- 1 Does anti-Müllerian hormone predict change in menopausal symptoms
- 2 following risk-reducing salpingo-oophorectomy? A prospective
- 3 observational study
- 4 Ravi F.M. Vermeulen¹, Marc van Beurden¹, Katja N. Gaarenstroom², Teun
- 5 Teunis³, Jacobien M. Kieffer⁴, Neil K. Aaronson⁴, Gemma G. Kenter¹ and
- 6 Catharina M. Korse⁵
- ¹Department of Gynecology, The Netherlands Cancer Institute, P.O. Box 90203, 1006 BE,
 Amsterdam, The Netherlands ra.vermeulen@nki.nl; m.v.beurden@nki.nl; g.kenter@nki.nl
- 9 ²Department of Gynecology, Leiden University Medical Center, Postbus 9600, 2300 RC
- 10 Leiden, The Netherlands k.n.gaarenstroom@lumc.nl
- 11 ³Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Postbus
- 12 85500, 3508 GA Utrecht, The Netherlands teunteunis@gmail.com
- 13 ⁴Division of Psychosocial Research and Epidemiology, P.O. Box 90203, 1006 BE Amsterdam,
- 14 The Netherlands Cancer Institute, Amsterdam, The Netherlands j.kieffer@nki.nl;
- 15 n.aaronson@nki.nl
- 16 ⁵Department of Laboratory Medicine, The Netherlands Cancer Institute, P.O. Box 90203,
- 17 1006 BE Amsterdam, The Netherlands t.korse@nki.nl
- 18 Corresponding author: C.M. Korse
- 19 The Netherlands Cancer Institute
- 20 P.O. Box 90203
- 21 1006 BE Amsterdam, The Netherlands
- 22 Tel: +31 20 512 2794
- 23 Fax: +31 20 512 2799
- 24 E-mail: t.korse@nki.nl
- 25

26 Does anti-Müllerian hormone predict change in menopausal symptoms

- 27 following risk-reducing salpingo-oophorectomy? A prospective
- 28 observational study
- 29 Objectives
- 30 The aim of this study was to investigate whether serum Anti Müllerian hormone (AMH)
- 31 predict symptom burden after risk-reducing salpingo-oophorectomy (RRSO) in order to
- 32 individualize counselling.
- 33 Methods
- 34 Patient-reported menopausal symptoms, sexual functioning and psychological distress
- 35 (depression and anxiety) were assessed one day before (T0), and six weeks (T1) and seven
- 36 months (T2) after RRSO. AMH was assessed before RRSO. Multivariable regression analysis
- 37 was used to investigate the association between AMH and short-term and long-term change in
- 38 symptom burden following RRSO.
- 39 Results
- 40 91 premenopausal women at high risk of ovarian cancer were included. Pre-surgical AMH
- 41 was not related significantly to change in symptoms post-RRSO. As secondary outcome we
- 42 found that regular menses before RRSO was associated specifically with long-term increase
- 43 in hot flushes (sr 0.40, *p*=0.001; total R² 0.171) and depression (sr 0.29 *p*=0.012; total R²
- 44 0.132). Earlier receipt of chemotherapy was associated with long-term improvement in sexual
- 45 functioning (sr 0.24, *p*=0.041; total R² 0.348).
- 46 Conclusions
- 47 In this cohort, AMH was not a significant predictor of change in symptoms following RRSO.
- 48 Regular menses prior to RRSO and earlier receipt of chemotherapy were significantly, but
- 49 relatively weakly associated with changes in outcomes six weeks and/or seven months after
- 50 RRSO.

51 Keywords: RRSO, AMH, menopause, BRCA1/2, menopausal symptoms, ovarian

52 cancer

53 Introduction

54 Approximately 10% of all ovarian carcinomas (OC) are due to inherited predisposition[1]. 55 Ovarian cancer screening is not effective in detecting OC at an earlier stage or in improving prognosis[2]. Therefore, risk-reducing salpingo-oophorectomy (RRSO) is recommended to 56 57 lower the risk of OC[3]. After RRSO, the risk of OC is reduced by 80%-96%[4, 5, 6]. The 58 recommended age for RRSO after childbearing in BRCA1 carriers is between 35-40 years, 59 and in BRCA2 carriers between 40-45 years. Women from a hereditary breast and ovarian 60 cancer (HBOC) family are advised to undergo RRSO after childbearing is completed, but no 61 specific age is given[4, 6]. 62 A major side-effect of RRSO in premenopausal women is the immediate onset of 63 menopause, accompanied by an increase in non-cancer related morbidity, including a range of 64 endocrine symptoms, sexual symptoms, mood disturbance, as well as an increased risk of 65 cardiovascular disease and osteoporosis[7, 8, 9]. However, there is a wide variability in 66 symptom prevalence and severity, and it is not clear why some women experience more 67 severe symptoms than others. Understanding what factors influence the severity of symptoms following RRSO is important for providing appropriate patient counselling. 68 69 To the best of our knowledge, no studies, to date, have investigated predictors of 70 menopausal symptom severity following RRSO. There have been a few studies of predictors 71 of menopausal symptoms in healthy, postmenopausal women. One cross-sectional study 72 found that the severity of menopausal symptoms was significantly influenced by life 73 conditions and events, but not by hormonal changes[10]. Nonetheless, the authors stated that 74 the exact influence of hormones should be investigated in future studies. In another study, 75 these same investigators found that more perceived self-control on hot flushes and night sweats was associated with less severe vasomotor symptoms[11]. A prospective study among 76

77	women with moderate to severe hot flushes and night sweats reported that negative beliefs
78	about night sweats and sleep were the strongest predictors of concordance between objective
79	and subjective measures of these symptoms[12]. All these studies focused either on lifestyle
80	or psychological variables; none included potential biologic predictors of symptom severity.
81	Previous work has shown that release of anti-Müllerian hormone (AMH) from the
82	granulosa cells of antral follicles leads to measurable serum levels. These concentrations are
83	strongly associated with the number of developing follicles in the ovaries[13]. Because AMH
84	is relatively stable through the menstrual cycle, the measurement of serum AMH has a range
85	of clinical applications, including estimating ovarian reserve and predicting age of natural
86	menopause[14, 15, 16]. A decrease in serum AMH has been found in young women after
87	chemotherapy or anti-hormonal therapy for cancer[17], and it has been suggested that post-
88	chemotherapy AMH levels also predict residual ovarian function[18]. Therefore, AMH is
89	considered to be a marker for the process of ovarian ageing[19]. The 'younger ovary' pattern
90	has higher AMH levels than the 'aging ovary' pattern, suggesting diminishing ovarian reserve
91	as a function of age [20]. Given this background, we hypothesized that the higher the AMH
92	levels pre-RRSO, the more severe the menopausal symptoms post-RRSO.
93	In the present study, we investigated whether higher pre-surgical AMH levels are
94	related to: (1)the severity of post-RRSO menopausal symptoms, in general, and the perceived
95	burden of hot flushes and night sweats, in particular; (2)sexual functioning; and
96	(3)psychological distress (depression and anxiety). In addition to AMH levels, we
97	investigated the possible association between post-RRSO symptoms and a range of
98	sociodemographic and clinical variables. If successful in identifying relevant predictors of
99	symptom severity, this information could be used in counselling pre-treatment symptom
100	experience.
101	

