absorption at 600 nm in the presence of increasing 

concentrations of the substrate. The natural decay of CO3
•– follows second order 

kinetics in the absence of any reducing moieties. When the radical reacts with a 

target, the pulse radiolysis kinetics become first order reactions whose observed 

rate constants increase with increasing concentration of the reducing moiety. 

By using Na2CO3/ NaHCO3 (5 mM : 5 mM) (pH = 10) the pH of the solution is too 

high to observe the absorption of the oxidised forms of Ru-bpy, because they 

decompose too fast to be observed, i.e. below the time resolution of our apparatus 

(rise-time ~ 2.5 ns). The spectra in Figure A2.9 can be attributed to the CO3
•– 

decay, with some evidence for Ru-bpy transient formation in the region 250- 

350 nm. From these experiments it was possible to determine the rate constant 

for the reaction of Ru-bpy with CO3
•– by following the first order decay at  
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600 nm: the value obtained is k (CO3
•–+ Ru-bpy) = (3.0±0.3)×107 M-1 s-1. 

 
Figure A2.9 Transient absorption spectra obtained by CO3

•– radical oxidation of 
Ru-bpy (c = 10 μM) after pulse radiolysis of N2O-saturated solution containing 
Na2CO3/NaHCO3 (5 mM: 5 mM) at pH 10: (black) 200 μs, (red) 2 ms, (green) 6 ms, 
(blue) 10 ms and (cyan) 17 ms after the pulse. Optical path = 2 cm, dose per pulse 
= 22.2 Gy. Inset: Plot of kobs vs [Ru-bpy] molar concentration (red dots) for the 
decay of the main signal at 600 nm after pulse radiolysis of Ru-bpy in N2O-
saturated solution containing Na2CO3/NaHCO3 (5 mM: 5 mM) at pH 10. Optical path 
= 2 cm, dose per pulse 44.4 Gy; solid line represents the linear regression fit to 
the data. 

Pulse radiolysis in acidic solution 

When SO4
•– is produced in acidic solution, in the absence of any reducing species, 

the transient spectra show the same behaviour observed at neutral pH with a 

lower extinction coefficient, . The resulting  is three times smaller than that 

reported in the literature at pH = 5.1 ( = 361 M-1 cm-1 compared to lit = 

1100 M-1 cm-1).82 Ar-saturated aqueous solutions containing 10 M Ru-mbpy, 10 

mM K2S2O8 and 0.1 M t-BuOH were pulse-irradiated at pH = 1.4 at two different 

doses, 38 and 82 Gy. From the SO4
•– extinction coefficient  obtained at acidic 

pH, we can assume that ∼33% of eaq
– generates SO4

•– (Eqn. (2.1)) with a 

concentration of 3.4 M when the dose was 38 Gy (see Figure 2.7) and 7.3 M 

when the dose was 80 Gy (see Figure A2.10). The remaining hydrated electron 

reacts with H3O+ (Eqn. (2.2), k4 = 2.3×1010 M-1 s-1)38 giving the H• transient 

species. 

 eaq
– + S2O8

2–  SO4
•– + SO4

2– (2.1) 

 eaq
– + H3O+  H• + H2O (2.2) 
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Figure A2.10 Transient absorption spectra obtained by SO4

•– radical oxidation of 
Ru-mbpy (c = 10-5 M) after pulse radiolysis of Argon purged solution containing  
10 mM K2S2O8 and 0.1 M t-BuOH at pH 1.3: (black) 1.5 μs, (red) 3 μs, (green) 5 μs, 
and (blue) 15-40 μs after the pulse. Optical path = 2 cm, dose per pulse = 80 Gy.  

H• can react with S2O8
2– to produce the HSO4

• radical,83 a species whose standard 

redox potential is not reported in literature, but is able to oxidize moieties similar 

to Ru-mbpy. A photochemical study on the reaction between SO4
•– and 

[Ru(bpy)3]2+ at acidic pH showed that oxidation occurs, though with a lower rate 

constant with respect to that already reported by Yamada and Hurst.84 The 

contribution of HSO4
• to the oxidation of Ru-mbpy must be considered since the 

yield of oxidant species, i.e. 33%, is higher than expected from the only SO4
•– 

reaction. It was not experimentally possible to achieve a higher concentration of 

oxidizer or to apply a higher dose to achieve 100% conversion of eaq
– to SO4

•–. 

TDDFT analysis: A characteristic peak for [RuIII-OH]2+  

The difference between the primary excitation in the calculated spectra for the 

[RuIII-OH]2+ intermediates and a less intense peak due to a LMCT excitation 

(Figure A2.11) may be considered characteristic for each catalyst. Though the 

primary excitation occurs at relatively similar wavelengths for each catalyst 

(Table A2.4), this secondary peak occurs at varying wavelengths. In comparing 

the pulse radiolysis experiment done for Ru-bpy (Figure A2.9) to that of Ru-mbpy 

(Figure 2.6), it is noted that there is a similar peak at around 350 nm. This peak 

is likely the primary excitation for the [RuIII-OH]2+ intermediate. In considering 

the difference in wavelength between this primary excitation and the secondary 

excitation for Ru-bpy, the secondary peak should be observed around 560 nm. 

However, as seen in Figure A2.9, this is largely swamped by the signal due to 

CO3
•–. 
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Table A2.4 Primary excitations for the [RuIII-OH]2+ intermediates of the examined 
catalysts calculated using TDDFT 

 Ru-bpy Ru-bpc Ru-mbpy Ru-dnbpy Ru-bpm 

λ1 (nm) 416 414 424 438 402 

E1 (eV) 2.98 2.99 2.92 2.83 3.08 

      

λ2 (nm) 627 539 573 554 451 

E2 (eV) 1.98 2.30 2.16 2.24 2.75 

      

Δλ (nm) 211 125 149 116 49 

ΔE (eV) 1.00 0.69 0.76 0.59 0.33 

Pulse radiolysis in acidic solution: rate constant determination 

 
Figure A2.12 Transient absorption spectra after pulse radiolysis of Ru-mbpy  
(c = 7 μM) Ar purged solution containing 0.15 M K2S2O8 and 0.1 M t-BuOH at pH 
1.4: (black) 1.25 μs, (red) 5 μs, (green) 15 μs, and (blue) 40 μs after the pulse. 
Optical path = 2 cm, dose per pulse = 38 Gy. Inset (a): Plot of kobs vs [Ru-mbpy] 
for the decay at 450 nm after pulse radiolysis of Ru-mbpy Ar purged solution 
containing 0.15 M K2S2O8 and 0.1 M t-BuOH at pH 1.4. Solid line represents the 
linear regression fit to the data. Inset (b): Graphical representation of absorbance 
variation vs. time.  

Transient absorption spectra are characterised by the decrease of the typical band 

of SO4
•– at 450 nm and the increase of two new bands at 340 and 480 nm. The 

isosbestic point at 400 nm indicates that the species absorbing at 450 nm is 

transformed into the one which absorbs at 340 and 480 nm without parallel or 

consecutive reactions, i.e. the reaction follows a first order kinetic and is 

quantitative. In the experimental conditions that enable the observation of the 

[RuIII-OH]2+ spectra, it was impossible to evaluate and analyse the kinetic decay 

of the 450 nm SO4
•– absorption (see Figure 2.5 and Figure A2.10) because a long-

lived transient build-up is superimposed on the decay at 480 nm. 
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2.A.10. Initial investigation of two proposed dimeric 

intermediates 

Recently there have been a number of, initially monomeric, iridium-based water 

oxidation catalysts that have been shown to form a dimeric active species.28,64 An 

initial exploration was performed as to the possibility of dimer formation by Ru-

bpy using the dimers shown in Figure A2.13. For each of them, their geometries 

were optimised, and TDDFT and Raman spectra calculated following the method 

as described in the text (Computational Method and Details). The lowest energy 

multiplicity for both the [Ru-O-O-Ru]4+ and the [Ru-O-Ru]4+ dimer was found to 

be a triplet. The results of the spectroscopic calculations are compared to 

experiment below.  

  
[Ru-O-O-Ru]4+  [Ru-O-Ru]4+  

Figure A2.13 Dimers investigated 

Raman calculations were performed for these dimers following the same 

methodology described in Computational Method and Details. The conclusions 

of these calculations are presented below. 

Signature Modes Dimers 

 [Ru-O-Ru]4+ 

o Ru-O-Ru bridge modes calculated at 700 cm-1. This is not 

observed experimentally as it is swamped by the set-up signal 

 [Ru-O-O-Ru]4+ 

o bridge mode calculated at 800 cm-1. This is not observed in the 

experimental SERS measurement 

Comparing the calculated TDDFT spectra of the two dimers to the experimental 

absorption spectrum after 24 hours, there is little agreement. The spectra 

calculated for the [Ru-O-Ru]4+ does show a broad peak around the characteristic 

wavelength, but does not feature the secondary peak around 400 nm, while the 

[Ru-O-O-Ru]4+ dimer only shows significant excitations at wavelengths higher 

than 700 nm (Figure A2.14). 
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Figure A2.14 TDDFT spectra of [RuIII-OH]2+ and [RuIV=O]2+ of Ru-bpy, as well as the 
two dimers (lower two panels) as compared to experimental absorption spectra 
after 24 hours upon addition of 10 equivalents of CAN (top panel).  
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3. Introducing a Closed System Approach 

Abstract 

When examining catalytic steps theoretically, it is often difficult to account for 

the transfer of protons and electrons from one intermediate to the next. Instead, 

catalytic intermediates are considered individually, often in an isolated 

environment. Here a closed system approach is proposed which places the 

catalytic intermediate in a simulation box filled with explicit solvent; a box which 

also includes proton and electron acceptors. In this way the system is designed to 

more closely reflect experimental conditions, and allows for a complete 

description of proton-coupled electron transfer processes. Using Car-Parrinello 

Molecular Dynamics, a mononuclear copper water oxidation catalyst 

Cu(bpy)(OH)2 was used as a model system to explore this closed system approach. 

This model system shows that, compared to traditional methods, this approach 

offers extra insight into proposed catalytic steps and allows for clear identification 

of preferred reaction paths. 

  

This chapter is based on 

J. M. de Ruiter, and F. Buda “Introducing a Closed System Approach for the Investigation of Chemical 

Steps Involving Proton and Electron Transfer; as Illustrated by a Copper-Based Water Oxidation 

Catalyst.”  

Physical Chemistry Chemical Physics, 2016, doi: 10.1039/C6CP07454E 
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3.1. The call for the Closed System Approach – 

Mechanistic Considerations 

The optimisation of WOCs is a very active field of research,1–8 especially catalysts 

based on abundant transition metals such as copper and iron.9–14 In designing the 

ideal WOC it is essential to develop a fundamental understanding of the various 

water oxidation catalytic mechanisms. Traditionally, catalytic cycles are 

examined computationally by comparing the free energies of the proposed 

catalytic intermediates and then, usually, assigning the thermodynamically most 

favourable cycle as the most likely catalytic cycle.7,8,15–18 This examination often 

uses an implicit solvent model – the more involved methods which do include 

explicit solvent molecules are very time-consuming.19–21 This static analysis of 

reaction pathways limits the information that can be acquired about the 

mechanistic bottlenecks between one catalytic intermediate and the next. 

Furthermore, an increasing number of studies have shown that the solvent 

molecules surrounding a catalytic site are far from innocent bystanders.22–25 

Dynamic insight into PCET reactions can therefore be very useful in the design of 

an optimised water oxidation catalyst.  

We propose a CSA in which the catalytic step itself can be examined, with the 

charge carriers being contained within the system to allow for the analysis of the 

free energy profile from one catalytic intermediate to the next. By constraining 

the multiplicity of the system the charge of the metal ion 𝑀𝑒 can be switched 

between the 2+ and 3+ state, as shown in Figure 3.1. 

  
𝑰𝒊 𝑴𝒆𝟑+ 

  

  

𝑰𝒊
+ 𝑴𝒆𝟐+ 

Figure 3.1 Schematic representation of how a change in the total multiplicity of the 

system leads to the transfer of an electron: 𝑰𝒊 + 𝑴𝒆𝟑+ has quintet multiplicity, while 

𝑰𝒊
+ + 𝑴𝒆𝟐+ has septet multiplicity. 
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Including explicit water in the simulation box allows for proton transfer from the 

catalyst to the solvent, while including a metal ion allows for the ‘transfer’ of an 

electron within the system. The metal ion behaves like the sacrificial oxidant CAN 

commonly used in experimental studies of WOC mechanisms. Here transfer is 

noted in inverted commas as the localisation of the electron is constrained by the 

multiplicity of the whole system: this set-up allows for the analysis of the featured 

catalyst both before and after a supposed electron transfer within the system. The 

process of this electron transfer could be examined if the multiplicity of the 

system both before and after electron transfer were the same. However, that is 

not something that is considered here. The potential energy profiles of the three 

systems we can now directly compare, 

where the solvated proton is denoted 𝐻𝑠𝑜𝑙𝑣
+ , are shown in Figure 3.2. 

To test the applicability of this CSA we compare two trial catalytic cycles (see 

Figure 3.3) for the [Cu(bpy)(OH)2] copper based catalyst (denoted [Cu(OH)2]).10 

In examining these cycles, we use a pH-independent reference frame. Changes in 

free energy between the intermediates may shift with respect to changing pH, but 

relative differences should be constant. The [Cu(bpy)(OH)2] catalyst has been 

reported to be active at high pH at which it has the [Cu(OH)2] form.10 Although 

the catalytic cycle of the [Cu(OH)2] catalyst has been briefly considered 

theoretically,26 a number of open questions remain. After performing a 

thermodynamic analysis of the two cycles based on DFT calculations, the crucial 

  𝐼𝑖 + 𝑀𝑒3+ ⇌  𝐼𝑖
+ + 𝑀𝑒2+ ⇌ 𝐼𝑖+1 + 𝐻𝑠𝑜𝑙𝑣

+ + 𝑀𝑒2+, (3.1) 

 
Figure 3.2 Potential energy profiles of a reaction where proton and electron 
transfer can be examined within CSA. Electron transfer occurs via a change in 
multiplicity for the total system, while constrained CPMD is used to monitor proton 
transfer. 

E 

𝐼𝑖 + 𝑀𝑒3+ 

Reaction coordinate 

𝐼𝑖+1 + 𝐻𝑠𝑜𝑙𝑣
+ + 𝑀𝑒2+ 

𝐼𝑖
+ + 𝑀𝑒2+ 

-e- 
-H+ 
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O – O bonding step of Cycle 2 is examined using ab initio constrained molecular 

dynamics in explicit solvent. This explicit solvent examination is furthered by a 

closed system analysis using constrained molecular dynamics. The CSA is also 

used to investigate the O – O bonding step of Cycle 1. For this step an examination 

of the mean constraint force is also performed.  

3.2. Computational method and details 

Geometry optimisations and thermodynamic calculations are performed for each 

catalytic intermediate with DFT using the implementation in the ADF software 

package.27–29 Van der Waals interactions are accounted for by using the Grimme3 

BJDAMP dispersion correction.30 The geometries of the examined molecules are 

initially optimised using the OPBE functional,31 with the TZP basis set and a small 

frozen core. This GGA functional has shown good performance when describing 

transition metal complexes.22,32–35 Benchmark studies of proton transfer energies 

with GGA functionals show that reaction barriers are underestimated by around 

3 to 3.5 kcal mol-1 when compared to those calculated with highly correlated ab 

initio methods.36 However, as we have argued earlier,23 within CPMD this is likely 

compensated by the quantum effect error resulting from the classical treatment 

of proton motion. Comparisons between the optimised geometry of [CuII(OH)2] 

with the crystal structure of a catalyst with a similar metal centre are included in 

Table A3.1.37 These show good agreement, with OPBE/TZP reproducing most 

metal centre geometric parameters within a few percent. For each of the 

intermediates the most energetically favourable spin state is determined (see 

Table A3.2). The geometric information for these intermediates is also shown in 

the Table A3.3 and Table A3.4.  

