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CHAPTER 1

General Introduction

The immune system
The immune system protects the body against bacterial, viral, and parasitic infections. 
It is one of the most dynamic and plastic systems in the human body, present in 
nearly every tissue type. Although the immune system is generally highly efficient, 
disruptions of homeostasis can occur leading to a variety of immune-mediated 
diseases, such as diabetes mellitus type 1 or Crohn’s disease. The immune system 
can be divided into an innate and an adaptive compartment, and their cellular 
components consist of a variety of different cell populations. The innate immune 
system represents the first line of defense which comprises of the myeloid cell 
lineage, including antigen presenting cells, such as macrophages and dendritic cells, and 
innate lymphocytes, such as natural killer (NK) cells and innate lymphoid cells (ILCs). 
The adaptive immune system is more specialized and typified by the expression of 
antigen-specific receptors on B and T lymphocytes, the latter including CD4+ T cells 
and CD8+ T cells, and the capacity to develop immunological memory providing 
superior protection towards pathogens. In addition, we can distinguish innate-
like unconventional T cell subsets that reside more prominently at barrier sites, 
including TCRgd cells, NKT cells and mucosal-associated invariant T (MAIT) cells1.
Immune processes are mediated by the crosstalk between these types of cells, 
tissue-resident as well as circulating immune cells, all interacting in specific micro-
environmental contexts. Each of these immune cell types can be phenotypically 
defined through the expression of specific proteins on the cell surface, referred to 
as markers hereafter. 

Flow cytometry
In the past decades, flow cytometry has been the benchmark technique to analyze 
markers expressed by individual immune cells, revealing their identity. By selecting 
a set of fluorochrome-conjugated antibodies that specifically recognize certain 
markers expressed on the cell surface, subpopulations of interest can be analyzed 
by measuring the fluorescent emission at the single-cell level. This has allowed us 
to gain a wide understanding of the composition of the immune system in health 
and disease2. However, the primary drawback of traditional flow cytometry is that 
the number of markers that can simultaneously be measured is limited by spectral 
overlap (generally 8-12) (Figure 1A). In addition, the design of complex flow 
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cytometry antibody panels is laborious and challenging due to the spectral overlap. 
To capture all cell populations across all major innate and adaptive lineages of the 
immune system simultaneously, a higher level of multiparametric analysis of single 
cells is required that cannot currently be met with fluorescence-based technologies.

Mass cytometry
Mass cytometry (CyTOF, cytometry by time-of-flight) is a new generation of 
single-cell analysis technology offering a high-throughput platform for robust 
characterization of immune cells by overcoming this flow cytometry-intrinsic 
marker limitation3. The CyTOF is a mass-spectrometer-flow cytometer hybrid which 
analyzes antibodies conjugated with heavy metal isotopes instead of fluorescent 
reporters4,5. It is thereby unhampered by interference from spectral overlap. 
The CyTOF allows the detection of currently up to 42 markers simultaneously, 
approximately 3-fold more than with traditional flow cytometry, and with much 
sharper peaks and less crosstalk between channels (Figure 1B). Theoretically, the 
number of markers detectable with mass cytometry could increase to about a 100, 
once the isotopic purification of metals and the chemical conjugation of metals to 
antibodies are improved, expected in the near future. In addition, flow cytometry 
measurements can be hindered by autofluorescence, the natural fluorescence that 
occurs in cells. However, since heavy metals do not occur in biological systems, 
mass cytometry has a strongly reduced biological background compared to flow 
cytometry, and is unhampered by autofluorescence. Moreover, mass cytometry has 

a minimal variation in the intensity of the individual metal reporters, unlike flow 
cytometry. A schematic overview of the mass cytometry workflow6 is depicted in 
Figure 2. Mass cytometry has therefore the ability to measure dozens of markers 
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Fig. 1. Detection of antibody reporters by flow cytometry and mass cytometry (A) Example of 
emission spectra of several fluorescent reporters with flow cytometry. (B) Mass spectrum of 30 purified 
heavy metal isotopes with mass cytometry. Adapted from Maecker et al. (2015) and Tanner et al. (2013).



Chapter 1

10

on millions of cells collected within a reasonable timeframe (1 million cells per 
hour). Disadvantages of mass cytometry compared to flow cytometry are that the 
metal sensitivity is lower than the brightest fluorochromes (detection limit of 350 
antibodies per cell), it has a lower throughput (300 cells per second), the sample 
recovery is incomplete (60%), there is no ability to recover viable analyzed cells 
(i.e., cell sorting) and light-based measures such as forward and side scatter cannot 
be measured. Nevertheless, mass cytometry is now widely adopted as it offers an 
unprecedented resolution in the analysis of cellular diversity of the immune system.

Data analysis
Conventional approaches for flow cytometry data analysis typically rely on the 
manual interpretation of a large number of 2-dimensional plots by selecting subsets 
of interest from parent populations, a strategy called ‘gating’. The high number of 
measurable single-cell markers with mass cytometry, however, brought a daunting 

Antibodies
labeled with

elemental isotopes

ICP

.FCS file

Mass

Cell 3

Cell 2

Cell 1Integrate-per-cell

Light (<100 Da)
Overly abundant ions

Heavy (>100 Da)
Reporter atomic ions

Analysis

E
le

m
en

t A

Element  B

Nebulizer

Quadrupole

Time-of-flight

Fig. 2. Mass cytometry allows single-cell quantification of heavy metal isotope reporters A single-
cell suspension is labeled with heavy metal isotope-conjugated antibodies, followed by introduction 
into the nebulizer where it is aerosolized. The aerosol droplets are directed into the inductively coupled 
plasma (ICP) torch where the cells are vaporized, atomized and ionized. Low mass ions are removed 
in the Quadrupole, resulting in a cloud of ions enriched for the heavy metal isotopes. The ion cloud 
then enters the Time-of-Flight (TOF) chamber where the ions are separated on the basis of their mass 
to charge ratio as they accelerate towards the detector. The time-resolved detector thus measures a 
mass spectrum that represents the identity and quantity of each metal ion on a single-cell basis. 
This is thus proportional to the number of antibodies originally bound per cell. Data is generated 
in .fcs format and analyzed in third-party software programs. Adapted from Bendall et al. (2012).
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1
increase in the complexity of the data. With every additional marker simultaneously 
analyzed the amount of information obtained increase exponentially. Hypothetically, 
if a cell type would be characterized by the presence or absence of a given marker, 
even ignoring its quantitative nature of expression, a 40-antibody panel would 
yield 240 (1 trillion!) potential combinations of marker expression profiles. Even 
if one would go through all the 2-dimensional plots that could be generated, this 
does not reveal multidimensional relationships and single-cell correlations. In 
addition, it has been shown by various multicenter studies, such as the Human 
Immune Genome Project, that manual gating is one of the largest variables in the 
outcome of flow cytometry-based experiments7,8. Therefore, such approaches 
are not scalable in the context of high-parametric marker expression data across 
millions of cells, suffer from individual user bias and require prior knowledge of 
the cell type of interest. Consequently, bioinformatics tools are required to 
extract relevant information from the generated high-dimensional datasets. Many 
algorithmic methods have recently been described to facilitate the analysis of 
mass cytometry data in an unbiased manner7, and these can roughly be divided 
into either being clustering-based or dimensionality reduction-based method. 

An example of a clustering-based method specifically developed for mass cytometry 
data analysis is SPADE, unsupervised hierarchical clustering with minimum spanning 
tree projection9 (Figure 3A). With SPADE, cells are grouped into a pre-defined 
number of nodes based on phenotypic similarity for all markers simultaneously, and 
depicted in a dendrogram displaying the corresponding higher-order relatedness 
between those nodes. While SPADE provides an overview of the heterogeneity and 
the relatedness of cell populations of the immune system, it does not allow analysis 
at the single-cell level. Consequently, rare cells are difficult to visualize with the 
SPADE analysis. 

The t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis10,11 is a nonlinear 
dimensionality reduction method and has recently been implemented for the 
analysis of mass cytometry data12. This method generates a 2-dimensional map 
where cells with similar multidimensional phenotypes are placed close to each other, 
while maintaining single-cell resolution (Figure 3B). It does so by taking all marker 
expressions into account simultaneously. Unlike principal component analysis 
(PCA), t-SNE effectively captures nonlinear relationships in the high-dimensional 
data, thereby preserving subpopulations of cell types with subtle differences in 
marker expression profiles. The presence or absence of multiple markers reveal 
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each cell’s subset identity and result in a robust characterization of cell phenotypes 
that is captured and visualized in a single 2-dimensional t-SNE map. Notably, t-SNE 
dimensionality reduction alone does not assign cells to groups. Therefore, this 
approach was extended by introducing ACCENSE13, a tool that rather than by 
conventional manual gating, identifies phenotypically distinct subsets based on the 
t-SNE map using a density-peak algorithm (Figure 3C). 

However, while non-linear methods like t-SNE do retain local data structure with 
single-cell resolution, they are limited by the number of cells that can be analyzed. 
In cytometry studies, this poses a problem, as datasets usually contain information 
on millions of cells. Therefore, substantial numbers of cells needs to be removed by 
random downsampling to make dimensionality reduction computationally feasible 
and reliable. 

Intestinal immune system and pathology
The intestine contains a single epithelial cell layer separating the external 
environment or lumen from the underlying tissue, and represents the largest 
compartment of the immune system14. It has the task to provide protection against 
pathogens yet remaining tolerant to unharmful microbiota. To accomplish this, a 
complex intestinal immune system has evolved existing in homeostasis with the 
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Figure 3. Computational tools implemented for mass cytometry data analysis (A) A SPADE 
tree analysis of a peripheral blood sample. Size of the nodes is proportional to the respective 
number of clustered cells. Color bar represents CD3 marker expression. (B) A t-SNE map showing 
murine CD8+ T cells. Each black dot represents a single cell. (C) A composite map depicting 
the local probability density of cells as embedded in panel B. Black dots represent centers of 
phenotypic subpopulations and were identified using a standard peak-detection algorithm. 
Color represents cell density. Adapted from van Unen et al. (2016) and Shekhar et al. (2013).
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1
microbiota. In the intestine, there is a substantial amount of organized lymphoid 
tissue and it contains large populations of innate and adaptive immune cells. It is 
continuously exposed to foreign antigens and other environmental antigens from 
the diet and the microbiota. The intestinal immune system therefore has the task 
to discriminate between harmful and beneficial antigens. This role is particularly 
impressive when one considers the vast mucosal surface and changing landscape 
along the gastrointestinal tract that the intestinal immune system must monitor. 
For example, the small intestine, whose primary function is in nutrient digestion 
and absorption, is anatomically highly distinct from the colon, whose function is in 
water absorption and final stages of the digestive process. This results in a gradual 
change in distribution of environmental factors along the length of the intestine14. 
Therefore, recent evidence demonstrated a proficient regional specialization within 
the intestinal immune system along the gastrointestinal tract14,15.

Although strong protective immunity is essential to prevent invasion by pathogens, 
equivalent immune responses against dietary proteins or commensal bacteria 
can lead to chronic diseases.  A complex interplay of regulatory mechanisms and 
continual crosstalk between various immune cell types normally prevents such 
unwanted responses. A disturbance of intestinal tolerance can therefore rewire 
immune cell composition and functionality, resulting in chronic inflammation and 
increased risk for infection.

Although the role of several immune subsets in driving intestinal pathology has 
been established, a system-wide approach that simultaneously interrogates all 
major lineages on a single-cell basis was lacking. High-dimensional mass cytometry 
is a powerful tool for dissecting the entire immune landscape, given that the 
accompanied challenges for efficient data analysis have been overcome. Bettering 
our understanding of the cellular composition of the immune system in immune-
mediated diseases is key to obtain mechanistic insight and develop improved 
diagnostics and targeted therapeutic approaches.

Outline
At the start of my PhD project in 2013, mass cytometry was not yet implemented in 
the Netherlands. I was given the unique opportunity to implement high-dimensional 
mass cytometry as the first adopter in the Netherlands. We were the first to apply 
mass cytometry to the analysis of the composition of the immune system in biopsy 
material from patients with a variety of inflammatory intestinal diseases (Chapter 
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2). This revealed previously unrecognized immune cell heterogeneity, and identified 
immune subsets associated with the pathogenesis of complex intestinal disorders. 

The large datasets generated with mass cytometry, however, posed a problem 
for proper data handling and analysis. Here, I have worked closely together with 
computational scientists at the LUMC and at the Technical University Delft for 
the development of appropriate tools for analysis and visualization of the large 
datasets generated. This has resulted in the development of Cytosplore (Chapter 
3) and Hierarchical Stochastic Neighbour Embedding (HSNE) (Chapter 4), the 
latter a computational approach that overcomes the scalability limits of t-SNE-type 
approaches, thus enabling the analysis of tens of millions of cells without the need 
for subsampling of the data.

With these improved computational tools, we applied mass cytometry to 
biopsy material along the gastrointestinal tract from undiagnosed and untreated 
patients with inflammatory bowel disease (Chapter 5). This resulted in the 
stratification of immune cell infiltrate types in inflammatory bowel disease.

Finally, by visualizing the dynamics of the t-SNE computation over time, our 
research revealed extensive heterogeneity as well as multi-lineage differentiation 
trajectories of ILCs, important regulators of tissue integrity, in the human fetal 
intestine (Chapter 6). This study was one of the first where exploratory mass 
cytometry-based approaches to determine heterogeneity in the immune system 
were translated into functional analyses of newly identified immune subsets. 

In Chapter 7 the major findings of this thesis are discussed in the light of the current 
literature and the availability of imaging mass cytometry, allowing the simultaneous 
analysis of 36 markers on tissue sections at subcellular resolution. The implications 
of this for future research are discussed. 
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CHAPTER 2

Mass Cytometry of the Human Mucosal Immune System 
Reveals Tissue- and Disease-Associated Immune Subsets

Vincent van Unen,1 Na Li,1 Ilse Molendijk,2 Mine Temurhan,3 Thomas Höllt7, Andrea 
E. van der Meulen-de Jong,2 Hein W. Verspaget,2 M. Luisa Mearin,4 Chris J. Mulder,6 
Jeroen van Bergen,1 Boudewijn P. F. Lelieveldt,5,7 Frits Koning.1

1Department of Immunohematology and Blood Transfusion, 2Department of 
Gastroenterology, 3Department of Center for Proteomics, 4Department of 
Pediatrics, 5Department of LKEB Radiology, Leiden University Medical Center, The 
Netherlands. 6Department of Gastroenterology, VU Medical Center, Amsterdam, 
The Netherlands. 7Department of Pattern Recognition and Bioinformatics Group, 
Delft University of Technology, The Netherlands.

Immunity 44:5, 1227-1239 (2016)

ABSTRACT

Inflammatory intestinal diseases are characterized by abnormal immune responses 
and affect distinct locations of the gastrointestinal tract. Although the role of 
several immune subsets in driving intestinal pathology has been studied, a system-
wide approach that simultaneously interrogates all major lineages on a single-
cell basis is lacking. We used high-dimensional mass cytometry to generate a 
system-wide view of the human mucosal immune system in health and disease. 
We distinguished 142 immune subsets and through computational applications 
found distinct immune subsets in PBMCs and intestinal biopsies that distinguished 
patients from controls. In addition, mucosal lymphoid malignancies were readily 
detected as well as precursors from which these likely derived. These findings 
indicate that an integrated high-dimensional analysis of the entire immune system 
identifies immune subsets that are associated with the pathogenesis of complex 
intestinal disorders. This may have important implications for diagnostic procedures, 
immune-monitoring and treatment of intestinal diseases and mucosal malignancies.
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INTRODUCTION

The intestinal immune system protects us from bacterial, viral and parasitic 
infections. Disruption of intestinal homeostasis, however, can lead to a variety of 
autoinflammatory intestinal diseases, including celiac disease (CeD) and Crohn’s 
disease (D), which together have a prevalence of 1,500 per 100,000 adults in the 
Western world1, 2. Both diseases are multifactorial and encompass a broad spectrum 
of clinical phenotypes and ages of onset. CeD is a disease of the small intestine 
caused by pro-inflammatory CD4+ T cell responses specific for dietary gluten 
and concomitant destruction of the epithelium due to activation of intraepithelial 
CD8+ T cells. The introduction of a strict gluten-free diet constitutes a highly 
effective treatment for CeD but nevertheless 2-5% of patients develop refractory 
CeD type II (RCDII) with persistent inflammation. RCDII is characterized by a 
monoclonal outgrowth of aberrant intra-epithelial lymphocytes (IELs) from which 
an aggressive enteropathy-associated T cell lymphoma (EATL) evolves in 40% 
of patients3. In contrast, CD affects the terminal ileum and/or colon and results 
from aberrant immune responses against the microbiota4. CD is usually treated 
with the use of lifelong pharmacotherapy5, including biologicals (e.g. anti-TNF) 
to reduce chronic inflammation and to accomplish sustained remission. Despite 
achieving states of remission, perianal fistulas occur in 25% of CD patients and this is 
accompanied by multiple relapses and a poor prognosis due to insufficient healing6, 7. 

Although the role of several immune subsets in driving intestinal pathology has been 
studied in CeD8, RCDII9 and CD10, a system-wide approach that simultaneously 
interrogates immune subsets across all major lineages on a single-cell basis is 
currently lacking. High-dimensional mass cytometry (cytometry by time-of-flight; 
CyTOF) now offers the possibility to analyze many cellular markers simultaneously, 
providing an opportunity to analyze the mucosal immune system with unprecedented 
resolution11. Novel computational tools have been developed to handle the 
high-dimensional single-cell datasets that originate from mass cytometry12-14. 
In the current study we applied mass cytometry to analyze the composition of 
the immune compartment present in intestinal biopsies and paired peripheral 
blood mononuclear cell (PBMC) samples of patients with inflammatory intestinal 
diseases and controls. We identified 142 distinct immune cell subsets and through 
computational applications we found immune subsets in PBMCs and intestinal biopsies 
that distinguished patients with inflammatory diseases from controls. In addition, 
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Figure 1. Collective SPADE analysis distinguishes major immune lineages in peripheral blood 
and intestine
(A) Live single CD45+ absolute cell number acquired for 55 intestinal biopsies. (B) A SPADE tree of a 
PBMC sample after analysis of the combined 102 sample dataset containing 5.2 x 106 cells. Size of 
the nodes is proportional to the respective number of clustered cells. Color bars represent ArcSinh5-
transformed values for CD3 marker expression. The identities of major immune lineages are annotated 
on the basis of lineage marker expression. (C) Color of the PBMC sample represents expression values 
for each marker as shown. (D) Representative SPADE trees showing an individual PBMC sample 
from a control and 3 patients with intestinal diseases. Color represents CD3 marker expression as 
described in panel B. (E) Comparisons of cellular frequencies for major immune lineages from 47 PBMC 
samples. (F) Representative SPADE trees showing an individual intestinal biopsy from a control and 5 
patients with intestinal diseases. (G) Comparisons of cellular frequencies for major immune lineages. 
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from 55 intestinal biopsies. Data are plotted as single values (each data point represents an individual 
sample). *P <0.05; **P <0.01; ***P <0.001, using Mann-Whitney U test. Error bars show means ± s.e.m 

mucosal lymphoid malignancies were readily detected as well as the precursors from 
which these likely derived. Thus, mass cytometry unveiled previously unappreciated 
heterogeneity in the immune system and our observations may help to develop 
improved diagnostic and therapeutic approaches for inflammatory bowel diseases.

RESULTS

SPADE analysis identifies major immune lineages in peripheral blood 
and intestine
We designed a CyTOF panel of 32 metal isotope-tagged monoclonal antibodies, 
which was designed to obtain a global overview of the heterogeneity of the innate and 
adaptive immune system (Table S1). For this purpose, the panel contained lineage 
markers that distinguish the major adaptive and innate immune cell populations. In 
addition, markers were included to distinguish naïve from memory cells, resting from 
activated cells, and to identify homing properties and potential responsiveness to 
humoral factors. With this panel, we analyzed single-cell suspensions from biological 
samples including duodenum biopsies (N=36), rectum biopsies (N=13), perianal 
fistulas (N=6) and peripheral blood mononuclear cells (PBMC) from control 
individuals (N=15) and from patients with inflammatory intestinal diseases (CeD, 
N=13; RCDII, N=5; EATLII, N=1 and CD, N=10) (Table S2). The large majority 
(N=28) of antibodies allowed clear discrimination of antibody-positive and -negative 
cells (Figure S1). To monitor the robustness of the measurements we included a 
standardized PBMC sample at regular intervals in the acquisition sessions during 
the entire 9-month study period. These consecutive control samples yielded highly 
similar results (Figure S2A-C), demonstrating the reproducibility of the data 
acquisition. We discriminated live, single CD45+ cells with DNA stains and event 
length. (Figure S2D). From the intestinal biopsies we acquired 27,500 duodenal, 
17,500 rectal, and 76,500 perianal fistulous CD45+ cells on average (Figure 1A), 
and 76,500 CD45+ cells from the PBMC samples (data not shown). We visualized 
the global cellular heterogeneity by pooling all the acquired data on 5.2x106 cells and 
applying unsupervised hierarchical clustering with minimum spanning tree projection 
(SPADE), grouping the cells into a pre-defined number of nodes based on phenotypic 
similarity15. A dendrogram displayed the corresponding higher-order relatedness 
between those nodes (Figure 1B). The major branches in this dendrogram 
corresponded to CD4+ T cells, CD8+ T cells, TCRgd cells, B cells, innate lymphocytes 
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(referred to as CD3-CD7+ cells hereafter) and myeloid cells (Figure 1C). The cell 
frequencies of these major cell lineages obtained through SPADE were confirmed 
by traditional gating procedures using two-parameter dot plots (Figure S3). 

In general, the subset distribution between PBMC samples from controls and patients 
was quite similar although a decrease in numbers of CD4+ T cells in patients with 
RCDII and some variability in the numbers of B cells and CD3-CD7+ cells was detected 
(Figures 1D and 1E). In contrast, substantial differences were evident between the 
PBMC and intestinal samples. For example, duodenal CD4+ T cell, CD8+ T cell, CD3-

CD7+ cell and rectal myeloid cell subsets were distinct from those in peripheral blood 
(Figures 1D-1G). In addition, the SPADE dendrograms revealed disease-associated 
signatures (Figures 1D-1G) exemplified by the disappearance of CD3-CD7+ cells 
and an increase in TCRgd cells in CeD relative to the control duodenal biopsies. Also, 
compared to controls and patients with CeD, an increase in CD3-CD7+ cells in the 
duodenum of patients with RCDII was observed. Of note is the dominant presence 
of a CD8+ T cell cluster in the duodenum of a patient with enteropathy-associated 
T cell lymphoma type II (EATLII). Finally, a highly diverse CD4+ T cell compartment 
was found in rectal biopsies of patients with CD and a dominant presence of 
myeloid cells in perianal fistulas. Thus, this global analysis indicated that there are 
immune-system-wide differences in subset composition between peripheral blood 
and intestinal samples, and between duodenal samples from patients and controls. 

t-SNE-ACCENCE analysis identifies 142 phenotypically distinct immune 
subsets 
While SPADE analysis provides an overview of the heterogeneity and the relatedness 
of subsets within the major immune lineages it does not allow analysis at the single-
cell level and consequently rare cells are difficult to visualize. Therefore, we applied 
t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis16, 17 which generates 
a two-dimensional map where cells with similar multidimensional phenotypes are 
placed close to each other, while maintaining single-cell resolution12. To ensure a similar 
impact of the cells from PBMC and intestinal samples on the t-SNE analysis the number 
of cells incorporated from those two compartments were matched. We applied the 
t-SNE approach for every major lineage individually, here showing the CD4+ T cell 
compartment where over 440,000 cells were incorporated in the analysis (Figure 2).

The t-SNE analysis revealed expected types of marker distributions on the CD4+ T cells, 
such as broadly expressed markers (CD7, IL-7Rα), markers that were expressed by 
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subpopulations of the cells (CD56, PD1, CD25) and markers that were co-expressed 
(CD45RA and CCR7), but also unanticipated distributions were revealed, like largely 
mutually exclusive marker expression patterns (i.e. CD27 and CD161) (Figure 
2A). Next, we incorporated a kernel density-peak detection algorithm on the t-SNE 
map (ACCENSE)14 which automatically identified 28 CD4+ T cells subsets (Figure 
2B) where each subset was defined by its marker expression profile (Figure 2C).

To reduce the complexity implied by the ACCENSE analysis we merged 
computationally-derived subsets with highly similar expression profiles, which 
resulted in 16 cell clusters that each express a distinct set of markers (Figure 
2D). They fell within four major CD4+ T cell categories: naïve (CD45RA+CCR7+), 
CD27+IL-7Rα- effector memory (EM; CD45RA-CCR7-), CD27-IL-7Rα+ EM and 
central memory (CM; CD45RA-CCR7+), and within those categories additional 
heterogeneity was present. For example, the highly similar CD161+CD27-IL-7Rα+ 
EM cell subsets 4 and 11 were distinguished from each other by the expression of 
CD56 (Figure 2D). We next analyzed the subset distribution of the CD4+ T cells 
in the various tissues included in the analysis by plotting the relative frequencies of 
the subsets for all samples analyzed (Figures 2E and 2F). In line with the SPADE 
analysis, the CD4+ T cell subsets of the duodenum, rectum and PBMC samples 
clustered to distinct locations in the cell frequency heatmap, also when examining 
the 102 samples individually (Figure S4). Thus, we could effectively delineate cell 
populations in a data-driven manner, and this approach revealed distinct signatures in 
the cellular composition of the CD4+ T cells in biopsy material and peripheral blood. 

By applying the t-SNE-ACCENSE analysis to all 6 major cell lineages individually 
we identified 142 subsets in the entire immune system (Figure 3A), 23 of which 
contained rare cells that did not fulfill lineage phenotypic criteria (data not shown). 
The distinct phenotypes of the remaining 119 subsets are summarized in a heatmap 
(Figure 3B) where the subsets are clustered according to their phenotypic 
hierarchy within their lineage and clustered based on marker expression. The 
analysis identifies relatively few subsets within the B cell and myeloid compartments, 
likely due to the composition of the antibody panel which was designed to capture 
the heterogeneity of the CD7+ lymphoid cells. In this context, our antibody panel 
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Figure 2. t-SNE-ACCENSE analysis pipeline identifies tissue-specific CD4+ T cell subsets
(A) Collective t-SNE dimensionality reduced CD4+ T cell single-cell data (4.7x105 cells) derived from 102 
samples analyzed are plotted. Every dot represents a single cell and the color of the cells indicates ArcSinh5-
transformed expression values fowr a given marker analyzed. (B) A density map depicting the local probability 
density of cells as embedded in panel A, computed using a kernel based transformation. Numbers in this 
map represents centers of phenotypic subsets and were identified using a peak detection algorithm. (C) A 
heatmap summary of median ArcSinh5-transformed expression values of T cell markers expressed by 16 
CD4+ T cell subsets identified and hierarchical clustering of subsets with description of four categories. (D) 
A heatmap summary of average subset frequencies across tissues and disease states. Mean frequencies 
obtained from 102 samples analyzed. (E) A 3D heatmap as described in panel D. EM = effectormemory 
and CM = central memory. A detailed heatmap showing 102 samples is described in Figure S4. 

the samples included. Collectively, the combined t-SNE-ACCENSE approach 
on high-dimensional cytometry data can effectively identify phenotypic distinct 
subsets in an unbiased and data-driven manner, and the analysis indicates that the 
heterogeneity of the immune system is far greater than previously appreciated. 

Visualization of cellular ‘finger-print’ signatures across tissues and 
disease states
To visualize the distribution of immune cells based on tissue-origin and disease state 
we used the t-SNE maps to deduce cellular ‘finger-print-like’ signatures of immune 
cells in the 6 major immune lineages (Figure 4A). The ‘finger-print’ gives a visual 
representation of the position of a collection of cells from particular (tissue) samples 
in the t-SNE map of the collective dataset. As such it gives a unified overview of the 
distinctness of cells within the samples analyzed stratified for tissues and disease 
states. In all 6 immune lineages, the duodenum, rectum and PBMC samples displayed 
a distinct cellular signature (Figure 4A). Moreover, on the basis of these signature 
maps, we were able to identify phenotypically distinct cell clusters that were either 
specifically present or abundant in certain diseases (highlighted by red boxes and 
arrows in Figure 4A). For example, the lineage (Lin)- CD3-CD7+ cells that expanded 
monoclonally in patients with RCDII (purple arrow; Figure 4A) were distinguished 
by the expression of CD45RA in 6 out of 7 patients (Figures 4B and 4C). Moreover, 
these aberrant Lin- CD3-CD7+ cells were also detectable in PBMC samples of 3 out 
of 6 patients (Figures 4A and 4D), indicating a systemic spread of the pre-malignant 
cells. Similarly, a massive expansion of CD56+CD161+ CD8+ T cells was observed 
in a patient with an established lymphoma of EATL-type 2 (green arrow; Figure 
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Figure 3. t-SNE-ACCENSE analysis delineates phenotypic distinct immune subsets in peripheral
blood and intestine
(A) Identification of 142 cell subsets within the six major immune lineages through t-SNE-ACCENSE 
analysis. Cells from PBMCs were randomly sampled to match cell numbers with those from intestinal 
biopsies for each immune lineage individually. t-SNE plots are showing 4.7x105 CD4+ T cells, 9.3x105 
CD8+ T cells, 1.8x105 B cells, 1.8x105 TCRγδ cells, 1.9x105 CD3-CD7+ cells and 2.2x105 myeloid cells of 
the combined 102 sample dataset. (B) Heatmap showing characterization of 119 cell clusters (16 CD4+ T 
cell subsets, 20 CD8+ T cell subsets, 16 B cell subsets, 28 TCRγδ cell subsets, 30 CD3-CD7+ cell subsets 
and 9 myeloid cell subsets). Shown are median ArcSinh5-transformed values of marker expression (black-
to-yellow scale) and hierarchical clustering of markers and subsets within their major immune lineage.
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4A). Rare cells (0.1-0.2% of CD8+ T cells) displaying an identical phenotype were 
detected in 25% of the other duodenum samples and these may therefore represent 
the precursor from which the lymphoma arose. In addition, two distinct IL-7Rα+ 
innate lymphoid cell type 3-like (ILC3-like)18 cell clusters were identified that were 
either chemokine receptor CCR6+ or CCR6- (blue arrow; Figures 4A and 4B). 
While the CCR6+ ILC3-like cells represented 50% of the CD3-CD7+ cells in the 
rectum of CD patients, its CCR6- ILC3-like counterpart, which is associated with an 
inflammatory phenotype in CD19, was more abundant in the fistulas (Figure 4C). 
Also, 94% of the myeloid cells within the inflammatory perianal fistulas (red arrow; 
Figure 4A) displayed a CD11b+CD11c+ dendritic cell-like phenotype (Figure 
4B) and they comprised 50% of the accumulated immune infiltrate (Figure 4C).