- 101 Methods
- 102 Research setting and study sample

103	This prospective, observational, multicenter study was carried out at The Netherlands Cancer
104	Institute and the Leiden University Medical Center in the Netherlands. The institutional
105	review boards of both centers approved the study. Participants were included from November
106	2006 until April 2012. Patients with a BRCA1/2 mutation or women from a HBOC family
107	with an estimated risk higher than 10% undergoing RRSO, were eligible[21]. Women were
108	invited to participate at the outpatient clinic by the gynecologist when they decided to
109	undergo an RRSO.
110	Inclusion criteria were being premenopausal at time of RRSO and understanding the
111	Dutch language. Women were excluded from the study if they had cancer at the time of
112	RRSO. Premenopausal status was defined as having one or more menstrual periods over the
113	last twelve months or using (hormonal) contraception. If a woman did not have menstrual
114	periods due to a hysterectomy, we took age as a proxy indicator of menopausal status.
115	Women younger than 51 years were considered premenopausal and women aged 51 years or
116	older were considered postmenopausal. In the Netherlands, most women are postmenopausal
117	by the age of 51 [22].
118	Women were invited to participate in the study by their gynecologist at the time they
119	decided to undergo a RRSO. A blood sample was obtained within 24 hours before the RRSO
120	was performed. Women were asked to complete questionnaires at three time points: one day
121	before RRSO (T0), and six weeks (T1) and seven months following surgery (T2). All
122	participants provided written informed consent.
123	Measures
124	The respondents' age, education, employment status, relationship status, parity, body mass
125	index (BMI), comorbidities, mutation status, regular menses, history of breast cancer,
126	previous breast cancer treatments and current menopausal status were obtained by self-report.
127	Women were asked if they had regular menses during the past 3 months. If they responded
128	negatively to this question, the reason why the menses was irregular was asked. AMH level

129 was measured in the serum obtained within 24 hours before RRSO with an enzyme-linked 130 immunosorbent assay (ELISA), 2nd generation (Beckmann Coulter, Brea, California USA). 131 Expected values for premenopausal women range from undetectable (<0.10 µg/l) to 10.6 µg/l 132 (2.5%-97.5%). 133 The Functional Assessment of Cancer-Therapy-Endocrine Symptoms (FACT-ES) was 134 used to assess endocrine symptoms commonly experienced by women after natural, 135 surgically-induced, or medically-induced menopause. The FACT-ES was used in this population before [23, 24] and a validation study showed that the FACT-ES has acceptable 136 137 validity reliability and is sensitive to clinically significant change [25]. The FACT-ES 138 consists of 18 items that address a range of menopausal symptoms. Occurrence of each 139 symptom in the past four weeks is scored on a 5-point scale, ranging from 'not at all' to 'very 140 much'. Item scores are summed to obtain a total score (range: 0 - 72), with lower values 141 indicating more menopausal symptoms [25]. 142 We also used the Hot Flush Rating Scale (HFRS) to specifically assess the perceived 143 burden of hot flushes and night sweats over the past week. The HFRS problem rating score is 144 the mean of three 1 to 10 numerical scales assessing the extent to which hot flushes and night 145 sweats were problematic, distressing and cause interference in daily life. Higher scores 146 indicate more problematic symptoms [26][25][24]. 147 We assessed sexual functioning with the Sexual Functioning Questionnaire (SFQ). 148 The SFQ consists of 7 domains: desire (6-items); arousal-sensation (4 items); arousal-149 lubrication (2 items); orgasm (3 items); enjoyment (6 items); pain (3 items); and partner 150 relationship (2 items). Higher scores indicate better sexual functioning[27]. 151 Finally, we employed the Hospital Anxiety and Depression Scale (HADS) to assess 152 psychological distress. The HADS has two 7-item subscales, one for anxiety and one for 153 depression. A score of between 8 and 10 on the total scale represents a subclinical level of

154 anxiety or depression. The higher the scores the more clinically relevant the anxiety or

155 depression[28].

156 Statistical Analysis

157 Scores of the FACT-ES, HFRS, SFQ, the HADS anxiety and the HADS depression, were 158 calculated according to published scoring algorithms. If 50% or fewer of the items were 159 missing from a multi-item scale, the average of the remaining items was used to calculate the 160 scale score. We also examined the pattern of missing questionnaires at the three time points, 161 and whether the characteristics of respondents with missing questionnaires differed from 162 those with no missing questionnaires. 163 Due to the non-normal distribution of AMH and the substantial number of AMH levels below the limit of detection, we categorized this measure in three groups: (1) less or 164 165 equal to $0.10 \ \mu g/l$; (2) more than $0.10 \ \mu g/l$ and less or equal to $1.0 \ \mu g/l$; and (3) more than $1.0 \ \mu g/l$; 166 μg/l. 167 Continuous data are presented as means and standard deviations (SD); discrete data as 168 counts and percentage. We used Pearson correlations to examine the association between two 169 continuous variables, Student's t-test for dichotomous and continuous data, and one-way 170 analysis of variance for categorical and continuous data. 171 We used bivariate and multivariable linear regression analysis to investigate potential 172 predictors (pre-surgical AMH levels, age, education, employment status, relationship status, 173 parity, BMI, comorbidities, mutation status, regular menses, history of breast cancer, potential 174 received breast cancer treatments) of changes in: (1) menopausal symptoms, in general, and in 175 hot flushes and night sweats, in particular; (2) sexuality, and (3) psychological distress. 176 Change scores were calculated from baseline to six weeks (T0-T1; short-term) and seven 177 months (T0-T2; long-term) post-RRSO follow-up. We assessed possible multicollinearity by 178 inspecting the models and calculating the variance inflation factor (VIF). In case of a VIF>10, 179 we took into account the importance of the variables and excluded the variable which doesn't

180	seem essential to the model. Bivariate analyses with $p < 0.10$ were conducted to select potential
181	multivariable predictors. Because serum AMH level was the variable of primary interest, we
182	included it in the multivariable model regardless of whether it was significant at the bivariate
183	level.

We considered p < 0.05 significant in the multivariable analysis. The adjusted R² is the proportion of variance in the dependent variable that is explained by the variables included in the model and the total R² is the total amount of variance explained by the independent variables in the regression model. The semipartial (sr) correlation is the variance explained in

the dependent variable by a single independent variable.

All statistical analyses were carried out using Stata 12 (StataCorp LLC). With power set at 80% and alpha set at 0.05, a sample of 58 subjects is sufficient to conduct a regression analysis with five predictors, assuming that AMH levels account for 11% or more variability and the complete model would account for 21% or more of the variability in the outcomes.

