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ABSTRACT 

 

Purpose: Many brain diseases are associated with an alteration in blood-brain-barrier (BBB) and 

its permeability. Current methods using contrast-agent are primarily sensitive to major leakage of 

BBB to macromolecules, but may not detect subtle changes in BBB permeability. The present 

study aims to develop a novel non-contrast MRI technique for the assessment of BBB 

permeability to water.  

 

Methods: The central principle is that by measuring arterially labeled blood spins that are 

drained into cerebral veins, water extraction fraction (E) and permeability-surface-area product 

(PS) of BBB can be determined. Four studies were performed. We first demonstrated the proof-

of-principle using conventional ASL with very long post-labeling delays (PLD). Next, a new 

sequence, dubbed water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST), and 

its Look-Locker (LL) version were developed. Finally, we demonstrated that the sensitivity of 

the technique can be significantly enhanced by acquiring the data under mild hypercapnia. 

 

Results: By combining a strong background suppression with long PLDs (2500ms–4500ms), 

ASL spins were reliably detected in the superior sagittal sinus (SSS), demonstrating the 

feasibility of measuring this signal. The WEPCAST sequence eliminated partial voluming effects 

of tissue perfusion and allowed quantitative estimation of 𝐸 =95.5±1.1% and 

𝑃𝑆 =188.9±13.4mL/100g/min, which were in good agreement with literature reports. LL-

WEPCAST sequence shortened the scan time from 19min to 5min while providing results 

consistent with multiple single-PLD acquisitions. Mild hypercapnia increased SNR by 78±25% 

without causing a discomfort in participants. 

 

Conclusion: A new non-contrast technique for the assessment of global BBB permeability was 

developed, which may have important clinical applications.  
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INTRODUCTION 

Blood-brain barrier (BBB) is one of the most important central nervous system (CNS) 

barriers. By regulating the blood-brain exchange of substances, BBB functions to restrict 

macromolecules and neurotoxins, which provides a constant microenvironment that is crucial for 

the normal function of nervous system (1). Disruption of BBB has been associated with many 

pathological conditions, such as Alzheimer’s disease (2), multiple sclerosis (3), amyotrophic 

lateral sclerosis (4), brain tumor (5), stroke (6), Parkinson’s disease (7), etc. The ability to 

transiently maneuver the BBB permeability has also been exploited for efficient drug delivery in 

diseases like brain tumor, lysosomal storage disease and Parkinson’s disease (8-10). Therefore, a 

technique to report the permeability of BBB in humans will have a tremendous potential in 

clinical applications.  

At present, the most widely used method to evaluate BBB permeability is by using 

Gadolinium (Gd) contrast agent and observing post-contrast T1 enhancement qualitatively or 

measuring and modeling dynamic contrast-enhanced (DCE) MRI signal quantitatively (11). 

While this method is elegantly sensitive to major breakdowns of BBB (to the extent that large 

molecules like gadolinium diethylenetriamine pentaacetic acid, Gd-DTPA with a molecular 

weight of 547g/mol, become permeable), its ability to detect small disruption of BBB at early 

stage of a disease is more challenging (12-14). Furthermore, contrast-enhanced MRI is still not a 

common procedure in many diseases such as Alzheimer’s disease, traumatic brain injury, and 

virtually all psychiatric disorders, due to concerns related to the injection of exogenous agent, 

potential side effects of nephrogenic systemic fibrosis (NSF), deposition of Gd molecules, and 

potential neurotoxicity (15,16). Therefore, a non-contrast method to assess BBB permeability is 

expected to open an array of new research avenues and could translate to clinical screening and 

management of many brain diseases. 

The central goal of our study is to measure BBB permeability to water without using any 

exogenous contrast agent, based on the following considerations. Water is a small molecule 

(18g/mol) and it may be more sensitive to early changes of BBB in diseases (17). Water is the 

main source of MRI signal and thus may provide sufficient sensitivity without the assistance of 

exogenous agent. Manipulation and modeling of the water signal in the blood have provided 

useful information related to perfusion and other hemodynamic parameters, as shown by 

extensive work in the Arterial Spin Labeling (ASL) field (18-24). 
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In a healthy brain, water has high but not 100% permeability across BBB. Previous work 

using invasive methods has suggested that 90-95% of the water molecules in the arterial blood 

cross the BBB and enter brain tissues in a single pass (25-28). This water extraction fraction, E, 

together with cerebral blood flow (CBF) can be used to quantify the permeability index, referred 

to as permeability-surface-area product (PS). Since many imaging techniques exist to measure 

CBF, the main technical challenge therefore lies in the determination of water extraction fraction 

in perfusing blood.  

In this work, we conducted a series of four studies to develop a technique to quantify 

global water extraction fraction and PS based on the general principle of ASL. Our central 

hypothesis is that arterially labeled blood spins can be divided into those that enter the tissue (i.e. 

being extracted by BBB) and those that pass through the microvasculature to enter the venous 

vessels, and that their relative fraction can be determined. We first used a background-

suppressed ASL sequence with a very long post-labeling delay (PLD) of up to 4500ms to 

demonstrate that ASL signal in the venous vessels, e.g. in superior sagittal sinus (SSS), can be 

reliably measured. We next developed a new sequence, water extraction with phase contrast 

arterial spin tagging (WEPCAST), to selectively detect venous ASL signals without the 

confounding contributions of tissue perfusion spins. In the third study, we employed Look-

Locker acquisition in WEPCAST while ensuring signal suppression of static tissue and blood 

signal at each PLD, which allowed significant reduction in scan time. Finally, we demonstrated 

that hypercapnia can drastically enhance the sensitivity of the technique, and that hyperoxic-

hypercapnia did not provide further benefits.  

