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The most prevalent approach to activation localization in neuroimag-
ing is to identify brain regions as contiguous supra-threshold clus-
ters, check their significance using random field theory, and correct
for the multiple clusters being tested. Besides recent criticism on
the validity of the random field assumption, a spatial specificity para-
dox remains: the larger the detected cluster, the less we know about
the location of activation within that cluster. This is because cluster
inference implies “there exists at least one voxel with an evoked re-
sponse in the cluster”, and not that “all the voxels in the cluster have
an evoked response”. Inference on voxels within selected clusters
is considered bad practice, due to the voxel-wise false positive rate
inflation associated with this circular inference. Here, we propose a
remedy to the spatial specificity paradox. By applying recent results
from the multiple testing statistical literature, we are able to quantify
the proportion of truly active voxels within selected clusters, an ap-
proach we call All-Resolutions Inference (ARI). If this proportion is
high, the paradox vanishes. If it is low, we can further “drill down”
from the cluster level to sub-regions, and even to individual voxels,
in order to pinpoint the origin of the activation. In fact, ARI allows
inference on the proportion of activation in all voxel sets, no mat-
ter how large or small, however these have been selected, all from
the same data. We use two fMRI datasets to demonstrate the non-
triviality of the spatial specificity paradox, and its resolution using
ARI. One of these datasets is large enough for us to split it and val-
idate the ARI estimates. The conservatism of ARI inference permits
circularity without losing error guarantees, while still returning infor-
mative estimates.

Introduction

The fundamental building block of brain mapping with func-
tional magnetic resonance imaging (fMRI) is arguably the
localization of evoked brain responses to cognitive stimuli.
Localization is typically performed by correlating a sequence
of stimuli to the sequence of measured blood oxygenation
levels (BOLD) at each brain region, and then testing for
the statistical significance of these correlations. Correlation
should be understood in a broad sense, and may involve sim-
ple correlations, linear models, non-linear models, machine
learning classifiers, and more. A region is declared “active”,
or “information-encoding”, if this correlation is statistically
significant compared to an “inactive region” null hypothesis.
Clearly, testing many regions in the brain introduces a severe
multiplicity problem, leading, for example, to the detection of
information-encoding regions in dead salmon fish (1). Error
rate inflation was acknowledged by the neuroimaging commu-
nity early on, and led to an awareness in the community of
the dangers of selective inference. Selective inference includes
selective testing, better known as multiple testing (2, 3), and
also selective estimation, better known as voodoo correlations,

circular inference, and double-dipping (4–6). The community’s
awareness of selective inference is manifested in the fact that
all software suites for brain imaging (SPM, FSL, BrainVoyager,
and AFNI) include several multiplicity correction methods. It
is also manifested in the fact that it is impossible to publish a
paper in the field if multiplicity has not been addressed.

The localization of activation in the brain requires the
neuroscientist to choose the type of inference to make. This
includes (i) the resolution of brain regions, and (ii) the choice
of error guarantees. The resolution of brain regions may vary
from a single volume element (voxel), to multiple contiguous
elements defined by their shape, their anatomical properties,
or their functional properties. These are known as voxel-wise
inference, searchlight, anatomical regions of interest (ROIs),
and functional regions of interest, respectively. The error guar-
antee applied is typically the family-wise error rate (FWER),
or the false discovery rate (FDR). FWER is interpretable as
the proportion of studies in which false discoveries are made,
and FDR as the average false discovery proportion over all
studies. Historically, the first inferences were voxel-wise, or
anatomical ROIs, with FWER error guarantees. Then came
functional ROIs, FDR controls, multivariate searchlights, and
others. Today, combinations of various resolutions of inference
with various error controls can be found in the neuroimaging
literature (e.g. 7).

A resolution of inference which deserves particular attention
is cluster-based inference. The idea of cluster inference dates
back to Poline and Mazoyer (8), Forman et al. (9), and Friston
et al. (10). It is now the most common type of inference, being
the default option in several popular software suites. Cluster
inference can be seen as inference at a data-driven resolution.
This is because the size of the clusters is not selected a priori,
but rather determined by the data used for inference. The fact
that clusters are both defined and tested with the same data
introduces a statistical circularity challenge typically solved
using a random field theory (RFT) approach, which permits
both FWER control on clusters (11), and FDR control on
clusters (12).

Unfortunately, cluster inference has been heavily criticized,
firstly for inappropriate error guarantees, as recently shown in
the high-profile contribution of Eklund et al. (13).

Cluster inference also suffers from low spatial resolution
(14), which is demonstrated by the following paradox. Since
discovering a cluster means that “there exists at least one
voxel with an evoked response in the cluster”, and not that
“all the voxels in the cluster have an evoked response”, it follows
that the larger the detected cluster, the less information we
have on the location of the activation. Moreover, cluster-based
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inference gives no information on the extent of the activation
within the cluster.

