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A B S T R A C T

Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that
recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed
to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in
patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple
fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been ex-
amined as monotherapy. In this review, I focus on trials examining therapeutic cancer vaccines at different
stages of existing disease. The analysis of vaccine-induced immune responses and clinical activity of therapeutic
cancer vaccines revealed four levels of evidence for vaccine efficacy. The lowest levels, reflect the many trials in
which the strength of the tumor-reactive T cell response of vaccinated patients is associated with better clinical
outcome or change in tumor marker. The highest levels indicate occasional regressions of tumors and metastases
after vaccination or reflect a stronger clinical impact of vaccine in a randomized trial. A whole series of trials in
which vaccine-induced tumor immunity correlates with the clinical impact of cancer vaccines in premalignant
diseases, settings of low tumor burden or tumor regressions in patients with cancer, form an attest to the fact that
cancer vaccines work. While the current number of true clinical responders in each cancer trial is too low for firm
conclusions on immune correlates of clinical reactivity in cancer, extrapolation of the results from vaccinated
patients with pre-cancers suggest a requirement of broad type 1 T cell reactivity.

1. Introduction

The immune system has an important role in the control of tumor
outgrowth. There is the consensus that a strong Th1 cytotoxic micro-
environment is associated with a more favorable prognosis and therapy
responsiveness in many tumor type [1,2]. Harnessing the immune
system to detect and destroy tumors has been a long-term goal in
mankind since the 1891 report of Coley [3]. A number of effective
strategies, including adoptive cell transfer [4,5] and immune check-
point blockade [6,7], have been developed such that immunotherapy of
cancer has become one of the pillars of modern cancer therapy in the
clinic. The response rate to checkpoint therapy varies tremendously per
cancer. Growing evidence indicates that patients lacking pre-existing
tumor immunity are less likely to respond [8,9], suggesting that their
immune system needs to be pre-sensitized to tumor antigens. Cancer
vaccines are excellently suited for this job since they can amplify the
pool of tumor-reactive T cells from the naive repertoire, reactivate

existing tumor-specific T cells and are able increase the breadth and
diversity of the tumor-reactive T cell response.

The key component of a vaccine is the antigen used to stimulate the
immune system. Initial cancer vaccines were based on cancer cell ly-
sates but the molecular identification and characterization of a the first
gene reported to encode a defined tumor antigen that was recognized
by tumor-killing CD8+ T cells, boosted the development of potential
cancer vaccines [10]. Since then many suitable target antigens have
been identified. Tumor antigens can be classified as tumor associated or
tumor specific [11]. Many of the cancer vaccines developed aimed to
increase T cell reactivity to self-proteins that are overexpressed, in-
volved in tissue differentiation or which are expressed by tumor cells
and immune privileged tissue such as the cancer-testis antigens. To-
gether, they form the broad category of tumor associated antigens
(TAA). The preference to use TAA in cancer vaccines was their broader
applicability (e.g. multiple patients with same cancer, cancers of dif-
ferent types sharing antigen expression). There is accumulating
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evidence for the presence of spontaneously activated T cells recognizing
self-proteins that are preferentially expressed by regulatory immune
cells. Vaccines designed to stimulate T cell responses to these antigens
indirectly target tumors by unleashing spontaneous tumor immunity.
However, it turns out that given the self-nature of TAA, responding T
cells are likely to suffer from some degree of central tolerance and are
not truly tumor specific.

The group of tumor specific antigens (TSA) is formed by the proteins
of oncogenic viruses that are expressed by transformed cells and by
neoantigens generated as products of somatic mutations and frame
shifts. Some of the evidence for the existence and important role of
tumor specific antigens in tumor control dates back to the early days in
tumor immunology, showing that experimental tumors arising in the
skin after exposure to chemical carcinogens or ultraviolet (UV)light
bear unique tumor-rejection antigens [12,13], whereas virus-induced
tumors displayed viral proteins that functioned as such [14,15]. There
is also data suggesting that a group of TAP-independent self-peptides,
which are only expressed by cells deficient for the peptide transporter
TAP, can act as tumor specific antigens [16,17]. The development and
impact of preventive cancer vaccines has recently been excellently re-
viewed by Finn [18] and Spira et al. [19]. In this review, the focus is on
therapeutic cancer vaccines, applied at different stages of existing dis-
ease. The mechanisms and components required to build effective
therapeutic cancer vaccines and how to deliver them to patients, has
been reviewed excellently by Hu et al. [20].

In the past, the results of cancer vaccines led to a too pessimistic
view on their potential within the immunotherapy space [21,22]. This
view was fueled by large phase III studies with negative outcomes and
based on the misconception that immunotherapy was just a matter of
replenishing the host with tumor-reactive T cells, whereas we now
know that cancer immunity is influenced by a complex set of host,
tumor and environmental factors [23]. Hence, while vaccines are only
meant to amplify the pool of type 1 cytokine oriented tumor-reactive
CD4+ and CD8+ T cells they were, in fact, expected to deal with all
aspects of immune ignorance, exclusion, suppression and escape.
Therefore, published trials should be appraised in the context of our
current knowledge that the full clinical potential of therapeutic cancer
vaccines can only be determined when appropriate co-treatments are
provided that overcomes systemic and local immune suppression as
well as immune exclusion [24]. In this review, a number of negative
phase III trials are discussed in the context of today’s knowledge of the
tumor microenvironment. Then, a whole series of recent cancer vaccine
trials is reevaluated with respect to their capacity to induce tumor
immunity and the correlation of this immune response to clinical out-
come. Keeping in mind that previously much optimism was based on
surrogate endpoints rather than actual tumor regressions [21], four
levels of evidence for vaccine efficacy on clinical outcome (Fig. 1) were
distinguished.

It turns out that increases in functional tumor-reactive type 1 T cell
responses and regression of lesions or metastases can be observed after
vaccination in quite a number of trials. New studies will require in-
vestigators to address the reasons for successful regressions as this will
lead the way for application of cancer vaccines under the best condi-
tions.

2. Therapeutic vaccination and clinical outcome

2.1. Phase 3 trials with tumor-associated antigens failed for a reason

A series of phase 3 cancer vaccination trials have been reported in
the last couple of years. None of them had a positive outcome.
Considering the task cancer vaccines have, one should revisit these
trials with the knowledge of today, rather than throwing the im-
munotherapeutic potential of cancer vaccines in the waste basket.

One large study evaluated 3 different HLA-A*0201 restricted mel-
anoma peptides previously found to elicit a T cell response in 35% of

the stage IV melanoma patients and of which the immune responders
did show higher overall survival (OS) than the non-immune responders
[25]. This resulted in a new randomized, placebo-controlled phase III
study where 815 patients, 436 of which were HLA-A*0201, with
completely resected stage IV melanoma or high-risk stage III were
vaccinated with the peptide vaccine, GM-CSF or both, but no improved
recurrence free survival (RFS) or OS was found [26]. Inspection of
patient demographics teaches us that about 90% of the patients dis-
played absent or sparse infiltrate in their primary tumor. Such non-
inflamed tumors have a low capacity to attract T cells, and therefore are
not likely to respond to vaccination or other individual im-
munotherapies [23]. This in combination with the apparent low im-
munogenicity of the vaccine would allow only a very small percentage
of patients to respond (10% of 35% makes 3,5% of patients) [25,26]. In
view of our understanding with respect to the role of neoantigen-spe-
cific T cells in melanoma, targeting of TAA in melanoma is not expected
to drive major clinical successes.

GV1001, targeting telomerase, was tested in randomized phase 3
trial of patients with pancreatic ductal adenocarcinoma to receive ei-
ther gemcitabine/capecitabine chemotherapy or chemotherapy with
sequential GV1001 or chemotherapy with concurrent GV1001 [27].
The immune response was tested in small part of the vaccinated group,
and only measurable by proliferation after> 10 days of in vitro sti-
mulation (IVS). A difference in response over background of> 1.8 was
defined as positive. Still only 30% of the patients in the sequential
group and 15% of the patients in the concurrent group showed a T cell
proliferative response. In addition, only 12% and 20%, respectively,
showed a positive delayed type hypersensitivity (DTH) response to the
vaccine. There were no differences in survival [27]. Thus, the vaccine
was able to induce a T cell response in a minority of patients. This
tremendously lowers the number of patients that could show clinical
reactivity. Furthermore, the choice to combine with chemotherapy was
based on pre-clinical mouse models showing a positive effect of gem-
citabine on immune suppressive cells [28,29] and with cancer vaccines
[30]. However, recently it was shown that gemcitabine has an effect on
a phenotypically defined population of myeloid derived suppressor cells
(MDSC) in patients [31] but also that this particular population was not
suppressive. Other MDSC phenotypes that were suppressive were not
decreased by gemcitabine treatment [32]. Neither the impact of the
immunosuppressive cells nor the influence of the tumor immune con-
texture was assessed within this trial.

IMA901, a vaccine consisting of 9 HLA-class I- and 1 HLA class II-
restricted tumor-associated peptides, was tested in a phase III trial in
patients with metastatic clear cell renal cell carcinoma [33]. Patients
were either treated with sunitinib only or in combination with the
vaccine. There were no differences in survival. In addition, the pre-
viously reported correlation between survival and the number of epi-
topes recognized [34,35] was not confirmed. An important finding
within this study was the observation that the CD8+ T cell responses to
the vaccine were 3-fold lower than previously observed in the phase
1–2 trials with this vaccine and type of patients. However, in these
earlier trials sunitinib was not used. The reason to use sunitinib was
based on mouse models showing that levels of regulatory T cells (Tregs)
were reduced, it also has an established clinical effect in renal cell
carcinoma. Studies in patients receiving sunitinib confirmed the re-
duction in Tregs, albeit small. Also, sunitinib treatment has been re-
ported to reduce CD33+, HLA−DR− MDSC and CD15+, CD14−
MDSC [36,37]. However, sunitinib may also affect other myeloid po-
pulations. The authors found a strong reduction in the number of
monocytes after first round of sunitinib. This effect on monocytes was
known and is the result of reduced hematopoiesis [38] but sunitinib
also displays other negative effects such as the induction of IL-10 pro-
duction by M1 macrophages [38]. Potentially, the strong effect on
monocytes is also mediated on DC. This is currently unknown but
would be expected and in combination with the modulatory effects on
M1 macrophages it could explain why the T cell response is lower in
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this trial. An important factor that in hind sight could explain failure or
the trial is the existence of at least four molecular subtypes of clear cell
renal cell carcinoma. The subtype associated with a strong in-
flammatory, Th1-oriented but suppressive immune environment is the
least sensitive to sunitinib [39]. This means effectively, that only one
subgroup of patients has an inflamed tumor allowing access of vaccine-
induced T cells but it is not clear if these cells could resist the immune
suppressive environment. Furthermore, patients with tumors of one of
the other molecular subtypes are less likely to benefit from the vaccine
but respond better to sunitinib, obscuring vaccine effects on survival.

Three phase 3 trials were performed in non-small cell lung cancer
(NSCLC). The first was a placebo-controlled randomized study with
tecemotide, a 25 amino acid long MUC-1 lipopeptide derived from the
tandem repeat region of MUC-1. The vaccine was given as maintenance
therapy to stage III unresectable NSCLC patients with objective re-
sponses or stable disease (SD) after chemotherapy [40]. Three days
before first vaccination a low-dose cyclophosphamide was provided,
based on a trial in breast cancer patients showing stronger immunity. In
a preceding phase IIB trial with stage 3b and IV NSCLC patients it was
shown that this regimen had a positive effect on survival in the sub-
group of IIIB patients, hence the phase 3 trial was started. Interestingly,
when the immune response is examined in that trial it turns out that
only 16 of 78 patients tested displayed a MUC-1 specific T cell pro-
liferative response, two of which had stage 3b disease [41]. No vaccine
associated survival effects were seen in the phase 3 trial, which should
not have come to a surprise in view of the low immunological response
rate in stage 3b patients. The second study in stage 3/4 NSCLC patients
was performed with an allogeneic tumor vaccine, comprising four
TGFβ2 antisense gene modified (to prevent immune suppression and to
increase immunogenicity) irradiated NSCLC cell lines, as maintenance
therapy. No benefit was found [42]. In an earlier phase 2b, IFNγ Elispot
reactivity to the allogeneic cell lines was found in 17 of 36 patients, the
majority of which were patients with a tumor control of stable disease
or better. However, also allogeneic HLA-specific antibodies were found
in most of the SD patients, indicating that the T cell reactivity found is
likely targeted to the HLA molecules present on these allogeneic tumor
cells that are foreign to the patient rather than recognizing tumor an-
tigens [43]. The third trial randomized placebo controlled phase 3 trial
comprised a recombinant MAGE-A3 protein vaccine with AS15 im-
munostimulant. It was tested with or without chemotherapy in patients
with stage IB, 2 and 3a MAGE-A3-positive NSCLC [44]. No vaccine
effect was seen on disease free survival (DFS), neither in patients with

nor without concomitant chemotherapy. The validation of a gene-sig-
nature that predicted patients most likely to benefit from vaccination
could not be performed. This gene panel comprising immune related,
Th1/IFNγ genes and chemokines for T cell homing, STAT1 and IRF1
regulated genes, was discovered to predict better DFS in a phase 2
placebo controlled study in NSCLC [45]. Recombinant protein, how-
ever, is not the most immunogenic vaccine concept, their processing by
DC is not optimal [46] and this can also be deduced from the im-
munological responses that were reported earlier for this vaccine. First
of all, spontaneous responses to MAGE3 are very rare and vaccine in-
duced responses were measured only after an IVS of at least 10 days
before the immune response was measured. In the previous trial only in
1 of 9 vaccinated patients with recombinant MAGE-3 protein and in 4 of
8 patients vaccinated with protein and AS02B adjuvant responded with
a type 1 CD4+ T cell response. Furthermore, only 1 out of 9 HLA-A2
and 1 out of 5 HLA-A1 positive patients showed a CTL response after
vaccination, respectively [47]. Thus, two trials are likely to have suf-
fered from the low immunogenicity of the vaccine used, whereas in one
it can be questioned if there were any tumor-specific responses. In the
first trial the choice to go for a certain type of subgroup was based on a
post-hoc analysis. Furthermore, also in NSCLC the immune contexture
plays an important role with respect to the response to immunotherapy.
For instance, NSCLC is known for its notoriously downregulation of
HLA class I and this is associated with loss of the clinical effects of
strong CD8 T cell infiltration. The same holds true for the expression of
HLA-E which has a negative impact on infiltrating CD8 T cells and is
overexpressed in 70% of the cases [48]. The importance of HLA class I
expression for therapeutic vaccine outcome was also demonstrated in a
metastatic melanoma patient who received an autologous melanoma
vaccine. Three metastatic lesions strongly expressing HLA class I re-
gressed whereas 3 other lesions had low to no HLA class I expression
and progressed [49]. Also, the presence of a type 1 inflamed immune
signature is important for responsiveness [50].

Overall it means that a full appreciation of cancer vaccines can only
be obtained when cancer vaccines are trialed in settings that optimally
support their purpose, that is to reinvigorate the T cell response against
tumor antigens, and not asked to overcome the other immunological
problems posed by tumors. It is most likely that vaccination of patients
with cancer requires co-treatment with checkpoint antibodies since
activated T cells will express co-inhibitory molecules [51]. In addition,
upon IFNγ-exposure the tumor will adapt to resist the attack and start to
express the ligands for these co-inhibitory molecules [9]. This needs to

Fig. 1. The levels of evidence for vaccine efficacy. Cancer vaccine trials report vaccine-induced immune responses in the context of different clinical observations.
The strength of this evidence for a true impact of the immune response on tumor growth can be considered low to high.
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be counteracted if one wants the vaccine-induced T cells to exert their
function and control tumor growth [52,53].

2.2. All four levels of evidence for vaccine efficacy are observed in phase 1/
2 TAA-vaccine trials

Bearing in mind the several reasons possibly explaining why cancer
vaccines did not show a beneficial effect as single immunotherapeutic
agent, the biological signs for success obtained in phase 2 trials should
be carefully examined and placed into context of the several immune
suppressive and escape mechanisms playing a role in patients with
cancer, as they may obscure true vaccine activity.

2.2.1. HLA class I and II targeting tumor associated antigen vaccines
In five trials, different groups of patients were treated with vaccines

targeting telomerase. Telomeres are shortened at each mitosis, limiting
cell divisions, and tumors reset this clock by expressing telomerase that
synthesizes new telomere units. The reverse transcriptase subunit of
telomerase, hTERT, is often overexpressed and may function as a good
tumor-associated antigen. In a phase 1/2 trial, 26 advanced mostly
stage IV NSCLC patients, not receiving chemo or radiotherapy, were
vaccinated with two telomerase peptides, GV1001 and GV1540.
GV1001 is a 16aa telomerase peptide with promiscuous presentation in
several different HLA class II molecules. In 13 of the 24 evaluable pa-
tients a GV1001 response developed. The immune responders displayed
increased survival when compared to the non-responders (Level 1). The
detection of a GV1001 immune response was even after correction of
potential confounders an independent prognostic factor for survival.
Interestingly, 2 patients (stage 3a and stage 3b) were free of disease
after 108 and 93 months and still have detectable T cell responses in
blood [54,55]. In a phase 2 trial 23 inoperable stage III NSCLC patients
received radiotherapy and weekly docetaxel followed by the GV1001
vaccine. In 13 of the 19 tested patients a long-term T cell response,
measured by proliferation after one round of IVS, was found. Again, the
immune responders displayed longer progression free survival (PFS)
than non-responders [55]. A third trial in 46 patients with advanced
NSCLC, having residual or progressive disease following front line
therapy, received two injections with a binding-optimized HLA-
A*0201-restricted TERT peptide and 4 injections with the native pep-
tide. The detection of an immune response to the optimized and/or
native peptide, as measured by ex-vivo IFNγ Elispot was associated with
longer PFS and a significantly better OS. Moreover, among the immune
responders there were three patients that had SD when they entered the
trial but of whom the tumors started to shrink after vaccination, leading
to a partial response (PR). In addition, 2 patients developed a SD while
being progressive before vaccination [56]. Thus, in some patients with
at low disease burden, cancer vaccination resulted in objective clinical
responses (Level 3). A case report on a patient with multiple metastatic
lesions of ductal adenocarcinoma of the pancreas and treated 15 times
with monocyte derived DC vaccine electroporated with hTERT mRNA
[57], mentioned that this treatment resulted in a PR and long-term
survival. A broad proliferative response to 9 of 15 tested hTERT pep-
tides was measured. The response comprised IFNγ, TNFα and IL-2
producing CD4+ T cells while no reaction of CD8+ T cells was found.
These responses developed slowly, several months after start of vacci-
nation. In the fifth trial, three long hTERT-derived peptides (UV1),
which were most frequently recognized by CD4+ T cells of long term
cancer survivors, based on epitope spreading following vaccination
with GV1001 [58], were used together with GM-CSF as vaccine in pa-
tients with prostate cancer receiving androgen deprivation treatment
(ADT) as well as radiotherapy between month 4 and 6 of vaccination.
De novo immune responses were detected in 18 of 21 tested patients, as
measured after one round of IVS. The levels of prostate specific antigen
(PSA) declined in 14 patients (Level 2) and 10 ha d no evidence of
disease at the end of the trial. Progressive disease (PD) was defined as
increase in serum PSA and/or appearance of new lesion. None of the

patients with PD responded to the vaccine whereas the majority of
patients with an SD displayed a response to 2–3 of the peptides. It was
not clear whether the clinical response was due to the vaccine or due to
ADT and radiotherapy [59]. Overall, vaccination against hTERT was
associated with levels 1–3 of vaccine efficacy.

Shared tumor-associated antigens in melanoma were the first to be
identified [10]. Vaccination of stage 4 metastatic melanoma patients
with 3 HLA-A*0201 binding TAA-derived peptides combined either
with GM-CSF or with IFNα2b or with the combination of both adjuvants
revealed that these adjuvants did not improve the immunogenicity of
the peptides. Of the 115 patients analyzed, only 35% made an immune
response to at least one peptide, measured by ex-vivo IFNγ Elispot,
indicating that this vaccine was not highly immunogenic in these pa-
tients. Of the 73 patients with clinical and immune data, 25 patients
displayed a response at any of the two different time points studied and
at least to one peptide. Immune responders had a significantly longer
OS [25]. In another phase 2 trial, 61 patients with treatment refractory
stage IV metastatic melanoma were vaccinated with 3 HLA class I
binding peptides derived from the amino acid sequence of the tumor
antigen survivin. Fifty-five patients were evaluable for clinical response
and survival and 41 for immune reactivity [60]. Using ex-vivo IFNγ
Elispot, a survivin-specific T cell response was detected at least once
during the first 16 weeks of vaccination. The detection of a vaccine-
induced type 1 T cell response was detected in 13 of 41 patients and
more frequently observed in patients with less advanced disease and
normal lactate dehydrogenase (LDH) levels, suggesting that less ad-
vanced disease is associated with less systemic immune suppression.
Importantly, in 80% of the patients displaying CR, PR, or SD and only in
20% of the patients with PD a vaccine-induced immune response was
detected, indicating an anti-tumor effect of these T cells. In general,
vaccine-responders displayed a longer overall survival. In a phase 1/2
trial, 53 patients with advanced melanoma (stage III/IV) received a
vaccine consisting of autologous DC loaded with a cocktail of mela-
noma antigen-derived HLA-A*0101 or HLA-A*0201 restricted native
peptides from MAGE-1, MAGE-3, tyrosinase, MAGE-10, and analogues
from MART1, gp100 and NY-ESO1 and 6 HLA class II peptides from
MAGE-3, tyrosinase, gp100 and NY-ESO1. Later a 10-year pre-planned
follow up was performed in [61]. Using different immune assays, each
of the patients displayed type 1 T cell responses to almost all possible
HLA class II peptides, sometimes to the HLA-A*0101 restricted peptides
and almost to all of the HLA-A*0201 restricted peptides. Although in
this trial no objective clinical responses were observed according to
WHO criteria, some of the patients displayed slow regressions and
eventually complete disappearance of individual metastases. Further-
more, after 13 years of follow-up, 19% of the patients with measurable
disease are still alive, none of them except for one who received addi-
tional targeted therapy or immunotherapy. There were no correlations
between the magnitude of the responses or the number of epitopes
recognized, as measured after IVS, and clinical outcome, mostly be-
cause all patients responded to almost all epitopes in the vaccine.
However, the intensity of the vaccine-injection site reaction, which may
be a sign of a stronger immune response, was associated with longer OS
(Level 1) [61]. This is reminiscent of other observations showing that
flu-like symptoms and/or vaccine site reactions after vaccination were
correlated with a stronger ex-vivo measured type 1 T cell response
[62,63]. In addition, the emergence of eosinophilia after vaccination,
possibly due to IL-2 and/or GM-CSF produced by the vaccine-activated
T cells, was also significantly associated with long term survival in
tumor bearing patients [61]. Thus, these melanoma vaccine trials
provided evidence for vaccine efficacy at levels 1 and 3.