 

METHODS 

Theory 

According to the Renkin-Crone Model (29,30), BBB permeability can be represented by 

permeability-surface-area product (PS) per unit mass of tissue, which can be calculated as  

 𝑃𝑆 = −ln(1 − 𝐸) ∙ 𝑓 [1] 

where 𝐸 is the extraction fraction of the water and 𝑓 is CBF. Considerable work in the literature 

has studied techniques of CBF measurement (24,31-34). Thus the bulk of this work will 

concentrate on the measurement of E.  
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With pseudo-continuous ASL (pCASL), we can label the water molecules in the 

incoming arterial blood. These labeled spins then travel through arterial trees to reach the 

capillary-tissue interface. Under the limited diffusion regime, the extraction of labeled spins at 

the capillary-tissue interface can be illustrated by Figure 1a. The majority of the labeled spins are 

extracted to tissue (Figure 1a red arrow), whereas the non-extracted spins are drained directly to 

the venous system (blue arrow). Additionally, a small amount of labeled spins that are extracted 

to tissue will re-exchange back into the vascular system (yellow arrow). Specifically, for SSS 

where our experimental measurement is performed, the blood spins consist of following three 

components: (a) non-extracted arterial spins; (b) extracted arterial spins that were re-exchanged 

into vessel; and (c) non-labeled spins that came to vessel from tissue through exchange. For each 

component, their control, label, and difference signals can be derived (see Supporting Methods). 

As far as the difference signal is concerned, only spins from part (a) and part (b) are non-zero, as 

part (c) signal is canceled out during the control and label subtraction (see Supporting Methods).  

Without considering temporal signal smoothing due to bolus dispersion or regional 

variations in arrival time, the ASL difference signal from part (a) can be written as (see 

Supporting Methods): 

 ∆𝑀𝑎,𝑢𝑛𝑠𝑚(𝑡) = 2𝛼(1 − 𝐸)𝑀0𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑐(𝑡), [2] 

where 𝑀0 is the equilibrium magnetization of blood (MR signal/100 mL blood), 𝑇1,𝑏𝑙𝑜𝑜𝑑is blood 

T1, 𝛿𝑣  is bolus arrival time (BAT) of spins to SSS, 𝛼  is labeling efficiency, 𝑐(𝑡) =

{
1, 𝑖𝑓𝛿𝑣 < 𝑡 < 𝛿𝑣 + 𝜏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 is arterial input function, and 𝜏 is labeling duration. Note that, in this 

signal component, the inverted spins always relax at the T1 of blood. Thus, tissue T1 is not 

present in the equation. Typical signal curve is illustrated in Figure 1b (blue). Next, to account 

for dispersion of the labeled bolus as well as the smoothing effect in an ROI analysis (i.e. 

different voxels in the ROI may have different 𝛿𝑣), Eq. [2] was convolved with a Gaussian 

kernel with variance σ2, resulting in a smoothed signal as follows: 

 ∆𝑀𝑎,𝑠𝑚(𝑡) = 2𝛼(1 − 𝐸)𝑀0𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑐(𝑡)⨂𝐺(𝑡), [3] 

 

in which 𝐺(𝑡) =
1

√2𝜋𝜎2
𝑒−𝑡

2/2𝜎2  denotes the Gaussian kernel and ⨂ denotes convolution 

operation. Figure 1c (blue) illustrates the smoothed signal as a function of time. 



6 
 

For contributions from part (b), the ASL difference signal without bolus dispersion can 

be written as (see Supporting Methods for derivation details): 

 ∆𝑀𝑏,𝑢𝑛𝑠𝑚(𝑡) = 2𝛼𝑓/𝜆𝐸𝑀0𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑐(𝑡)⨂[𝑟(𝑡)𝑚(𝑡)], [4] 

where 𝑟(𝑡) = 𝑒−𝑓𝑡/𝜆 is residue function of labeled spins in tissue, 𝜆 is blood-brain partition 

coefficient of water, 𝑚(𝑡) = 𝑒−𝑡/𝑇1,𝑡𝑖𝑠𝑠𝑢𝑒 represents T1 relaxation in tissue (𝑇1,𝑡𝑖𝑠𝑠𝑢𝑒). Note that 

the longitudinal relaxation process of these inverted spins includes both relaxation while they are 

in blood vessels (relaxing at T1 of blood, denoted by the exponential term in Eq. [4]) and 

relaxation while they are in tissue (relaxing at T1 of tissue, denoted by the convolution term as 

the time they spend in tissue varies). Figure 1b (yellow) illustrates a typical signal curve. Then, 

we added the dispersion effects by convolving Eq. [4] with a Gaussian kernel, resulting in a 

smoothed signal:  

 ∆𝑀𝑏,𝑠𝑚(𝑡) = 2𝛼𝑓/𝜆𝐸𝑀0𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑐(𝑡)⨂[𝑟(𝑡)𝑚(𝑡)]⨂𝐺(𝑡), [5] 

Therefore, the total SSS ASL signal equals to 

 ∆𝑀𝐴𝑆𝐿,𝑠𝑚(𝑡) = ∆𝑀𝑎,𝑠𝑚(𝑡) + ∆𝑀𝑏,𝑠𝑚(𝑡). [6] 

To provide an illustration of the expected signal, Figure 1c displays results of numerical 

simulations of each signal component as well as their sum. It can be seen that, after the bolus 

arrives at the SSS (around 4s after labeling), the signal starts to rise. The signal from non-

extracted spins (blue curve) rises more rapidly and lasts for a period corresponding to the 

labeling duration. In contrast, the signal from spins that were re-exchanged out of tissue (yellow 

curve) rises slower and lasts longer. It is also important to point out that the vast majority of the 

signal is originated from the non-extracted spins (i.e. component a) while the re-exchanged spins 

(i.e. component b) only contribute to a small fraction. 

Once experiments are performed to measure ∆𝑀𝐴𝑆𝐿,𝑠𝑚 as a function of time, i.e. PLD, 

model fitting can be performed using the above-described theoretical framework. In the fitting, 

∆𝑀𝐴𝑆𝐿,𝑠𝑚 and 𝑀0are experimental measures. 𝐸, 𝛿𝑣 and FWHM of the Gaussian dispersion kernel 

(σ) are unknown model parameters to be estimated from the fitting. The other parameters are 

known model parameters based on the literature: T1,blood=1841ms (35), T1,tissue=1165ms (23), 

𝛼=0.86 (36) and 𝜆 = 0.9mL/g (31). We have also conducted testings to examine to what extent 

the estimated E was dependent on the assumed values by varying the assumed values by +/-10% 

for each variable. 
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MRI Experiments 

The experiments were performed on a 3T (Philips) system. The study was approved by 

the Johns Hopkins University Institutional Review Board and informed written consent was 

obtained from all subjects before participation. A total of 23 participants (age: 26±6 years, 

male/female: 11/12) were enrolled in this study. 