The matter of low spatial resolution can be remedied by a
hierarchical approach∗—a “drill-down” from discovered clus-
ters to subsets of those clusters, and ultimately, to the voxel
level. The aim of a drill-down is to localize the activation
within the cluster, and to quantify its extent. However, it is
typically a forbidden practice, because voxel-wise error guar-
antees will not hold when inferring on voxels within selected
clusters. Such a drill-down would entail three layers of circu-
larity: creating clusters, inferring on clusters, and inferring
on voxels within clusters. Acknowledging the three layers of
circularity for valid inference is a formidable mathematical
challenge. The purpose of this manuscript is to report the
application of a recent advance in the hierarchical inference
literature, namely that of Goeman and Solari (15), to permit
valid circular inference of this type in neuroimaging.

The All-Resolutions Inference (ARI) of Goeman and Solari
(15) allows more than a single drill-down from the cluster to
the voxel: it allows the researcher to apply any data-driven
region selection and estimate the proportion of true discoveries
(PTD†) of any subregion—clusters in our case—all from the
same dataset. ARI accounts for the circularity by controlling
the FWER over all possible subsets of the brain, large or small,
contiguous or non-contiguous, using closed testing (16). Ex-
treme conservatism for FWER control over these exponentially
many regions can be avoided, if tests for overlapping regions
are highly correlated. ARI exploits the powerful Simes test,
which exhibits the necessary correlation structure. The Simes
test is valid under the assumption of the Simes inequality,
which is implied by the positive regression dependency on sub-
sets condition (PRDS), established for brain maps by Nichols
and Hayasaka (17). The assumption of the Simes inequality is
well-known, since it is also necessary for the FDR-controlling
procedure of Benjamini and Hochberg (18). The closed testing
procedure, in combination with the Simes inequality, guaran-
tees FWER control on all statements made using ARI, which
means that with probability at least 95% no region has an
overestimated PTD.

In the next section, we prove that ARI returns lower bounds
on the PTD, at all resolutions simultaneously, and for various
selection criteria. Examples include voxels within clusters,
voxels within searchlights, anatomical ROIs within functional
ROIs, etc. The non-technical reader may want to skip directly
to the results section, where we apply ARI to several datasets.
From these we learn that the spatial specificity paradox exists
empirically and cannot be ignored. For some datasets and
thresholds, clusters consist of mostly active voxels, while for
other datasets and thresholds, clusters consist of mostly in-
active voxels. For the latter clusters, ARI allows one to look
at data-driven subclusters to better pinpoint the location of
active voxels.

While not our initial motivation, ARI may also serve for
cluster selection, thus replacing the RFT p-values. Since ARI
does not rely on RFT, it eschews the inaccuracies of cluster
inference recently reported by Eklund et al. (13), and it avoids
the computational burden of resampling-based inference. We
elaborate on cluster selection with ARI in the discussion.

∗Sometimes known as multi-resolution, or post hoc.
†Readers familiar with the false detection rate literature, will note that P T D = 1−F DP , where

F DP is the false discovery proportion.

The All-Resolutions Inference Framework

We start with an exposition of the ARI method, the datasets
to which it has been applied, and the manner in which it has
been applied.

Overview of the Framework. The brain B is a collection of
m voxels. We assume that a test statistic for activation has
been calculated for each voxel, which can be converted into a
voxel-wise p-value.

Researchers are interested in inference on subsets of the
brain. In general, we use the term voxel set for any subset
of the brain, possibly non-contiguous. Special types of voxel
sets are regions, clusters, and searchlights. We denote S = 2B

as the collection of all |S| = 2m voxel sets, where | · | denotes
the cardinality of a set. Brain regions are interesting if they
contain many truly active voxels. Let the unknown voxel set
A ⊆ B be the set of all truly active voxels. For any voxel set
S ∈ S, denote the number of truly active voxels a(S) = |A∩S|,
and their proportion (PTD) by π(S) = a(S)/|S|.

ARI uses the methods of Goeman and Solari (15) and
Meijer et al. (19) to construct lower confidence bounds π̄(S)
for the set-wise proportion of active voxels, simultaneously for
all possible sets. The (1− α) lower confidence bound is such
that

P(for all S ∈ S : π̄(S) ≤ π(S)) ≥ 1− α. [1]

Simultaneity over all S ∈ S, i.e. the fact that the “for all”
statement is inside the probability statement, crucially makes
all inference based on π̄(S) robust against circular selection
of sets. With probability at least 1− α the bound is valid for
all S, and therefore for one or more selected S, regardless of
how they were selected. Simultaneity, in turn, implies FWER
control over all statements made about the selected S.

In particular π̄(S) may also be calculated for sets of one
voxel, for which it takes the values 0 or 1. In ARI the singleton
sets for which π̄(S) = 1 precisely correspond to the voxels
rejected by the procedure of Hommel (20), a uniform improve-
ment of Bonferroni. As we shall see below, however, ARI is
more powerful for larger sets than for small ones, and may
give large values of π̄(S) even if no voxel in S is significant by
Hommel (20).