193 Results

188

194 Population

195 Women were recruited into the study between November 2006 and April 2012. In total, 124 196 premenopausal women were invited to participate. Of these 124 women, three women 197 ultimately decided not to undergo an RRSO, six transitioned into post-menopause between 198 the invitation and study inclusion, one was diagnosed with OC, four anticipated logistical 199 problems, two did not provide informed consent, and 17 declined without providing a reason. 200 The background characteristics of the 91women who participated in the study are 201 described in Table 1. The mean (±SD) age of the participants was 43 (±5) years, 87% were in 202 a relationship (married/cohabitating), 71% had advanced level education, and 85% was 203 employed. Eighty-five percent of the women had a proven BRCA 1/2 mutation, and 28% had 204 a history of breast cancer (BC). At the pre-surgical assessment, half of the women reported 205 having a regular menses, i.e. with regular intervals between 3-6 weeks. The other half of the

206	women had irregular menses or no menses due to various reasons such as hysterectomy,	
207	chemotherapy, hormonal anti-conception or the reason was unknown. Thirty-six women	
208	(40%) had AMH levels less or equal to 0.10 $\mu g/l,$ 32 women (35%) had an AMH level that	
209	was more than 0.10 $\mu g/l$ and less or equal to 1.0 $\mu g/l$ (35%), and 23 women (25%) had an	
210	AMH level greater than 1.0 µg/l (25%).	
211	With the exception of the SFQ, patient reported outcome (PRO) assessments were	
212	completed by 86 of the 91 women at baseline, 82 women at six weeks, and 79 women at	
213	seven months. The SFQ was completed by 84 women at baseline, 81 women at six weeks,	
214	and 58 women at seven months. We found no significant differences in baseline	
215	sociodemographic and clinical characteristics or in baseline and follow-up patient-reported	
216	menopausal, sexual, depression and anxiety symptoms between women who had completed	
217	all assessments and those who had missing assessments on one or both of the follow-up	
218	assessments (data not shown).	
219	The extended table 2 (see online appendix) shows the results from the bivariate	
220	analyses that were conducted to identify potential predictors of change from baseline to	
221	follow-up in symptom outcomes. Those variables for which the association with symptom	
222	outcomes was significant at the 0.10 level or lower were selected for inclusion in the	
223	subsequent multivariable analyses (extended table 3).	
224	Multivariable predictors of symptom outcomes at six weeks and seven months post RRSO	
225	At the multivariable level (Table 3), AMH levels were not associated significantly with any of	
226	the symptom outcomes. When examining the multicollinearity in the SFQ model at six weeks,	
227	BC and comorbidity were highly correlated (IF= 10.01). Given this multicollinearity, we	
228	decided to include BC in the final model, because we were more interested in this outcome as	
229	all women in our study were at risk of BC. Having a relationship (sr -0.22, $p=0.046$) and	
230	having regular menses before RRSO (sr-0.27, p =0.015) were associated with a short-term	
231	increase in menopausal symptoms (FACT-ES) (total $R2 = 0.143$). There were no differences	

in the FACT-ES scores at baseline or at six-week follow-up between single women and
women in a relationship when excluding the items on sexuality (items 7, 8 and 9). No
variables were associated significantly with short-term change in the FACT-ES, HFRS, SFQ
or HADS.
In the model for change in SFQ at seven months, tamoxifen was the only hormonal

237 therapy which was reported to have been used. For this reason, we excluded tamoxifen use as 238 a potential predictor in the model. Having regular menses pre-surgery was independently 239 associated with a long-term increase in hot flushes (HFRS: sr 0.40, total $R^2 = 0.171$, p=0.001) 240 and in depression (HADS depression: sr 0.29, total $R^2 = 0.132$, p=0.012). Having received 241 chemotherapy (sr 0.24, total $R^2 = 0.348$, p=0.041) for the treatment of BC prior to RRSO was 242 independently associated with a long-term improvement in sexual functioning (SFQ). We 243 explored this latter finding further by examining the differences in the baseline SFQ scores 244 between women who underwent chemotherapy in the past and women who did not. We found 245 that, at baseline, women who had received chemotherapy in the past showed significantly 246 worse sexual functioning (mean= 90, SD= 35) than women who did not (mean= 113, SD= 25, 247 p=0.005). This suggests that there was more room for improvement in sexual functioning in 248 women who had received chemotherapy in the past. None of the variables investigated were 249 independently associated with long-term change in FACT-ES and anxiety as measured by the 250 HADS.

251 Discussion

- 252 This is the first study to investigate prospectively the potential value of AMH in
- 253 predicting the change in postmenopausal symptoms after RRSO. Because previous
- studies reported that AMH could be a marker for the process of ovarian ageing [18, 19,
- 255 29], we hypothesized that AMH might predict change in menopausal symptoms: the
- 256 higher the AMH levels pre-RRSO the worse the menopausal symptoms post-RRSO.
- 257 This proved not to be the case. A systematic review concluded that AMH is the most

258	promising currently available biomarker for predicting age at natural menopause[30].
259	However, it does not predict menopausal transition very well at the extremes of the age
260	range (i.e. very young or very old women) since it has wide prediction intervals[30] and
261	the predictive value is less strong with increasing age and becomes less reliable the
262	closer to menopause[31]. Because the mean age in our sample was 43.0 years, which is
263	relatively late in the reproductive age-range, AMH levels could be less reliable. It may
264	be that self-reported regular menses is a better predictor of menopause, and that could
265	be the reason that we did not find any association between the AMH levels and the
266	patients' self-reported symptom levels.
267	We found that women with regular menses before surgery reported more
268	endocrine symptoms at six weeks after RRSO and more hot flushes and depressive
269	symptoms at seven months after RRSO. Women with irregular menses are more likely
270	to already be in a transition phase to menopause. It has been hypothesized that the
271	immediate onset of menopause after oophorectomy results in more severe complaints in
272	women who still have regular menses pre-RRSO[32]. This is supported by our results in
273	which we found a greater increase in endocrine and depressive symptoms after RRSO in
274	women with regular pre-surgical menses as compared to those women with irregular
275	menses.
276	Having a relationship was weakly associated with an increase in menopausal
277	symptoms six weeks after RRSO. An explanation could be that some of the items in the
278	FACTES are more focused on sexuality, such that they might be more relevant for
279	married/cohabitating women than single women. And indeed, analyzing the FACT-ES
280	data without the sexual questions did not yield a significant difference in the prevalence
281	of menopausal symptoms between women with a relationship and single women any
282	more. Unexpectedly, we found an improvement in sexual functioning in women who
283	underwent earlier chemotherapy after RRSO. Both chemotherapy and RRSO are known