 

Study I – Proof-of-principle with background-suppressed, long PLD pCASL sequence 

We started the project by demonstrating that labeled ASL signal in the venous vessel, 

albeit small, can be robustly detected by using a long PLD in combination with sufficient 

suppression of background tissue, blood and CSF signals. Six healthy subjects were enrolled 

(age: 27±6 years, male/female: 3/3). Figure 2a illustrates the pCASL sequence used in this study. 

Background suppression was achieved by applying a spatially selective pre-saturation pulse 

(1500ms before labeling) followed by five inversion pulses: one selective pulse before labeling 

module and four non-selective inversion pulses during the PLD (37). The pulse timing was 

optimized to suppress background signal for a range of T1-values (750ms–4800ms) to <5% of 

equilibrium magnetization. The labeling duration was set to 2000ms. Considering the expected 

BAT at SSS, six long PLDs, acquired in separate scans, were used: PLD=2000, 2500, 3000, 

3500, 4000, 4500ms. Other imaging parameters were: single slice mid-sagittal plane for the 

imaging slice, voxel size=3.13×3.13mm, slice thickness=10mm, TE=9.5ms, 30 pairs. We fixed 

the recovery time (from RF excitation to the pre-sat of next TR) for different scans (116ms), thus 

TR varied with PLD: 5643, 6143, 6643, 7143, 7643, 8143ms. The scan duration varied from 5.6 

to 7.1min. An additional M0,ASL scan with same TE and a long TR=10s was acquired for 

quantification purposes.  

 

Study II – Selective imaging of venous ASL signal by water-extraction-with-phase-contrast-

arterial-spin-tagging (WEPCAST) MRI 

To improve the efficiency of measuring venous ASL signal and reduce the confounding 

contribution of tissue perfusion signal, we devised a new sequence, dubbed as WEPCAST MRI, 

by adding a phase-contrast velocity-encoding gradient during imaging acquisition of the pCASL 

sequence. Figure 2b displays these additions in the sequence diagram. Note that the purpose of 
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this bipolar gradient is different from the commonly used crusher gradient in that it uses complex 

subtraction to isolate pure blood signal, rather than dephasing blood signal. The velocity-

encoding gradient modifies the venous ASL signal written in Eq. [6] to be:  

 𝛥𝑀𝑊𝐸𝑃𝐶𝐴𝑆𝑇,𝑠𝑚(𝑡) = 2𝛥𝑀𝐴𝑆𝐿,𝑠𝑚(𝑡) |𝑠𝑖𝑛 (
𝜋𝑣

2𝑉𝑒𝑛𝑐
)| [7] 

where 𝑣 is the velocity of blood, 𝑉𝑒𝑛𝑐 is the encoding velocity such that 𝛾𝑚1𝑉𝑒𝑛𝑐 = 𝜋/2, and 𝑚1 

is the first moment of the gradient waveform (38). Thus, four types of images are necessary for a 

complete dataset: a pair of images are acquired with label and control pulses, respectively, and 

each is acquired twice with opposite bipolar gradients following the RF excitation. Note that the 

use of the phase-contrast scheme results in the measured difference signal being dependent on a 

new variable, v. To mitigate the need of adding v to the fitting parameter set, we also applied the 

same phase-contrast scheme with identical Venc when acquiring the M0 image. That is, the 

acquired M0 in WEPCAST MRI is: 

 𝑀0,𝑊𝐸𝑃𝐶𝐴𝑆𝑇 = 2𝑀0,𝐴𝑆𝐿 |𝑠𝑖𝑛 (
𝜋𝑣

2𝑉𝑒𝑛𝑐
)| [8] 

Therefore, the model fitting procedure for WEPCAST MRI is identical to that for the 

conventional pCASL described in the Theory section. 

Six healthy subjects were examined (age: 23±3 years, male/female: 3/3). The imaging 

protocol was the same as that in study I except for the following: 𝑉𝑒𝑛𝑐=15cm/s, PLDs=3000, 

3500, 4000, 4500ms, TE=13ms, 15 pairs, scan duration 6.7, 7.2, 7.7, and 8.2min, respectively. 

The 𝑉𝑒𝑛𝑐 chosen was based on typical peak velocity in SSS (38,39). An additional M0,WEPCAST 

image, i.e. a scan with same bipolar gradient but with a long TR=10s, was acquired for 

quantification.  

 

Study III – Expediting data acquisition by using a background-suppressed Look-Locker 

WEPCAST sequence 

Acquisition of multi-PLD data in separate scans is useful for proof-of-principle, but is 

time-consuming for clinical applications. The purpose of this study was therefore to expedite the 

acquisition by applying a Look-Locker readout. Figure 2c depicts the schematic diagram of the 

sequence. After the labeling duration, eight images were acquired sequentially at PLD=1500, 

2000, 2500, 3000, 3500, 4000, 4500, 5000ms. Background suppression was also applied for all 

PLDs. Two types of background suppression schemes were considered. One, referred to as tissue 
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suppression, was the attenuation of tissue signal in the imaging slice. These suppression pulses 

(blue blocks in Figure 2c) consist of two non-selective inversion pulses between consecutive 

acquisitions. Together with the effect of excitation pulses (gray blocks), the static tissue signal in 

the imaging slice can be maintained to be <5% of the equilibrium magnetization for every PLD. 

However, these pulses do not suppress the blood signal outside the imaging slice, as those spins 

do not experience the excitation pulses. Venous blood spins outside the imaging slice come from 

two sources: those originally in the brain tissue and those originally in the arterial blood. While 

those from the arterial blood are our targeted signal, the spins originated from the tissue need to 

be suppressed. Suppression of these signals turned out to be critical for the quality of the data. 

Although the subtraction between the control and label scans should ideally cancel out these 

signals, in practice pulsation of flow will result in imperfect cancellation thus manifesting as 

physiological noise in the data. Thus, a second series of background suppression pulses, referred 

to as vessel suppression, were needed (red blocks in Figure 2c), which consist of two non-

selective inversion pulses between the end of labeling module and first acquisition. The timing 

was optimized to suppress the control blood signal in SSS to be <5% of equilibrium 

magnetization over a range of blood T1 and tissue T1, but not affecting difference signal.  