Simes Test and Simes Inequality. To derive Eq. (1) we start
by defining for every voxel set S ∈ S the null hypothesis

HS : a(S) = 0.

HS is the usual null hypothesis for cluster-wise inference:
rejecting HS indicates that there is at least one active voxel
in S. We test every HS with the Simes test (21), rejecting HS

at level α if and only if pS ≤ α, where

pS = min
1≤i≤|S|

|S|
i
p(i:S)

and p(i:S) is the ith smallest p-value among voxels in S.
The Simes test is valid if P(pS ≤ α) ≤ α for all S for which

HS is true. For the validity of the ARI procedure as a whole,
however, we only need this to hold for the set S = B \ A of
all non-active voxels, the largest set for which HS is true. We
assume that
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P(pB\A ≤ α) ≤ α. [2]

Equation Eq. (2), the Simes inequality, is the most im-
portant assumption required for ARI. The assumption of the
Simes inequality is frequently made in the multiple testing lit-
erature, and oft-used procedures such as those of Hommel (20),
Hochberg (22) and Benjamini and Hochberg (18) make the
same assumption. There is, therefore, much ongoing research
on sufficient conditions for the validity of the Simes inequality
(23). It has been shown to hold for independent p-values, and
under various conditions implying non-negative correlations
between p-values, one of which is the PRDS condition. Nichols
and Hayasaka (17) have shown that PRDS, and therefore the
Simes inequality, is valid for brain maps.

All-Region FWER Control. The tests for the 2m hypotheses
HS , S ∈ S, must be corrected for multiple testing. A powerful
method for this is closed testing (16). Intuitively, closed
testing means that if a particular configuration of true and
false null hypotheses may inflate false-positive rates, then the
rates for this configuration should be controlled explicitly,
for all possible configurations. Formally, in closed testing a
hypothesis HS is rejected if and only if HI is rejected for all
I ⊇ S. Closed testing controls the FWER at level α for all
HS , S ∈ S, under the simple condition that HB\A is a valid
α-level test, i.e. under the assumption of the Simes inequality.

Meijer et al. (19) have proven that closed testing with Simes
tests rejects a hypothesis HS if and only if

min
1≤i≤|S|

{
h

i
p(i:S)

}
≤ α [3]

where

h = max
{
i ∈ {0, . . . ,m} : ip(m−i+j:B) > jα, for j = 1, . . . , i

}
.

Note that h depends on α and on the p-values of voxels outside
S. Closed testing is a very powerful procedure, and the cost
of FWER control over all possible hypotheses is therefore rel-
atively light, taking into account the fact that 2m hypotheses
are tested; compared to the unadjusted Simes test, the critical
value α is multiplied only by a factor h/|S| ≤ m/|S|. This
is because the Simes inequality condition ensures that even
though many comparisons are considered, test statistics of
overlapping regions are highly correlated and the distribution
of the maximal pJ over the supersets J is “tight”. The calcu-
lation of FWER-adjusted p-values, for any S, is described in
Meijer et al. (19).

Proportion of Truly Active Voxels (PTD). Lower confidence
bounds for the percentage of truly active voxels (PTD above)
follow from the result of the closed testing procedure by the
argument given by Goeman and Solari (15): specifically, if for
some k ≥ 0, HI is false for all subsets I ⊆ S with |I| = |S|−k,
then there is at least one active voxel in each such I, and
therefore there are at least k + 1 active voxels in S. Goeman
and Solari (15) defined ā(S) = |S| − |I|, where I is the largest
subset of S such that HI was not rejected by the closed testing
procedure.

That ā(S) is a simultaneous lower bound on the PTD of
the region, i.e. that

P(ā(S) ≤ a(S) for all S ∈ S) ≥ 1− α,

follows immediately from the FWER-control of the closed
testing procedure, and Eq. (1) follows immediately by setting
π̄(S) = ā(S)/|S|.

For the case of Simes tests, we have

ā(S) = min
{

0 ≤ k ≤ |S| : min
1≤i≤|S|−k

h

i
p(i+k:S) > α

}
.

Efficient ways to calculate this quantity are given by Meijer
et al. (19). The lower bound is the minimum number of p-
values that can be removed so that Eq. (3) is violated for the
resulting subset.

We note that by the properties of closed testing ā(S) never
increases when drilling down, i.e. reducing S to a subset. π̄(S),
however, may increase when drilling down unless π̄(S) = 0. It
may pay to drill down for PTD, but never for regions where
no signal is found.

Image Analysis Pipeline. ARI brings unprecedented freedom
in looking at the data, choosing regions in any desired way,
calculating PTDs for the chosen regions, and possibly recon-
sidering the selection, e.g. if regions are too small or too large,
or have a disappointingly low percentages of active voxels. Dif-
ferent criteria may be used to select different regions. FWER
control is guaranteed as long as the α-level and the method of
calculating p-values have been decided before seeing the data.