We next used the Jensen-Shannon (JS) divergence to quantify similarities and 
dissimilarities between pairs of t-SNE maps (Figure 4E). In these plots the JS 
divergences between samples from the intestine and peripheral blood were high for 
every major lineage (Figure 4E), indicative of dissimilarity of cellular signatures. In 
addition, the JS divergences reveal disease-associated cellular profiles exemplified by 
similarity of RCDII and CeD duodenal myeloid cells compared with those in duodenal 
controls, distinct CD8+ T cells in RCDII patient blood and distinct B cells, CD3-CD7+ 

cells and myeloid cells in CD patient blood compared with other blood samples.

Furthermore, we visualized the immune composition as an immune landscape 
where the distribution of the subsets in the various tissue and blood samples is 
shown (Figure 5). A 2-dimensional representation of the immune landscape 
along with the phenotypes of the associated immune subsets is shown in Figure 
S5, visualizing the distinct cellular phenotypes of the immune subsets and their 
occurrence in the various tissues. Together these findings illustrate that in most of 
the major immune lineages, cellular subsets could be identified that were exclusively 
present or enriched in defined tissue samples only. In peripheral blood, cells were 
mainly defined by expression of interleukin 7 receptor α (IL-7Rα), CCR7, CD27 
and CD28 for CD4+ and CD8+ T cells, CCR6 for B cells, CD56 for CD3-CD7+ 

cells and CD14 for myeloid cells. Similarly, many mucosal cells were defined by 
expression of CD161 for CD4+ and CD8+ T cells, CD38 for TCRgd cells and IL-
7Rα for CD3-CD7+ cells. Together these analyses demonstrate that by deducing 
cellular ‘finger-print’ signatures of immune cells we were able to visualize and 
quantify the immune subset distribution in the samples analyzed. In addition, we 
were able to identify immune subsets that are associated with disease states. 
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Figure 4. Stratified t-SNE plots identify distinct cellular ‘finger-print’ signatures across tissues 
and disease states
(A) Collective t-SNE dimensionality reduced single-cell data from all 102 samples analyzed are plotted 
showing six major immune lineages stratified for tissues and disease states. Red boxes and arrows 
indicate t-SNE location of phenotypically distinct disease-associated clusters of cells (B) Heatmap 
summary of median ArcSinh5-transformed expression values of cellular markers expressed by gated 
subsets and annotation for each subset. Arrows as in panel A. (C) Comparisons of cellular frequencies 
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for subsets from intestinal biopsies. (D) Comparisons of cellular frequencies for the CD45RA+Lin- 
CD3-CD7+ subset from PBMC samples. (E) Pairwise Jensen-Shannon (JS) divergence plots of the 
collective t-SNE maps from all 102 samples analyzed showing six major immune lineages. A higher 
JS divergence value indicates more dissimilarity between a pair of t-SNE maps as shown in panel 
A. White squares indicate invalid comparisons. Data are plotted as single values. Red lines indicate 
mean value as % of CD45+ cells. (each data point represents an individual sample). *P <0.05; **P 

<0.01; ***P <0.001; ****P <0.0001, using Mann-Whitney U test. Error bars show means ± s.e.m. 

An integrated system-wide view of the immune system reveals disease-
associated networks of immune subsets
Finally, we investigated whether the identified immune-system-wide cellular patterns 
could be integrated collectively and used to characterize samples according to 
tissue location or disease state by visualizing them in relation to several clinical 
variables. For this purpose we visualized the immune composition of all identified 
subsets from all included biological samples in a single graph by applying the t-SNE 
algorithm on cell frequency values. As expected, the PBMC and intestinal biopsy 
samples formed two distinct clusters (Figure 6A). In addition, the rectum and peri-
anal fistula biopsies separated from the duodenal biopsies (Figures 6A and 6B) 
and the duodenal biopsies from patients with CeD and RCDII clustered away from 
the duodenal control biopsies (Figures 6A and 6B). Also, the duodenal biopsies 
of the four RCDII patients with the most severe inflammation (Table S2) mapped 
far from the other duodenum samples (Figures 6B and 6C). Furthermore, three 
RCDII biopsies, two of which were from patients in remission, clustered with the 
other CeD biopsies, suggesting a persisting CeD immune profile. The inflammation 
state of the biopsies was reflected in the cluster structure of intestinal samples 
in general (Figure 6C), while this was not the case for gender (Figure 6D). 
Moreover, the age of the patients and controls from which the samples were 
derived is reflected in the clustering of the samples, particularly in peripheral blood 
(Figure 6E). The PBMC and intestinal samples from six patients that were biopsied 
twice, with a 3- to 6-months time interval, clustered tightly together (Figure 
6F) highlighting the reproducibility and robustness of this unbiased approach. 

In order to reveal which cellular subsets were associated with the disease-
associated patterns (Figure 6G), we performed a second t-SNE analysis on the 
subsets of the same dataset (instead of the samples) visualizing networks of cellular 
subsets that determine disease-specificity (Figures 6H and 6I) and identified the 
top 5 ranked subsets contributing to these clustering patterns (Figure 6J). In this 
context, expected types of health- and disease-associated subsets were identified in 
the intestinal mucosa, such as CD45RA-Lin- CD3-CD7+ cells in control individuals, 
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Figure 5. Immune system landscape visualizes subset composition 
A 3-dimensional heatmap summary showing average frequencies of 119 immune subsets in the 102 
biological samples combined with hierarchical clustering of samples and description of tissue type, 
disease state and biological assignment of the subsets. Color scale and z-axis indicate percentage of 
CD45+ cells. EM = effector memory, CM = central memory, TEMRA = terminally differentiated, Lin = 
lineage, cNK = conventional NK cells, ILC = innate lymphoid cells and pDC = plasmacytoid dendritic cells. 

CD8a+ and CD8a- TCRgd cells in CeD, CD45RA+Lin- CD3-CD7+ cells in RCDII, 
CCR6+ILC3 in CD and CD14-CD11b+ myeloid cells in fistulas. In addition, previously 
unidentified subset associations were revealed as well, such as CD45RA- cNK cells 
and CD56-CD27-EM CD4+ T cells in controls, CD27-EM CD8+ T cells in CeD, 
CRTH2+ myeloid cells in RCDII (ranked 6), CCR6-CM and PD-1+CD27+EM CD4+ T 
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Figure 6. Integrated analysis of immune subset composition reveals tissue- and disease-
associated clustering of biological samples
Collective t-SNE dimensionality reduced cell percentage data (as % of CD45+ cells) of 142 subsets for 
102 samples analyzed are plotted. Every dot represents a single sample and the color of the samples 
shows the corresponding clinical information: (A) tissue, (B) disease, (C) biopsy inflammation, (D) 
gender, (E) age in years, (F) samples from six patients that were sampled twice. The left dashed 
border represents the PBMC cluster and the right dashed border represents the intestinal cluster. 
(G) Deducing disease-specific signatures in the t-SNE map based on the clustering patterns of the 
samples. (H) Collective t-SNE dimensionality reduced cell percentage data (as % of CD45+ cells) of 
142 subsets for 102 samples analyzed are plotted. Every dot represents a single immune subset. The 
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closer the subsets are together the more similar the cell frequency values are across the samples. (I) 
Disease-specific subset signatures (average subset values per disease cluster in panel G, encoded 
with varying dot color and size). (J) Table showing top five ranked subsets contributing to the disease-
specific t-SNE sample signatures (as shown in panel I) displaying both major lineage subset number 
and biological assignation. Lineage (Lin), conventional NK cell (cNK), effector memory (EM), central 
memory (CM) and innate lymphoid cells (ILC). Average cell frequency values are shown in Figure 5.

cells in CD, and CCR6-CCR7+ B cells in the fistulas. Thus, by integrating data-driven 
approaches highly specific disease-associated immune signatures across innate and 
adaptive major lineages in the intestine were readily identified. Figure S6 gives an 
overview of the developed integrated analysis pipeline developed in the current study. 

DISCUSSION

Mass cytometry offers the opportunity to simultaneously analyze dozens of single-
cell markers on complex cellular samples resulting in highly complex datasets. 
Conventional approaches for flow cytometry data analysis are not suitable for 
such datasets, suffer from individual user bias, and require prior knowledge of the 
cell type of interest. SPADE13 was originally applied to handle mass cytometric 
data. More recently, an unbiased analysis pipeline has been developed combining 
t-SNE12,16 and ACCENSE14 with mass cytometry to visualize and delineate 
phenotypically distinct subsets20. In the current study we used a 32 antibody panel 
that was specifically designed to detect heterogeneity within the major adaptive 
and innate cell lineages. We applied this antibody panel to a variety of PBMC and 
intestinal biopsy samples and combined this with the newly available unbiased 
computational approaches to unravel the complexity of the human mucosal immune 
system. We used the Barnes-Hut implementation of t-SNE, a recently developed, 
computationally efficient t-SNE optimization algorithm17 to accommodate the large 
datasets. In addition, we provide novel applications of the t-SNE-based analysis 
allowing the visualization of cellular ‘finger-print’ signatures of immune cells, and by 
clustering samples based on their immune composition while visualizing the cluster-
contributing subsets in parallel to highlight tissue- and disease-associated patterns. 

Our results demonstrate that the mass cytometry-based analysis was robust and 
reproducible as identical control PBMC samples that were included during the 
entire 9 month study period provided highly similar results. Moreover, we obtained 
biopsy and PBMC specimens from a number of patients twice with a time interval 
between 3 to 6 months and in the final sample visualization analysis these specimens 
clustered close together, demonstrating a high degree of reproducibility. Also, we 
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readily observed changes in the composition of the immune compartment that 
are known to correlate with disease such as the increase in TCRgd cells in CeD21. 

Both the SPADE and the combined t-SNE-ACCENSE analysis demonstrate that 
duodenal, rectal and PBMC samples grouped into different clusters, to a large extent 
due to substantial differences in the CD4+ and CD8+ T cell compartments. In total, 
142 subsets in the immune system were defined of which 120 displayed distinct 
marker expression profiles on the basis of which these subsets were delineated. 
Compared to the CD4+ and CD8+ T cell lineages, a larger degree of heterogeneity was 
detected in the TCRgd and CD3-CD7+ immune lineages. While we cannot exclude 
the possibility that by the use of another antibody panel additional heterogeneity 
within the CD4+ and CD8+ lineages may be revealed, the distinct marker expression 
profiles of the TCRgd and CD3-CD7+ subsets may correlate with distinct and 
potentially location-specific functional properties. This will be the subject of future 
investigations. Thus, based on 28 markers mass cytometry visualized system-wide 
cellular differences in subset composition in the samples obtained from the various 
anatomical locations. Further studies including control rectum samples are required 
to determine how these differences relate to the anatomical site and/or disease state.

Recent studies have described a crucial role for ILCs in CD22. They reside mainly in 
mucosal tissues and are functionally specialized cells characterized by the expression 
of lineage-defining transcription factors. Even without these markers in our antibody 
panel we were able to distinguish ILC-like subsets on the basis of cell surface phenotype 
through machine-learning cell cluster detection approaches. We identified a CRTH2+ 

ILC2-like subset in PBMC samples and in line with previous reports such cells were 
not found in intestinal samples22. Moreover, we detected an ILC3-like subset that 
was exclusively present in rectum biopsies of CD patients in remission. This subset 
corresponds with the IL-22-producing anti-inflammatory CD25-CD56+ ILC subset 
previously found in the intestine of CD patients19, 22. Moreover, we observed that 
their CD56- ILC counterpart was enriched in fistulas, and these cells were previously 
shown to produce the inflammatory cytokine IL-17A19. The CD56--ILC3-like cells 
in fistulas unexpectedly showed expression of CD11c, a marker that has been used 
as ‘dump channel’ in the ILC field. Those cells may thus have been discarded from 
datasets of previous studies, highlighting the importance of unbiased data-driven 
approaches as used in the current study. In addition, the CD4+ T cell compartment 
in the CD biopsies was highly heterogeneous. Further studies are required to 
determine a possible relationship with the highly variable disease symptoms in CD. 
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Mucosal lymphoid malignancies were readily detected in patients with RCDII 
and in a patient with an EATL-type 2 lymphoma, along with the distinct cellular 
phenotypes that distinguish these lymphoma’s. The latter information could be 
used to identify the potential precursor cells in the healthy mucosa from which 
these malignancies are likely to originate. In the case of RCDII these precursors 
are Lin-CD3-CD7+ cells, confirming previous results23. Moreover, our current 
analysis indicates that these precursors can be distinguished from their malignant 
counterpart by the lack of expression of CD45RA. Conversion of this subset 
to a CD45RA positive phenotype may thus predict development of RCDII and 
could constitute a novel prognostic marker. Also, extremely low numbers of 
CD56+CD161+CD8a+CD8b+ T cells were found in mucosal biopsies of healthy 
individuals, a phenotype which matches that of the CD8+ T cell malignancy in a 
patient with EATLII. Thus, the t-SNE analysis is highly suitable for the identification of 
mucosal malignancies and their likely precursors in healthy individuals, information 
that may be used to develop therapeutic approaches based on cellular characteristics.

Compared to control duodenal samples we observed the disappearance of 
CD3-CD7+ cells and the increase in TCRgd cells in CeD, both well-described 
disease hallmarks21, 23. In the global analysis of the entire cell frequency dataset 
this resulted in the formation of clusters that distinguish duodenal biopsies 
derived from CeD patients from those of controls. By transposing the cell 
frequency dataset the disease cluster-associated subsets and their relative 
contribution to the clustering could be visualized and quantified. This tSNE 
application thus provided detailed information on the disease-associated 
networks of immune subsets. The identification of mucosal immune signatures 
that correlated with health and disease may potentially lead to the development 
of unbiased diagnostic procedures based on a single mass cytometric analysis. 

Perianal fistulas in CD remain a substantial clinical challenge, causing pain, 
discharge, and abscess formation24. Achieving complete fistula healing is difficult 
and accompanied by multiple relapses, and despite the best available therapies 
durable remission rates of perianal fistulas remain disappointingly low7. In this 
respect it will be important to unravel the function of the CD11b+CD11c+ myeloid 
cells that dominate in the fistula, where the immune composition is distinct from 
that in the adjacent rectum biopsies. This will be addressed in future studies.

In such follow-up studies our approach can be further refined as four antibodies 
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included in the original 32 antibody panel (CD103, IL21-R, CD34 and TCRαβ) were 
not informative. In particular the inclusion of antibodies specific for lineage-defining 
transcription factors and cytokines may provide further insight into the relationship 
between cell lineages and their function in the mucosal immune system. Moreover, 
the inclusion of an alternative metal reporter for the CD103-specific antibody in 
future studies may allow discrimination between cells derived from the epithelium 
and the lamina propria. Also, with regard to CD and perianal fistula we could not 
draw definitive conclusions regarding disease-specific changes as we lacked healthy 
control rectum samples. It would thus be highly valuable to characterize mucosal 
biopsies obtained from various intestinal locations within the same patients and 
controls, allowing direct comparisons. Finally, by combining the analysis of the 
mucosal immune system with an analysis of the stromal cell compartment a 
more integrated view of disease-specific changes may be obtained, optimizing 
opportunities to develop more effective personalized treatment modalities.

In conclusion, the mass cytometric analysis of the mucosal immune system 
revealed heterogeneity that was greater than previously appreciated. Also, our 
results indicate that disease-specific leukocytes reside mainly in the affected 
organ and are much less readily detectable in PBMC. The identification of 
disease-associated changes in immune composition offers opportunities to 
determine cellular parameters that correlate with disease and predict response to 
treatment, an important step towards personalized and cost-effective treatment.

EXPERIMENTAL PROCEDURES

Human Samples 
Samples were collected from patients who were undergoing routine diagnostic 
endoscopies, and the curettage material of perianal fistulas were obtained at 
surgical intervention. The clinical characteristics of the patients are shown in 
Table S2. All samples were obtained after informed consent, medical ethical 
commission approval, in accordance with the local ethical guidelines of the 
VU Medical Center in Amsterdam (adult duodenal biopsies) and the Leiden 
University Medical Center (pediatric duodenal biopsies, CD rectum biopsies, 
and perianal fistulas), and in accordance with the declaration of Helsinki. 

Isolation of cells from intestinal and PBMC samples
Cells from the epithelium were isolated from two or three intestinal biopsies by 
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treatment with 10 mL of HBSS (Sigma-Aldrich, St. Louis, United States) containing 
1 mM EDTA (Merck, Darmstadt, Germany) under rotation for 2 hr at 37°C. 
To obtain cells from the lamina propria, the biopsies were washed with PBS 
containing 0.5% fetal calf serum (FCS) and incubated with 5 mL of a collagenase 
mix containing IMDM culture medium (Lonza, Basel, Switzerland) with 20% FCS, 
1,000 U/mL collagenase IV (Worthington, Lakewood, United States) and 10 mg/
mL DNAseI grade II (Roche Diagnostics, Basel, Switzerland) for 2 hr at 37°C. 
The cell suspension was then filtered through a 70 µm nylon cell strainer and 
centrifuged in 0.5% FCS/PBS. Curettage material of perianal fistulas obtained at 
surgical intervention were minced with fine scissors and incubated with 10 mL of 
HBSS containing 1 mM EDTA under rotation for 2 hr at 37°C. Peripheral blood 
mononuclear cells (PBMC) were isolated from up to 5 mL of freshly drawn heparin 
anticoagulated blood using Ficoll-PaqueTM density-gradient centrifugation. PBMC 
samples from CD patients were cryopreserved and stained after thawing. Cell 
suspensions were washed with 0.5% FCS/PBS and kept at 4°C until antibody staining.

Antibodies 
Antibodies, manufacturers, and concentrations are listed in Table S1. Primary antibody 
metal-conjugates were either purchased or conjugated using a total of 100 µg of carrier-
free formulations of purified antibody combined with the MaxPar X8 antibody labeling 
kit (Fluidigm Sciences, Toronto, Canada) according to the manufacturer’s instruction. 
Following conjugation, antibodies were diluted to 200 µL in Candor PBS Antibody 
Stabilization Buffer (Candor Bioscience GmbH, Wangen, Germany) and stored at 4°C. 

Antibody staining and data acquisition
Procedures for mass cytometry antibody staining and data acquisition were carried 
out as previously described13. Briefly, directly after biopsy processing cells were 
resuspended in cell staining buffer (CSM; 1x PBS with 0.5% bovine serum albumin 
and 0.02% sodium azide, Fluidigm Sciences) and incubated with 1 mL of 1:500 
diluted 500 µM rhodium DNA intercalator (Fluidigm Sciences) for 15 min to stain 
dead cells at room temperature (rT). Cells were washed with CSM and surface 
stained for 45 min at rT with a mixture of metal isotope-conjugated antibodies 
using predetermined concentrations (Table S1). Antibody staining reactions were 
performed in 100 µL final volume. After staining, cells were washed twice with CSM 
and then resuspended in 1 mL of 1:1000 diluted 125 µM iridium DNA intercalator 
(DVS Sciences) in Fix and Perm Buffer (PBS with 1.6% paraformaldehyde, Fluidigm 
Sciences) for 45 min at rT to discriminate single cells. Cells were stored overnight at 
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4°C. Finally, cells were washed twice in CSM and once in distilled water at rT. Prior 
to data acquisition, cell pellets were diluted in distilled water containing 1:10 diluted 
EQ Four Element Calibration Beads (Fluidigm Sciences) to the concentration of 
0.4x106 cells/mL to achieve an acquisition rate of 500 events/s on the CyTOF 2TM 
mass cytometer (Fluidigm Sciences)25. CyTOF data were acquired and analyzed 
on-the-fly, using dual-count mode and noise-reduction on. All other settings were 
either default settings or optimized with tuning solution, as instructed by Fluidigm 
Sciences. After data acquisition, the mass bead signal was used to normalize 
the short term signal fluctuations with the reference EQ passport P13H2302 
during the course of each experiment and the bead events were removed26.

Data analysis
SPADE analyses were performed as described15 with 500 target number of nodes 
and 10% of target down-samp led events using the implementation in Cytobank27. 
Data from exported FCS files of major immune lineages as delineated by SPADE 
(Figure 1) were transformed using hyperbolic arcsin with a cofactor of 5. Because 
the number of cell events varied greatly between PBMC and intestinal biopsies, the 
contribution of intestinal and PBMC cells were normalized to a 1:1 ratio for each 
immune lineage and up to 10,000 events per sample was used. After down-sampling, 
the cumulative dataset per immune lineage was subjected to t-SNE dimensionality 
reduction. t-SNE was carried out using the Barnes-Hut implementation of t-SNE, a 
recent developed, computationally efficient t-SNE optimization algorithm (obtained 
from L.J.P. van der Maaten)17 to accommodate the large volumes of our clinical data. 
t-SNE was run with a default perplexity of 30. Cellular ‘finger-print’ signatures of 
immune cells and marker expression color overlays of t-SNE maps were generated 
with Cyt12. We used the Jensen-Shannon (JS) divergence to quantify the similarity 
between t-SNE maps. After converting t-SNE maps into 2-dimensional probability 
density functions, the similarity between two maps is quantified as the JS divergence 
between their corresponding probability density functions. We used the base 2 
logarithm in the JS divergence computation, which results in a continuous range of 
JS divergence values between 0 (for identical distributions) and 1 (for fully disjoint 
distributions). The density-peak detection algorithm to identify phenotypically 
distinct subsets was carried out with ACCENSE14, using the two coordinates of 
the t-SNE map for each cell as input. The density-based clustering first searches 
for the optimal bandwidth, followed by estimating the kernel density that allows 
the detection of density peaks. The respective amount of subpopulations identified 
per major lineage was based on the calculated optimal kernel bandwidth. Two-
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dimensional gating analysis was done using Cytobank27. Median intensity values of 
markers were calculated and visualized via plotting heatmaps. Hierarchical clustering 
dendrograms of heatmaps were produced using Pearson Correlation and average 
linkage clustering with MultiExperiment Viewer (www.tm4.org). Numbers of cells in 
different immune subsets were counted for each sample and percentages of each 
subset were calculated. t-SNE coordinates, ACCENSE subset number, and sample 
coding tags were added to FCS files as additional parameters to allow aggregate data 
analysis and visualization. The sample t-SNE map (Figure 5) was computed with the 
fractions of the total cell count per subtype (as % of CD45+ cells) as input variables. 
Standard t-SNE pre-processing was applied: the data matrix was normalized by 
centering each variable to zero mean, and scaling to unit vector length. In the sample 
map, a reprojection of the data on a reduced set of high-variance principal co mponents 
(PCs) was performed. The component scores of the 10 highest variance PCs were 
used as input to the t-SNE. To reduce sensitivity to local optima, map construction 
was repeated 100 times with different randomly generated initial maps and the map 
with the minimal t-SNE error metric (Kullback Leibler divergence per data point) was 
selected. The subset t-SNE map in Figures 6H and 6I was computed by transposing 
the normalized datamatrix. This switches the role of samples and variables, hence 
subsets with similar profiles across the population end up close together in the 
map. The t-SNE perplexity parameter was set to 10% of the number of data points 
in each map, i.e. 10 for the sample maps in Figures 6A-6F, and 15 for the subset 
map in Figure 6G. Average subset values were computed per disease subgroup 
as identified in the sample t-SNE map in Figure 5G, and displayed per subgroup.
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Figure S1. Representative biaxial plots of antibody stainings used for the mass 
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shown (annotated above plots) are represented as two-parameter density dot 
plots. 

Figure S1. Representative biaxial plots of antibody stainings used for the 
mass cytometry analysis
To illustrate the functionality of each metal-conjugated antibody, representative 
biaxial plots showing typical staining profiles of the antibodies used. Cells gated as 
shown (annotated above plots) are represented as two-parameter density dot plots.
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Figure S2. SPADE and t-SNE analysis of the internal peripheral blood control
(A) Six PBMC samples from the same individual taken at different time points during the entire study 
period are shown after collective SPADE analysis of live single CD45+ cells. Size of the nodes is 
proportional to the respective number of clustered cells. Color bars represent ArcSinh5 transformed 
values for CD3 marker expression. The identities of major immune lineages are annotated on the basis 
of lineage marker expression (CD4+ = CD4+ T cells, CD8+ = CD8+ T cells and B = B cells) (for details 
SPADE analysis see Figure 1) (B) Collective t-SNE dimensionality reduced single-cell data containing 
live single CD45+ cells from 6 PBMC samples as described in panel a analyzed are plotted. Each 
sample was down-sampled to 50,000 events prior to the t-SNE analysis. (for details t-SNE analysis 
see Figures 2 and 4) (C) Pairwise Jensen-Shannon (JS) divergence plot of the collective t-SNE maps 
from the 6 PBMC samples analyzed. A lower JS divergence value indicates more similarity between a 
pair of t-SNE maps as shown in panel b. (D) Live, single CD45+ cells gating strategy. Representative 
mass cytometry plots of a duodenum biopsy showing sequential gates with percentages. Event 
length is a mass cytometric measurement for the amount of scans it took to acquire a given ion cloud.
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Figure S3.Traditional gating yields similar frequencies of major immune lineage cells as with SPADE analysis 
(A) Representative samples are shown to demonstrate the gating strategy applied to identify the major immune lineages: 
CD4+ T cells, CD8+ T cells, B cells, TCRγδ  cells, CD3-CD7+ cells and myeloid cells. Cells gated as shown (annotated above plots) 
are represented as two-parameter density dot plots. (B) Correlation of cell frequencies obtained through traditional gating 
and with SPADE analysis are shown for the 102 samples as analyzed with linear regression. A dot represents a single sample. 

Figure S3. Traditional gating yields similar frequencies of major immune lineage cells as with 
SPADE analysis
(A) Representative samples are shown to demonstrate the gating strategy applied to identify the major 
immune lineages: CD4+ T cells, CD8+ T cells, B cells, TCRγδ cells, CD3-CD7+ cells and myeloid 
cells. Cells gated as shown (annotated above plots) are represented as two parameter density dot 
plots. (B) Correlation of cell frequencies obtained through traditional gating and with SPADE analysis 
are shown for the 102 samples as analyzed with linear regression. A dot represents a single sample.
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Figure S4. Tissue-specific composition of CD4+ T cell subsets  
A heatmap summary of subset frequencies showing 102 
samples and hierarchical clustering of samples with 
description of tissue type. EM = effector memory and CM = 
central memory. 

Figure S4. Tissue-specific composition of CD4+ 
T cell subsets
A heatmap summary of subset frequencies 
showing 102 samples and hierarchical clustering 
of samples with description of tissue type. 
EM = effector memory and CM = central memory.
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Heatmaps showing (A) characterization of cell populations (median ArcSinh5-transformed values of marker expression; black-
to-yellow scale), (B) composition (average cell percentages; rainbow scale) and hierarchical clustering of markers and 
samples.  