In one cohort of six healthy subjects (age: 29±7 years, male/female: 3/3), we examined 

the benefit of the background suppression schemes. The imaging slice was planned coronally and 

the location was chosen to be at the posterior SSS. Other imaging parameters were as follows: 

labeling duration=2000ms, 𝑉𝑒𝑛𝑐 =15cm/s, voxel size=3.13×3.13mm, slice thickness=10mm, 

TR=7546ms, TE=9.2ms, 10 pairs, scan duration=5min3s. Note that, in contrast to other Look-

Locker ASL sequences (which usually use a flip angle between 20-40°) (40-43), the flip angle 

used here was 90°. This allows the signal to be maximized and takes advantage of the fact that 

fresh inflow blood will replace the saturated blood for each PLD. Four different sequences were 

performed to evaluate the effect of background suppression: one with both vessel and tissue 

suppression pulses, one with only vessel suppression pulses, one with only tissue suppression 

pulses, one with no suppression pulses. Additionally, an M0,WEPCAST image was acquired using a 

TR of 10s.  

In another cohort of six healthy subjects (age: 28±8 years, male/female: 3/3), we 

conducted a comparison between the Look-Locker and multiple single-PLD WEPCAST 

sequence. Each subject received both the protocols described in study II (19min47s) and III 
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(5min3s). M0,WEPCAST images were also collected for the single-PLD and Look-Locker data sets, 

respectively. 

 

Study IV – Enhancing sensitivity by CO2 inhalation  

Hypercapnia challenge via CO2 inhalation is known to increase CBF. It can be seen from 

Eq. [1] that, when CBF increases, E will decrease and more labeled spins will be measured in the 

vein. Furthermore, the measured signal will also increase due to several other factors: 1) CO2 

reduces BAT (𝛿𝑣); 2) CO2 increases T2
* of blood, thus 𝑀0. Collectively, we anticipate that CO2 

inhalation will augment the WEPCAST signal. Note that although hypercapnia is expected to 

reduce E, previous literature has suggested that PS will remain relatively constant under mild 

hypercapnia, and therefore this physiological parameter of interest (i.e. PS) can still be measured, 

despite the ‘experimental’ modulation of E and CBF to enhance the SNR. Modulation of inspired 

air content was achieved using a breathing apparatus described in Lu et al (44). The CO2 gas 

mixture contains the following contents: 2.5% CO2, 21% O2 and 76.5% N2. Note that this is a 

very mild hypercapnia challenge, as most studies in the literature use 5% CO2 (45,46). 

Additionally, we also tested the benefit of hyperoxia challenge (on top of hypercapnia), as an 

increase in venous oxygenation may further enhance the signal intensity (via an increase in T2
*). 

The hyperoxic-hypercapnia challenge used the following gas mixture: 2.5% CO2, 58% O2 and 

39.5% N2.  

Five healthy subjects were enrolled (age: 28±5 years, male/female: 2/3). Each participant 

received a normocapnia (breathing room-air), hypercapnia (breathing CO2 enriched gas), and 

hyperoxic-hypercapnia (breathing CO2 and O2 enriched gas) session in a sequential order. 

During each breathing state, the following sequences were performed: background-suppressed 

Look-Locker WEPCAST sequence and M0 sequence as in study III for  𝐸 measurement, and 

Phase-Contrast (PC) flow velocity MRI as in Peng et al (34) for global CBF measurement. 

During the entire experiment, end-tidal CO2 was monitored and recorded using capnograph. 

 

Data Analysis 

The data were analyzed using in-house MATLAB (Mathworks, Natick, MA) scripts. For 

Study I which was based on a conventional pCASL sequence, pairwise subtraction was 

performed for control and label images to obtain difference images. Three regions-of-interest 
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(ROIs) were drawn manually corresponding to anterior, middle, and posterior segments of the 

SSS, which allowed us to compare the temporal dynamics of the labeled spins along the SSS. 

Averaged signals in each ROI were calculated for each PLD. The signals were corrected for 

imperfections of the background suppression pulse, with an assumption of an inversion 

efficiency=0.98 for each inversion pulse (47).  

For Study II to IV which were based on the WEPCAST sequence, four types (i.e. two 

ASL types multiplied by two phase-contrast types) of raw images were obtained: control image 

with positive-bipolar, control image with negative-bipolar, label image with positive-bipolar, and 

label image with negative-bipolar. The positive-bipolar and negative-bipolar images were first 

combined using complex subtraction to obtain phase-contrast velocity-encoded control and label 

images. Then a subtraction between phase-contrast velocity-encoded control and label images 

results in the final difference images for all PLDs. An ROI was drawn encompassing the 

posterior SSS region. The ROI signal curve was fitted to the model using procedure described in 

the Theory section with Matlab function nlinfit.m, from which the water extraction fraction, E, 

was estimated. For Study II and III, the total CBF value was assumed as 55mL/100g/min for 

male and 62mL/100g/min for female subjects (34). Then 𝑃𝑆 value was calculated using Eq. [1].  

For Study IV, 𝐸 was estimated separately for each of the breathing conditions. The PC 

flow velocity MRI images were processed following methods described in Peng et al (34) to 

obtain total blood flow to the brain, which was normalized by brain volume (obtained with a T1-

weighted MPRAGE scan, TR/TE=8.1/3.7ms, 160 slices with an isotropic resolution of 1mm) to 

obtain unit mass CBF (in mL/100g/min). Then the 𝑃𝑆 values were obtained using Eq. [1]. 

 

RESULTS 

Study I – Proof-of-principle with background-suppressed, long PLD pCASL sequence 

Representative sagittal ASL difference images at different PLDs are shown in Figure 3a. 

A PLD of 2000ms is the typical value used in ASL studies and the image primarily reflects 

perfusion signal in the tissue. As the PLD increases (Figure 3a), the perfusion signal decays due 

to T1 relaxation and overall image intensity becomes lower. In contrast, signal in major draining 

veins, e.g. SSS, becomes increasingly apparent in these long PLDs (arrows in Figure 3a). This is 

because SSS has an extended bolus arrival time and the labeled spins reach this location only at 

these long PLD values. Visual inspection of the signal in the SSS suggested that the ASL signal 
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first appears at anterior SSS, at about PLD=2500ms. Soon after that, the entire SSS becomes 

bright as the 2-second labeling bolus occupies the whole length of the SSS. Afterwards, the bolus 

drains away from this vessel and the signal diminishes in an anterior-to-posterior fashion, 

consistent with its known anatomy. A corresponding M0 image is shown in Figure 3b. 