To demonstrate the spatial specificity paradox, and its
resolution with ARI, we start by selecting clusters with a
standard analysis pipeline, and then compute PTDs in these
clusters. Given a Z-score map, we defined clusters of interest
using pre-specified cluster-forming Z-threshold and minimal
cluster size. The cluster size threshold we use is equivalent
to an RFT significance threshold. The latter choice is only
for conforming to current practice. We emphasize that ARI
estimates do not rely, in any way, on RFT inference. RFT
significance and ARI significance do not necessarily coincide:
there may be regions significant under RFT but not under
ARI, and vice versa.

To pinpoint activation within these clusters, we drilled down
to smaller regions by increasing the cluster-forming threshold
to Z > 4 and looking at the clusters, significant by RFT or not,
that are contained within the significant clusters at Z > 3.2.

The cluster-forming thresholds of 3.2 and 4 are arbitrary,
and we did not fix them before seeing the data. In ARI this
post hoc choice of regions, and the manner in which they are
selected, does not invalidate FWER control for inference on
the chosen regions.

For convenience, we collect our two selection criteria as
used in this manuscript:

1. Z > 3.2 clusters with a size/significance threshold.

2. Z > 4 clusters which lie within Z > 3.2 clusters.

fMRI Data. To demonstrate the results of ARI, we applied
it on two fMRI datasets we term Go/No-go, and Auditory.
The Go/No-go dataset consists of 34 subjects performing an
emotional go/no-go task (24). Participants had to press a
button when presented with faces with a certain emotional
expression (go condition), and withhold their response to faces
with a neutral expression (no-go condition). The go and no-
go conditions were then reversed, to avoid confounding with
button-press-related activation. The Auditory dataset was
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collected by Pernet et al. (25), and generously shared via
the OpenfMRI initiative at https://openfmri.org/. It consists
of 218 subjects passively listening to vocal (i.e. speech) and
non-vocal sounds. The large dataset allowed us to validate our
PTD estimates on different subjects. We used two mutually
exclusive sets, an original sample with a typical fMRI sample
size of 33 subjects, and a validation sample of 66 subjects,
serving as a “ground-truth”. We used only 66 and not the
185 = 218− 33 remaining subjects, so that the “ground-truth”
is not driven by infinitesimally small effects.

Results

Go/No-go Data. Group analysis of the No-go > Go contrast
highlighted 11 regions of interest commonly found in studies
using the Go/No-go paradigm (see Figure 1).

Fig. 1. Activation map of the No-go > Go contrast with cluster-forming threshold
Z > 3.2 for the Go/No-go data. Colors indicate the PTD for each of the clusters.

These regions included the left and right insular cortex (IC)
extending into the frontal orbital cortex (FOC), the left and
right frontal pole (FP), the right middle (MTG) and superior
temporal gyrus (STG) extending into the angular gyrus (AG),
the right (para)cingular gyrus (PCG), right superior frontal
gyrus (SFG), right precuneus, and the right precentral gyrus.

PTDs for these ROIs were highest for the region spanning
the right MTG, STG and angular gyrus (2191 voxels, PTD =
28.5%), the region spanning the right frontal pole (1845 voxels,
PTD = 46.2%), and the region spanning the right insular
cortex and frontal orbital cortex (1400 voxels, PTD = 32.4%).
The regions spanning the left insular cortex and frontal orbital
cortex (421 voxels, PTD = 5.9%), and (para)cingular gyrus
(304 voxels, PTD = 10.9%) had lower PTDs, while for the
other regions (right SFG, precuneus, precentral gyrus, and left
frontal pole) the PTD was 0%.

Of the regions with a PTD of 0%, which are not expected
to have many active voxels, all four regions had significant
RFT-corrected p-values: The right SFG (698 voxels, RFT
p < .001, ARI p = .068, PTD = 0%), right precuneus (245
voxels, RFT p = .010, ARI p = .533, PTD = 0 %), right
precentral gyrus (232 voxels, RFT p = .012, ARI p = .069,
PTD = 0%), and left FP (698 voxels, RFT p = .029, ARI
p = .497, PTD = 0%).

Details of the clusters can be found in Table 1. Details
include the name and size of the clusters, ARI-estimated
number and proportion of active voxels, and ARI p-value. In
addition we include standard details on the location of the

cluster maximum (MNI coordinates), Z-value of the maximum
and RFT-corrected p-values for each cluster.

To pinpoint the location of the truly active voxels, i.e. to
“drill down”, we could infer on all the voxels in selected clusters.
ARI guarantees that this inference would be valid but, alas, low-
powered. Alternatively, we may increase the cluster-forming
threshold. Inference would still be valid, and the PTD would
increase, until all supra-threshold voxels are truly active.