 
Figure 3.3 Two proposed mechanisms for water oxidation by [Cu(bpy)(OH)2]:  
Cycle 1 (left) and Cycle 2 (right). 
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The CPMD program for AIMD was used to examine the explicitly solvated 

systems.38 The solvent environment for the CPMD simulations was generated 

using Discovery Studio 2.5.39 The solvent was equilibrated for 0.2 ns using the 

CHARMM force field and CFF partial charge parameters at 300 K,40 while the 

catalyst was kept fixed. The volume was then adjusted using constant pressure 

for 0.2 ns, after which the system was further allowed to evolve with constant 

volume for 2 ns. Subsequently CPMD calculations were performed in the 

canonical NVT ensemble at 300 K, using GTH pseudopotentials for the transition 

metals,41 DCACP pseudopotentials for the remaining atoms,42 and the OPBE 

exchange-correlation functional.43 An energy cut-off of 70 Ry was used and a time 

step of 5 a.u., 1 a.u. = 0.0242 fs. Image rendering for the CPMD output was done 

using VMD.44,45  

In this chapter we compare alternative reaction paths using both the traditional 

static analysis and the CSA, focussing on the differences the two methods predict 

for the mechanism of the catalytic cycle. To do so we use the methods for 

calculating changes in free energies as outlined in Chapter 1.  

Three different solvated systems were investigated: 

System 1 

The [CuII(O)(O)] intermediate within a 17.7 × 17.2 × 8.5 Å3 box with 73 water 

molecules, total charge 0, with doublet spin multiplicity (see Table 3.1). This 

system is used to examine constrained molecular dynamics of the O – O bonding 

step of Cycle 2 in explicit solvent. A solvent water molecule is constrained at 

progressively closer distances to the copper centre: d(O→Cu) = 3.82 – 1.95 Å. For 

each distance the system is allowed to evolve for 242 fs, during which the mean 

constraint force is seen to stabilise. This constraint analysis is repeated 

constraining the distance between a solvent water molecule and an oxo ligand: 

d(O→O) = 2.45 – 1.44 Å. After the constrained dynamics calculation at the 

shortest distance, the constraint is released and the dynamics allowed to continue 

for 968 fs. 

System 2  

The [CuII(O)(O)] intermediate and an Fe ion are solvated in a 7.6 × 14.9 ×  

10.3 Å3 box with 72 water molecules, total charge 3+, with septet ([CuII(O)(O)] + 

Fe3+) or quintet ([CuIII(O)(O)]+ + Fe2+) multiplicity. CSA is used to further the 

explicit solvent examination of the O – O bonding step of Cycle 2. The distance 

between a solvent water molecule and an oxo ligand d(O→O) is constrained at  

2.3 Å and the system allowed to evolve for 1.21 ps. 

System 3 

In order to investigate the O – O bonding step of Cycle 1 the [CuIII(OH)(O)] 
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intermediate and an Mn ion are examined within a 17.6 × 14.9 × 10.3 Å3 box with 

72 water molecules, a total charge of 3+. The system was investigated with quintet 

([CuIII(OH)(O)] + Mn3+) or septet ([CuII(OH)(O)]+ + Mn2+) multiplicity. The 

distance between a solvent water molecule and an oxo ligand is constrained at 

varying distances (d(O→O) = 2.4 – 1.44 Å) and the system allowed to evolve for 

1.2 ps for each distance. 

In Systems 2 and 3, those with an extra metal atom, a spin constraint is applied 

such that the total multiplicity of the system is either quintet or septet. This 

results in modifying the number of unpaired spins localised on the catalyst and 

metal atom (see Table 3.1). A posteriori, the localisation of spin density, or lack 

thereof, on the catalyst was used to confirm the expected transfer of an electron. 

We also integrated the spin density in two different regions of the simulation box 

and in this way quantitatively verified that the expected number of unpaired 

electrons was found on the catalyst and the extra metal atom, respectively. An Fe 

or Mn ion was used depending on the spin state of the to-be-investigated catalytic 

intermediate. These elements are selected because of their stability in either 2+ or 

3+ oxidation states, and their differing multiplicities. 

3.3. Results and Discussion 

3.3.1. Static Thermodynamics of the Catalytic Cycles 

We first examine two trial catalytic cycles (see Figure 3.3) via the static, 

traditional method: by calculating the free energies of each intermediate in the 

two cycles. The two cycles are composed of PCET steps and differ primarily in the 

approach to the oxygen-oxygen bond formation step: Cycle 1 proceeds via 

nucleophilic attack while Cycle 2 features an intra-molecular O – O coupling step. 

These two approaches have emerged from within the natural photosynthesis 

community,46,47 and have also gained traction within the artificial photosynthetic 

field.7,34,48,49 It is therefore apt to compare the two. Geometries of the 

intermediates were optimised and the most energetically favourable multiplicity 

for each intermediate determined as shown in Table A3.2 and Table A3.3. The 

appendix also includes renderings of the spin density of the relevant proposed 

Table 3.1 Summary of the systems considered. The qtot is the total charge of the 
system, 2S+1is the spin multiplicity, and Scat and SMe represent the spin of the 
catalyst and metal ion, respectively. 

 qtot 2S+1 Scat SMe 

[CuII(O)(O)] 0 2 1/2 - 

[CuII(O)(O)] + Fe3+ 3 7 1/2 5/2 

[CuIII(O)(O)]+ + Fe2+ 3 5 0 2 

[CuIII(OH)(O)] + Mn3+ 3 5 0 2 

[CuII(OH)(O)]+ + Mn2+ 3 7 1/2 5/2 
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intermediates (Figure A3.1).  

The changes in free energy along the trial catalytic cycles are shown in Table 3.2 

and in Figure 3.4. In Table 3.2 we also note the computed G associated to the 

hydrolysis process; this corresponds to the sum of all the ΔG contributions in the 

Table 3.2 Calculated ΔG for each catalytic step along the two proposed 
mechanisms for [Cu(bpy)(OH)2] ([CuII(OH)2]) 

Cycle 1 ΔGcalc (eV) 
[CuII(OH)2] → [CuIII(OH)(O)] 2.28 

[CuIII(OH)(O)] → [CuII(OH)(OOH)] 1.27 
[CuII(OH)(OOH)] → [CuI(OH)(OO)] 0.75 
[CuI(OH)(OO)] → [CuI(OH)(OH2)] 1.46 

[CuI(OH)(OH2)] → [CuII(OH)2] -0.73 
2H2O → 2H2 + O2 5.03 

  
Cycle 2 ΔGcalc (eV) 

[CuII(OH)2] → [CuIII(OH)(O)] 2.28 
[CuIII(OH)(O)] → [CuII(O)(O)] 0.86 
[CuII(O)(O)] → [CuI(OH)(OO)] 1.16 
[CuI(OH)(OO)] → [CuII(OH)2] 0.73 

2H2O → 2H2 + O2 5.03 
  

 
Figure 3.4 Cumulative free energy of the two proposed mechanisms for 
[Cu(bpy)(OH)2] ([Cu(OH)2]) as calculated by ADF (B3LYP/TZP/COSMO). We also 
show, as a visual guide, a constant change of 1.23 eV for all four PCET steps (grey 
line). 
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complete catalytic cycle. This result deviates only by 0.1 eV with respect to the 

experimental value of 4.92 eV, which thereby provides an indication that the 

chosen static computational method is sufficiently accurate in its description of 

the water oxidation reaction. 

The first proposed step [CuII(OH)2] → [CuIII(OH)(O)], which the two cycles share, 

has a difference in free energy of 2.28 eV. This is then a calculated overpotential 

of 1.05 V as compared to the experimentally obtained 0.75 V; cyclic voltammetry 

shows one large pH-dependent wave.10 This step is significantly higher than the 

others (see Table 3.2), making it the thermodynamic bottleneck. Another step 

with a relatively high calculated change in free energy is the ligand exchange step 

in which water is exchanged for the formed OO ligand: [CuI(OH)(OO)] → 

[CuI(OH)(OH2)]. This differs from the free energy profile for heterogeneous water 

splitting on metal oxides.50 

The assumption that the OO/OH2 ligand exchange is thermodynamically neutral 

is based on the two ligands both being neutral. However, in this case, the CuI 

centre can donate some of its excess charge to the OO ligand, which more readily 

accepts excess electrons than the OH2 ligand. This would then make the OO 

ligand slightly negatively charged, which would electrostatically stabilise this 

intermediate. This electrostatic attraction is also observed in the shorter Cu – O 

distance: 2.11 Å in [CuI(OH)(OO)] and 2.20 Å in [CuI(OH)(OH2)]. This avenue for 

charge donation also accounts for the [CuI(OH)(OH2)] → [CuII(OH)2] step being 

thermodynamically favourable. Considering the high pH at which this catalyst 

oxidises water,10 it is likely that the OO ligand exchange with a water molecule is 

concerted with an immediate PCET step. This is implicit in the [CuI(OH)(OO)] → 

[CuII(OH)2] step of Cycle 2, where ΔG = 0.73 eV. As expected, this is also equal to 

the sum of ΔG for the two last steps of Cycle 1. 

The differences in energies at the point where the two cycles diverge is more 

explicitly shown in Figure 3.5. Shown in red is the difference in energy for oxygen-

oxygen bond formation via nucleophilic attack as per the catalytic cycle on the left 

in Figure 3.3 (Cycle 1) and in blue that via intra-molecular O – O coupling as per 

the cycle on the right in Figure 3.3 (Cycle 2). Once the catalyst has reached the 

[CuIII(OH)(O)] intermediate in the catalytic cycle, we would expect the 

[CuII(O)(O)] intermediate in Cycle 2 to be more favourable than the 

[CuII(OH)(OOH)] in Cycle 1: [CuII(O)(O)] is lower in energy by 0.41 eV. The two 

ligated oxygens in the [CuII(O)(O)] intermediate strongly interact in the 

optimised geometry with an O – O distance of 1.47 Å. This distance is comparable 

to an oxygen-oxygen single bond length in, for example, hydrogen peroxide. This 

apparently covalent interaction between the oxygen atoms stabilises this 

intermediate. However, these results were obtained from calculations in implicit 

water. It is not immediately obvious whether this stabilisation effect will also be 
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present within an explicit solvent environment. To examine the impact of 

including explicit water molecules, as well as how this intra-molecular O – O bond 

would lead to the next catalytic intermediate in the trial catalytic cycle, we move 

to an explicitly solvated analysis with CPMD.  

3.3.2. Ab-Initio Constrained Molecular Dynamics of System 1 

In System 1, which contains the [CuII(O)(O)] intermediate, two pathways are 

examined. The first is the constraining of the distance between a solvent water 

molecule and the copper centre, such that the water molecule approaches axially. 

It is hypothesised that this may displace one of the oxo ligands which, after a 

PCET step, would lead to the [CuI(OH)(OO)] intermediate as shown in Figure 3.3. 

The constrained pathway is initiated with the incoming water molecule at 3.82 Å 

and shortened incrementally. Little change is seen besides solvent rearrangement 

until d(O→Cu) = 1.95 Å. When constrained at 1.95 Å from the copper centre, the 

incoming water molecule undergoes proton transfer (see Figure 3.6). The proton 

is transferred to a ligated oxo group via another solvent molecule. This is then 

effectively a step backwards in the catalytic cycle as we recover the intermediate 

[CuII(OH)(O)]. 

The second pathway examined in System 1 is the approach of a water molecule to 

one of the oxo ligands (Figure 3.7). The distance between the oxygen atom of the 

oxo ligand and the oxygen atom of the incoming water molecule is constrained. 

When constrained at 1.9 Å, a proton is accepted by the oxo ligand not involved in 

the constraint from a solvent water molecule as shown in Figure 3.7(b). Once 

again we recover the intermediate [CuII(OH)(O)]. 

In the current set-up, the system consistently favours the formation of the 

 
Figure 3.5 Difference in free energy for the two oxygen-oxygen bond formation 
steps: nucleophilic attack in Cycle 1 (red) and intra-molecular O – O coupling in 
Cycle 2 (blue) as calculated by ADF (B3LYP/TZP/COSMO). 
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transition state [CuII(OH)(O)]. This may be because the oxidation state of the 

copper must change before advancing to the next catalytic intermediate. In the 

current MD set-up proton transfer can occur from catalyst to solvent, however 

there is no electron acceptor which might allow for electron transfer from the 

catalyst. We therefore move on to the proposed CSA, which includes an additional 

metal ion capable of acting as an electron acceptor. 

3.3.3. Closed System Analysis of the [CuII(O)(O)] intermediate 

In the closed system analysis of the [CuII(O)(O)] intermediate, a Fe metal ion is 

used as an electron acceptor (System 2). We start a constrained molecular 

dynamic pathway of a solvent water molecule approaching an oxo group, with an 

initial d(O→O) = 2.3 Å. Two cases are examined: the neutral catalyst [CuII(O)(O)] 

+ Fe3+) and the ionised one ([CuIII(O)(O)]+ + Fe2+). In this way the total charge in 

the entire system remains constant. The ‘transfer’ of an electron is imposed by 

switching the multiplicity of the entire system from septet to quintet. After 

   
(a) (b) (c) 

Figure 3.6. Subsequent snapshots of the MD simulation of System 1: [CuII(O)(O)]. 
A water molecule is constrained at d(O→Cu) = 1.95 Å (a). This intermediate then 
undergoes proton exchange via a solvent water molecule (b).The final 
conformation of the intermediate is shown in (c), where one of the oxo groups has 
accepted a proton.  

  
(a) (b) 

Figure 3.7. Snapshots of an alternative pathway proposed for System 1: 
[CuII(O)(O)]. Localisation of the spin density (grey isosurface) is shown while a 
water molecule is constrained at increasingly shorter distances to an oxo ligand: 

d(O→O) = 2.45 Å (a) and d(O→O) = 1.9 Å (b). 
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allowing the MD simulation to evolve for 1.2 ps, it is seen that in both cases – 

[CuII(O)(O)] + Fe3+ and [CuIII(O)(O)]+ + Fe2+ – a proton from a solvent water 

molecule is accepted by the oxo group (Figure 3.8). This strongly suggests that 

the [CuII(O)(O)] intermediate is not stable in a solvated water environment, even 

if an electron has been removed from the catalyst (as shown in Figure 3.8 

[CuIII(O)(O)]+ + Fe2+). In both System 1 and System 2 solvent water molecules 

play a crucial role in the shuttling of protons around the catalytic site. 

Furthermore it appears that the thermodynamic calculations of the [CuII(O)(O)] 

intermediate without explicit water molecules led to the artificial stabilisation of 

an O – O bond. Although thermodynamic analysis suggested that Cycle 2 would 

be more favourable, in explicit solvent the [CuII(O)(O)] intermediate decays to 

the [CuII(OH)(O)] transition state. Proceeding to the next catalytic intermediate 

in Cycle 2 via intra-molecular O – O coupling is therefore unlikely. This highlights 

the need for an explicit solvent when proposing and considering catalytic cycles. 

3.3.4. Closed System Analysis of the [CuIII(OH)(O)] intermediate 

To further explore the catalytic cycle using the proposed methodology we 

examine the O – O bond formation step by nucleophilic attack as proposed in 

Cycle 1. Using System 3, which contains the [CuIII(OH)(O)] intermediate and a 

Mn ion, a sequence of constrained MD simulations is performed with a quintet 

multiplicity for the neutral catalyst, or septet for the ionised catalyst. The distance 

between the oxo ligand and the oxygen of an incoming water, d(O→O), is 

constrained, and the time-averaged constraint force monitored. In this way we 

examine the [CuIII(OH)(O)] intermediate as it would hypothetically react to form 

the [CuII(OH)(OOH)] intermediate.  