284	for their detrimental effect on ovarian function. Therefore, the effect of RRSO could be
285	less severe in this group of women, because the ovarian function was already negatively
286	altered by the BC treatment in the past. This is supported by the observed difference in
287	baseline SFQ scores.
288	A limitation of our study is the relatively short follow-up, because differences in
289	patient-reported outcomes might continue to change over a longer period of time. Loss
290	to follow-up for some outcomes is a study limitation and the multiple comparisons
291	could lead to the probability of change findings. Also, there is a minor possibility of
292	incorrectly identifying menopausal status due to hysterectomy or use of hormonal
293	contraceptives. In addition, hormonal contraception could decrease AMH levels by 30%
294	[33]. Because these limitations are subject to such a small group of women, we do not
295	think they would change the outcomes. The strengths of our study include its
296	prospective design, the use of validated questionnaires to assess symptoms, and the
297	relatively large sample size for this specific group of women.
298	In conclusion, our findings indicate that AMH serum levels do not predict
299	changes in endocrine and sexual symptoms or in psychological distress following
300	RRSO in women at increased risk of OC. Having regular menses prior to RRSO and, to
301	a lesser degree, having a relationship were weakly associated with severe menopausal
302	symptoms after surgery. We suggest that further research focusses on individualizing
303	counseling, not with predictive values, but more in communicative tools such as
304	decision aids. In this way, more women know what to expect after RRSO: this may
305	lower the experienced symptoms and enables women to already think about symptom
306	lowering strategies such as hormone replacement therapy.
307	The authors report no conflicts of interest.

- 308 This research did not receive any specific grant from funding agencies in the public, commercial, or
- 309 not-for-profit sectors.

310

311 References .

312	1.	Boyd J. Molecular genetics of hereditary ovarian cancer. Oncology (Williston Park,
313		NY). 1998 Mar;12(3):399-406; discussion 409-10, 413. PubMed PMID: 9534190;
314		eng.
315	2.	Olivier RI, Lubsen-Brandsma MA, Verhoef S, et al. CA125 and transvaginal
316		ultrasound monitoring in high-risk women cannot prevent the diagnosis of advanced
317		ovarian cancer. Gynecologic oncology. 2006 Jan;100(1):20-6. doi:
318		10.1016/j.ygyno.2005.08.038. PubMed PMID: 16188302; eng.
319	3.	van Driel CM, de Bock GH, Arts HJ, et al. Stopping ovarian cancer screening in
320		BRCA1/2 mutation carriers: effects on risk management decisions & outcome of risk-
321		reducing salpingo-oophorectomy specimens. Maturitas. 2015 Mar;80(3):318-22. doi:
322		10.1016/j.maturitas.2014.12.009. PubMed PMID: 25600260.
323	4.	Rebbeck TR, Lynch HT, Neuhausen SL, et al. Prophylactic oophorectomy in carriers
324		of BRCA1 or BRCA2 mutations. The New England journal of medicine. 2002 May
325		23;346(21):1616-22. doi: 10.1056/NEJMoa012158. PubMed PMID: 12023993.
326	5.	Kauff ND, Satagopan JM, Robson ME, et al. Risk-reducing salpingo-oophorectomy in
327		women with a BRCA1 or BRCA2 mutation. The New England journal of medicine.
328		2002 May 23;346(21):1609-15. doi: 10.1056/NEJMoa020119. PubMed PMID:
329		12023992; eng.
330	6.	Eisen A, Lubinski J, Klijn J, et al. Breast cancer risk following bilateral oophorectomy
331		in BRCA1 and BRCA2 mutation carriers: an international case-control study. Journal
332		of clinical oncology : official journal of the American Society of Clinical Oncology.
333		2005 Oct 20;23(30):7491-6. doi: 10.1200/JCO.2004.00.7138. PubMed PMID:
334		16234515.
335	7.	Ossewaarde ME, Bots ML, Verbeek AL, et al. Age at menopause, cause-specific
336		mortality and total life expectancy. Epidemiology. 2005 Jul;16(4):556-62. PubMed
337		PMID: 15951675.
338	8.	Rocca WA, Grossardt BR, de Andrade M, et al. Survival patterns after oophorectomy
339	0.	in premenopausal women: a population-based cohort study. The lancet oncology. 2006
340		Oct;7(10):821-8. doi: 10.1016/S1470-2045(06)70869-5. PubMed PMID: 17012044.
341	9.	Parker WH, Broder MS, Chang E, et al. Ovarian conservation at the time of
342		hysterectomy and long-term health outcomes in the nurses' health study. Obstetrics
343		and gynecology. 2009 May;113(5):1027-37. doi: 10.1097/AOG.0b013e3181a11c64.
344		PubMed PMID: 19384117; PubMed Central PMCID: PMC3791619.
345	10.	Pimenta F, Leal I, Maroco J, et al. Menopausal symptoms: do life events predict
346	10.	severity of symptoms in peri- and post-menopause? Maturitas. 2012 Aug;72(4):324-
347		31. doi: 10.1016/j.maturitas.2012.04.006. PubMed PMID: 22607812; eng.
348	11.	Pimenta F, Leal I, Maroco J, et al. Perceived control, lifestyle, health, socio-
349	11.	demographic factors and menopause: impact on hot flashes and night sweats.
350		Maturitas. 2011 Aug;69(4):338-42. doi: 10.1016/j.maturitas.2011.05.005. PubMed
351		PMID: 21680119; eng.
352	12.	Stefanopoulou E, Hunter MS. Symptom perception in healthy menopausal women:
353	12.	Can we predict concordance between subjective and physiological measures of

- vasomotor symptoms? American journal of human biology : the official journal of the Human Biology Council. 2014 May-Jun;26(3):389-94. doi: 10.1002/ajhb.22530. PubMed PMID: 24590561; eng. Fanchin R, Schonauer LM, Righini C, et al. Serum anti-Mullerian hormone is more 354 355 356
- 357 13. strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Human reproduction. 2003 Feb;18(2):323-7. PubMed PMID: 12571168; 358 359 360 eng.