Using a cluster-forming threshold of Z > 4 and looking
at these “drill down” clusters within the Z > 3.2 clusters,
we obtained 19 clusters (Figure 2 and Table 1). The cluster
spanning the right MTG, STG, and AG (PTD = 28.5%), is
now divided into three smaller subclusters: STG/AG (405
voxels, PTD = 65.9%), MTG (133 voxels, PTD = 23.3%)
and a small cluster also in the MTG (6 voxels, PTD 0%).
The division in multiple subclusters and their corresponding
PTD is consistent with areas often indicated in inhibition
studies (Neurosynth meta-analysis (26), keyword ‘nogo’). The
subclusters with high a PTD (STG/AG) are often found in
inhibition studies, while the chance of finding a cluster in the
MTG is much smaller.

The right FP contained only one smaller cluster (963 voxels,
PTD = 85.8%) with a high PTD. The region spanning the
right IC and FOC also was divided into three subclusters: one
spanning the IC and FOC (583 voxels, PTD = 77.0%) and
two spanning the amygdala (1 and 4 voxels respectively, PTD
= 0%). The left IC/FOC cluster contained two small clusters,
one spanning the IC/FOC (84 voxels, PTD = 23.8%) and one
spanning only the FOC (22 voxels, PTD = 0%). Again, these
results are consistent with the literature regarding inhibition
studies, where the IC/FOC cluster is more often found than
the FOC cluster (Neurosynth meta-analysis (26), keyword
‘nogo’).

The right PCG contained one small cluster (117 voxels,
PTD = 28.2%). For the right SFG, drilling down revealed
three clusters all within the SFG (69, 13, and 1 voxel), all with
a PTD of 0%. The other regions contained no active voxels in
the smaller regions.

The ARI drill-down analysis is thus consistent, and more
informative about the smaller clusters. As evident from the
drill-down analysis, the new smaller region in the right FP has
a higher PTD (85.8% vs 46.2%), indicating that this smaller
area contains most relevant information. The same holds
for the right IC/FOC (32.4% vs 77.0%) and STG/AG areas
(28.2% vs 65.9%), where the new smaller regions now contain a
more acceptable number of truly active voxels, and the spatial
specificity paradox is alleviated. Above all, drilling down
to smaller clusters reveals the clusters that are interesting
(i.e. contain active voxels), and those which can be discarded.

Auditory Data.

Inference. Group analysis on the first set of 33 subjects of
the Vocal > Non-vocal contrast showed activity in 6 regions
of interest commonly found in auditory studies. Details of
the clusters can be found in Table 2. We observed activity
bilaterally in the superior temporal gyrus (STG), planum
temporale (PT), Heschl’s gyrus (HG), inferior frontal gyrus
(IFG), and amgydala, and activity in the right precentral
gyrus.

As can be seen in Figure 3, the activity in the right hemi-
sphere covered one large cluster (6907 voxels), with a PTD of
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Table 1. Go/No-go data: clusters identified with threshold Z > 3.2 (RFT p < .05, cluster size = 161), with "drill down" clusters at Z > 4.

Cluster Threshold Size # active % active Statistic MNI coordinates p-value RFT p-value
C Z |C| ā(C) π̄(C) Zmax x y z pC pF W ER

Right MTG, STG, angular gyrus Z > 3.2 2191 624 28.5 % 5.25 50 -26 -6 0.0068 0.0000
STG, angular gyrus Z > 4 405 267 65.9 % 5.19 68 -40 24 0.0136 -

MTG Z > 4 133 31 23.3 % 5.25 50 -26 -6 0.0080 -
MTG (TO) Z > 4 6 0 0 % 4.21 66 -58 10 0.8178 -

Right frontal pole Z > 3.2 1835 847 46.2 % 5.85 30 46 38 0.0002 0.0000
Z > 4 963 826 85.8 % 5.85 30 46 38 0.0002 -

Right insular cortex, FOC Z > 3.2 1400 454 32.4 % 6.01 32 20 -10 0.0001 0.0000
Insular cortex, FOC Z > 4 583 449 77.0 % 6.01 32 20 -10 0.0001 -

Amygdala Z > 4 4 0 0 % 4.11 20 -4 -12 1.0000 -
Amygdala Z > 4 1 0 0 % 4.05 30 2 -14 1.0000 -

Right SFG Z > 3.2 698 0 0 % 4.66 20 0 68 0.0680 0.0000
SFG Z > 4 69 0 0 % 4.66 20 0 68 0.0847 -
SFG Z > 4 13 0 0 % 4.50 14 10 62 0.2749 -
SFG Z > 4 1 0 0 % 4.03 8 20 66 1.0000 -

Left insular cortex, FOC Z > 3.2 421 25 5.9 % 5.00 -32 28 0 0.0182 0.0001
Insular cortex, FOC Z > 4 84 20 23.8 % 5.00 -32 28 0 0.0194 -

FOC Z > 4 22 0 0 % 4.79 -28 20 -12 0.1414 -

Right (para)cingular gyrus Z > 3.2 304 33 10.9 % 4.92 8 22 40 0.0164 0.0034
Z > 4 117 33 28.2 % 4.92 8 22 40 0.0164 -

Right precuneus Z > 3.2 245 0 0 % 3.74 10 -66 44 0.5325 0.0097
Z > 4 0 - - - - - - - -

Right precentral gyrus Z > 3.2 232 0 0 % 4.68 44 0 42 0.0692 0.0123
Z > 4 42 0 0 % 4.68 44 0 42 0.0692 -

Left frontal pole Z > 3.2 187 0 0 % 4.20 -36 54 22 0.4971 0.0291
Z > 4 5 0 0 % 4.20 -36 54 22 0.9880 -

Fig. 2. Activation map of the No-go > Go contrast with cluster-forming threshold
Z > 4 for the Go/No-go data overlaid to the Z > 3.2 map. Colors indicate the PTD
for each of the clusters.