  
[CuII(O)(O)] + Fe3+ [CuIII(O)(O)]+ + Fe2+ 

Figure 3.8. Spin density (shown as a grey isosurface) of [CuII(O)(O)] + Fe3+ and 
[CuIII(O)(O)]+ + Fe2+, after MD simulation. The constrained water molecule as well 
as the catalyst are shown in bold. The Fe ion is visible on the right hand side, 
enveloped by spin density. In the case of [CuII(O)(O)] + Fe3+, spin density is also 
seen on the copper centre and oxo ligand. In the spin-flipped case [CuIII(O)(O)]+ + 
Fe2+, spin density is only seen on the Fe ion as expected. The total charge of the 
system is 3+. In both cases, a proton (circled) is accepted by an oxo ligand.  
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In Figure 3.9 the time-averaged constraint force <λ> of the system containing 

[CuIII(OH)(O)] + Mn3+ as d(O→O) is shortened is shown with black squares, while 

the system containing [CuII(OH)(O)]+ + Mn2+ is shown with red circles. The 

average O – O bond length in an unconstrained MD simulation performed after 

the bond has been formed is also shown in Figure 3.9 as a green triangle. 

Reversing the process by breaking the recently formed O – O bond i.e. 

[CuII(OH)(OOH)] → [CuII(OH)(O)]+, is shown with blue triangles, while the 

pathway along the lowest energy intermediates is indicated in Figure 3.9 by a 

green dotted line.  

At d(O→O) = 2.4 – 2.9 Å, <λ> is smaller in the [CuIII(OH)(O)] + Mn3+ system than 

when in [CuII(OH)(O)]+ + Mn2+. However, between d(O→O) = 2.4 and d(O→O) = 

2.1 Å a crossing of the two curves occurs, indicating that at d(O→O) less than 

~2.35 Å <λ> is smaller if the electron is found on the Mn ion rather than on the 

catalyst. That is to say, as soon as an incoming solvent molecule is within 2.35 Å 

of the oxo group, [CuII(OH)(O)]+ experiences less force than [CuIII(OH)(O)]. 

Whether an electron would be transferred at this point would largely be 

 
Figure 3.9 The time-averaged constraint force (<λ>) as a function of d(O→O) (blue 
dotted line in insets). This analysis is performed for [CuIII(OH)(O)] + Mn3+ and 
[CuII(OH)(O)]+ + Mn2+. The average distance of the unconstrained O – O bond after 
the proton has been transferred is indicated by a green triangle. The constrained 
force analysis is also done in reverse: lengthening d(O→O) for [CuII(OH)(OOH)] + 
H+

solv + Mn2+. The green dotted line indicates the lowest energy pathway. 
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dependent on the electronic coupling between the catalyst and the Mn ion. 

When the incoming water molecule is 1.7 Å from the oxo ligand of [CuIII(OH)(O)] 

+ Mn3+, a proton is seen to be accepted from a solvent molecule by the oxo group 

involved in the constraint to give [CuIII(OH)(OH)] (see Figure 3.10, upper panel). 

[CuIII(OH)(OH)] is also obtained when the multiplicity of [CuII(OH)(OOH)] + 

H+
solv + Mn2+ is changed to move an electron onto [CuII(OH)(OOH)]; this 

momentarily gives [CuIII(OH)(OOH)] + H+
solv + Mn3+. We can therefore conclude 

that electron removal is indeed necessary to advance through the proposed 

catalytic cycle. Comparatively, when following the red points ([CuII(OH)(O)]+ + 

Mn2+) as d(O→O) is shortened, the proposed [CuII(OH)(OOH)] intermediate is 

eventually obtained (Figure 3.10, lower panel). The constraint is then removed 

and the system allowed to evolve while the bond length of the recently formed 

bond is monitored. This is seen to stabilise to around 1.50 Å (Figure 3.9, green 

triangle). This confirms the stability of the proposed [CuII(OH)(OOH)] 

intermediate. 

Although electron transfer is considered to be favourable from d(O→O) ~2.35 Å, 

proton transfer is not observed until after d(O→O) = 1.7 Å (see Figure 3.10, lower 

panel). This proton transfer is mostly dependent on solvent rearrangement. The 

dependence on solvent rearrangement in these simulations also leads to a 

‘hysteresis’ effect:51 if the bond is lengthened from the [CuII(OH)(OOH)] 

intermediate (Figure 3.9, blue triangles), the intermediate remains deprotonated 

for some time. This process is shown explicitly in Figure 3.11. Grey arrows show 

    
d(O→O) = 2.4 d(O→O) = 1.9 d(O→O) = 1.7 no constraint* 

[CuIII(OH)(O)] + Mn3+ 

    
d(O→O) = 2.4 d(O→O) = 1.9 d(O→O) = 1.7 no constraint 

[CuII(OH)(O)]+ + Mn2+ 
Figure 3.10 Snapshots taken during CPMD calculations of the [CuIII(OH)(O)] 
intermediate as d(O→O) (blue dotted line) is contracted. *Spin flipped from 
[CuII(OH)(O)]+ + Mn2+ 
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the sequence of simulation. First d(O→O) is contracted for the ionised catalyst 

([CuII(OH)(O)]+ + Mn2+, red circles), then lengthened from the ionised and 

deprotonated final product ([CuII(OH)(OOH)] + H+
solv + Mn2+, blue triangles). 

The differences in protonation lead to a marked difference in constraint forces, 

as bond formation is much more favourable when the extra proton has been 

released into the solvent.  

That solvent configuration has a significant impact on proton release is also 

demonstrated by the simulation at d(O→O) = 1.8 Å. When increasing d(O→O) 

from 1.7 to 1.8 Å, a solvent configuration is reached where the proton is 

transferred back to the catalyst. This results in two different constraint forces 

within the same simulation, as indicated by the grey box in Figure 3.11. Even 

though the protonated catalyst does experience a higher constraint force, the 

system remains stable over the continuation of the simulation for an additional 

2.2 ps (as shown in Figure A3.2). Conversely, when increasing d(O→O) from 1.7 

to 1.9 Å the catalyst remains deprotonated throughout the entire simulation. Here 

the sampled solvent configurations favour the solvation of the extra proton. 

The catalytic step [CuIII(OH)(O)] → [CuII(OH)(OOH)] can therefore be described 

as proceeding by the removal of an electron followed by the dissociation of a 

proton, once the solvent has rearranged such that the proton transfer into the 

solvent is favourable.23 That [CuIII(OH)(O)] → [CuII(OH)(OOH)] should be 

considered the more likely O – O bond formation mechanism is confirmed by a 

similar investigation of the [CuIII(OH)(O)] → [CuII(O)(O)] step as shown in Figure 

3.12, where no transition state was observed along the investigated reaction 

coordinates.  

 
Figure 3.11 The time-averaged constraint force as a function of d(O→O), for 
[CuII(OH)(O)]+ + Mn2+and [CuII(OH)(OOH)] + H+

solv + Mn2+ (as reproduced from Figure 
3.9). Grey arrows show sequential order of the simulations. The grey box around 
the points at 1.8 Å shows the two different mean forces obtained within one single 
simulation, dependent on proton transfer (see also Figure A3.2). The green dotted 
line indicates the lowest energy pathway, as per Figure 3.9. 
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For the proton transfer reaction coordinate (Figure 3.12, inset, blue dashed line), 

the initial [CuIII(OH)(O)] + Mn3+ (black square, top) intermediate accepts a 

proton to form the [CuIII(OH)(OH)]+ + OH- + Mn3+ intermediate (blue triangle, 

top) resulting in a lower <λ>. The red circles (top panel) show the process for the 

ionised intermediate ([CuII(OH)(O)]+ + Mn2+). The proton does not dissociate 

from the OH ligand , even when an electron has been removed: see the high value 

of <λ> corresponding to a distance of 1.0 Å where we are forcing the H3O+ 

formation. After a further 1.21 ps of dynamics a proton shuttle occurs in which a 

proton is accepted by the other oxo group, thus leading back to the initial complex 

with a very small <λ> (as shown by a grey arrow, top). The [CuIII(OH)(O)] → 

[CuII(O)(O)] step would therefore be very unlikely via this pathway. 

For the O – O intermolecular coupling reaction coordinate (Figure 3.12, inset, 

pink dashed line), the initial [CuIII(OH)(O)] + Mn3+ (black square, bottom) 

intermediate again accepts a proton after 90 fs to form the [CuIII(OH)(OH)]+ + 

OH- + Mn3+ intermediate (blue triangles, bottom). It should be noted that the 

values for <λ> are significantly higher than those obtained in Figure 3.12 (top). 

 
Figure 3.12 The time-averaged constraint force (<λ>) as a function of (top) the 

d(O→H) distance between the oxygen of a solvent water molecule and the H atom 
of the hydroxyl ligand (blue dotted line in inset), and (bottom) d(O→O) between 
the oxygen atoms ligated to the copper centre (pink dotted line in inset). The 
black square indicates <λ> for the initial [CuIII(OH)(O)] + Mn3+ intermediate as 
calculated in the closed system approach. NB. For the [CuIII(OH)(O)] + Mn3+ system, 
the average O – O bond length before enforcing any constraints is 2.36 Å, while 
for [CuII(OH)(O)]+ + Mn2+ this is 2.39 Å. 
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By thermodynamic integration along this reaction coordinate, we obtain a 

prohibitively high free energy change for both cases. 

3.3.5. Implication of Ion Inclusion 

To examine the effect of the inclusion of the metal atom, the curve produced via 

the lengthening of d(O→O), i.e. [CuII(OH)(OOH)] → [CuII(OH)(O)]+, is repeated 

without the metal atom. The same box is used, but with doublet multiplicity and 

total charge 1+. As the electron would have already been transferred to the 

electron acceptor at this point, and the proton into solution, the time-averaged 

constraint force of this constraint should be comparable. These two curves are 

compared in Figure 3.13, and show very close agreement. The inclusion of the 

additional metal ion therefore has very little effect on the time-averaged 

constraint force, and thus the change in free energy of this bond lengthening 

process. 

3.4. Conclusions 

The relevant steps of two trial water oxidation catalytic cycles were analysed using 

a closed system approach in which an electron acceptor is included in a fully 

solvated simulation setup. Using this approach it is observed that the solvent acts 

as a proton shuttle, favouring the catalytic cycle which does not include the 

formation of the [CuII(O)(O)] intermediate (Cycle 1). This is contrary to the 

expectations based on the static thermodynamic analysis within an implicit 

solvent model. When investigating the oxygen – oxygen formation step of Cycle 

1, it is observed that this reaction proceeds by the electron leaving first, followed 

by proton transfer when solvent dynamics creates an appropriate hydrogen 

 
Figure 3.13 The time-averaged constraint force (<λ>) as a function of the O – O 
distance in the OOH ligating group of the [Cu(OH)(OOH)] intermediate, as d(O→O) 
is lengthened. The black triangles indicate the process as calculated in the closed 
system approach ([CuII(OH)(OOH)] + H+

solv + Mn2, charge = 3+, septet multiplicity), 
while the red triangles the process calculated without the metal ion 
([CuII(OH)(OOH)] + H+

solv, charge = 1+, triplet multiplicity). 
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bonding network. This closed system approach provides additional insight into 

PCET catalytic steps by elucidating the dynamic evolution between two stable 

intermediates. 
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3.A. Appendix 

3.A.1.  Geometrical Investigation 
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[CuII(OH)2] (doublet) [CuII(O)(O)] (doublet) 

  
[CuII(OH)(OOH)] (doublet) [CuI(OH)(OO)] (triplet) 

 
[CuI(OH)(OH2)] (triplet) 

Figure A3.1 The localisation of the spin density of the relevant intermediates in 
Table A3.4, as calculated in ADF (B3LYP/TZP).  
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3.A.2. Example of convergence of <λ> 

 
Figure A3.2 The constraint force (λ) as a function of time for two different O – O 
distance constraints (d(O→O) between the oxo ligand and the oxygen of the 
incoming water molecule), observed in the investigation of the [CuIII(OH)(O)] 
intermediate (System 3, [CuII(OH)(O)]+ + Mn2+).  

(top) d(O→O) = 2.1 Å as the incoming water molecule is brought increasingly 
closer. This is a typical constraint run for 1.2 ps (until grey dotted line). The 
running time-average of λ (<λ>, red line) is seen to converge. 

(bottom) d(O→O) = 1.8 Å after lengthening the formed bond for the system with 
septet multiplicity ([CuII(OH)(OOH)] + H+

solv + Mn2+). This run shows how sensitive 
λ is to events that occur within the system. After 0.6 ps (grey dashed line), a 
proton is accepted by the O initially part of the incoming water molecule. <λ> 
after this event (red line) is seen to converge rapidly, and though the system was 
allowed to evolve for 1.2 ps beyond the normal run time, no change in <λ> was 
observed. 
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4. Energetic Effects of a Closed System Approach 

Abstract 

When considering water oxidation catalysis theoretically, accounting for the 

transfer of protons and electrons from one catalytic intermediate to the next 

remains challenging: correction factors are usually employed to approximate the 

energetics of electron and proton transfer. Here these energetics were 

investigated using a closed system approach, which places the catalytic 

intermediate in a simulation box including proton and electron acceptors, as well 

as explicit solvent. As a proof of principle, the first two catalytic steps of the 

mononuclear ruthenium-based water oxidation catalyst [Ru(cy)(bpy)(H2O)]2+ 

were examined using Car-Parrinello Molecular Dynamics. This investigation 

shows that this approach offers added insight, not only into the free energy 

between two stable intermediates, but also into how the solvent environment 

impacts this dynamic evolution. 

  

This chapter is based on 

J. M. de Ruiter, H. J. M. de Groot and F. Buda ““Energetic Effects of a Closed System Approach 

Including Explicit Proton and Electron Acceptors as Demonstrated by a Mononuclear Ruthenium 

Water Oxidation Catalyst.” 

ChemCatChem, 2018, doi: 10.1002/cctc.201801093 
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4.1. The Call for the Closed System Approach – 

Energetics  
In the optimisation of WOCs, computational techniques are increasingly 

employed to test proposed WOC design principles.1–8 When evaluating proposed 

catalytic cycles, the free energies of the various catalytic intermediates are 

compared.1–6 This comparison often uses correction factors to approximate the 

energetic contributions of the protons and electrons transferred during the 

catalytic step. 1,3,5,9–12 Here the pitfalls of the commonly employed approach are 

highlighted, and an improved framework is suggested based on the CSA. 

 
Figure 4.1 The four PCET steps between the catalytic intermediates I1 – I0. Vertical 
lines denote electron transfer, horizontal lines proton transfer. Stable 
intermediates are shown in black. The ligand exchange I0 + 2H2O → I1 + O2 is also 
shown. 

Consider the PCET reaction  

shown in Figure 4.1, which has a change in free energy  

 Δ𝐺(𝐼𝑖 ⟶ 𝐼𝑖+1) = 𝐺(𝐼𝑖+1) − 𝐺(𝐼𝑖) + Δ𝐺(𝐻+) + Δ𝐺(𝑒−). (4.2) 

As mentioned in Chapter One, G has traditionally been approximated by  

 𝐺 = (𝐸𝑣𝑎𝑐 + 𝑍𝑃𝐸𝑣𝑎𝑐 − 𝑇𝑆𝑣𝑎𝑐) + 𝛿𝐸𝑠𝑜𝑙𝑣 ,  (4.3) 

 𝛿𝐸𝑠𝑜𝑙𝑣 = 𝐸𝑠𝑜𝑙𝑣 − 𝐸𝑣𝑎𝑐 . (4.4) 

 𝐼𝑖 ⟶ 𝐼𝑖+1 + 𝐻+ + 𝑒−, (4.1) 
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This becomes problematic because it calls for the solvation energy of a 

proton 𝛥𝐺𝑠𝑜𝑙𝑣(𝐻+) =-11.45 eV,13 which will always dominate 𝛥G completely: 𝛥G is 

usually of the order of 1 eV. In the past,14,15 the energetic contributions of the 

proton and electron have often been approximated by combining the proton and 

electron into ½H2. Upon closer inspection the validity of the ½H2 approximation 

is somewhat questionable, as in the PCET reactions considered H+ is always 

bonded to another ion. The transfer of H+ is a combination of the formation of 

one O – H bond and the breaking of another, with an intermediate step where H 

is coordinated in between. As noted by Nachimuthu et al. previously,16 “modelling 

proton transfer reactions is often challenging because of the complexity of 

processes involving H-bond network rearrangement.”  