Figure S5. Marker expression profiles and composition of immune subsets in peripheral blood 
and intestine
Heatmaps showing characterization of cell populations (median ArcSinh5-transformed 
values of marker expression; black-to-yellow scale), composition (average cell 
percentages; rainbow scale) and hierarchical clustering of markers and samples.
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Figure S6. High-dimensional mass cytometry analysis pipeline  
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subsets are used to visualize samples in an integrated framework using the t-SNE algorithm, where a dot represents a 
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Figure S6. High-dimensional mass cytometry analysis pipeline
Samples containing single-cell data of cell populations of interest (e.g. based on SPADE analysis or gated 
subsets) are tagged with integer sample identification values, marker expression values are transformed 
using hyperbolic arcsin with a cofactor of 5, and cells events are downsampled to match sample cell 
number. Collective t-SNE dimensionality reduction was performed on the single-cell data derived from 
all the samples. A dot represents a single cell and color overlays illustrate marker expression values to 
deduce marker expression patterns. t-SNE maps are stratified for tissues and disease states to illustrate 
cellular ‘finger-print’ signatures. Pairwise Jensen-Shannon (JS) divergence analysis quantifies dissimilarity 
between a pair of t-SNE maps. On the basis of the map created by t-SNE, a machine-learning cell cluster 
detection approach (ACCENSE) delineates cell subsets. Heatmaps illustrate the phenotypic signature 
of the identified immune subsets and illustrate the composition of subsets within the samples. The cell 
frequency data of all the identified immune subsets are used to visualize samples in an integrated framework 
using the t-SNE algorithm, where a dot represents a single sample and the color overlay illustrates clinical 
information. Markers are indicated in letters, samples in roman letters and cell subsets in numbers.
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Antigen Tag Clone Com. Cat# 
CD56 NCAM16.2 DVS 3176008B 
CD4 RPA-T4 DVS 3145001B 
CD8a RPA-T8 DVS 3146001B 
CD3 UCHT1 DVS 3170001B 
CD14 M5E2 DVS 3160001B 
CD19 HIB19 DVS 3142001B 

TCRgd 11F2 DVS 3152008B 
CD45 HI30 DVS 3154001B 

CD45RA HI100 DVS 3169008B 
CD27 O323 DVS 3167002B 
CD38 HIT2 DVS 3172007B 
CD127 AO19D5 DVS 3165008B 
CD11b ICRF44 DVS 3144001B 

CD7 CD7-6B7 DVS 3147006B 
CD34 581 DVS 3148001B 
C-Kit 104D2 DVS 3143001B 

CD161 HP-3G10 DVS 3164009B 
CD123 6H6 DVS 3151001B 
CCR6 G034E3 DVS 3141003A 
CD25 2A3 DVS 3149010B 
CCR7 G043H7 DVS 3159003A 
PD-1 EH 12.2H7 DVS 3175008B 

CD11c Bu15 DVS 3162005B 
CD8b SIDI8BEE eBio 14-5273 

CRTH2 BM16 BioL 350102 
TCRab 1P26 BioL 306702 
IL-21R 2G1-K12 BioL 347802 
IL-15Ra eBioJM7A4 eBio 14-7159-82 
CD103 Ber-ACT8 BioL 350202 
CD28 CD28.2 BioL 302902 

NKp46 9E2 BioL 331902 
CD122 TU27 BioL 339002 

176Yb 
145Nd 
146Nd 
170Er 
160Gd 
142Nd 
152Sm 
 154Sm 
169Tm 
167Er 
172Yb
165Ho 
144Nd 
147Sm 
148Nd
143Nd
164Dy 

151Eu
141Pr

149Sm
159Tb 

175Lu
162Dy 

166Er 
156Gd
150Nd 
153Eu
168Er
139La 
171Yb
174Yb
158Gd

Table S1. CyTOF antibody panel
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DVS Sciences (DVS), eBioscience (eBio), and Biolegend (BioL).
The antibody panel was designed to obtain a global overview of the heterogeneity of the immune system. For this 
purpose, the panel included markers that distinguish the major immune cell lineages, i.e. CD4+ T cells, CD8+ T cells, TCRγδ  
cells, B cells, innate lymphocytes (CD3-CD7+) and myeloid cells. In addition, markers were included that allow the 
identification of phenotypically distinct subsets within those immune cell lineages, like naïve and memory cells, resting 
and activated cells. In addition, markers were included that provide information on additional differentiation stages of 
cells, homing properties of cells, and their potential responsiveness to humoral factors like cytokines and chemokines. 
Our choice in markers was biased towards phenotyping CD7-expressing lymphoid cells (T cells and CD3-CD7+ cells) rather 
than B cells and myeloid cells. 

The antibody panel was designed to obtain a global overview of the heterogeneity of the immune 
system. For this purpose, the panel included markers that distinguish the major immune cell lineages, 
i.e. CD4+ T cells, CD8+ T cells, TCRγδ cells, B cells, innate lymphocytes (CD3-CD7+) and myeloid 
cells. In addition, markers were included that allow the identification of phenotypically distinct 
subsets within those immune cell lineages, like naïve and memory cells, resting and activated 
cells. In addition, markers were included that provide information on additional differentiation 
stages of cells, homing properties of cells, and their potential responsiveness to humoral factors 
like cytokines and chemokines. Our choice in markers was biased towards phenotyping CD7-
expressing lymphoid cells (T cells and CD3-CD7+ cells) rather than B cells and myeloid cells.



2

Mass Cytometry of the Human Mucosal Immune System Reveals Tissue- and 
Disease-Associated Immune Subsets

47

  

Characteristics Ctrl 
 (N=15) 

CeD 
 (N=13) 

RCDIIa 
(N=5) 

EATLII 
(N=1) 

CDb 
(N=10) 

AgeBiop, (mean, ±SEM) 33.1±5.6 34.5±6.5 74.8±1.6 66 37.3±2.9 
Gender, N (%) 

 Male 5 (33.3) 6 (46.2) 5 (100.0) 0 (0.0) 3 (30.0) 
 Female 10 (66.6) 7 (53.8) 0 (0.0) 1(100.0) 7 (70.0) 

GFD, N (%) NA 
 No 13 (86.7) 5 (38.5) 0 (0.0) 0 (0.0) - 
 Yes 2 (13.3) 8 (61.5) 5 (100.0) 1 (100.0) - 

Type of Biopsy 
 Duodenum 15 13 7 1 - 
 Rectum - - - - 13 
 Fistula - - - - 6 
 PBMCd 14 13 6 - 14 

Inflamed gut biopsyc, N (%)
 No 14 (93.3) 6 (46.2) 2 (28.6)  0 (0.0) 12 (66.7) 
 Yes 1 (6.7) 7 (53.8) 5 (71.4) 1 (100.0) 6 (33.3) 

Marsh score biopsy N (%) NA NA 
 M0 14 (93.3) 6 (46.2) 2 (28.6) - - 
 M1 0 (0.0) 1 (7.7) 0 (0.0) - - 
 M2 0 (0.0) 0 (0.0) 0 (0.0) - - 
 M3a 1 (6.7) 1 (7.7) 2 (28.6) - - 
 M3b 0 (0.0) 4 (30.8) 1 (14.3) - - 
 M3c 0 (0.0) 1 (7.7) 2 (28.6) - - 

aTwo RCDII patients were biopsied twice at different time points. 
bFour CD patients were rectally biopsied twice at different time points. 
cAll 13 rectum biopsies of CD patients were non-inflamed, whereas all 6 fistula samples were 
inflamed. 
dPBMC of CD patients were analyzed cryopreserved, whereas all other PBMC samples were 
analyzed fresh. 
Celiac disease (CeD), refractory celiac disease type II (RCDII), enteropathy-associated T cell 
lymphoma type II (EATLII), Crohn’s Disease (CD), age at biopsy time point (AgeBiop), gluten-
free diet (GFD), and peripheral blood mononuclear cells (PBMC). 

Table S2. Characteristics of control and patients with inflammatory intestinal diseases

aTwo RCDII patients were biopsied twice at different time points.
bFour CD patients were rectally biopsied twice at different time points.
cAll 13 rectum biopsies of CD patients were non-inflamed, whereas all 6 fistula samples were inflamed.
dPBMC of CD patients were analyzed cryopreserved, whereas all other PBMC samples were analyzed fresh.
Celiac disease (CeD), refractory celiac disease type II (RCDII), enteropathy-associated 
T cell lymphoma type II (EATLII), Crohn’s Disease (CD), age at biopsy time point 
(AgeBiop), glutenfree diet (GFD), and peripheral blood mononuclear cells (PBMC).
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ABSTRACT

To understand how the immune system works, one needs to have a clear picture 
of its cellular compositon and the cells’ corresponding properties and functionality. 
Mass cytometry is a novel technique to determine the properties of single-cells with 
unprecedented detail. This amount of detail allows for much finer differentiation 
but also comes at the cost of more complex analysis. In this work, we present 
Cytosplore, implementing an interactive workflow to analyze mass cytometry data 
in an integrated system, providing multiple linked views, showing different levels of 
detail and enabling the rapid definition of known and unknown cell types. Cytosplore 
handles millions of cells, each represented as a high-dimensional data point, facilitates 
hypothesis generation and confirmation, and provides a significant speed up of the 
current workflow. We show the effectiveness of Cytosplore in a case study evaluation.
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3

1. INTRODUCTION

The immune system primarily protects our body against bacterial, viral and parasitic 
infections. However, it may respond to harmless self antigens, leading to auto-immune 
diseases, e.g., type 1 diabetes or rheumatoid arthritis. Detailed knowledge of the 
immune system’s functioning is required to understand the cause of immune-mediated 
diseases, which is an important step towards preventive or therapeutic measures. To 
mediate its function, the immune system utilizes both; humoral (soluble) and cellular 
constituents. The cellular immune compartment consists of a variety of cellular subsets, 
each with a distinct function and associated phenotype. The phenotype describes “the 
observable physical or biochemical characteristics of an organism, as determined by 
both genetic makeup and environmental influences”2 [AHD06]. For immune cells, 
the functionality mostly relates to a set of proteins expressed on the cells surface. 

Recently introduced mass cytometry [OKB08] at the moment allows the 
observation of 36 of these proteins at the same time, three times as many as the 
clinical standard. However, this number is still orders of magnitude smaller than 
the estimated 10;000 immune-system-wide available proteins, providing phenotypic 
information. Hence, specific panels of markers, corresponding to proteins of interest, 
need to be designed for each study. The composition of these panels if often unique 
to a study and it is not known beforehand, which combinations of proteins can 
be expected. Therefore, the identification of different phenotypes largely needs to 
be carried out in a data-driven fashion by studying data heterogeneity rather than 
applying prior knowledge. The fine granularity of mass cytometry is usually not only 
used to increase detail but also to increase breadth, i.e., markers for different cell 
lineages can be tested simultaneously.  A cell lineage describes a group of subsets, all 
derived from the same ancestry and sharing certain characteristics. Consequently, 
the data inherently provides multi-scale information; major lineages form clusters 
on a large scale, while small scale clusters correspond to phenotypical subsets.

To ensure comparability of measurements of multiple blood or tissue samples the 
same marker panel needs to be applied. In addition, different batches of the same 
marker can produce different results. Therefore, experiments are usually run in large 
cohort studies, resulting in hundreds of samples containing millions of cells. These 
large sizes pose significant challenges during the analysis process.  We worked closely 
with immunohaematology experts to design a data-driven workflow for phenotype 
specification of cytometry data that we present in this paper. We are the first to 
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specifically tackle the multi-scale properties of the data. To this extent, we combine 
and link two proven techniques for the analysis of single-cell data on different 
levels of detail. For both steps, we provide in-place and linked visualizations of the 
feature space to interact with and refine the automatically-generated classifications.

The major contributions of this paper are:

• Cytosplore: an integrated system to interactively explore large high-dimensional 
single-cell datasets and identify phenotypically distinct subsets in a data-driven 
fashion.
•  An analysis workflow, supporting linking of multiple levels of detail to enable
   - rapid, data-driven phenotype specification (including for unknown cell types) 
   - the discovery, pinpointing and fixing of mistakes over multiple levels of detail

2. BIOLOGICAL BACKGROUND

To analyze heterogeneity of immune cell subsets, multiparameter analysis of 
immune cells at single-cell level is required. Flow cytometry has been the method 
of choice for this purpose, however, suffers from a limitation; it is restricted by 
the number of cellular markers that can be simultaneously analyzed, usually 10 
to 12. This limitation has been overcome by the introduction of mass cytometry.

Mass cytometry is a novel, mass spectrometry-based, technique for characterizing 
protein expression on cells (cytometry) at single-cell resolution. In short, 
antibodies, selected to bind to specific proteins of interest on the cell membrane, 

Figure 1: Cytosplore. Screenshot of our system with four widgets (adaptive settings, overview (a), 
embedding (b) and heatmap (c)), representing the workflow. Views can be rearranged or additional 
views of these types added.

a b c
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are conjugated with heavy-metal reporters. After staining, the cells are vaporized, 
atomized and ionized one by one and the remaining metals in the ion cloud 
can be measured in a mass spectrometer to quantify the selected proteins 
on a per-cell basis. Mass cytometry currently allows the simultaneous analysis 
of 36 markers, a number which is expected to rise to 100 in the near future.

2.1. Data
Our partners use a prototypical non-integrated version of the workflow presented 
in this paper in a real world study of tissue- and disease-associated signatures of 
the human mucosal immune system [vULM16]. They acquired a cohort data set 
consisting of 102 samples from 44 donors. During preprocessing, the acquired dataset 
was filtered for live cells, with a strong expression of the CD45 marker (indicating 
immune cells), resulting in 5.2 million high-dimensional data points. 32 markers were 
selected for the study to provide information regarding six expected major lineages. 

The resulting data is a table of cells and their expression profiles over all available 
markers. Each row in the table corresponds to a single cell and can be interpreted as a 
single high-dimensional data point. In abstract terms our input data consists of a large 
number of high-dimensional data points forming clusters on multiple scales (Section 1).

2.2. Tasks
In this work we aim to tackle the first step of the data analysis process, namely the 
definition of the phenotype of every cell. In this process our collaborators need to 

• Group similar cells, where similarity is defined based on the protein expression 
for each cell. 
• Define for each group the type of cell, which can be unknown beforehand, and 
annotate the cells.

We provide an abstraction of these tasks, following Brehmer and Munzner’s 
multi-level task typology [BM13] in Figure 2a and make use of their 
adaptions for the visualization of high-dimensional data [BSIM14]. We use a 
monospaced font throughout the paper, when we use their typology.

3. RELATED WORK

Recent years brought many computer-aided solutions for cytometry-data analysis. 
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SPADE [QSB11] visualizes high-dimensional data and was developed for (and is 
commonly used in) single-cell analysis [BSQ11,BZF12,LZN15]. It clusters data in the 
high-dimensional space and then builds a minimum spanning tree. Flow MAP [ZLG15] 
follows SPADE, but replaces the spanning tree by a k-nearest neighbour graph, which 
is laid out via a force-directed layout. The approach avoids SPADE’s problem of placing 
similar nodes far apart, but creates visual clutter. Scaffold Maps [SGF15] enable the 
user to drive the layout by defining landmarks of cell-type prototypes and by placing 
them in the visual space to build a scaffold in which similar clusters will be placed. 

viSNE [ADT13] introduces t-Distributed Stochastic Neighbor Embedding (tSNE) 
[vdMH08] to mass cytometry data and ACCENSE [SBDC14] uses tSNE as the basis 
for automatic clustering. Classification in viSNE is performed by manually gating on 
the scatterplot, while ACCENSE performs automatic clustering of the embedded 
data. The tSNE-based techniques perform exceptionally well in embedding cytometry 
data and provide single-cell resolution. Nonetheless, due to a large computational 
cost, only limited interactivity is reached. In fact viSNE and ACCENSE both propose 
downsampling of large data for increased speed. Recently, Pezzotti et al. [PLvdM15] 
introduced A-tSNE, a tSNE variant, which aims at minimizing precomputation 
times for high-dimensional neighborhoods. While the cluster-based techniques are 
reasonably fast, they do not allow inspection on a single-cell level, and overall do not 
retain the high-dimensional structure as well as tSNE. A standard system for single-
cell data analysis is the webbased service Cytobank [KKI10]. It offers SPADE and tSNE 
computations in a reasonably-easy way. However, it lacks integration and interactivity. 
As computations are queuebased, significant wait times of several hours can occur.

A multitude of visual analysis tools for omics-data have been proposed recently. 
The focus of the vast majority of these tools is on genomic data. Generally, these 
data are similar in structure, e.g., a cell can be represented by a high-dimensional 
expression vector. However, usually the goal of the analysis of these data are 
quite different. StratomeX [LSS12] allows exploration of genomics data for 
cancer subtype characterization. They allow comparison of multiple groups using 
a ribbon-based visualization. The presented case study data consists of a few 
thousand data points, consisting of up to 6,000 genes (dimensions), each. MizBee 
[MMP09] is targeted at the exploration of syntenic blocks, blocks of features 
that appear in the same form on the same or multiple chromosomes. While the 
data only consists of dozens of chromosomes, the number of features reaches 
hundreds of thousands. invis [DHHH13] allows exploration of RNA sequences. 
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Among others, the authors use dimensionality reduction, by means of PCA, and 
two-dimensional scatterplots to visualize the data. The presented data consist of 
19,000 sequences with 186 dimensions. MulteeSum [MMDP10] is a tool for the 
visual analysis of gene expression data in cells, with the addition of spatial and 
temporal information. Here, a typical dataset consists of thousands of cells with 
50 dimensions over 6 time points. For all these tools it becomes apparent that 
besides different analysis questions, the data differs in key properties, compared to 
cytometry data; instead of millions of data points a typical genomics dataset only 
consists of thousands of data points, but sometimes with thousands of dimensions

4. MULTILEVEL PHENOTYPE SPECIFICATION 
WORKFLOW

We introduce a high-level task description in Section 2.2. In short, we need 
to derive groups of similar highdimensional data points and annotate 
these groups. In Section 3, we present a number of tools that are available and 
commonly used for these tasks in single-cell analysis. However, none of these 
tools performs optimally on large cohort studies (Section 2.1) consisting of 
millions of cells. The de facto standard in terms of quality is a combination of 
tSNE [vdMH08] (i.e., viSNE [ADT13]) with manual or automatic clustering in 
the embedding [SBDC14]. However, the computational complexity severely 
limits the applicability of tSNE for large data. Other tools, like SPADE [QSB11] 
work with larger data but do not produce cluster separation of the same quality.

In this work, we propose a multilevel workflow that effectively reduces these 
problems; we use SPADE clustering to create a high-level partitioning of the data, 
coupled with a detail analysis of each partition via A-tSNE, reducing the input size 
of each embedding and making it feasible. The partitioning is a means to deal with 
large data sizes but also has a biological justification. The amount of markers in mass 
cytometry enables the design of marker panels covering multiple cell lineages at the 
same time. In this case, the expression of markers strongly vary between lineages, 
but are more subtle within a lineage. Using the increased number of markers to 
create breadth inherently creates multiple scales within the data, which we separate 
in our multilevel workflow. 

In the following, we present an abstraction of the two levels of this workflow, 
following Brehmer and Munzner’s multi-level task typology [BM13]. Similar 
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to their extension for the visualization of high-dimensional data [BSIM14], we 
focus on the why and what in this section. We describe the how in Section 5.

4.1. Major Lineage Delineation
A major lineage of cells corresponds to a high-level cluster in the data (see Section 
2.1). While we do expect tens to hundreds of different cell types, the number of 
major lineages is limited. Since the marker panel is designed specifically to cover 
a set of lineages of interest, their number, as well as their discerning markers, 
are known beforehand. However, the boundaries between the clusters are 
not fixed and the discerning markers are not always unique for a single lineage. 
Therefore, we propose an interactive approach to defining the high-level clustering.

We present an abstraction of the major lineage delineation in Figure 2b. We 
propose a two step approach. In T1a we group points, deriving a set of clusters 
in the highdimensional space. Even though we do know the number of expected 
high-level clusters, we propose to create more clusters here and combine them to 
high-level meta-clusters in T1b, to find the optimal boundaries. For T1b, we propose 
an interactive approach; since the target is known (based on the discerning markers) 
the user needs to locate the corresponding groups of clusters, summarize 
them to derive meta-clusters, and finally annotate those meta-clusters.

In summary, we need to provide the user with effective tools and visual encodings to:  
• derive a predefined number of clusters, while preserving high-dimensional 
structures. 
• locate, summarize and derive major lineages by their discerning markers 
using prior knowledge.
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Figure 2: Abstraction of the identified high-level tasks as well as the detailed subtasks
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4.2. Phenotypical Subset Exploration and Identification
Exploration and identification of phenotypically-distinct subsets happens in the 
second step of our workflow. We define a phenotypically-distinct subset as a 
group of cells with similar marker expression profiles. The subsets can greatly 
vary in size, in fact small subsets, corresponding to rare cells, are often of major 
interest and must not be lost during the analysis. Since the high-dimensional 
space, corresponding to the marker panel, varies from study to study, subsets 
need to be created in a data-driven fashion. Other than with the discerning 
markers in the lineage delineation, here, all markers can be of interest. We also 
expect to find subsets not known before requiring an explorative analysis.

We propose an approach consisting of three steps as presented in abstract form in 
Figure 2c. We use dimensionality reduction in T2a to derive two-dimensional 
data points for visual inspection of the complete data, without clustering or 
downsampling. This assures that small subsets do not get lost in a larger cluster 
or during downsampling. For creating the subsets (T2b), we propose to derive 
clusters based on the structure of the dimensionality reduced data. Finally, for T2c, 
we propose to re-introduce the original high-dimensional data to explore and 
verify the clusters. If the clustering is too coarse, the user can go back to the previous 
step and derive a new set of clusters. If the clustering is too fine, she can derive 
new clusters in this step by merging. Once the user is satisfied with the clustering 
she can annotate the clusters based on the complete expression profile.

To recapitulate; the proposed system needs to provide effective means to: 
• derive two-dimensional coordinates, based on the high-dimensional 
expression.
• derive clusters, based on the two-dimensional structure. 
• explore and summarize the data at single-cell resolution and derive 
subsets with similar marker expression.

 5. CYTOSPLORE

We implemented a complete system for our workflow respecting the identified 
tasks (Figure 1). It provides a configurable environment with multiple linked views 
for the analysis. Here, we describe the implementation details, reasoning, and how we 
map the different workflow tasks presented in Section 4 to the actual visualization 
and analysis tools. Figure 3 shows the complete workflow, as implemented.
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5.1. Major Lineage Delineation
Figure 2b shows a the abstraction of the major lineage delineation. 
We identified two major tasks, described in Section 4.1: T1a: grouping 
of points to clusters of similar expression and T1b: the creation of meta-
clusters, clusters of clusters, that correspond to the major lineages. In the 
following, we describe how we support these tasks in our visual analysis tool.

T1a: Group Points. We use SPADE [QSB11] for automatically grouping points to 
clusters of similar expression. In short, SPADE clusters data points based on their 
similarity in the high-dimensional space. It does so by downsampling the data, based 
on local densities, to avoid removing small distinctive groups. The downsampled data 
is then clustered and the data points, removed during downsampling, are added to the 
most similar cluster. The number of clusters needs to be predefined and should be 
set about an order of magnitude larger than the expected lineages to compensate for 
SPADE’s lack of precision. Finally, a minimum spanning tree is constructed using the 
clusters’ median expressions. We chose SPADE, as it is well known in the domain and 
has been proven to be a valuable tool for single-cell analysis [BSQ11,BZF_12,LZN15]. 
Its lack of precision and the need to predefine the number of clusters are not 
an issue for the major lineage delineation. Here, we are only interested in high-
level structures and, in case points are mis-classified, these can be fixed later in the 
pipeline. The number of major lineages expected in the data is inherently defined by 
the design of the marker panel and as such known beforehand. To minimize the risk 
of clusters containing data points that belong to multiple lineages, the user simply 
selects a much larger number of clusters than expected as major lineages. These 
clusters are then grouped manually into meta-clusters, defining the major lineages.

Major Lineage       
   Delineation

SPADE

A-tSNE

Subset
    Identification

Subset           
Exploration

GM
S

Tag

Input
Data

Phenotype
Subsets

High Level Clustering
> Clusters & Layout

Single Cell Embedding
> Point & Density Vis

Mean Shift Clustering
> Subset Candidates

Cell Classification
Based on Clusters

Interactive Feedback Loop 

Figure 3: Phenotype Specification Workflow and its three major user-facing blocks; major-
lineage delineation, subset exploration and identification. SPADE, A-tSNE, GMS and Tag-
labeled blocks form the computational glue between user-driven parts. GMS requires a kernel-
bandwidth definition, but is computed in real time, merging subset exploration and identification.
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T1b: Create Meta-Clusters. We visualize the SPADE tree using a node link 
diagram, where nodes correspond to the clusters and the links to the edges in 
the minimum spanning tree. The nodes are initially laid out using a force-directed 
layout but the user can arrange the layout as needed. Our partners are familiar 
with these types of diagrams and used them before to inspect the results of SPADE 
clustering, hence, we decided not to change this basic encoding of the data and 
rather focused on optimizing it for the task at hand. The experts need to locate 
branches of the tree with a similar expression in a few markers (usually no 
more than three), corresponding to the known major lineages. To help the user 
navigate to and select these branches, we color code the nodes to show 
the median expression of one or more markers of the corresponding cluster. To 
show two or three different markers, we divide the node into segments of equal 
size. By default, we use the pink-to-green diverging color map from colorbrewer, 
as the expression is usually classified in low or high values, which here correspond 
to the ends of the diverging spectrum. Once the user has identified a group of 
clusters with similar expression in the selected markers, she can simply brush in 
the diagram to select and annotate the selection via the context menu. A 
permanent meta-cluster is automatically derived from the annotated selection 
(Figure 4). The described steps are usually sufficient to define the major lineages. 
In case the user wants to inspect the complete expression of a cluster, we provide 
a circular heatmap that opens around the node of interest by double-clicking.

5.2. Phenotypical Subset Exploration and Identification
We show the abstraction for the phenotypical subset exploration and identification 
in Figure 2c. The process is divided into three major parts, as presented in Section 
4.2; T2a: dimensionality reduction, T2b: clustering and T2c: cluster refinement,
 as described below. 
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T 2 a : 

Dimensionality Reduction. Sedlmair et al. [SMT13] conclude that “there is no 
one-and-only Dimensionality Reduction solution”. A-tSNE [PLvdM15] is a variant of 
tSNE [vdMH08], which is designed to preserve local structure (i.e., clusters) in the 
high-dimensional space and is optimized to target two- or three-dimensional spaces 
for visualization [vdM09] and, therefore, fits our task very well. However, standard 
tSNE suffers from long computation times. We aim at fast computation of the detail 
visualization, as it will allow us to go back and forth between the highlevel and detail 
visualizations to iron out mistakes in the high level selection. Therefore, we chose 
A-tSNE to derive two-dimensional data points. A-tSNE is specifically designed for 
such interactive settings. By approximating the high-dimensional neighborhoods the 
startup time can be reduced by up to two orders of magnitude, when compared 
to the original implementation of tSNE. We use a conservative approximation 
parameterization, as described by Pezzotti et al. [PLvdM15] to make sure that 
the resulting embedding faithfully represents the data without user interaction.

T2b: Clustering. Manual selection of visual clusters in the embedding to 
derive subsets is a tedious task. Previous work proposes to use automatic 
clustering of the embedding to specify the phenotypical subsets. In their work 
on ACCENSE [SBDC14], Shekhar et al. propose a technique for density-based 
clustering of tSNE maps in the context of cytometry. However, ACCENSE 
suffers from several problems. Most importantly, they use a proprietary 
clustering algorithm that typically clusters only around 50% of the data. 

a) b)

expression

low

density

low

Figure 5: tSNE Visualization of a single lineage, as scatterplot (a) and as density plot (b). 
Erroneous selections can be identified in the scatterplot (blue circles) due to the low expression in 
the discerning marker for this lineage. Visual clusters can easily be distinguished in the density plot.
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We decided to use Gaussian Mean Shift (GMS) clustering to create the subsets. 
GMS has proven to be a reliable tool for the analysis of complex data, is capable 
of creating arbitrarily-shaped clusters [CM02], will cluster all available data, and 
corresponds well with the visually-identified clusters. Similar to ACCENSE, GMS 
does rely on density computations and a kernel bandwidth needs to be specified. 
ACCENSE tries to find an optimal size automatically by inspecting the number 
of resulting peaks for a range of different values. In our tests, the results of this 
approach were questionable. Instead, we expose this parameter to the user, in 
combination with a linked feature-space view of the resulting clusters. Hereby 
we allow the user to make an informed decision on the kernel bandwidth. For an 
effective visual exploration, the data needs to be clustered at interactive rates. GMS 
is a rather complex algorithm and is therefore usually not employed in interactive 
settings. In Section 6.1, we describe a GPU-based, discrete GMS implementation 
that allows for interactive clustering of hundreds of thousands of data points.

T2c: Cluster Refinement. We support the user in the process of exploring 
the created clusters and deriving new clusters with three visual encodings. 
We use a scatterplot (Figure 5a) or a density plot (Figure 5b) to show the 
dimensionality-reduced data. In the scatterplot (Figure 5a), subsets can be 
identified best by inspecting the actual marker expressions. Therefore, we use 
color coding to represent a single user-defined marker, using the same diverging 
colormap as described in Section 5.1. E.g., the user selects a discerning marker 
for the defined lineage from a dropdown menu to use for the color coding. Cells 
that show a high expression of the marker when low is required (or vice versa) 
can easily be identified in the scatterplot (see the blue circles in Figure 5a). The 
user can then go back and remove them from the defined lineage using the SPADE 
visualization, or simply handle them as outliers and create the correct annotation 
in the following steps. The density plot (Figure 5b) shows more detail within the 
groups. E.g., the group in the top left of the embedding (black highlight) seems 
relatively homogeneous in the scatterplot but shows three peaks in the density 
plot. However, in the density plot, we lose single-cell resolution and the marker 
expression. We couple the GMS clustering to the density plot and each cluster is 
represented by a black dot on the corresponding density peak for easy discovery.

The third visual encoding is a heatmap view (Figure 6), showing the median marker 
expression of the created clusters. A phenotypically-distinct subset is defined by a 
homogeneous unique marker expression of the contained cells. Consequently, we 
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propose to use the homogeneity of the resulting clusters as a quality measure. We 
provide the standard deviation as a measure for the homogeneity. Inspired by Gove 
and Herzog’s work [GH13], we encode the standard deviation in the amount of 
paint in each box in the heatmap. Here, a filled box means little standard deviation, 
whereas a box with a lot of white corresponds to large heterogeneity inside the cluster 
for the corresponding marker. The combination of the interactive clustering and the 
linked heatmap view, including information on the homogeneity of clusters allows the 
user to make an informed decision on when the automatic clustering is satisfactory.