Twelve children with recurrent high-grade glioma were vaccinated
with a cocktail of 3 HLA class I-restricted peptides, derived from the
glioma-associated antigens survivin, IL-13R and EphA2, as well as a pan
HLA-DR binding epitope from tetanus toxoid, all mixed in Montanide
ISA 51 and then injected close to the powerful immune stimulator poly
ICLC. Immune responses were found in 9 of the ten tested children as
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measured by IFNγ Elispot after IVS. All children responded at least to
EphA2 and 3 children also responded to the tetanus-derived helper
epitope. The immune response waned in a few patients but in the other
patients it was maintained for a long time. In one of the patients a level
3 evidence for vaccine efficacy was found. This patient had an ana-
plastic astrocytoma abundantly expressing EphA2, while the other
glioma associated antigens were sporadically expressed. The patient
developed a strong and persisting response to EphA2 and the helper
peptide and this was associated with a very long-lasting PR [64].

Level 4 evidence for vaccine efficacy, that is a better clinical re-
sponse in vaccinated patients versus an appropriate control group of
non-vaccinated patients, was found in vaccinated patients with ovarian
cancer. A vaccine consisting of autologous tumor cells, engineered to
express GM-CSF/bi-shRNA furin DNA to block furin-mediated conver-
sion of TGFβ pro-proteins into active immunosuppressive TGFβ1 and
TGFβ2, was made. In a phase 2 trial, this vaccine was injected into
women with stage III/IV ovarian cancer following CR on de-bulking
surgery and chemotherapy. After the first randomization of 20 patients
receiving the vaccine and 11 patients for control, preliminary data
suggested clinical benefit and another 11 patients received only the
vaccine. All 31 vaccinated patients developed a type 1 T cell response as
measured by IFNγ Elispot against pre-processed autologous tumor cells.
Vaccinated patients had a significantly longer time to recurrence than
11 non-vaccinated patients [65].

2.2.2. Vaccination with defined HLA class I-restricted antigens
HLA-A24 is the most common HLA class I allele in the Japanese

population. Therefore, a whole series of trials have been performed
with HLA-A24-restricted TAA-peptide vaccines. In a phase 1/2 trial, an
HLA-A*02401 restricted peptide from KIF20A, which is significantly
trans-activated in pancreatic cancer, was injected in 29 patients with
metastatic pancreatic cancer who failed gemcitabine therapy. In 16 out
of 23 tested patients the CD8+ T cell response to KIF20A increased and
this was associated with injection site reactions. Level 3 vaccine efficacy
was evident from the one CR and the objective shrinkage of some
metastases in another 8 cases. The patient with a CR showed a strong
and sustained (> 2 years) response to KIF20A as measured by HLA class
I-multimers and IFNγ Elispot. Notably, in 3 cases the objective lesion
shrinkage was not associated with a detectable T cell response, mea-
sured following two weeks of IVS [66], and it is not clear if this is a
technical failure. In a follow-up phase 2 trial 68 chemotherapy naïve
patients with advanced pancreatic cancer patients received 3 HLA-
A*02401 restricted peptides from KIF20A, VEGFR1 and VEGFR2 in
combination with gemcitabine irrespective of HLA type. In the end 38
patients were HLA-A*02401 positive. The PFS and OS did not differ
between HLA-A*2401 positive and negative patients. Among the HLA-
A*02401-positive subjects those who made an IFNγ-associated T cell
response, measured after IVS, to KIF20A and/or VEGFR1 displayed a
better OS. A similar observation was made for those patients with a
strong injection site reaction [67]. A phase 2 study with OCV-C01
vaccine consisting of peptides from KIF20A, VEGFR1 and VEGFR2 with
gemcitabine as adjuvant treatment for 30 surgically treated pancreatic
cancer patients that were HLA-A*2402. 15 HLA-A*2402 negative pa-
tients received gemcitabine only. Possibly level 4 evidence for vaccine
efficacy was found since the vaccinated patients had a better – but not
significant - DFS than non-vaccinated patients. More than half of the
patients displayed a CTL response to KIF20A, and this was associated
with longer survival. Importantly, KIF20A expression was found in
about 25% of the vaccinated patients, limiting the number of patients
that could display a clinical response. Importantly, no recurrences were
found in the group with a KIF20A+ tumor and all displayed a CTL
response to KIF20A [68]. Two trials were performed in HLA-A*2401+
patients with advanced colorectal cancer failing standard therapy
showing a number of patients with level 3 evidence of vaccine efficacy.
First 18 patients were vaccinated with 5 different HLA-A*2401-re-
stricted peptides from several onco-antigens and 2 peptides from

VEGFR1 and VEGFR2. Level 3 evidence was manifested in 7 patients
with 1 CR and 6 SD of 4–7 months. In addition, strong injection site
reactions and an IFNγ-associated T cell response to three or more
peptides, measured after IVS, was associated with longer survival [69].
The second study in 30 patients resulted in 3 PRs and in another 3
patients showing tumor shrinkage not fulfilling response evaluation
criteria in solid tumors (RECIST). Nine patients showed an IFNγ-asso-
ciated T cell response to all 7 peptides, measured after IVS. All nine
patients were long term survivors and included 2 PR and 5 SD patients.
The OS of patients responding to all 7 peptides was significantly longer
than those responding to 6 peptides or less [70]. A phase II trial in 37
HLA*2402-positive patients with advanced head and neck cancer
evaluated the injection of 3 peptides derived from 3 cancer testis an-
tigens and observed level 3 evidence of vaccine efficacy in 15 patients,
one exhibited a CR and 14 had SD. T-cell reactivity was found in
43–86% of the patients to each peptide. Patients who responded to all
three peptides displayed superior PFS and OS then patients with re-
sponses to 0–1 peptides [71]. Level 3 evidence of cancer vaccine effi-
cacy was also found in 3 out of 6 patients with advanced gastric cancer,
who were vaccinated with an HLA-*2402 restricted peptide from lym-
phocyte antigen 6 complex locus K (LY6K). LY6K is an antigen asso-
ciated with the malignant potential of cancer cells and is overexpressed
in 85% of gastric cancers, albeit not by every cancer cell. A specific and
robust T cell response was found in 4 patients after IVS but all patients
responded. In one patient, classified as an SD, vaccination resulted in
the initial shrinkage of 4 out of 5 evaluated tumors and this coincided
with a decrease in serum CEA levels. Two other patients also showed SD
[72]. These data clearly indicate that vaccination with LY6K peptide
can mediate an antitumor effect but also show that immune escape is
imminent when not all tumor cells express the targeted antigen. A
vaccine comprising one HLA*0201 and one HLA-A*2402 restricted
peptide derived from the carcinoembryonic antigen glypican-3 was
injected in 32 patients with refractory ovarian clear cell carcinoma. The
vaccine induced an ex-vivo T cell response in 15 of the 24 tested pa-
tients, measured by IFNγ Elispot. Expression of glypican-3 was found in
8 of 19 tested patients. The tumors of six patients showed reduced HLA
class I expression. The expression of the protein, HLA class I and in-
filtration with TILs was not a predictive marker for survival. Two pa-
tients developed a PR [73], providing level 3 evidence that glypican-3
targeted vaccination may have impact on tumor growth. The first pa-
tient displayed multiple metastases before vaccination that rapidly
progressed. A PR was achieved after 10 weeks with some lesions no
longer visible but slow growth of a metastasis in a lymph node. This
metastasis lacked glypican-3 expression and had a reduction in HLA
class I as well as low number of tumor infiltrating lymphocytes (TIL).
Concurrent with the PR, pretreatment tumor marker levels in serum
dropped and remained flat until week 60. The second case, showed a
drop in the serum tumor markers after the 7th vaccination and obtained
a PR at week 37. Surprisingly, the primary tumor was glypican-3 ne-
gative but it is known that glypican-3 tumor expression is hetero-
geneous and depends on the location and timing of the biopsies [74].
This is not uncommon and has also been observed for other putative
vaccine targets like XAGE-1b [75].

Overall, among all the patients vaccinated with HLA-A24-restricted
CD8+ T cell epitopes there were five trials reporting level 1 evidence of
clinical activity while level 3 evidence was found in 6 trials.

PR1 is an HLA-A*0201 restricted peptide that is recognized on
myeloid leukemia cells by preferentially leukemia killing CD8+ T cells.
In a phase 1/2 trial 66 HLA-A*0201 patients with either acute or
chronic myeloid leukemia (AML, CML) or with myelodysplastic syn-
drome (MDS) were vaccinated at different dose levels of vaccine. Level
3 evidence of vaccine efficacy was found in 12 patients. PR1-specific
CD8+ T cells were present in 85% of the patients at baseline. A vac-
cine-induce response, defined as a 2-fold increase in PR1-tetramer+
CD8+ T cells in the blood was observed in 53% of the patients. The
vaccine-induced PR1-specific CD8+ T cells accumulated within the
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central memory population. The TCR avidity of PR1-specific CD8+ T
cells after vaccination was higher among the immune responders and
interestingly, it was higher in immune responders with a clinical re-
sponse than in immune responders lacking a clinical response. A more
than 2-fold increase in PR1-specific T cells after vaccination was not
related to dose or to the percentage of pre-existing PR1-specific T cells
but was related to a lower disease burden at baseline, fitting with the
other observations that clinical responses primarily were obtained in
patients with low disease burden. Twelve patients showed a clinical
response, 9 of which were immune responders. The other 3 did not
display a vaccine increase in PR1-specific T cells but the avidity of the
TCR of the pre-existing PR1-specific T cells changed and was higher
than seen in immune responders without a clinical response or the other
non-responders[76], suggesting that functional avidity maturation of
tumor-specific T cells, known to be important for responses to viruses
and cancer [77], forms a mechanism through which cancer vaccines
can work.

Wilms’ tumor gene 1 (WT1) is a potent transcriptional regulator, its
expression correlates with cell proliferation and metastatic behavior of
tumor cells. It is overexpressed in many different types of tumors [78].
Twenty-five patients with MDS were vaccinated with a WT1-peptide
vaccine, comprising a CD4+ T cell epitope and a HLA-A*2402-re-
stricted modified CD8+ T cell epitope. Eleven patients showed a CTL
response as measured by HLA class I-multimers. No overt differences in
the CTL response were found between patients with clinical benefit and
those having progressive disease. Only five patients showed a WT-1
specific DTH response but the relation with clinical response was not
reported, neither was the WT1-specific CD4+ T cell response reported
[79]. This vaccine was also tested in 32 patients with advanced pan-
creatic cancer in combination with gemcitabine chemotherapy. In 18 of
the patients a WT1-specific DTH response was observed. Eleven of the
16 patients with longer survival and none of the 7 patients with short
survival showed a DTH response. Patients with a positive WT1-specific
DTH response displayed superior OS. No differences were seen with
respect to the number of WT1-specific CD8+ T cells. However, DTH+
patients displayed more naïve WT1-specific T cells at baseline and a
significantly higher percentage of memory T cells than effector T cells
after treatment than the poor responders [80], suggesting that the poor
responders may have exhausted their WT1-specific T cell response
while this population is still fit in DTH+ responders. An anchor-mod-
ified HLA-A*2402 restricted 9-mer WT1 peptide was injected in 21
patients with recurrent glioblastoma multiforme (GBM). Vaccination
resulted in 2 PR and 10 SD. All patient tumors expressed WT1, but the
patients with a PR had strong staining of tumor tissue, suggesting that
the level of overexpression matters for clinical efficacy. The clinical
responses could not be associated to the vaccine-induced T cell response
since high frequencies of WT1-specific T cells were present before
vaccination and did not increase after vaccination, even not in the
clinical responder patients. Unfortunately, no data was presented on the
activation of T cells [81] as a similar maturation of the T cell response
seen after PR1 vaccination [76] may have occurred in these WT1 vac-
cinated clinical responders. Thirty patients in post-remission of AML
but at very high risk of relapse were vaccinated with WT1 messenger
RNA electroporated DCs [82]. Nine patients showed molecular remis-
sion, defined as the normalization of the WT1 mRNA tumor marker in
the blood, 5 of which were sustained for a very long time. Four other
patients showed disease stabilization for a minimum of 2 months. The
survival of the vaccine-responders was significantly better than that of
non-responders. Measurement of the circulating WT-1 specific T cell
response was restricted to the measurement of an HLA-A*0201 re-
stricted epitope but revealed an association between the increase in
WT1-specific CD8+ T cells and clinical outcome. Notably, the presence
WT1-specific CD8+ T cells in DTH-infiltrating T cells was correlated
with long term clinical responses (at least 3 years). The latter ob-
servation confirms earlier studies in vaccinated melanoma patients,
showing that the presence of TAA-specific T cells among skin-test

infiltrating T cells predict clinical outcome [83]. Thus, WT1-specific
vaccination shows levels 1a and 1b evidence in multiple trials. Only in
one occasion objective clinical responses were correlated with immune
data, providing level 3 evidence for WT1-targeted vaccine efficacy.

2.2.3. Personalized peptide vaccines based on pre-existing immunity
A series of trials have been performed with so-called personalized

peptide vaccination (PPV). Here, vaccine-peptides are selected from a
warehouse of HLA-class I restricted TAA based on the HLA type of the
patient and the detection of pre-existing peptide-specific IgG reactivity
against the TAA. Also in these trials levels 1 and 4 of evidence for
vaccine efficacy is provided. In a phase 2 trial, 60 patients with ad-
vanced colorectal cancer failing at least one regimen of chemotherapy
or targeted therapy were vaccinated with a maximum of four peptides
[84]. In 63% of the 51 patients completing at least one series of 6
vaccinations, a CD8+ T cell response was detected by ex-vivo IFNγ
Elispot. IgG responses to the selected peptides were increased in 94% of
the patients. Patients with a concomitant increase in their CTL and IgG
response (possibly reflective of CD4+ T cell reactivity) showed a better
prognosis than the others. Both an increased T cell response and the
number of peptides the patient responded to were predictive for fa-
vorable OS, once again suggesting that the magnitude and breadth of
the response to cancer are important determinants. Similar observa-
tions were made in a single arm phase 2 trial where PPV-vaccinated
patients with metastatic upper tract urothelial cancer. An increase in
PPV-specific IgG reactivity was found in 19 of 37 patients and an IFNγ T
cell response in 17 of 37 patients. Using a landmark time analysis,
patients displaying both a humoral and cellular response to PVV had
better OS than those patients with no, only IgG or only a T cell response
[85]. In another phase 2 randomized trial, castration-resistant prostate
cancer patients received dexamethasone alone or in combination with
PPV. The vaccinated group of 37 patients displayed longer PFS, based
on the level of serum prostate specific antigens, than the control group
of 35 patients. Median OS was also longer. How the immune response
related to outcome was not reported [86]. In a phase 2 randomized
trial, vaccination of 39 patients with progressive bladder cancer after
first-line platinum-based chemotherapy with a maximum of 4 peptides
did not lead to improved PFS when compared to the control group,
albeit that OS was improved. In addition, patients who developed a
response to the vaccine displayed a longer PFS [87]. PPV was also
tested in patients with previously treated advanced NSCLC. Patients
received either docetaxel with PPV or docetaxel with placebo. No dif-
ference in PFS was observed when both groups were compared. Inter-
estingly, within the vaccinated arm those patients displaying vaccine-
induced increases in the peptide-specific IgG titer of at least 2-fold had a
longer PFS and OS [88]. Another phase 2 randomized trial tested the
addition of low-dose cyclophosphamide, with the intention to attack
regulatory T cells, to PPV in patients with advanced biliary tract cancer
[89]. No differences in the percentages of Tregs were observed between
cyclophosphamide treated patients and the control group. Vaccine-in-
duced T cell responses were observed in both groups and potentially
were a bit higher in the combination treated patient group. While this
combination group also showed a longer PFS, no clear relationship was
found between the strength of the vaccine-induced immune response
and survival. In summary, vaccine efficacy at the first level was found
in 4 trials whereas level 4 evidence was provided in two trials of the 6
trials analyzed.

2.2.4. Vaccines targeting the overexpressed proteins HER2, MUC1 and CEA
The human epidermal growth factor receptor-2 (HER2) is a mole-

cular driver in about a quarter of breast cancers. Antibody therapy to
HER2 has dramatically improved the clinical outcome in breast cancer.
When given in a neoadjuvant setting, 40–60% achieve a pathologic
complete response (pCR) and this is associated with decreased recur-
rence rate and better OS [90,91]. CD4+ Th1 responses to HER2 are
also detected in patients with HER2+ breast cancer but their numbers
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decline with progressive disease. Low numbers of HER2 specific Th1
cells have been associated with an increased risk to recurrences after
neoadjuvant therapy [92]. Similarly, a preexisting strong HER2-specific
T cell response (measured by DTH or by IFNγ Elispot) is correlated with
longer PFS in prostate cancer [93]. In breast cancer, elevated levels and
broader reactivity of HER2-specific Th1 cells as measured by ex-vivo
IFNγ Elispot correlated strongly with pathological CR following
neoadjuvant treatment with HER2 antibody therapy, irrespective of
general immune status of the patients [92]. Hence, vaccination against
HER2 seemed a rational choice. Four patients with a non-pathological
CR to neo-adjuvant therapy showed low numbers of HER2-specific Th1
cells before vaccination but a strong increase in overall levels and
breadth of the HER2-specific T-cell response after the injection of au-
tologous DC pulsed with 6 promiscuously HLA class II binding HER2
peptides [92]. The impact of the vaccine was tested in a larger trial,
confirming its capacity to increase the levels and breadth of the HER2-
specific Th1 response in most patients. However, the detection of these
responses was much lower in the sentinel lymph nodes unless not only
HER2 vaccination but also anti-estrogen therapy was given. Potential
level 3 evidence could be seen as vaccination increased the pathological
CR when the vaccine was given together with anti-estrogen therapy
[94], but the effect anti-estrogen therapy on pathological CR was not
tested. In a large trial with 298 clinically disease-free node-positive and
high-risk node negative breast cancer patients, 153 patients received
AE37 (HER2) + GM-CSF and 145 patients GM-CSF only. The vacci-
nated group showed ex-vivo detectable increased HER2-specific pro-
liferation and increased numbers of IFNγ-producing HER2-specific T
cells, for the subgroup of patients tested. No differences in the recurrent
rate were seen comparing both groups. A preplanned subgroup analysis
revealed that 78% of the vaccinated triple negative breast cancer pa-
tients (with low to intermediate HER2 expression) were still disease free
versus 49% of these patients in the control group [95], providing level 4
evidence for vaccine efficacy.

Mucin-1 (MUC1) is expressed by many solid tumors. TG4010 is a
vaccinia virus-based vaccine expressing full length MUC1 that was used
to vaccinate 148 patients with MUC1-positive NSCLC [96]. Half of the
patient group received cisplatin and gemcitabine chemotherapy
whereas the other half received chemotherapy+TG4010. A longer PFS
was seen in the vaccinated group. A pre-specified analysis of the CD8+
T cell response using HLA class I-multimer analysis did not reveal a
strong response rate and was not different between the two arms [96].
No analysis of the CD4+ T cell response were performed because in a
previous trial the response by CD4+ T cells, measured as a proliferative
index of> 2, was deemed not informative while a response by CD8+ T
cells, measured after a round of in vitro stimulation and found in 12 of
the 21 patients with disease control, was associated with longer time to
progression and OS [97]. Notably, the TG4010 induced MUC1-specific
CD4+ T cell and CD8+ T cell response was found to be transient in two
different trials [97,98]. In addition, a biomarker program had identified
that the frequency of circulating CD16+CD56+CD69+ lymphocytes
was higher in 37 vaccinated patients with a shorter time to progression
and worse OS [96]. A phase2b/3 trial with 222 patients has been
launched and the predictive value of this cellular biomarker was posi-
tively validated in the 2b part of trial [99]). Potentially, these activated
lymphocytes have a negative effect on the immune system for instance
by killing of DCs, activated CD4+ T cells and activated macrophages
[100]. However, high frequencies were also associated with a higher
incidence of adverse events in the vaccine group [96], suggesting that
this may also underlie the difference in time to progression. Still, an
increased progression free survival was found in the TG4010 group
when compared to the placebo group, suggesting clinical benefit from
MUC1 vaccination. Overall, these data suggest that the level 1 evidence
obtained in the first trial could not be validated in the second trial.
Despite the fact that potential level 4 evidence for vaccine efficacy was
provided there was no strong link to vaccine-induced T cell reactivity.

Carcinoembryonic antigen (CEA) has also been considered as target

antigen for therapeutic vaccines. In the past, we have shown that op-
timal response induction requires a balancing act to fine-tune the an-
titumor effect while lowering intestinal autoimmune pathology [101].
Twenty-seven patients with CEA expressing carcinomas were vacci-
nated with a DNA vaccine encoding an HLA-A*0201 restricted CEA
epitope. This resulted in the detection of CEA-specific CD8+ T cells in
58% of the patients treated whom displayed no measurable disease at
start of the trial, measured in an ex-vivo IFNγ Elispot assay [102]. Only
a minority of patients with measurable disease showed a reaction to
vaccination, indicative for disease burden associated immune suppres-
sion, and suggesting that is might be better to vaccinate in a minimal
residual disease setting. Patients who reported diarrhea during the trial
had a longer OS. Diarrhea was associated with a drop in the serum CEA
levels (level 2). Most likely diarrhea was a reflection of an on-target
autoimmune effect as the CEA peptide was shown to be presented on
malignant and benign tissue, reminiscent of what has been shown after
vaccination with melanoma associated antigens and vitiligo [103].
Also, chimeric antigen receptor T-cell therapy targeting CEA has been
associated with respiratory toxicity due to transient CEA expression on
lung epithelia caused by the precondition regimens [104] and has
shown to induce severe colitis [105]. Potentially, reflections of on-
target immunity to healthy tissues might also be seen as a level 3 of
evidence, similar to vitiligo in the skin and severe ocular autoimmunity
through destruction of normal melanocytes in patients with melanoma.
This has been associated with a good efficacy of tumor immunotherapy
[106].