74.9% (with exception of the precentral gyrus; 249 voxels, PTD
= 6.0%). In the left hemisphere these same areas were divided
amongst three regions: HG/STG/PT (4607 voxels, PTD =
73.9%), IFG (385 voxels, PTD = 0%), and the amygdala (168
voxels, PTD = 0%).

As with the previous analysis we can now drill down with
a higher cluster-forming threshold to check the proportion of
active voxels in the smaller regions. With a cluster-forming
threshold of Z > 4, we now see 15 smaller regions within the
Z > 3.2 clusters (see Figure 4). The large cluster in the right
hemisphere of the temporal cortex in the Z > 3.2 analysis
now separates into 9 separate clusters. Three of these clusters
had a PTD larger than 0%: HG/STG (3429 voxels, PTD
=97.5%), IFG (390 voxels, PTD = 78.2%), and the amygdala
(49 voxels, PTD = 12.2%); the other clusters contained no
active voxels (see Table 2 for details). The HG/STG cluster
in the left hemisphere was now also smaller, with a high PTD
(3033 voxels, PTD = 97.2%). The smaller clusters in the left
amygdala, and IFG, contained no active voxels (PTD = 0%).
The smaller cluster in the right precentral gyrus (85 voxels,
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Table 2. Auditory data: clusters identified with threshold Z > 3.2 (RFT p < .05, cluster size = 118), with "drill down" clusters at Z > 4.

Validation analysis:
Cluster Threshold Size # active % active Statistic MNI coordinates p-value RFT p-value # voxels % voxels

C Z |C| ā(C) π̄(C) Zmax x y z pC pF W ER Z > 3.2/4 Z > 3.2/4

Right Heschl’s/STG/IFG/PT Z > 3.2 6907 5179 74.9 % 7.83 58 -14 2 0.0000 0.0000 6254 90.5 %
Heschl’s/STG Z > 4 3429 3344 97.5 % 7.83 58 -14 2 0.0000 - 3379 98.5 %

IFG Z > 4 390 305 78.2 % 5.11 52 20 24 0.0037 - 329 84.4 %
Amygdala Z > 4 49 6 12.2 % 4.77 20 -8 -12 0.0301 - 23 46.9 %
Thalamus Z > 4 33 0 0 % 4.55 10 -12 8 0.0999 - 30 90.9 %
IFG (PT) Z > 4 17 0 0 % 4.25 58 34 10 0.2141 - 15 88.2 %

FOC Z > 4 8 0 0 % 4.48 30 16 -22 0.3417 - 0 0 %
Putamen Z > 4 7 0 0 % 4.12 22 2 6 0.5380 - 5 71.4 %

Temporal pole Z > 4 6 0 0 % 4.82 36 22 -26 1.0000 - 0 0 %
Putamen Z > 4 6 0 0 % 4.10 18 -4 14 0.6391 - 0 0 %

Left Heschl’s/STG/PT Z > 3.2 4607 3409 73.9 % 7.51 -60 -22 4 0.0000 0.0000 4526 98.2 %
Heschl’s/STG Z > 4 3033 2948 97.2 % 7.51 -60 -22 4 0.0000 - 2998 98.8 %

Left IFG Z > 3.2 385 0 0 % 4.54 -58 14 30 0.0605 0.0005 175 45.5 %
IFG Z > 4 65 0 0 % 4.54 -58 14 30 0.0645 - 10 15.4%

Right precentral gyrus Z > 3.2 249 15 6.0 % 4.88 52 2 52 0.0245 0.0050 245 98.4 %
Precentral gyrus Z > 4 85 15 17.6 % 4.88 52 2 52 0.0245 - 84 98.8 %

Left amygdala Z > 3.2 168 0 0 % 4.59 -18 -8 -10 0.1023 0.0249 103 61.3 %
Amygdala Z > 4 30 0 0 % 4.59 -18 -8 -10 0.1023 - 20 66.7 %

NC (ventricles) 1296 0 0 % - - - - - - 0 0 %

Fig. 3. Activation map of the Vocal > Non-vocal contrast with cluster-forming threshold
Z > 3.2 for the Auditory data. Colors indicate the PTD for each of the clusters.

PTD = 17.6%), had a slightly higher PTD value.