Once the user has defined a suitable kernel bandwidth, she proceeds to refine the 
created clusters, i.e., by merging clusters with a similar expression. We provide quick 
interactions (directly in the heatmap view) to merge multiple clusters that belong 
to the same phenotypical subset. The user can select one or more clusters by 
clicking on the corresponding column in the heatmap. The cluster will be highlighted 
in the heatmap view and the embedding to indicate the correspondence to the 
spatial location. We provide different ways to arrange the heatmap for easy 
comparison. To organize columns by their overall similarity, we compute hierarchical 
clustering using the median cluster expressions and visualize the columns as 
leaves of the resulting dendrogram. Thus, similar columns are automatically 
placed next to each other, allowing fast exploration of the clusters and the 
corresponding feature space. In addition, the user can also sort the columns based 
on the values of a single row. To derive new clusters, the user can simply select 
multiple columns and merge them to a single cluster via the context menu. The 
dendrogram and sorting are automatically updated on such interaction. Finally, 

Figure 6: Detail of the Heatmap View showing marker expressions and variation. Variation is encoded in 
the amount of paint in each box. Columns are ordered by similarity as indicated by the dendrogram on top
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the refined clusters can be annotated directly in the heatmap and exported 
to separate files for further inspection and quantitative analysis in external tools.

6. IMPLEMENTATION

We implemented the core system of Cytosplore using C++ and Qt. For the 
visualization components, we use a combination of different rendering techniques, 
including D3 [BOH11] and hardware accelerated OpenGL with custom GLSL 
shaders, depending on the amount of objects on screen. Even though we mix and 
match hardwareaccelerated OpenGL-based visualization with slower webbased 
techniques, we would like to note that we strictly divide between pure visualization 
and intensive computational tasks. All heavy lifting, such as clustering, gradient descent 
and computation for A-tSNE is implemented in C++ or, if possible, on the GPU for 
maximum performance. When applicable, we only use a thin web layer for visualization.

6.1. GPU-based, Discrete Mean-Shift Clustering
One of the main drawbacks of the mean-shift algorithm is its computational 
complexity, making it not applicable in interactive scenarios with millions of data points. 
Therefore, we implemented a grid-based streaming version of the Gaussian Mean 
Shift algorithm based on work by Sirotkovic et al. [SDP13] for image segmentation. 
Instead of using the Improved Fast Gauss Transform [YDGD03], however, we use 
fast density estimation on the GPU [LH11] reducing the shift operation to a single 
lookup in a gradient table. In general, the mean-shift algorithm is a mode-seeking 
algorithm, taking each input data point and iteratively shifting it to the average of the 
data points in its neighbourhood until convergence to a fixed location. To increase 
the performance, we map the clustering problem to a segmentation problem of the 
visual space used for the embedding, to be able to apply the algorithm presented 
by Sirotkovic et al. [SDP13]. As a result, the cost of the shift operation is dependent 
on the resolution of the visual space, rather than the number of input points. 
Additionally this approach maps nicely to the GPU, further increasing performance.

We use three render passes to compute the segmentation of the visual 
space. In the first pass, we compute the density profile (Figure 7a) in image 
space [LH11]. Based on the density, we compute the first derivative via central 
differences, resulting in the gradient at each grid position in the second render 
pass (Figure 7b). In the third pass, we follow the gradient map upwards until we 
find a local peak for each pixel with a non-zero density. We inscribe the found 
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position as a color to the starting pixel, resulting in a map of constant colored 

partitions (Figure 7c). Finally, on the CPU, we set a unique id for each of these 
partitions. Assigning this id to each data point is then a simple look up in the 
resulting map using the points position. Figure 7d shows the final clustered points.

Performance. Figure 8 shows computation times of the GPU mean-shift 
algorithm for different numbers of points, different grid sizes, and different 
kernel sizes from 10% to 40% of the image size. The computations were 
carried out using a 4 core intel core i7 processor, clocked at 4Ghz and an AMD 
Radeon R9 M295X with 4GB of GPU memory. Blue columns show measured 
times for 10,000 data points, green columns for 50,000 points and orange 
columns correspond to tests using 100,000 data points. It can be seen that the 

a) b) c) d)

Figure 7: GPU Mean-Shift Steps. a shows the density map, with increasing density from white to black. 
b shows the corresponding (absolute) gradients, using the m and c channels of the cmyk color space to 
indicate the x and y components of the gradient vectors, respectively. c shows the final segmentation 
using unique colors for each partition. d shows the clustered points using the same coloring as in c.

Figure 8: Performance of our Mean-Shift Clustering.
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performance mostly depends on the resolution of the grid, while kernel size 
and number of points have a smaller effect. However, for larger resolutions, the 
impact of these two factors is visible. Overall, it can be seen that for the 1282 

resolution, we easily achieve real-time update rates for all tested kernel and data 
sizes. We can keep interactivity even at 5122 resolution and 100,000 data points.

7. RESULTS

As described in Section 5, we focused on improving existing visual encodings and 
designing an integrated interactive workflow with the goal to improve efficiency. 
We conducted interviews with three experts from our collaborating institute 
to validate the choices we made to improve the visual encodings (Section 7.1). 
A prototypical version of the presented workflow, using separate tools, such 
as Cytobank, Matlab and custom R-scripts, is the basis for our collaborators 
complete study as presented in [vULM16]. For detailed information on specific 
findings, especially how the workflow supports hypothesis generation, we refer 
to that work. In our case study (Section 7.2), we focus on how we improve 
the effectiveness of the analysis by creating an integrated interactive system.

The participants in our evaluation had different exposure to Cytosplore before the 
study. Participant A was our main partner when developing the workflow and had 
strong influence on the design process of the system. He tested the system since its 
inception and can be considered an expert user. Participant B is a close collaborator 
but was less involved in creating the system. She tests the system frequently but 
for her daily routine still relies on other tools. Participant C was presented with 
the final system just for this study and only had brief exposure to a very early 
prototype before. All participants are familiar with the available computational tools.

7.1. User Evaluation
We demonstrated the tool to the participants in a group session and installed it on their 
lab computers, including a short document, describing the most important features 
and how to access them. The participants had as much time as needed to familiarize 
themselves with the system. We followed this up with a structured interview, to 
find out which parts of the proposed system work and which could be improved. 
The integrated nature of Cytosplore provides a strong improvement. Participant C 
specifically mentions the linking;“ to see which clusters in the heatmap are which cells 
in the tSNE [...] makes it easy to make adjustments in the beginning of the pipeline” and 
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“makes it more reliable”. All participants agree that showing two markers at once in 
the SPADE visualization “saves time” (Participant B). Participant C mentions that she 
is fine with using a single marker in Cytobank, “but with two markers, it is a lot faster 
to find subsets”. Without knowledge that we tested more markers in an early design 
phase, she also states that “more than two markers would probably [...] make me lose the 
overview.”. The circular heatmap received mixed reactions. Participant C states that 
“it is not very helpful when a lot of markers are used in the panel”. Particpant A sums it 
up to “looking at high detail for one node is a luxury but not a necessity”, validating our 
choice to make it optional. Participant B works with data that sometimes produces 
very small lineages (i.e., consisting of a few hundred cells). During testing, she was 
able to successfully define the subsets with this kind of data. With such small data, 
where the differences in the density of the embedding are rather subtle, “we need 
the heatmap to combine our immune knowledge to define the kernel bandwidth.”. Before, 
this process completely failed with her standard workflow. Interactively defining 
the kernel density made Participant C much more confident in the results of the 
density-based clustering: “Yes, this [the linked heatmap view] is very helpful. The variation 
display shows even more clearly whether more subsets need to be created.” Participant 
A praises the linking between clustering and the heatmap visualization of marker 
expressions: “It immediately feedbacks the signatures revealing overall heterogeneity 
and homogeneity that often is the unknown for your data. It gives so much valuable 
simulteaneous information and you are flexible in changing parameters without having to 
do hours of computations again. I am really happy with it.” He does not, however, use 
the visualization of the standard deviation since markers without a clear low or high 
expression are hard to discern from the background due to the diverging colormap 
with a white center. We since changed the available colormaps in the heatmap view 
by removing the very light colored blocks, but did not conduct an updated evaluation.

7.2. Case Study
To measure the efficiency of our proposed system, we set up a small case study. The 
study consists of a single blood sample which was downsampled to 50,000 cells. 
The task was to specify the 
phenotypically distinct subsets 
within the dominant major 
lineage (CD4+T) within the 
sample. We asked Participant 
A to create the subsets using 
his traditional workflow 

Total T1: Lineage
Delineation

T2a/b: Subset
Computation*

T2c:Subset
Postprocessing

Traditional 108 27 29 52
Ours 39 13 11 15

*completely automatic in the traditional and interactive in our workflow

Table 1: Case Study Performance. Time in minutes needed 
for the different steps in the workflow.
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[vULM16] as a benchmark, as well as our workflow for comparison. We chose 
Participant A because he is the most experienced user among our three participants. 
Table 1 shows the time it took to create the subsets with the traditional workflow 
compared to the time with our integrated solution. It can be seen that Cytosplore 
outperforms the traditional workflow roughly threefold. It should be noted that 
this small test case cannot completely capture the details of the workflow. E.g., as 
shown in Section 6.1, our implementation of the clustering for T2b scales very well 
with increasing data sizes, whereas the automatic clustering within ACCENSE often 
takes hours with real-world data sizes. However, it was necessary to use such a 
simple example, to allow the subset definition within a reasonable time frame.  
SPADE and tSNE computations in Cytobank are done in the cloud. We assume they 
use distributed computing, as their conventional tSNE was computed in the same 
time as our A-tSNE. However, since Cytobank runs on shared hardware, SPADE and 
tSNE computations are queued for all users and wait times easily reach hours during 
peak times. We measured the time only after the job was started to make sure the 
comparison is fair. With our tool, clusters can be merged with a few clicks and 
be verified immediately. The most time is needed for the biological interpretation 
of the heatmap itself. We can see a large speed up in this step, due to the fact 
that this is the least integrated part in the original workflow and requires several 
different tools and sometimes multiple iterations for verification of the results.

Finally, we compared the subsets that were assigned to each cell, to make sure 
our results are comparable to the traditional workflow. In the SPADE tree 27,172 
cells were assigned to the created CD4+T lineage with the traditional workflow, 
26,591 with ours. Within the lineage, in all tests, the same 14 subsets were identified 
after merging 16 automatically-generated subsets in the traditional workflow 
and 19 with ours. The results are not directly comparable on a single-cell level, 
because ACCENSE only clustered 14;643 of the original 27;172 cells. Figure 9 
shows the composition of the cells according to the subset specification during 
the evaluation. Except for the groups labeled I and II, where we found more cells 
using Cytosplore, the results were very similar; overall 14 subsets, 6 CD4+T Naïve 

I

II

a)

I

II

b)

CD4+T  Memory

CD4+T  Naïve
Figure 9: Subsets Created in the 
Evaluation by Participant A with the 
traditional workflow (a) and using 
Cytosplore (b). Note that a consists 
of only 54% of the cells assigned 
to the lineage, due to incomplete 
clustering using ACCENSE.
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(different shades of blue) and 8 CD4+T Memory (different shades of purple) were 
defined in all tests. After further investigation, we found out that the additional 
cells in group I and II were mostly from the regions that were not clustered using 
ACCENSE. It needs to be investigated further, whether the difference is due to a 
bias introduced by the incomplete clustering in ACCENSE, or if the greedy clustering 
using mean shift introduces cells into the subsets where the phenotype is uncertain.

To summarize, we were able to achieve comparable results using our interactive 
workflow, when compared to previous work [vULM16]. Therefore, we assume that our 
framework allows for generating hypotheses in a similar fashion. However, it has the main 
advantage of significantly higher efficiency, when compared to the previous approach.

8. CONCLUSION AND FUTURE WORK

We presented Cytosplore, an interactive integrated system and workflow for 
the specification of phenotypical subsets in large high-dimensional cytometry 
data sets. We have shown the benefits of our approach in a case study evaluation. 
Participants found our integrated workflow useful and it allows them to produce 
results considerably faster than with their traditional workflow. The integrated 
nature of Cytosplore leads to much faster iteration during the subset specification. 

Cytosplore allows us to go beyond data sizes currently possible to handle with 
other tools by effectively partitioning the input. However, scalability (in terms of 
data points) is still limited by the input size for A-tSNE. In our tests, tSNE is not only 
a limiting factor in terms of computational performance, but the embedding quality 
also quickly degenerates when going beyond a few million data points.We expect 
the number of dimensions to rise to around a hundred. For the computational 
tools presented in this work this will not be an issue. Cytosplore is also flexible 
enough to be employed in a basic clinical setting, e.g., to analyze the lower-
dimensional flow cytometry data. If data are small enough, e.g., when analysing a 
single blood sample, the overview generation using SPADE can be skipped entirely 
and the data can be analysed using the embedding and heatmap, immediately. 
For the analysis of the immune system as a whole, the specification of cell types 
is only the first step, followed by a quantitative analysis of the found subsets. In 
future work, we would like to integrate the quantitative analysis within Cytosplore.
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ABSTRACT

Mass cytometry allows high-resolution dissection of the cellular composition of 
the immune system. However, the high-dimensionality, large size, and non-linear 
structure of the data poses considerable challenges for the data analysis. In particular, 
dimensionality reduction-based techniques like t-SNE offer single-cell resolution but 
are limited in the number of cells that can be analyzed. Here we introduce Hierarchical 
Stochastic Neighbor Embedding (HSNE) for the analysis of mass cytometry data 
sets. HSNE constructs a hierarchy of non-linear similarities that can be interactively 
explored with a stepwise increase in detail up to the single-cell level. We apply HSNE 
to a study on gastrointestinal disorders and three other available mass cytometry 
data sets. We find that HSNE efficiently replicates previous observations and 
identifies rare cell populations that were previously missed due to downsampling. 
Thus, HSNE removes the scalability limit of conventional t-SNE analysis, a feature 
that makes it highly suitable for the analysis of massive high-dimensional data sets.
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INTRODUCTION

Mass cytometry (cytometry by time-of-flight; CyTOF) allows the simultaneous 
analysis of multiple cellular markers (>30) present on biological samples consisting of 
millions of cells. Computational tools for the analysis of such data sets can be divided 
into clustering-based and dimensionality reduction-based techniques1, each having 
distinctive advantages and disadvantages. The clustering-based techniques, including 
SPADE2, FlowMaps3, Phenograph4, VorteX5 and Scaffold maps6, allow the analysis of 
data sets consisting of millions of cells but only provide aggregate information on 
generated cell clusters at the expense of local data structure (i.e., single-cell resolution). 
Dimensionality reduction-based techniques, such as PCA7, t-SNE8 (implemented in 
viSNE9), and Diffusion maps10, do allow analysis at the single-cell level. However, the 
linear nature of PCA renders it unsuitable to dissect the non-linear relationships in 
the mass cytometry data, while the nonlinear methods (t-SNE8 and Diffusion maps10) 
do retain local data structure, but are limited by the number of cells that can be 
analyzed. This limit is imposed by a computational burden but, more importantly, by 
local neighborhoods becoming too crowded in the high-dimensional space, resulting 
in overplotting and presenting misleading information in the visualization. In cytometry 
studies, this poses a problem, as a significant number of cells needs to be removed 
by random downsampling to make dimensionality reduction computationally 
feasible and reliable. Future increases in acquisition rate and dimensionality in 
mass- and flow cytometry are expected to amplify this problem significantly11,12.

Here we adapted Hierarchical stochastic neighbor embedding (HSNE)13 that was 
recently introduced for the analysis of hyperspectral satellite imaging data to the 
analysis of mass cytometry data sets to visually explore millions of cells while 
avoiding downsampling. HSNE builds a hierarchical representation of the complete 
data that preserves the non-linear high-dimensional relationships between cells. 
We implemented HSNE in an integrated single-cell analysis framework called 
Cytosplore+HSNE. This framework allows interactive exploration of the hierarchy by a 
set of embeddings, two-dimensional scatter plots where cells are positioned based 
on the similarity of all marker expressions simultaneously, and used for subsequent 
analysis such as clustering of cells at different levels of the hierarchy. We found 
that Cytosplore+HSNE replicates the previously identified hierarchy in the immune-
system-wide single-cell data4,5,14, i.e., we can immediately identify major lineages 
at the highest overview level, while acquiring more information by dissecting the 
immune system at the deeper levels of the hierarchy on demand. Additionally, 
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Cytosplore+HSNE does so in a fraction of the time required by other analysis tools. 
Furthermore, we identified rare cell populations specifically associating to diseases 
in both the innate and adaptive immune compartments that were previously missed 
due to downsampling. We highlight scalability and generalizability of Cytosplore+HSNE 
using three other data sets, consisting of up to 15 million cells. Thus, Cytosplore+HSNE 

combines the scalability of clustering-based methods with the local single-cell 
detail preservation of non-linear dimensionality reduction-based methods. Finally, 
Cytosplore+HSNE is not only applicable to mass cytometry data sets, but can be 
used for the other high-dimensional data like single-cell transcriptomic data sets.

RESULTS

Hierarchical exploration of massive single-cell data
For a given high-dimensional data set such as the three-dimensional illustrative
example in Fig. 1a, HSNE13 builds a hierarchy of local neighborhoods in this high-
dimensional space, starting with the raw data that, subsequently, is aggregated at 
more abstract hierarchical levels. The hierarchy is then explored in reverse order, 
by embedding the neighborhoods using the similarity-based embedding technique, 
Barnes–Hut (BH)-SNE15. To allow for more detail and faster computation, each level 
can be partitioned in part or completely, by manual gating or unsupervised clustering, 
and partitions are embedded separately on the next, more detailed level (compare 
Fig. 1b). HSNE works particularly well for the analysis of the mass cytometry data 
because the local neighborhood information of the data level is propagated through 
the complete hierarchy. Groups of cells that are close in the Euclidian sense (Fig. 
1a, grey arrow), but not on the non-linear manifold (Fig. 1a, dashed black line), 
are well separated even at higher aggregation levels (Fig. 1b). The power of HSNE 
lies in its scalability to tens of millions of cells, while the possibility to continuously 
explore the hierarchy allows the identification of rare cell populations at the more 
detailed levels. Next follows a general description of how the hierarchy is built and 
explored through embeddings. More details can be found in the Methods section

The left panels of Fig. 1c give an overview of the HSNE-hierarchy construction. 
We show the hierarchy from the fine-grained data level to an overview level from 
the top to bottom panels. The number of levels is defined by the user and depends 
mostly on the input-data size. While the data aggregation is completely data-driven, 
for a typical mass cytometry data set, every additional level reduces the number of 
landmarks by roughly one order of magnitude. Therefore, we recommend to use 
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Fig. 1. Schematic overview of Cytosplore+HSNE for exploring the mass cytometry data
By creating a multi-level hierarchy of an illustrative 3D data set (a), we achieve a clear separation of 
different cell groups in an overview embedding (left panel b) that conserves non-linear relationships (i.e., 
follows the distance indicated by the dashed line in a, instead of the grey arrow) and more detail within 
the separate groups on the data level (right panel b). c Construction and exploration of the hierarchy. 
The hierarchy is constructed starting with the data level (left two columns). On the basis of the high-
dimensional expression patterns of the cells, a weighted kNN graph is constructed, which is used to find 
representative cells used as landmarks in the next coarser level. By administering the area of influence 
(AoI) of the landmarks, cells/landmarks can be aggregated without losing the global structure of the 
underlying data or creating shortcuts. The exploration of the hierarchy is shown in the two rightmost 
columns. At the bottom, we see the overview level (in this example the 3rd level in the hierarchy), which 
shows that a group of landmarks has low expression in marker c (bottom-right panel). Selecting this 
group of landmarks for further exploration results in a look-up of the landmarks in the preceding level 
(neighborhood graph, intermediate level) that are in the AoI, with which a new embedding can be created 
at the 2nd level of the hierarchy (middle-right panel). Marker b shows a strong separation between the 
upper and lower landmarks at this level. Zooming-in on the landmarks with low expression of marker b 
reveals further separation in marker a at the lowest level, the full data level (top-right panel). 
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log10(N/100) levels, with N being the number of cells: this generally results in at 
most few thousands of landmarks at the highest level of the hierarchy. The foundation 
of the hierarchy is constructed using the original input data. Each dot represents 
a single cell (Fig. 1c, data level). Similarities between cells on the data level are 
defined by building an approximated, weighted k-nearest neighbor (kNN) graph16 
using the Euclidian distances based on the complete marker expression (Fig. 1c, 
top-center panel). The weights of this graph can directly be used as input to embed 
the data into a two-dimensional space (Fig. 1c, top-right panel). With the BH-SNE 
the two-dimensional embedding is generated such that the layout of the points 
indicates similarities between the cells in the high-dimensional space according to 
the neighborhood graph.

To aggregate the data into the next level (Fig. 1c, intermediate levels), we 
identify representative cells to use as landmarks (Fig. 1c, white circles). For that, 
the weighted kNN graph is interpreted as a Finite Markov Chain and the most 
influential (i.e., best-connected) nodes are chosen as landmarks, using a Monte 
Carlo process. The landmarks are then embedded into a two-dimensional space 
based on their similarities. However, simply repeating the kNN construction with 
Euclidian distances for the selected landmarks in the high-dimensional space would 
eventually eliminate non-linear structures by creating undesired “shortcuts” in 
the graph (a problem reported by Setty et al.17 in a different setting). Instead, we 
define the area of influence (AoI) of each landmark, indicated by the grey hulls (Fig. 
1c, left panels), as the cells that are well represented by the landmark according 
to the kNN graph. Different landmarks can have overlapping regions of locally-
similar cells. Therefore, we define the similarity of two landmarks as the overlap 
of their respective AoIs. Furthermore, we construct a neighborhood graph, based 
on these similarities. Here, two nodes are connected if they have overlapping AoIs. 
The strength of the connection is defined by the number of data points within the 
overlapping region. This graph replaces the kNN graph as input for levels subsequent 
to the data level. Hereby, we effectively maintain the non-linear structure of the data 
to the top of the hierarchy and avoid shortcuts (Fig. 1c, bottom panels). We show 
that the preservation of non-linear neighborhoods by HSNE indeed conserves 
structure that is otherwise lost by random downsampling (Supplementary Note 
1. Cytosplore+HSNE is reproducible and robust. and Supplementary Fig. 1).

The data exploration in Cytosplore+HSNE starts with the visualization of the 
embedding at the highest level, the overview level (Fig. 1c, bottom-right panel). 
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Similar to other embedding techniques for visualizing the single-cell data4,9, the 
layout of the landmarks indicates similarity in the high-dimensional space according 
to the level’s neighborhood graph. Color is used to represent additional traits, 
such as marker expressions. The landmark size reflects its AoI. While it is possible 
to continuously select all landmarks and compute a complete embedding of the 
next, more detailed level, this strategy would eventually embed all the data and 
suffer from the same scalability problems as a t-SNE embedding, i.e., overcrowding 
(Supplementary Note 2. Millions of cells cause performance issues and 
overcrowding in t-SNE. and Supplementary Fig. 2) and slow performance. 
Instead, we envision that the user selects a group of landmarks, by manual gating 
based on visual cues such as patterns found in marker expression, or by performing 
unsupervised Gaussian mean shift (GMS) clustering18 of the landmarks based on the 
density representation of the embedding (Fig. 1c, right panels). Then, the user can 
zoom into this selection by means of a more detailed embedding. This means that, 
all landmarks/cells in the combined AoI on the preceding level are retrieved from 
the neighborhood graph (Fig. 1c, blue encirclements), embedded, and visualized 
in a new view. Moreover, interactively linked heatmap visualizations of clusters 
(Fig. 1c, right panels) and descriptive statistics of markers within a selection can 
be used to guide the exploration. For example, these tools allow to inspect the 
heterogeneity of cells within individual clusters, including the cells associated to 
individual landmarks. Importantly, all of the described tools are available at every 
level of the hierarchy and linked interactively. Selections in the embedding and 
heatmap at one level of the hierarchy can thus be highlighted in the embeddings of 
other levels (Supplementary Fig. 3). All these aspects are further demonstrated 
using a typical exploration workflow with Cytosplore+HSNE in the Supplementary 
Movie 1. With this strategy, tens of millions of cells can be explored, providing 
both global visualizations up to single-cell resolution visualizations, while preserving 
non-linear relationships between landmarks/cells at all levels of the hierarchy.

HSNE eliminates the need for downsampling
In a previous study14, a mass cytometry data set on 5.2 million cells derived 
from intestinal biopsies and paired blood samples was analyzed using a SPADE-
t-SNE-ACCENSE pipeline. Due to t-SNE limitations, the data set had to be 
downsampled by 57.7% (Fig. 2a), where it was decided to equal the number 
of cells from blood and intestinal samples for a balanced comparison, which led 
to the exclusion of more cells from the blood samples. Moreover, ACCENSE 
clustered only 50% of the t-SNE-embedded data into subsets (Fig. 2a). Together, 
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a Pie chart showing cellular 
composition of the mass 
cytometry data set. Color 
represents the subsets 
(N=142), as identified 
in our previous study14. 
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discarded by stochastic 
downsampling and grey 
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discarded by ACCENSE 
clustering. b Embeddings 
of the 1.1 million cells 
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the top three levels of the 
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annotations as in a. 
Size of the landmarks is 
proportional to the number 
of cells in the AoI that 
each landmark represents. 
Bottom map shows density 
features depicting the local 
probability density of cells for the level 3 embedding, where black dots indicate the centroids of 
identified cluster partitions using GMS clustering. c Embeddings of all 5.2 million cells, again 
showing only the top three levels of the hierarchy (five levels in total). Colors as in a. Right 
panels visualize landmarks representing cells discarded by stochastic downsampling (black) 
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3 embedding as described in (b). d Frequency of annotated cells for 145 clusters identified by 
Cytosplore+HSNE at the third hierarchical level using GMS clustering in c. Color coding as in a
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this excluded 78.8% of the cells from the analysis. The remaining 1.1 million
cells were annotated into 142 phenotypically distinct immune subsets14 (Fig. 2a).

To determine whether Cytosplore+HSNE could identify similar subsets, we 
embedded the 1.1 million annotated cells (Fig. 2b). Computation time was in 
the order of minutes and the analysis was finished within an hour, compared to 
8 weeks of computation in the original study. Color coding shows the grouping 
of subsets at all hierarchical levels. GMS clustering at the third level embedding 
(Fig. 2b, bottom panel) reveals that 75.5% of cells were assigned to a single 
subset by both methods (Supplementary Fig. 4). Hence, to reach similar 
results it was not necessary to explore the data at lower (more detailed) levels.

Next, we utilized Cytosplore+HSNE to analyze the complete dataset on 5.2 million 
cells, thus including the cells that were discarded in the SPADE-t-SNE-ACCENSE 
pipeline. The embeddings show by color coding that subsets of the same immune 
lineage clustered at all three levels (Fig. 2c). More interestingly, the cells removed 
during downsampling (shown in black) and cells ignored during the ACCENSE 
clustering (shown in grey) were positioned throughout the entire map (Fig. 2c). 
We selected 145 clusters using GMS clustering at the third level and observed 
that the identified clusters contained variable numbers of downsampled and 
non-classified cells (Fig. 2d). These findings indicate that both the non-uniform 
downsampling and the cell losses during the ACCENSE clustering introduce a 
potential bias in observed heterogeneity in the immune system. Cytosplore+HSNE 

overcomes this problem as it analyzes all cells and does so efficiently.

HSNE identifies rare subsets in the ILC compartment
We illustrate an exploration workflow with Cytosplore+HSNE using the data set of 
5.2 million cells14 (Fig. 3). At the overview level, 4,090 landmarks depict the general 
composition of the immune system (Fig. 3a) and color coding is applied to reveal 
CD-marker expression patterns on the basis of which the major immune lineages 
are identified (Fig. 3b). Next the CD7+CD3- cell clusters were selected as indicated 
and a new higher resolution embedding was generated at level 3 of the hierarchy 
(Fig. 3c). Here, coloring of the landmarks based on marker expression (Fig. 3c, top 
panels) and a density plot of the embedding is shown (Fig. 3d) alongside the clinical 
features of the subjects from which the samples were obtained and the tissue-origin 
of the landmarks (Fig. 3c, bottom panels). This reveals a cluster of cells abundantly 
present in the intestine of patients with refractory celiac disease (RCDII). In addition, 
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a large cluster of CD45RA+CD56+ NK cells and three distinct innate lymphoid cell 
(ILC) clusters with a characteristic lineage-CD7+CD161+CD127+ marker expression 
profile19, 20 are visualized. Strikingly, a distinct population of CD7+CD127-CD45RA+ 

and partly CD56+ cells is found in between the NK, RCDII and ILC cell clusters.

To uncover the phenotypes of these ILC-related clusters, we next embedded the ILC 
and ILC-like clusters (Fig. 3c, selection) at the full single-cell data level (59,775 cells; 
1.2% of total) (Fig. 3e). The marker expression overlays revealed that the majority 
of cells are CD7+ and displayed variable expression levels for CD127, CD45RA, and 
CD56 (Fig. 3e). In addition, and in line with previous reports21, 22, (co-)expression 
of CD127 with CD27, CRTH2, and c-KIT revealed the phenotypes corresponding 
to helper-like ILC type 1, 2 and 3, respectively (indicated by arrows in Fig. 3e). 
Moreover, by visualizing the tissue-origin in the Cytosplore+HSNE embedding the 
tissue-specific location of ILC and ILC-related phenotypes became evident (Fig. 3e).