The PANVAC vaccine targets both CEA and MUC1 and was used in a
phase 2 trial to vaccinate 25 patients with metastatic breast cancer of
any subtype in combination with docetaxel chemotherapy [107]. The
23 patients in the control arm received chemotherapy only. In the
vaccine arm 56% of patients showed a CEA- and/or MUC1-specific
immune response, measured after IVS, while this was the case for 40%
in the control arm. There was a trend visible for improved PFS in the
combination arm [107]. The data on MUC1 and CEA demonstrate that
some of the TAA used in therapeutic vaccines may mediate antitumor
effects but should be targeted with caution.

2.3. Therapeutic efficacy of cancer vaccines to treat virally-induced high
grade lesions and cancers

About 20% of the cancers are induced by viruses, one well-known
virus is human papillomavirus of which especially type 16 (HPV16) is
highly oncogenic and causes tumors in the head and neck region as well
as the anogenital region. Another oncogenic virus is the Merkel-cell
polyomavirus. Both virus-induced cancers can respond to adoptive T
cell therapies [108,109]. In addition, Merkel-cell carcinoma responds
extremely well to PD-1 checkpoint blockade, showing an objective re-
sponse rate of 56% in advanced Merkel-cell carcinoma [110]. This is
much less the case for the HPV-induced carcinoma’s [111]. The most
likely reason for this is the presence of virus-specific CD4+ and CD8+
T cells in most of the patients with Merkel-cell carcinoma [112] and
lack thereof in the majority of patients with a recurrent HPV-induced
tumor [113–115].

To increase T-cell reactivity to HPV16 several types of vaccines have
been developed which aim to harness the immune system against the
viral oncoproteins E6 and E7, as they are critically involved in tumor-
igenesis. VGX-3100 is a DNA vaccine targeting oncoproteins of HPVs
type 16 and 18. Immunization of patients with high-grade cervical le-
sions resulted in the induction of potent CD4+ Th1 responses and
CD8+ CTL responses [116]. In a randomized phase 2b double blind,
placebo-controlled trial, the vaccine induced regression in 50% of the
107 vaccinated patients with high-grade cervical lesions whereas this
was observed in about 31% of the placebo group [117]. Post-hoc ana-
lyses showed that the regression of lesions was associated with an in-
crease in the number of vaccine-induced T cells responding to E6 as
measured by IFNγ Elispot [117] as well as CD137+CD8+ HPV-specific
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T cells expressing perforin or granzyme in the blood and an increase in
perforin+ T cells in the tissue [118]. The HPV DNA vaccine GX-188E
also induced significant HPV-specific IFNγ-producing CD4+ and CD8+
polyfunctional T cell responses and the regression of high grade cervical
lesions in 7 of 9 vaccinated patients [119]. ISA101 is an HPV16 syn-
thetic long peptide (SLP) vaccine which was proven to be safe, highly
immunogenic and capable of inducing type 1 CD4+ and CD8+ T cell
responses in patients with HPV16-induced pre-malignant cervical le-
sions [62,120] and HPV16-induced end-stage cervical cancer
[121,122]. Furthermore, it was shown to induce objective regressions
of HPV16-induced high grade vulvar lesions in about 50% of the treated
patients, in two independent trials, whereas spontaneous regression is
only observed in 1.3% of the patients [123,124]. Notably, post-hoc
analyses of the first trial showed a strong correlation between the
breadth and magnitude of the ex-vivo vaccine-induced type 1 T cell
response and clinical responsiveness [123,125] and this correlation was
confirmed in the pre-defined analyses performed in a second trial
[124]. Therapeutic ISA101 vaccination of patients with advanced or
recurrent HPV16-positive cervical cancer installed HPV16-specific T
cell reactivity in patients with a less suppressed immune status but the T
cell response was much weaker than observed before in patients with
HPV16-induced high grade vulvar disease. It also did not result in
clinical responses [126]. Most likely, the lower T cell response was due
to the apparent tumor-mediated leukocytosis observed in these patients
as depletion of circulating CD14+ myeloid cells resulted in increased
detection of T cell reactivity against recall antigens and the HPV16
oncoproteins [127]. In addition, chemotherapy-mediated normalization
of the myeloid cell composition resulted in much stronger T cell re-
sponses to therapeutic vaccination when given to patients with ad-
vanced, recurrent or metastatic cervical cancer [127]. Moreover, it led
to more cure in a mouse model for HPV16-induced cancers [127] and
preliminary reported data reveal clinical benefit in those patients with
the strongest immune response to the vaccine [128]. Upon activation of
tumor-specific T cells they start to express co-inhibitory markers in-
cluding PD-1 [51] suggesting that more benefit may be achieved when
vaccination is combined with checkpoint blocking. In melanoma,
combination of a TAA peptide vaccine was shown to be safe in com-
bination with nivolumab [129]. In a phase 1/2 trial, patients with in-
curable HPV16-driven oropharyngeal cancers were treated with PD-1
checkpoint blockade and in order to boost the levels of HPV16-specific
T cells, with the ISA101 HPV16 synthetic long peptide (SLP) vaccine.
This doubled the objective response rate [130], when compared to
earlier data [111].

A second example is vaccination against cytomegalo virus (CMV).
Studies have shown that the CMV-derived phosphoprotein 65 (pp65)
can be expressed in glioblastoma cells but not the surrounding healthy
tissue, suggesting that this protein could function as a virus-derived
tumor-specific target. In a small randomized and blinded clinical trial in
newly diagnosed glioblastoma 12 patients were treated with autologous
pp65 RNA-pulsed DCs with or without preconditioning of the vaccine
site by injection of recall antigens. Preconditioning increased the ac-
cumulation of the injected DCs in the vaccine site-draining lymph nodes
in a recall antigen-specific CD4+ T cell-dependent fashion. Not only
did these patients display a better PFS and OS when compared to pa-
tients receiving only the DC vaccine but also the clinical response was
associated with an increase in the number of pp65-specific IFNγ-pro-
ducing T cells, with the two long term survivors showing the highest
increase in pp65-specific T cells after vaccination [131]. In a more re-
cent study, the immunogenicity of pp65-DC vaccination in patients with
glioblastoma as well as the correlation between the strength of the
pp65-specific immune response after vaccination with clinical outcome
was confirmed. Patients whom displayed an OS>40 months had a
much more significant expansion in pp65-specific IFNγ producing T
cells than those with an OS<40 months [132].

In conclusion, there is strong evidence that the T cell response to
viral antigens in human tumors plays an important role in controlling

disease. The therapeutic vaccination trials in patients with pre-
malignant disease provide levels 3 and 4 evidence of vaccine efficacy
and preliminary data suggest that in combination with other im-
munotherapies (e.g. checkpoint blockade) clinical response rates to
immunotherapy go up.

2.4. First signs of successful clinical translation of neoantigen vaccines

Good clinical responses to checkpoint blocking have also been as-
sociated with the presence of high numbers of mutations in tumors and
the presence of T cells specifically recognizing these mutations [133].
Mutations in the DNA leading to a change in one or more amino acids of
proteins (e.g. point mutations, insertions, deletions, frameshifts or
breakpoints) may lead to a new class of peptides, called neoantigens,
that are presented in MHC class I and II. They activate T cells with high
affinity TCR because they have never been presented in normal tissue
and thus bypass thymic tolerance. Spontaneous activation of neoan-
tigen-specific CD4+ and CD8+ T cells have been documented in sev-
eral types of tumors by several groups since 1994 [134] and hence
neoantigens became a focus in the development of therapeutic vaccines
[135]. The tools to identify MHC class I and class II-restricted neoan-
tigens have undergone major technical advances allowing for their
rapid identification [136]. In several mouse models, it was shown that
neoantigens expressed by tumors not only functioned as targets for
tumor-specific T cells responding to checkpoint therapy but also that
vaccination with therapeutic long peptide vaccines or poly-epitope
messenger RNA based on these mutant peptides induced tumor re-
gression and rejection comparable to that of checkpoint blockade
[137–140]. These results are similar to what was shown before with
respect to the use of viral oncogene vaccines [30,141].

A deletion mutation affecting exons 2–7 of the EGFR gene
(EGFRvIII) is found in a sizeable fraction of glioblastomas. A peptide
containing the specific novel amino acid sequence created by this de-
letion mutation was conjugated to keyhole limpet hemocyanin, to in-
crease its immunogenicity. The vaccine, called rindopepimut, has been
tested in several phase 2 trials of patients with gross total resection of
tumor and no evidence of progression after radiotherapy with con-
comitant temozolomide chemotherapy. In a first trial with 18 patients
[142], 6 of 14 tested patients showed a rise in mutant-specific anti-
bodies and this was associated with a better OS. Only 3 of the 17 tested
patients showed a DTH response to the mutant peptide, indicating that
not many patients were able to mount a T cell reaction to this mutant
peptide. These 3 patients displayed an extremely good OS whereas no
difference in OS was found when patients were grouped according to
their DTH response to recall antigens. Importantly, 82% of the patients
showed loss of EGFRvIII expression in recurrent tumors [142]. In the
second trial, vaccination was performed during two different schedules
of temozolomide chemotherapy. In one are 7 of 8 patients displayed a
mutant-specific DTH response while in the other arm none of the pa-
tients responded. However, no differences in PFS or OS were seen.
Notably, the increase in DTH reactivity was accompanied by a specific
reduction in CD4+ T cells, an increase in CD4+ Tregs as well as mu-
tant-peptide specific antibody titers [143], making one wonder if vac-
cination led to EGFRvIII-specific Th1 responses. Again in 11 of 12 re-
current tumors the expression of EGFRvIII was lost. Similar
observations were made with respect to antibody titers and EGFRvIII
expression in recurrent tumors in a third trial with 65 patients [144].
Because these trials showed an encouraging PFS and OS when com-
pared to historical controls and despite the fact that EGFRvIII expres-
sion was rapidly lost, a randomized, double-blind, phase 3 trial was
started. However, this study was terminated for futility as no difference
in OS was seen during a pre-planned interim analysis [145]. Again, loss
of the deletion mutant was seen in about 60% of patients in both groups
but the Ab titers did not differ between patients with loss or persistent
expression of the mutant EGFR, indicating that the humoral response is
not a good immune correlate for clinical responsiveness and reinforces

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

126



the notion that the cellular immune response should be more closely
monitored in order to value better the results obtained in these clinical
studies. The reasons for failure of this trial are highly similar to the
phase 3 trials that failed when TAA-targeting vaccines were used.

With the development of pipelines to identify neoantigens, perso-
nalized vaccine strategies have been developed. A first trial with
neoantigen vaccination was performed by Carreno et al. [146].
Neoantigens were identified in tumors of patients with melanoma,
confirmed to bind to HLA-A*0201 and loaded onto DC for vaccination.
Neoantigen-specific T cells were detected after one round of IVS and
isolated neoantigen-specific T cells were shown to recognize en-
dogenously processed mutated proteins, showing their functionality.
Another study utilized 13–20 SLP as vaccine to target up to 20
neoantigens per patient, admixed with poly ICLC in 8 patients with
stage II/IVB melanoma after surgical resection with curative intent. Ex-
vivo IFNγ Elispot analyses revealed immune responses to several pools
of peptides, mostly CD4+ T cell mediated. Neoantigen-specific CD8+
T cells were detected after one round of IVS and> 30% of the cells
were polyfunctional. Of all injected peptides, 60% were recognized by
CD4+ and 15% by CD8+ T cells. In some, but not all, patients the
vaccine-induced CD4+ and CD8+ T cells were able to recognize au-
tologous tumor cells. Furthermore, CD4+ T cell were shown to respond
to DC exposed to irradiated autologous tumor cells, showing natural
presentation by DC of neoantigens. Interestingly, PD-1 blockade in-
creased the breadth of the neoantigen T cell response [147]. Recently, a
personalized RNA vaccine was tested in 13 patients with stage 3 and 4
melanomas after resection of their metastases and no radio-detectable
lesions [148]. For each patient 10 mutations were selected and en-
gineered into two synthetic RNA encoding 5 linear-connected 27mer
peptides with the mutation in the middle. Patients were vaccinated
percutaneously in the inguinal lymph node as this ensured efficient
uptake of the RNA by DC. All patients completed treatment and T cell
reactivity was detected against 60% of the predicted epitopes, with
each patient responding to at least 3 epitopes. The majority of epitopes
was exclusively targeted by CD4+T cells, and 25% by both CD4+ and
CD8+ T cells. All patients had recent history of recurrent disease and a
high risk for relapse, but vaccination was associated with a strong re-
duction in the longitudinal cumulative recurrent metastatic events
(Level 2). In addition, 3 of 5 patients with a metastasis at start of
vaccination, showed objective clinical responses (1 CR, 1 PR, 1 MR).
The effects seen are reminiscent of the outcomes seen in earlier trials
with autologous tumor material. A DC vaccine with autologous tumor
RNA was tested in 31 metastatic melanoma patients with follow-up to
10 years after the last patient was vaccinated. Based on DTH responses
and in vitro T cell proliferation assays, 16 of 31 displayed reactivity to
tumor loaded DC, 12 were negative and 3 inconclusive, indicating the
induction of a tumor-specific response. Two patients showed dis-
appearance of lesions, one even with CR for a couple of months, both
later treated with checkpoint therapy and still alive. The presence of an
immune response was associated with a significantly better OS and it
was an independent predictor after correction for disease stage and
performance. The 8 patients with> 20 months of survival were all
immune responders [149]. Another trial used irradiated autologous
melanoma cells conjugated to dinitrophenyl – in order to ensure tumor
cell death - and mixed with BCG in order to enhance the vaccine’s
immunogenicity. Vaccination of 126 patients with stage 3b/c mela-
noma in the adjuvant setting revealed that patients with a strong DTH
response to unmodified autologous tumor cells displayed a 5-year OS of
75% and DFS of 47%, whereas the no to weak DTH responders had a 5-
year OS of 44% and DFS of 26% [150]. Interestingly, 35 vaccinated
patients developed unresectable disease were treated with the CTLA4
checkpoint inhibitor ipilimumab. When compared to a similar group
that had not been vaccinated before, vaccinated patients showed sig-
nificantly more CR, PR and SD as well as longer OS. The antigens to
which the immune system responded in these latter two trials are un-
known but with our current knowledge are likely to involve

neoantigens too. In addition, potential vaccine-induced responses to
TAA expressed by the tumor may have fostered stronger reactivity to
neoantigens as was shown by a trial in which a melanoma patient with
low level of MAGE-specific CTL in blood after MAGE vaccination dis-
played tumor regression. Using TCR-Vβ cDNA libraries only a few of the
vaccine-induced CTL were found in regressing metastases. However,
they also found other TCR belonging to tumor-specific CTL enriched in
regressing metastases and detectable in blood only after vaccination.
These CTL recognized a neoantigen in the context of HLA-A2. Its pre-
sentation was increased in the presence of IFNγ suggesting that the
attack of tumor cells by MAGE-specific CTL may have induced antigen-
spreading of CTL recognizing truly tumor-specific antigens [151]. Thus,
the first data in neoantigen vaccination trials indicate level 2 evidence
for vaccine efficacy, however, it is likely that early autologous tumor
cell based vaccine have triggered neoantigen-specific T cells. This
makes it likely that also level 3 evidence for neoantigen vaccine efficacy
exists.

2.5. Level 3 evidence for vaccines targeting immune suppressive mechanisms

A new development is the development of vaccines targeting mo-
lecules that suppress antitumor immunity. The transcription factor
hypoxia-inducible factor-1α (HIF-1α) regulates the expression of genes
involved in immunosuppression. Inhibition of HIF-1α increased the
efficacy of tumor-specific T cells by increasing the production of their
effector molecules and slowed down the growth of cancer cells in the
4T1 breast cancer model [152]. HIF-1α was also found to be a natural
target for CD4+ T cells in patients with triple negative breast cancer.
Three highly homologous peptides elicited type 1 immunity in mice and
reduced mammary tumor growth in the C3(1)Tag basal-like/stem cell
high murine model [153]. So far, no studies have been reported in a
patient setting. Indoleamine 2,3 dioxygenase (IDO) is a potent inhibitor
of T cells in patients with cancer and can be expressed by cancer cells
and by suppressive myeloid cells. Interestingly, spontaneous T cell re-
sponses against IDO are detected in patients with cancer [154]. Level 3
evidence of vaccine efficacy was found in a study where 15 patients,
with stable stage 3/4 NSCLC disease after standard chemotherapy, were
vaccinated with an HLA-A*0201 restricted IDO peptide with imiquimod
ointment as adjuvants applied 8 h before vaccination [155]. All patients
developed an IFNγ-associated T cell response to the IDO peptide, as
measured by Elispot after IVS. Potential on-target autoimmune effects
related to IDO expression in the gastrointestinal tract were found. A
number of patients remained in SD whereas one showed a PR of target
lesions. No correlation was found between IDO expression in the tumor
and clinical response to the vaccine, but the tumor of the patient with a
PR had moderate IDO expression. Interestingly, the patient with PR and
one long term clinical responder (SD for 2 years) showed long term
stabilization of the kynurenine to tryptophan ratio, which is a measure
for IDO activity. Two early progressive patients showed a strong ex-
pression of IDO in their tumor and a strong increase in this ratio. The
IDO pathway is also linked to Treg biology via the induction of Tregs by
IDO+ DC. In this trial, Tregs decreased in all patients during vaccine
therapy [155]. More recently, also pre-existing PD-L1-specific cytotoxic
T lymphocytes able to kill both PD-L1 expressing malignant lymphoma
cells and normal immune cells, were described. In co-cultures the ad-
dition of PD-L1-specific CTLs increased the response of virus-specific
CD8+ T cells in vitro [156–158], suggesting that may induce a similar
effect in vivo. No trials have been performed.

2.6. Vaccines are not necessarily required to induce tumor-specific CD8+ T
cells

Tumor-specific vaccines usually focus on the induction of tumor-
specific CD8+ T cells. With the rising potential to rapidly identify
neoantigens, attempts were made to use them in vaccines for boosting
neoantigen-specific CD8+ T cells. Recently, the mutational landscape
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was determined in 3 mouse tumor models and peptides with high
likelihood to bind to MHC class I were used for vaccination.
Unexpectedly, most of the peptides were recognized by CD4+ T cells.
Furthermore, vaccination with such CD4+ T cell activating neoanti-
gens induced potent tumor control and complete rejection of progres-
sively growing tumors in mice. As expected [159,160], part of the
mechanism included reshaping of the tumor microenvironment and
antigen spreading by inducing CD8+ T cell responses to other epitopes
[137,140]. The predominant recognition of neoantigens by CD4+ T
cells after vaccination is also observed in humans [146,147]. Also in
other mouse models where tumor-specific antigens are used, tumor
control by CD4+ T cells is found. CD4 type 1 T-cells against a point
mutation in isocitrate dehydrogenase type 1, a defining mutation in
glioma, suppressed tumor outgrowth of subcutaneous mutant- isocitrate
dehydrogenase type 1+ sarcomas [161]. MUC-1 specific CD4+ T cells
prevented lung metastasis of MUC1+ tumors in mice [162]. HPV-
specific IFNγ-producing CD4+ T cells controlled spontaneous cervical
tumor outgrowth and progression in genetically engineered K14-HPV16
transgenic mice [163]. Notably, also the earlier mentioned therapeutic
HPV vaccines are strong inducers of type 1 CD4+ T cell reactivity and
in the trials with HPV16 SLP vaccine a clear relation was found between
the strength of the ex-vivo CD4+ T-cell response and the clinical re-
sponse of patients with vulvar lesions [124,125]. More anecdotal evi-
dence is found in trials with tumor-associated antigens. A pancreatic
cancer patient vaccinated with hTERT displayed a PR and long-term
survival that was associated with a broad type 1 CD4+ T cell response
while no hTERT-specific CD8+ T cells were found [57]. In depth
analysis of long term NSCLC survivor in complete remission after
hTERT vaccination also showed a broad hTERT-specific CD4+ T cell
response and antigen-spreading to hTERT epitopes unrelated to the
vaccine, including to one HLA-B7-restricted CD8+ T cell epitope. Such
T cell activity was also observed in other clinical responders but not in
non-responders [57,58]. Level 1 evidence of vaccine efficacy with the
promiscuous HLA class II hTERT peptide was also reported [55]. Fi-
nally, a mixture of 12 MHC class I restricted epitopes and/or a mixture
of 6 helper peptides derived from the melanoma antigens gp100, tyr-
osinase, MART-1, MAGE-A3 and MAGE A1, varying between 14–23
amino acids in length, have been used to vaccinate 175 patients with
measurable stage IV melanoma. CTL responses, measured after IVS by
IFNγ Elispot were found in 28–47% of the treatment groups whereas
helper T cell responses, measured directly in a 5-day proliferation assay,
were found in 40% of treated patients. T-helper reactivity was asso-
ciated with production of IL-2, IL-12p70, IL-5, CXCL9 and CXCL10. Of
the 148 eligible patients, 7 showed a PR and 27% had SD. The PR rate
was higher in the groups receiving helper T cell epitopes. There was no
association between the presence of a CTL response and a clinical re-
sponse or OS. In the group of patients receiving the helper peptides, the
proliferative response to the melanoma peptides but not to the recall
antigen tetanus was strongly associated with the 1 year survival rate
and OS, even after correction for clinical variables. Interestingly, the
overall response rate was the highest in patients responding to both the
CTL and the helper T cell vaccine [164]. Although the authors did not
formally exclude that the longer peptides used – a format known to be
of higher immunogenicity [165] – also induced CTL responses, the data
suggest CD4+ T cell responses are relevant for the control of tumors.
This notion is sustained by the earlier observation that the adoptive
transfer of autologous NY-ESO1-specific CD4+ T cells induced regres-
sion of refractory metastatic melanoma [166] as well as by the ob-
servation that TIL of clinically responding stage IV melanoma patients
comprise neoantigen-specific CD4+ T cells [167,168] and the ob-
servation that the infusion of neoepitope-specific CD4+ T cells medi-
ated tumor regression in patient with cholangiocarcinoma [169].