And yet, it is this complexity of the network rearrangement processes that is 

ignored when using the ½ H2 approximation. This may have been sufficient when 

considering heterogeneous catalysts, but as we move into molecular catalysts the 

how and why of the PCET process needs to be addressed. Two intermediates can 

no longer be seen as isolated from each other, instead we must also seek to 

optimise the processes between them. To do so, explicit water molecules and a 

metal ion (𝑀𝑒) are included within the simulation box, to act as proton and 

electron acceptors respectively. In this way the charge carriers and the processes 

via which they are transferred from the catalyst can be considered explicitly. For 

the PCET reaction shown in Eqn. (4.1), the equivalent equation in the simulation 

box is  

 𝐼𝑖 + 𝑀𝑒3+ ⟶ 𝐼𝑖+1 + 𝐻𝑠𝑜𝑙𝑣
+ + 𝑀𝑒2+, (4.5) 

where 𝐻𝑠𝑜𝑙𝑣
+  denotes the solvated proton, which is often part of a more 

complicated structure.17–19 We can then decouple the PCET reaction into an 

electron- and proton-transfer process.  

For the electron transfer step 

 𝐼𝑖 + 𝑀𝑒3+ ⟶ 𝐼𝑖
+ + 𝑀𝑒2+. (4.6) 

In the context of the CSA methodology, the energy needed to transfer an electron 

from the catalytic intermediate to the electron acceptor can be calculated by  

 Δ𝐸𝑒− = 〈𝐸𝐾𝑆(𝐼𝑖
+ + 𝑀𝑒2+)〉 − 〈𝐸𝐾𝑆(𝐼𝑖 + 𝑀𝑒3+)〉, (4.7) 

where 〈𝐸𝐾𝑆〉 is the time-averaged KS energy at 300 K. One should note that Δ𝐸𝑒−  

also includes the reorganisation energetic contributions resulting from the 

electron transfer.20 This includes contributions from internal vibrational and 
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external solvent rearrangement. Because the number of particles, charges, 

bonding patterns, and conformations of the reactants and products in Eqn. (4.6) 

remains the same, the change in entropy and zero point energy will be negligible, 

i.e. Δ𝐸𝑒− ≈ Δ𝐺𝑒− .  

The proton-transfer process  

 𝐼𝑖
+ ⟶ 𝐼𝑖+1 + 𝐻𝑠𝑜𝑙𝑣

+  (4.8) 

may be investigated using constrained CPMD along the reaction coordinate of 

proton solvation. Δ𝐺𝐻+ can then be calculated for each reaction step according to 

Eqn. (1.24) in Chapter 1, where the respective 𝑥 = d(O→H) (see also Figure 4.2). 

So practically, in CSA the total change in energy for the 𝐼𝑖 ⟶ 𝐼𝑖+1 PCET reaction 

simulation is given by 

 Δ𝐺𝐶𝑆𝐴 = Δ𝐺𝐻+ + Δ𝐸𝑒− . (4.9) 

Δ𝐸𝑒−  includes energetic contributions from both the oxidation of the catalyst, as 

well as the reduction of 𝑀𝑒3+. If these events are to be considered independently 

from each other,  

 Δ𝐸𝑒− =  Δ𝐸𝑒−(𝐼𝑖 ⟶ 𝐼𝑖
+) +  Δ𝐸𝑒−(𝑀𝑒3+ ⟶ 𝑀𝑒2+), (4.10) 

then it is of crucial importance that Δ𝐸𝑒−(𝑀𝑒3+ ⟶ 𝑀𝑒2+) remains constant 

throughout the catalytic cycle. If this is the case, then the change in free energy 

for the catalyst would be given by 

Δ𝐺(𝐼𝑖 ⟶ 𝐼𝑖+1) = Δ𝐺𝐻+(𝐼𝑖 ⟶ 𝐼𝑖+1) + Δ𝐺𝑒−(𝐼𝑖 ⟶ 𝐼𝑖+1) 
 

= Δ𝐺𝐻+(𝐼𝑖 ⟶ 𝐼𝑖+1)

+ (Δ𝐸𝑒− −  Δ𝐸𝑒−(𝑀𝑒3+ ⟶ 𝑀𝑒2+)). 

(4.11) 

Via this formalism, the way has been paved for an energetic consideration of the 

process of a reaction step which includes both electron and proton transfer. 

Although this transcends the static consideration which uses the correction term 

½ H2, it does introduce the extra complication of the energetic contribution due 

to the electron acceptor. We propose that if this contribution is kept constant 

throughout the catalytic cycle, it will provide less of a complication than one may 

initially expect. 

To demonstrate this methodology the ruthenium based mononuclear molecular 
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WOC Ru-bpy is used, whose catalytic cycle is described in Chapter Two (see also 

Scheme 4.1). Ru-bpy provides an excellent text case as its catalytic cycle has been 

explored both experimentally and computationally using static methods.21 

Furthermore, it has a relatively small number of atoms, which for a test case is an 

attractive property computationally. Here the first and second catalytic PCET 

steps of this WOC are examined within CSA. The results of this are then compared 

to experimental data, as well as computational data obtained using static 

methods. 

4.2. Computational Method and Details 
The CPMD program for AIMD was used to examine the explicitly solvated 

systems.22 The solvent environment for the CPMD simulations was generated 

using Discovery Studio 2.5.23 The solvent was equilibrated for 0.2 ns using the 

CHARMM force field and CFF partial charge parameters at 300 K,24 while the 

catalyst was kept fixed. The volume was then adjusted using constant pressure 

for 0.2 ns, after which the system was further allowed to evolve with constant 

volume for 2 ns. Subsequently CPMD calculations were performed in the 

canonical NVT ensemble at 300 K, using GTH pseudopotentials for the transition 

metals,25 DCACP pseudopotentials for the remaining atoms,26 and the OPBE 

exchange-correlation functional.27 KS orbitals are expanded on a plane wave basis 

set with an energy cut-off of 70 Ry. A time step of 5 a.u. = 0.121 fs was used. Image 

rendering for the CPMD output was done using VMD.28,29  

The general methodology for the CPMD simulations was as follows: 

a. The system was initially allowed to equilibrate with CPMD for 0.1 ps. 

b. A solvent water molecule was constrained at progressively closer 

distances to one of the protons of the water molecule ligated to the Ru 

centre (Figure 4.2), at 0.1 Å intervals. The system is allowed to evolve for 

at least 1 ps to allow the time-averaged constraint force ⟨𝜆⟩𝑥 to stabilise. 

 
Scheme 4.1 Proposed catalytic cycle for water oxidation by Ru-bpy. Inset: 
Schematic structure of Ru-bpy. 
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In cases where stabilisation was difficult, simulation length was extended 

to a maximum of 2.5 ps. 

c. If d(O→H) was contracted to 1.0 Å, the distance constraint was then 

removed and the system allowed to evolve for 1 ps.  

d. If the formed bond is stable, <λ> at this distance is set to 0. <λ> is then 

fitted with a 100 pt Akima Spline,30,31 a fit based on cubic functions. 

Cubic-based functions have long been used as a fitting method for <λ>.32 

The simulation box 

Simulations are performed on the catalytic intermediate and an Mn2+ or Mn3+ ion 

within a 17.52 × 15.78 × 13.65 Å3 box with 94 water molecules, total charge 5+. 

The water environment around the Mn ion was constrained to avoid spurious 

effects on ∆𝐺 due to changes in the coordination sphere of the electron acceptor. 

The coordination sphere is stabilised by constraining the coordination numbers 

around the Mn ion. The number of oxygen atoms is constrained to four, based on 

unconstrained simulations where the Mn2+(H2O)4 structure was formed 

spontaneously (see Appendix 4.A.1). The coordination radius, 𝑟𝑐  = 2.25 Å was also 

determined from these unconstrained Mn simulations. At 2.25 Å the radial 

distribution function of O atoms around Mn was zero after the first solvation 

shell. The parameter 𝜅 = 9.4 Å-1, where 𝜅−1 is the width of the transition region, 

is chosen such that 𝜅−1 is significantly smaller than 𝑟𝑐.33  

Although the four-fold coordination is anomalous for Mn in water, it can be 

attributed to the relatively close location of the charged catalyst affecting the Mn 

ion. Mn chemistry has been shown to be very sensitive to the charge of the 

complex, as well as the surrounding environment.34 Each O atom was saturated 

with two H atoms using 𝑟𝑐  = 1.2 Å and 𝜅 = 17.6 Å-1. 1.2 Å may be considered the H 

– O distance at which a proton is equally shared between two oxygens,35 which 

makes it an appropriate 𝑟𝑐.  

[RuII-OH2]
2+ + Mn3+ 

In order to calculate Δ𝐸𝑒−, a d(O→H) = 1.6 Å was imposed for 2 ps for  

[RuII-OH2]2+ + Mn3+ (System 1 in Table 4.1). The multiplicity was then flipped to 

a septet to give [RuIII-OH2]3+ + Mn2+ (System 2 in Table 4.1), and the system 

  
Figure 4.2 The distance constraints d(O→H), shown in purple, considered in this 
chapter for (left) [RuII-OH2]2+ + H2Osolv and (right) [RuIII-OH]2+ + H2Osolv. 
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allowed to evolve for a further 2 ps. For the calculation of Δ𝐺𝐻+ the system was 

allowed to evolve for at least 1 ps for each d(O→H): 1.4, 1.3, 1.2, 1.1, and 1.0 Å.  

[RuIII-OH]2+ + Mn3+ 

The initial geometry was obtained by removing the solvated proton once the final 

product had stabilised during the unconstrained Δ𝐺𝐻+ calculation for [Ru-OH2]3+ 

+ Mn2+ (System 2). The [RuIII-OH]2+ + Mn3+ system was equilibrated for 0.5 ps 

with sextet multiplicity (System 3 in Table 4.1). This system was allowed to evolve 

for 2.5 ps, then for 2.5 ps with octet multiplicity [RuIV-OH]3+ + Mn2+ (System 4 

in Table 4.1).  

In order to calculate Δ𝐸𝑒− the [RuIII-OH]2+ + Mn3+ system after 2.5 ps with sextet 

multiplicity was restarted. It was allowed to evolve for 2.5 ps with d(O→H) = 2.04 

Å, where d(O→H) was initiated from the restarted geometry. The multiplicity was 

then flipped to octet multiplicity [RuIV-OH]3+ + Mn2+ (System 4), and the system 

allowed to evolve for a further 2.5 ps. For the calculation of Δ𝐺𝐻+ d(O→H) was 

contracted from 2.04 Å, d(O→H) = 1.9, 1.7, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0 Å, where the 

initial contraction was more rapid. 

4.3. Results and Discussion 
The first two catalytic steps of the ruthenium-based WOC were investigated 

within the CSA. The catalytic intermediates and electron- and proton-transfer 

steps examined are shown in Scheme 4.2. Analogous to cyclic voltammetry, we 

first removed an electron from the catalyst (green arrows, Scheme 4.2), and then 

observe how the system responds. Proton transfer (pink arrows, Scheme 4.2) was 

investigated by means of constrained CPMD. In Appendix 4.A.2 the [RuII-OH2]2+ 

+ Mn3+ ⇌ [RuII-OH]+ + H+
solv + Mn3+ proton transfer process is discussed, which 

would be a proton-first pathway (e.g. I1 → I1
- as shown in the inset in Scheme 4.2, 

which is reproduced from Figure 4.1.). 

Table 4.1 Summary of the systems considered. qtot is the total charge of the 
system, 2S+1 the spin multiplicity, and Scat and SMn the spin of the catalyst and Mn 
ion respectively. 

  qtot (2S+1)tot Scat SMn 

1 [RuII-OH2]2+ + Mn3+ 5 5 0 2 

2 [RuIII-OH2]3+ + Mn2+ 5 7 1/2 5/2 

3 [RuIII-OH]2+ + Mn3+ 5 6 1/2 2 

4 [RuIV-OH]3+ + Mn2+ 5 8 1 5/2 
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4.3.1. Energetic analysis of the PCET step [RuII-OH2]2+ → 

[RuIII-OH]2+ 

First the PCET step [RuII-OH2]2+
 → [RuIII-OH]2+ (cf. Scheme 4.2: [RuII-OH2]2+ + 

Mn3+ ⇌ [RuIII-OH2]3+ + Mn2+ ⇌ [RuIII-OH]2+ + H+
solv + Mn2+) is analysed. 

Considering the proton transfer process after electron transfer, [RuIII-OH2]3+ + 

Mn2+ ⇌ [RuIII-OH]2+ + H+
solv + Mn2+ (Figure 4.3, top), the variation of <λ> along 

the reaction coordinate is well in line with a normal activated reaction profile. At 

d(O→H) = 1.4 Å <λ> is only slightly above zero. When d(O→H) = 1.2 Å, the 

distance between the ligated water oxygen and the proton involved in the 

constraint is (1.20 ± 0.06) Å. <λ> is very close to zero, indicating the transition 

state, and the proton is equidistant between the two oxygen atoms.  

At d(O→H) = 1.1 Å the standard deviation is notably larger. During the d(O→H) 

= 1.1 Å simulation there is significant rearrangement in the solvent surrounding 

the reaction site, in preparation for proton diffusion into the solvent. This 

diffusion is facilitated by an appropriate ‘water wire’. We define a water wire to 

be a chain of water molecules which are hydrogen bonded together such that a 

proton may transfer rapidly along it. The proton can be considered to be 

delocalised along these water wires.36 The formation of a water wire has a large 

effect on λ. If a suitable wire has formed, the formation of the d(O→H) bond is 

more favourable as the extra proton on the solvent molecule may diffuse away 

and <λ> is negative. The extra proton cannot be released from the solvent 

molecule if this water wire is broken, so forming the d(O→H) bond is 

unfavourable. At these moments λ is seen to be positive. After the simulation with 

d(O→H) = 1.0 Å, the distance constraint is released and the system is again 

allowed to evolve freely. The formed O – H bond has an equilibrium distance of 

0.97 Å. We set <λ> = 0 at that distance, as shown in Figure 4.3 (top). 

 
Scheme 4.2 The electron- and proton-transfer steps examined in this work. 
Vertical lines denote electron transfer, horizontal lines proton transfer. The 
regeneration step corresponds to the removal of an electron from the Mn ion, as 
well as the removal of the solvated proton. Stable intermediates are shown in 
black, unstable intermediates in grey. The inset shows the corresponding 
intermediates in Figure 4.1. 
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The free energy profile of the complete proton transfer into solvent was obtained 

from integrating the fit of <λ> and is shown in Figure 4.3 (bottom). This gives a 

Δ𝐺𝐻+
0  = (-0.2 ± 0.1) eV (see Appendix 4.A.3), and a transition state energy Δ𝐺𝐻+

∗  = 

0.05 eV. Because Δ𝐺𝐻+
0  is less than zero we can conclude that proton transfer is 

thermodynamically favourable, once the electron has been removed from the 

catalyst. An electron transfer energy Δ𝐸𝑒−  = (1.8 ± 1.0) eV was obtained from the 

time-averaged KS Energy according to Eqn. (4.7), with the distant constraint d(O 

→ H) = 1.6 Å (purple arrow in the left panel of Figure 4.2). This distance 

corresponds to a typical hydrogen bond distance at equilibrium where <λ> is 

around 0. Δ𝐺𝐶𝑆𝐴 = (1.6 ± 1.0) eV can then be calculated using Eqn. (4.9). Table 

4.2 summarizes the total free energy differences for the two PCET reactions. 

4.3.2. Proton Diffusion [RuIII-OH2]3+ → [RuIII-OH]2+ 

Above it was concluded that proton transfer into the solvent is dependent on the 

proton at the reaction site having access to a viable water wire. During normal 

solvent dynamics these wires are formed and broken as water molecules move 

and rotate. The solvent environment during potential proton transfer was 

 
Figure 4.3 (top)The time-averaged constraint force (<λ>) as a function of d(O→H). 
This analysis is performed for [RuIII-OH2]3+ + Mn2+ ⇌ [RuIII-OH]2+ + H+

solv + Mn2+. The 
error bars show standard deviations. The dotted line shows the fit of the 
calculated points. (bottom) The integral of the <λ> fit with respect to distance. 