Next, we performed GMS clustering on the full data level embedding, which 
resulted in 19 phenotypically distinct clusters (Fig. 3e, right plots) based on 
marker expression profiles (Fig. 3f). The cell surface phenotypes of 8 out of 
the 19 clusters (Fig. 3f) matched previously described21 biological annotations 
(Fig. 4, black annotations) including the CRTH2+ILC2 (cluster 16), c-KIT+ILC3 
(cluster 5) and CD56-CD127- lineage- IELs (cluster 19, 13, 18, 14, 6, and 8), the 
latter representing innate type of lymphocytes with dual T-cell precursor and NK/
ILC traits23,24,25. Remarkably, the remaining 11 clusters strongly resembled distinct 
ILC types, but did not fulfil the complete phenotypic requirements according to 

Fig. 3 Analysis of the CD7+CD3- innate lymphocyte compartment in inflammatory intestinal 
diseases a First HSNE level embedding of 5.2 million cells. Color represents arcsin5-transformed 
marker expression as indicated. Size of the landmarks represents AoI. Blue encirclement indicates 
selection of landmarks representing CD7+CD3- innate lymphocytes and CD4+ T cells further discussed 
in Fig. 5. b The major immune lineages, annotated on the basis of lineage marker expression. 
c Third HSNE level embedding of the CD7+CD3- innate lymphocytes (5.0 × 10 cells). Color represents 
arcsin5-transformed marker expression in top panels, and tissue-origin and clinical features in bottom 
panels. Blue encirclement indicates selection of landmarks representing CD127+ ILC and ILC-like 
cells. d Third HSNE level embedding shows density features depicting the local probability density 
of cells, where black dots indicate the centroids of identified cluster partitions using GMS clustering. 
e Embedding of the CD127+ ILC and ILC-like cells (6.0 × 10 cells) at single-cell resolution. Arrows 
indicate ILC1 (blue), ILC2 (orange) and ILC3 (green) Bottomright panel shows corresponding cluster 
partitions using GMS clustering based on density features (top-right panel). f A heatmap summary of 
median expression values (same color coding as for the embeddings) of cell markers expressed by 
CD127+ ILC and ILC-like clusters identified in b and hierarchical clustering thereof. g Composition of 
cells for each cluster is represented graphically by a horizontal bar in which segment lengths represent  
the proportion of cells with: (left tissue-of-origin, (middle) disease status and (right) sampling status.
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established nomenclature21 (Fig. 4, red annotations). For example, cluster 15 is 
highly similar to ILC2 (cluster 16) based on the expression of CD7, CD127, CD161, 
and CD25, but lacks the ILC2-defining marker CRTH2. Also, clusters 17, 9 and 11 
bear close resemblance to ILC1 based on CD7+CD127+c-KIT- marker expression 
profile, but lack the ILC-defining CD161 marker. Finally, cluster 1 is very similar 
to ILC3 (cluster 5) based on CD127, CD161 and c-KIT positivity, but lacks the 
lymphoid marker CD7. Interestingly, the ILC3 (cluster 5) and ILC3-like (cluster 1) 
populations resided mainly in intestinal biopsies of patient with Crohn’s disease 
(Fig. 3f) and may be related. Cluster 4 was mainly present in peripheral blood 
of patients with RCDII, suggesting a possible association with this pre-malignant 
disease state. Importantly, three clusters (4, 17, and 19) (Fig. 3f) were essentially 
missed in our previous study14 due to the downsampling. Finally, all identified cell 
clusters consist to a variable extent of cells that were downsampled in the original 

Subset Phenotype Annotation
16 CD127+CD161+CD25+CD122-CRTH2+ ILC2
15 CD127+CD161+CD25+CD122-CRTH2- ILC2-like
4 CD56+NKp46+CD127-CD161-c-KIT- NK-like

17 CD56+NKp46+CD127+CD161-c-KIT- ILC1-like
9 CD56+NKp46+CD127+CD161-c-KIT- ILC1-like

11 CD56+NKp46+CD127+CD161-c-KIT- ILC1-like
10 CD56+NKp46+CD127-CD161-c-KIT- NK-like
1 CD7-CD127+CD161+c-KIT+ ILC3-like
5 CD7+CD127+CD161+c-KIT+ ILC3

12 CD56+CD127+CD161+c-KIT-CD27- ILC1-like
19 CD56-CD127-NKp46-CD161dim Lin- cells
13 CD56-CD127-NKp46-CD161dim Lin- cells
18 CD56-CD127-NKp46+CD161- Lin- cells
14 CD56-CD127-NKp46+CD161- Lin- cells
6 CD56-CD127-NKp46+CD161+ Lin- cells
8 CD56-CD127-NKp46+CD161+ Lin- cells
7 CD56+CD127-CD45RA-CD161- NK-like
2 CD56+CD127-CD45RA-CD161+ NK-like
3 CD56+CD127-CD45RA-CD161+ NK-like

Fig. 4 CD127+ ILC and ILC-like subsets identified by Cytosplore+HSNE 
Table showing cluster number, distinguishing phenotypic marker expression profiles and 
biological annotation for the clusters identified in Fig. 3e. Black color indicates clusters 
described in previous reports and red color additional unknown clusters. Hierarchical clustering 
of clusters based on marker expression profile shown in the heatmap depicted in Fig. 3f
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analysis (Fig. 3g). Thus, the analysis of the full data set provides increased detail and 
confidence in establishing the phenotypes of these low abundance innate cell subsets.

HSNE identifies rare CD4+ T-cell subsets in blood
Next, we selected the CD4+ T-cell lineage (Fig. 3a) and show the distribution of 
the landmarks at the third level, revealing several clusters within the CD4+ T-cell 
compartment (Fig. 5a), including a small CD28-CD4+ T-cell memory population 
(25,398 cells; 0.5% of total), most likely representing terminally differentiated cells26. 
Subsequent analysis at the single-cell level (Fig. 5b) identified a CD56+ population 
within the CD28-CD4+ T cells that is enriched in blood of patients with Crohn’s disease 
(Fig. 5b, bottom panels, dashed black circle), as well as a CD56- population of CD28-

CD4+ T cells (Fig. 5b, bottom panels, dashed yellow circle) present in blood samples 
of both patients and controls. Importantly, this latter cell population was not identified 
our previous publication due to the non-uniform downsampling of cells (Fig. 5b). 
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Fig. 5 Analysis of the CD4+ T-cell compartment in inflammatory intestinal diseases a Third HSNE 
level embedding of the CD4+ T cells (1.4×10 cells, selected in Fig. 3). Color and size of landmarks as 
described in Fig. 3. Right panel shows density features for the level 3 embedding. Blue encirclement 
indicates selection of landmarks representing CD28-CD4+ T cells. b Embedding of the CD28-CD4+ T cells 
(2.6×10 cells) at single-cell resolution. Bottom-left panel shows yellow and black dashed encirclements 
based on CD56- and CD56+ expression, respectively. Three bottom-right panels show cells colored 
according to: (left) from subjects with different disease status (CeD, Crohn, EATLII, RCDII, and controls), 
(middle) sampling status (annotated subset, discarded and downsampled) and (right) tissue-of-origin. 
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Together, these findings emphasize that Cytosplore+HSNE is highly efficient in 
unbiased analysis of both abundant and rare cell populations in health and disease 
by permitting full single-cell resolution. It enables the simultaneous identification 
and visualization of known cell subsets and provides evidence for additional 
heterogeneity in the immune system, as it reveals the presence of cell clusters 
that were missed in a previous analysis due to downsampling of the input data. 
These currently unspecified cell clusters might represent intermediate stages 
of differentiation or novel rare cell types with presently unknown function.

HSNE is robust and outperforms current single-cell methods
While the exploration of the hierarchy requires analysis at multiple levels, the 
workflow is robust and reproducible as shown in Supplementary Fig. 5. In this 
exemplary analysis, we obtained the same Cytosplore+HSNE clusters at the single-cell 
level upon reconstructing the hierarchy and embeddings in a matter of minutes 
(Methods section). In addition, we tested the Cytosplore+HSNE applicability to three 
different public mass cytometry data sets. First, we analyzed a well-characterized bone 
marrow data set27 containing 81,747 cells as a benchmark case (Supplementary 
Fig. 6) and demonstrated that the landmarks in the overview level (2,632; 3.2% of 
total) that were selected by the HSNE algorithm were distributed across almost 
all of the manually gated cell types (Supplementary Fig. 6a), indicating that the 
global data heterogeneity was accurately preserved. Also, GMS clustering resulted 
in HSNE clusters that were phenotypically similar to the manually gated cell types 
and displayed additional diversity within those subsets (Supplementary Fig. 6b). 
However, as the power of Cytosplore+HSNE lies in its scalability to data sets exceeding 
millions of cells, we also tested the versatility of Cytosplore+HSNE by comparing it 
to other state-of-the-art scalable single-cell analysis methods and accompanying 
large data sets (Supplementary Note 3. Cytosplore+HSNE offers advantages over 
current scalable single-cell analysis methods, Supplementary Figs. 7 and 8). 
Here Cytosplore+HSNE computed the analyses of the VorteX data set5 containing 
0.8 million cells in 4 min compared to 22 h, using the publicly available VorteX 
implementation on the same computer. Similarly, analysis of the Phenograph data 
set4 containing 15 million cells was computed in 3.5 h compared to 40 h, using the 
publicly available Phenograph implementation on the same computer. Both analyses 
show that Cytosplore+HSNE reproduces the main findings as presented in the original 
publications. More importantly, Cytosplore+HSNE provides the distinct advantage of 
visualizing all cells and intracluster heterogeneity at subsequent levels of detail up 
to the single-cell level, even for the 15 million of cell data set, without a need for 
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downsampling. Also, VorteX failed computing the 5.2 million cell gastrointestinal data 
set within 3 days of clustering (regardless of using Euclidian or Angular distance), 
where Cytosplore+HSNE accomplished this within 29 min. Moreover, while Phenograph 
did identify rare clusters that largely consisted of CD56+ cells within the CD28-

CD4+ memory T cells (Fig. 5b), these clusters did not accurately correspond to the 
total number of CD56+ cells, obscuring the association with Crohn’s disease, further 
highlighting the advantages of Cytosplore+HSNE over these other computational tools.

Finally, we investigated whether a density-based downsampling as implemented 
for instance by SPADE2, could provide better results compared to random 
downsampling. However, solely applying density-based downsampling does not 
allow for quantitative analysis of the resulting sample, as different types of cells will 
be reduced by different amounts. To mitigate this problem, SPADE implements an 
elaborate pipeline of downsampling, clustering and subsequent upsampling to enable 
for such a comparison, while this is an inherent part of HSNE. Therefore, we made a 
direct comparison between density-based downsampling used in the SPADE pipeline2 
and HSNE of the same 5.2 million cells gastrointestinal data set. On the basis of the 
expression of major lineage markers (Fig. 3a), HSNE created six large clusters (Fig. 
3b) in the two-dimensional space at the overview level where similar landmark 
cells group closely, laying out all the cells of one cluster very close to any other 
cell of the same cluster, but distant from the cells of the other clusters. The SPADE 
analysis on the same data (Supplementary Fig. 9) created a dendrogram where 
cells of one cluster are close to cells of other clusters, while in high-dimensional 
space, they could be dissimilar and far apart. Importantly, we compared the ability of 
the SPADE analysis to preserve rare cellular subsets with HSNE. Despite density-
based downsampling, several SPADE nodes that were created displayed a mixture of 
different phenotypes (underclustering) as revealed by the single-cell resolution of a 
linked t-SNE analysis that we show for the CD56+CD4+ T-cell node as an example 
(Supplementary Fig. 9b, node #1), while other SPADE nodes contained cells with 
overlapping phenotypes (overclustering) such as several myeloid cell populations 
(Supplementary Fig. 9c, nodes #2–5). In addition, rare subsets such as the CD28- 
subpopulations of CD4+ memory T cells (Supplementary Fig. 9d) or the ILC-like 
clusters (Supplementary Fig. 9e) that we could identify with HSNE (Figs. 3 and 
5) were in the resulting SPADE tree indistinguishable from other CD4+ T cells or 
innate lymphocytes, respectively (shown by the overlapping distributions of cells from 
different nodes); this indicates that SPADE is less suitable for rare cell analysis. A similar 
problem was reported by Amir et. al., where leukemic cells were not separated from 
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healthy cells in the SPADE tree9. Thus, combining the single-cell resolution with the 
enhanced scalability may be critical for the success of HSNE in preserving rare cells.

DISCUSSION

Mass cytometry data sets generally consist of millions of cells. Current tools 
can either extract global information with no single-cell resolution or provide 
single-cell resolution but at the expense of the number of cells that can be 
analyzed. Consequently, when single-cell resolution is of interest, most current 
tools require downsampling of the data sets. However, reducing the number of 
included cells in the analysis pipeline may hamper the identification of rare subsets.

To overcome this problem, we introduce Cytosplore+HSNE. On the basis of a novel 
hierarchical embedding of the data (HSNE), Cytosplore+HSNE enables the analysis of 
tens of millions of cells using the whole data in a fraction of the time required by 
currently available tools. The power of the hierarchical embedding strategy is that 
Cytosplore+HSNE provides visualizations of the data at different levels of resolution, 
while preserving the non-linear phenotypic similarities of the single cells at each 
level. Cytosplore+HSNE enables the user to interactively select the groups of data 
points at each resolution level, either hand-picked or guided by density-based 
clustering, to further zoom-in on the underlying data points in the hierarchy up to 
the single-cell resolution. Using a data set of 5.2 million cells, we demonstrate that 
Cytosplore+HSNE allows a rapid analysis of the composition of the cells in the data 
set that, at all levels of the hierarchy, the representation of these cells preserve 
phenotypic relationships, and that one can zoom-in on rare cell populations that 
were missed with other analysis tools. The identification of such rare immune subsets 
offers opportunities to determine cellular parameters that correlate with disease.

There is an ongoing scientific debate on the validity of clustering in t-SNE maps 
versus direct clustering on the high-dimensional space. However, it has been shown 
that stochastic neighbor embedding (SNE) preserves and separates clusters in 
the high-dimensional space28. While clustering the data points on highly non-linear 
manifolds is possible with complex models, we argue that the presented approach 
simplifies clustering considerably. We show that HSNE efficiently unfolds the non-
linearity in the high-dimensional data, as other SNE approaches do and therefore 
simpler clustering methods based on locality in the map suffice to partition the data 
faithfully (e.g., the density-based GMS clustering, implemented in Cytosplore+HSNE). 
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Especially when combined with an interactive quality control mechanism to visually 
inspect residual variance within each cluster, the kernel size can be selected such 
that within-cluster variance is minimized, and thereby supports the validity of the 
cluster with respect to potential underclustering. This is indeed confirmed by 
comparisons to other scalable tools (i.e., Phenograph and VorteX), showing that 
Cytosplore+HSNE provides a superior discriminatory ability to identify and visualize 
rare phenotypically distinct cell clusters in large data sets in a very short time span. 
However, depending on user preference, Cytosplore+HSNE can be used in conjunction 
with such direct clustering approaches. This allows the user to identify additional 
heterogeneity that is potentially missed by direct clustering, and provides the tools 
for an informed merging and splitting of clusters as the user deems appropriate. 
The recent application of mass cytometry and other high-dimensional single-cell 
analysis techniques has greatly increased the number of phenotypically distinct cell 
clusters within the immune system. This raises obvious questions about the true 
distinctiveness and function of such cell clusters in health and disease, an issue that is 
beyond the scope of the present study but needs to be addressed in future studies.

In conclusion, Cytosplore+HSNE allows an interactive and fast analysis of larg high-
dimensional mass cytometry data sets from a global overview to the single-cell 
level and is coupled to patient-specific features. This may provide crucial information 
for the identification of disease-associated changes in the adaptive and innate 
immune system which may aid in the development of disease- and patient-specific 
treatment protocols. Finally, Cytosplore+HSNE applicability goes beyond analyzing mass 
cytometry data sets as it is able to analyze any high-dimensional single-cell data set.

METHODS

HSNE algorithm
HSNE builds a hierarchy of local and non-linear similarities of high-dimensional data 
points13, where landmarks on a coarser level of the hierarchy represent a set of similar 
points or landmarks of the preceding more detailed level. To represent the non-linear 
structures of the data, the similarity of these landmarks is not described by Euclidian 
distance, but by the concept of AoI on landmarks of the preceding level. The similarities 
described in every level of the hierarchy are then used as input for an adapted 
version of the similarity-based embedding technique BH-SNE15 for visualization.

The algorithm works as follows: First, a weighted k-nearest neighbor (kNN) graph 
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is computed from the raw input data. For optimal performance and scalability, the 
neighborhoods are approximated as described in ref. 16. The weight of the link between 
the two data points in the kNN graph describes the similarity of the connected data 
points.

In the subsequent steps, the hierarchy is built based on the similarities of the data 
level. To this extent, a number of random walks of predefined length is carried out 
starting from every node in the kNN graph, using the similarities as probability for 
the next jump; similar nodes to the current node are more likely to be the target 
of the next jump. Nodes in the graph that are reached more often are considered 
more important and selected as landmarks for the next coarser level. The number 
of landmarks is selected in a data-driven manner, based on this importance. The 
AoI of a landmark is defined by a second set of random walks started from all 
nodes (data points or landmarks on the preceding level). Here, the length is not 
predefined. Rather, once a landmark is reached, the random walk terminates. The 
influence on the node is then defined for every reached landmark as the fraction 
of walks that terminated in that landmark. Inversely, the AoI for each landmark is 
defined as the set of all nodes that reached this landmark at least once in this second 
set of random walks. Consequently, since multiple random walks initiated at the 
same node can end in different nodes, the AoIs of different landmarks can overlap.

We use this overlap to define a new neighborhood graph at the levels above the 
data level. Here, two nodes in the graph corresponding to landmarks at this level 
are connected if they have overlapping AoIs, where the link between the nodes 
is weighted by the number of data points in the overlapping area. This process 
is carried out iteratively, until a predefined number of hierarchical levels has 
been constructed. For the full technical details, we refer to our previous work13.

HSNE implementation in Cytosplore
We implemented our integrated analysis tool Cytosplore+HSNE using a combination of 
C++, javascript and OpenGL. All computationally demanding parts are implemented in 
C++ and make use of parallelization, where possible. The density estimation and GMS 
clustering make use of the graphics processing unit (GPU), as described in our original 
publication on Cytosplore29, if possible, allowing clustering of millions of points in less 
than a second. We implemented the visualizations of the embedding in OpenGL on 
the GPU, for optimal performance, and less computational demanding visualizations, 
such as the heatmap, in javascript. We implemented the HSNE algorithm in C++ , as 
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presented in ref. 13. Since we use the sparse data structures, memory consumption 
strongly depends on the data complexity. Maximum memory consumption during the 
construction of a four level hierarchy plus overview embedding of the 841,644 cell 
VorteX data set was 1,684 MB, construction of a five-level hierarchy of our human 
inflammatory intestinal diseases data set, consisting of 5,220,347 cells required a 
maximum of 9,357 MB of main memory, and finally, the 15,299,616 cell Phenograph 
data set required a maximum of 24.3 GB of memory during the computation of 
a five-level hierarchy plus the overview embedding. Computation times for the 
described hierarchies plus the first level embedding after 1,000 iterations were 4 
min, 29 min, and, 3 h and 37 min, respectively, on a HP Z440 workstation with a single 
intel Xeon E5-1620 v3 CPU (4 cores) clocked at 3.5 Ghz, 64 GB of main memory 
and an nVidia Geforce GTX 980 GPU with 4 GB of memory, running Windows 7.

Human gastrointestinal disorders mass cytometry data set
Detailed description of the mass cytometry data set on human gastrointestinal 
disorders can be found in our previous work14. In brief, samples (N = 102) were 
collected from patients who were undergoing routine diagnostic endoscopies. 
The cells from the epithelium and lamina propria were isolated from two or three 
intestinal biopsies by treatment with EDTA followed by a collagenase mix under 
rotation at 37 °C. We analyzed single-cell suspensions from biological samples 
including duodenum biopsies (N = 36), rectum biopsies (N = 13), perianal fistulas 
(N = 6), and PBMC from control individuals (N = 15) and from patients with 
inflammatory intestinal diseases (celiac disease (CeD), N = 13; RCD type II (RCDII), 
N = 5; enteropathy-associated T-cell lymphoma type II (EATLII), N = 1 and Crohn’s 
disease (Crohn), N = 10). A CyTOF panel of 32 metal isotope-tagged monoclonal 
antibodies was designed to obtain a global overview of the heterogeneity of the 
innate and adaptive immune system. Primary antibody metal-conjugates were 
either purchased or conjugated in-house. Procedures for mass cytometry antibody 
staining and data acquisition were carried out as previously described27. CyTOF 
data were acquired and analyzed on-the-fly, using dual-count mode and noise-
reduction on. All other settings were either default settings or optimized with a 
tuning solution. After data acquisition, the mass bead signal was used to normalize 
the short-term signal fluctuations with the reference EQ passport P13H2302 
during the course of each experiment and the bead events were removed30.

Processing of mass cytometry data
We transformed data from the human inflammatory intestinal diseases data set 
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using hyperbolic arcsin with a cofactor of 5 directly within Cytosplore+HSNE. 
We discriminated live, single CD45+ immune cells with DNA stains and 
event length for the human inflammatory intestinal diseases study. We 
analyzed other data (Phenograph and VorteX data sets) as was available, 
except the transformation using hyperbolic arcsin with a cofactor of 5.

Cytosplore+HSNE analysis
Cytosplore+HSNE facilitates the complete exploration pipeline in an integrated manner 
(see Supplementary Movie 1). All presented tools are available for every step of 
the exploration and every level of the hierarchy. Data analysis in Cytosplore+HSNE 

included the following steps: We applied the arcsin transform with a cofactor of five 
upon loading the data sets. After that, we started a new HSNE analysis and defined 
the markers that should be used for the similarity computation. We used markers 
CD3, CD4, CD7, CD8a, CD8b, CD11b, CD11c, CD14, CD19, CD25, CD27, CD28, 
CD34, CD38, CD45, CD45RA, CD56, CD103, CD122, CD123, CD127 CD161, 
CCR6, CCR7, c-KIT, CRTH2, IL-15Ra, IL-21R, NKp46, PD-1, TCRab, and TCRgd for 
the human inflammatory intestinal diseases data set, all available markers for the 
bone marrow benchmark dataset, surface markers CD3, CD7, CD11b, CD15, CD19, 
CD33, CD34, CD38, CD41, CD44, CD45, CD47, CD64, CD117, CD123 and HLA-
DR for the Phenograph dataset, and markers CD3, CD4, CD5, CD8, CD11b, CD11c, 
CD16/32, CD19, CD23, CD25, CD27, CD34, CD43, CD44, CD45.2, CD49b, CD64, 
CD103, CD115, CD138, CD150, 120g8, B220, CCR7, c-KIT, F4/80, FceR1a, Foxp3, 
IgD, IgM, Ly6C, Ly6G, MHCII, NKp46, Sca1, SiglecF, TCRb, TCRgd and Ter119 to 
construct the hierarchy for the VorteX data set. We used the standard parameters 
for the hierarchy construction; number of random walks for landmark selection: N = 
100, random walk length: L = 15, number of random walks for influence computation: 
N = 15. For any clustering that occurred the GMS grid size was set to S = 256 ref.2. 
The reduction factor from one level in the hierarchy to the next coarser level is 
completely data-driven. In our experiments with mass cytometry data, the number 
of landmarks was consistently reduced by roughly one order of magnitude from one 
level to the next. Embeddings consisting of only a few hundred points usually provide 
little insight. Therefore, we defined the number of levels such that the overview level 
could be expected to consist of in the order of 1,000 landmarks meaning N = 5 
for the human inflammatory intestinal diseases data set and Phenograph data set, 
N = 3 for the bone marrow benchmark data set, and N = 4 for the VorteX data set. 
Building the hierarchy automatically creates a visualization of the overview level using 
BH-SNE. Cytosplore+HSNE enables color coding of the landmarks using expression 
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(e.g., Fig. 3a) of any provided markers or by sample. For example, we created the 
clinical feature (e.g., Fig. 3c, bottom-left panel) and blood/intestine (e.g., Fig. 3c, 
bottom-right panel) color schemes based on samples for the human inflammatory 
intestinal diseases data set within Cytosplore+HSNE, and for the Phenograph data set, 
we created a color scheme that represented the sample coloring as provided in 
ref.4 (Supplementary Fig. 7). For zooming into the data, we generally selected 
cells based on visible clusters, either using manual selection or by selecting clusters 
derived by using the GMS clustering. For the VorteX data set, we clustered the 
third level embedding (Supplementary Fig. 8). We specified a kernel size of 0.18 
of the embedding size, to match the 48 clusters created by the X-shift clustering 
described in ref.5, resulting in 50 clusters. For subset classification, we first cluster the 
embedding at a given level using the GMS clustering. Next, we inspect the clustering 
by using the integrated descriptive marker statistics and heatmap visualization. 
If there is still meaningful variation of the marker expression within clusters, we 
zoom further into these clusters. If clusters are phenotypically homogeneous, the 
corresponding cell types are defined by inspecting the full marker expression profile 
in the heatmap and then the cluster is exported from any level in the hierarchy.

Data availability 
The gastrointestinal mass cytometry data set that supports the findings of this 
study is publicly available on Cytobank, experiment no 60564. https://community.
cytobank.org/cytobank/experiments/60564. The source code of the HSNE library, 
written in C++, is available at https://github.com/Nicola17/High-Dimensional-
Inspector. Furthermore, we provide a Cytosplore+HSNE installer for Windows, allowing 
exploration of several million cells, for academic use at https://www.cytosplore.org.
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SUPPLEMENTAL INFORMATION

Supplementary Note 1. Cytosplore+HSNE is reproducible and robust
Cytosplore+HSNE allows significant user interaction during the exploration of the 
HSNE hierarchy, where the embedding visualizations and integrated clustering 
provide strong guidance. Independent explorations of the 5.2 million dataset, 
following the same zooming-in strategy are shown in Supplementary Figure 
5. While the embeddings slightly vary at all levels, (mostly in rotation and 
reflection of the map), the same high level structure is found in all explorations. 
The robust separation of these structures guides the user in the selection and 
zooming-in process, resulting in highly similar embeddings down to the data level.

Focusing on separate regions of the data and interactively zooming into these 
separately provides significantly more detail than is possible by direct dimensionality 
reduction or clustering of the complete dataset (Figs. 3 and 4). However, 
Cytosplore+HSNE does provide the possibility to visualize the complete dataset 
at the data level (Supplementary Fig. 1a). A dataset consisting of 1 million 
cells created by randomly sampling the 5.2 million cell dataset presented in the 
main text and three smaller ones derived from this were analysed with HSNE 
and t-SNE resulting in highly similar embeddings (Supplementary Fig. 1a). 

Supplementary Figure 1b shows the robustness of HSNE with regard to 
downsampling as well as the superiority of the HSNE data reduction towards 
the overview level, compared to random downsampling. Here the embeddings 
within each column are similar, indicating that HSNE captures similar features even 
with downsampled data. However, detail increases with growing data sizes even 
if the number of landmarks are comparable between datasets. Thus the HSNE 
hierarchy preserves the non-linear structures in the data when reducing the data 
for visualization at the more abstract levels, while these structures can be lost 
during random downsampling. The difference in detail is especially striking when 
comparing the complete HSNE hierarchy of 1 million cells (Supplementary 
Fig. 1b, top row) to the t-SNE embeddings of randomly sampled datasets 
of similar sizes as the HSNE levels (Supplementary Fig. 1a, bottom row).

Supplementary Note 2. Millions of cells cause performance issues and 
overcrowding in t-SNE
Although feasible with a strong computational infrastructure, t-SNE suffers from 
several problems when analyzing datasets exceeding hundreds of thousands of cells. 
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Three main parameters influence the result of a t-SNE embedding: the number of 
iterations for the gradient descent i, perplexity p and theta t (the latter only for BH-
SNE). Cytobank provides a brief analysis of the parametersa that shows diminishing 
returns for p and t, beyond certain values, which can sensibly be used as defaults 
and do not significantly change with the input data size. In contrast, i needs to be 
adjusted with increasing data sizes. We show that the commonly used default value 
of i=1,000 is not enough to properly embed millions of cells (Supplementary Fig. 
2). All embeddings were created using A-tSNE, implemented in Cytosplore, using the 
default parameters of p=30 and t=0.01. Supplementary Figure 2a-c show embeddings 
of 1 million, 2 million and 5 million cells, respectively, randomly sampled from the 5.2 
million cell dataset presented in the main text after 1,000 iterations. Computation 
time for the embeddings were (a) 5.5 h, (b) 13 h, and (c) 54 h. Supplementary 
Figure 2d-f show the same embeddings after 4,000 further iterations. Total 
computation time for the embeddings were (d) 19.5 h, (e) 45.5 h, and (f) 252 h.

While Supplementary Figure 2a seems to provide a good separation for some 
high level clusters Supplementary Figure 2b and c show typical artifacts of a non-
converged embedding, i.e. the cells concentrate strongly in the center of the visualization, 
often forming a cross shape along the two axes as is clearly visible in the density plots. 