- 14. Tsepelidis S, Devreker F, Demeestere I, et al. Stable serum levels of anti-Mullerian
 hormone during the menstrual cycle: a prospective study in normo-ovulatory women.
 Human reproduction. 2007 Jul;22(7):1837-40. doi: 10.1093/humrep/dem101. PubMed
 PMID: 17485437.
- La Marca A, Stabile G, Artenisio AC, et al. Serum anti-Mullerian hormone throughout the human menstrual cycle. Human reproduction. 2006 Dec;21(12):3103-7. doi: 10.1093/humrep/del291. PubMed PMID: 16923748.
- Hehenkamp WJ, Looman CW, Themmen AP, et al. Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. The Journal of clinical endocrinology and metabolism. 2006 Oct;91(10):4057-63. doi: 10.1210/jc.2006-0331. PubMed PMID: 16804046.
- Bath LE, Wallace WH, Shaw MP, et al. Depletion of ovarian reserve in young women after treatment for cancer in childhood: detection by anti-Mullerian hormone, inhibin B and ovarian ultrasound. Human reproduction. 2003 Nov;18(11):2368-74. PubMed PMID: 14585889.
- Anderson RA, Rosendahl M, Kelsey TW, et al. Pretreatment anti-Mullerian hormone predicts for loss of ovarian function after chemotherapy for early breast cancer.
 European journal of cancer (Oxford, England : 1990). 2013 Nov;49(16):3404-11. doi: 10.1016/j.ejca.2013.07.014. PubMed PMID: 23968732; PubMed Central PMCID: PMC3807650.
- Kevenaar ME, Meerasahib MF, Kramer P, et al. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology. 2006 Jul;147(7):3228-34. doi: 10.1210/en.2005-1588. PubMed PMID: 16556768.
- Sovers M, McConnell D, Gast K, et al. Anti-Mullerian hormone and inhibin B
 variability during normal menstrual cycles. Fertility and sterility. 2010
 Sep;94(4):1482-6. doi: 10.1016/j.fertnstert.2009.07.1674. PubMed PMID: 19969291;
 PubMed Central PMCID: PMC2891288.
- Sutcliffe S, Pharoah PD, Easton DF, et al. Ovarian and breast cancer risks to women in families with two or more cases of ovarian cancer. International journal of cancer Journal international du cancer. 2000 Jul 1;87(1):110-7. PubMed PMID: 10861460.
- 391 22. Heineman MJ. Obstertrie & Gynaecologie de voortplanting van de mens. Reed
 392 Business. 2012 08-2012;7. Dutch.
- Vermeulen RFM, Beurden MV, Kieffer JM, et al. Hormone replacement therapy after risk-reducing salpingo-oophorectomy minimises endocrine and sexual problems: A prospective study. European journal of cancer (Oxford, England : 1990). 2017 Aug 14;84:159-167. doi: 10.1016/j.ejca.2017.07.018. PubMed PMID: 28818705; eng.
- 397 24. Madalinska JB, van Beurden M, Bleiker EM, et al. The impact of hormone replacement therapy on menopausal symptoms in younger high-risk women after prophylactic salpingo-oophorectomy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006 Aug 1;24(22):3576-82. doi: 10.1200/jco.2005.05.1896. PubMed PMID: 16877724; eng.
- 402 25. Fallowfield LJ, Leaity SK, Howell A, et al. Assessment of quality of life in women 403 undergoing hormonal therapy for breast cancer: validation of an endocrine symptom 404 subscale for the FACT-B. Breast cancer research and treatment. 1999 May;55(2):189-405 99. PubMed PMID: 10481946.
- 406 26. Hunter MS, Liao KL. A psychological analysis of menopausal hot flushes. The British
 407 journal of clinical psychology / the British Psychological Society. 1995 Nov;34 (Pt
 408 4):589-99. PubMed PMID: 8563666.
- 27. Quirk FH, Heiman JR, Rosen RC, et al. Development of a sexual function
 questionnaire for clinical trials of female sexual dysfunction. Journal of women's
 health & gender-based medicine. 2002 Apr;11(3):277-89. doi:
- 412 10.1089/152460902753668475. PubMed PMID: 11988137.

- 413 28. Spinhoven P, Ormel J, Sloekers PP, et al. A validation study of the Hospital Anxiety
 414 and Depression Scale (HADS) in different groups of Dutch subjects. Psychological
 415 medicine. 1997 Mar;27(2):363-70. PubMed PMID: 9089829.
- Freeman EW, Sammel MD, Lin H, et al. Anti-mullerian hormone as a predictor of
 time to menopause in late reproductive age women. The Journal of clinical
 endocrinology and metabolism. 2012 May;97(5):1673-80. doi: 10.1210/jc.2011-3032.
 PubMed PMID: 22378815; PubMed Central PMCID: PMCPMC3339896. eng.
- 30. Depmann M, Broer SL, van der Schouw YT, et al. Can we predict age at natural menopause using ovarian reserve tests or mother's age at menopause? A systematic literature review. Menopause (New York, NY). 2016 Feb;23(2):224-32. doi:
 10.1097/gme.0000000000509. PubMed PMID: 26372034; eng.
- 424 31. Depmann M, Eijkemans MJ, Broer SL, et al. Does anti-Mullerian hormone predict
 425 menopause in the general population? Results of a prospective ongoing cohort study.
 426 Human reproduction. 2016 Jul;31(7):1579-87. doi: 10.1093/humrep/dew112. PubMed
 427 PMID: 27179263; eng.
- Benshushan A, Rojansky N, Chaviv M, et al. Climacteric symptoms in women undergoing risk-reducing bilateral salpingo-oophorectomy. Climacteric : the journal of the International Menopause Society. 2009 Oct;12(5):404-9. doi:
 10.1080/13697130902780846. PubMed PMID: 19479488; eng.
- Bentzen JG, Forman JL, Pinborg A, et al. Ovarian reserve parameters: a comparison between users and non-users of hormonal contraception. Reproductive biomedicine online. 2012 Dec;25(6):612-9. doi: 10.1016/j.rbmo.2012.09.001. PubMed PMID: 23069740.

Met opmaak: Nederlands

437

Variables	N (%)
Age (Years)	
Mean (SD)	43.0 (4.8)
Relationship status	
Married/cohabitating	79 (87%)
Single/divorced	12 (13%)
Education	
Primary school to middle level high school	26 (29%)
Advanced vocational/ university	65 (71%)
Employment status	
Full-time or part-time job	77 (85%)
Housewife	8 (9%)
Other	6 (7%)
Children	80 (88%)
BMI (kg/m2)	
Mean (SD)	24.2 (3.4)
Comorbidities (%)	31 (34%)
Gene mutation	
Negative	8 (9%)
Unknown	6 (7%)
BRCA1	49 (54%)
BRCA2	28 (31%)
Oral contraceptive	9 (10%)
Regular menses	46 (51%)
History of BC	25 (28%)
Radiotherapy for BC	14 (15%)
Chemotherapy for BC	15 (17%)
Hormonal therapy for BC	3 (3%)
Tamoxifen	4 (4%)
AMH level μg/L	
median (IQR)	0.34 (≤0.10-1.01
≤0.10 µg/L	36 (40%)
0.10-1.00 µg/L	32 (35%)
≥1.00 µg/L	23 (25%)
Abbreviations: SD standard deviation; BC breast cancer; AN inter quartile range. *Four women younger than 51 years who underwent hystere	