3. The influence of host immune factors on vaccination and
survival

3.1. The impact of circulating myeloid cells and granulocytes on vaccine
efficacy

The NSCLC patients vaccinated with GV1001 not only were ex-
amined for their response to vaccination but also analyzed with respect
to the presence and potential impact of immune suppressive myeloid
cells. The PBMC of the patients were analyzed for the presence of two
types of MDSC, the CD14+, HLA-DRlow monocytic MDSC (mMDSC)
and the Lin-, CD33+CD11b+, HLA-DR-MDSC. A group of healthy
donors (not matched for age or sex) were taken as controls. Among the
22 patients, 16 displayed a T cell response. The Lin-, CD33+CD11b+,
HLA-DRneg MDSC were higher in those vaccinated patients lacking an
immune response but as a group the percentage of these MDSC was not
higher than in the healthy controls. The mMDSC were higher in the
patient group and had an impact on OS within the group of immune
responders. A low percentage of mMDSC was associated with longer
PFS (60 vs 7.8 months) and an extended OS (73 vs 21 months) [170].
This was not the only trial where an impact of MDSC on therapy and
survival was observed. In melanoma, patients treated at the point of a
low lymphocyte to monocyte ratio display a worse response to che-
motherapy [171]. In addition, melanoma patients with high levels of
mMDSC experienced worse survival and display lower reactivity to
melanoma associated antigens [172] and display less of a response to
checkpoint therapy [173]. The detection of T cell reactivity against
tumor antigens in combination with the levels of mMDSC also strongly
correlated to survival in melanoma [172–175]. MDSC also defined
survival in breast cancer. Patients who mounted an HER2-specific T cell
response and had a lower frequency of Lin-, CD33+CD11b+, HLA-DR-
MDSC displayed a higher 5-year survival rate. The patients with high
levels of these MDSC lacked a CD8+ T cell response to HER2 [175].

Manipulation of the levels of different myeloid cells may have a
positive impact on vaccine outcome and survival. Patients with pro-
gressive cervical cancer display higher levels of circulating CD14+
myeloid cells, the depletion of which results in the detection of stronger
T cell reactivity to recall antigens and tumor antigens while che-
motherapy-induced normalization of their levels is associated with a
stronger response to therapeutic tumor vaccination [127]. A combina-
tion of TAA-mRNA transfected DC vaccination and docetaxel che-
motherapy resulted in a decline in mMDSC. This decline in mMDSC was
associated with a longer disease specific survival in prostate cancer
patients [176]. Analyses of the PBMC of 74 metastatic melanoma pa-
tients treated with DC vaccination, revealed that a low expression of
phophatidylethanolamine binding protein 1 (PEBP1) after but not prior
to vaccination, was associated with a poor overall survival after vac-
cination. This was confirmed in a second cohort of 95 patients. PEBP1
expression correlated with genes in T cell responses but inversely with
genes of myeloid cells and STAT3 associated inflammation as well as
the myeloid to lymphoid cell ratio. Patients who did well displayed a
rise in PEBP1 after vaccination [177]. The data of these last 3 studies
suggest that a change in the balance between immune promoting versus
immune suppressive myeloid cells increases the tumor-specific T cell
response and improves patient outcome.

So far MDSC were hard to define phenotypically and functional
assays were poorly specific but we have started to define the function of
each phenotypically defined putative MDSC type in humans using in
vitro sorted MDSC. These analyses revealed strong suppressive function
for the mMDSC, variable suppression by the CD33+ MDSC and no
suppression by the putative CD33- MDSC. Attempts to reduce the MDSC
with gemcitabine, based on mouse models showing decreases in splenic
MDSC and better tumor immunity, failed in patients when focusing on
the frequencies of CD11b+HLA-DRlow/neg MDSC [178], mMDSC or
CD33+ MDSC while the levels of the non-suppressive CD33neg mye-
loid cells dropped steeply [31,32]. Using an easy to reproduce gating
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strategy, we showed that the levels of mMDSC were highly predictive
for survival in ovarian cancer but so were the levels of DC. The ratio
between these cells had a prediction specificity and sensitivity of 87.5%
for better overall survival [32]. In the TC-1 mouse model it was shown
that the presence of activated macrophage like DCs is important for the
outcome of immune-mediated chemotherapy effect [30,179], and
therapeutic tumor vaccination [180]. In melanoma patients treated
with PD-1 blocking antibodies, the levels of CD14+CD16-HLA-DRhi
(classical monocytes) is associated with longer survival and better re-
sponse to checkpoint therapy [181]. These observations are supported
by the observation that in addition to the number of infiltrating CD8+
T cells, also the number of activated DC and ratio of M1 to M2 mac-
rophages not only determines overall survival but also predicts the
response to adoptive T cell therapy in melanoma [182].

Neutrophils, which comprise the population of granulocytic MDSCs
may have a systemic immune suppressive effect in cancer patients. In
the RNActive CV9201 study, targeting 5 TAA in NSCLC patients, the
neutrophil to lymphocyte ratio was inversely correlated with progres-
sion free and overall survival. Furthermore, two mutually exclusive
expression signatures in the peripheral blood characterized patients as
either having a T and NK cell signature or having a myeloid cells and
inflammation signature. Patients with the latter signature had shorter
PFS and OS [183]. A high neutrophil to lymphocyte ratio was asso-
ciated with a less broad vaccine-induced T cell response after PPV
vaccination of patients with advanced colorectal cancer [69], indicating
that neutrophils may also impact on the efficacy of the vaccine to sti-
mulate tumor-specific T cell reactivity.

Altogether, these studies make a strong case for using the levels of
different types of circulating myeloid cells (immune suppressive and
stimulatory), in addition to the myeloid to lymphoid ratio and the de-
tection of T cell reactivity for clinical decision support. This notion is
sustained by a recent study in which a peripheral immune score was
developed. The score was based on peripheral immune subsets re-
flecting immune function in a positive way, including central memory
CD4+ and CD8+ T cells, and the ratio of these two subtypes over ICOS
+ Tregs. It also evaluated the levels of potentially negatively acting
immune subsets, indicated by CD4+ or CD8+ T cells expressing more
than two of the CTLA-4, PD-1 and TIM3 checkpoints, the percentages of
ICOS+ Treg, CD11c+ DC expressing PD-L1, CD33+HLA-DRlow/neg
MDSC expressing PD-L1 and that of CD3-CD56+NK cells lacking ex-
pression of Tim3 [184]. The immune cells were assigned to bins based
on tertiles to ensure that patients with similar frequency of a given
subset were assigned to the same bin. Then a score was applied being
zero to the highest bin with an expected negative result or to the lowest
bin if that subset should have a positive response. Conversely, 2 points
were given to the other extreme bins. When pretreatment PBMC of 48
breast cancer patients, whom received either docetaxel or docetaxel
with a PANVAC vaccine, were analyzed with a scoring method based on
classic phenotypes, no association with PFS was found. However, if the
peripheral immune score was applied then a correlation with PFS could
be observed for the vaccine treated group but not in the control arm
[184]. This suggests that the peripheral immune score could help to
identify the patients who benefit the most from vaccination. The pre-
dictive value of this approach then was confirmed in a group of prostate
cancer patients treated with either a bone-seeking radionuclide alone or
in combination with PROSTVAC vaccine. Again, only in the vaccine
arm the peripheral immune score was predictive [184], confirming an
earlier report [185].

3.2. The impact of regulatory T cells and NK cells in trials

A few trials reported that not only MDSC but also regulatory T cells
may mediate an impact on vaccine efficacy and/or on survival. Among
the patients responding with a GV1001-specific T cell response after
vaccination, those with low frequencies of CD4+CD25+CD127low/
neg Foxp3+ Tregs had significantly increased PFS and OS. In addition,

the quality of the T cell response was better as indicated by the higher
IFNγ/IL5 and IFNγ/IL13 ratio [170]. Similarly, breast cancer patients
mounting a CD8+ T cell response to Her2 and having relatively low
frequencies of CD4+Foxp3+CD127lowCD25+ Tregs displayed a better
survival [175]. A subset of CD4+ T cells was shown to suppress tumor
immunity by the action of membrane bound TGFβ in mice [186]. One
study reported that vaccination with the MAGE-A3 may lead to the
induction of such Tregs in patients with metastatic melanoma [187].
Interestingly, disappearance of these CD4+TGFβ+Tregs was observed
in melanoma patients immunologically responding to vaccination – as
measured by DTH test - while in the immunologically non-responding
group the frequencies of CD4+TGFβ+Tregs rose to four times the le-
vels observed in the responders. The stage IV melanoma patients who
showed an immune response to the vaccine had longer progression free
and overall survival [188], suggesting that the vaccine expanded Tregs
have a negative impact on vaccine efficacy and survival. Indeed, T cells
that are genetically engineered to resist TGFβ-signaling were much
more active against mouse melanoma [189]. Vaccine-induced Tregs
were also observed in patients with high grade lesions of the vulva after
HPV16 SLP vaccination. These patients showed a weaker effector T cell
response to the vaccine and were less likely to show objective clinical
responses [125]. However, the observations were not confirmed in a
second study [124].

To interfere with Tregs, inoperable but stable metastatic colorectal
cancer received cyclophosphamide (50mg, twice a day on days 1–7 and
15–21) and were vaccinated with modified virus Ankara expressing the
tumor antigen 5T4. In 12 of the 27 vaccinated patients the percentage
of CD4+Foxp3+ Tregs dropped with about 40% or more. This de-
crease was associated with better PFS [190]. In another study, meta-
static castration-resistant prostate cancer patients received cyclopho-
sphamide at a 50mg dose, every day for 7 weeks in combination with
PPV vaccination or PPV alone. The decrease in percentage Tregs from
baseline frequencies was higher in the cyclophosphamide arm but so
was an increase in CD33+CD14-MDSC [191], suggesting that unin-
tentionally one suppressive mechanism was replaced by another when
cyclophosphamide is given.

Finally, the frequency of circulating CD16+CD56+CD69+ lym-
phocytes (NK cells) was higher in 37 vaccinated NSCLC patients with a
shorter time to progression and worse OS in a phase 2b trial [96]. The
predictive value of this biomarker was positively validated in a phase
2b/3 trial with 222 NSCLC patients and was only operational in patients
receiving the vaccine as it had no association with survival in non-
vaccinated patients [99]. Potentially, these activated lymphocytes have
a negative effect on the immune system for instance by killing of DCs,
activated CD4 T cells and activated macrophages [100].

4. Conclusions

All sorts of cancer vaccines have been tested in the clinic and with
the exception of a few, most trials did not reveal strong correlations
between vaccine-induced immunity and signs of clinical impact. This is
mostly due the fact that the number of true clinical responders in these
trials is rather low to allow for statistical comparisons, limiting the
analyses to showing that the clinical responders at least did mount a
vaccine-induced type 1 T cell response. There are several reasons to
explain the limited efficacy of vaccines, including: a) the choice for less
immunogenic vaccine platforms reflected by a low percentage of pa-
tients responding, the need for in vitro stimulation to detect the re-
sponding T cells and the transient nature of the induced response
[25,27,47,55,66,67,69,96] ; b) the choice to target suboptimal anti-
gens, which are heterogeneous expressed resulting in antigen loss var-
iants and tumor escape [72,145,192] or not dominant enough
[193,194]; and c) the lack of a supportive systemic and tumor en-
vironment in cancer patients, all reducing the potential to obtain suf-
ficient numbers of vaccine-induced tumor-reactive T cells that can enter
the tumor bed and exercise their effects on tumor growth. If a cancer
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vaccine is applied in settings of low disease burden [61,65,68,102,148]
or pre-cancer [116–119,123,124] when immune suppression is ex-
pected to be less, or in a setting that systemic immune suppression is
mitigated [127], the vaccine-induced T cell responses are stronger,
broader and of an Th1 and/or CTL type. This coincided with level 4
evidence for vaccine efficacy in ovarian cancer and in pancreatic cancer
[65,68]. Vaccination of patients with premalignant disease revealed a
good correlation between tumor-specific Th1/CTL responses and clin-
ical outcome. On the grounds that a type 1 immune contexture of
cancer is associated with better response to therapy [2], extrapolation
of the immune correlation found in patients with premalignant disease
towards patients with cancer is plausible.

Most cancer vaccine trials report level 1 evidence of vaccine efficacy
using survival benefit for immune responders as a surrogate marker for
the detection of an effective antitumor response. While extension of life
is the ultimate goal of immunotherapy, one may wonder how strong
this type of evidence is. In one trial patients were vaccinated with HLA-
A24 restricted peptides. There was no difference in survival between
vaccinated patients bearing the HLA-A24 restriction element and those
not having this HLA type, yet the immune responders within the HLA-
A24-positive group displayed better survival than those failing to
mount a T cell response [67]. In another randomized trial, no differ-
ences were seen between vaccinated patients or controls, but patients
who developed a humoral response displayed a better clinical outcome
[88]. A similar observation was made in the context of DTH responses
and survival [143]. Furthermore, some studies report that patients with
a response to 7 different peptides have a longer survival than those with
a response to 6 peptides [70] whereas in other studies a similar dif-
ference in survival is found for patients responding to 3 peptides versus
0–1 peptides [71,84]. A simple explanation for these observations
would be that the presence or more broader response to the vaccine
rather reflects a better immune status of the cancer patients than true
control of tumor growth. This notion is sustained by the regular ob-
servation that higher levels of circulating immune suppressive cells are
associated with a lower response to vaccines and with worse survival.
However, one can’t exclude that a DTH response reflects more func-
tional cells or that a broader response prevents escape, thus still reflects
valuable data. Therefore, studies presenting level 1 evidence for vaccine
efficacy in the context of assays that control for immune status and the
levels of immune suppressive cells increase the merit of their data. Type
2 evidence, which is more directly related to the behavior of tumors, is
not often used, Changes in the serum levels of the tumor markers PSA,
CEA, CA125 or CA19-9 [59,73,102] can be measured but many tumors
lack appropriate serum tumor markers that truly reflect disease burden.
Furthermore, the number and timing of metastatic events [148] as used
for melanoma is not likely to be useful for other types of tumors.

Level 3 evidence was defined as signs of on-target autoimmunity or
regression of individual metastases, objective clinical responses after
vaccination. Two trials in which an overexpressed self-protein was
targeted, reported signs of potential on-target autoimmunity [102,155].
More importantly, there were at least 18 trials showing regression of
premalignant lesions or tumors after vaccination with a series of dif-
ferent antigens over a spectrum of different tumors. In general, the
patients with such a clinical response showed a robust or more active
type 1 T cell response [56,57,61,66,69,72,76,82,123–125,148–150]
which in the case of premalignant disease showed a strong correlation
with clinical outcome [123–125]. The regressions of tumors in cancer
patients, albeit a few per trial, form an attest to the capacity of cancer
vaccines to induce a functional immune response, which under the right
– probably less immune suppressive – conditions even can control
tumor growth. Most likely that is the case why only a few trials have
presented level 4 evidence for vaccine efficacy. Vaccination of patients
with premalignant lesions resulted in a strong tumor-specific Th1/CTL
response and a higher regression rate than in the non-vaccinated con-
trol group [117]. Moreover, vaccination in a minimal residual disease
setting of ovarian cancer using an engineered autologous tumor

vaccine, resulted in tumor-specific type 1 T cell immunity and pre-
vented against the development of recurrences when compared to non-
vaccinated controls [64]. Similarly, a non-significant longer PFS was
found in a trial where vaccination of pancreatic cancer patients was
performed after surgery. However, in this trial HLA-A24+ were vac-
cinated and received gemcitabine, while the HLA-A24-negative patients
received only chemotherapy. Thus, this result should be taken with
some caution [68]. Cancer vaccination potentially is associated with
level 4 evidence in two other trials. The PFS as measured by serum PSA
levels was better in castration resistant prostate cancer patients re-
ceiving PPV with dexamethasone chemotherapy than in those receiving
chemotherapy only. But no immune response was measured [85]. In
addition, PPV vaccination of patients with progressive bladder cancer
resulted in a better OS but not a better PFS than the control group [87].

At this point it is fair to conclude that there are quite a number of
trials in which cancer vaccines induce the required type 1 T cell re-
sponse and regression of lesions or metastases. The immunotherapy of
cancer field has realized earlier that currently many vaccine platforms
have been optimized to do their job [24], that is the induction of tumor-
reactive CD4+ and CD8+ T cells to levels allowing ex-vivo detection in
the blood. For the use of cancer vaccines in the treatment of patients
with cancer, new studies will require investigators to address the rea-
sons for successful regressions rather than focusing on signatures as-
sociated with OS in the absence of such regressions. Understanding
what is similar among the level 3–4 responders and where they differ
from non-responders will teach the way to apply the vaccine with the
right co-treatments for the right patient. I expect that many overlaps
will be found with parameters defining the success of other im-
munotherapeutic treatment options.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Declaration of interest

SHvdB is one of the inventors on the patent for the use of synthetic
long peptides as vaccine but holds no financial interest. SHvdB serves as
a paid member of the strategy board of ISA Pharmaceuticals (NL) that
exploits this patent, as well as performs contractual work for ISA
Pharmaceuticals. SHvdB also has served as adhoc scientific advisor for
IO Biotech (DK) that develops a vaccine against proteins overexpressed
in immune suppressive cells. No other potential conflict of interest re-
levant to this article was reported.

References

[1] J. Galon, H.K. Angell, D. Bedognetti, F.M. Marincola, The continuum of cancer
immunosurveillance: prognostic, predictive, and mechanistic signatures,
Immunity 39 (1) (2013) 11–26.

[2] W.H. Fridman, F. Pages, C. Sautes-Fridman, J. Galon, The immune contexture in
human tumours: impact on clinical outcome, Nat. Rev. Cancer 12 (4) (2012)
298–306.

[3] W.B. Coley II, Contribution to the knowledge of sarcoma, Ann. Surg. 14 (3) (1891)
199–220.

[4] S.A. Rosenberg, N.P. Restifo, Adoptive cell transfer as personalized im-
munotherapy for human cancer, Science 348 (6230) (2015) 62–68.

[5] A.D. Fesnak, C.H. June, B.L. Levine, Engineered T cells: the promise and chal-
lenges of cancer immunotherapy, Nat. Rev. Cancer 16 (9) (2016) 566–581.

[6] P. Sharma, J.P. Allison, Immune checkpoint targeting in cancer therapy: toward
combination strategies with curative potential, Cell 161 (2) (2015) 205–214.

[7] T.L. Whiteside, S. Demaria, M.E. Rodriguez-Ruiz, H.M. Zarour, I. Melero,
Emerging opportunities and challenges in cancer immunotherapy, Clin. Cancer
Res. 22 (8) (2016) 1845–1855.

[8] P.S. Hegde, V. Karanikas, S. Evers, The where, the when, and the how of immune
monitoring for cancer immunotherapies in the era of checkpoint inhibition, Clin.
Cancer Res. 22 (8) (2016) 1865–1874.

[9] P.C. Tumeh, C.L. Harview, J.H. Yearley, I.P. Shintaku, E.J. Taylor, L. Robert,
B. Chmielowski, M. Spasic, G. Henry, V. Ciobanu, A.N. West, M. Carmona,
C. Kivork, E. Seja, G. Cherry, A.J. Gutierrez, T.R. Grogan, C. Mateus, G. Tomasic,

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

130

http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0005
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0005
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0005
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0010
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0010
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0010
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0015
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0015
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0020
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0020
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0025
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0025
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0030
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0030
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0035
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0035
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0035
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0040
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0040
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0040
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0045
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0045
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0045


J.A. Glaspy, R.O. Emerson, H. Robins, R.H. Pierce, D.A. Elashoff, C. Robert,
A. Ribas, PD-1 blockade induces responses by inhibiting adaptive immune re-
sistance, Nature 515 (7528) (2014) 568–571.

[10] P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den
Eynde, A. Knuth, T. Boon, A gene encoding an antigen recognized by cytolytic T
lymphocytes on a human melanoma, Science 254 (5038) (1991) 1643–1647.

[11] P.G. Coulie, B.J. Van den Eynde, P. van der Bruggen, T. Boon, Tumour antigens
recognized by T lymphocytes: at the core of cancer immunotherapy, Nat. Rev.
Cancer 14 (2) (2014) 135–146.

[12] R.T. Prehn, J.M. Main, Immunity to methylcholanthrene-induced sarcomas, J.
Natl. Cancer Inst. 18 (6) (1957) 769–778.

[13] M.L. Kripke, M.S. Fisher, Immunologic parameters of ultraviolet carcinogenesis, J.
Natl. Cancer Inst. 57 (1) (1976) 211–215.

[14] E. Klein, G. Klein, Antigenic properties of lymphomas induced by the moloney
agent, J. Natl. Cancer Inst. 32 (1964) 547–568.

[15] G.C. DuBois, E. Appella, L.W. Law, Isolation of a tumor-associated transplantation
antigen (TATA) from an SV40-induced sarcoma. Resemblance to the TATA of
chemically induced neoplasms, Int. J. Cancer 34 (4) (1984) 561–566.

[16] E.M. Doorduijn, M. Sluijter, K.A. Marijt, B.J. Querido, S.H. van der Burg, T. van
Hall, T cells specific for a TAP-independent self-peptide remain naive in tumor-
bearing mice and are fully exploitable for therapy, Oncoimmunology 7 (3) (2018)
e1382793.

[17] E.M. Doorduijn, M. Sluijter, B.J. Querido, C.C. Oliveira, A. Achour, F. Ossendorp,
S.H. van der Burg, T. van Hall, TAP-independent self-peptides enhance T cell re-
cognition of immune-escaped tumors, J. Clin. Invest. 126 (2) (2016) 784–794.

[18] O.J. Finn, The dawn of vaccines for cancer prevention, Nat. Rev. Immunol. 18 (3)
(2018) 183–194.

[19] A. Spira, M.B. Yurgelun, L. Alexandrov, A. Rao, R. Bejar, K. Polyak, M. Giannakis,
A. Shilatifard, O.J. Finn, M. Dhodapkar, N.E. Kay, E. Braggio, E. Vilar,
S.A. Mazzilli, T.R. Rebbeck, J.E. Garber, V.E. Velculescu, M.L. Disis, D.C. Wallace,
S.M. Lippman, Precancer atlas to drive precision prevention trials, Cancer Res. 77
(7) (2017) 1510–1541.

[20] Z. Hu, P.A. Ott, C.J. Wu, Towards personalized, tumour-specific, therapeutic
vaccines for cancer, Nat. Rev. Immunol. 18 (3) (2018) 168–182.

[21] S.A. Rosenberg, J.C. Yang, N.P. Restifo, Cancer immunotherapy: moving beyond
current vaccines, Nat. Med. 10 (9) (2004) 909–915.