The definite integral has a value 𝚫𝑮𝑯+
𝟎  = -0.17 eV (-3.8 kcal/mol). 𝚫𝑮𝑯+

∗  = 0.05 eV 

(1.2 kcal/mol) 
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therefore examined, scanning to identify whether a solvent O atom was bonded 

to a number of protons different from two i.e. whether it was an OH- or H3O+ ion. 

If a proton is within 1.2 Å of an O atom, it is considered to be bonded.35 For the 

H3O+, the distance to the Ru catalytic centre, taking periodic boundaries into 

account, was then plotted as a function of time (Figure 4.4). This then gives an 

overview of how the H+ moves through the solvent, visiting seven different 

oxygens as it travels from the first to the third hydration shell. 

During the d(O→H) = 1.2 Å simulation there is already an initial attempt at proton 

transfer from the first solvation shell at around 4 Å, to the second solvation shell 

at around 6 Å. Towards the end of the d(O→H) = 1.1 Å simulation the proton 

resides mainly within the second solvation shell, though it is still shared with the 

first. At the start of the d(O→H) = 1.0 Å simulation the proton has been 

transferred into the third solvation shell at 8 Å. After releasing the distance 

constraint, the proton remains in the third solvation shell for the 1 ps duration of 

the simulation, though it is mobile: the distance between its O atom and the 

ruthenium atom of the catalyst ranges between 6.5 and 8.9 Å. Of further interest 

here, is that the mobility of the water molecules themselves is also shown. During 

the d(O→H) = 1.1 Å simulation the proton is transferred to a water molecule in 

the second solvation shell (gold). During the simulation after d(O→H) has been 

released, at around 5 ps, the proton is again transferred to this water molecule, 

which has now moved into the third solvation shell. 

4.3.3. Energetic analysis of the PCET step [RuIII-OH]2+ → [RuIV=O]2+ 

In the reaction from [RuIII-OH]2+ to [RuIV=O]2+, the second PCET step (cf. 

 
Figure 4.4 The distance between Ru and H3O+, defined as an oxygen atom with 3 
H within a radius of 1.2 Å, as measured for the CPMD simulations showing diffusion 
of a single released proton for [RuIII-OH2]3+ + Mn2+ ⇌ [RuIII-OH]2+ + H+

solv + Mn2+. 
d(O→H) is noted in grey, and subsequent runs with decreasing d(O→H) are 
separated by dashed lines. According to the simulation, only one oxygen is in the 
H3O+ form at any time, and although the proton associates with seven different 
oxygens during the simulation, indicated with different colours, it is primarily 
bonded to three oxygens (blue, gold and magenta).  
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Scheme 4.2: [RuIII-OH]2+ + Mn3+ ⇌ [RuIV-OH]3+ + Mn2+ ⇌ [RuIV=O]2+ + H+
solv + 

Mn2+), the catalyst changes multiplicity from doublet to triplet, where spin 

density is localised on the metal centre and on the oxo ligand. In the triplet state, 

it is very unfavourable for the proton to remain on the oxo ligand, and so proton 

release should be thermodynamically favourable. This would lead to spontaneous 

proton release once the multiplicity of the system has been flipped. To investigate 

this, we first consider the system without an applied d(O→H). 

Unconstrained 

When [RuIII-OH]2+ + Mn3+ is restarted as [RuIV-OH]3+ + Mn2+, without an applied 

d(O→H), there is proton transfer into the first solvation shell after 0.8 ps. In 

Figure 4.5 the relative positions of the “non-water” O atoms are shown as the 

proton is solvated, and the Ru – O bond contracts and stabilises. For clarity, this 

is decomposed into the various species present: H3O, and the O atom ligated to 

 
Figure 4.5 (top) The distance between Ru and H3O+, OH- and O2- as measured 
during [RuIV-OH]3+ + Mn2+ → [RuIV=O]2+ + H+

solv + Mn2+, where → indicates 
spontaneous proton transfer from the catalyst into the solvent. The ions are 
defined by the number of H within a radius of 1.2 Å of the oxygen, and are 
specified in (bottom): H3O – three H atoms, [Ru-OH] – one H atom, [Ru=O] – no H 
atoms. At first the oxygen ligated to the Ru centre has one proton bonded to it 
([Ru-OH], green trace), but at around 0.8 ps a proton is transferred. The oxygen 
ligated to the Ru centre then has no bonded protons ([Ru=O], green trace), and 
the Ru – O distance is seen to shorten and stabilise. Meanwhile the excess proton 
is transferred to an oxygen in the first solvation shell (H3O, brown trace). It then 
continues to interact with three different oxygens within the solvent (brown, light 
green, pink).  



Results and Discussion | 89 

the Ru centre as first OH, then O, ligand. After 0.8 ps, a proton is transferred from 

the ligated OH to the first solvation shell at 4 Å. This proton then interacts with 

two different water molecules in the second solvation shell, much like the 

previous system considered in which proton diffusion was successful. The Ru – 

O distance reaches equilibrium fairly quickly. This simulation encompasses the 

entire proton transfer into solution. The difference in time-averaged KS energies 

between [RuIV=O]2+ + H+
solv + Mn2+ and [RuIII-OH]2+ + Mn3+ is (2.7 ± 0.7) eV. 

This encompasses both electron and proton transfer.  

Constrained 

To allow for a quantification of the proton and electron transfer energies 

independently, as well as allowing for a systematic comparison with the first 

catalytic step, [RuIV-OH]3+ + Mn2+ ⇌ [RuIV=O]2+ + H+
solv + Mn2+ was also 

considered with constrained CPMD. In the unconstrained simulation of this step 

(as discussed above), spontaneous proton transfer was observed. If this 

observation is translated to constrained proton transfer, i.e. along d(O→H) as 

defined in Figure 4.2 (right), <λ> should be less than 0: a force exists in the 

direction of transfer. As shown in Figure 4.6 (top), <λ> does indeed remain 

 
Figure 4.6 (top) The time-averaged constraint force (<λ>) as a function of d(O→H) 
between one of the ligated water hydrogens and a solvent water oxygen for [RuIV-
OH]3+ + Mn2+ ⇌ [RuIV=O]2+ + H+

solv + Mn2+. (bottom) The integral of the interpolated 

<λ> fit with respect to distance. The definite integral has a value 𝚫𝑮𝑯+
𝟎  = -0.25 eV 

(-5.8 kcal/mol).  
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negative, with a minimum at 1.1 Å. The newly formed O – H bond is stable, with 

a bond distance of (0.970 ± 0.009) Å. 

<λ> is integrated to give the free energy profile (Figure 4.6 , bottom). This gives 

Δ𝐺𝐻+
0  = (-0.3 ± 0.2) eV (see also Appendix 4.A.3). Using Eqn. (4.7) the electron 

transfer energy is calculated as Δ𝐸𝑒− = (2.3 ± 0.8) eV, and so, from Eqn. (4.9), 

Δ𝐺𝐶𝑆𝐴 = (2.1 ± 0.8) eV; this is also noted in the summarising Table 4.2. For the 

unconstrained case the change in KS energies between [RuIV-OH]3+ + Mn2+ → 

[RuIV=O]2+ + H+
solv + Mn2+ and [RuIII-OH] + Mn3+ was (2.7 ± 0.7) eV. Comparing 

this to Δ𝐺𝐶𝑆𝐴, the two values do fall within the standard deviation of each other. 

The differences between the two values will, in part, be due to the slightly 

different final configurations of the solvated proton. 

As in the case for the first catalytic step, for [RuIV-OH]3+ + Mn2+ ⇌ [RuIV=O]2+ + 

H+
solv + Mn2+ the first attempt at proton transfer from the first solvation shell, at 

4 Å, to the second solvation shell, now at around 5 Å, occurs in the d(O→H) =  

1.1 Å simulation (Figure 4.7). However, instead of moving into the third shell, it 

collapses back to the first solvation shell within the same d(O→H) = 1.1 Å 

simulation. The extra proton remains shared between these two solvation shells, 

with brief transfers to the third shell. The water molecule in the second solvation 

shell receiving the proton gradually moves away from the reaction site, until, 

during the simulation without distance constraint (Unconstr), the additional 

proton stabilises in the second solvation shell (Figure 4.7, blue trace). The final 

simulation ends with the additional proton on a water molecule around 8.7 Å 

from the Ru catalytic centre. 

  

 
Figure 4.7 The distance between Ru and the H3O+ ion associated with the proton 
transferred during [RuIV-OH]3+ + Mn2+ ⇌ [RuIV=O]2+ + H+

solv + Mn2+. d(O→H) is noted 
in grey, and subsequent runs with decreasing d(O→H) are separated by dashed 
lines. The proton is primarily associated with an oxygen in the first solvation shell 
(brown trace), and interacts with, then transfers to, the oxygen with the dark 
blue trace. There are a number of momentary interactions between the proton 
and other oxygens; these oxygens each have a different coloured trace. 



Results and Discussion | 91 

4.3.4. Experimental Comparison and Evaluation 

One of the dilemmas in comparing the values of ∆𝐺 obtained so far to experiment 

is that the values of ∆𝐺 still contain a contribution from the electron acceptor. 

Although one could use reference data for the experimental or calculated redox 

potentials of Mn, this would not be methodologically rigorous. Instead we 

introduce the quantity  

 ∆(Δ𝐺) = Δ𝐺(𝐼𝑖 ⟶ 𝐼𝑖+1) − Δ𝐺(𝐼𝑖+1 ⟶ 𝐼𝑖+2). (4.12) 

This provides a quantity independent of charge carriers which may be compared 

with experimental data, as well as data obtained from previous theoretical 

methodologies. The previous methodology tested here is outlined in Chapter 1. 

The changes in free energy for the two catalytic steps investigated here are 

summarised in Table 4.2, as are the resulting values for Δ(ΔG). For the CSA 

methodology Δ(ΔG) = (-0.5 ± 1.3) eV, although this is in very good agreement 

with experiment (see Table 4.2), there is a very large standard deviation. This is 

primarily due to the method of calculating Δ𝐸𝑒−. Because of the fluctuations in KS 

energy during the simulations, longer simulation time or a larger box size with 

more water molecules would be needed to decrease the standard deviation.  

Initially it was proposed that the energetic contribution due to the electron 

acceptor should be kept constant throughout the catalytic cycle. This contribution 

includes not only the redox potential, it also accounts for the solvated proton. The 

changes in free energy for each step as calculated with the CSA were therefore 

compared to experimental and static theoretical values (see Table 4.2). 

Considering the static calculations, the Δ(ΔG) deviates only 0.01 eV when 

compared to the CSA, where the static calculations were calculated using a 

different functional: B3LYP vs OPBE for the CSA. Furthermore, there is a 

deviation of 0.1 eV between Δ(ΔG) when comparing the CSA to experimental 

values. It may therefore be concluded that the initial proposition does indeed 

Table 4.2 Summary of the changes in free energy ∆𝑮, in eV, for the first two PCET 
steps of the catalyst Ru-bpy, as obtained by the CSA methodology, experiment 
(Exp),21 and static theoretical methods (B3LYP/TZP).21 Δ(ΔG) is the difference 
between the ΔG obtained for the first two catalytic steps (top two rows of the 
table).The differences between CSA and the latter two are also noted: Δ1 = CSA – 
Exp and Δ2 = CSA – B3LYP/TZP. 

 CSA Exp Δ1 B3LYP/TZP Δ2 

ΔG([Ru-OH2]2+ → [Ru-OH]2+) 1.6 0.67 0.93 0.87 0.73 

ΔG([Ru-OH]2+ → [Ru=O]2+) 2.1 1.27 0.83 1.38 0.72 

Δ(ΔG) -0.5 -0.60 0.1 -0.51 0.01 
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hold. Future calculations can then use the (0.88 ± 0.05) eV constant to account 

for the use of the CSA with a Mn ion. 

4.4. Conclusions 
The energetics of the first two steps of a water oxidation catalytic cycle were 

examined using a closed system approach in which an electron acceptor is 

included in a fully solvated simulation setup. This set up allows for the 

examination of the energetic contribution of electron transfer, as well as the 

energetics and process of proton transfer. In both the steps examined, proton 

transfer was thermodynamically favourable after electron transfer: proton 

transfer was an energy activated reaction during the first catalytic step, and 

barrier-less for the second. The closed system approach compares well with 

experiment, within 0.1 eV, though a large standard deviation results from the 

statistical uncertainty of the electron transfer energies. Mechanistically, it was 

observed that a viable water wire is essential for proton release into the solvent, 

which further emphasises the importance of considering the environmental 

influence on a catalytic reaction.  
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4.A. Appendix 

4.A.1. CSA with an electron acceptor in a constrained environment 

Here we outline a treatment of Mn ion that will serve throughout the simulations 

to establish the stable electron acceptor Mn3+/Mn2+. We do this first by examining 

the system where no constraint is placed upon the Mn ion environment. The 

different solvation environments observed are shown in Figure A4.1. 

 
 

Mn(OH)3 Mn(H2O)4 
Figure A4.1 The different solvation environments observed around the Mn ion 
when the environment is not constrained. 

Simulations are performed on the catalytic intermediate [RuII-OH2]2+ and an Mn 

ion within a 17.52 × 15.78 × 13.65 Å3 box with 94 water molecules, total charge 

5+. Two cases are examined: 

1. The system was allowed to equilibrate and evolve as [RuII-OH2]2+ + Mn3+ 

for 1 ps.  

a. The relevant constraint distance was contracted from 1.6 Å. 

b. The multiplicity was flipped to [RuIII-OH2]3++ Mn2+, and the 

constraint distance contracted from 1.6 Å. 

2. The system was allowed to equilibrate and evolve as [RuIII-OH2]3++ Mn2+ 

for 1 ps. The relevant constraint distance was then contracted from 1.4 Å.  

During the initial equilibration and evolution of the unconstrained [RuII-OH2]2+ 

+ Mn3+, it was observed that there was a significant amount of activity around the 

Mn ion. The Mn3+ ion spontaneously reacted with the surrounding water 

molecules to form a Mn(OH)3 complex (see Figure A4.1), releasing three H+ ions 

into solution. Flipping the multiplicity of the system after the formation of this 

Mn(OH)3 complex to form [RuIII-OH2]3++ Mn2+ did not lead to significant 

changes in the Mn solvation environment, leaving the Mn(OH)3 complex intact. 

Comparatively, there is no such reaction during the initial equilibration and 
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evolution of the unconstrained [RuIII-OH2]3++ Mn2+
 system. Instead the solvation 

shell rearranges spontaneously to form a four-coordinate complex Mn(H2O)4 

(shown in Figure A4.1). 

The Mn ion had been introduced as an electron acceptor, but does not behave as 

an innocent bystander. In order to establish an innocent bystander, we constrain 

the solvation shell of Mn based on the Mn(H2O)4 structure. The Mn(H2O)4 

structure was seen to be stable for [RuIII-OH2]3++ Mn2+ throughout all the 

simulations in which d(O→H) was examined (see Figure A4.2). Throughout the 

proton dissociation, <λ> is consistently lower for the Mn2+(H2O)4 + [RuIII-OH2]3+ 

system than for both Mn3+(OH)3 + [RuII-OH2]2+ and Mn2+(OH)3 + [RuIII-OH2]3+. 

 
Figure A4.2 The time-averaged constraint force (<λ>) as a function of d(O→H), 
[RuIII-OH2]3+ + Mn2+ ⇌ [RuIII-OH]2+ + H+

solv + Mn2+, and [RuII-OH2]2+ + Mn3+ for the 
Mn(OH)3 and Mn(H2O)4 solvation environments (see Figure A4.1). 