438

	Change in FACT-ES					Change in HFRS				Change in SFQ					S depres	sion	Change in HADS anxiety			
	6 weeks		7 mont	ths	6 wee	ks	7 mor	nths	6 weeks		7 month	ıs	6 wee	ks	7 moi	nths	6 weel	s	7 mon	ths
Variables	P v:	alue		P value		P value		P value		P value		P value		P value		P value		P value		P valu
AMH level µg/l (≤0.10) (N=36)	-3 ±11 0.	.804	-3 ±9	0.161	1 ±2	0.643	1 ±2	0.798	-11 ±30	0.202	-9 ±37	0.579	2 ±4	0.301	1 ±3	0.161	0 ±3	0.513	0 ±3	0.05
(0.10-1.00) N=32)	-4 ±10		-5 ±9		1 ±1		1 ±1		-25 ±38		-19 ±34		0 ±2		0 ±1		-1 ±5		-1 ±3	
(≥1.00) N=23)	-5 ±11		-8 ±9		1 ±2		1 ±1		-29 ±33		-17 ±29		0 ±5		2 ±4		-1 ±4		0 ±3	

Pearson correlation indicated by r; **bold** indicates P<0.10; continuous variables as mean (±standard deviation); discrete variables as number (percentage). Abbreviations: SD standard deviation; BC breast cancer; AMH Anti-Müllerian hormone; SFQ sexual functioning questionnaire; HADS hospital anxiety and depression scale; HFRS hot flush rating scale; FACT-ES functional assessment of cancer therapy – endocrine symptoms

Change at 6 weeks	Regression coefficient (β) (95% CI)	Standard error	P value	Semipartial correlation	Total R ²	Change at 7 months	Regression coefficient (β) (95% CI)	Standard error	P value	Semipartial correlation	Total R ²
FACT-ES					0.143	FACT-ES					0.148
AMH ≤0.10 µg/L	ref					AMH ≤0.10 µg/L	ref				
AMH 0.10-1.00 μg/L	1 (-4 to 7)	3	0.622	0.05		AMH 0.10-1.00 μg/L	-1 (-5 to 4)	2	0.786	-0.03	
AMH ≥1.00 µg/L	0.4 (-6 to 7)	3	0.885	0.02		$AMH \ge 1.00 \ \mu g/L$	-3 (-8 to 2)	3	0.275	-0.12	
HFRS					0.06	HFRS					0.171
AMH ≤0.10 µg/L	ref					AMH ≤0.10 µg/L	ref				
AMH 0.10-1.00 μg/L	-0.5 (-1.3 to 0.4)	0.4	0.299	-0.12		AMH 0.10-1.00 μg/L	-0.5 (-1.4 to 0.3)	0.4	0.207	-0.15	
AMH ≥1.00 µg/L	-0.3 (-1.2 to 0.7)	0.5	0.591	-0.06		$AMH \ge 1.00 \ \mu g/L$	-0.9 (-1.9 to 0.0)	0.5	0.057	-0.22	
SFQ					0.219	SFQ					0.348
AMH ≤0.10 μg/L	ref					AMH ≤0.10 µg/L	ref				
AMH 0.10-1.00 μg/L	-11 (-32 to 10)	10	0.278	-0.14		AMH 0.10-1.00 μg/L	-9 (-29 to 12)	10	0.406	-0.10	
AMH ≥1.00 µg/L	-16 (-42 to 10)	13	0.229	-0.15		$AMH \ge 1.00 \ \mu g/L$	-7 (-32 to 18)	12	0.585	-0.06	
HADS Depression					0.078	HADS Depression					0.132
AMH ≤0.10 μg/L	ref					AMH ≤0.10 µg/L	ref				
AMH 0.10-1.00 μg/L	-1.4 (-3 to 0.3)	1	0.107	-0.18		AMH 0.10-1.00 μg/L	-1.3 (-3 to 0.2)	1	0.094	-0.19	
AMH ≥1.00 µg/L	-1.1 (-3 to 0.8)	1	0.251	-0.13		$AMH \ge 1.00 \ \mu g/L$	0.3 (-1.4 to 2.0)	1	0.730	0.04	
HADS Anxiety					0.092	HADS Anxiety					0.080
AMH ≤0.10 µg/L	ref					AMH ≤0.10 µg/L	ref				
AMH 0.10-1.00 μg/L	-0.8 (-3 to 1)	1	0.459	-0.08		AMH 0.10-1.00 μg/L	-1.5 (-3 to 0.1)	1	0.060	-0.22	
AMH≥1.00 μg/L	-0.4 ('-3 to 2)	1	0.755	-0.04		AMH ≥1.00 µg/L	0.4 (-1.3 to 2.2)	1	0.618	0.06	

Table 3 Multivariable analysis at six weeks and seven months

Supplemental online material

Extended bivariate and multivariable analysis

	Chang	e in FAC	T-ES		Change in HFRS				Chang	e in SFQ)		Chang	e in HA	DS depre	ssion	Change in HADS anxiety			
	6 week	s	7 mont	ths	6 weel	s	7 mon	ths	6 week	s	7 mon	ths	6 week	ĸs	7 mont	hs	6 weeks	s	7 mon	iths
Variables		Р		Р		Р		Р		Р		Р		Р		Р		Р		Р
		value		value		value		value		value	r -	value		value		value		value	r -	value
Age (yrs)	r 0.05	0.676	r 0.02	0.834	r 0.07	0.548	r 0.13	0.271	r -0.13	0.324	0.22	0.094	r 0.08	0.516	r 0.11	0.347	r -0.03	0.803	0.12	0.289
Marital status																				
Married/living together	-4.7 ±10	0.100	-6.0 ±9	0.096	0.9 ±2	0.783	1.1 ±2	0.813	-18 ±34	0.306	-12 ±32	0.046	0.7 ±3	0.076	1.0 ± 3	0.741	-0.25 ±4	0.070	-0.3 ±3	0.261
Single/divorced	0.6 ±12		-1.1 ±10		1.1 ±1		1.2 ±1		-35 ±36		-43 ±40		-1.3 ±6		1.2 ± 4		-2 ±3		-1.4 ±3	
Education																				
Primary school to middle level high school	-4.0 ±7	0.945	-5.8 ±6	0.716	1.2 ±1	0.448	1.1 ±1	0.913	-31 ±34	0.096	-21 ±25	0.414	0.3 ±2	0.776	0.6 ±2	0.458	-0.7 ±5	0.826	-0.5 ±3	0.899
Advanced vocational/	-3.8		5.0		0.8		1.1		-15		-12		0.5		1.2 ± 3		-0.5		-0.4	
university	±11		±10		±2		±2		±33		±37		±4		1.2 ±3		±3		±3	
Employment																				
Full-time or part-time job	-4.3 ±9	0.040	-5.1 ±9	0.641	1.0 ±2	0.069	1.1 ±2	0.629	-21 ±34	0.820	-17 ±33	0.070	0.4 ±3	0.751	0.9 ± 3	0.636	-0.5 ±4	0.783	-0.4 ±3	0.736
Housewife	-5.6 ±6		-7.6 ±5		1.6 ±2		0.9 ±1		-11 ±16		-24 ±18		0.6 ±3		0.0 ± 1		-1.3 ±4		-1.2 ±2	
Other	6.4 ±17		-2.2 ±10		-0.5 ±1		0.2 ±0		-13 ±54		23 ±49		-0.7 ±7		1.8 ± 2		-1.5 ±4		-1.3 ±2	
Children	11/		10		-1		10		1.54		149		/				14		12	
0	-4.4	0.854	-3.6	0.531	0.7	0.602	0.9	0.701	-30	0.435	-14	0.959	-0.9	0.224	0.1 ±2	0.304	-1.7	0.370	-0.1	0.706
	±8 -3.8		±8 -5.5		±1 1.0		±1 1.1		±31 -18		±17 -15		±3 0.6				±4 -0.4		±2 -0.5	
1 or more	±11		± 9		±2		±2		±35		±35		±3		1.1 ± 3		± 4		±3	
BMI (kg/m ²)	r 0.01	0.961	r 0.11	0.359	r 0.06	0.620	r - 0.03	0.809	r -0.02	0.891	r - 0.04	0.760	r - 0.08	0.480	r - 0.166	0.154	r 0.02	0.869	r - 0.08	0.483
Comorbidities																				
yes	-4.5 ±9	0.415	-3.6 ±10	0.289	0.9 ±2	0.814	1.3 ±2	0.458	-4 ±27	0.007	-20 ±27	0.107	0.5 ±3	0.823	1 ±3	0.979	0.2 ±4	0.167	-0.1 ±3	0.579
no	-2.5		-6.0		1.0		1.0		-28		-5		0.3		1 ±3		-1 ±4		-0.6	
	±12		±9		±1		± 1		±35		±43		±5		1 ±5		-1 -4		±3	
Gene mutation	-6.7		-7.5		1.9		1.4		-13		-5		1.8						0.3	
Negative	±14	0.854	-7.5 ±12	0.870	±2	0.357	± 1	0.913	±14	0.130	±15	0.722	±2	0.713	0.7 ± 1	0.319	0.5 ±2	0.838	±2	0.549
Unknown	-2.5 ±7		-6.7 ±6		0.8 ±1		1.1 ±1		-92 ± 0		-39 ±10		-0.4 ±2		0 ± 1		1 ±4		-0.3 ±3	
BRCA1	-3.2 ±11		-4.6 ±8		1.0 ±2		1.1 ±2		-16 ±33		-14 ±40		0.4 ±4		0.6 ± 2		-0.8 ±4		-0.9 ±3	