[22] S. Mocellin, S. Mandruzzato, V. Bronte, F.M. Marincola, Cancer vaccines: pessi-
mism in check, Nat. Med. 10 (12) (2004) 1278–1279 author reply 1279–80.

[23] D.S. Chen, I. Mellman, Elements of cancer immunity and the cancer-immune set
point, Nature 541 (7637) (2017) 321–330.

[24] S.H. van der Burg, R. Arens, F. Ossendorp, T. van Hall, C.J. Melief, Vaccines for
established cancer: overcoming the challenges posed by immune evasion, Nat.
Rev. Cancer 16 (4) (2016) 219–233.

[25] J.M. Kirkwood, S. Lee, S.J. Moschos, M.R. Albertini, J.C. Michalak, C. Sander,
T. Whiteside, L.H. Butterfield, L. Weiner, Immunogenicity and antitumor effects of
vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating
factor and/or IFN-alpha2b in advanced metastatic melanoma: eastern cooperative
oncology group phase II trial E1696, Clin. Cancer Res. 15 (4) (2009) 1443–1451.

[26] D.H. Lawson, S. Lee, F. Zhao, A.A. Tarhini, K.A. Margolin, M.S. Ernstoff,
M.B. Atkins, G.I. Cohen, T.L. Whiteside, L.H. Butterfield, J.M. Kirkwood,
Randomized, placebo-controlled, phase III trial of yeast-derived granulocyte-
macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus
GM-CSF plus peptide vaccination versus placebo in patients with no evidence of
disease after complete surgical resection of locally advanced and/or stage IV
melanoma: a trial of the eastern cooperative oncology group-american college of
radiology imaging network cancer research group (E4697), J. Clin. Oncol. 33 (34)
(2015) 4066–4076.

[27] G. Middleton, P. Silcocks, T. Cox, J. Valle, J. Wadsley, D. Propper, F. Coxon,
P. Ross, S. Madhusudan, T. Roques, D. Cunningham, S. Falk, N. Wadd,
M. Harrison, P. Corrie, T. Iveson, A. Robinson, K. McAdam, M. Eatock, J. Evans,
C. Archer, T. Hickish, A. Garcia-Alonso, M. Nicolson, W. Steward, A. Anthoney,
W. Greenhalf, V. Shaw, E. Costello, D. Naisbitt, C. Rawcliffe, G. Nanson,
J. Neoptolemos, Gemcitabine and capecitabine with or without telomerase peptide
vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer
(TeloVac): an open-label, randomised, phase 3 trial, Lancet Oncol. 15 (8) (2014)
829–840.

[28] E. Suzuki, V. Kapoor, A.S. Jassar, L.R. Kaiser, S.M. Albelda, Gemcitabine selec-
tively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-
bearing animals and enhances antitumor immune activity, Clin. Cancer Res. 11
(18) (2005) 6713–6721.

[29] L. Rettig, S. Seidenberg, I. Parvanova, P. Samaras, A. Curioni, A. Knuth, S. Pascolo,
Gemcitabine depletes regulatory T-cells in human and mice and enhances trig-
gering of vaccine-specific cytotoxic T-cells, Int. J. Cancer 129 (4) (2011) 832–838.

[30] T.C. van der Sluis, S. van Duikeren, S. Huppelschoten, E.S. Jordanova,
E. Beyranvand Nejad, A. Sloots, L. Boon, V.T. Smit, M.J. Welters, F. Ossendorp,
B. van de Water, R. Arens, S.H. van der Burg, C.J. Melief, Vaccine-induced tumor
necrosis factor-producing T cells synergize with cisplatin to promote tumor cell
death, Clin. Cancer Res. 21 (4) (2015) 781–794.

[31] E.M. Dijkgraaf, S.J. Santegoets, A.K. Reyners, R. Goedemans, H.W. Nijman,
M.I. van Poelgeest, A.R. van Erkel, V.T. Smit, T.A. Daemen, J.J. van der Hoeven,
C.J. Melief, M.J. Welters, J.R. Kroep, S.H. van der Burg, A phase 1/2 study com-
bining gemcitabine, pegintron and p53 SLP vaccine in patients with platinum-
resistant ovarian cancer, Oncotarget 6 (31) (2015) 32228–32243.

[32] S.J.A.M. Santegoets, A.F. De Groot, E.M. Dijkgraaf, A.M. Carnaz Simoes, V.E. van
der Noord, J.J. Van Ham, M.J.P. Welters, J.R. Kroep, S.H. van der Burg, The blood
mMDSC to DC ratio is a sensitive and easy to assess independent predictive factor

for patient survival in platinum–sensitive and –resistant epithelial ovarian cancer,
Oncoimmunology (2018) in press.

[33] B.I. Rini, A. Stenzl, R. Zdrojowy, M. Kogan, M. Shkolnik, S. Oudard, S. Weikert,
S. Bracarda, S.J. Crabb, J. Bedke, J. Ludwig, D. Maurer, R. Mendrzyk, C. Wagner,
A. Mahr, J. Fritsche, T. Weinschenk, S. Walter, A. Kirner, H. Singh-Jasuja,
C. Reinhardt, T. Eisen, IMA901, a multipeptide cancer vaccine, plus sunitinib
versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell
carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3
trial, Lancet Oncol. 17 (11) (2016) 1599–1611.

[34] A. Kirner, A. Mayer-Mokler, C. Reinhardt, IMA901: a multi-peptide cancer vaccine
for treatment of renal cell cancer, Hum. Vaccines Immunother. 10 (11) (2014)
3179–3189.

[35] S. Walter, T. Weinschenk, A. Stenzl, R. Zdrojowy, A. Pluzanska, C. Szczylik,
M. Staehler, W. Brugger, P.Y. Dietrich, R. Mendrzyk, N. Hilf, O. Schoor, J. Fritsche,
A. Mahr, D. Maurer, V. Vass, C. Trautwein, P. Lewandrowski, C. Flohr, H. Pohla,
J.J. Stanczak, V. Bronte, S. Mandruzzato, T. Biedermann, G. Pawelec,
E. Derhovanessian, H. Yamagishi, T. Miki, F. Hongo, N. Takaha, K. Hirakawa,
H. Tanaka, S. Stevanovic, J. Frisch, A. Mayer-Mokler, A. Kirner, H.G. Rammensee,
C. Reinhardt, H. Singh-Jasuja, Multipeptide immune response to cancer vaccine
IMA901 after single-dose cyclophosphamide associates with longer patient sur-
vival, Nat. Med. 18 (8) (2012) 1254–1261.

[36] J.S. Ko, A.H. Zea, B.I. Rini, J.L. Ireland, P. Elson, P. Cohen, A. Golshayan,
P.A. Rayman, L. Wood, J. Garcia, R. Dreicer, R. Bukowski, J.H. Finke, Sunitinib
mediates reversal of myeloid-derived suppressor cell accumulation in renal cell
carcinoma patients, Clin. Cancer Res. 15 (6) (2009) 2148–2157.

[37] J.H. Finke, B. Rini, J. Ireland, P. Rayman, A. Richmond, A. Golshayan, L. Wood,
P. Elson, J. Garcia, R. Dreicer, R. Bukowski, Sunitinib reverses type-1 immune
suppression and decreases T-regulatory cells in renal cell carcinoma patients, Clin.
Cancer Res. 14 (20) (2008) 6674–6682.

[38] M. van Dongen, N.D. Savage, E.S. Jordanova, I.H. Briaire-de Bruijn, K.V. Walburg,
T.H. Ottenhoff, P.C. Hogendoorn, S.H. van der Burg, H. Gelderblom, T. van Hall,
Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine
kinase inhibitor-treated gastrointestinal stromal tumors, Int. J. Cancer 127 (4)
(2010) 899–909.

[39] B. Beuselinck, S. Job, E. Becht, A. Karadimou, V. Verkarre, G. Couchy, N. Giraldo,
N. Rioux-Leclercq, V. Molinie, M. Sibony, R. Elaidi, C. Teghom, J.J. Patard,
A. Mejean, W.H. Fridman, C. Sautes-Fridman, A. de Reynies, S. Oudard,
J. Zucman-Rossi, Molecular subtypes of clear cell renal cell carcinoma are asso-
ciated with sunitinib response in the metastatic setting, Clin. Cancer Res. 21 (6)
(2015) 1329–1339.

[40] C. Butts, M.A. Socinski, P.L. Mitchell, N. Thatcher, L. Havel, M. Krzakowski,
S. Nawrocki, T.E. Ciuleanu, L. Bosquee, J.M. Trigo, A. Spira, L. Tremblay,
J. Nyman, R. Ramlau, G. Wickart-Johansson, P. Ellis, O. Gladkov, J.R. Pereira,
W.E. Eberhardt, C. Helwig, A. Schroder, F.A. Shepherd, S.t. team, Tecemotide (L-
BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung
cancer (START): a randomised, double-blind, phase 3 trial, Lancet Oncol. 15 (1)
(2014) 59–68.

[41] C. Butts, N. Murray, A. Maksymiuk, G. Goss, E. Marshall, D. Soulieres, Y. Cormier,
P. Ellis, A. Price, R. Sawhney, M. Davis, J. Mansi, C. Smith, D. Vergidis, P. Ellis,
M. MacNeil, M. Palmer, Randomized phase IIB trial of BLP25 liposome vaccine in
stage IIIB and IV non-small-cell lung cancer, J. Clin. Oncol. 23 (27) (2005)
6674–6681.

[42] G. Giaccone, L.A. Bazhenova, J. Nemunaitis, M. Tan, E. Juhasz, R. Ramlau,
M.M. van den Heuvel, R. Lal, G.H. Kloecker, K.D. Eaton, Q. Chu, D.J. Dunlop,
M. Jain, E.B. Garon, C.S. Davis, E. Carrier, S.C. Moses, D.L. Shawler, H. Fakhrai, A
phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as
maintenance therapy for non-small cell lung cancer, Eur. J. Cancer 51 (16) (2015)
2321–2329.

[43] J. Nemunaitis, R.O. Dillman, P.O. Schwarzenberger, N. Senzer, C. Cunningham,
J. Cutler, A. Tong, P. Kumar, B. Pappen, C. Hamilton, E. DeVol, P.B. Maples, L. Liu,
T. Chamberlin, D.L. Shawler, H. Fakhrai, Phase II study of belagenpumatucel-L, a
transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell
vaccine in non-small-cell lung cancer, J. Clin. Oncol. 24 (29) (2006) 4721–4730.

[44] J.F. Vansteenkiste, B.C. Cho, T. Vanakesa, T. De Pas, M. Zielinski, M.S. Kim,
J. Jassem, M. Yoshimura, J. Dahabreh, H. Nakayama, L. Havel, H. Kondo,
T. Mitsudomi, K. Zarogoulidis, O.A. Gladkov, K. Udud, H. Tada, H. Hoffman,
A. Bugge, P. Taylor, E.E. Gonzalez, M.L. Liao, J. He, J.L. Pujol, J. Louahed,
M. Debois, V. Brichard, C. Debruyne, P. Therasse, N. Altorki, Efficacy of the
MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with re-
sected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised,
double-blind, placebo-controlled, phase 3 trial, Lancet Oncol. 17 (6) (2016)
822–835.

[45] F. Ulloa-Montoya, J. Louahed, B. Dizier, O. Gruselle, B. Spiessens, F.F. Lehmann,
S. Suciu, W.H. Kruit, A.M. Eggermont, J. Vansteenkiste, V.G. Brichard, Predictive
gene signature in MAGE-A3 antigen-specific cancer immunotherapy, J. Clin.
Oncol. 31 (19) (2013) 2388–2395.

[46] R.A. Rosalia, E.D. Quakkelaar, A. Redeker, S. Khan, M. Camps, J.W. Drijfhout,
A.L. Silva, W. Jiskoot, T. van Hall, P.A. van Veelen, G. Janssen, K. Franken,
L.J. Cruz, A. Tromp, J. Oostendorp, S.H. van der Burg, F. Ossendorp, C.J. Melief,
Dendritic cells process synthetic long peptides better than whole protein, im-
proving antigen presentation and T-cell activation, Eur. J. Immunol. 43 (10)
(2013) 2554–2565.

[47] D. Atanackovic, N.K. Altorki, E. Stockert, B. Williamson, A.A. Jungbluth, E. Ritter,
D. Santiago, C.A. Ferrara, M. Matsuo, A. Selvakumar, B. Dupont, Y.T. Chen,
E.W. Hoffman, G. Ritter, L.J. Old, S. Gnjatic, Vaccine-induced CD4+ T cell re-
sponses to MAGE-3 protein in lung cancer patients, J. Immunol. 172 (5) (2004)

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

131

http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0045
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0045
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0045
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0050
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0050
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0050
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0055
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0055
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0055
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0060
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0060
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0065
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0065
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0070
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0070
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0075
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0075
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0075
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0080
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0080
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0080
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0080
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0085
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0085
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0085
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0090
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0090
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0095
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0095
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0095
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0095
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0095
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0100
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0100
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0105
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0105
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0110
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0110
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0115
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0115
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0120
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0120
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0120
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0125
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0125
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0125
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0125
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0125
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0130
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0135
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0140
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0140
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0140
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0140
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0145
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0145
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0145
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0150
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0150
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0150
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0150
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0150
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0155
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0155
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0155
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0155
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0155
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0160
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0160
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0160
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0160
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0160
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0165
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0165
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0165
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0165
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0165
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0165
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0165
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0170
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0170
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0170
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0175
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0180
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0180
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0180
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0180
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0185
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0185
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0185
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0185
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0190
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0190
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0190
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0190
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0190
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0195
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0195
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0195
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0195
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0195
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0195
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0200
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0200
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0200
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0200
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0200
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0200
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0200
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0205
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0205
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0205
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0205
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0205
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0210
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0210
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0210
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0210
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0210
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0210
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0215
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0215
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0215
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0215
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0215
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0220
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0225
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0225
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0225
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0225
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0230
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0230
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0230
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0230
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0230
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0230
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0235
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0235
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0235
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0235


3289–3296.
[48] M. Talebian Yazdi, S. van Riet, A. van Schadewijk, M. Fiocco, T. van Hall,

C. Taube, P.S. Hiemstra, S.H. van der Burg, The positive prognostic effect of
stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E
in non-small cell lung carcinoma, Oncotarget 7 (3) (2016) 3477–3488.

[49] T. Cabrera, E. Lara, J.M. Romero, I. Maleno, L.M. Real, F. Ruiz-Cabello, P. Valero,
F.M. Camacho, F. Garrido, HLA class I expression in metastatic melanoma corre-
lates with tumor development during autologous vaccination, Cancer Immunol.
Immunother. 56 (5) (2007) 709–717.

[50] M. Ayers, J. Lunceford, M. Nebozhyn, E. Murphy, A. Loboda, D.R. Kaufman,
A. Albright, J.D. Cheng, S.P. Kang, V. Shankaran, S.A. Piha-Paul, J. Yearley,
T.Y. Seiwert, A. Ribas, T.K. McClanahan, IFN-gamma-related mRNA profile pre-
dicts clinical response to PD-1 blockade, J. Clin. Invest. 127 (8) (2017)
2930–2940.

[51] C.D. Zahm, V.T. Colluru, D.G. McNeel, Vaccination with high-affinity epitopes
impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells,
Cancer Immunol. Res. 5 (8) (2017) 630–641.

[52] J. Fu, I.J. Malm, D.K. Kadayakkara, H. Levitsky, D. Pardoll, Y.J. Kim, Preclinical
evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit re-
gression of established tumors, Cancer Res. 74 (15) (2014) 4042–4052.

[53] J.P. Antonios, H. Soto, R.G. Everson, J. Orpilla, D. Moughon, N. Shin, S. Sedighim,
W.H. Yong, G. Li, T.F. Cloughesy, L.M. Liau, R.M. Prins, PD-1 blockade enhances
the vaccination-induced immune response in glioma, JCI Insight 1 (10) (2016).

[54] P.F. Brunsvig, S. Aamdal, M.K. Gjertsen, G. Kvalheim, C.J. Markowski-Grimsrud,
I. Sve, M. Dyrhaug, S. Trachsel, M. Moller, J.A. Eriksen, G. Gaudernack,
Telomerase peptide vaccination: a phase I/II study in patients with non-small cell
lung cancer, Cancer Immunol. Immunother. 55 (12) (2006) 1553–1564.

[55] P.F. Brunsvig, J.A. Kyte, C. Kersten, S. Sundstrom, M. Moller, M. Nyakas,
G.L. Hansen, G. Gaudernack, S. Aamdal, Telomerase peptide vaccination in
NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy
and an 8-year update on a phase I/II trial, Clin. Cancer Res. 17 (21) (2011)
6847–6857.

[56] A. Kotsakis, E. Papadimitraki, E.K. Vetsika, D. Aggouraki, E.K. Dermitzaki,
D. Hatzidaki, N. Kentepozidis, D. Mavroudis, V. Georgoulias, A phase II trial
evaluating the clinical and immunologic response of HLA-A2(+) non-small cell
lung cancer patients vaccinated with an hTERT cryptic peptide, Lung Cancer 86
(1) (2014) 59–66.

[57] E.M. Suso, S. Dueland, A.M. Rasmussen, T. Vetrhus, S. Aamdal, G. Kvalheim,
G. Gaudernack, hTERT mRNA dendritic cell vaccination: complete response in a
pancreatic cancer patient associated with response against several hTERT epi-
topes, Cancer Immunol. Immunother. 60 (6) (2011) 809–818.

[58] E.M. Inderberg-Suso, S. Trachsel, K. Lislerud, A.M. Rasmussen, G. Gaudernack,
Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination
of cancer patients with a single hTERT peptide GV1001, Oncoimmunology 1 (5)
(2012) 670–686.

[59] W. Lilleby, G. Gaudernack, P.F. Brunsvig, L. Vlatkovic, M. Schulz, K. Mills,
K.H. Hole, E.M. Inderberg, Phase I/IIa clinical trial of a novel hTERT peptide
vaccine in men with metastatic hormone-naive prostate cancer, Cancer Immunol.
Immunother. 66 (7) (2017) 891–901.

[60] J.C. Becker, M.H. Andersen, V. Hofmeister-Muller, M. Wobser, L. Frey, C. Sandig,
S. Walter, H. Singh-Jasuja, E. Kampgen, A. Opitz, M. Zapatka, E.B. Brocker,
P. Thor Straten, D. Schrama, S. Ugurel, Survivin-specific T-cell reactivity correlates
with tumor response and patient survival: a phase-II peptide vaccination trial in
metastatic melanoma, Cancer Immunol. Immunother. 61 (11) (2012) 2091–2103.

[61] S. Gross, M. Erdmann, I. Haendle, S. Voland, T. Berger, E. Schultz, E. Strasser,
P. Dankerl, R. Janka, S. Schliep, L. Heinzerling, K. Sotlar, P. Coulie, G. Schuler,
B. Schuler-Thurner, Twelve-year survival and immune correlates in dendritic cell-
vaccinated melanoma patients, JCI Insight 2 (8) (2017).

[62] P.J. de Vos van Steenwijk, M.I. van Poelgeest, T.H. Ramwadhdoebe, M.J. Lowik,
D.M. Berends-van der Meer, C.E. van der Minne, N.M. Loof, L.F. Stynenbosch,
L.M. Fathers, A.R. Valentijn, J. Oostendorp, E.M. Osse, G.J. Fleuren, L. Nooij,
M.J. Kagie, B.W. Hellebrekers, C.J. Melief, M.J. Welters, S.H. van der Burg,
G.G. Kenter, The long-term immune response after HPV16 peptide vaccination in
women with low-grade pre-malignant disorders of the uterine cervix: a placebo-
controlled phase II study, Cancer Immunol. Immunother. 63 (2) (2014) 147–160.

[63] S. Boudewijns, H. Westdorp, R.H. Koornstra, E.H. Aarntzen, G. Schreibelt,
J.H. Creemers, C.J. Punt, C.G. Figdor, I.J. de Vries, W.R. Gerritsen, K.F. Bol,
Immune-related adverse events of dendritic cell vaccination correlate with im-
munologic and clinical outcome in stage III and IV melanoma patients, J.
Immunother. 39 (6) (2016) 241–248.

[64] I.F. Pollack, R.I. Jakacki, L.H. Butterfield, R.L. Hamilton, A. Panigrahy,
D.P. Normolle, A.K. Connelly, S. Dibridge, G. Mason, T.L. Whiteside, H. Okada,
Antigen-specific immunoreactivity and clinical outcome following vaccination
with glioma-associated antigen peptides in children with recurrent high-grade
gliomas: results of a pilot study, J. Neurooncol. 130 (3) (2016) 517–527.

[65] J. Oh, M. Barve, C.M. Matthews, E.C. Koon, T.P. Heffernan, B. Fine, E. Grosen,
M.K. Bergman, E.L. Fleming, L.R. DeMars, L. West, D.L. Spitz, H. Goodman,
K.C. Hancock, G. Wallraven, P. Kumar, E. Bognar, L. Manning, B.O. Pappen,
N. Adams, N. Senzer, J. Nemunaitis, Phase II study of Vigil(R) DNA engineered
immunotherapy as maintenance in advanced stage ovarian cancer, Gynecol.
Oncol. 143 (3) (2016) 504–510.

[66] S. Asahara, K. Takeda, K. Yamao, H. Maguchi, H. Yamaue, Phase I/II clinical trial
using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with
advanced pancreatic cancer, J. Transl. Med. 11 (2013) 291.

[67] N. Suzuki, S. Hazama, H. Iguchi, K. Uesugi, H. Tanaka, K. Hirakawa, A. Aruga,
T. Hatori, H. Ishizaki, Y. Umeda, T. Fujiwara, T. Ikemoto, M. Shimada,

K. Yoshimatsu, R. Shimizu, H. Hayashi, K. Sakata, H. Takenouchi, H. Matsui,
Y. Shindo, M. Iida, Y. Koki, H. Arima, H. Furukawa, T. Ueno, S. Yoshino,
Y. Nakamura, M. Oka, H. Nagano, Phase II clinical trial of peptide cocktail therapy
for patients with advanced pancreatic cancer: VENUS-PC study, Cancer Sci. 108
(1) (2017) 73–80.

[68] M. Miyazawa, M. Katsuda, H. Maguchi, A. Katanuma, H. Ishii, M. Ozaka,
K. Yamao, H. Imaoka, M. Kawai, S. Hirono, K.I. Okada, H. Yamaue, Phase II
clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant
treatment for surgically resected pancreatic cancer patients, Int. J. Cancer 140 (4)
(2017) 973–982.