Quantitative ROI results of the signals at three segments of SSS (i.e. anterior, middle and 

posterior, see Figure 3c for examples) are shown in Figure 3d. It can be seen that the signal curve 

shifts to the right as the ROI moves posteriorly, reflecting an increase of BAT.  

 

Study II – Selective imaging of venous ASL signal by WEPCAST MRI 

Representative control, label, and difference images of WEPCAST MRI at a PLD=4000 

ms are shown in Figure 4a. For comparison, images using the conventional sequence (i.e. that 

used in Study I) are also shown. Compared with conventional sequence, tissue signal in 

WEPCAST MRI is well suppressed, leaving only signal from venous vessels. Figure 4b displays 

WEPCAST difference images for all PLD values acquired. Also shown in Figure 4b is the M0 

image. The advantage of this M0 image is that partial voluming effect from the tissue is 

minimized, which is important for accurate estimation of E and PS parameters. Quantitative 

analysis focused on the posterior portion of the SSS, which drains the majority of blood in the 

cerebral cortex and provides an assessment of global BBB permeability. Figure 4c shows a 

group-averaged signal curve (N=6). Model fitting of an individual data set is shown in 

Supporting Figure S1. Across all participants (N=6), the average 𝐸 in young, healthy subjects 

was 95.5±1.1% and the 𝑃𝑆  was 188.9±13.4mL/100g/min. The dependence of the results on 

model assumptions is shown in Table 1, illustrating that the estimated 𝐸 and 𝑃𝑆 did not change 

much when varying assumed parameters.  

 

Study III – Expediting data acquisition by using a background-suppressed LL-WEPCAST 

sequence 

LL-WEPCAST allows acquisition of multiple-PLD data in the time of a single scan. The 

imaging slice was placed coronally to allow fresh spins to replace saturated spins after every 

excitation. Difference images using various background-suppression schemes are illustrated in 

Figure 5. Group-averaged control signals in SSS (N=6) are shown in Figure 6a. Without the 

application of any background-suppression pulses (denoted as “None” in the figure), the control 
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signal of LL-WEPCAST is close to the equilibrium magnetization (yellow curve in Figure 6a), 

thus it is very difficult to detect a difference signal on the order of 0.5% (Figure 5). With the 

addition of tissue-suppression pulses, the tissue signal is well suppressed (data not shown) but 

the control signal in the SSS is still relatively large (gray curve in Figure 6a), because the 

inflowing blood was not suppressed. Thus, the difference images still contain considerable 

fluctuations, especially in the first few PLDs (Figure 5). With the additional application of vessel 

suppression pulses, the control signal in LL-WEPCAST is consistently suppressed to be less than 

5% of M0 (blue curve in Figure 6a). Accordingly, the intended venous ASL signal is more 

apparent in the difference image (Figure 5).  

Figure 6b shows the difference signal curve using LL-WEPCAST with both tissue and 

vessel suppressions. Temporal SNR was found to be 1.36±0.70 (mean±SD, N=6) for each 

repetition within the PLD range of 3000-4000ms. The average 𝐸 calculated for six subjects was 

96.1±1.2% and the average 𝑃𝑆 value was 203.3±17.5mL/100g/min. The other three sequences 

were not able to give stable signals or converging fitting results. 

In a separate cohort (N=6), we compared the LL with multiple single-PLD WEPCAST 

sequences. Averaged SSS signal curves acquired with these two sequences are shown in Figure 

7a. Note that the blue curve took less time (5min3s) to acquire, yet provided more PLD values 

than the gray curve (19min47s). The two curves manifest similar signal intensities and temporal 

characteristics. Scatter plots of 𝐸 and 𝑃𝑆 obtained from the two methods are shown in Figure 7b, 

suggesting a good agreement between them (correlation-coefficient 𝐸: 0.87; 𝑃𝑆: 0.92). Average 

𝐸 calculated from the multiple single-PLD sequence and the LL sequence was 96.4±0.6% and 

97.0±0.7%, respectively. The average 𝑃𝑆  was 198.0±7.2mL/100g/min and 

214.2.6±13.9mL/100g/min, respectively. Paired t-test did not show a significant difference 

(P>0.05 for both E and PS).  

 

Study IV – Enhancing sensitivity by CO2 inhalation  

Hypercapnia challenge induced an increase of end-tidal CO2 from 39.8±1.4mmHg in 

room air to 43.2±1.5mmHg under 2.5% CO2 and 42.4±1.3mmHg under 2.5% CO2 and 58% O2 

(N=5). No discomfort was reported from any of the participants. Averaged SSS signal curves 

under three gas conditions are shown in Figure 8a. Their coefficients-of-variation (CoV), defined 

as the standard deviation of the signal at optimal PLD divided by the mean, are shown in Figure 
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8b. Compared to the normocapnia curve, the hypercapnia curve showed a considerable increase 

in signal intensity (by 142±51%). CoV was reduced (P=0.028), thus SNR (as 1/CoV) increased 

significantly (by 78±25%, P=0.025) (Figure 8b), suggesting that hypercapnia has a considerable 

benefit in enhancing the sensitivity of the WEPCAST technique. Hyperoxic-hypercapnia, on the 

other hand, did not further increase the signal (Figure 8a and b), despite the expected increase in 

blood T2
*. We attributed this to the reason that arterial blood T1 will decrease under hyperoxic 

conditions, resulting in a faster decay of the labeling effects. 

Figure 9 summarizes physiological parameters measured under normocapnia and 

hypercapnia conditions. We found that CBF increased during hypercapnia (normocapnia: 

56.2±3.2mL/100g/min; hypercapnia: 66.0±4.2mL/100g/min; 17.4% change, p=0.026, one-tail t 

test). BAT to the SSS decreases during hypercapnia (normocapnia: 4.81±0.33s; hypercapnia: 

4.31±0.15s; 10.4% change, p=0.158, one-tail t test). The fraction of venous spins, 1 − 𝐸, also 

showed an increase in response to CO2 (normocapnia: 2.0±0.7%; hypercapnia: 3.5±1.0%; 80% 

change, p=0.159, one-tail t test). The 𝑃𝑆 values, on the other hand, remained at a similar level 

(normocapnia: 240.9±21.5mL/100g/min; hypercapnia: 231.9±13.1mL/100g/min; 3.7% change, 

p=0.375, one-tail t test), because the effects of E and CBF offset each other in the calculation of 

PS. Note, however, that the standard error of the estimation is considerably smaller in the 

hypercapnia data, presumably due to enhancing signal reliability. 