BRCA2	-4.5 ±9		-5.4 ±11		0.6 ±1		0.9 ±2		-25 ±36		-16 ±27		0.2 ±3		1.9 ± 4		-0.4 ±4		0.1 ±3	
Oral contraceptive before surgery																				
yes	-4.5 ±15	0.858	-2.8 ±10	0.389	1.0 ±2	0.982	1.0 ±2	0.819	-17 ±34	0.842	-4 ±23	0.418	0 ±6	0.738	0.4 ± 2	0.555	-0.7 ±4	0.930	0 ± 2	0.643
no	-3.8 ±10		-5.6 ±9		0.9 ±2		1.0 ±1		-20 ±34		-16 ±35		0.5 ±3		1.1 ± 3		-0.6 ±4		-0.5 ±3	
Regular menses																				
yes	-6.2 ±12	0.031	-7.3 ±10	0.031	1.2 ±1	0.172	1.6 ±1	0.004	-26 ±33	0.192	-20 ±31	0.167	1 ±4	0.118	1.7 ± 4	0.018	-0.3 ±4	0.507	-0.2 ±3	0.540
no	-1.2 ±7		-2.9 ±7		0.7 ±2		0.5 ±1		-14 ±34		-8 ±36		-0.2 ±2		0.2 ± 2		-0.9 ±4		-0.7 ±3	
History of Breast cancer																				
yes	-3.0 ±10	0.657	-3.3 ±10	0.285	0.8 ±2	0.600	1.0 ±2	0.823	-3 ±29	0.009	-6 ±47	0.223	0.5 ±3	0.892	$0.8 \pm \! 3$	0.800	0.5 ± 3	0.096	-0.2 ±4	0.688
no	-4.2 ±11		-5.9 ±9		1 ±2		1.1 ±2		-27 ±34		-18 ±27		0.4 ±4		1.0 ± 3		-1.1 ±3		-0.5 ±3	
Radiotherapy for breast cancer																				
yes	-1.5 ±11	0.360	-5.9 ±9	0.112	0.5 ±2	0.287	0.5 ±2	0.175	2 ±36	0.017	1 ± 63	0.120	-0.2 ±2	0.512	1.2 ± 4	0.805	-0.9 ±4	0.182	0.7 ±3	0.237
no	-4.3 ±10		-1.1 ±10		1 ± 2		1.2 ±2		-25 ±32		-18 ±25		0.5 ±4		1.0 ± 3		0.7 ± 3		-0.6 ±3	
Chemotherapy for breast cancer																				
yes	-1.8 ±11	0.407	-1.9 ±11	0.156	0.4 ±2	0.157	0.8 ±2	0.423	-0,4 ±35	0.019	13 ±42	0.002	0.1 ±3	0.679	-0.3 ±2	0.109	-0.9 ±4	0.180	-0.3 ±3	0.567
no	-4.3 ±10		-5.9 ±8		1.1 ±2		1.1 ±2		-25 ±32		-21 ±29		0.5 ±3		1.2 ± 3		0.6 ± 3		-0.9 ±4	
Hormonal therapy for breast																				
cancer			3.5		-0.3		-0.2		23		35		-1.7		-0.7 ±5				-1.3	
yes	2.7 ±8 -4.1	0.263	3.5 ±10 -5.6	0.083	±1 1.0	0.149	±2 1.1	0.132	23 ±35 -22	0.022	35 ±51 -17	0.008	±3 0.5	0.283		0.319	0 ±3 -0.6	0.785	-1.3 ±3 -0.4	0.594
no	±10		±9		±2		±1		±33		±31		±3		1.1 ±3		±4		±3	
Tamoxifen			3.5		-0.3		-0.2		16		35				-0.7		-0.5		-1.3	
yes	1.5 ±7 -4.1	0.288	±10 -5.6	0.083	± 1	0.116	±2 1.1	0.132	±32 -22	0.030	±51 -17	0.008	-1 ±3 0.5	0.397	±5	0.319	±3 -0.6	0.961	±3 -0.4	0.594
no	±10		-5.0 ±9		1 ±2		±1		±33		±31		±3		1.1 ± 3		±4		±3	
AMH level µg/l									-11		-9									
(≤0.10) (N=36)	-3 ±11	0.804	-3 ±9	0.161	1 ±2	0.643	1 ±2	0.798	±30	0.202	±37	0.579	2 ±4	0.301	1 ±3	0.161	0 ±3	0.513	0 ±3	0.052
(0.10-1.00) (N=32)	-4 ± 10		-5 ± 9		1 ± 1		1 ± 1		-25 ±38		-19 ±34		0 ±2		0 ± 1		-1 ±5		-1 ±3	
(≥1.00) (N=23)	-5 ±11		-8 ±9		1 ±2		1 ±1		-29 ±33		-17 ±29		0 ±5		2 ± 4		-1 ±4		0 ±3	
Pearson correlation indicated b	y r; bol	d indic	ates P<	0.10; cc	ontinuo	us varia	bles as	s mean (±standa	rd devi	iation);	discrete	e variał	oles as r	number	(percer	ntage). A	Abbrevi	ations:	SD

standard deviation; BC breast cancer; AMH Anti-Müllerian hormone; SFQ sexual functioning questionnaire; HADS hospital anxiety and depression scale; HFRS hot flush rating scale; FACT-ES functional assessment of cancer therapy – endocrine symptoms