[69] S. Hazama, Y. Nakamura, H. Tanaka, K. Hirakawa, K. Tahara, R. Shimizu,
H. Ozasa, R. Etoh, F. Sugiura, K. Okuno, T. Furuya, T. Nishimura, K. Sakata,
K. Yoshimatsu, H. Takenouchi, R. Tsunedomi, Y. Inoue, S. Kanekiyo, Y. Shindo,
N. Suzuki, S. Yoshino, H. Shinozaki, A. Kamiya, H. Furukawa, T. Yamanaka,
T. Fujita, Y. Kawakami, M. Oka, A phase IotaI study of five peptides combination
with oxaliplatin-based chemotherapy as a first-line therapy for advanced color-
ectal cancer (FXV study), J. Transl. Med. 12 (2014) 108.

[70] K. Okuno, F. Sugiura, K. Inoue, Y. Sukegawa, Clinical trial of a 7-peptide cocktail
vaccine with oral chemotherapy for patients with metastatic colorectal cancer,
Anticancer Res. 34 (6) (2014) 3045–3052.

[71] Y. Yoshitake, D. Fukuma, A. Yuno, M. Hirayama, H. Nakayama, T. Tanaka,
M. Nagata, Y. Takamune, K. Kawahara, Y. Nakagawa, R. Yoshida, A. Hirosue,
H. Ogi, A. Hiraki, H. Jono, A. Hamada, K. Yoshida, Y. Nishimura, Y. Nakamura,
M. Shinohara, Phase II clinical trial of multiple peptide vaccination for advanced
head and neck cancer patients revealed induction of immune responses and im-
proved OS, Clin. Cancer Res. 21 (2) (2015) 312–321.

[72] H. Ishikawa, M. Imano, O. Shiraishi, A. Yasuda, Y.F. Peng, M. Shinkai, T. Yasuda,
H. Imamoto, H. Shiozaki, Phase I clinical trial of vaccination with LY6K-derived
peptide in patients with advanced gastric cancer, Gastric Cancer 17 (1) (2014)
173–180.

[73] S. Suzuki, J. Sakata, F. Utsumi, R. Sekiya, H. Kajiyama, K. Shibata, F. Kikkawa,
T. Nakatsura, Efficacy of glypican-3-derived peptide vaccine therapy on the sur-
vival of patients with refractory ovarian clear cell carcinoma, Oncoimmunology 5
(11) (2016) e1238542.

[74] S. Suzuki, K. Shibata, F. Kikkawa, T. Nakatsura, Significant clinical response of
progressive recurrent ovarian clear cell carcinoma to glypican-3-derived peptide
vaccine therapy: two case reports, Hum. Vaccines Immunother. 10 (2) (2014)
338–343.

[75] M. Talebian Yazdi, N.M. Loof, K.L. Franken, C. Taube, J. Oostendorp,
P.S. Hiemstra, M.J. Welters, S.H. van der Burg, Local and systemic XAGE-1b-
specific immunity in patients with lung adenocarcinoma, Cancer Immunol.
Immunother. 64 (9) (2015) 1109–1121.

[76] M.H. Qazilbash, E. Wieder, P.F. Thall, X. Wang, R. Rios, S. Lu, S. Kanodia,
K.E. Ruisaard, S.A. Giralt, E.H. Estey, J. Cortes, K.V. Komanduri, K. Clise-Dwyer,
G. Alatrash, Q. Ma, R.E. Champlin, J.J. Molldrem, PR1 peptide vaccine induces
specific immunity with clinical responses in myeloid malignancies, Leukemia 31
(3) (2017) 697–704.

[77] S. Vigano, D.T. Utzschneider, M. Perreau, G. Pantaleo, D. Zehn, A. Harari,
Functional avidity: a measure to predict the efficacy of effector T cells? Clin. Dev.
Immunol. 2012 (2012) 153863.

[78] S. Koido, M. Okamoto, M. Kobayashi, S. Shimodaira, H. Sugiyama, Significance of
Wilms’ tumor 1 antigen as a cancer vaccine for pancreatic cancer, Discov. Med. 24
(130) (2017) 41–49.

[79] Y. Ueda, M. Ogura, S. Miyakoshi, T. Suzuki, Y. Heike, S. Tagashira, S. Tsuchiya,
K. Ohyashiki, Y. Miyazaki, Phase 1/2 study of the WT1 peptide cancer vaccine
WT4869 in patients with myelodysplastic syndrome, Cancer Sci. 108 (12) (2017)
2445–2453.

[80] S. Nishida, S. Koido, Y. Takeda, S. Homma, H. Komita, A. Takahara, S. Morita,
T. Ito, S. Morimoto, K. Hara, A. Tsuboi, Y. Oka, S. Yanagisawa, Y. Toyama,
M. Ikegami, T. Kitagawa, H. Eguchi, H. Wada, H. Nagano, J. Nakata, Y. Nakae,
N. Hosen, Y. Oji, T. Tanaka, I. Kawase, A. Kumanogoh, J. Sakamoto, Y. Doki,
M. Mori, T. Ohkusa, H. Tajiri, H. Sugiyama, Wilms tumor gene (WT1) peptide-
based cancer vaccine combined with gemcitabine for patients with advanced
pancreatic cancer, J. Immunother. 37 (2) (2014) 105–114.

[81] S. Izumoto, A. Tsuboi, Y. Oka, T. Suzuki, T. Hashiba, N. Kagawa, N. Hashimoto,
M. Maruno, O.A. Elisseeva, T. Shirakata, M. Kawakami, Y. Oji, S. Nishida, S. Ohno,
I. Kawase, J. Hatazawa, S. Nakatsuka, K. Aozasa, S. Morita, J. Sakamoto,
H. Sugiyama, T. Yoshimine, Phase II clinical trial of Wilms tumor 1 peptide vac-
cination for patients with recurrent glioblastoma multiforme, J. Neurosurg. 108
(5) (2008) 963–971.

[82] S. Anguille, A.L. Van de Velde, E.L. Smits, V.F. Van Tendeloo, G. Juliusson,
N. Cools, G. Nijs, B. Stein, E. Lion, A. Van Driessche, I. Vandenbosch, A. Verlinden,
A.P. Gadisseur, W.A. Schroyens, L. Muylle, K. Vermeulen, M.B. Maes, K. Deiteren,
R. Malfait, E. Gostick, M. Lammens, M.M. Couttenye, P. Jorens, H. Goossens,
D.A. Price, K. Ladell, Y. Oka, F. Fujiki, Y. Oji, H. Sugiyama, Z.N. Berneman,
Dendritic cell vaccination as postremission treatment to prevent or delay relapse
in acute myeloid leukemia, Blood 130 (15) (2017) 1713–1721.

[83] E.H. Aarntzen, K. Bol, G. Schreibelt, J.F. Jacobs, W.J. Lesterhuis, M.M. Van
Rossum, G.J. Adema, C.G. Figdor, C.J. Punt, I.J. De Vries, Skin-test infiltrating
lymphocytes early predict clinical outcome of dendritic cell-based vaccination in
metastatic melanoma, Cancer Res. 72 (23) (2012) 6102–6110.

[84] S. Kibe, S. Yutani, S. Motoyama, T. Nomura, N. Tanaka, A. Kawahara,
T. Yamaguchi, S. Matsueda, N. Komatsu, M. Miura, Y. Hinai, S. Hattori,
A. Yamada, M. Kage, K. Itoh, Y. Akagi, T. Sasada, Phase II study of personalized
peptide vaccination for previously treated advanced colorectal cancer, Cancer
Immunol. Res. 2 (12) (2014) 1154–1162.

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

132

http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0235
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0240
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0240
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0240
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0240
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0245
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0245
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0245
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0245
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0250
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0250
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0250
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0250
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0250
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0255
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0255
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0255
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0260
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0260
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0260
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0265
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0265
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0265
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0270
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0270
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0270
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0270
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0275
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0275
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0275
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0275
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0275
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0280
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0280
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0280
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0280
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0280
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0285
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0285
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0285
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0285
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0290
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0290
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0290
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0290
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0295
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0295
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0295
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0295
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0300
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0300
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0300
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0300
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0300
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0305
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0305
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0305
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0305
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0310
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0310
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0310
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0310
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0310
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0310
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0310
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0315
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0315
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0315
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0315
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0315
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0320
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0320
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0320
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0320
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0320
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0325
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0325
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0325
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0325
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0325
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0325
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0330
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0330
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0330
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0335
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0335
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0335
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0335
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0335
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0335
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0335
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0340
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0340
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0340
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0340
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0340
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0345
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0345
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0345
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0345
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0345
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0345
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0345
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0350
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0350
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0350
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0355
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0355
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0355
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0355
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0355
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0355
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0360
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0360
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0360
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0360
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0365
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0365
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0365
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0365
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0370
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0370
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0370
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0370
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0375
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0375
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0375
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0375
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0380
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0380
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0380
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0380
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0380
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0385
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0385
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0385
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0390
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0390
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0390
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0395
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0395
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0395
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0395
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0400
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0400
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0400
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0400
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0400
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0400
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0400
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0405
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0405
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0405
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0405
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0405
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0405
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0410
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0410
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0410
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0410
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0410
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0410
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0410
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0415
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0415
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0415
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0415
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0420
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0420
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0420
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0420
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0420


[85] S. Suekane, K. Ueda, K. Nishihara, T. Sasada, T. Yamashita, N. Koga, S. Yutani,
S. Shichijo, K. Itoh, T. Igawa, M. Noguchi, Personalized peptide vaccination as
second-line treatment for metastatic upper tract urothelial carcinoma, Cancer Sci.
108 (12) (2017) 2430–2437.

[86] K. Yoshimura, T. Minami, M. Nozawa, T. Kimura, S. Egawa, H. Fujimoto,
A. Yamada, K. Itoh, H. Uemura, A phase 2 randomized controlled trial of perso-
nalized peptide vaccine immunotherapy with low-dose dexamethasone versus
dexamethasone alone in chemotherapy-naive castration-resistant prostate cancer,
Eur. Urol. 70 (1) (2016) 35–41.

[87] M. Noguchi, K. Matsumoto, H. Uemura, G. Arai, M. Eto, S. Naito, C. Ohyama,
Y. Nasu, M. Tanaka, F. Moriya, S. Suekane, S. Matsueda, N. Komatsu, T. Sasada,
A. Yamada, T. Kakuma, K. Itoh, An Open-Label, Randomized phase II trial of
personalized peptide vaccination in patients with bladder cancer that progressed
after platinum-based chemotherapy, Clin. Cancer Res. 22 (1) (2016) 54–60.

[88] K. Takayama, S. Sugawara, Y. Saijo, M. Maemondo, A. Sato, S. Takamori,
T. Harada, T. Sasada, T. Kakuma, J. Kishimoto, A. Yamada, M. Noguchi, K. Itoh,
Y. Nakanishi, Randomized phase II study of docetaxel plus personalized peptide
vaccination versus docetaxel plus placebo for patients with previously treated
advanced wild type EGFR non-small-cell lung cancer, J. Immunol. Res. 2016
(2016) 1745108.

[89] T. Shirahama, D. Muroya, S. Matsueda, A. Yamada, S. Shichijo, M. Naito,
T. Yamashita, S. Sakamoto, K. Okuda, K. Itoh, T. Sasada, S. Yutani, A randomized
phase II trial of personalized peptide vaccine with low dose cyclophosphamide in
biliary tract cancer, Cancer Sci. 108 (5) (2017) 838–845.

[90] E. de Azambuja, A.P. Holmes, M. Piccart-Gebhart, E. Holmes, S. Di Cosimo,
R.F. Swaby, M. Untch, C. Jackisch, I. Lang, I. Smith, F. Boyle, B. Xu, C.H. Barrios,
E.A. Perez, H.A. Azim Jr., S.B. Kim, S. Kuemmel, C.S. Huang, P. Vuylsteke,
R.K. Hsieh, V. Gorbunova, A. Eniu, L. Dreosti, N. Tavartkiladze, R.D. Gelber,
H. Eidtmann, J. Baselga, Lapatinib with trastuzumab for HER2-positive early
breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, mul-
ticentre, phase 3 trial and their association with pathological complete response,
Lancet Oncol. 15 (10) (2014) 1137–1146.

[91] M. Untch, P.A. Fasching, G.E. Konecny, S. Hasmuller, A. Lebeau, R. Kreienberg,
O. Camara, V. Muller, A. du Bois, T. Kuhn, E. Stickeler, N. Harbeck, C. Hoss,
S. Kahlert, T. Beck, W. Fett, K.M. Mehta, G. von Minckwitz, S. Loibl, Pathologic
complete response after neoadjuvant chemotherapy plus trastuzumab predicts
favorable survival in human epidermal growth factor receptor 2-overexpressing
breast cancer: results from the TECHNO trial of the AGO and GBG study groups, J.
Clin. Oncol. 29 (25) (2011) 3351–3357.

[92] J. Datta, E. Berk, S. Xu, E. Fitzpatrick, C. Rosemblit, L. Lowenfeld, N. Goodman,
D.A. Lewis, P.J. Zhang, C. Fisher, R.E. Roses, A. DeMichele, B.J. Czerniecki, Anti-
HER2 CD4(+) T-helper type 1 response is a novel immune correlate to pathologic
response following neoadjuvant therapy in HER2-positive breast cancer, Breast
Cancer Res. 17 (2015) 71.

[93] I.F. Voutsas, E.A. Anastasopoulou, P. Tzonis, M. Papamichail, S.A. Perez,
C.N. Baxevanis, Unraveling the role of preexisting immunity in prostate cancer
patients vaccinated with a HER-2/neu hybrid peptide, J. Immunother. Cancer 4
(2016) 75.

[94] L. Lowenfeld, S. Zaheer, C. Oechsle, M. Fracol, J. Datta, S. Xu, E. Fitzpatrick,
R.E. Roses, C.S. Fisher, E.S. McDonald, P.J. Zhang, A. DeMichele, R. Mick,
G.K. Koski, B.J. Czerniecki, Addition of anti-estrogen therapy to anti-HER2 den-
dritic cell vaccination improves regional nodal immune response and pathologic
complete response rate in patients with ER(pos)/HER2(pos) early breast cancer,
Oncoimmunology 6 (9) (2017) e1207032.

[95] E.A. Mittendorf, A. Ardavanis, J. Symanowski, J.L. Murray, N.M. Shumway,
J.K. Litton, D.F. Hale, S.A. Perez, E.A. Anastasopoulou, N.F. Pistamaltzian,
S. Ponniah, C.N. Baxevanis, E. von Hofe, M. Papamichail, G.E. Peoples, Primary
analysis of a prospective, randomized, single-blinded phase II trial evaluating the
HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence, Ann.
Oncol. 27 (7) (2016) 1241–1248.

[96] E. Quoix, R. Ramlau, V. Westeel, Z. Papai, A. Madroszyk, A. Riviere, P. Koralewski,
J.L. Breton, E. Stoelben, D. Braun, D. Debieuvre, H. Lena, M. Buyse, M.P. Chenard,
B. Acres, G. Lacoste, B. Bastien, A. Tavernaro, N. Bizouarne, J.Y. Bonnefoy,
J.M. Limacher, Therapeutic vaccination with TG4010 and first-line chemotherapy
in advanced non-small-cell lung cancer: a controlled phase 2B trial, Lancet Oncol.
12 (12) (2011) 1125–1133.

[97] R. Ramlau, E. Quoix, J. Rolski, M. Pless, H. Lena, E. Levy, M. Krzakowski, D. Hess,
E. Tartour, M.P. Chenard, J.M. Limacher, N. Bizouarne, B. Acres, C. Halluard,
T. Velu, A phase II study of Tg4010 (Mva-Muc1-Il2) in association with che-
motherapy in patients with stage III/IV non-small cell lung cancer, J. Thorac.
Oncol. 3 (7) (2008) 735–744.

[98] S. Oudard, O. Rixe, B. Beuselinck, C. Linassier, E. Banu, J.P. Machiels, M. Baudard,
F. Ringeisen, T. Velu, M.A. Lefrere-Belda, J.M. Limacher, W.H. Fridman, M. Azizi,
B. Acres, E. Tartour, A phase II study of the cancer vaccine TG4010 alone and in
combination with cytokines in patients with metastatic renal clear-cell carcinoma:
clinical and immunological findings, Cancer Immunol. Immunother. 60 (2) (2011)
261–271.

[99] E. Quoix, H. Lena, G. Losonczy, F. Forget, C. Chouaid, Z. Papai, R. Gervais,
C. Ottensmeier, A. Szczesna, A. Kazarnowicz, J.T. Beck, V. Westeel, E. Felip,
D. Debieuvre, A. Madroszyk, J. Adam, G. Lacoste, A. Tavernaro, B. Bastien,
C. Halluard, T. Palanche, J.M. Limacher, TG4010 immunotherapy and first-line
chemotherapy for advanced non-small-cell lung cancer (TIME): results from the
phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial,
Lancet Oncol. 17 (2) (2016) 212–223.

[100] E. Vivier, E. Tomasello, M. Baratin, T. Walzer, S. Ugolini, Functions of natural
killer cells, Nat. Immunol. 9 (5) (2008) 503–510.

[101] R. Bos, S. van Duikeren, H. Morreau, K. Franken, T.N. Schumacher, J.B. Haanen,
S.H. van der Burg, C.J. Melief, R. Offringa, Balancing between antitumor efficacy
and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic
antigen, Cancer Res. 68 (20) (2008) 8446–8455.

[102] K.J. McCann, A. Mander, A. Cazaly, L. Chudley, J. Stasakova, S. Thirdborough,
A. King, P. Lloyd-Evans, E. Buxton, C. Edwards, S. Halford, A. Bateman,
A. O’Callaghan, S. Clive, A. Anthoney, D.I. Jodrell, T. Weinschenk, P. Simon,
U. Sahin, G.J. Thomas, F.K. Stevenson, C.H. Ottensmeier, Targeting carcinoem-
bryonic antigen with DNA vaccination: on-target adverse events link with im-
munologic and clinical outcomes, Clin. Cancer Res. 22 (19) (2016) 4827–4836.

[103] J.F. Jacobs, E.H. Aarntzen, L.A. Sibelt, W.A. Blokx, A.C. Boullart, M.J. Gerritsen,
P.M. Hoogerbrugge, C.G. Figdor, G.J. Adema, C.J. Punt, I.J. de Vries, Vaccine-
specific local t cell reactivity in immunotherapy-associated vitiligo in melanoma
patients, Cancer Immunol. Immunother. 58 (1) (2009) 145–151.

[104] F.C. Thistlethwaite, D.E. Gilham, R.D. Guest, D.G. Rothwell, M. Pillai, D.J. Burt,
A.J. Byatte, N. Kirillova, J.W. Valle, S.K. Sharma, K.A. Chester, N.B. Westwood,
S.E.R. Halford, S. Nabarro, S. Wan, E. Austin, R.E. Hawkins, The clinical efficacy of
first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is
limited by poor persistence and transient pre-conditioning-dependent respiratory
toxicity, Cancer Immunol. Immunother. 66 (11) (2017) 1425–1436.

[105] M.R. Parkhurst, J.C. Yang, R.C. Langan, M.E. Dudley, D.A. Nathan, S.A. Feldman,
J.L. Davis, R.A. Morgan, M.J. Merino, R.M. Sherry, M.S. Hughes, U.S. Kammula,
G.Q. Phan, R.M. Lim, S.A. Wank, N.P. Restifo, P.F. Robbins, C.M. Laurencot,
S.A. Rosenberg, T cells targeting carcinoembryonic antigen can mediate regression
of metastatic colorectal cancer but induce severe transient colitis, Mol. Ther. 19
(3) (2011) 620–626.

[106] D.C. Palmer, C.C. Chan, L. Gattinoni, C. Wrzesinski, C.M. Paulos, C.S. Hinrichs,
D.J. Powell Jr., C.A. Klebanoff, S.E. Finkelstein, R.N. Fariss, Z. Yu,
R.B. Nussenblatt, S.A. Rosenberg, N.P. Restifo, Effective tumor treatment targeting
a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity,
Proc. Natl. Acad. Sci. U. S. A. 105 (23) (2008) 8061–8066.

[107] C.R. Heery, N.K. Ibrahim, P.M. Arlen, M. Mohebtash, J.L. Murray, K. Koenig,
R.A. Madan, S. McMahon, J.L. Marte, S.M. Steinberg, R.N. Donahue, I. Grenga,
C. Jochems, B. Farsaci, L.R. Folio, J. Schlom, J.L. Gulley, Docetaxel alone or in
combination with a therapeutic cancer vaccine (PANVAC) in patients with me-
tastatic breast cancer: a randomized clinical trial, JAMA Oncol. 1 (8) (2015)
1087–1095.

[108] A.G. Chapuis, O.K. Afanasiev, J.G. Iyer, K.G. Paulson, U. Parvathaneni,
J.H. Hwang, I. Lai, I.M. Roberts, H.L. Sloan, S. Bhatia, K.C. Shibuya, T. Gooley,
C. Desmarais, D.M. Koelle, C. Yee, P. Nghiem, Regression of metastatic merkel cell
carcinoma following transfer of polyomavirus-specific T cells and therapies cap-
able of re-inducing HLA class-I, Cancer Immunol. Res. 2 (1) (2014) 27–36.

[109] S. Stevanovic, L.M. Draper, M.M. Langhan, T.E. Campbell, M.L. Kwong,
J.R. Wunderlich, M.E. Dudley, J.C. Yang, R.M. Sherry, U.S. Kammula, N.P. Restifo,
S.A. Rosenberg, C.S. Hinrichs, Complete regression of metastatic cervical cancer
after treatment with human papillomavirus-targeted tumor-infiltrating T cells, J.
Clin. Oncol. 33 (14) (2015) 1543–1550.

[110] P.T. Nghiem, S. Bhatia, E.J. Lipson, R.R. Kudchadkar, N.J. Miller, L. Annamalai,
S. Berry, E.K. Chartash, A. Daud, S.P. Fling, P.A. Friedlander, H.M. Kluger,
H.E. Kohrt, L. Lundgren, K. Margolin, A. Mitchell, T. Olencki, D.M. Pardoll,
S.A. Reddy, E.M. Shantha, W.H. Sharfman, E. Sharon, L.R. Shemanski,
M.M. Shinohara, J.C. Sunshine, J.M. Taube, J.A. Thompson, S.M. Townson,
J.H. Yearley, S.L. Topalian, M.A. Cheever, PD-1 blockade with pembrolizumab in
advanced merkel-cell carcinoma, N. Engl. J. Med. 374 (26) (2016) 2542–2552.