 

DISCUSSION 

In this study, we proposed a non-contrast method for the measurement of BBB 

permeability to water by detecting ASL labeled spins in draining veins, specifically in the 

superior sagittal sinus. Our results suggested that arterial spins that are not exchanged to the 

tissue space and remain in the vessel can be detected with advanced sequence considerations. We 

further showed that the amount of venous ASL spins can be used to estimate physiological 

properties of the BBB, specifically the water extraction fraction, E, and permeability, PS. We 

compared pulse sequences and physiological conditions for these measurements.  

Clinically, there are no existing techniques to non-invasively measure water permeability 

of BBB. However, several invasive methods have been developed in the literature. One is 

through the intracarotid injection of radiolabeled water, followed by the measurement of the 

extraction of the radiotracer by sampling the cerebral venous blood or external detection of 
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residual time course with scintillation detector (25,26,28). Another technique is based on 

positron emission tomography (PET) and uses intravenous injection of [15O] water and [11C] 

butanol, by assuming that butanol is freely diffusible across BBB (27,48). There are also 

emerging methods using contrast-agent based MRI. By measuring T1 relaxivity after contrast 

agent injection, post-contrast MRI signal were found to be related to water permeability of BBB, 

in the absence of Gd-DTPA leakage (12,49-51). This signal, when combined with an arterial 

input function, was used to estimate the exchange rate. However, due to procedural or model 

complexities, these methods have not been widely used in clinical applications. 

A few previous studies have considered the limited water exchange in the context of ASL 

(21-23,52,53). Some reports have applied a two-compartment exchange model to the 

conventional ASL signal at multiple PLDs, from which an exchange rate constant, k, was 

obtained (18,54,55). However, this method relies on the T1 relaxation difference before and after 

the exchange of water molecules, thus the intrinsic signal-to-noise ratio (SNR) of this method is 

limited (56). Other studies aimed to separate blood and tissue ASL spins based on their T2 

relaxation time (23,57-59). However, the T2 difference can also be due to oxygenation changes 

as the spin flows from artery to capillary, to veins. A more advanced technique is to use diffusion 

or intra-vascular-incoherent-motion (IVIM) weighted ASL to separate microvascular and 

extravascular signals by applying magnetic field gradients (60-62), which can then give water 

exchange rate between the two compartments by fitting the signal to a tracer kinetic model 

(19,20,63). A confounding factor of this method is that it relies on the assumption that diffusion 

gradients can fully remove vascular signal while having no effect on the tissue signal. The 

present technique separates the vessel spins from those in the tissue by a combination of spatial 

location (i.e. in the SSS) and flow velocity (i.e. phase-contrast velocity-encoding), thus may 

provide a more reliable assessment. 

The average 𝐸  value we measured was 96.2±0.6% and that for PS was 

199.9±8.3mL/100g/min. 𝑃𝑆  values reported in previous literature were: 169mL/100g/min in 

human with outflow sampling method (28), 138mL/100g/min in rhesus monkey with residue 

detection technique (25), 104mL/100g/min and 133mL/100g/min in human with dual label PET 

method (27,48), between 240 to 453mL/100g/min in human with contrast-based MRI (49,50), 

204mL/100g/min in human with T2-ASL (57), and 208mL/100g/min in human with DW-ASL 

(20). Our results overall showed good agreement with previous literature. The PET literature 



16 
 

showed generally lower PS values. This was previously attributed to the notion that the inclusion 

of metabolically inactive CSF spaces and partial voluming effect of a nearby sulcus would cause 

an underestimation of 𝑃𝑆 (27). 

In this study, we proposed a new sequence, WEPCAST MRI, by using phase-contrast 

velocity-encoding to selectively highlight the vascular signal in ASL data. This was found to be 

critical in minimizing tissue perfusion confounds in our signal curve. When similarly applying 

the velocity-encoding in the M0 images, the partial volume effects (from tissue) in our data can 

be completely accounted for, despite using a thick imaging slice. Although beyond the scope of 

this study, we point out that the WEPCAST sequence may also be useful in dynamic ASL 

angiography (64-66) that aims to measure arterial ASL signal only. 

Another technical emphasis of this study was on the background suppression of unwanted 

signals. Background suppression has been widely used in single-PLD ASL to reduce physiologic 

noise (37,67). A requirement specific for this technique is that the control blood signal needs to 

be sufficiently suppressed (which is not an issue in conventional ASL because blood signal is <5% 

of the voxel). We have therefore added blood-suppressing pulses to the sequence as well. The 

benefit of these considerations can be seen from the results of Study III, which showed that 

robust SSS ASL signal was only obtained when both static tissue signal and blood vessel control 

signal are sufficiently attenuated.  

In this study, we also demonstrated the benefit of hypercapnia on the sensitivity of our 

technique. Consistent with known physiology (45,68), hypercapnia results in an increase of CBF 

by around 17% and a decrease of BAT by around 10%. Collectively, these effects resulted in an 

almost doubling of the WEPCAST MRI signal intensity (Figure 8). It is important to note that, 

while 𝐸 reduced from 98% to 96% (due to the increase in CBF), the measure of permeability, 𝑃𝑆, 

remained at a similar level. This is consistent with findings of Eichling et al (25) and Raichle et 

al (26) that 𝐸 decreases with flow alteration induced by change in PaCO2 while 𝑃𝑆 was unaltered 

by hypocapnia or hypercapnia. However, it remains to be determined whether hypercapnia will 

alter PS in patients with neurological diseases, which should be the subject of future 

investigations.  

One limitation of our study is that we only measured the global permeability of BBB, 

without spatial information. While many diseases, e.g. Alzheimer’s disease, multiple sclerosis, 

ALS, stroke and lysosomal storage disease, affect a large portion of the brain and therefore may 
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benefit from this technique, it is expected that its sensitivity to focal brain diseases may be 

limited. Further improvements of imaging techniques are needed to provide region-specific BBB 

information. Another limitation is that, at baseline, most (~95%) of the ASL spins are already 

extracted to the tissue, leaving limited spins to be measured in the veins. For a disease that 

causes BBB to be more permeable, even fewer ASL spins will be present in the SSS thus the 

ability to reliably detect the signal may be further compromised. This can be alleviated by a 

CBF-enhancing maneuver such as CO2 inhalation that was demonstrated in the present study. 