Change at 6 weeks	Regression coefficient (β) (95% CI)	Standa rd error	P value	Semipartial correlation	Total R ²	Change at 7 months	Regression coefficient (β) (95% CI)	Standa rd error	P value	Semipartial correlation	Tota R ²
FACT-ES Stable relationship (married/cohabitating)	-6 (-13 to - 0.1)	3	0.046	-0.22	0.143	FACT-ES Stable relationship (married/cohabitating)	-5 (-11 to 0.3)	3	0.062	-0.21	0.148
Employment	-)					Regular mensis (yes vs no) Hormonal therapy for BC (yes	-4 (-8 to 0.6)	2	0.089	-0.19	
Other	ref					vs no)	7 (-3 to 17)	5	0.175	0.15	
Working	-6 (-13 to 2)	4	0.122	-0.17		AMH ≤0.10 μg/L	ref				
Housewife	-8 (-19 to 3) -6 (-11 to -	6	0.175	-0.15		AMH 0.10-1.00 μg/L	-1 (-5 to 4)	2	0.786	-0.03	
Regular menses (yes vs no)	1.2)	2	0.015	-0.27		$AMH \ge 1.00 \ \mu g/L$	-3 (-8 to 2)	3	0.275	-0.12	
AMH ≤0.10 µg/L	ref										
AMH 0.10-1.00 μg/L	1 (-4 to 7)	3	0.622	0.05							
$AMH \ge 1.00 \ \mu g/L$	0.4 (-6 to 7)	3	0.885	0.02							
HFRS					0.06	HFRS	1.3 (0.6 to				0.171
Employment						Regular mensis (yes vs no)	2.1)	0.4	0.001	0.09	
Other	ref 1,0 (-0.2 to					AMH ≤0.10 µg/L	ref -0.5 (-1.4 to				
Working	2.1) 1.5 (-0.3 to	1	0.111	0.19		AMH 0.10-1.00 μg/L	0.3) -0.9 (-1.9 to	0.4	0.207	-0.15	
Housewife	3.2)	1	0.104	0.20		AMH ≥1.00 µg/L	0.0)	0.5	0.057	-0.22	
AMH ≤0.10 μg/L	ref -0.5 (-1.3 to										
AMH 0.10-1.00 μg/L	0.4) -0.3 (-1.2 to	0.4	0.299	-0.12							
AMH ≥1.00 μg/L	-0.3 (-1.2 10	0.5	0.591	-0.06							

SFQ					0.219	SFQ					0.348
Education	18 (-3 to 39)	10	0.088	0.21		Age (years)	-1 (-2.9 to 0.8)	0.9	0.269	-0.13	
History of BC (yes vs no)	4 (-31 to 39)	18	0.818	0.03		Stable relationship (married/cohabitating)	25 (-4 to 54)	15	0.094	0.20	
Radiotherapy for BC (yes vs no)	4 (-30 to 37)	17	0.834	0.03		Employment					
Chemotherapy for BC (yes vs no)	4 (-32 to 41)	18	0.817	0.03		Other	ref				
Hormonal therapy for BC (yes vs no)	7 (-75 to 88)	41	0.870	0.02		Working	-19 (-44 to 6)	13	0.137	-0.17	
Tamoxifen (yes vs no)	29 (-47 to 105)	38	0.441	0.10		Housewife	-28 (-66 to 9)	19	0.133	-0.18	
AMH ≤0.10 µg/L	ref					Chemotherapy for BC (yes vs no)	23 (1 to 45)	11	0.041	0.24	
AMH 0.10-1.00 μg/L	-11 (-32 to 10)	10	0.278	-0.14		Hormonal therapy for BC (yes vs no)	36 ('-1 to 74)	19	0.057	0.22	
AMH≥1.00 µg/L	-16 (-42 to 10)	13	0.229	-0.15		AMH ≤0.10 µg/L	ref -9 (-29 to				
						AMH 0.10-1.00 µg/L	-9 (-29 to 12) -7 (-32 to	10	0.406	-0.10	
HADS Depression					0.078	$AMH \ge 1.00 \ \mu g/L$	18)	12	0.585	-0.06	
Stable relationship (married/cohabitating)	2.1 (-0.1 to 4.3)	1	0.060	0.22							
AMH ≤0.10 µg/L	ref					HADS Depression	17(04)				0.132
AMH 0.10-1.00 μg/L	-1.4 (-3 to 0.3)	1	0.107	-0.18		Regular menses (yes vs no)	1.7 (0.4 to 3.1)	0.7	0.012	0.29	
$AMH \!\geq\! 1.00 \; \mu g/L$	-1.1 (-3 to 0.8)	1	0.251	-0.13		AMH ≤0.10 μg/L	ref				
						AMH 0.10-1.00 µg/L	-1.3 (-3 to 0.2)	1	0.094	-0.19	
HADS Anxiety	22(00(+				0.092	$AMH \!\geq\! 1.00 \; \mu g/L$	0.3 (-1.4 to 2.0)	1	0.730	0.04	
Stable relationship (married/cohabitating)	2.3 (-0.06 to 4.6) 1.5 (-0.5 to	1	0.056	0.22							
History of BC (yes vs no)	1.5 (-0.5 to 3.5)	1	0.148	0.17		HADS Anxiety					0.080
AMH ≤0.10 µg/L	ref					AMH ≤0.10 μg/L	ref				

AMH 0.10-1.00 μg/L	-0.8 (-3 to 1)	1	0.459	-0.08	AMH 0.10-1.00 μg/L	-1.5 (-3 to 0.1)	1	0.060	-0.22	
AMH ≥1.00 μg/L	-0.4 ('-3 to 2)	1	0.755	-0.04	AMH ≥1.00 μg/L	0.4 (-1.3 to 2.2)	1	0.618	0.06	
Bold indicates statistical significance. $P < 0.05$, CI = Confidence interval, SD = standard deviation, SFO = sexual functioning questionnaire. HADS = hospital anxiety and depression scale.										

Bold indicates statistical significance, P < 0.05. CI = Confidence interval, SD = standard deviation, SFQ = sexual functioning questionnaire, HADS = hospital anxiety and depression scale HFRS = hot flush rating scale, FACT-ES = functional assessment cancer treatment - endocrine symptoms, AMH = Anti-Müllerian hormone, BC = breast cancer