[111] R.L. Ferris, G. Blumenschein Jr., J. Fayette, J. Guigay, A.D. Colevas, L. Licitra,
K. Harrington, S. Kasper, E.E. Vokes, C. Even, F. Worden, N.F. Saba, L.C. Iglesias
Docampo, R. Haddad, T. Rordorf, N. Kiyota, M. Tahara, M. Monga, M. Lynch,
W.J. Geese, J. Kopit, J.W. Shaw, M.L. Gillison, Nivolumab for recurrent squamous-
cell carcinoma of the head and neck, N. Engl. J. Med. 375 (19) (2016) 1856–1867.

[112] J.G. Iyer, O.K. Afanasiev, C. McClurkan, K. Paulson, K. Nagase, L. Jing,
J.O. Marshak, L. Dong, J. Carter, I. Lai, E. Farrar, D. Byrd, D. Galloway, C. Yee,
D.M. Koelle, P. Nghiem, Merkel cell polyomavirus-specific CD8(+) and CD4(+)
T-cell responses identified in merkel cell carcinomas and blood, Clin. Cancer Res.
17 (21) (2011) 6671–6680.

[113] A. de Jong, M.I. van Poelgeest, J.M. van der Hulst, J.W. Drijfhout, G.J. Fleuren,
C.J. Melief, G. Kenter, R. Offringa, S.H. van der Burg, Human papillomavirus type
16-positive cervical cancer is associated with impaired CD4+ T-cell immunity
against early antigens E2 and E6, Cancer Res. 64 (15) (2004) 5449–5455.

[114] S.J. Piersma, M.J. Welters, J.M. van der Hulst, J.N. Kloth, K.M. Kwappenberg,
B.J. Trimbos, C.J. Melief, B.W. Hellebrekers, G.J. Fleuren, G.G. Kenter, R. Offringa,
S.H. van der Burg, Human papilloma virus specific T cells infiltrating cervical
cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and
-DP as a restriction element, Int. J. Cancer 122 (3) (2008) 486–494.

[115] M.J.P. Welters, W. Ma, S. Santegoets, R. Goedemans, I. Ehsan, E.S. Jordanova,
V.J. van Ham, V. van Unen, F. Koning, S.I. van Egmond, P. Charoentong,
Z. Trajanoski, L.A. van der Velden, S.H. van der Burg, Intratumoral HPV16-
Specific T cells constitute a type I-Oriented tumor microenvironment to improve
survival in HPV16-Driven oropharyngeal cancer, Clin. Cancer Res. 24 (3) (2018)
634–647.

[116] M.L. Bagarazzi, J. Yan, M.P. Morrow, X. Shen, R.L. Parker, J.C. Lee, M. Giffear,
P. Pankhong, A.S. Khan, K.E. Broderick, C. Knott, F. Lin, J.D. Boyer, R. Draghia-
Akli, C.J. White, J.J. Kim, D.B. Weiner, N.Y. Sardesai, Immunotherapy against
HPV16/18 generates potent TH1 and cytotoxic cellular immune responses, Sci.
Transl. Med. 4 (155) (2012) 155ra.

[117] C.L. Trimble, M.P. Morrow, K.A. Kraynyak, X. Shen, M. Dallas, J. Yan, L. Edwards,
R.L. Parker, L. Denny, M. Giffear, A.S. Brown, K. Marcozzi-Pierce, D. Shah,

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

133

http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0425
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0425
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0425
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0425
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0430
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0430
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0430
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0430
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0430
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0435
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0435
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0435
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0435
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0435
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0440
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0440
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0440
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0440
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0440
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0440
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0445
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0445
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0445
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0445
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0450
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0455
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0455
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0455
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0455
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0455
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0455
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0455
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0460
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0460
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0460
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0460
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0460
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0465
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0465
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0465
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0465
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0470
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0470
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0470
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0470
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0470
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0470
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0475
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0475
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0475
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0475
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0475
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0475
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0480
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0480
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0480
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0480
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0480
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0480
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0485
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0485
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0485
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0485
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0485
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0490
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0490
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0490
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0490
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0490
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0490
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0495
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0495
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0495
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0495
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0495
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0495
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0495
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0500
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0500
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0505
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0505
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0505
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0505
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0510
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0510
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0510
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0510
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0510
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0510
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0515
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0515
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0515
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0515
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0520
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0520
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0520
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0520
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0520
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0520
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0525
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0525
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0525
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0525
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0525
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0525
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0530
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0530
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0530
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0530
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0530
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0535
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0535
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0535
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0535
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0535
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0535
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0540
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0540
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0540
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0540
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0540
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0545
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0545
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0545
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0545
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0545
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0550
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0550
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0550
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0550
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0550
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0550
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0550
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0555
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0555
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0555
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0555
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0555
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0560
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0560
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0560
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0560
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0560
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0565
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0565
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0565
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0565
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0570
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0570
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0570
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0570
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0570
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0575
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0575
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0575
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0575
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0575
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0575
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0580
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0580
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0580
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0580
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0580
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585


A.M. Slager, A.J. Sylvester, A. Khan, K.E. Broderick, R.J. Juba, T.A. Herring,
J. Boyer, J. Lee, N.Y. Sardesai, D.B. Weiner, M.L. Bagarazzi, Safety, efficacy, and
immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting
human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial
neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial,
Lancet 386 (10008) (2015) 2078–2088.

[118] M.P. Morrow, K.A. Kraynyak, A.J. Sylvester, M. Dallas, D. Knoblock, J.D. Boyer,
J. Yan, R. Vang, A.S. Khan, L. Humeau, N.Y. Sardesai, J.J. Kim, S. Plotkin,
D.B. Weiner, C.L. Trimble, M.L. Bagarazzi, Clinical and immunologic biomarkers
for histologic regression of high-grade cervical dysplasia and clearance of HPV16
and HPV18 after immunotherapy, Clin. Cancer Res. 24 (2) (2018) 276–294.

[119] T.J. Kim, H.T. Jin, S.Y. Hur, H.G. Yang, Y.B. Seo, S.R. Hong, C.W. Lee, S. Kim,
J.W. Woo, K.S. Park, Y.Y. Hwang, J. Park, I.H. Lee, K.T. Lim, K.H. Lee, M.S. Jeong,
C.D. Surh, Y.S. Suh, J.S. Park, Y.C. Sung, Clearance of persistent HPV infection and
cervical lesion by therapeutic DNA vaccine in CIN3 patients, Nat. Commun. 5
(2014) 5317.

[120] P.J. De Vos van Steenwijk, T.H. Ramwadhdoebe, M.J. Lowik, C.E. Van der Minne,
D.M. Berends-van der Meer, L.M. Fathers, A.R. Valentijn, G. fleuren,
B.W. Hellebrekers, M.J. Welters, M.I. Van Poelgeest, C. Melief, G. Kenter, S.H. Van
der Burg, A placebo-controlled randomized HPV16 synthetic long-peptide vacci-
nation study in women with high-grade cervical squamous intraepithelial lesions,
Cancer Immunol. Immunother. 61 (9) (2013) 1485–1492.

[121] M.J. Welters, G.G. Kenter, S.J. Piersma, A.P. Vloon, M.J. Lowik, D.M. Berends-van
der Meer, J.W. Drijfhout, A.R. Valentijn, A.R. Wafelman, J. Oostendorp,
G.J. Fleuren, R. Offringa, C.J. Melief, S.H. van der Burg, Induction of tumor-spe-
cific CD4+ and CD8+ t-cell immunity in cervical cancer patients by a human
papillomavirus type 16 E6 and E7 long peptides vaccine, Clin. Cancer Res. 14 (1)
(2008) 178–187.

[122] G.G. Kenter, M.J. Welters, A.R. Valentijn, M.J. Lowik, D.M. Berends-van der Meer,
A.P. Vloon, J.W. Drijfhout, A.R. Wafelman, J. Oostendorp, G.J. Fleuren,
R. Offringa, S.H. van der Burg, C.J. Melief, Phase I immunotherapeutic trial with
long peptides spanning the E6 and E7 sequences of high-risk human papilloma-
virus 16 in end-stage cervical cancer patients shows low toxicity and robust im-
munogenicity, Clin. Cancer Res. 14 (1) (2008) 169–177.

[123] G.G. Kenter, M.J. Welters, A.R. Valentijn, M.J. Lowik, D.M. Berends-van der Meer,
A.P. Vloon, F. Essahsah, L.M. Fathers, R. Offringa, J.W. Drijfhout, A.R. Wafelman,
J. Oostendorp, G.J. Fleuren, S.H. van der Burg, C.J. Melief, Vaccination against
HPV-16 oncoproteins for vulvar intraepithelial neoplasia, N. Engl. J. Med. 361
(19) (2009) 1838–1847.

[124] M.I. van Poelgeest, M.J. Welters, R. Vermeij, L.F. Stynenbosch, N.M. Loof,
D.M. Berends-van der Meer, M.J. Lowik, I.L. Hamming, E.M. van Esch,
B.W. Hellebrekers, M. van Beurden, H.W. Schreuder, M.J. Kagie, J.B. Trimbos,
L.M. Fathers, T. Daemen, H. Hollema, A.R. Valentijn, J. Oostendorp, J.H. Oude
Elberink, G.J. Fleuren, T. Bosse, G.G. Kenter, T. Stijnen, H.W. Nijman, C.J. Melief,
S.H. van der Burg, Vaccination against oncoproteins of HPV16 for noninvasive
vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell
response, Clin. Cancer Res. 22 (10) (2016) 2342–2350.

[125] M.J. Welters, G.G. Kenter, P.J. de Vos van Steenwijk, M.J. Lowik, D.M. Berends-
van der Meer, F. Essahsah, L.F. Stynenbosch, A.P. Vloon, T.H. Ramwadhdoebe,
S.J. Piersma, J.M. van der Hulst, A.R. Valentijn, L.M. Fathers, J.W. Drijfhout,
K.L. Franken, J. Oostendorp, G.J. Fleuren, C.J. Melief, S.H. van der Burg, Success
or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics
and phenotype of induced T-cell responses, Proc. Natl. Acad. Sci. U. S. A. 107 (26)
(2010) 11895–11899.

[126] M.I. van Poelgeest, M.J. Welters, E.M. van Esch, L.F. Stynenbosch, G. Kerpershoek,
E.L. van Persijn van Meerten, M. van den Hende, M.J. Lowik, D.M. Berends-van
der Meer, L.M. Fathers, A.R. Valentijn, J. Oostendorp, G.J. Fleuren, C.J. Melief,
G.G. Kenter, S.H. van der Burg, HPV16 synthetic long peptide (HPV16-SLP) vac-
cination therapy of patients with advanced or recurrent HPV16-induced gyneco-
logical carcinoma, a phase II trial, J. Transl. Med. 11 (88) (2013).

[127] M.J. Welters, T.C. van der Sluis, H. van Meir, N.M. Loof, V.J. van Ham, S. van
Duikeren, S.J. Santegoets, R. Arens, M.L. de Kam, A.F. Cohen, M.I. van Poelgeest,
G.G. Kenter, J.R. Kroep, J. Burggraaf, C.J. Melief, S.H. van der Burg, Vaccination
during myeloid cell depletion by cancer chemotherapy fosters robust T cell re-
sponses, Sci. Transl. Med. 8 (334) (2016) 334ra.

[128] W.R. Gerritsen, C.J. Melief, M. Welters, I. Vergote, J.R. Kroep, G. Kenter,
N. Ottevanger, W.A. Tjalma, H. Denys, M.I. Van Poelgeest, H. Nijman,
A.K. Reyners, T. Velu, F. Goffin, R.I. Lasilang, R.B. Stead, B. Blumenstein, S.H. Van
der Burg, Association of t cell responses after vaccination with HPV16 long pep-
tides for late stage cervical cancer with prolonged survival, ASCO-SITC Clinical
Immuno-Oncology Symposium, (2017) Abstract 140.

[129] G.T. Gibney, R.R. Kudchadkar, R.C. DeConti, M.S. Thebeau, M.P. Czupryn,
L. Tetteh, C. Eysmans, A. Richards, M.J. Schell, K.J. Fisher, C.E. Horak,
H.D. Inzunza, B. Yu, A.J. Martinez, I. Younos, J.S. Weber, Safety, correlative
markers, and clinical results of adjuvant nivolumab in combination with vaccine
in resected high-risk metastatic melanoma, Clin. Cancer Res. 21 (4) (2015)
712–720.

[130] E. Massarelli, W. William, F. Johnson, M. Kies, R. Ferrarotto, M. Guo, L. Feng,
J.J. Lee, Y. Uk Kim, C. Haymaker, C. Bernatchez, M.A. Curran, T. Zecchini Barrese,
J. Rodriguez Canales, I. Wistuba, L. Li, J. Wang, S. Van der Burg, C. Melief,
B. Glisson, Phase II Trial of Nivolumab and ISA101Vaccine in Patients with
Incurable HPV-16 Associated Cancers, Submitted (2018).

[131] D.A. Mitchell, K.A. Batich, M.D. Gunn, M.N. Huang, L. Sanchez-Perez, S.K. Nair,
K.L. Congdon, E.A. Reap, G.E. Archer, A. Desjardins, A.H. Friedman,
H.S. Friedman, J.E. Herndon 2nd, A. Coan, R.E. McLendon, D.A. Reardon,
J.J. Vredenburgh, D.D. Bigner, J.H. Sampson, Tetanus toxoid and CCL3 improve

dendritic cell vaccines in mice and glioblastoma patients, Nature 519 (7543)
(2015) 366–369.

[132] K.A. Batich, E.A. Reap, G.E. Archer, L. Sanchez-Perez, S.K. Nair, R.J. Schmittling,
P. Norberg, W. Xie, J.E. Herndon 2nd, P. Healy, R.E. McLendon, A.H. Friedman,
H.S. Friedman, D. Bigner, G. Vlahovic, D.A. Mitchell, J.H. Sampson, Long-term
survival in glioblastoma with cytomegalovirus pp65-targeted vaccination, Clin.
Cancer Res. 23 (8) (2017) 1898–1909.

[133] T.N. Schumacher, R.D. Schreiber, Neoantigens in cancer immunotherapy, Science
348 (6230) (2015) 69–74.

[134] M. Sensi, A. Anichini, Unique tumor antigens: evidence for immune control of
genome integrity and immunogenic targets for T cell-mediated patient-specific
immunotherapy, Clin. Cancer Res. 12 (17) (2006) 5023–5032.

[135] N. Hacohen, E.F. Fritsch, T.A. Carter, E.S. Lander, C.J. Wu, Getting personal with
neoantigen-based therapeutic cancer vaccines, Cancer Immunol. Res. 1 (1) (2013)
11–15.

[136] D. Gfeller, M. Bassani-Sternberg, J. Schmidt, I.F. Luescher, Current tools for pre-
dicting cancer-specific T cell immunity, Oncoimmunology 5 (7) (2016) e1177691.

[137] J.C. Castle, S. Kreiter, J. Diekmann, M. Lower, N. van de Roemer, J. de Graaf,
A. Selmi, M. Diken, S. Boegel, C. Paret, M. Koslowski, A.N. Kuhn, C.M. Britten,
C. Huber, O. Tureci, U. Sahin, Exploiting the mutanome for tumor vaccination,
Cancer Res. 72 (5) (2012) 1081–1091.

[138] M.M. Gubin, X. Zhang, H. Schuster, E. Caron, J.P. Ward, T. Noguchi, Y. Ivanova,
J. Hundal, C.D. Arthur, W.J. Krebber, G.E. Mulder, M. Toebes, M.D. Vesely,
S.S. Lam, A.J. Korman, J.P. Allison, G.J. Freeman, A.H. Sharpe, E.L. Pearce,
T.N. Schumacher, R. Aebersold, H.G. Rammensee, C.J. Melief, E.R. Mardis,
W.E. Gillanders, M.N. Artyomov, R.D. Schreiber, Checkpoint blockade cancer
immunotherapy targets tumour-specific mutant antigens, Nature 515 (7528)
(2014) 577–581.

[139] M. Yadav, S. Jhunjhunwala, Q.T. Phung, P. Lupardus, J. Tanguay, S. Bumbaca,
C. Franci, T.K. Cheung, J. Fritsche, T. Weinschenk, Z. Modrusan, I. Mellman,
J.R. Lill, L. Delamarre, Predicting immunogenic tumour mutations by combining
mass spectrometry and exome sequencing, Nature 515 (7528) (2014) 572–576.

[140] S. Kreiter, M. Vormehr, N. van de Roemer, M. Diken, M. Lower, J. Diekmann,
S. Boegel, B. Schrors, F. Vascotto, J.C. Castle, A.D. Tadmor, S.P. Schoenberger,
C. Huber, O. Tureci, U. Sahin, Mutant MHC class II epitopes drive therapeutic
immune responses to cancer, Nature 520 (7549) (2015) 692–696.

[141] S. Zwaveling, S.C. Ferreira Mota, J. Nouta, M. Johnson, G.B. Lipford, R. Offringa,
S.H. van der Burg, C.J. Melief, Established human papillomavirus type 16-ex-
pressing tumors are effectively eradicated following vaccination with long pep-
tides, J. Immunol. 169 (1) (2002) 350–358.

[142] J.H. Sampson, A.B. Heimberger, G.E. Archer, K.D. Aldape, A.H. Friedman,
H.S. Friedman, M.R. Gilbert, J.E. Herndon 2nd, R.E. McLendon, D.A. Mitchell,
D.A. Reardon, R. Sawaya, R.J. Schmittling, W. Shi, J.J. Vredenburgh, D.D. Bigner,
Immunologic escape after prolonged progression-free survival with epidermal
growth factor receptor variant III peptide vaccination in patients with newly di-
agnosed glioblastoma, J. Clin. Oncol. 28 (31) (2010) 4722–4729.

[143] J.H. Sampson, K.D. Aldape, G.E. Archer, A. Coan, A. Desjardins, A.H. Friedman,
H.S. Friedman, M.R. Gilbert, J.E. Herndon, R.E. McLendon, D.A. Mitchell,
D.A. Reardon, R. Sawaya, R. Schmittling, W. Shi, J.J. Vredenburgh, D.D. Bigner,
A.B. Heimberger, Greater chemotherapy-induced lymphopenia enhances tumor-
specific immune responses that eliminate EGFRvIII-expressing tumor cells in pa-
tients with glioblastoma, Neuro-Oncology 13 (3) (2011) 324–333.

[144] J. Schuster, R.K. Lai, L.D. Recht, D.A. Reardon, N.A. Paleologos, M.D. Groves,
M.M. Mrugala, R. Jensen, J.M. Baehring, A. Sloan, G.E. Archer, D.D. Bigner,
S. Cruickshank, J.A. Green, T. Keler, T.A. Davis, A.B. Heimberger, J.H. Sampson, A
phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glio-
blastoma: the ACT III study, Neuro Oncol. 17 (6) (2015) 854–861.

[145] M. Weller, N. Butowski, D.D. Tran, L.D. Recht, M. Lim, H. Hirte, L. Ashby,
L. Mechtler, S.A. Goldlust, F. Iwamoto, J. Drappatz, D.M. O’Rourke, M. Wong,
M.G. Hamilton, G. Finocchiaro, J. Perry, W. Wick, J. Green, Y. He, C.D. Turner,
M.J. Yellin, T. Keler, T.A. Davis, R. Stupp, J.H. Sampson, A.I.t. investigators,
rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-
expressing glioblastoma (ACT IV): a randomised, double-blind, international
phase 3 trial, Lancet Oncol. 18 (10) (2017) 1373–1385.

[146] B.M. Carreno, V. Magrini, M. Becker-Hapak, S. Kaabinejadian, J. Hundal,
A.A. Petti, A. Ly, W.R. Lie, W.H. Hildebrand, E.R. Mardis, G.P. Linette, Cancer
immunotherapy. A dendritic cell vaccine increases the breadth and diversity of
melanoma neoantigen-specific T cells, Science 348 (6236) (2015) 803–808.

[147] P.A. Ott, Z. Hu, D.B. Keskin, S.A. Shukla, J. Sun, D.J. Bozym, W. Zhang, A. Luoma,
A. Giobbie-Hurder, L. Peter, C. Chen, O. Olive, T.A. Carter, S. Li, D.J. Lieb,
T. Eisenhaure, E. Gjini, J. Stevens, W.J. Lane, I. Javeri, K. Nellaiappan,
A.M. Salazar, H. Daley, M. Seaman, E.I. Buchbinder, C.H. Yoon, M. Harden,
N. Lennon, S. Gabriel, S.J. Rodig, D.H. Barouch, J.C. Aster, G. Getz,
K. Wucherpfennig, D. Neuberg, J. Ritz, E.S. Lander, E.F. Fritsch, N. Hacohen,
C.J. Wu, An immunogenic personal neoantigen vaccine for patients with mela-
noma, Nature 547 (7662) (2017) 217–221.

[148] U. Sahin, E. Derhovanessian, M. Miller, B.P. Kloke, P. Simon, M. Lower, V. Bukur,
A.D. Tadmor, U. Luxemburger, B. Schrors, T. Omokoko, M. Vormehr, C. Albrecht,
A. Paruzynski, A.N. Kuhn, J. Buck, S. Heesch, K.H. Schreeb, F. Muller, I. Ortseifer,
I. Vogler, E. Godehardt, S. Attig, R. Rae, A. Breitkreuz, C. Tolliver, M. Suchan,
G. Martic, A. Hohberger, P. Sorn, J. Diekmann, J. Ciesla, O. Waksmann,
A.K. Bruck, M. Witt, M. Zillgen, A. Rothermel, B. Kasemann, D. Langer, S. Bolte,
M. Diken, S. Kreiter, R. Nemecek, C. Gebhardt, S. Grabbe, C. Holler, J. Utikal,
C. Huber, C. Loquai, O. Tureci, Personalized RNA mutanome vaccines mobilize
poly-specific therapeutic immunity against cancer, Nature 547 (7662) (2017)
222–226.