Additionally, the proposed method will have the same limitations as conventional ASL methods, 

including that the SNR may be low when the flow is slow and the signal quantification is 

dependent on several assumptions such as inversion efficiency and blood/tissue T1 values. 

Higher field could be potentially beneficial due to longer blood T1 and larger intrinsic SNR, 

although B0 and B1 inhomogeneity at higher field may negatively impact the signal. 

 

CONCLUSION 

In this study, we proposed a non-contrast MRI technique for the assessment of global 

BBB permeability by detecting ASL signal in venous vessels. We developed a pulse sequence, 

WEPCAST MRI, that is specifically optimized for this purpose. The estimated permeability 

index was in good agreement with prior literature using invasive methods. We also demonstrated 

that a mild hypercapnia using 2.5% CO2 can significantly enhance the sensitivity of this 

technique without causing discomfort.  
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Figures 

 

Figure 1: Concept and simulations of the proposed method. (a) Illustration of the conceptual 

model used to describe water extraction around BBB in capillary. Most of incoming labeled 

spins are extracted by tissue (red arrow) while a small fraction is drained to the vein (blue). 

Additionally, some of the labeled spins that were extracted to tissue are re-exchanged back to the 

vein (yellow arrow). (b) Simulation results of ASL signal at SSS without considering dispersion 

(unsmoothed). Non-extracted spins contributed most of the signal compared with re-exchanged 

spins. Simulation parameters: T1,blood=1841ms (35), T1,tissue=1165ms (23), 𝛼=0.86 (36), E=0.95 

(28), 𝛿𝑣=4s (23) and 𝜆=0.9mL/g (31). (c) Simulation results of ASL signal after Gaussian 

smoothing, which accounts for effects of bolus dispersion and variations in bolus arrival time. 
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Figure 2: Schematics of pulse sequences used in this study. (a) A conventional ASL sequence 

with a five-inversion background-suppression. (b) WEPCAST MRI sequence with flow-sensitive 

bipolar gradient added in the acquisition module. (c) Look-Locker WEPCAST MRI with 

background-suppression at all PLDs. The red pulses are vessel suppression pulses while the blue 

ones are tissue suppression pulses. 
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Figure 3: Venous ASL signals using conventional pCASL with long PLDs. (a) Representative 

difference images using conventional ASL with very long PLDs. ASL signal became visible in 

SSS starting from PLD=2500 ms (red arrows), reached a peak at around PLD=3000-3500ms, and 

then decayed afterwards. (b) M0,ASL image. (c) ROIs corresponding to anterior, middle and 

posterior SSS that were used for quantitative analysis. (d) Group-averaged ROI signals from 

anterior, middle and posterior segments of the SSS. The signal curve shifts toward the right as 

the ROI moves from anterior to posterior region. Error bar denotes the standard error across 

participants (N=6). 
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Figure 4: Venous ASL signal measured with WEPCAST MRI. (a) Representative images using 

the WEPCAST sequence (at PLD of 4000ms). Due to the flow-encoding, the control and label 

images show only large vessels without partial voluming of tissue signal. The vessel contour in 

the difference image is very clear. Conventional pCASL images are also shown, in which the 

vessel is not apparent in the difference image. (b) WEPCAST difference images as a function of 

PLD, as well as the M0 image that is used to normalize the difference images. Also shown is an 

illustration of ROI used for quantitative analysis. (c) Group-averaged ROI results of posterior 

SSS signal. Error bar denotes the standard error across participants (N=6). Note that different 

participants have peak signals at different PLDs, resulting in a relatively large error bar. 
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Figure 5: Look-Locker WEPCAST results. Representative difference images using four 

sequences with different background-suppression schemes. Only the sequence with both tissue 

and vessel suppression pulses (blue box) shows conspicuous venous ASL signal (red circles) 

throughout the PLD values.  
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Figure 6: Quantitative results of Look-Locker WEPCAST MRI. (a) Control signal in SSS using 

the four sequences with different background suppression schemes (averaged over 6 subjects). 

Only the sequence with both suppression pulses can suppress the signal to less than 5% of M0. (b) 

Difference signal in the “vessel-and-tissue suppression” scan as a function of PLD. Error bar 

denotes the standard error across participants. 
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Figure 7: Comparison of LL-WEPCAST with single-PLD WEPCAST. (a) Averaged signal 

curves (N=6) obtained from multiple single-PLD WEPCAST and LL-WEPCAST. Error bar 

denotes the standard error across participants. (b) Scatter plots of E and PS measured with the 

two methods. Each symbol represents data from one subject. 
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Figure 8: LL-WEPCAST MRI signal with physiological challenges (a) Averaged signal curve 

from SSS ROI (N=5) under normocapnia, hypercapnia (2.5% CO2), and hyperoxic-hypercapnia 

(2.5%CO2 and 58% O2). Hypercapnia dramatically increased the signal while hyperoxic-

hypercapnia only showed a modest benefit. Error bar denotes the standard error across 

participants. (b) Coefficient-of-variation (CoV) of peak signal under three physiological 

conditions. Lower CoV indicates better SNR. NC: normocapnia. HC: hypercapnia. HO-HC: 

hyperoxic-hypercapnia. 
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Figure 9: Physiological parameters estimated under different conditions. Error bars denote 

standard error across subjects.  
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Table 1: Dependence of estimated parameters on model assumptions. The experimental data 

were analyzed several times, each using slightly different (±10%) assumed values for T1,blood, 

T1,tissue, and α. 

Estimated 

parameter Original 

T1,blood 

-10% 

T1,blood 

+10% 

T1,tissue 

-10% 

T1,tissue 

+10% 

α 

-10% 

α 

+10% 

E (%) 95.5% 93.9% 96.6% 95.3% 95.6% 94.8% 96.0% 

PS 

(mL/100g/min) 188.9 182.5 204.7 187.6 193.4 182.5 198.0 
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 Supporting Information 

 

Supporting Methods 

The blood spins in superior sagittal sinus (SSS) consist of following three components: (a) 

non-extracted arterial spins; (b) extracted arterial spins that were re-exchanged into vessel; and (c) 

non-labeled spins that came to vessel from tissue through exchange.  