4.A.2. Consideration of the first reaction step proceeding via  

[RuII-OH]+ + H+
solv + Mn3+  

As mentioned in Chapter One, one might modify the sequence of proton and 

electron transfer throughout the water splitting reaction. In the main text we 

consider the electron first process, analogous to experiment. However, PCET may 

also proceed via a proton first mechanism. We therefore compare proton 

dissociation for [RuII-OH2]2+ + Mn3+ to [RuIII-OH2]3+ + Mn2+, the latter being 

mentioned in the main text. The time-averaged constraint force (<λ>) for both 

systems is shown in Figure A4.3. From d(O→H) = 1.4 Å it is clear that  
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[RuII-OH2]2+ + Mn3+ has a consistently higher <λ>. Furthermore, unlike in the 

case of [RuIII-OH2]3+ + Mn2+ there is no observed transition state: <λ> remains 

greater than zero. This makes the stability of [RuII-OH]+ + H+
solv + Mn3+ unlikely. 

The instability of [RuII-OH]+ + H+
solv + Mn3+ is confirmed after the d(O→H) 

constraint has been released, as shown in Figure A4.4. Although the solvated 

proton is partially transferred to the second solvation shell while d(O→H) = 1.0 

Å, when the constraint is released the proton returns to the reaction site within 

0.4 ps. 

 
Figure A4.3 The time-averaged constraint force (<λ>) as a function of d(O→H). 
This analysis is performed for [RuIII-OH2]3+ + Mn2+ ⇌ [RuIII-OH]2+ + H+

solv + Mn2+ 
(black) and [RuII-OH2]2+ + Mn3+ ⇌ [RuII-OH]+ + H+

solv + Mn3+ (red). The error bars 
show standard deviations. The dotted line shows the fit of the calculated points. 
When the constraint is released for [RuII-OH2]2+ + Mn3+ ⇌ [RuII-OH]+ + H+

solv + Mn3+ 
after d(O→H) = 1.0 Å, the formed bond is broken and the dissociated proton 
returns to the catalyst.  

 
Figure A4.4 The distance between Ru and the H3O+ ion associated with the proton 
transferred during [RuII-OH2]2+ + Mn3+ ⇌ [RuII-OH]+ + H+

solv + Mn3+. d(O→H) is noted 
in grey, and subsequent runs with decreasing d(O→H) are separated by dashed 
lines. The different oxygens to which the proton associates are monitored by 
assigning a specific colour trace to each different oxygen. Recombination of the 
proton is seen at around 4 ps. 
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4.A.3. Calculation standard deviation Δ𝐺𝐻+ 

 
Figure A4.5 Here we reproduce Figure 4.3 (left, [RuIII-OH2]3+ + Mn2+) and Figure 
4.6 (right, [RuIV-OH]3+ + Mn2+). We have also included the maximum (red) and 
minimum (green) interpolations of <λ> (top panels), which are then integrated 
with respect to distance (bottom panels). The standard deviations are noted in 
grey: 0.14 and 0.22 eV for [RuIII-OH2]3+ + Mn2+ and [RuIV-OH]3+ + Mn2+ respectively. 

 

4.A.4. Radial Distribution Functions Ru – O during proton diffusion 

In the case of [RuIII-OH2]3+ + Mn2+ there are three solvation shells visible: around 

4 Å, 5 – 7 Å and 7 – 9 Å. This expands on the conclusions reached in Figure 4.4. 

 
Figure A4.6 The radial distribution functions for the proton diffusion simulations 
d(O→H) = 1.2 – unconstrained for (left) [RuIII-OH2]3+ + Mn2+, and (right) [RuIV-OH]3+ 
+ Mn2+. 
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In Figure 4.7 the proton released from [RuIV-OH]3+ was seen to stabilise in the 

second shell. Only the first solvation shell is well defined, at around 4 Å. The 

‘second’ solvation shell is a broad distribution from 5 Å. This is likely due to the 

high mobility of the water molecules during this simulation, as demonstrated in 

Figure 4.7, where the O with three H atoms moves from 4.5 – 6 Å over the course 

of the simulation. Of further note, here the contraction of the Ru – O distance 

between [RuII-OH2]2+ and [RuIII-OH]2+ can be seen. 

4.A.5. <λ> for [RuIII-OH]2+ including initial accelerated contraction 

For completeness, <λ> for [RuIII-OH]2+ as d(O→H) was contracted from 2.04 Å, 

where the initial contraction was more rapid is included here. The more rapid 

contraction is seen in the larger standard deviation for d(O→H) ≥ 1.5 Å.  

 
Figure A4.7 (top)The time-averaged constraint force (<λ>) as a function of 
d(O→H). This analysis is performed for [RuIV-OH]3+ + Mn2+ ⇌ [RuIV=O]2+ + H+

solv + 
Mn2+ (black) and initially also for [RuIII-OH]2+ + Mn3+ (red). The error bars show 
standard deviations. The dotted line shows the fit of the calculated points. For 
d(O→H) ≥ 1.5 Å <λ> remains around zero, as expected. (bottom) the integral of 

the <λ> fit with respect to distance. The definite integral has a value 𝚫𝑮𝑯+
𝟎  =  

-0.29 eV (-6.7 kcal/mol). For comparison, the integral from 1.4 Å has a value 𝚫𝑮𝑯+
𝟎  

= -0.25 eV (-5.8 kcal/mol). The difference is slight. 
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4.A.6. Gaussian fits of KS Energies for Δ𝐸𝑒− 

 
Figure A4.8 Gaussian fits used to determine 𝚫𝑬𝒆− and its standard deviation.  
EKS – EKS min is the KS Energy normalised such that the global minimum of all KS 
energies is 0. The interval size is given by (EKS max – EKS min)/3000, which is equal to 
0.009 eV. The KS energy distributions do deviate to some extent from a single 
Gaussian distribution; in the top panel one could suppose the overlap of two 
Gaussians. This deviation can be attributed to the fluctuations in the hydrogen 
bonding network of the solvent, which at this time-scale retains a memory of the 
initial configuration. In order to get memory-less distribution, the simulation 
would either have to be repeated with different initial conditions, or extended 
for a significant amount of time. Nevertheless, the estimated <EKS> should not be 
effected, especially considering the standard deviation. 
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5. Increasing the Rate of the Deprotonation Step 

in a Single-site Water Oxidation Catalyst: Tuning 

the Environment 

Abstract 

The solvent environment of the reaction site of a water oxidation catalyst has a 

significant impact on the catalytic mechanism and performance of the catalyst. 

The solvent environment is of great importance when considering the proton 

transfer pathways away from the reaction centre. These proton channels are 

essential to the catalytic mechanism, yet are often overlooked in theoretical 

investigations of water oxidation catalysis. Here, insight into the proton diffusion 

process is obtained by considering the first three catalytic steps for an explicitly 

solvated water oxidation catalyst, [Ru(cy)(bpy)(H2O)]2+. It is shown that the 

inclusion of a proton acceptor in the vicinity of the reaction site leads to very rapid 

proton transfer along the adjacent water wire, as well as a decrease in both the 

thermodynamic barrier and the overall free energy difference in the O – O bond 

formation step. These results provide design principles for the assembly of photo-

catalytic devices for solar fuel production. 
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5.1.  Introduction 
Understanding the mechanism of PCET is one of the foundations of rational 

catalyst design.1–3 Alternation of electron and proton transfer prevents high 

energy intermediates, by avoiding accumulation of charge at the catalyst 

complex.3 Computationally, proton transfer is often associated with either high 

activation barriers,4 or high changes in free energy.5 To ameliorate this, a growing 

amount of research is considering the first and second coordination spheres of a 

reaction site,6–8 allowing for targeted proton transfer pathways. An increasingly 

popular way of modifying these proton pathways is by the use of non-innocent 

ligands around the catalytic metal centre.7,9–15 These non-innocent ligands are 

used to influence proton transfer, usually by including localised proton acceptor 

functionalities. Additives, including counter ions, bases, and various solvent 

molecules,4 can also be used as proton acceptors. These proton acceptors may be 

used in combination with the embedding of a WOC within a proton exchange 

membrane.16 

Some static calculations in implicit solvent have been performed regarding the 

inclusion of localised proton acceptors.4,7,11,17,18 However, it is becoming 

increasingly clear that the inclusion of an explicit solvent is important when 

considering WOC reactions, and that proton migration away from the catalytic 

site plays a significant role.19–21 This has implications for reaction barriers and 

process rates (see Chapter Four). There has been a substantial amount of research 

investigating the hydrated proton and its migration mechanism within bulk 

water.22–24 However, little has been done in combination with a WOC. The 

introduction of a WOC introduces different structural constraints than those of 

bulk water. 

Here we specifically examine proton transport from the WOC reaction site to a 

proton acceptor within dynamically formed water wires surrounding a catalytic 

centre. To do so, we use the ruthenium based mononuclear molecular WOC 

[Ru(cy)(bpy)(H2O)]2+ (cy = p-cymene, bpy = 2,2’-bipyridine; (Ru-bpy)), earlier 

 
Scheme 5.1 Proposed catalytic cycle for water oxidation by Ru-bpy.  
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examined in Chapters Two and Four (see also Scheme 5.1). Experimentally, the 

[Ru(cy)(bpy)Cl]Cl salt was activated by exchange of Cl- by H2O to give the  

[RuII-OH2]2+ aqua form.25 This dramatically increases the local proton density 

and induces catalytic activity. The introduction of an OH- proton acceptor will 

further change the proton density. The resulting activity for the first two proton 

transfer steps [RuII-OH2]2+ + OH- ⇌ [RuII-OH]+ + H2O and [RuIII-OH]2+ + OH- ⇌ 

[RuIII-O]+ + H2O is examined, as well as the third step [RuIV=O]2+ + OH- ⇌  

[RuII-OOH]+ which includes the crucial O – O bond formation step.  

5.2. Computational Method and Details 
The CPMD program for AIMD was used to examine the explicitly solvated 

systems.26 The water solvent environment for the CPMD simulations was 

generated using Discovery Studio 2.5.27 The solvent was equilibrated for 0.2 ns 

using the CHARMM force field with the TIP3P model for water and CFF partial 

charge parameters at 300 K,28,29 while the catalyst was kept fixed. The volume was 

then adjusted using constant pressure MD for 0.2 ns, after which the system was 

further allowed to evolve with constant volume for 2 ns. Subsequently CPMD 

simulations were performed in the canonical NVT ensemble at 300 K, using GTH 

pseudopotentials for the transition metals,30 DCACP pseudopotentials for the 

remaining atoms,31 and the OPBE exchange-correlation functional.32 KS orbitals 

are expanded on a plane wave basis set with an energy cut-off of 70 Ry. A time 

step of 5 a.u = 0.121 fs was used. Image rendering for the CPMD output was done 

using VMD.33,34  

The simulation box 

First, the [RuII-OH2]2+ intermediate was solvated with 123 water molecules in a 

cubic box with periodic boundary conditions and sides of 16.63 Å. This box has a 

total charge of 2+ and singlet multiplicity. Within the periodic boundary 

conditions the total charge density is compensated by a neutralizing 

homogeneous negative charge background.35 The system was initially allowed to 

equilibrate and evolve for 0.4 ps. After this simulation the spontaneously formed 

water wires, or hydrogen bonding network, adjacent to the reaction site was 

visualised, as shown in Figure 5.1. Proton transport is examined by removing one 

proton from one of the various water molecules along the water wires connected 

to the reaction site. This creates [RuII-OH2]2+ + OH- ⇌ [RuII-OH]+ + H2O (initially 

shifted to the left) in a box filled with 122 water molecules, with a total charge of 

1+ and singlet multiplicity. For each of the positions examined, Oii – Ovi’, as 

defined in Figure 5.1, the system is allowed to evolve freely for 0.25 ps to examine 

the proton rearrangement. This is repeated for [RuIII-OH]2+ + OH- ⇌ [RuIII-O]+ + 

H2O, where the removal of an electron from the catalyst is accompanied by the 

extraction of a proton from Oi. This system, with the charge maintained at 1+, now 

has doublet multiplicity. 
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O – O bond formation investigated using constrained MD 

The same MD box was used to examine the dynamics of the [RuIV=O]2+ + OH- ⇌ 

[RuII-OOH]+ step and the effect of the OH- ion on the barrier height of O – O bond 

formation. First, [RuIV=O]2+ + H2O was generated from the initial [RuII-OH2]2+ 

system by removing the two hydrogen atoms from the ligated Oi. While 

maintaining a total charge of 2+, a triplet multiplicity is imposed, following 

previous studies indicating the triplet state is most stable for the [RuIV=O]2+ 

intermediate.25 Subsequently, O – O bond formation was examined by 

progressively shortening the constraint distance d(O→O) between the oxygen 

atom of a solvent water molecule and the oxo ligand (see Figure 5.2).  

The system is allowed to evolve for at least 0.25 ps to allow the time-averaged 

constraint force ⟨𝜆⟩𝑥 to stabilise. In cases where large fluctuations in ⟨𝜆⟩𝑥 were 

still observed after this time, the simulation length was extended to a maximum 

of 1 ps. After d(O→O) was contracted to 1.4 Å, close to the O – O bond length 

 
Figure 5.1 The solvated Ru-bpy catalyst showing the hydrogen bonding chain 
branching from the reaction site. Roman numerals indicate the subscripts used to 
refer to the O atoms in the chains. H bonds are also indicated (cut-off angle 30°, 

distance 3.5 Å as per Biswath and Voth).24 The H+ removed at the start of the 
simulation are circled. 

 
Figure 5.2 The distance constraint d(O→O), shown in purple, considered in this 
chapter for the catalytic intermediate [RuIV=O]2+. 
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obtained from geometry optimisation (see Chapter Two), the constraint was 

removed and the system was allowed to evolve freely. Next, the effect of including 

a proton acceptor within viable water wires is examined by comparing bond 

formation while the water wire contains only water molecules, i.e. [RuIV=O]2+ + 

H2O ⇌ [RuII-OOH]++ H+
solv, to bond formation when one of the closest water 

molecules, Oiii, has been deprotonated, i.e. [RuIV=O]2+ + OH- ⇌ [RuII-OOH]+ with 

a total charge of 1+. The whole procedure was repeated for [RuIV=O]2+ + H2O and 

[RuIV=O]2+ + OH-, starting from the same initial conditions, but imposing a 

singlet multiplicity.  

5.3. Results and Discussion 
While the simulation box is kept at a charge 1+, the effect of a proton acceptor 

within the explicit solvent environment on the first two proton transfer steps, and 

O – O bond formation, of the ruthenium-based WOC (as shown in Scheme 5.2) 

was investigated. The first two steps, [RuII-OH2]2+ + OH- ⇌ [RuII-OH]+ + H2O and 

[RuIII-OH]2+ + OH- ⇌ [RuIII-O]+ + H2O, are used to examine proton transport. 

For the O – O bond formation step, constrained CPMD was performed for 

[RuIV=O]2+ + H2O ⇌ [RuII-OOH]+ + H+
solv which is then compared to the 

[RuIV=O]2+ + OH- ⇌ [RuII-OOH]+ case. This comparison can be used to determine 

the effect of a proton acceptor in the surrounding solvent on the most 

thermodynamically challenging step of this catalytic cycle.25 

5.3.1. Proton Transport  

Proton transport was investigated by examining the relative positions of proton 

holes in the solvation environment surrounding the catalytic centre. The proton 

holes effectively create hydroxide ions within the water wire, and it is the relative 

positions of these hydroxide ions that were monitored during the simulations. It 

 
Scheme 5.2 The catalytic steps examined in this work. Vertical lines denote 
electron transfer, as well as the extraction of a solvent proton from the 
surrounding water wire; horizontal lines proton transfer at the catalytic 
intermediates, which for the third step includes a nearby H2O/OH-. Stable 
intermediates are shown in black, unstable intermediates in grey. The inset shows 
the corresponding generalised intermediates following the same notation 
introduced in Chapter 1 (see Figure 1.2)  
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should be acknowledged that there has been some discussion as to the nature of 

OH- propagation,36,37 specifically that it should not be considered the inverse of 

proton transfer due to the resting state of OH- being a hypercoordinated species 

OH-(H2O)4.38 In this work however, proton holes are generated within water 

wires which have already been formed, and on the short time scale of the 

simulations performed here (0.25 ps) it is highly unlikely that the fourth water 

molecule will complete the OH-(H2O)4 structure before a proton has been further 

transferred down the wire. 