All embeddings evolved significantly after 4,000 additional iterations (Supplementary 
Fig. 2d-f), indicating that 1,000 iterations are not enough to fully converge for these 
large data sizes. Even after 5,000 iterations and 252 h of computation Supplementary 
Figure 2f still shows similar artifacts. Another problem of computing t-SNE for such 
large datasets is overcrowding. All embeddings show signs of overcrowding. Only 
large scale neighborhoods can be identified in Supplementary Figure 2d, while 
structure within these neighborhoods is hard to identify due to the large number 
of cells, even in the density plot. Also, in Supplementary Figure 2e and f some 
‘color smear’ is present in the single-cell plots indicating that local neighborhoods 
were not resolved properly by the t-SNE algorithm. Intuitively, t-SNE accounts for 
small neighborhoods. By increasing the size of the input data local neighborhoods 
will often become less strongly connected and can tear, resulting in the displacement 
of cells in the plot. These effects might be reduced by increasing the perplexity 
valueb. Increasing p will help in the separation of high level clusters, however, at the 
cost of intracluster separation, as there will be less visual space for each cluster. 
A detailed analysis of the neighborhood conservation of different dimensionality 
reduction techniques, including t-SNE, can be found in our previous work13.
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Supplementary Note 3. Cytosplore+HSNE offers advantages over current 
scalable single-cell analysis methods 
We investigated the generalizability as well the scalability of Cytosplore+HSNE 

by comparison to two other-of-the-art scalable single-cell analysis methods 
and accompanying public datasets (Phenograph and VorteX). Both techniques 
use a clustering method followed by visualization of the generated clusters.

Phenograph achieves this by the Louvain community detection method for 
partitioning of the kNN graph, followed by a t-SNE embedding of the communities 
based on their median values. The resulting embedding places the communities in 
a global context, but cannot display the details of the single-cell complexity within 
the communities. Using Cytosplore+HSNE we were able to reproduce the clusters 
of the Phenograph bone marrow dataset, consisting of 15 million cells, after 3.5 
hours of computation, compared to 40 hours with the Phenograph algorithm 
(clustering per individual samples) on the same computer. Also, Cytosplore+HSNE only 
required 29 minutes to compute the 5.2 million cell gastrointestinal dataset, while 
Phenograph required 4 hours. In addition to the significantly faster computation, 
Cytosplore+HSNE provides the distinct advantage of visualizing all cells and 
intracluster heterogeneity at subsequent levels of detail (Supplementary Fig. 7 )

VorteX first clusters the data using the X-shift algorithm, and then visualizes the 
result by random sampling of cells from the clusters for visualization in a single-
cell force-directed layout. The sampling is necessary, as the force-directed layout 
can computationally handle 30,000 cells only. Therefore, the resulting single-cell 
visualization shows only 3.6 % of the original dataset. Although the technique 
allows for more detailed cellular visualization compared to Phenograph, a time-
consuming second computation is required for every additional analysis on 
individual immune lineages. In a direct comparison Cytosplore+HSNE recapitulated 
the murine bone marrow clusters at the second level of a 4 level hierarchy in 
minutes while VorteX required 22 hours (Supplementary Fig. 8a,b). In 
addition, by applying the zooming-in approach, we obtained the single-cell details 
for the plasmacytoid dendritic cell lineage within seconds (Supplementary Fig. 
8c). Finally, VorteX failed computing the 5.2 million cell gastrointestinal dataset 
within 3 days of clustering (regardless of using Euclidian or Angular distance).
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Supplementary Figure 1 Comparison of robustness with regard to downsampling between t-SNE
and HSNE. 
(a) Comparison of t-SNE (bottom row) and HSNE (top row) data level embeddings for datasets of 
different sizes (columns). First, 1 million cells were randomly sampled from the 5.2 million cell dataset, 
the smaller datasets were then created by randomly sampling the next largest one. All plots were 
created after 1,000 iterations. The 1 million cell embeddings were not fully converged. Color indicates 
CD7 expression. 

Supplementary Figure 1 Comparison of robustness with regard to downsampling between t-SNE
and HSNE (a) Comparison of t-SNE (bottom row) and HSNE (top row) data level embeddings for datasets 
of different sizes (columns). First, 1 million cells were randomly sampled from the 5.2 million cell dataset, the 
smaller datasets were then created by randomly sampling the next largest one. All plots were created after 
1,000 iterations. The 1 million cell embeddings were not fully converged. Color indicates CD7 expression. 
(b) Robustness of the HSNE hierarchy with regard to downsampling. Each row shows the datasets as
described above. Embeddings for the complete hierarchy of log10(N/100) levels, with N being the
number of cells, are shown in the columns. Color as in panel a. Numbers of landmarks are
approximated, indicating a reduction of one order of magnitude per level. In all columns the amount of
detail increases towards the top (larger datasets), even though all embeddings in a column consist of
roughly the same number of points. This implies that the preservation of non-linear neighborhoods by
HSNE conserves structure that is lost by random downsampling
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Supplementary Figure 2 t-SNE embeddings of millions of cells show overcrowding and 
artifacts caused by insufficient optimization. 
(a-c) Single-cell (top row) and density-based (bottom row) visualizations of t-SNE embeddings of (a)
1, (b) 2 and (c) 5 million cells, respectively, after 1,000 iterations, the standard setting used in many t-
SNE applications. Color in the single-cell visualization corresponds to the CD7 marker expression; in 
the density visualization to the cell density in the t-SNE plot. 
(d-f) The same embeddings, consisting of (d) 1, (e) 2 and (f) 5 million cells, respectively, after 4,000 
additional iterations, resulting in a total of 5,000 iterations. Colors as above.  
(g) Computation times for the different t-SNE computations. 

Supplementary Figure 2 t-SNE embeddings of millions of cells show overcrowding and
artifacts caused by insufficient optimization 
(a-c) Single-cell (top row) and density-based (bottom row) visualizations of t-SNE embeddings 
of (a) 1, (b) 2 and (c) 5 million cells, respectively, after 1,000 iterations, the standard setting 
used in many t-SNE applications. Color in the single-cell visualization corresponds to the CD7 
marker expression; in the density visualization to the cell density in the t-SNE plot. (d-f) The 
same embeddings, consisting of (d) 1, (e) 2 and (f) 5 million cells, respectively, after 4,000
additional iterations, resulting in a total of 5,000 iterations. Colors as above. (g) Computation times for the 
different t-SNE computations.
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Supplementary Figure 3 The Cytosplore+HSNE software.
(a) Settings panel for the HSNE analysis. 
(b-e) Zoom into the Innate Lymphocytes as shown in Figure 2 and Supplementary Figure 3. (b) 
overview level, (c) level 2, (d) level 3, (e) level 4. Color shows; (b) CD7 marker expression, (c) clinical 
features, (d) tissue origin, (e) cell density. A selection in panel d is highlighted in panel b,c, and d by
blue halos around circles and arrows. Note, arrows added for clarity only and are not part of the 
software. 
(f) heatmap visualization of the median values of the clusters generated by GMS clustering based on 
the density visualization in panel e. Color shows marker expression. 
(g) Statistics of the selection shown in panel b-d.

Supplementary Figure 3 The Cytosplore+HSNE software
(a) Settings panel for the HSNE analysis. (b-e) Zoom into the Innate Lymphocytes as shown in Figure 3  
(b) overview level, (c) level 2, (d) level 3, (e) level 4. Color shows; (b) CD7 marker expression, (c) clinical 
features, (d) tissue origin, (e) cell density. A selection in panel d is highlighted in panel b,c, and d by blue 
halos around circles and arrows. Note, arrows added for clarity only and are not part of the software. (f) 
heatmap visualization of the median values of the clusters generated by GMS clustering based on the density 
visualization in panel e. Color shows marker expression. (g) Statistics of the selection shown in panel b-d.

Supplementary Figure 4 Comparisons of cellular composition of the clusters identified 
with Cytosplore+HSNE with the previously annotated subsets using the SPADE-t-SNE-ACCENSE
method.
Rows indicate the individual SPADE-t-SNE-ACCENSE annotated subsets (N = 142) identified in the 
previous study14 (N = 142) and columns indicate the individual clusters identified with Cytosplore+HSNE

(N = 144) of the same 1.1 million cells from the gastrointestinal dataset. Color indicates the fraction of 
the cluster containing cells assigned to a single subset as annotated with SPADE-t-SNE-ACCENSE. 

Supplementary Figure 4 Comparisons of cellular 
composition of the clusters identified with Cytosplore+HSNE 
with the previously annotated subsets using the SPADE-t-
SNE-ACCENSE method Rows indicate the individual SPADE-
t-SNE-ACCENSE annotated subsets (N=142) identified in the 
previous study14 (N=142) and columns indicate the individual 
clusters identified with Cytosplore+HSNE (N=144) of the same 
1.1 million cells from the gastrointestinal dataset. Color 
indicates the fraction of the cluster containing cells assigned to 
a single subset as annotated with SPADE-t-SNE-ACCENSE.
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Supplementary Figure 5 Reproducibility of the hierarchy and the embeddings. 

Four independent Cytosplore+HSNE analyses are shown (columns) reproducing the hierarchy 
construction and exploration of the data with the same zooming-in strategy (blue encirclements). 
Color-coding indicates arcsin5-transformed marker expression.

Supplementary Figure 5 Reproducibility of the hierarchy and the embeddings
Four independent Cytosplore+HSNE analyses are shown (columns) reproducing the hierarchy
construction and exploration of the data with the same zooming-in strategy (blue encirclements).
Color-coding indicates arcsin5-transformed marker expression.
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Supplementary Figure 6 Cytosplore+HSNE analysis of the manual gated bone marrow benchmark dataset.
(a) Heatmap depicting the distributions of the landmarks in the overview level (N=2,632; 1st hierarchical level of 3 in total) 
across the manual gated subsets of the bone marrow benchmark dataset27 (N=81,747 cells) and hierarchical 
clustering thereof. (b) t-SNE embedding of the bone marrow benchmark dataset color-coded for cell clusters identified 
with Cytosplore+HSNE (top panel) or by cell type assignments established by manual gating (bottom panel).Supplementary Figure 6 Cytosplore+HSNE analysis of the manual gated bone marrow benchmark 

dataset
(a) Heatmap depicting the distributions of the landmarks in the overview level (N=2,632; 1st 
hierarchical level of 3 in total) across the manual gated subsets of the bone marrow benchmark 
dataset27 (N=81,747 cells) and hierarchical clustering thereof. (b) t-SNE embedding of the 
bone marrow benchmark dataset color-coded for cell clusters identified with Cytosplore+HSNE 

(top panel) or by cell type assignments established by manual gating (bottom panel).
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Supplementary Figure 7 Cytosplore+HSNE analysis of the Phenograph bone marrow dataset.

Cytosplore+HSNE embeddings of the full 15.0 million cells of the Phenograph human bone marrow 
dataset (overview level of a 5 level hierarchy). Color coding of main panel (top left) by patient identity. 
In additional panels, color coding indicates arcsin5-transformed marker expression. The above shows 
a comparison with Figure 3 of the original study4.

Supplementary Figure 7 Cytosplore+HSNE analysis of the Phenograph bone marrow dataset.
Cytosplore+HSNE embeddings of the full 15.0 million cells of the Phenograph human bone marrow
dataset (overview level of a 5 level hierarchy). Color coding of main panel (top left) by patient identity.
In additional panels, color coding indicates arcsin5-transformed marker expression. The above shows a 
comparison with Figure 3 of the original study4.
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Supplementary Figure 8 Cytosplore+HSNE analysis of the VorteX bone marrow dataset
(a) Cytosplore+HSNE embeddings of the full 0.8 million cells of the VorteX mouse bone marrow dataset
(2nd hierarchical level of 4 in total). Color coding indicates arcsin5-transformed marker expression. (b)
Embedding as in panel a. Color coded for 50 clusters identified with Cytosplore+HSNE. Shaded boxes
show locations of hand-gated cell populations. (c) Embeddings of zoomed-in populations related to
pDC development (3rd hierarchical level of 4 in total). The above shows a comparison with Figure 2 of
the original study5.
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HSNE1 HSNE1 
Supplementary Figure 9 SPADE analysis of the gastrointestinal dataset
The 5.2 million cell gastrointestinal dataset was analyzed by SPADE using 10% target events for density-based downsampling and 
142 target nodes as settings. (a) SPADE tree colored with arcsin5-transformed marker expression as indicated. Size of the nodes 
represents cell size. Five nodes are indicated for further analysis. (b) t-SNE embedding of node 1 (panel a) at single-cell resolution. 
Color of cells as in panel a. (c) A heatmap summary of median expression values of cell markers expressed by nodes 2-5 (panel a). 
Coloring as in panel a. (d) HSNE data level of CD28- memory CD4+ T cells after clustering with SPADE. Colors indicate marker 
expression (left) and SPADE node identity (right) (e) HSNE data level of ILC and ILC-like clusters after clustering with SPADE.
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Supplementary Figure 9 SPADE analysis of the gastrointestinal dataset
The 5.2 million cell gastrointestinal dataset was analyzed by SPADE using 10% target events for 
density-based downsampling and 142 target nodes as settings. (a) SPADE tree colored with arcsin5-
transformed marker expression as indicated. Size of the nodes represents cell size. Five nodes 
are indicated for further analysis. (b) t-SNE embedding of node 1 (panel a) at single-cell resolution. 
Color of cells as in panel a. (c) A heatmap summary of median expression values of cell markers 
expressed by nodes 2-5 (panel a). Coloring as in panel a. (d) HSNE data level of CD28- memory 
CD4+ T cells after clustering with SPADE. Colors indicate marker expression (left) and SPADE 
node identity (right) (e) HSNE data level of ILC and ILC-like clusters after clustering with SPADE.
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ABSTRACT

Inflammatory bowel disease (IBD) is characterized by chronic inflammation of 
the intestine. Studies on individual immune lineages have shown alterations in 
the innate and adaptive intestinal immune system implicated in IBD. However, a 
comprehensive analysis of the cell composition in intestinal biopsies from IBD 
patients across all major immune lineages simultaneously was lacking. Here, we 
applied mass cytometry with a 36-antibody panel to the analysis of specimens along 
the intestinal tract paired with and/or without inflammation (N=118) and peripheral 
blood mononuclear cells (N=46) in non-diseased controls (N=15) and untreated, 
newly diagnosed IBD patients (N=23). Utilizing HSNE, we identified 309 distinct 
cell clusters from the collective intestinal dataset containing 3.4 million cells in a 
data-driven manner. We identified a large interindividual variation as compared 
to intraindividual variation in immune cell composition in the intestine. The CD4+ 

and CD8+ T cell adaptive compartment, and the TCRgd, innate lymphoid cell and
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myeloid cell innate compartment display alterations in composition with distinct 
cellular profiles in IBD-affected specimens compared with unaffected specimens 
from patients and controls. The integration of all lineages into an immune-system-
wide analysis resulted in six types of intestinal samples based on respective cell 
compositions. Distribution of the samples demonstrated that infiltrate type 1, type 
2 and type 3 were present in biopsies from both control and IBD patients, while 
infiltrate type 3, type 4 and type 5 were exclusively present in biopsies from patients. 
The stratification of immune cell infiltrates in the intestine sheds new light on the 
involvement of the immune system in IBD, an important step towards personalized 
and cost-effective patient care.

INTRODUCTION

Inflammatory bowel disease (IBD) is an expanding global health problem 
characterized by chronic, idiopathic inflammation of the intestine, where disruption 
of intestinal homeostasis is key. The incidence and prevalence of IBD are steadily 
rising worldwide1 with nearly 1.4 million Americans and 2.2 million Europeans 
affected.2 3 IBD aetiology is multifactorial, and depends upon host’s genetics, 
dysregulated immune responses and environmental triggers.4 The two main forms 
are Crohn’s disease (Crohn) and ulcerative colitis (UC). In 10%-15% of cases, 
however, a clear assignment is not possible, a condition termed undeterminate 
colitis (IBD-U). In addition, perianal fistulas occur in 25% of Crohn cases and this 
is accompanied by multiple relapses and a poor prognosis.5 Endoscopic evaluation 
with gastro- or ileocolonoscopy is the gold standard to diagnose and monitor IBD, 
but is invasive, costly, and time-consuming. For unknown reasons the incidence of 
paediatric IBD is rising, and in comparison with adult onset IBD, paediatric onset 
tends to be more extensive and associated with severe exacerbations and worse 
prognosis.6 The treatment for IBD is usually lifelong pharmacotherapy including 
biologicals (anti-TNF) with an estimated cost 36,000 dollars per patient per year,7 
yet remission is often difficult to maintain.8 Also, the clinical response to immune 
suppression-based therapies is variable and unpredictable.9 Consequently, thirty 
percent of patients undergo surgery within 5 years after diagnosis. This emphasizes, 
altogether, that there is a significant morbidity in many patients. Therefore, there is 
an urgent need for improved classification of IBD, biomarkers to predict response 
to treatment, and novel diagnostics and therapeutic approaches are highly desirable.

The immune characteristics of IBD involve abnormal responses by both the innate 
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and adaptive immune system. For example, it has been shown that IBD-associated 
chronic inflammation results from aberrant responses against the intestinal 
microbiota, by both innate dendritic cells10 and adaptive CD4+ T cells.11 12 While 
many more studies13 have investigated the role of the immune compartments in 
IBD, due to the scarcity of the available biopsy material it has been very challenging 
to delineate the role of all immune subsets simultaneously. High-dimensional mass 
cytometry (cytometry by time-of-flight, CyTOF) now offers a unique opportunity 
to gain such insight as it allows the analysis of many (>40) cellular markers 
simultaneously per single cell,14 providing an opportunity to analyze the mucosal 
immune system with unprecedented resolution. As such, we previously have applied 
mass cytometry on samples from a cohort of patients with inflammatory intestinal 
diseases.15 Here, we observed a high number of diverse immune cell types present 
in the intestine, with a large degree of both inter- and intraindividual variation 
specifically associated with Crohn,15 providing a basis for patient stratification. 
However, only a small number of IBD specimens were analysed in that study. 
Therefore, in the current study we applied mass cytometry to the analysis of 
the composition of immune cells in biopsies along the intestinal tract and paired 
peripheral blood mononuclear cell (PBMC) samples of patients with IBD and controls.

METHODS

Sample processing as described in Chapter 2 and data analysis using the computatonal 
tools we developed described in Chapter 3 and Chapter 4.

RESULTS

Identification of stable intraindividual immune profiles in the intestine
We designed a CyTOF panel of 36 metal isotope-tagged antibodies to obtain an 
overview of the heterogeneity of the innate and adaptive immune system (table 
S1). We incorporated markers that distinguished the six major immune lineages, 
different activation, maturation, and developmental stages, responsiveness to 
humoral and chemokine factors, and to seperate naïve from memory cells. With 
this panel, single-cell suspensions derived from biological specimens were analysed 
including ileum biopsies (N=45), colon biopsies (N=59), rectum biopsies (N=14) 
and peripheral blood mononuclear cells (PBMC) from control individuals (N=15) 
and from IBD patients (Crohn, N=11; UC, N=6; IBD-U, N=6 and Fistula, N=6) (table 
S2). All samples (N=164) were taken in untreated condition with suspicion of IBD 
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diagnosis, except for the group of Fistula patients. They were previously diagnosed 
with Crohn and presented now with recurrent peri-anal fistulas of which we analysed 
the fistula-adjacent rectum biopsies. The control individuals were non-diseased and 
in complete absence of intestinal inflammation. In case of IBD diagnosis, according 
to the Montreal classification,19 20 biopsies were analysed from both a segment with 
active disease (affected; IBD-associated inflammation) and from an adjacent segment 
with endoscopic inactive disease (unaffected), next to two standard biopsies from 
the colon and terminal ileum. All antibodies displayed clear discrimination between 
antibody-positive and -negative cells (methods). Live, single, CD45+ immune cells 
were discriminated using DNA stains and the mass cytometry-parameter event 
length (figure S1). The mass cytometry dataset contained 5.5 million cells from the 
blood and 3.4 million from the intestine samples, respectively. We acquired 43,725 
cells from the ileum and 20,266 cells from the colon samples on average (figure 
1A), and 18,544 cells from the rectum and 118,910 cells from the PBMC samples 
(data not shown). 

To facilitate the analysis of such a large data size, we utilized Hierarchical Stochastic 
Neighbour Embedding (HSNE),17 a computational approach that overcomes the 
scalability limits of t-SNE-type approaches, thus enabling the analysis of tens of 
millions of cells without the need for subsampling the data. The HSNE overview 
level depicted 7,468 landmark cells, representative data points, illustrating the global 
cellular heterogeneity of the entire dataset of 8.9 million cells (figure 1B). The 
landmark clustering patterns based on phenotypic similarity corresponded with the 
identification of the major immune lineages (figure 1B): CD4+ T cells (a memory 
and a naïve cluster), CD8+ T cells (including the TCRgd+ lineage), innate lymphoid 
cells (ILC, here described as CD7+CD3- cells, including CD127+ helper-ILCs and 
NK cells), B cells and myeloid cells. In general, the cell frequencies of these major 
cell lineages between PBMC samples from controls and patients were quite similar, 
although some variability in the number of CD4+ T cells and an increase in myeloid 
cells in several patient samples was detected (figure 1C). In contrast, the ileum and 
colon samples displayed substantial differences (figure 1D,E). For example, a high 
variation was present in the number of ileum CD8+ T cells among controls, but this 
was decreased in patient affected biopsies (figure 1D). Compared with controls, 
an increase in number of ileum and colon-derived B cells was observed in some 
patients, especially in Crohn. In addition, an increase in number of myeloid cells 
was observed in several patients and was most pronounced in the affected colon 
(figure 1E). Next, we clustered the cells into 343 global partitions using HSNE, 
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and visualized the immune compositions of these cell clusters from all included 
samples in a single graph by applying the t-SNE algorithm on cell frequency values. 
As expected, the PBMC and intestinal samples formed two distinct clusters (figure 
1F), emphasizing the distinctness of immune phenotypes present in the peripheral 
blood and the intestine. To monitor the robustness of the measurements, we 
included a standardized PBMC sample as an internal control at seven intervals in 
the acquisition sessions during the entire 12-month study period, which all clustered 
together (figure 1F, green arrow), demonstrating the reproducibility of the data 
acquisition. When comparing the immune cell composition of intestinal biopsies 
from the same individual but at different intestinal location or inflammatory state, 
the large interindividual variation as compared to intraindividual variation was 
striking (figure 1F). In several cases, samples derived from the same individual 
clustered together suggestive of a unique immune ‘fingerprint’ along the intestinal 
tract (figure 1F).

Overall, there are large differences in major immune lineage composition between 
peripheral blood and intestinal samples, within and between intestinal samples 
from the different patient groups and controls, and there is a large amount of 
interindividual variation present.

Dissection of the major immune lineages into distinct cell populations
Because we observed in the global analysis that the immune cell compositions of 
the intestinal samples are highly distinct compared with blood (figure 1F), we 
next analysed those samples separately. To identify cell populations within the 
major immune lineages, we next zoomed-in on every lineage individually using 
HSNE. Here, we show the intestinal CD4+ T cell lineage that we selected at the 
HSNE overview level (figure 1B), and show the distribution of the landmarks at 
the second hierarchical level, revealing six large subpopulations within the CD4+ 
T cell compartment (figure 2A). These subpopulations could be distinguished 
based on differential expression patterns of several markers (figure 2B). For 

Fig. 1 HSNE analysis identifies major immune lineages in the peripheral blood and intestine (A) 
Live single CD45+ absolute cell number acquired for 45 ileum biopsies and 59 colon biopsies. (B) First 
HSNE level embedding of the collective 8.9 million cells. Color represents the major immune lineages, 
annotated on the basis of lineage marker expression. Comparisons of cellular frequencies for major 
immune lineages from (C) 46 PBMC samples, (D) 45 ileum biopsies and (E) 59 colon biopsies. (F) 
Collective t-SNE dimensionality-reduced cell percentage data (as percentage of CD45+ cells) of 343 
cell clusters for 164 samples analyzed are plotted. Every dot represents a single sample and the color 
and number of the samples display the 44 individuals and the internal control (IC). The red dashed 
border represents the PBMC cluster and the orange dashed border represents the intestinal cluster.
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example, subpopulation 1 expresses CD45RO while lacking the expression of 
CD45RA and CD27, indicative of a CD27- memory phenotype. Subpopulations 2, 
3 and 4 also displayed a memory phenotype (CD45RO+CD45RA-) and could be 
further distinguished by the expression of CD56, CD161 and CD25, respectively. 
In contrast, subpopulation 6 with a memory phenotype did not express those 
three markers. Subpopulation 5 represents naive T cells based on the expression of 
CD45RA and CD27 without expression of CD45RO. Next, we zoomed-in on every 
CD4+ T cell subpopulation individually using HSNE, and applied Gaussian mean-shift 
clustering which automatically identifies distinct cell clusters (figure 2C), where 
each cluster was defined by its unique marker expression profile (figure 2D, left 
panel in rainbow colour). In total, 77 distinct CD4+ T cell clusters were identified 
derived from all 118 intestinal samples included in the analysis. We next evaluated 
the samples quantitatively by analysing the cluster distribution of the CD4+ T cells 
by plotting the relative cell frequencies of the CD4+ T cell clusters for all intestinal 
samples analysed (figure 2D, right panel in green-to-yellow colour). Hierarchical 
clustering of the samples divided these into four metaclusters (MC) based on 
sample similarity in the composition of CD4+ T cells (figure 2D). Each MC had 
a mixed sample composition regarding clinical metadata, containing samples from 
different types of IBD patients or controls, intestinal segments and inflammation 
states (figure 2D, bottom three bars). Strikingly, MC1 was in complete absence of 
control samples, while MC4 was enriched for control and IBD-unaffected samples. 

Thus, the HSNE analysis approach can effectively identify distinct cell populations 
in mass cytometry data in a data-driven manner, and the analysis reveals 
different types of CD4+ T cell compositions in the intestine associated with IBD. 

Fig 2. The CD4+ T cell lineage dissected into distinct cell clusters (A) Second HSNE level embedding 
of the collective intestinal CD4+ T cells (1.0 × 106 cells). Color represents six major subpopulations. 
(B) HSNE embedding as in panel A, colored for arcsin5-transformed expression of indicated markers. 
(C) Fourth HSNE level embedding of the CD4+ T cell subpopulations #1, #3, #4, #5 and #6, and fifth 
HSNE level embedding of subpopulation #2. Transparent square colors represent six subpopulations 
as in panel A and cell colors represent cell clusters (N=77). (D) Heatmaps showing characterization 
of cell clusters (left panel, median ArcSinh5-transformed values of marker expression; rainbow scale), 
cell cluster composition of samples (right panel, cell percentages; green-to-yellow scale), sample clinical 
metadata (bottom panel; disease, tissue and inflammation state) and hierarchical clustering of marker 
expression profiles and samples. Annotation of cell clusters represents their phenotypic hierarchy 
identified with HSNE. White lines indicate four metaclusters of samples based on cell cluster composition.
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Intestinal CD4+ and CD8+ T cell compositions are altered in 
inflammatory bowel disease 
Next we asked which of the CD4+ T cell clusters were most differentially present in 
the four types of compositions by calculating for each cell cluster their contribution 
to the grouping of samples (figure 3A, blue-to-red colour). For example, MC1 was 
characterized by the specific presence of CD4+ effector memory (EM; CD45RA-

CD45RO+CCR7-) T cells with an activated phenotype based on high expression of 
HLA-DR and CD38 while lacking CD27 and CD127 (figure 3A, blue arrow), MC2 
by increased numbers of naive CD4+ T cells (figure 3A, purple arrow) among others, 
MC3 by the specific presence of CD45RA+ terminally differentiated (TEMRA) cells 
(figure 3A, green arrow), and MC4 by the specific presence of NK-like CD56+ 
CD4+ T cells (figure 3A, orange arrow). Regarding clinical metadata, MC2 showed 
an intermixed sample composition and MC3 contained only few samples (figure 
2D). However, MC1 contained samples from 17 out of 29 IBD patients without any 
controls (figure 3B). The majority of these was derived from the colon (69.7%) and 
more from affected segments (57.6%). In contrast, MC4 consisted almost entirely 
(92.9%) of unaffected biopsies from both patients and controls with a majority 
(75%) derived from the ileum. Therefore, we visualized the exact contribution values 
of the cell clusters associated with MC1 and MC4 in an additional graph (figure 
3A, purple and yellow bars). The top 5 ranked CD4+ T cell clusters contributing to 
the sample clustering patterns of MC1 indeed shows that all these corresponded to 
the activated HLA-DR+CD38+ cell population (figure 3A,C), displaying additional 
diversity in the expression of CD25, CD161 and PD-1 (figure 2D). Next to the 
specific presence of innate NK-like CD56+ CD4+ T cells in MC4 (cluster CD4-2-9), 
the most upregulated cell clusters in this sample group were CD4+ EM T cells with 
low expression of CD38 and lacking HLA-DR (figure 3A,C). These findings suggest 
that the CD4+ T cell compartment is altered in a subgroup of IBD patients, where 
activated HLA-DR+CD38+ CD4+ T cells are upregulated (figure 3A-C, in purple) 
while innate NK-like CD56+ CD4+ T cells are downregulated (figure 3A-C, in yellow).

Fig 3. The adaptive immune system is skewed in the IBD-affected intestine (A) Heatmap showing 
contributions of CD4+ T cell clusters in grouping of samples into four metaclusters and hierarchical 
clustering of marker expression profiles as in Figure 2D. Bar graphs showing contributions of CD4+ 
T cell clusters in grouping of samples into metacluster 1 in purple and metacluster 4 in yellow, and 
cell cluster labels contributing greater than value 1 are colored similarly. (B) Pie charts depicting 
clinical metadata for sample metacluster 1 (top panel) and metacluster 4 (bottom panel) (C) Table 
showing top five ranked CD4+ T cell clusters contributing to sample clustering into metacluster 1 
and metacluster 4 (as shown in A). Similar visualizations for (D-F) CD8+ T cells and (G-I) B cells
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Similarly, we identified 79 distinct cell clusters in the intestinal CD8+ T cell 
compartment and here the samples clustered into two large groups (figure 3D 
and figure S2). MC1 samples were to a large extent clustered together due to 
the contribution of high numbers of naive CD8+ T cells (figure 3D, cluster CD8-
5-1), and these were, surprisingly, in particular derived from IBD patients (figure 
3E). In contrast, three other of the most MC1-contributing CD8+ T cell clusters 
(figure 3D-F, cluster CD8-7-7, -7-2 and -7-3) displayed an activated EM phenotype 
based on expression of PD-1. Conversely, MC2 samples displayed an upregulation 
of CD161+CD127+ CD8+ EM T cells with and without CD56 expression, but lacking 
PD-1, which were more (79.9%) derived from biopsies of patients and controls 
without inflammation (figure 3D-F). 