For part (a), i.e. non-extracted arterial spins, the signal under control condition can be 

written as  

 𝑀𝑎,𝑐𝑡𝑟𝑙(𝑡) = (1 − 𝐸)𝑀0,𝑏𝑙𝑜𝑜𝑑𝑐(𝑡), [S1] 

where 𝐸  is the extraction fraction of water and 𝑀0,𝑏𝑙𝑜𝑜𝑑  is the equilibrium magnetization of 

blood (MR signal/100 mL blood), 𝑐(𝑡) = {
1, 𝑖𝑓𝛿𝑣 < 𝑡 < 𝛿𝑣 + 𝜏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 is the arterial input function, 

𝛿𝑣 is bolus arrival time (BAT) of spins to SSS, and 𝜏 is labeling duration. The signal under label 

condition can be written as  

 𝑀𝑎,𝑙𝑎𝑏𝑙(𝑡) = (1 − 𝐸)𝑀0,𝑏𝑙𝑜𝑜𝑑(1 − 2𝛼𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑)𝑐(𝑡), [S2] 

where 𝑇1,𝑏𝑙𝑜𝑜𝑑is blood T1 and 𝛼 is the labeling efficiency. The ASL difference signal from part (a) 

is then 

 ∆𝑀𝑎(𝑡) = 2𝛼(1 − 𝐸)𝑀0,𝑏𝑙𝑜𝑜𝑑𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑐(𝑡), [S3] 

which is used as Eq. [2] in the main text. 

For part (b), to calculate signal in veins at time 𝑡, let us first consider signal in the tissue 

at time 𝑡 − 𝛿𝑡𝑣, in which 𝛿𝑡𝑣 denoted the time it takes for the blood to travel from tissue to vein. 

This is useful because once tissue signal at time 𝑡 − 𝛿𝑡𝑣 is calculated, the venous signal at time 𝑡 

simply follows longitudinal relaxation at 𝑇1,𝑏𝑙𝑜𝑜𝑑for a period of 𝛿𝑡𝑣. Based on ASL kinetic model 

(1), label signal in tissue at 𝑡 − 𝛿𝑡𝑣 can be written as: 

 

𝑀𝑡𝑖𝑠𝑠𝑢𝑒,𝑙𝑎𝑏𝑙(𝑡 − 𝛿𝑡𝑣) = 𝑓𝐸𝑀0,𝑏𝑙𝑜𝑜𝑑 ∫ 𝑟(𝑡 − 𝛿𝑡𝑣 − 𝑡′)(1 −
𝑡−𝛿𝑡𝑣

𝛿𝑡

2𝑒
−

𝛿𝑡
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑚(𝑡 − 𝛿𝑡𝑣 − 𝑡′))𝑑𝑡′,  

 

[S4] 
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where 𝑓 is cerebral blood flow (CBF), 𝛿𝑡 is BAT of tissue, 𝑟(𝑡) = 𝑒−𝑓𝑡/𝜆 is residue function of 

labeled spins in tissue, λ  is blood-brain partition coefficient of water, 𝑚(𝑡) = 𝑒−𝑡/𝑇1,𝑡𝑖𝑠𝑠𝑢𝑒 

represents T1 relaxation in tissue. 

These spins are then re-exchanged back to the vessel and become venous spins. Note that, 

although the amount of labeled signals in the venous voxel is the same as that in a tissue voxel, it 

does not mean that all of the labeled spins in the tissue has come back to vein. The labeled spins 

in the venous voxel actually come from many tissue voxels, each contributing a small fraction to 

the venous spins. Once inside the vein, these labeled spins are subject to further longitudinal 

relaxation at T1 of blood. The signal evolution can be calculated by Bloch equation using Eq. [S4] 

as the initial magnetization. One can derive that, at time 𝑡, the signal which is now in venous 

vessel becomes 

 𝑀𝑏,𝑙𝑎𝑏𝑙(𝑡) = 𝑓/𝜆𝐸𝑀0,𝑏𝑙𝑜𝑜𝑑∫ 𝑐(𝑡′)𝑟(𝑡 − 𝑡′)(1 − 2𝛼𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑚(𝑡 − 𝑡′))𝑑𝑡′

𝑡

0

, [S5] 

Following the same framework, one can derive the control signal for part (b) to be 

 𝑀𝑏,𝑐𝑡𝑟𝑙(𝑡) = 𝑓/𝜆𝐸𝑀0,𝑏𝑙𝑜𝑜𝑑 ∫ 𝑐(𝑡′)𝑟(𝑡 − 𝑡′)𝑑𝑡′
𝑡

0
,          [S6] 

The difference signal from part (b) is  

 

∆𝑀𝑏(𝑡) = 𝑀𝑏,𝑐𝑡𝑟𝑙(𝑡) − 𝑀𝑏,𝑙𝑎𝑏𝑙(𝑡) 

= 𝑓/𝜆𝐸𝑀0,𝑏𝑙𝑜𝑜𝑑∫ 𝑐(𝑡′)𝑟(𝑡 − 𝑡′)2𝛼𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑚(𝑡 − 𝑡′)𝑑𝑡′

𝑡

0

 

= 2𝛼𝑓/𝜆𝐸𝑀0,𝑏𝑙𝑜𝑜𝑑𝑒
−

𝛿𝑣
𝑇1,𝑏𝑙𝑜𝑜𝑑𝑐(𝑡)⨂[𝑟(𝑡)𝑚(𝑡)]. 

[S7] 

which is used as Eq. [4] in the main text. 

For part (c), i.e. non-labeled spins that came to vessel from tissue through exchange, the 

signal under control and label condition can both be written as  

 𝑀𝑐,𝑐𝑡𝑟𝑙(𝑡) = 𝑀𝑐,𝑙𝑎𝑏𝑙(𝑡) = 𝑓/𝜆𝐸(1 − ∫ 𝑐(𝑡′)𝑟(𝑡 − 𝑡′)𝑑𝑡′
𝑡

0

)𝑀0,𝑏𝑙𝑜𝑜𝑑, [S8] 

Thus, the difference signal ∆𝑀𝑐(𝑡) = 0. 
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Supporting Figure S1: ROI results of posterior SSS signal for the subject shown in Figure 4 and 

the corresponding fitting results. Error bars denote standard errors across repetitions. 
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Supporting Figure S2: ROI results of posterior SSS signal for the subject shown in Figure 5 and 

the corresponding fitting results. Error bars denote standard errors across repetitions. 
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Supporting Figure S3: Bland-Altman plots for E and PS between multiple single-PLD and 

Look-Locker methods.  

 

 

 