The initial position of the OH- ion corresponds to a water molecule from which 

one proton is removed. This water molecule is chosen freely from within one of 

the water wires adjacent to the catalytic centre (Figure 5.1). OH- migration is first 

examined for the [RuII-OH2]2+ + OH- ⇌ [RuII-OH]+ + H2O process. The diffusion 

of the OH- ion in the vicinity of [RuII-OH2]2+ is monitored by plotting the distance 

between the ruthenium centre and OH- ions in solution (as shown in Figure 5.3), 

where an OH- ion is defined as an oxygen with only one proton within a distance 

of 1.2 Å. If a proton is within 1.2 Å of an O atom, it can be considered bonded.19  

Consider first the case where a proton is removed from the water molecule closest 

to the reaction centre (Oii in Figure 5.1). As a result, the OH- ion is initially located 

 
Figure 5.3 The distance between Ru and OH-, defined as an oxygen atom which 

has only one H atom within a radius of 1.2 Å for [RuII-OH2]2+ + OH- ⇌ [RuII-OH]+ + 
H2O. The initial distance depends on which water molecule in the vicinity of the 
reaction site has been deprotonated to mimic the presence of a OH- ion (for the 
O label see Figure 5.1). The different oxygen sites at which the OH- ion is located 
are monitored by assigning a specific colour trace to each different oxygen.  
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at 4 Å from Ru on an oxygen with a green trace (Oii, Figure 5.3, top left). In this 

case, a proton transfer attempt occurs from the H2O ligated to the Ru catalytic 

centre almost immediately. This results in OH- migration from an oxygen in the 

first solvation shell (green trace) to the O ligated to the catalytic centre (dark blue 

trace). At 0.1 ps the proton transfer is completed and the catalyst has been 

deprotonated to form [RuII-OH]+: the Ru – OH distance is then around 2 Å. 

For the case where the proton has been removed from Oiii, we see that OH- is 

originally at around 5.5 Å from the Ru centre (Oiii, Figure 5.3, purple trace). Also 

in this case a proton is rapidly transferred to form an OH- at around 4 Å (green). 

This is quickly followed by a further transfer to the catalytic site where it remains 

stable for the whole simulation at ≈2 Å (again, dark blue). For the Oiv case, the 

OH- is originally around 6 Å away from the Ru centre (blue). It then propagates 

via two other water molecules (purple, then green) before reaching the catalytic 

site after around 150 fs. Oiv’ behaves similarly to Oiii. In contrast, Ov is initially 8 Å 

away from the Ru centre (blue), after which the OH- quickly migrates to another 

site in the same solvation shell (red). From there it migrates to a site at around 6 

Å from the Ru centre (purple), but no further proton transfer is observed within 

the simulation time frame examined here. This is the case for most of the water 

molecules in the same solvation shell at distances ≥ 8 Å (Ov – Ovi).  

It may be concluded that if the OH- ion is within ≈8 Å of the Ru centre, connected 

to the ligated water molecule through 3 hydrogen bonds (Figure 5.1), the proton 

transfer along the water wire can be completed within 150 fs. In other words, 

proton transfer along a water wire consisting of 4 water molecules occurs very 

rapidly. This also suggests that when considering proton diffusion, a proton 

would need a water chain of at least 8 Å.  

The procedure is repeated for the [RuIII-OH]2+ + OH- ⇌ [RuIII-O]+ + H2O step, as 

shown in Figure 5.4. If an OH- ion is placed in the first solvation shell at about 4 

Å (Oii, Figure 5.4, brown), the OH ligated to Ru at 2 Å (blue) transfers its proton 

very rapidly to form a water molecule with the OH- in the solvent. This is 

confirmed by the emergence of the deprotonated [RuIII-O]+ species after 180 fs; 

[RuIII-O]+ is stable for the remaining time of the simulation. If the OH- ion is in 

the second – fourth solvation shells, it does propagate towards the metal centre 

but does not accept a proton from the catalyst within the 250 fs examined here. 

However, for the OH- located at Oiii, a longer simulation was performed during 

which recombination was seen after 300 fs. In Chapter Four it was observed that 

proton dissociation was spontaneous for [RuIII-OH]2+ + H2O (i.e. total charge 2+) 

after an electron had been transferred from the catalyst to form [RuIV-OH]3+ + 

H2O ⇌ [RuIV=O]2+ + H+
solv + H2O. Comparatively, [RuIII-OH]2+ + OH- 

spontaneously undergoes proton transfer to form [RuIII-O]+ + H2O without 

electron removal. This convincingly demonstrates that a proton acceptor can 

have a dominant role.  
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5.3.2. O – O bond formation via nucleophilic attack on [RuIV=O]2+: 

proton transfer coupled with multiplicity interchange 

For the Ru-bpy catalytic system O – O bond formation is the most 

thermodynamically demanding step, as discussed in Chapter Two. The formation 

of an O – O bond between the ligated O and a solvent water molecule, and the 

influence of an adjacent water wire containing OH-, is examined below using 

constrained dynamics. The O – O bonding step of a similar ruthenium based 

WOC [Ru(benzene)(bpy)]2+, where the cymene group was substituted for 

benzene, had been investigated previously.20 Based on static calculations for 

[Ru(benzene)(bpy)]2+ with only two explicit solvent water molecules, it was 

inferred that a spin-crossover occurs during the reaction. Here an in-depth 

investigation of the reaction [RuIV=O]2+ + H2O ⇌ [RuII-OOH]+ + H+
solv in a fully 

solvated system is presented.  

The electron spin density of the [RuIV=O]2+ and [RuII-OOH]+ intermediates with 

both triplet (3[RuIV=O]2+) and singlet (1[RuIV=O]2+) multiplicity is shown in 

Figure 5.5. The [RuII-OOH]+ intermediates were obtained by constrained CPMD 

along d(O→O) shown in Figure 5.2. For 3[RuIV=O]2+ (Figure 5.5, a), delocalisation 

 
Figure 5.4 The distance between Ru and OH-, defined as an oxygen atom which 

has only one H atom within a radius of 1.2 Å for [RuII-OH]2+ + OH- ⇌ [RuII-O]+ + 
H2O. The ligated OH is also monitored (blue trace at 2 Å). The initial distance 
depends on which water molecule in the vicinity of the reaction site has been 
deprotonated to mimic the presence of a OH- ion (for the O label see Figure 5.1). 
The different oxygen sites at which the OH- ion is located are monitored by 
assigning a specific colour trace to each different oxygen. 



108 | Chapter Five – Increasing Deprotonation Rate: Tuning the Environment 

of spin density is already observed on the incoming water molecule. After the O 

– O bond has been formed (Figure 5.5, b), the spin density delocalises over the 

system, including bpy ligand. In the case of 1[RuIV=O]2+ two anti-parallel spins 

occupy orbitals which are localised on the Ru centre and oxo group (Figure 5.5, 

c). These two half occupied orbitals with anti-parallel spins are then able to each 

receive half of the same electron pair from the incoming water molecule. After the 

O – O bond has formed (Figure 5.5, d), no spin density is observed. It may 

therefore also be postulated that O – O bond formation should proceed better in 

the singlet state than in the triplet state of the [RuIV=O]2+ intermediate.  

Spin intersystem crossing during the reaction may also be concluded when 

considering the change in the time-averaged KS energies for [RuIV=O]2+ + H2O ⇌ 

[RuII-OOH]+ + H+
solv (top line in Table 5.1). For [RuIV=O]2+ the triplet state is 

more stable by 6.9 eV, while for the [RuII-OOH]+ the singlet state is more stable 

by 2.8 eV. The change in KS energy for 3[RuIV=O]2+ + H2O ⇌ 1[RuII-OOH]+ + H+
solv 

is around 1.6 eV. 

a) 

 

b) 

 
 3[RuIV=O]2+  3[RuII-OOH]+ 

c) 

 

d) 

 
 1[RuIV=O]2+  1[RuII-OOH]+ 

Figure 5.5 Spin density on the catalyst for [RuIV=O]2+ + H2O ⇌ [RuII-OOH]+ + H+
solv 

with different multiplicities, where the isosurfaces with opposite signs are shown 
in light and dark grey respectively: a) 3[RuIV=O]2+; b) 3[RuII-OOH]+; c) 1[RuIV=O]2+; 
d) 1[RuII-OOH]+. [RuIV=O]2+ in both (a) and (c) is obtained during the d(O→O) =  
2.4 Å constrained CPMD simulation and [RuII-OOH]+, (b) and (d), when d(O→O) = 
1.5 Å. 
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The time-averaged constraint force <λ> is examined for [RuIV=O]2+ + H2O ⇌ 

[RuII-OOH]+ + H+
solv as d(O→O) is contracted from 2.4 Å (see black line, Figure 

5.6, top left). Although when examining 3[RuIV=O]2+ + H2O for 2.4 ≥ d(O→O) ≥ 

1.6 Å one might initially assume that the O – O bond will not form due to the high 

forces present, a late transition state appears around 1.5 Å. For the 

[Ru(benzene)(bpy)]2+ WOC vibrational analysis was performed in implicit 

solvent which indicated that the transition state around 1.5 Å was associated to 

proton transfer from the constrained water molecule to the solvent.20 In the same 

study,20 metadynamics simulations were performed for the O – O bonding step 

which showed proton transfer from the catalyst at around d(O→O) = 1.5 Å. This 

Table 5.1 The difference in the time-averaged KS energy 〈EKS〉 between the triplet 
and singlet states as calculated for the reactant and product of the [RuIV=O]2+ ⇌  
[RuII-OOH]+ reaction, where the former is obtained during the d(O→O) = 2.4 Å 
simulation, and the latter at d(O→O) = 1.5 Å. 

 〈EKS〉singlet – 〈EKS〉triplet (eV) 

 [RuIV=O]2+
 [RuII-OOH]+ 

[RuIV=O]2+ + H2O ⇌ [RuII-OOH]+ + H+
solv 6.9 -2.8 

[RuIV=O]2+ + OH- ⇌ [RuII-OOH]+ 5.5 -1.6 

   

 
Figure 5.6 (top) The time-averaged constraint force (<λ>) as a function of d(O→O). 
This analysis is performed for (left) [RuIV=O]2+ + H2O ⇌ [RuII-OOH]+ + H+

solv and 
(right) [RuIV=O]2+ + OH- ⇌ [RuII-OOH]+ with both triplet and singlet multiplicity. 
The error bars show standard deviations and the dotted line shows the fit of the 
calculated points. The integral of the <λ> fit with respect to distance is shown in 

the bottom panels. Definite integrals 𝚫𝑮𝑶−𝑶 
𝟎  are shown in Table 5.2. 
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is consistent with the simulation performed here for 3[RuIV=O]2+ + H2O (see 

Figure 5.7, top).  

It is immediately obvious that <λ> is drastically reduced when the spin is flipped 

to 1[RuIV=O]2+ + H2O (red line in Figure 5.6, top left). This supports the 

conclusion drawn from Figure 5.5 (c and d). A transition state is observed at 

around d(O→O) = 1.75 Å, which is earlier than in the triplet case. Furthermore, 

the first proton transfer attempt from 1[RuIV=O]2+ + H2O also occurs earlier, 

during the d(O→O) = 1.7 Å simulation (see Figure 5.7, bottom). In Figure 5.6, 

bottom left, the free energy profile for the singlet state (red line) shows a lower 

Table 5.2 𝚫𝑮𝑶−𝑶 
𝟎  and 𝚫𝑮𝑶−𝑶 

∗  for the [RuIV=O]2+ + H2O and [RuIV=O]2+ + OH- systems 
with both triplet (t) and singlet (s) multiplicity. 

 𝚫𝑮𝑶−𝑶 
𝟎  (eV) 𝚫𝑮𝑶−𝑶 

∗ (eV) 
3[RuIV=O]2+ + H2O 2.41 2.55 
1[RuIV=O]2+ + H2O 0.16 0.45 
3[RuIV=O]2+ + OH- 0.90 0.95 
1[RuIV=O]2+ + OH- -0.85 0.03 

   

 

 
Figure 5.7 The distance between Ru and the H3O+ ion associated with the proton 
solvated during (top) 3[RuIV=O]2+ + H2O ⇌ 3[RuII-OOH]+ + H+

solv, and (bottom) 
1[RuIV=O]2+ + H2O ⇌ 1[RuII-OOH]+ + H+

solv. d(O→O) is noted in grey, and subsequent 
runs with decreasing d(O→O) are separated by dashed lines. The different oxygens 
to which the additional proton associates are monitored by assigning a specific 
colour trace to each oxygen. 



Results and Discussion | 111 

barrier than for the triplet (see also Table 5.2). It may therefore be concluded that 

the high barrier and late transition state for 3[RuIV=O]2+ result from an 

unfavourable parallel electron spin alignment. In previous experimental work, it 

was concluded that a strong correlation existed between the control of the 

electron spin alignment and overpotential.39 This is supported by the findings 

here, though here the energetically favoured mechanism proceeds by anti-parallel 

spin alignment as opposed to parallel spin alignment. This is likely due to the two 

different mechanisms for O – O bond formation, here the bond is formed by 

nucleophilic attack while the anti-parallel spin alignment was examined via a 

radical coupling mechanism.39 

When a proton acceptor is added within the water wires surrounding the catalytic 

centre, i.e. for [RuIV=O]2+ + OH- ⇌ [RuII-OOH]+, a spin-intersystem crossing 

would also be expected (Table 5.1). For 3[RuIV=O]2+ + OH- ⇌ 1[RuII-OOH]+ the 

change in KS energy is around 0.9 eV. Furthermore, as d(O→O) is contracted for 

both triplet and singlet multiplicities <λ> is significantly lower than in the 

[RuIV=O]2+ + H2O ⇌ [RuII-OOH]+ + H+
solv case (Figure 5.6, top right). 

For the 1[RuIV=O]2+ + OH- system, the transition state barrier is only 0.03 eV 

(Table 5.2), which is comparable to kbT at room temperature. This makes a case 

for a proton-first mechanism for the O – O bond formation step. The decreased 

transition state barrier compared to the system with H2O leads to a higher rate 

constant for the reaction. The Eyring Equation  

 𝑘 =
𝑘𝐵𝑇

ℎ
exp (

−∆𝐺𝑂−𝑂
∗

𝑘𝐵𝑇
), (5.1) 

where ℎ is Planck’s constant, describes the rate constant for a microscopic single-

step reaction from reactant to product.40 Comparing the rate constants for 
1[RuIV=O]2+ + H2O ⇌ 1[RuII-OOH]+ + H+

solv and 1[RuIV=O]2+ + OH- ⇌  
1[RuII-OOH]+ using the ratio 

 
𝑘𝑂𝐻−

𝑘𝐻2𝑂

= exp (−
1

𝑘𝐵𝑇
(∆𝐺𝑂−𝑂,𝑂𝐻−

∗ − ∆𝐺𝑂−𝑂,𝐻2𝑂
∗ ))  (5.2) 

and Table 5.2, it may also be concluded that the rate of reaction can be increased 

by a factor of 107 by the introduction of a proton acceptor within the water wires 

surrounding the reaction site. This agrees with previous observations that OH- is 

a favourable proton acceptor within the context of PCET,41 as well as experimental 

evidence that has shown a dramatic increase in reaction rate for a ruthenium-

based WOC as a result of a localised proton acceptor.15  
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The stable intermediates in the proton transfer steps considered here are 

summarised in Scheme 5.2. If this is compared to the natural system as discussed 

in Chapter One, one might draw favourable conclusions: introducing a proton 

acceptor leads to an interchange of intermediates and transition states due to the 

removal of a proton (cf. Chapter 1, Figure 1.2 (c)), which is associated with a 

decrease in the overall charge from 2+ to 1+. In Chapter One it was postulated that 

this interchange of intermediates and transition states is responsible for the 

energetically downhill ligand exchange of O2 by H2O, as well as necessary for the 

release of gaseous O2. With four trajectories it was shown that O – O bond 

formation proceeds better in the 1+ state with a proton acceptor compared to the 

2+ state without proton acceptor, though it does require intersystem crossing 

from the triplet to the singlet state in both cases. The inclusion of a localised 

proton acceptor forms a very promising avenue for improving the design of the 

environment of WOCs. 