Only 22 B cell clusters were identified (figure S3) due to the relative few B 
cell markers implemented in the antibody panel, and the samples clustered 
into two groups. This clustering was mainly attributed to differential expression 
of IgM in CCR6-expressing B cells, where IgM- cells are suggestive of B cell 
isotype switching (figure 3G). However, there was no difference between 
patients and controls, tissue segments or inflammation states for the 
different frequencies observed within the B cell compartment (figure 3G-I).

Thus, the CD4+ and CD8+ T cell adaptive immune compartment display a 
shift in phenotypic composition with distinct cellular profiles in IBD-affected 
specimens compared with unaffected specimens from both patients and controls.

The intestinal innate immune system is altered in inflammatory bowel 
disease
Next we assessed whether the innate immune system was also altered in IBD by 
analysing those cell clusters in more detail. We identified 28 distinct TCRgd cell 
clusters and hierarchical clustering of the samples resulted in three MCs (figure 
4A and figure S4). MC3 contained only 6 samples and was characterized by 

Fig 4. The innate immune system is skewed in the IBD-affected intestine (A) Heatmap showing 
contributions TCRγδ cell clusters in grouping of samples into three metaclusters and hierarchical 
clustering of marker expression profile as in Figure S4. Bar graphs showing contribution of TCRγδ 
cell clusters in grouping of samples into metacluster 1 in purple and metacluster 2 in yellow, and 
cell cluster labels contributing greater than value 1 are colored similarly. (B) Pie charts depicting 
clinical metadata for sample metacluster 1 (top panel) and metacluster 2 (bottom panel) (C) Table 
showing top five ranked TCRγδ cell clusters contributing to sample clustering into metacluster 1 
and metacluster 2 (as shown in A). Similar visualizations for (D-F) ILCs and (G-I) myeloid cells.
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upregulated numbers of TCRgd TEMRA cells. The remaining 112 samples fell either 
into MC1 or MC2, which was largely determined by differential presence of CD27+ 

and CD27- TCRgd EM cell clusters, respectively (figure 4A,C) Of note, four 
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clusters corresponded with double-negative (DN) T cells based on the absence 
of CD4, CD8a and TCRgd expression yet clustered together with the TCRgd cell 
lineage in the HSNE analysis (figure S4), and these were also upregulated in MC1 
samples. Ranked second in contributing to MC1 was the presence of a KLRG-1+ 
TCRgd cluster (figure 4C). Here we observed that MC1 contained relatively more 
samples from IBD patients, while MC2 contained more samples from unaffected 
segments of patients and controls (figure 4B) suggesting a skewed TCRgd profile.

Despite their rare occurrence (figure 1D,E), we could distinguish 44 cell clusters 
within the ILC compartment (figure S5). These could be categorized into the well-
described CD45RA+ NK cell and ILC3 populations, but also into the recently described 
Lin-CD56-CD127- cell (Lin- ILC) and CD56+CD127-CD45RO+CD45RA- intermediate 
ILC (int-ILC) populations. Lin- ILCs represent innate type of lymphocytes with dual 
T cell precursor and NK/ILC traits,21 22 23 24 while int-ILCs represent an intermediate 
cell population that can differentiate into NK cells and ILC3.16 Hierarchical clustering 
of the samples resulted into two MC groups (figure 4D and figure S5). MC1 profile 
was characterized by upregulated NK cell clusters expressing variable levels of CD8a, 
CD16, CD161 and CD11c, together with upregulated ILC3 clusters expressing 
variable levels of CD56, HLA-DR and NKp44 (figure 4D,F). In contrast, MC2 was 
characterized by upregulated Lin- ILCs and int-ILCs with variable expression of 
CD161 (figure 4D,F). Here, MC1 contained more samples from IBD patients with 
a majority (63.3%) derived from the colon, while MC2 contained more unaffected 
specimens with a majority (54.6%) derived from the ileum (figure 4E). These results 
suggest that there is a shift in balance of precursor/intermediate ILC populations 
(Lin- ILC and int-ILC) relative to effector ILC populations (NK cells and ILC3) in 
unaffected compared with affected IBD and in the colon compared with the ileum.

Finally, we investigated the cellular composition of the myeloid cell lineage and 
identified 60 distinct clusters (figure S6). We could not directly phenotype cells as 
granulocytes due to the absence of the granulocyte-specific markers CD15 and 
CD66 in the antibody panel. However, we imputed cell clusters as CD15-expressing 
neutrophils indirectly by their expression of CD16, CD11b, CD11c, CD45RO, while 
lacking CD14 and HLA-DR, based on additional experiments we performed using a 
CD15 antibody (data not shown). The cytometry surface phenotype of eosinophils 
is similar to neutrophils but lacks the expression of CD16,25 26 which corresponded 
with several clusters we identified. In addition, we distinguished basophils based 
on CD123 expression and the lack of HLA-DR.27 Moreover, we identified several 
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CD14+ monocyte and CD14- dendritic cell (DC) populations expressing high levels 
of HLA-DR and CD11c. Based on the hierarchical clustering of the samples we could 
distinguish 2 MC groups, of which the granulocyte compartment was contributing 
most to this separation (figure 4G,I). Specifically, CD16+ neutrophil-like cells were 
upregulated in MC1 and CD16- eosinophil-like cells in MC2. Of note, a few cell 
clusters negative for CD11c expression clustered together with the CD11c+ myeloid 
lineage in the HSNE analysis, but these did not contribute to differential clustering of 
the samples. We observed again that MC1 contained more samples from IBD patients 
with a majority (60.0%) from affected segments, while MC2 contained samples 
with a majority (75.3%) from unaffected segments of patients and controls (figure 
4H). This suggests that different populations of granulocytes are implicated in IBD.

To further substantiate these findings on alterations in the cellular compositions 
within the major immune lineages associated with affected IBD, we next performed 
a complimentary analysis approach by applying principal component analysis (PCA) 

Fig 5. PCA reveals distinct clustering of IBD-affected samples stratified per immune lineage. 
Collective PCA dimensionality-reduced cell percentage data (as percentage of major immune lineage) of 
77 CD4+ T cell clusters, 79 CD8+ T cell clusters, 22 B cell clusters, 28 TCRγδ cell clusters, 43 ILC clusters 
and 60 myeloid cell clusters for 118 intestinal samples analyzed are plotted. Every dot represents a single 
sample and colors show disease (top panel; green, control; purple, Crohn; orange, UC; blue, IBD-U and 
brown, Fistula), tissue (middle panel; light blue, Ileum; light orange, Colon and light purple, Rectum) and 
inflammation state (bottom panel; grey, Unaffected and pink, Affected). Lines connect samples to the 
centroid of each group.
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on the collective 118 intestinal samples analysed (figure 5). Except for the B cells, 
all lineages displayed a minor shift when comparing the clustering of control samples 
with patient samples (figure 5, top row). The samples from the different subgroups 
of IBD (Crohn, UC, IBD-U and Fistula) were, however, mostly intermixed consistent 
with the hierarchical clustering results (figures 3 and 4), suggesting similarities in 
immune profile. The PCA also revealed the differences between samples from the 
colon and the ileum (figure 5, middle row), which was most pronounced for the 
CD8+ T cells and ILCs. The latter also separated the rectum from the colon samples 
in addition, revealing specific ILC compositions along the intestinal tract. However, 
except for B cells, most of the variation per major immune lineage in the intestine 
was captured by the differences between cells from the IBD affected specimens 
compared to unaffected specimens of patients and controls (figure 5, bottom row). 

Integrated immune system analysis in inflammatory bowel disease
Next, we integrated all the individual major lineages into a collective immune-
system-wide analysis, by first applying PCA on the cell frequency values of all 309 
identified immune clusters from all intestine samples in a single graph (figure 
6A, left panel). These results show that controls clustered separate from patients, 
ileum samples separate from colon and rectum samples, and most strikingly was 
the separation of affected segments compared to unaffected segments. When we 
applied the PCA only on the 118 immune clusters that were differentially abundant 
in groups of samples by greater than 1 percent (marked purple and yellow in 
figure 3 and 4) we obtained similar results (figure 6A, right panel). Next we 
performed a correlation network analysis on the 118 cell clusters showing that 

Fig. 6. Integrated immune system analysis identifies differential disease-associated immune 
infiltrate types. (A) Collective PCA dimensionality-reduced cell percentage data (as percentage 
of CD45+ cells) of (left panel) 309 cell clusters and (right panel) 118 top ranked cell clusters for 118 
intestinal samples analyzed are plotted. Every dot represents a single sample and colors show the 
disease, tissue and inflammation state. Lines connect samples to the centroid of each sample group. (B) 
Network representation of correlations (Spearman’s Rho) greater than coefficient value of 0.7 between 
118 top ranked cell clusters. Every dot represents an immune cell cluster, colored for contributing to 
clustering of samples into metaclusters associated with unaffected-IBD and controls in yellow or with 
affected-IBD in purple as shown in Figures 3 and 4. The closer the cell clusters are together, the 
higher the correlation. Color shade and thickness of the line indicate the strength of the correlation. (C) 
PCA representation as in panel A, colored for six types of samples grouped by hierarchical clustering 
based on cell percentages of 118 top ranked cell clusters for 118 intestinal samples analyzed. (D) Pie 
charts of samples grouped into six types showing clinical metadata of disease, tissue, inflammation 
state, and individuals. (E) Radial graph depicting contributions of top 52 adaptive immune cell clusters 
in hierarchical grouping of samples into six metaclusters shown in panel C. Colored lines indicate 
the six types of samples. The peaks of lines and font size of cell cluster labels indicate the level of 
contibution. (F) Radial graph as in panel E depicting contributions of top 66 innate immune cell clusters.
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85 clusters were strongly (spearman rank > 0.7) correlated (figure 6B). For 
example, a group of CD4+ T cell clusters, ILC clusters and myeloid cell clusters 
were correlated with each other (figure 6B, top-left network) and upregulated 
in affected segments of patients as assessed before (figures 3 and 4), while a 
group of TCRgd cell clusters, CD4+ and CD8+ T cell clusters (figure 6B, top-right 
network) and a group of ILC clusters (figure 6B, bottom network) were correlated 
with each other and upregulated in unaffected segments of patients and controls. 

Hierarchical clustering of the samples based on the cell cluster frequencies of 
the integrated immune system resulted in six groups for 111 out of 118 samples 
(figure 6C), suggestive of different types of immune infiltrates across all major 
immune lineages. When we analysed the distribution of samples containing these 
different immune infiltrate types we observed that infiltrate type 1, type 2 and type 
3 were present in biopsies from both control and IBD patients, while infiltrate type 
3, type 4 and type 5 were exclusively present in biopsies from patients (figure 
6D). In addition, infiltrate type 1 was strongly associated with an unaffected 
colon profile and infiltrate type 2 with an unaffected ileum profile, shared among 
many patients and controls. Infiltrate 3, however, represented a mixture of both 
unaffected colon and unaffected ileum samples. The IBD-associated type 4, type 5 
and type 6 infiltrates were found in an increasingly abundance of affected specimens, 
respectively. All immune infiltrate types were present in more samples than unique 
individuals, suggesting that several biopsies were derived from the same individual 
emphasizing the unique individual fingerprint we identified before (Figure 1F). 
Immune infiltrate type 4 was identified in biopsies from 5 individuals, of which 3 
also had a parallel biopsy containing infiltrate type 6 (figure 6D). Except for one, 
the IBD-associated immune infiltrates type 5 and type 6 were present in biopsies 
from different sets of IBD patients Therefore, we looked at their clinical metadata 
in more detail. Notably, the median age at diagnosis for the patients with immune 
infiltrate type 5 was 28 years old and did not contain any paediatric patients, while 
that for patients with immune infiltrate type 6 was 18 years old and 5 out of 10 
were paediatric patients (figure S7), suggesting that the affected intestine of 
paediatric patients may more frequently present with a type 6 immune infiltrate. 

Finally, we analysed what combinations of immune cell clusters across all major 
lineages predominantly distinguished these six types of immune infiltrates by 
visualizing the contribution of each cell cluster to the clustering of samples in a 
graph (figure 6E,F). For example, the unaffected colon-associated infiltrate type 1 



Stratification of immune cell infiltrates in inflammatory bowel disease by 
high-dimensional mass cytometry

125

5

was characterized by the combinatorial presence of adaptive CD8+ T cell CD27- EM 
(#1-4), CD161+CD127+ EM (#2-12) clusters and a CD4+ T cell HLA-DR-CD38low 
EM (#1-20) cluster, together with the innate TCRgd cell CD27- EM (#23, #13 and 
#20) clusters and a myeloid cell CD16- eosinophil-like (#5-2) cluster. The unaffected 
ileum-associated infiltrate type 2 was defined by many adaptive CD8+ T cell CD27- 
EM (#2-4, #2-12, #2-6, #2-3, #1-1, #6-2, #2-2 and #1-6) clusters displaying a variable 
expression for CD161, CD127 and CD56, together with CD4+ T cell HLA-DR-

CD38low EM (#1-1, 1-2 and 1-7) clusters. In addition, the innate int-ILC (#1-9) 
cluster was specifically present in the unaffected ileum-associated infiltrate type 
2. Both the unaffected colon and ileum-associated immune infiltrate types 1 and 
2 were showing an underrepresentation of the B cell IgM+CCR6+ (#1-5 and #1-1) 
clusters and a CD8+ T cell naïve (#5-1) cluster. In contrast, the unaffected intermixed 
colon-ileum infiltrate type 3 was characterized by the abundant presence of these 
latter cell cluster.

The IBD-associated infiltrate type 4 found in relatively more unaffected specimens 
was characterized by high numbers of innate CD16- eosinophil-like (#5-2 and #5-
1) clusters and TCRgd CD27- EM (#26, #4, #6, #10 and #13) clusters, together 
with the adaptive CD161+ activated CD4+ T cell HLA-DR+CD38+ EM (#1-18) 
cluster, without the B cell IgM+CCR6+ (#1-5 and #1-1) clusters. The IBD-associated 
infiltrate type 5 found in relatively more affected specimens was characterized by 
the presence of several CD161+ and CD161- activated CD4+ T cell HLA-DR+CD38+ 
EM (#1-18, #1-4 and #1-15) clusters and a CD56+ NK-like CD8+ T cell EM (4-1) 
cluster, together with both an innate CD16- eosinophil-like (#5-1) cluster and a 
CD16+ neutrophil-like (#1-5) cluster, also with a downregulated B cell IgM+CCR6+ 
(#1-5) cluster. In contrast, the IBD-associated infiltrate type 6 found in only affected 
specimens was characterized by the highly abundant adaptive B cell IgM+CCR6+ (#1-
1) cluster, the CD161- activated CD4+ T cell HLA-DR+CD38+ EM (#1-16) cluster 
and the CD8+ T cell naive (#5-1) cluster, while several CD8+ T cell CD161+CD127+ 
EM clusters (#2-12, #2-4 and #2-14) and a CD8+ T cell CD161-CD127+ EM (#1-1) 
cluster were downregulated. Of the innate immune system, not CD16- eosinophil-
like, but many CD16+ neutrophil-like cell (#1-5, #1-13, #1-11, #1-3, #1-9 and #1-4) 
clusters were implicated in addition to infiltrate type 6. Taken together, we could 
divide the intestinal immune infiltrates into six types characterized by different 
complex combinations of both adaptive and innate immune cell populations, which 
were associated with the location of the intestine and IBD-related inflammation.
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DISCUSSION

Mass cytometry has proven to be a powerful tool for dissecting the cellular immune 
landscape in many studies28. Here, we choose a mass cytometry approach with 
a broad coverage by analysing across all major immune lineages simultaneously 
to obtain an unbiased view of the role of  immune cell subsets in tissue-specific 
inflammatory immune responses in IBD. For this we applied mass cytometry to 
the analysis of a variety of intestinal samples, from both inflamed and uninflamed 
intestinal locations,  and peripheral blood samples of IBD patients and non-diseased 
controls. Mass cytometry data analysis is challenging due to its complexity in high-
dimensionality and data size. Therefore, we utilized HSNE17, allowing unsupervised 
learning to identify phenotypically distinct cell clusters in datasets exceeding millions 
of cells in a t-SNE-based manner without the need for downsampling, a well-suited 
approach for the collective 8.9 million immune cells acquired in this cohort study. 

Most of the observed variation in immune cell compositions between samples 
was explained by differences between immune cells from the blood as compared 
to the intestine, in line with a previous study15 and emphasizing the distinctness 
between these anatomical compartments. Next, the large interindividual variation 
as compared to intraindividual variation was striking, when comparing the immune 
cell composition of intestinal biopsies from the same individual but at different 
intestinal location. In several cases, samples derived from the same individual 
clustered together. Indeed, cell compositions and other immune markers have 
been described to be different between individuals in several reports investigating 
peripheral blood15 29 30 31 32. In agreement, our results confirm the presence of a 
unique individual ‘fingerprint’ in immune cell composition in the periphery. In 
addition, we have provided evidence that the collective immune cell composition 
in the intestine is also individual-specific, emphasizing the need for personalized 
medicine. In addition, we could distinguish similarities among IBD-affected samples 
and among unaffected specimens of patients and controls for all individual immune 
lineages analysed, except for B cells. In addition, there was both an ileum-associated 
profile and a colon-associated profile detectable in immune cell composition, most 
pronounced for CD8+ T cells and ILCs. 

Surprisingly, there was no separation of samples from Crohn’s  patients and samples 
from UC patients based on immune cell composition, as they were intermixed in 
every analysis performed.  A recent study characterizing the enhancer and promotor 
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landscape of colon biopsies found that the IBD-specific transcription start sites are 
associated to genes with roles in both inflammatory cascades and gut epithelia while 
transcription start sites distinguishing UC and Crohn are associated to gut epithelial 
functions33. This may suggest that the IBD-associated immune profiles described in 
the present study may not distinguish UC from Crohn, but rather, that the clinical 
phenotype of these diseases may be based on immune-unrelated aspects, such as 
characteristics of the  gut epithelium. 

The integrated analysis of the immune system revealed six types of immune infiltrates 
in the intestine, each defined by a specific combination of innate and adaptive 
immune cell clusters. Three infiltrate types were associated with an unaffected-IBD 
and control profile, of which two were mostly represented by either colon samples 
or ileum samples. The other three infiltrate types were specifically associated with 
IBD, where type 4 to type 5 to type 6 coincided with increasingly more abundance 
of inflamed samples. Here we have profiled immune cells within biopsies taken in 
the intestine of admitted IBD patients and controls. Such biopsies are identical to 
biopsies used in current diagnosis methods. This has the advantage that samples 
are highly clinically relevant, and that the changes in immune compositions in the 
disease states measured will be close to the in vivo reality.  The six infiltrate types we 
identified may in the future provide a foundation for patient stratification based on 
immune profile at time of diagnosis. It would be interesting to determine in follow-
up studies whether these different immune infiltrate types may correspond with a 
different severity of disease course, treatability or time-to-relapse.  

By having characterized the similarities and differences between the intestinal 
immune system’s cellular composition of patients and controls in a system-wide 
approach, it will allow the rational design of studies to gain mechanistic insight 
into how the distinct cellular components of the immune system interact in IBD 
pathology. This may  provide insight crucial to the development of personalized 
medicine, rather than a one-size-fits-all remedy. In order to develop new approaches 
to manipulate the immune system in IBD pathology and treat or cure the disease, 
the next step must be to obtain an understanding of the origin of the stratifying 
intestinal immune signatures. 
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CHAPTER 6

Mass Cytometry Reveals Innate Lymphoid Cell 
Differentiation Pathways in the Human Fetal Intestine

ON THE COVER
Li et al. apply mass cytometry to delineate the fetal gut innate lymphoid cell (ILC) population 
and use a t-SNE-based approach to predict potential differentiation trajectories. This image 
represents the composition of the ILC compartment in the individual fetal intestines. The image 
was taken from the original manuscript and modified by the JEM editorial office. See page 77
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ABSTRACT

Innate lymphoid cells (ILCs) are abundant in mucosal tissues and involved in tissue 
homeostasis and barrier function. While several ILC subsets have been identified, 
it is unknown if additional heterogeneity exists and their differentiation pathways 
remain largely unclear. We applied mass cytometry to analyze ILCs in the human 
fetal intestine and distinguished 34 distinct clusters through a t-SNE-based analysis. 
A lineage (Lin)-CD7+CD127-CD45RO+CD56+ population clustered between the 
CD127+ ILC and natural killer (NK) cell subsets, and expressed diverse levels 
of Eomes, T-bet, GATA3 and RORgt. By visualizing the dynamics of the t-SNE 
computation, we identified smooth phenotypic transitions from cells within the 
Lin-CD7+CD127-CD45RO+CD56+ cluster to both the NK cells and CD127+ ILCs, 
revealing potential differentiation trajectories. In functional differentiation assays 
the Lin-CD7+CD127-CD45RO+CD56+CD8a- cells could develop into CD45RA+ 
NK cells and CD127+RORgt+ ILC3-like cells. Thus, we identified a previously 
unknown intermediate innate subset that can differentiate into ILC3 and NK cells.
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INTRODUCTION

Innate lymphoid cells (ILCs) lack expression of T cell receptors but otherwise are  
a functional counterpart of cytotoxic and helper T cell subsets. Helper ILCs are 
classified into 3 groups: ILC1, ILC2 and ILC31. ILC1s are mainly characterized as 
Lineage (Lin)-CD161+CD127+CRTH2-CD117-, express the transcription factor 
T-bet and produce T helper 1 (TH1) cell-associated cytokines. ILC2s are Lin-

CD161+CD127+CRTH2+, express GATA3, and produce T helper 2 (TH2) cell-
associated cytokines. ILC3s, including fetal lymphoid tissue-inducer (LTi) cells, are 
Lin-CD161+CD127+CRTH2-CD117+, RORgt+, and secrete TH17/TH22 helper T cell-
associated cytokines1,2. A fraction of human ILC3s expresses natural cytotoxicity 
receptors such as NKp44, NKp46 and NKp30, and neural cell adhesion molecule 
CD56, similar to natural killer (NK) cells3,4. NK cells are a cytotoxic subset of 
ILCs that express the transcription factor T-bet and/or Eomes and produce IFN-g, 
granzymes and perforin1. Also, ILCs are most abundant and reside in mucosal 
tissues such as the tonsil, lung and intestine, where they can expand locally5.

Several studies have reported the differentiation pathways of ILCs in a variety of 
tissues in both mice and humans6,7. For example, in murine fetal liver and adult intestine, 
a CXCR6+RORgt+α4β7+ subset has been identified that can differentiate into ILC3s 
and NK cells8. As this subset was not found in adult bone marrow, it might migrate 
to the intestine during fetal development. In humans, RORgt+CD34+ progenitor cells 
were identified in the tonsil and intestine, but these were absent in peripheral blood, 
umbilical cord blood, bone marrow and thymus9,10. Since these progenitors could 
differentiate into helper ILCs and NK cells, mucosal organs might be the preferential 
sites for ILC differentiation. In addition, a CD127+CD117+ ILC precursor has been 
identified in cord blood, peripheral blood and tissues, including fetal liver, adult 
lung and tonsil, which can generate all ILC subsets in situ and could represent an 
intermediate between precursor cells and mature ILCs11. Also, previous studies have 
observed ILC plasticity mainly in mucosal tissues, such as the small intestine12–15, 
suggesting that environmental cues may play an important role in cell-fate decision. 
So far, most of the studies on human ILC differentiation used CD34+ progenitors 
and mature types of ILCs6, while the intermediates or transitional stages connecting 
the CD34+ populations to mature types of ILCs have not been fully identified. 

High-dimensional mass cytometry provides an opportunity to analyze the 
heterogeneity and potential differentiation pathways of human ILCs in an unbiased 
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and data-driven fashion based on the simultaneous measurement of over 30 cellular 
markers at single-cell resolution16. Although the sensitivity of metal reporters in 
mass cytometry is not as sensitive as some of the brightest fluorochromes in flow 
cytometry, the advantage of including many more markers in a single antibody 
panel offers unique opportunities to evaluate the composition of the immune 
system with unprecedented resolution. Up to recently, analysis of flow cytometry 
data was mainly performed with gating strategies based on (primarily) bimodal 
expression patterns. The incorporation of over 30 markers in mass cytometry 
antibody panels is not well compatible with such an analysis approach. Instead, 
t-Distributed Stochastic Neighbor Embedding (t-SNE)-based approaches are 
currently becoming the standard in the field as they allow the simultaneous analysis 
of all marker expression profiles in an unbiased fashion. Hierarchical SNE, for 
example, allows efficient analysis of mass cytometry data sets on tens of millions 
of cells at the single-cell level17. Here, we applied mass cytometry to analyze the 
ILC compartment in the human fetal intestine and provide evidence for previously 
unrecognized heterogeneity within this compartment. Moreover, we utilized a 
t-SNE-based computational approach to predict potential differentiation trajectories 
in silico, and provide evidence for the existence of a previously unrecognized 
innate cell subset that can differentiate into both NK cells and ILC3 in vitro.

RESULTS 

High-dimensional analysis reveals previously unrecognized 
heterogeneity in the ILC compartment 
We developed a 35 metal isotope-tagged monoclonal antibody panel (Table 
S1) to identify the 6 major immune lineages (B cells, myeloid cells, CD4+, CD8+, 
gd T cells, and Lin-CD7+ cells; the latter hereafter referred to as ILCs) and 
heterogeneity within those lineages. For this purpose the panel included lineage 
markers and markers linked to cell differentiation, activation, trafficking and 
responsiveness to humoral factors. With this panel, single-cell suspensions prepared 
from 7 fetal intestines were analyzed individually. Single, live CD45+ cells were 
discriminated by event length, DNA stainings and CD45 antibody staining (Fig. 
S1 A). All antibodies showed clear discrimination between antibody-positive and 
-negative cells (Fig. S1 B). Similar to our previous study18, we applied a combined 
t-SNE19-ACCENSE20 data analysis approach to the 6 major cell lineages (Fig. 
S1 C) which revealed a large degree of heterogeneity within these lineages.
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We next focused on the ILC compartment (Fig. S2 A) which comprised 20.4% ± 
7.8% of the CD45+ cells. We pooled the data from the 7 samples and performed 
a t-SNE analysis in Cytosplore21. This provided a two-dimensional map where cells 
are positioned based on the similarity in expression of all marker simultaneously 
(Fig. 1 A and B). Based on the density features of the t-SNE-embedded cells, we 
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identified 34 phenotypically distinct clusters (Fig. 1, C and D) using the Gaussian 
Mean Shift clustering and generated a heatmap showing the distinct marker 
expression profiles for each cluster (Fig. 1 E). Unbiased hierarchical clustering 
revealed distinct clusters including a group of CD34+ cells expressing CD45RA 
and CD117, a larger cluster of several types of NK cells, and a CD127+ ILC cluster 
with cells expressing markers corresponding to ILC1, ILC2, CD45RAhigh ILC3, 
subsets of several types of CD56+ and CD56- ILC32,22 and a CD161- ILC3-like 
population 23. In addition, several unrecognized cell clusters with a Lin-CD7+CD127-

CD45RO+CD56+ phenotype [referred to as intermediate ILC (int-ILC) hereafter] 
were identified which clustered between the NK cells and CD127+ ILCs (Fig. 
1, C-E). While the majority of these int-ILCs (6.6% of ILCs ± 2.3%) were CD8a-

, a smaller related population (3.0% ± 1.6%) was CD8a+ (Fig. 1 F). Importantly, 
analysis of the composition of the cluster frequencies in the individual fetal 
samples demonstrated that even though quantitative differences exist, most of the 
identified clusters, including the int-ILCs were present in all 7 samples (Fig. 1 F).
Together, these data indicate that all known NK and CD127+ ILC cell 
clusters could be identified simultaneously while evidence for the 
existence of previously unrecognized clusters was obtained as well. 