Validation. To check the validity of the ARI method we used
the Z > 3.2 and Z > 4 clusters from the previous analysis
and calculated the number of supra-threshold voxels of these
clusters using data from the second set of 66 subjects. The
following results confirms that the ARI PTD bounds are both
informative and statistically valid, despite the circular analysis.

For Z > 3.2, the validation dataset showed 90.5% supra-
threshold voxels in the right Heschl’s gyrus/STG, compared
to a PTD of 74.9% in the original sample. In the left Heschl’s
gyrus/STG we found 98.2% supra-threshold voxels, compared
to a PTD of 73.9% in the original sample. In the left IFG the
number of supra-threshold voxels was 45.5%, compared to a
PTD of 0% in the original sample. The right precentral gyrus
showed 98.4% supra-threshold voxels, compared to a PTD of
6.0% in the original sample. In the left amygdala we observed

Fig. 4. Activation map of the Vocal > Non-vocal contrast with cluster-forming threshold
Z > 4 for the Auditory data overlaid to the Z > 3.2 map. Colors indicate the PTD
for each of the clusters.

61.3% supra-threshold voxels, with a PTD of 0% in the original
sample. The negative control region (NC; left/right ventricles)
showed no significant supra-threshold voxels.

Discussion

We set out to improve the spatial specificity of detected regions
using a “drill-down” approach—first selecting clusters, and
then inferring on the voxels in those selected clusters—all with
the same data. Reporting the proportion of active voxels in a
cluster is an old quest in neuroimaging (e.g. 27), which also
fulfills recent recommendations to report effect sizes, and not
only active/inactive areas or cluster p-values (28, 29).

Concerned with error inflation after the drill-down, we
define an error to be an over-estimation of the proportion of
truly active voxels in a region. Put differently, we are able
to estimate the proportion of truly active voxels (PTD) in a
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selected cluster, with FWER control over clusters, all from the
same data. This is made possible using results from Goeman
and Solari (15). The fundamental observation is that if a
statistical parametric map (SPM) of the brain satisfies the
Simes inequality, then inferring on all possible voxel subsets is
not hopelessly under-powered. Clearly, voxels within selected
clusters are a subset of all voxel subsets, so that inference
remains valid, for all possible subsets: in particular, for all the
ones the practitioner queries after seeing the data.

Readers familiar with Scheffé’s post hoc test (30), may
recognize that we use the same type of statistical reasoning.
By controlling the error rate for all possible contrasts, Scheffé’s
test allows the practitioner to choose the contrast after seeing
the data. ARI does the same, not for all possible contrasts,
but for all possible set selections. Moreover, and unlike Scheffé,
ARI uses closed testing, which is more powerful in this context.

Quantifying the amount of true signal within clusters allows
us to address the “spatial specificity paradox”, whereby the
larger a cluster the less we know about the location of the
signal. If the proportion of truly active voxels in a cluster is
large, there is no real paradox. If this proportion is small, the
practitioner should consider reducing the size of the clusters.
Our two datasets demonstrate this is not a mere philosophical
discussion, but rather, an empirical question with very real
implications. The Go/No-go dataset shows small proportions
of true activation within clusters, so that it is hard to tell
which part of the cluster is truly active. The Auditory data
shows large proportions, implying that the clusters are indeed
mostly active.

The validation analysis shows consistent results across the
two datasets: regions with a high PTD tend to have a high
percentage of supra-threshold voxels in the validation dataset,
and vice-versa. The PTD bounds are informative, i.e. not
overly conservative, provided that the region is large enough:
the gap between the PTD bound and the validated activation
proportion is not too large. Smaller regions suffer a larger
multiple testing burden, and so are more difficult to detect
using ARI. The power of ARI is better for large clusters than
for smaller ones, and better for small clusters than for single
voxels. As a result it is easier to detect the presence of active
voxels than it is to pinpoint them. A region may have a large
proportion of active voxels, but we cannot usually say which
voxels these are. This is especially true if the signal in a region
is dispersed. In that case drilling down may not be successful:
there may not always be a subregion with evidence for a larger
PTD.

The ARI framework allows the practitioner a great deal of
flexibility in that they can infer on regions, then drill down
to voxels within regions, then redefine the regions, drill down
in the new regions, etc. Users may iterate the process of
choosing regions, bounding the PTD, and refining regions ad
libitum, and without compromising FWER control. Since
FWER control holds over all possible regions simultaneously,
in fact any method for finding regions, using the same data or
using external data, is allowed. Regions may be contiguous
clusters, or any arbitrary, possibly disconnected, set of voxels.
In particular, the ARI confidence bounds themselves may be
used to select regions, and it is perfectly valid to select, for
example, the largest region for which one is confident of a
PTD of at least 0.7. While exploring the brain, computation
time is not an issue. The underlying computations have been

implemented in the R package hommel (31), and take seconds
to perform from p-value maps.