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

134

http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0585
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0590
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0590
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0590
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0590
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0590
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0595
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0595
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0595
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0595
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0595
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0600
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0600
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0600
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0600
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0600
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0600
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0605
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0605
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0605
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0605
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0605
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0605
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0610
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0610
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0610
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0610
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0610
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0610
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0615
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0615
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0615
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0615
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0615
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0620
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0625
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0625
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0625
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0625
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0625
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0625
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0625
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0630
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0630
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0630
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0630
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0630
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0630
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0635
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0635
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0635
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0635
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0635
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0640
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0640
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0640
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0640
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0640
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0640
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0645
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0645
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0645
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0645
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0645
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0645
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0650
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0650
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0650
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0650
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0650
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0655
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0655
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0655
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0655
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0655
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0655
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0660
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0660
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0660
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0660
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0660
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0665
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0665
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0670
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0670
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0670
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0675
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0675
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0675
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0680
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0680
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0685
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0685
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0685
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0685
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0690
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0690
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0690
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0690
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0690
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0690
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0690
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0695
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0695
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0695
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0695
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0700
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0700
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0700
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0700
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0705
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0705
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0705
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0705
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0710
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0710
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0710
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0710
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0710
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0710
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0715
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0715
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0715
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0715
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0715
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0715
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0720
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0720
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0720
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0720
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0720
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0725
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0725
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0725
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0725
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0725
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0725
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0725
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0730
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0730
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0730
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0730
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0735
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0740


[149] J.A. Kyte, S. Aamdal, S. Dueland, S. Saeboe-Larsen, E.M. Inderberg, U.E. Madsbu,
E. Skovlund, G. Gaudernack, G. Kvalheim, Immune response and long-term clin-
ical outcome in advanced melanoma patients vaccinated with tumor-mRNA-
transfected dendritic cells, Oncoimmunology 5 (11) (2016) e1232237.

[150] M. Lotem, S. Merims, S. Frank, T. Hamburger, A. Nissan, L. Kadouri, J. Cohen,
R. Straussman, G. Eisenberg, S. Frankenburg, E. Carmon, B. Alaiyan,
S. Shneibaum, Z. Ozge Ayyildiz, M. Isbilen, K. Mert Senses, I. Ron, H. Steinberg,
Y. Smith, E. Shiloni, A.O. Gure, T. Peretz, Adjuvant autologous melanoma vaccine
for macroscopic stage III disease: survival, biomarkers, and improved response to
CTLA-4 blockade, J. Immunol. Res. 2016 (2016) 8121985.

[151] V. Corbiere, J. Chapiro, V. Stroobant, W. Ma, C. Lurquin, B. Lethe, N. van Baren,
B.J. Van den Eynde, T. Boon, P.G. Coulie, Antigen spreading contributes to MAGE
vaccination-induced regression of melanoma metastases, Cancer Res. 71 (4)
(2011) 1253–1262.

[152] N. Kheshtchin, S. Arab, M. Ajami, R. Mirzaei, M. Ashourpour, N. Mousavi,
N. Khosravianfar, F. Jadidi-Niaragh, A. Namdar, F. Noorbakhsh, J. Hadjati,
Inhibition of HIF-1alpha enhances anti-tumor effects of dendritic cell-based vac-
cination in a mouse model of breast cancer, Cancer Immunol. Immunother. 65
(10) (2016) 1159–1167.

[153] D.L. Cecil, M. Slota, M.M. O’Meara, B.C. Curtis, E. Gad, Y. Dang, D. Herendeen,
L. Rastetter, M.L. Disis, Immunization against HIF-1alpha inhibits the growth of
basal mammary tumors and targets mammary stem cells in vivo, Clin. Cancer Res.
23 (13) (2017) 3396–3404.

[154] R.B. Sorensen, S.R. Hadrup, I.M. Svane, M.C. Hjortso, P. Thor Straten,
M.H. Andersen, Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune
regulators, Blood 117 (7) (2011) 2200–2210.

[155] T.Z. Iversen, L. Engell-Noerregaard, E. Ellebaek, R. Andersen, S.K. Larsen,
J. Bjoern, C. Zeyher, C. Gouttefangeas, B.M. Thomsen, B. Holm, P. Thor Straten,
A. Mellemgaard, M.H. Andersen, I.M. Svane, Long-lasting disease stabilization in
the absence of toxicity in metastatic lung cancer patients vaccinated with an
epitope derived from indoleamine 2,3 dioxygenase, Clin. Cancer Res. 20 (1)
(2014) 221–232.

[156] S. Munir, G.H. Andersen, O. Met, M. Donia, T.M. Frosig, S.K. Larsen, T.W. Klausen,
I.M. Svane, M.H. Andersen, HLA-restricted CTL that are specific for the immune
checkpoint ligand PD-L1 occur with high frequency in cancer patients, Cancer Res.
73 (6) (2013) 1764–1776.

[157] S. Munir, G.H. Andersen, A. Woetmann, N. Odum, J.C. Becker, M.H. Andersen,
Cutaneous T cell lymphoma cells are targets for immune checkpoint ligand PD-L1-
specific, cytotoxic T cells, Leukemia 27 (11) (2013) 2251–2253.

[158] S.M. Ahmad, S.K. Larsen, I.M. Svane, M.H. Andersen, Harnessing PD-L1-specific
cytotoxic T cells for anti-leukemia immunotherapy to defeat mechanisms of im-
mune escape mediated by the PD-1 pathway, Leukemia 28 (1) (2014) 236–238.

[159] R. Bos, L.A. Sherman, CD4+ T-cell help in the tumor milieu is required for re-
cruitment and cytolytic function of CD8+ T lymphocytes, Cancer Res. 70 (21)
(2010) 8368–8377.

[160] S.B. Wong, R. Bos, L.A. Sherman, Tumor-specific CD4+ T cells render the tumor
environment permissive for infiltration by low-avidity CD8+ T cells, J. Immunol.
180 (5) (2008) 3122–3131.

[161] T. Schumacher, L. Bunse, S. Pusch, F. Sahm, B. Wiestler, J. Quandt, O. Menn,
M. Osswald, I. Oezen, M. Ott, M. Keil, J. Balss, K. Rauschenbach, A.K. Grabowska,
I. Vogler, J. Diekmann, N. Trautwein, S.B. Eichmuller, J. Okun, S. Stevanovic,
A.B. Riemer, U. Sahin, M.A. Friese, P. Beckhove, A. von Deimling, W. Wick,
M. Platten, A vaccine targeting mutant IDH1 induces antitumour immunity,
Nature 512 (7514) (2014) 324–327.

[162] S. Koido, Y. Enomoto, V. Apostolopoulos, J. Gong, Tumor regression by CD4 T-
cells primed with dendritic/tumor fusion cell vaccines, Anticancer Res. 34 (8)
(2014) 3917–3924.

[163] D. Daniel, C. Chiu, E. Giraudo, M. Inoue, L.A. Mizzen, N.R. Chu, D. Hanahan,
CD4+ T cell-mediated antigen-specific immunotherapy in a mouse model of
cervical cancer, Cancer Res. 65 (5) (2005) 2018–2025.

[164] C.L. Slingluff Jr., S. Lee, F. Zhao, K.A. Chianese-Bullock, W.C. Olson,
L.H. Butterfield, T.L. Whiteside, P.D. Leming, J.M. Kirkwood, A randomized phase
II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells
and helper T cells for patients with metastatic melanoma (E1602), Clin. Cancer
Res. 19 (15) (2013) 4228–4238.

[165] C.J. Melief, S.H. van der Burg, Immunotherapy of established (pre)malignant
disease by synthetic long peptide vaccines, Nat. Rev. Cancer 8 (5) (2008) 351–360.

[166] N.N. Hunder, H. Wallen, J. Cao, D.W. Hendricks, J.Z. Reilly, R. Rodmyre,
A. Jungbluth, S. Gnjatic, J.A. Thompson, C. Yee, Treatment of metastatic mela-
noma with autologous CD4+ T cells against NY-ESO-1, N. Engl. J. Med. 358 (25)
(2008) 2698–2703.

[167] C. Linnemann, M.M. van Buuren, L. Bies, E.M. Verdegaal, R. Schotte, J.J. Calis,
S. Behjati, A. Velds, H. Hilkmann, D.E. Atmioui, M. Visser, M.R. Stratton,
J.B. Haanen, H. Spits, S.H. van der Burg, T.N. Schumacher, High-throughput
epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in
human melanoma, Nat. Med. 21 (1) (2015) 81–85.

[168] E.M. Verdegaal, N.F. de Miranda, M. Visser, T. Harryvan, M.M. van Buuren,
R.S. Andersen, S.R. Hadrup, C.E. van der Minne, R. Schotte, H. Spits, J.B. Haanen,
E.H. Kapiteijn, T.N. Schumacher, S.H. van der Burg, Neoantigen landscape dy-
namics during human melanoma-T cell interactions, Nature 536 (7614) (2016)
91–95.

[169] E. Tran, S. Turcotte, A. Gros, P.F. Robbins, Y.C. Lu, M.E. Dudley, J.R. Wunderlich,
R.P. Somerville, K. Hogan, C.S. Hinrichs, M.R. Parkhurst, J.C. Yang,
S.A. Rosenberg, Cancer immunotherapy based on mutation-specific CD4+ T cells
in a patient with epithelial cancer, Science 344 (6184) (2014) 641–645.

[170] G.L. Hansen, G. Gaudernack, P.F. Brunsvig, M. Cvancarova, J.A. Kyte,

Immunological factors influencing clinical outcome in lung cancer patients after
telomerase peptide vaccination, Cancer Immunol. Immunother. 64 (12) (2015)
1609–1621.

[171] A.A. Leontovich, R.S. Dronca, W.K. Nevala, M.A. Thompson, L.A. Kottschade,
L.V. Ivanov, S.N. Markovic, C. Melanoma Study Group of the Mayo Clinic Cancer,
Effect of the lymphocyte-to-monocyte ratio on the clinical outcome of che-
motherapy administration in advanced melanoma patients, Melanoma Res. 27 (1)
(2017) 32–42.

[172] B. Weide, A. Martens, H. Zelba, C. Stutz, E. Derhovanessian, A.M. Di Giacomo,
M. Maio, A. Sucker, B. Schilling, D. Schadendorf, P. Buttner, C. Garbe, G. Pawelec,
Myeloid-derived suppressor cells predict survival of patients with advanced mel-
anoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T
cells, Clin. Cancer Res. 20 (6) (2014) 1601–1609.

[173] A. Martens, K. Wistuba-Hamprecht, M. Geukes Foppen, J. Yuan, M.A. Postow,
P. Wong, E. Romano, A. Khammari, B. Dreno, M. Capone, P.A. Ascierto, A.M. Di
Giacomo, M. Maio, B. Schilling, A. Sucker, D. Schadendorf, J.C. Hassel,
T.K. Eigentler, P. Martus, J.D. Wolchok, C. Blank, G. Pawelec, C. Garbe, B. Weide,
Baseline peripheral blood biomarkers associated with clinical outcome of ad-
vanced melanoma patients treated with ipilimumab, Clin. Cancer Res. 22 (12)
(2016) 2908–2918.

[174] B. Weide, H. Zelba, E. Derhovanessian, A. Pflugfelder, T.K. Eigentler, A.M. Di
Giacomo, M. Maio, E.H. Aarntzen, I.J. de Vries, A. Sucker, D. Schadendorf,
P. Buttner, C. Garbe, G. Pawelec, Functional T cells targeting NY-ESO-1 or Melan-
A are predictive for survival of patients with distant melanoma metastasis, J. Clin.
Oncol. 30 (15) (2012) 1835–1841.

[175] J.K. Bailur, B. Gueckel, E. Derhovanessian, G. Pawelec, Presence of circulating
Her2-reactive CD8 + T-cells is associated with lower frequencies of myeloid-de-
rived suppressor cells and regulatory T cells, and better survival in older breast
cancer patients, Breast Cancer Res. 17 (2015) 34.

[176] P. Kongsted, T.H. Borch, E. Ellebaek, T.Z. Iversen, R. Andersen, O. Met, M. Hansen,
H. Lindberg, L. Sengelov, I.M. Svane, Dendritic cell vaccination in combination
with docetaxel for patients with metastatic castration-resistant prostate cancer: a
randomized phase II study, Cytotherapy 19 (4) (2017) 500–513.

[177] S.I. Buschow, M. Ramazzotti, I.M.J. Reinieren-Beeren, L.M. Heinzerling,
H. Westdorp, I. Stefanini, L. Beltrame, S.V. Hato, E. Ellebaek, S. Gross,
V.A. Nguyen, G. Weinlich, J. Ragoussis, D. Baban, B. Schuler-Thurner, I.M. Svane,
N. Romani, J.M. Austyn, I.J.M. De Vries, G. Schuler, D. Cavalieri, C.G. Figdor,
Survival of metastatic melanoma patients after dendritic cell vaccination corre-
lates with expression of leukocyte phosphatidylethanolamine-binding protein 1/
Raf kinase inhibitory protein, Oncotarget 8 (40) (2017) 67439–67456.

[178] N.E. Annels, V.E. Shaw, R.F. Gabitass, L. Billingham, P. Corrie, M. Eatock, J. Valle,
D. Smith, J. Wadsley, D. Cunningham, H. Pandha, J.P. Neoptolemos, G. Middleton,
The effects of gemcitabine and capecitabine combination chemotherapy and of
low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in
patients with advanced pancreatic cancer, Cancer Immunol. Immunother. 63 (2)
(2014) 175–183.

[179] E. Beyranvand Nejad, T.C. van der Sluis, S. van Duikeren, H. Yagita, G.M. Janssen,
P.A. van Veelen, C.J. Melief, S.H. van der Burg, R. Arens, Tumor eradication by
cisplatin is sustained by CD80/86-mediated costimulation of CD8+ T cells, Cancer
Res. 76 (20) (2016) 6017–6029.

[180] T.C. van der Sluis, M. Sluijter, S. van Duikeren, B.L. West, C.J. Melief, R. Arens,
S.H. van der Burg, T. van Hall, Therapeutic peptide vaccine-induced CD8 T cells
strongly modulate intratumoral macrophages required for tumor regression,
Cancer Immunol. Res. 3 (9) (2015) 1042–1051.

[181] C. Krieg, M. Nowicka, S. Guglietta, S. Schindler, F.J. Hartmann, L.M. Weber,
R. Dummer, M.D. Robinson, M.P. Levesque, B. Becher, High-dimensional single-
cell analysis predicts response to anti-PD-1 immunotherapy, Nat. Med. 24 (2)
(2018) 144–153.

[182] S.M. Melief, V.V. Visconti, M. Visser, M. van Diepen, E.H. Kapiteijn, J.H. van den
Berg, J.B. Haanen, V.T. Smit, J. Oosting, S.H. van der Burg, E.M. Verdegaal, Long-
term survival and clinical benefit from adoptive T-cell transfer in stage IV mela-
noma patients is determined by a four-parameter tumor immune signature, Cancer
Immunol. Res. 5 (2) (2017) 170–179.

[183] H.S. Hong, S.D. Koch, B. Scheel, U. Gnad-Vogt, A. Schroder, K.J. Kallen,
V. Wiegand, L. Backert, O. Kohlbacher, I. Hoerr, M. Fotin-Mleczek,
J.M. Billingsley, Distinct transcriptional changes in non-small cell lung cancer
patients associated with multi-antigenic RNActive(R) CV9201 immunotherapy,
Oncoimmunology 5 (12) (2016) e1249560.

[184] B. Farsaci, R.N. Donahue, I. Grenga, L.M. Lepone, P.S. Kim, B. Dempsey,
J.C. Siebert, N.K. Ibrahim, R.A. Madan, C.R. Heery, J.L. Gulley, J. Schlom,
Analyses of pretherapy peripheral immunoscore and response to vaccine therapy,
Cancer Immunol. Res. 4 (9) (2016) 755–765.

[185] C. Jochems, J.A. Tucker, K.Y. Tsang, R.A. Madan, W.L. Dahut, D.J. Liewehr,
S.M. Steinberg, J.L. Gulley, J. Schlom, A combination trial of vaccine plus ipili-
mumab in metastatic castration-resistant prostate cancer patients: immune cor-
relates, Cancer Immunol. Immunother. 63 (4) (2014) 407–418.

[186] Y. Han, Q. Guo, M. Zhang, Z. Chen, X. Cao, CD69+ CD4+ CD25- T cells, a new
subset of regulatory T cells, suppress T cell proliferation through membrane-bound
TGF-beta 1, J. Immunol. 182 (1) (2009) 111–120.

[187] V. Francois, S. Ottaviani, N. Renkvist, J. Stockis, G. Schuler, K. Thielemans,
D. Colau, M. Marchand, T. Boon, S. Lucas, P. van der Bruggen, The CD4(+) T-cell
response of melanoma patients to a MAGE-A3 peptide vaccine involves potential
regulatory T cells, Cancer Res. 69 (10) (2009) 4335–4345.

[188] M.N. Lopez, C. Pereda, G. Segal, L. Munoz, R. Aguilera, F.E. Gonzalez, A. Escobar,
A. Ginesta, D. Reyes, R. Gonzalez, A. Mendoza-Naranjo, M. Larrondo, A. Compan,
C. Ferrada, F. Salazar-Onfray, Prolonged survival of dendritic cell-vaccinated

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

135

http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0745
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0745
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0745
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0745
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0750
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0750
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0750
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0750
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0750
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0750
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0755
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0755
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0755
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0755
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0760
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0760
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0760
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0760
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0760
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0765
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0765
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0765
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0765
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0770
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0770
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0770
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0775
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0775
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0775
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0775
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0775
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0775
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0780
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0780
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0780
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0780
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0785
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0785
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0785
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0790
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0790
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0790
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0795
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0795
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0795
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0800
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0800
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0800
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0805
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0805
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0805
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0805
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0805
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0805
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0810
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0810
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0810
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0815
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0815
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0815
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0820
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0820
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0820
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0820
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0820
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0825
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0825
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0830
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0830
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0830
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0830
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0835
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0835
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0835
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0835
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0835
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0840
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0840
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0840
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0840
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0840
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0845
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0845
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0845
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0845
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0850
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0850
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0850
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0850
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0855
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0855
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0855
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0855
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0855
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0860
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0860
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0860
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0860
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0860
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0865
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0865
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0865
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0865
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0865
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0865
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0865
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0870
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0870
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0870
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0870
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0870
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0875
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0875
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0875
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0875
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0880
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0880
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0880
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0880
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0885
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0885
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0885
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0885
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0885
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0885
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0885
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0890
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0890
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0890
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0890
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0890
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0890
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0895
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0895
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0895
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0895
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0900
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0900
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0900
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0900
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0905
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0905
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0905
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0905
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0910
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0910
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0910
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0910
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0910
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0915
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0915
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0915
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0915
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0915
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0920
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0920
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0920
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0920
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0925
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0925
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0925
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0925
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0930
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0930
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0930
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0935
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0935
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0935
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0935
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0940
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0940
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0940


melanoma patients correlates with tumor-specific delayed type IV hypersensitivity
response and reduction of tumor growth factor beta-expressing T cells, J. Clin.
Oncol. 27 (6) (2009) 945–952.

[189] L. Zhang, Z. Yu, P. Muranski, D.C. Palmer, N.P. Restifo, S.A. Rosenberg,
R.A. Morgan, Inhibition of TGF-beta signaling in genetically engineered tumor
antigen-reactive T cells significantly enhances tumor treatment efficacy, Gene
Ther. 20 (5) (2013) 575–580.

[190] M. Scurr, T. Pembroke, A. Bloom, D. Roberts, A. Thomson, K. Smart,
H. Bridgeman, R. Adams, A. Brewster, R. Jones, S. Gwynne, D. Blount, R. Harrop,
M. Wright, R. Hills, A. Gallimore, A. Godkin, Effect of modified vaccinia ankara-
5T4 and low-dose cyclophosphamide on antitumor immunity in metastatic col-
orectal cancer: a randomized clinical trial, JAMA Oncol. 3 (10) (2017) e172579.

[191] M. Noguchi, F. Moriya, N. Koga, S. Matsueda, T. Sasada, A. Yamada, T. Kakuma,
K. Itoh, A randomized phase II clinical trial of personalized peptide vaccination

with metronomic low-dose cyclophosphamide in patients with metastatic castra-
tion-resistant prostate cancer, Cancer Immunol. Immunother. 65 (2) (2016)
151–160.

[192] N. Suzuki, S. Hazama, T. Ueno, H. Matsui, Y. Shindo, M. Iida, K. Yoshimura,
S. Yoshino, K. Takeda, M. Oka, A phase I clinical trial of vaccination with KIF20A-
derived peptide in combination with gemcitabine for patients with advanced
pancreatic cancer, J. Immunother. 37 (1) (2014) 36–42.

[193] V. Lennerz, M. Fatho, C. Gentilini, R.A. Frye, A. Lifke, D. Ferel, C. Wolfel,
C. Huber, T. Wolfel, The response of autologous T cells to a human melanoma is
dominated by mutated neoantigens, Proc. Natl. Acad. Sci. U. S. A. 102 (44) (2005)
16013–16018.

[194] M. DuPage, C. Mazumdar, L.M. Schmidt, A.F. Cheung, T. Jacks, Expression of
tumour-specific antigens underlies cancer immunoediting, Nature 482 (7385)
(2012) 405–409.

S.H. van der Burg Seminars in Immunology 39 (2018) 119–136

136

http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0940
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0940
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0940
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0945
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0945
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0945
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0945
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0950
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0950
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0950
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0950
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0950
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0955
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0955
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0955
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0955
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0955
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0960
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0960
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0960
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0960
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0965
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0965
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0965
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0965
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0970
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0970
http://refhub.elsevier.com/S1044-5323(18)30007-1/sbref0970

	Correlates of immune and clinical activity of novel cancer vaccines
	Introduction
	Therapeutic vaccination and clinical outcome
	Phase 3 trials with tumor-associated antigens failed for a reason
	All four levels of evidence for vaccine efficacy are observed in phase 1/2 TAA-vaccine trials
	HLA class I and II targeting tumor associated antigen vaccines
	Vaccination with defined HLA class I-restricted antigens
	Personalized peptide vaccines based on pre-existing immunity
	Vaccines targeting the overexpressed proteins HER2, MUC1 and CEA

	Therapeutic efficacy of cancer vaccines to treat virally-induced high grade lesions and cancers
	First signs of successful clinical translation of neoantigen vaccines
	Level 3 evidence for vaccines targeting immune suppressive mechanisms
	Vaccines are not necessarily required to induce tumor-specific CD8+ T cells

	The influence of host immune factors on vaccination and survival
	The impact of circulating myeloid cells and granulocytes on vaccine efficacy
	The impact of regulatory T cells and NK cells in trials

	Conclusions
	Funding
	Declaration of interest
	References