5.4. Conclusions 
Proton diffusion was considered within the context of an explicitly solvated water 

oxidation catalyst. It was observed that water molecules arranged spontaneously 

into water wires adjacent to the catalytic site. Proton diffusion along these wires 

was very rapid; within 250 fs a proton hole was able to travel 8 Å along these wires 

towards the catalytic centre. The thermodynamic barrier of O – O bond 

formation, and therefore the reaction rate constant, decreased upon introduction 

of a proton acceptor. Including a proton acceptor within the simulation box 

decreased the change in free energy for O – O bond formation by around 1 eV. It 

can therefore be concluded that when designing the immediate environment of 

the reaction site, one should include a proton acceptor, preferably within 8 Å of 

the reaction site, to significantly increase the rate of reaction.  
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6.1. Conclusions 
Using computational methods to design and optimise catalysts is one of the Holy 

Grails of chemistry.1 One of the essential steps on the way to this Holy Grail is the 

ability to correctly describe catalytic processes.  

In Chapter Two, a combination of experimental and computational techniques 

is described. This combined analysis is implemented for a series of ruthenium-

based mononuclear WOCs, and uses the comparisons between DFT calculations, 

spectroscopic techniques and electrochemistry to establish a water oxidation 

mechanism. The computational methods used are essential for the interpretation 

of experimental observables. The computational characterisation of the catalytic 

intermediates is done using static calculations, calculations which determine 

properties for a fixed geometry, i.e. a fixed snapshot in time. 

However, chemical reactions are dynamic processes. Furthermore, in the case of 

WOCs, these processes usually take place within a solvent environment. In 

Chapter Three dynamic simulations performed in explicit solvent suggest 

different preferred reaction cycles than static calculations within an implicit 

solvent. CPMD was used to examine a mononuclear copper-based WOC within 

the CSA, an approach which includes both proton and electron acceptors within 

a fully solvated simulation box. This approach allows for the elucidation of the 

dynamic evolution between two stable intermediates.  

The CSA also allows for examination of the effects of electron and proton transfer 

independently. In Chapter Three the O – O bond formation step of a copper-

based WOC was seen to proceed more favourably when electron transfer occurred 

first, followed by proton transfer. In Chapter Four a ruthenium-based WOC 

examined in Chapter Two was investigated within the CSA: after electron 

transfer, proton transfer during the first catalytic step had reaction barrier of the 

order of kBT at room temperature, while proton transfer during the second 

catalytic step was barrier-less. The energetic effects of proton diffusion and 

electron transfer were quantified in Chapter Four, as well as the energetic 

contribution of the added electron acceptor. The first two catalytic steps of the 

ruthenium-based WOC were used as a proof of principle, where, taking the 

energetic contribution of the added electron acceptor as constant, the change in 

free energy agreed with experiment within 0.1 eV. The electron transfer energies 

did have a large standard deviation however, due to the statistical uncertainty of 

the simulations. 

In both Chapter Three & Four proton transfer into solution occurred when 

solvent dynamics established an appropriate hydrogen bonding network. In 

Chapter Four proton release was examined more closely, where it was observed 

that a viable water wire is essential for proton release into the solvent. This was 

further examined in Chapter Five, where an OH- ion was introduced within the 
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water wire. The introduction of a more explicit proton acceptor decreased the 

reaction barrier of proton transfer and appropriate water wires facilitated 

highly rapid proton diffusion. 

Considering only static intermediates when using computational methods to 

examine WOC mechanisms, and to thereby conclude design principles, is a 

dangerous oversimplification. To solve the molecular WOC question, considering 

the process of a reaction step will be essential. The reaction environment has a 

significant effect on the reaction process, and it is only by understanding and 

manipulating this environment that we can hope to design the optimal molecular 

WOC.  

6.2. Outlook 

Further Applications of CSA 

In this thesis the CSA has been established as a methodology capable of 

describing the processes of a reaction step. The next step would be to employ the 

CSA further as a predictive methodology. There has been a significant amount of 

discussion as to the mechanism of a number of mononuclear WOCs: whether they 

catalyse water as a singular mononuclear WOC, or as a dimeric couple working 

via radical coupling.2–5 The use of a CSA can allow for a comparison between the 

two, with the inclusions of any effects the solvent may have on these competing 

mechanisms. The techniques that are applied within the CSA may also be 

extrapolated to investigate catalysts with multinuclear metal centres. The 

question of the localisation of spin density within photosystem II, and how this 

guides water oxidation, is a long standing debate.6 The CSA could also be used to 

track spin density changes within similar systems.  

The effects of solvent molecules may also be further investigated within the CSA. 

In this thesis the effects of the inclusion of an OH- ion acting as a proton acceptor 

at close proximity to the reaction site were examined. This could be expanded to 

consider proton acceptors at various distances, in this way the ‘likeliness’ of 

proton dissociation could be tweaked. Furthermore, the CSA could be extended 

to hosts of different solvent molecules. It has been found experimentally that 

different solvent molecules effect the catalytic activity of WOCs,7,8 and the CSA 

can be used predictively to investigate the how and why of these environmental 

effects.  

The CSA could be used to further investigate the spin-intersystem crossing that 

was observed during O – O bond formation in Chapter Five. However, in the 

current implementation, simulations remain on the Born-Oppenheimer surface 

and so there is no possibility for the investigation of non-adiabatic processes. For 

such cases, which include quantum coherence effects and the tunnelling of 

protons and electrons, the CSA would have to be extended to include non-
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adiabatic dynamics methodologies. 

One of the strengths of the CSA is its ability to decouple proton and electron 

transfer. In this way proton and electron transfer can be examined in varying 

sequences throughout the catalytic cycle. In natural photosynthesis, the catalytic 

steps do not all proceed by tidily coupled PCET.9 Perhaps the gateway for the 

optimal WOC lies in mimicking this technique. The CSA can most definitely 

contribute in the investigation and design of these decoupled proton and electron 

transfer steps.  

One of the dilemmas currently facing the CSA is the statistical uncertainty in the 

predicted free energy changes. But if numerical accuracy is less of a priority, this 

opens doors to using less computationally intensive methods, such as adaptive 

QM/MM or Density Functional based Tight binding method.10–12 In using such 

methods, one can start to consider much larger and more complex systems. These 

complex systems could involve a reaction site environment which actively takes 

part and guides the process of the reaction.  

Further Applications of Water Wires 

In this thesis it was shown that water wires can dramatically facilitate proton 

transfer away from the reaction site. Within the CSA further modifications of 

these water wires can be examined, as well as the artificial creation of them. The 

function of these water wires are a key catalytic principle which should be 

extended into the design of future photoelectrochemical devices. One can 

imagine, for example, a WOC embedded within a matrix with a localised source 

of proton acceptors. In this way a more extended proton channel is devised, 

comparable to the more elaborate designs of proteins, which one could dub part 

of a smart matrix.13  
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Summary 
In the search for sustainable energy solutions, the idea of artificial photosynthesis 

has been proposed as an approach with which to use water and sunlight to 

produce hydrogen. Hydrogen is an important chemical building block. It is an 

essential part of agricultural fertiliser production, important within the chemical 

industry, and can be reacted with CO2 to decrease CO2 levels in the atmosphere. 

Key in the development of hydrogen production technologies is the splitting of 

water using a water oxidation catalyst. In the water-splitting reaction, water is 

split into electrons, protons, and oxygen. The protons can then be used to form 

hydrogen. 

The traditional computational methods for establishing how a catalyst splits 

water are demonstrated in Chapter Two, where a combined experimental and 

computational analysis is performed on a series of ruthenium-based water 

oxidation catalysts. The computational techniques allow for an in-depth 

understanding and interpretation of experimental data, and it is the combination 

of theory and experiment which leads to the clarification of the catalytic 

mechanism. This mechanism proceeds via four steps, each step featuring the 

coupled transfer of one proton and one electron away from the catalytic site. The 

computational characterisation of the catalytic intermediates is done using static 

calculations, which consider only a fixed snapshot in time. Furthermore, the 

catalyst’s environment is represented by a continuum model. The continuum 

model generates a smooth surface around the catalyst molecule, which then 

reflects certain molecular properties in different ways depending on what kind of 

solvent environment it is modelling. 

If one wishes to rationally design a catalyst, it is important to consider how the 

molecules surrounding the catalyst can affect the water-splitting reaction, as well 

as the reaction’s dynamic nature. Neither can be investigated using the traditional 

methods used in Chapter Two. In Chapter Three it is observed that a different 

pathway is preferred when using an environment of water molecules instead of 

the continuum model. Furthermore, a closed system approach is introduced in 

Chapter Three, which features water molecules as proton acceptors and a metal 

ion as an electron acceptor. This approach allows for independent proton and 

electron transfer within the same simulation box. The approximation made in 

Chapter Two, where the energy contribution of proton and electron transfer was 

approximated using a correction term, is no longer necessary. 

The independent energy contribution of the proton and electron transfer away 

from a ruthenium-based catalyst is quantified, using the closed system approach, 

in Chapter Four. The entire process of proton transfer from the catalyst into 

the surrounding water environment, and the resulting energy profile, can be 

considered. Proton transfer into the surrounding water was seen to be more 

favourable when the water molecules were arranged to form water wires radiating 

out from the catalytic centre. The first two catalytic steps of the catalyst are used 
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as a proof-of-principle, and compared to the experimental data measured for the 

same catalyst in Chapter Two. Taking the energetic contribution of the electron 

acceptor as constant, the change in energy for each catalytic step, as calculated 

using the closed system approach, agrees well with experimental results. 

Proton transfer into the surrounding water environment is further investigated 

in Chapter Five. The water wires radiating out from the catalytic centre were 

modified to introduce OH-, which is a good proton acceptor. The introduction of 

a more explicit proton acceptor decreased the energy barrier for the O – O 

bonding step. The O – O bonding step was found to be the most energetically 

demanding step of the water-splitting mechanism established in Chapter Two. 

Decreasing the energy barrier for this catalytic step would allow for a more rapid 

rate of water splitting. 

In optimising water oxidation catalysts it is important to consider the interaction 

with the surrounding environment, and how this can impact the catalytic 

reaction. This impact can be missed if the environment is approximated using a 

continuum model. Furthermore, catalytic reactions are dynamic processes; to 

understand these fully, they should also be investigated using dynamic methods. 

Lastly, electrons and protons are independent particles, treating them as such will 

allow for a more detailed adjustment of catalytic mechanisms, and therefore allow 

for the rational design of the optimal water oxidation catalyst. 
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Samenvatting 
In de zoektocht naar duurzame energieoplossingen wordt kunstmatige 

fotosynthese beschouwd als mogelijke methode om waterstof te produceren uit 

water en zonlicht. Waterstof is een belangrijke chemische bouwsteen, onder meer 

in de chemische industrie. Ook is het is een onmisbare component in de productie 

van kunstmest en kan het bijdragen aan een afname van broeikasgassen in de 

atmosfeer door te reageren met CO2. Het splitsen van water met behulp van een 

wateroxidatiekatalysator is een essentiële stap in de productie van waterstof. In 

de splitsingsreactie wordt water ontleed in elektronen, protonen en zuurstof. De 

protonen kunnen vervolgens gebruikt worden om waterstof te vormen. 

De traditionele berekeningsmethoden om vast te stellen hoe een katalysator 

water ontleedt, worden uitgelegd in Hoofdstuk Twee, waarin een 

gecombineerde experimentele en theoretische analyse van een 

wateroxidatiekatalysator op basis van Ruthenium beschreven wordt. De 

theoretische modellen maken het mogelijk om dieper in te gaan op de betekenis 

van de experimentele data, en de combinatie van theorie en experiment leidt dan 

ook tot opheldering van het mechanisme van de katalyse. Water oxidatie verloopt 

via vier stappen, waarbij in iedere stap een proton en een elektron van de plaats 

van de reactie afgevoerd wordt. De theoretische karakterisering van de 

katalytische tussenproducten wordt gedaan door middel van statische 

berekeningen die een tijdelijke opname, een ‘foto’ van het proces, beschouwen. 

De omgeving wordt beschreven met een continuüm model om de elektrostatische 

interactie van de katalysator met het oplosmiddel te benaderen.  

Wanneer men echter de optimale katalysator wil ontwerpen, is het belangrijk om 

in overweging te nemen hoe de moleculen nabij de katalysator de reactie kunnen 

beïnvloeden, evenals de dynamiek van de reactie zelf. Geen van beide kan 

onderzocht worden door middel van de methoden in Hoofstuk Twee. In 

Hoofstuk Drie wordt tevens duidelijk dat wanneer expliciete watermoleculen 

gebruikt worden in de simulaties, in plaats van het continuüm model dat de 

omgeving van de katalysator voorstelt, een ander reactiemechanisme plaatsvindt. 

Daarnaast wordt in Hoofdstuk Drie een gesloten systeembenadering 

geïntroduceerd, waarin expliciete watermoleculen optreden als protonacceptoren 

en een metaalion als elektronacceptor. Deze aanpak maakt onafhankelijke 

proton- en elektronuitwisseling mogelijk binnen dezelfde gesimuleerde ruimte. 

De benadering die gebruikt werd in Hoofdstuk Twee, waar de energiebijdrage van 

proton- en elektronuitwisseling benaderd werd door het toepassen van een 

correctiefactor, is daardoor niet meer nodig. 

De onafhankelijke energiebijdrage van de proton- en elektronuitwisseling van het 

reactieoppervlak van de Rutheniumkatalysator wordt in Hoofdstuk Vier 

gekwantificeerd door middel van een gesloten systeembenadering. Het volledige 

proces van de protonuitwisseling van de katalysator naar het omliggende water 

en het daarbij horende energieprofiel, kunnen zo worden beschouwd. 

Protonuitwisseling naar het omliggende water bleek gemakkelijker plaats te 
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vinden wanneer de watermoleculen op een bepaalde manier gepositioneerd 

waren, waardoor ‘waterdraden’ vanaf het katalytisch centrum gevormd werden. 

De eerste twee katalytische stappen worden gebruikt als ‘proof-of-principle’ en 

vergeleken met de experimentele data die verkregen zijn voor dezelfde 

katalysator in Hoofdstuk Twee. Wanneer de energiebijdrage van de 

elektronacceptor als constante beschouwd wordt, blijkt de energieverandering 

voor elke katalytische stap wanneer deze berekend wordt met de gesloten 

systeemaanpak goed overeen te komen met de experimentele data. 

Protonuitwisseling in de richting van de omliggende watermoleculen wordt in 

Hoofdstuk Vijf nader onderzocht, waarbij een aangepaste variant gebuikt 

wordt van de waterdraden die vanaf het katalytisch centrum naar buiten gericht 

zijn. In dit model wordt OH- geïntroduceerd, een goede protonacceptor. De 

introductie van OH- verlaagt de energiebarrière voor de vorming van de  O–O 

binding. Deze stap bleek in het watersplitsingsmechanisme dat in Hoofdstuk 

Twee is vastgesteld de hoogste activeringsenergie te vereisen. Het verlagen van 

deze energiebarrière zal leiden tot een sneller verloop van het 

watersplitsingsproces, wat een significante stap zou zijn in het ontwerpen van een 

betere katalysator. 

Bij het optimaliseren van watersplitsingskatalysatoren is het belangrijk om de 

interacties met de omgeving en de effecten hiervan op de katalysereactie in 

overweging te nemen. Deze effecten kunnen gemakkelijk over het hoofd gezien 

worden wanneer de omgeving van de katalysator slechts benaderd wordt door 

een continuüm model. Daarbij geldt tevens dat katalysereacties dynamische 

processen zijn. Ze dienen daarom dan ook onderzocht te worden met dynamische 

modellen om ze volledig te kunnen begrijpen. Tot slot, elektronen en protonen 

zijn onafhankelijke deeltjes. Door ze ook als zodanig te behandelen kan met grote 

nauwkeurigheid gewerkt kan worden aan het ontwerpen van de optimale 

wateroxidatiekatalysator.  
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