Our proofs assume the brain’s SPM satisfies the Simes
inequality, while many analysis suites use a random field as-
sumption (RFT) (32). The criticism of the validity of cluster
inference voiced by Eklund et al. (13) targets the RFT. We
adopt the Simes inequality assumption because it facilitates
our proofs, but it also means that if the ARI framework is
used for cluster selection, it will not be subject to that criti-
cism. The Simes inequality which we use instead of the RFT
is implied by the PRDS condition, which has been established
for brain SPMs by Nichols and Hayasaka (17). It may be
possible to use RFT in combination with closed testing to
obtain alternative lower bounds for PTD, but this is beyond
the scope of this paper.

ARI for Cluster Selection. Our main innovation is in replacing
the problem of cluster selection, with the problme of PTD-
estimation. Cluster selection (i.e. testing) only claims that
PTD > 0 for its regions, while ARI claims a non-trivial lower
bound to PTD. Can ARI be used for the cluster selection
itself? The answer is affirmative. The practitioner may toggle
the cluster-wise cluster-forming threshold until reaching the
desired PTD. E.g., select clusters with more than 70% of
activation. Alternatively, the user may ask which clusters
are the most active, i.e. where the activation is concentrated.
Intuitively, the practitioner may “grow clusters”, i.e. decrease
the cluster-forming threshold. At some point, the PTD will
start to sharply decrease, and the practitioner would then
stop growing the clusters. The concentration set in Meijer
et al. (19) formalizes this process. It gives a data-dependent
p-value threshold above which ARI detects no signal. Used as
a cluster-forming threshold, this gives a useful starting point
from which to start the drill-down.

When using ARI for cluster selection, the question of power
immediately arises. Naturally, the power properties of ARI
are different to those of RFT-based models because the as-
sumptions underlying the methods are different. RFT-selected
clusters are not guaranteed to have PTD > 0 in ARI. How-
ever, such a comparison is not completely fair, as RFT-based
methods only infer PTD > 0 on a limited number of clusters,
while ARI infers the actual value of PTD on exponentially
many clusters. Put differently, if a researcher only wishes to
demonstrate PTD > 0 at a pre-chosen threshold, RFT based
methods may be more powerful. If the researcher varies the
cluster-forming threshold, focuses on sub-clusters, or wants to
quantify the PTD, this is only possible with ARI.

Comparing power to other multiple testing procedures, we
can say that ARI is strictly more powerful than voxel-wise
FWER control. It guarantees PTD > 0 for every region
containing a Bonferroni-significant voxel. For large regions it
tends to give much larger values of PTD than would result
from voxel-wise FWER.

A comparison of ARI to FDR-based methods is more com-
plex because FDR is a much more relaxed criterion than
FWER. Regarding voxel-wise FDR control, it holds that
whenever the Benjamini-Hochberg algorithm (18) detects at
least one active voxel, ARI will find at least one region with
PTD > 0. Direct comparison with cluster-wise FDR is impos-
sible, especially since there is at this moment no method that
controls FDR over all clusters as ARI does.
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Methods

Preprocessing. Acquisition parameters and detailed informa-
tion about the stimuli of both datasets can be found in Lee et al.
(24) and Pernet et al. (25). Both datasets were analyzed in
FSL (33) using a standard preprocessing pipeline. Time-series
data was high-pass filtered (Go/No-go, 90 seconds; Auditory,
128 seconds). Functional images were brain extracted (34),
spatially smoothed (6 mm full width at half maximum), and
registered to standard space using linear registration (FLIRT
(35, 36) with 12 degree-of-freedom boundary-based registra-
tion). Six motion regressors (MCFLIRT (36)) and periods with
excessive motion were modeled as additional confound regres-
sors. Boxcar functions of the stimulus timings for the different
conditions were convolved with a double-gamma hemodynamic
response function, with a temporal derivative to model dif-
ferences in slice acquisition time. For the Go/No-go dataset
we analyzed the No-go > Go contrast using FEAT (37), us-
ing FLAME 1 estimation with a cluster-threshold multiple
comparison correction based on RFT, highlighting brain re-
gions involved in successfully inhibiting a response. For the
auditory dataset we analyzed the Vocal > Non-vocal contrast,
highlighting brain regions involved in speech processing.

ARI was performed on both our datasets using our own
implementation, made publicly available in the hommel package
(31) for the R software environment (38). We used the analysis
pipeline described in the methods section.

ARI Validation. If the PTD of a cluster is bounded by q, then
in a new dataset, a proportion of at least q of the voxels in
the cluster are true signal, and thus should be rediscovered.
To validate that this is indeed the case, we used the clusters
from the Vocal > Non-vocal contrast of the first set of 33
subjects, and computed the proportion of supra-threshold
voxels (uncorrected p-value < .05) in a new set of 66 subjects.

Table 2 for the Auditory dataset therefore includes addi-
tional columns for the number and percentage of suprathresh-
old voxels in the verification dataset. In addition, we calculated
the PTD in a negative control region where we don’t expect
any significant voxels. We used the left and right ventricles
(Harvard–Oxford atlas with a probability threshold > 50%),
and calculated the PTD in each of these areas for both Audi-
tory datasets.
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