Visualization of the t-SNE computation dynamics predicts potential 
differentiation trajectories in the ILC compartment
The cell surface phenotype of int-ILC (i.e. CD127-CD45RO+) places them in 
between the CD127+ ILCs and the NK cells (Fig. 1, C-E), suggesting potential 
relationships with both. To investigate this in more detail, we sought to visualize 
potential relationships between cell populations without prior designation of a user-
defined starting cell type in silico. To this end, we exploited the ability of Cytosplore 
to visualize the evolution of the t-SNE map21. Separating the computational modelling 
Fig. 2.  Monitoring t-SNE computation dynamics predicts potential differentiation trajectories of 
ILCs (A) t-SNE embeddings of the collective ILC single-cell data derived from 7 fetal intestines showing 
density features (upper row) and single cells (bottom row) at 6 stages over the course of the t-SNE 
computation. Colors represent the local probability density of t-SNE-embedded cells (upper row), or cluster 
partitions (bottom row), as described in Fig. 1 A. (B) t-SNE embeddings at stage 4 of the optimization 
phase as described in panel A. Colors of the cells represent ArcSinh5-transformed expression values of 
indicated markers. (C) Left panel: t-SNE embedding at stage 4 as in panel A. Colors represent density 
features and black encirclement indicates the trajectory of cells along the CD56 expression continuum 
shown in panel B. Right panel: Wanderlust graph (trajectory 0-1.0) of the CD56 positive cells in the left 
panel showing median ArcSinh5-transformed expression of CD8a, CD45RO, CD45RA, CD7, CD3, CD56, 
CD117, CD127 and CRTH2 from the CD8a- int-ILCs (shaded red box) via the CD8a+ int-ILC (shaded 
yellow box) to NK cells (shaded blue box), and from the CD8a- int-ILCs to ILC3s (shaded green box). The 
rainbow color bar indicates relative cell density.
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into 6 stages revealed how distinct cell clusters were formed, while their high-
dimensional similarities were projected onto a two-dimensional map, and linked to 
each other based on marker expression profiles (Fig. 2 A). Since the initial positions 
in the t-SNE map are assigned randomly, at the first stage of the t-SNE computation 
all cells were unordered around a single density peak. Shortly thereafter the CD34+ 
lymphoid precursor cells separated from the other cells (stage 2) and the first 
formation of the NK and CD127+ ILC clusters became apparent (stage 2 and 3). These 
early events were based on relatively large and highly discriminatory differences in 
the expression profiles between cell clusters, like the unique combination of CD34 
and HLA-DR expression by CD34+ cells. At stage 4 of the t-SNE computation the 
int-ILC cluster was positioned in the center with several distinct strands of cells 
forming trajectories towards the NK, CD27+ ILC1, KLRG-1+ ILC2 and CD103+ 
ILC3 clusters. In addition, a trajectory between the ILC2 and ILC3 clusters was 
visible (stage 4). Furthermore, cells from the CD8a- int-ILC population connected 
via the CD8a+ int-ILC population with NK cells, further supporting the notion that 
these two CD8a- and CD8a+ int-ILC populations are highly related (Fig. 2 A and 
Fig. S2 B). At the final stage of the t-SNE computation the 34 clusters were defined 
while the connections between the individual clusters were less clear as the t-SNE 
algorithm eventually assigns cells in between two clusters to either one of the two. 
Individual marker expression patterns at stage 4 of the t-SNE computation gave 
insight into the separations of and the connections between clusters (Fig. 2 B). 
Here, the NK cluster was characterized by the co-expression of CD45RA, CD56, 
CD122 and NKp46 while the CD127+ ILC cluster expressed CD45RO, CD117, 
CD127, CD25 and to a lesser extent CCR6 and CD103. Similarly, connections 
between int-ILC to ILC1, ILC2, ILC3 and NK cells were marked by (gradients 
of) expression of CD27, KLRG-1, CD103 and CD56, respectively. The absence 
of CD45RA, CD127, and CCR6 in combination with the presence of CD45RO 
and CD56, and divergent expression of CD117, CD122 and CD25, positioned the 
int-ILC in between the NK cell and ILC clusters. Interestingly, CD56 expression 
linked the ILC3 to the CD8a- int-ILC, and the CD8a+ int-ILC to the NK cells. 
We next applied Wanderlust24 to determine changes in marker expression 
along this CD56 continuum (Fig. 2 C), which demonstrated that the 
expression of CD127, CD117 and CD45RO gradually decreased while that 
of CD45RA and CD8a increased moving from CD8a- int-ILC to NK cells, 
via CD8a+ int-ILC; and the expression of CD127 and CD117 gradually 
increased from CD8a- int-ILC to ILC3.  Altogether, these results suggest that 
these t-SNE-based trajectories may reflect potential differentiation pathways. 
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Expression of cytokines, transcription factors and CD94 distinguish int-
ILCs from mature CD127+ ILCs and NK Cells
To further characterize the int-ILC population, we used the mass cytometry data 
(Fig. S3 A) to design a minimal antibody panel to distinguish the CD127-CD45RO+ 

int-ILCs from CD45RA+ NK cells, and to identify the mature CD127+ ILC types 
through differential expression of CD117 and CRTH2 (Fig. 3 A). Subsequently, we 
analyzed the proliferative state and examined the capacity of the subsets to produce 
cytokines and express markers linked to cytolytic potential by flow cytometry. For the 
former we stained the cells w ith the proliferation marker Ki-67 ex vivo. The highest 
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percentage of Ki-67 positive cells was present in the CD8a+ int-ILC population 
(43.9%) while on average 20% of cells in the other subsets were Ki-67 positive 
(Fig. S3 B). Upon stimulation with PMA and ionomycin Perforin/Granzyme B was 
detectable in all subsets, but more profoundly in the NK cells and CD8a+ int-ILCs 
compared with the CD8a- int-ILCs and ILC3s (Fig. 3, B and C). Moreover, all subsets 
expressed high levels of TNF-α, while IFN-g was detected mainly in the NK cells and 
CD8a+ int-ILCs but hardly in the CD8a- int-ILCs and ILC3s (Fig. 3, B and C). ILC2s 
expressed IL-4, IL-5 and IL-13, but ILC1s very little IFN-g (not shown). In contrast, 
IL-4, IL-5 and IL-13 was undetectable in any of the other subsets (not shown) while 
IL-17A and IL-22 expression was higher by ILC3s than CD8a- int-ILCs (Fig. 3 D).
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Next we determined the expression of key transcription factors associated with 
ILC development and phenotype. The expression of ID2, TCF7, AHR, NFIL3, 
ZBTB16 and TOX did not discriminate between the subsets (Fig. S3 C). In line 
with previous work25, the ILC2 subset was strongly GATA3 positive and RORgt 
negative, while ILC3s were GATA3 and RORgt positive (Fig. 4, A and B and Fig. 
S3 D). However, we found only low levels of T-bet expression by ILC1 (Fig. 4, A 
and B). Notably, both mature NK cells and CD8a+ int-ILCs expressed high levels 
of Eomes (Fig. 4, A and B and Fig. S3, E and F). In contrast, the CD8a- int-
ILCs were heterogeneous with respect to the expression of the 4 transcription 
factors which were all expressed by a proportion of the cells (Fig. 4, A and B), 
an expression profile that does not correspond to those found in mature CD127+ 
ILCs. Furthermore, multiple lineage transcription factors could be simultaneously 
expressed by CD8a- int-ILCs, such as T-bet and GATA3 (26.1% of CD8a- int-
ILCs) (Fig. S3, G-I). Finally, the frequency of cells expressing Eomes decreased 
along the potential differentiation trajectory linking the NK cells to CD8a+ int-
ILCs, CD8a- int-ILCs and ILC3s, while that of RORgt increased (Fig. 4, A and B).

To investigate the relationship between the int-ILCs, NK cells and ILC3s further, 
we evaluated the expression of CD62L, CD57, CD5 and the NK cell-associated 
C-type lectin receptor CD94. Here, expression of CD62L, CD57 and CD5 was 
almost lacking and did not discriminate between the subsets (not shown) while 
CD94 expression was high on NK cells but virtually absent from ILC3s (Fig. 4 
C), in agreement with previous studies2,10. In contrast, only part of the int-ILCs 
were CD94 positive with a higher expression level of CD94 on CD8a+ int-ILCs 
compared to CD8a- int-ILCs (Fig. 4 C), a result in line with the lower expression 
of Eomes in the latter. Furthermore, in contrast with CD94- cells, CD94+ 
cells lacked the expression of CD117, similar to mature NK cells (Fig. 4 C).

Together, these data indicate that the int-ILC subset is distinct from mature 
ILCs, where the expression pattern of the cytokines, CD94 and transcription 
factors link the CD8a+ int-ILCs to NK cells and the CD8a- int-ILCs to ILC3s.

int-ILC can differentiate into CD45RA+ NK cells
To test the hypothesis that the int-ILC subset may differentiate into CD127+ ILCs 
and/or NK cells, we first purified the CD8a- int-ILCs by flow cytometry (Fig. 5 A) and 
performed functional differentiation assays by co-culturing these with OP9 stromal 
cells expressing the Notch ligand Delta-like 1 (OP9-DL1). After 7 days of culture in 
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medium containing stem cell factor (SCF), IL-7, IL-2 and IL-15 (hereafter referred to 
as NK cytokine mix), the majority of the int-ILCs acquired a CD45RA+ phenotype 
(Fig. 5 B) and expanded substantially (Fig. 5 C). Also, these cells upregulated CD94 
(42% positive) (Fig. S4 A) and displayed expression of Eomes and/or T-bet, but no 
RORgt or GATA3 (Fig. 5 D), all similar to mature NK cells. Furthermore, part of these 
cells expressed CD8a (Fig. 5 B), a marker expressed by most fetal NK cells ex vivo 
(Fig. 2 B), where most of the CD8a+ cells displayed the highest expression of Eomes 
(Fig. S4 B). Moreover, a small fraction of generated cells maintained the CD45RA-

CD45RO+ int-ILC phenotype and a fraction of them also acquired CD8a (Fig. 5 B). 
In line with the suggested differentiation trajectory (Fig. 2 C), the expression of 
ILC3-associated RORgt decreased from the CD8a- int-ILCs to CD8a+ int-ILCs to 
CD45RA+ NK cells while all populations expressed high levels of NK cell-associated 
Eomes and/or T-bet (Fig. 5 D). Also, the cells became uniformly Ki-67 positive (Fig. 
5 F), consistent with the observed increase in cell numbers (Fig. 5 C). As similar 
results were obtained when purified CD8a- int-ILCs were co-cultured with OP9 
stromal cells without Delta-like 1, Notch signalling appears not to be involved (Fig. 
S4 C). In addition, upon culture on OP9-DL1 purified CD8a+ int-ILCs also acquired 
the CD45RA+ NK cell phenotype, maintained CD8a expression and expressed 

Fig. 5.  int-ILC can differentiate into CD45RA+ NK cells and ILC3. (A) Representative histograms 
depicting the expression of CD127, CD117, CD45RA, CD45RO, CD56 by flow cytometry-purified 
CD8a- int-ILCs (black line) and ILC3s (grey line) from human fetal intestines. Data are representative 
of six independent experiments. (B-G) Purified CD8a- int-ILCs and ILC3s were co-cultured in 96 well 
plates at 500 cells/well with irradiated OP9-DL1 stromal cells for 7 days with culture medium alone 
or supplemented with SCF, IL-7, IL-2, IL-15 (referred to as NK cytokine mix). Generated cells were 
analyzed by flow cytometry. Duplicated wells were included for each condition. Representative plots 
show a single duplicate. (B) Representative biaxial plots depict the phenotypes of generated Lin-CD7+ 
cells based on the gating strategy for ILC1, ILC2, ILC3, NK and int-ILC subsets as shown in Fig. 3 
A, for three different combinations of sorted cell populations (int-ILC in black contours, ILC3 in grey 
contours) and culture conditions as indicated. (Three to five independent experiments). (C) Quantification 
of the generated Lin-CD7+ cells in panel B in absolute cell number (left axis) and fold change (right axis) 
compared to the number of initially sorted cells (dashed line). (Two to four independent experiments). 
Error bar shows mean ± SD. (D and E) Histograms depict the expression of transcription factors Eomes, 
T-bet, GATA3 and RORγt by the indicated subsets generated from (D) sorted CD8a- int-ILCs with 
NK cytokine mix and (E) sorted CD8a- int-ILCs or ILC3s with culture medium. Numbers indicate the 
percentage of positive cells. FMO, fluorescence-minus-one control. Combined data on 5 human fetal 
intestines. (F and G) Biaxial plots depict the expression of Ki-67 by indicated subsets generated from 
the combinations of sorted cell populations (int-ILC in black contours, ILC3 in grey contours) and culture 
conditions as in panel D and E. Combined data on 5 human fetal intestines. (H-I) Purified CD8a- int-
ILCs were co-cultured at 500 cells/well with irradiated OP9-DL1 stromal cells in culture medium and 
harvested at the time points indicated in hours. Duplicated wells were included in each experiment. (Two 
independent experiments). (H) Quantification of the generated Lin-CD7+ cells in absolute cell number 
(left axis) and fold change (right axis) compared to the number of initially sorted cells (dashed line). (I) 
Representative biaxial plots show the expression of CD127 and CD117 by the generated Lin-CD7+ cells.
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high levels of CD94 (84% positive) (Fig. S4 D). Finally, purified CD8a- int-ILCs co-
cultured with OP9-DL1 and IL-15 cytokine only similarly expanded (not shown), 
acquired CD45RA, upregulated CD94 (41% positive), and became in part CD8a 
positive (Fig. S4 E). However, under these conditions approximately 60% of these 
generated cells remained CD117+ (Fig. S4 E), suggesting an incomplete conversion 
to the mature NK cell phenotype26. Together these data indicate that in the presence 
of NK cytokines, proliferative CD45RA+ NK cells are generated from int-ILC.

CD8a- int-ILC can differentiate into ILC3
In marked contrast, when purified CD8a- int-ILCs and ILC3s (Fig. 5 A) were 
individually co-cultured with OP9-DL1 in cytokine-free culture medium, the ILC3s 
retained their phenotype while the CD8a- int-ILCs acquired an ILC3 phenotype 
as they became CD127+CD117+ (Fig. 5 B), remained CD45RA-CD45RO+ (Fig. 
5 B) and CD8a- (not shown), in the absence of cell expansion and proliferation 
(Fig. 5, C and G). This phenotype was also stable during prolonged culture (Fig. 
S4 F). In addition, these cells homogeneously expressed RORgt, but no Eomes or 
T-bet (Fig. 5 E), suggesting an established ILC3 population2. As similar results were 
observed when we co-cultured the CD8a- int-ILCs with OP9 stromal cells that 
lacked Notch ligand Delta-like 1, Notch signalling appears not to be involved (Fig. 
S4, G and H). Unlike CD8a- int-ILCs and ILC3s, both purified CD45RA+ NK cells 
and CD8a+ int-ILCs did not survive under these conditions. To exclude that the 
generation of ILC3 by int-ILCs was due to outgrowth of contaminating ILC3s, we 
determined cell numbers and the acquisition of CD127 and CD117 at various time 
points during culture. After 24 and 72 h of culture, 38% and 88% of purified CD8a- 
int-ILCs had acquired both CD127 and CD117, respectively, while no increase in 
cell numbers was observed (Fig. 5, H and I). Together with the observation that 
only a very small proportion of both the purified mature ILC3s and differentiated 
ILC3s from int-ILCs were Ki-67+ (Fig. 5 G), this indicates that it is highly unlikely 
that selective outgrowth of contaminating ILC3s could explain the appearance of 
cells with an ILC3 phenotype in the CD8a- int-ILC/OP9 co-cultures. Thus, these 
results indicate that the CD8a- int-ILC population can differentiate into ILC3 in vitro.

Differentiation properties of CD8a- int-ILC subpopulations
By the differential expression of CD94 and CD117 three distinct CD8a- int-ILC 
subpopulations could be distinguished: CD94+CD117-, CD94-CD117- and CD94-

CD117+ (Fig. 4 C). We therefore investigated whether these subsets could 
differentiate into either NK cells or ILC3s in vitro. For this purpose, we first 
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Fig. 6. Distinct differentiation properties of CD8a- int-ILC subpopulations. (A and B) Expression 
of the transcription factors Eomes, T-bet, GATA3 and RORγt by the indicated subpopulations of CD8a- 
int-ILC ex vivo. Histograms (A) depict the results with one fetal intestine and the graphs (B) depict 
quantification of data obtained from 3 intestines. (Two independent experiments). Error bar shows mean ± 
SD. (C and D) Purified CD94+CD117-CD8a- int-ILC, CD94-CD117-CD8a- int-ILC and CD94-CD117+CD8a- 
int-ILC populations were co-cultured in 96 well plates at 500 cells/well with irradiated OP9-DL1 stromal 
cells for 7 days with (C) culture medium supplemented with NK cytokine mix or (D) culture medium alone. 
Generated cells were analyzed by flow cytometry. Representative biaxial plots depict the phenotypes of 
the generated Lin-CD7+ cells based on the gating strategy for ILC1, ILC2, ILC3, NK and int-ILC subsets 
as shown in Fig. 3 A, for the five combinations of cell populations and culture conditions indicated. 
Duplicated wells were included in each condition. Representative plots show a single duplicate. (Three to 
four independent experiments).



Chapter 6

154

examined the expression of transcription factors (Fig. 6, A and B). This revealed 
that Eomes was primarily present in the CD94+CD117- subset while RORgt 
expression was most pronounced in the CD94-CD117+ subset. In addition, all 
subsets expressed GATA3 and T-bet, where T-bet expression was most pronounced 
by the CD117- subsets. Together, these results explain the heterogeneity in the 
expression of transcription factors by CD8a- int-ILCs and position the CD94-

CD117- subset in between the CD94+CD117- and CD94-CD117+ subsets.

Next, we purified CD94+CD117-, CD94-CD117-, and CD94-CD117+ subsets 
individually and co-cultured them with OP9-DL1 stromal cells with either NK 
cytokine mix or cytokine-free medium. In the presence of NK cytokine mix (Fig. 6 
C), virtually all of the CD94+CD117- cells acquired the CD45RA+ NK cell phenotype, 
maintained expression of high levels of CD94 (76%), acquired CD8a expression 
(43%) and expanded substantially (12-fold; not shown). Similarly, most of the CD94-

CD117- cells and the majority of the CD94-CD117+ cells also acquired the CD45RA+ 
NK cell phenotype, acquired expression of CD94 (17% and 25%, respectively) and 
CD8a (24% and 16%, respectively), and expanded (9-fold and 7-fold, respectively; 
not shown). In contrast, in cytokine-free medium (Fig. 6 D) both the CD94-CD117- 
and CD94-CD117+ int-ILCs acquired an ILC3 phenotype as they became CD127+, 
remained CD45RO+CD45RA-CD94-CD8a- and acquired or increased the levels of 
CD117 expression, respectively (Fig. 6 D). Similar to CD8a+ int-ILCs and CD45RA+ 
NK cells the CD94+CD117- int-ILCs did not survive under these conditions.

Taken together, in these in vitro experiments all three subpopulations of the 
CD8a- int-ILCs can differentiate into NK cells, whereas the CD94-CD117- and 
CD94-CD117+ cells, but not the CD94+CD117- cells can differentiate into ILC3s.

DISCUSSION

Numerous studies have reported substantial heterogeneity in the ILC 
compartment2,22. In our mass cytometry-based approach the NK, ILC1, ILC2 and 
ILC3 subsets could be readily identified in the human fetal intestine as well as 
substantial variability within those subsets, results that were highly consistent in 
several samples analyzed. Based on the marker expression profiles, we identified 
a large number of distinct NK cell clusters, whose biological significance needs 
to be investigated in the future studies. In addition, we found a small CD27+ ILC 
cluster that matches ILC1 criteria1,27. However, in contrast to findings from Bernink 
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et al.12, but in line with other studies22,23, only few of these ILC1s expressed T-bet. 
Furthermore, two additional CD127+ ILC1-like clusters were identified which 
clustered with the NK cells due to the expression of several NK cell-associated 
markers, including CD45RA, CD56, CD8a and NKp46. Consistent with previous 
reports2,13,22 the ILC3 compartment was most frequent and heterogeneous, including 
CD45RO+ ILC3, CD45RA+ ILC3, HLA-DR+ ILC3 and CD56+/- ILC3 clusters. Further 
studies will be required to clarify the potential functional significance of observed 
heterogeneity in the ILC3 lineage. We could not distinguish LTi cells from ILC3s 
as no specific cell surface marker for human LTi cells was available at the time we 
performed our analysis. Moreover, while most of the human ILCs described express 
CD1611,2, we also detected a recently described CD161-CD117+ ILC3-like cluster 
that clustered with the CD127+ ILCs23. In addition, we identified two previously 
unknown CD8a+ counterparts of ILC3s that warrants further investigation. We 
also observed a rare CD34+CD45RA+CD117+ population that resembles the 
CD34+ precursors recently described in human tonsils and intestines after birth9,10.

Finally, we identified a Lin-CD7+CD127-CD45RO+CD56+ group of cells which 
by unbiased clustering were positioned between the CD45RA+ NK cells and 
CD127+ ILCs, and were termed int-ILC. While in previous studies1,2 such 
CD56+CD127- cells were classified as NK cells, the simultaneous use of CD45RA 
and CD45RO allowed us to distinguish these CD45RO+ cells from the CD45RA+ 
NK cells. It is important to note that these int-ILCs display variable expression 
of several surface markers, including CD8a, CD94, CD117, CD122, CD25, CD27, 
KLRG-1 and CD103, indicating that they are not a homogenous group of cells. 
Their unique position in between the NK cells and CD127+ ILCs, however, 
prompted us to investigate potential relationships between these cell clusters.

In recent years, several studies have explored developmental pathways by applying 
computational approaches on mass cytometry datasets. Wanderlust, accurately 
predicted B cell lymphopoiesis24 and Wishbone was found to recover the T cell 
developmental pathway28 at single-cell resolution. However, Wanderlust is not 
suitable to predict multi-lineage differentiation trajectories. While Wishbone can be 
used to identify bifurcating developmental trajectories, it needs the designation of a 
user-defined precursor cell type. As we wished to investigate potential developmental 
relationships without pre-assumptions we developed a novel computational approach 
to visualize the evolution of the t-SNE map over the course of the optimization. 
t-SNE is a non-linear dimensionality reduction algorithm which projects the high-
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dimensional similarities onto a two-dimensional map based on the concurrent 
marker expression profiles19. Here t-SNE not only employs bimodal distribution 
patterns but also incorporates gradients of the expression of cellular markers and 
therefore offers superior resolution. Importantly, the Cytosplore framework21 can 
visualize every iteration by making use of the A-tSNE29. This allowed us to analyze 
potential relationships between the int-ILC, ILC1, ILC2, ILC3 and NK clusters through 
visualization of gradients along putative differentiation trajectories. Such gradients are 
clearly visible in our Cytosplore analysis (Fig. 2) and contribute to the generation of 
cell clusters. Our current results indicate that at least some of those gradual changes 
in marker expression profiles correlate with differentiation pathways of immune 
subsets. Consistent with the observed plasticity among ILCs13,15, the analysis revealed 
a clear trajectory between the ILC2 and ILC3 clusters. This may imply that the 
CD103- ILC2 can differentiate into CD103+ ILC3 locally depending on physiological 
or pathological conditions. Alternatively, the fetal ILC2s may leave the intestine, in 
line with previous reports that ILC2s can be found in the peripheral blood30 but are 
virtually absent in the human intestine after birth13. In addition, a trajectory within 
the CD56+ cell compartment was revealed, where the CD8a- int-ILC was connected 
with the CD56+ ILC3 on one side and with the CD8a+ int-ILC and the NK cells on 
the other. Importantly, while the above analysis was performed on the innate cell 
population present in the 7 fetal intestines collectively, similar relationships between 
cell populations were revealed when the innate cell compartment of each fetal sample 
was analyzed individually, attesting to the robustness of the approach (Fig. S2 B).

The putative link between the int-ILC and the mature ILC and NK cells is further 
strengthened by several other observations. First, both the cytokine production 
profiles and CD94 expression profile ex vivo link the CD8a+ int-ILCs to NK cells and 
the CD8a- int-ILCs to the ILC3s. Second, the expression pattern of the transcription 
factors by int-ILCs is heterogeneous with features of both NK cells (Eomes and T-bet) 
and ILC3s (GATA3 and RORgt) where the CD8a+ int-ILCs resemble the NK cells while 
the CD8a- int-ILCs are closer to CD127+ ILCs. Finally, in the OP9-based co-culture 
system, in the presence of NK cytokines purified int-ILC expanded and displayed a 
CD45RA+Eomes+/T-bet+ NK cell phenotype while in the absence of cytokines the 
cells did not expand but acquired a stable CD127+CD117+RORgt+ ILC3 phenotype.

Further dissection of the CD8a- int-ILC compartment demonstrated the existence of 
three distinct subpopulations based on differential expression of CD94 and CD117: 
CD94+CD117-, CD94-CD117- and CD94-CD117+. In our in vitro experiments both 
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the Eomes-expressing CD94+CD117- and non-Eomes-expressing CD94-CD117- 
and CD94-CD117+ subpopulations could differentiate into CD45RA+ NK cells when 
cultured with NK cytokine mix. Furthermore, the differentiation into CD45RA+ NK 
cells was most efficient in the case of the CD94+CD117- cells and least for the 
CD94-CD117+ cells, compatible with a model where the CD94+CD117- cells are 
positioned close to NK cells, the CD94-CD117+ cells most distant and the CD94-

CD117- cells in between. The acquisition of CD8a by the CD94-CD8a- int-ILCs in 
these cultures indicates that the CD8a+ int-ILC may also be an intermediate stage 
towards NK cell differentiation. In the absence of cytokines CD117+CD127+ ILC3-
like cells could be generated from both CD94-CD117+ and CD94-CD117- cells but 
not from CD94+CD117- cells. Together this indicates that CD94+CD117- cells can 
exclusively differentiate into NK cells while the other two populations can differentiate 
into both NK cells and ILC3s, at least under the in vitro conditions employed.

In the absence of cytokines the int-ILC changed into ILC3-like cells without 
signs of cell expansion, cell division or cell death, arguing that the generation 
of ILC3 from the int-ILC is not due to selective outgrowth of contaminating 
ILC3s. In agreement, we did not observe any proliferative response of 
flow cytometry-purified ILC3 under the same experimental conditions. 

In mice, it has been shown that developmental hierarchy of ILCs goes from the 
common lymphoid progenitor to mature ILCs via α4β7-expressing lymphoid 
progenitor, early innate lymphoid progenitor, common helper ILC progenitor, and the 
ILC precursor7. Here the early innate lymphoid progenitor has been distinguished 
from other progenitors by the lack of CD127 and ILC lineage-specific transcription 
factors31, while the ILC precursor exhibits co-expression of transcription factors 
associated with ILC1, ILC2 and ILC3 subsets32. Finally, a murine fetal transitional 
CD127+ ILCP has been identified in the intestine which expresses varying amount 
of T-bet, GATA3 and RORgt33. In humans, two studies have shown that ILC3s can 
be generated from RORgt+CD34+ progenitors from tonsils and intestines9,10 but 
little is known about the intermediate stages. Interestingly, Scoville et al.10 generated 
both NK cells and the three types of helper ILCs from these CD34+ progenitors in 
vitro, however, the generated cells did not express CD127 but rather CD161 and 
intracellular ILC-related cytokine profiles. Also, a NK cell lineage-restricted CD34+ 
progenitor was identified in the human fetal liver and bone marrow34. In contrast, 
CD127- int-ILC in our study express CD45RO and variable levels of Eomes, T-bet, 
GATA3 and RORgt, but no CD34 and CD45RA, markers expressed by most human 
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progenitors. Also, with our mass cytometry approach we have been unable to 
identify cells with an int-ILC phenotype in the human fetal liver and fetal spleen (not 
shown), indicating that the int-ILC may specifically reside in mucosal tissues. Together, 
the cell surface phenotype, tissue distribution and transcription factor profiles of 
CD127- int-ILC suggests that these cells are distinct from previously identified ILC 
progenitors and may be in an intermediate differentiation stage among ILC lineages. 
Finally, we observed that the ILC3s and NK cells derived from the CD8a- int-ILC 
could partly revert their phenotype upon prolonged culture indicating that the 
int-ILC may represent an intermediate between two plastic lineages (not shown).

It has been shown that environmental cues including OP9/OP9-DL1 stromal 
cells and cytokines such as IL-7 and SCF play an important role in driving ILC3 
differentiation9,10,35. While the addition of SCF and IL-7 did promote significant 
expansion of the CD8a- int-ILCs, they did not differentiate into other types of cells 
(not shown). Instead, the differentiation of CD8a- int-ILCs toward ILC3s occurred in 
cytokine-free medium. In mice, Notch signalling for ILC3 development is necessary in 
adults but not in fetuses8, while in humans, the differentiation of CD34+ progenitors 
to ILC3s can occur without Notch signalling9,10. Consistent with these observations 
the generation of ILC3s from the CD8a- int-ILCs was Notch independent.

In conclusion, we delineated the heterogeneity of ILCs in the human 
fetal intestine and developed a computational model to predict potential 
differentiation trajectories based on mass cytometry data. This allowed the 
identification of a previously unidentified innate cell cluster that harbors 
cells that can differentiate into NK cells and ILC3-like cells in vitro. This may 
provide plasticity in the human fetal intestine in response to external stimuli. 

MATERIALS AND METHODS

Human fetal intestine and cell isolation
Human fetal intestines from elective abortions were collected after informed consent. 
Approval by the medical ethical commission of the LUMC (protocol P08.087) was 
obtained in accordance with the local ethical guidelines and the declaration of 
Helsinki. The gestational age ranged from 16 to 22 weeks. Single cell suspensions from 
fetal intestines were prepared as previously described18. Briefly, the mesentery, colon 
part and meconium were removed from the fetal intestine. The intestines were then 
cut into small fragments and treated with 1 mM1,4-Dithiothreitol (Fluka) in 15 mL 
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of HBSS (Sigma-Aldrich) for 2 x 10 min (replacing buffer) at room temperature (rT) 
to dissolve the mucus and subsequently with 1 mM EDTA (Merck) in 15 mL of HBSS 
under rotation for 2 x 1 h (replacing buffer) at 37 °C to separate the epithelium 
from the lamina propria fraction. To obtain single-cell suspensions from the lamina 
propria, the intestines were rinsed with HBSS and incubated with 15 mL Iscove’s 
Modified Dulbecco’s Medium (IMDM; Lonza) supplemented with 10% FCS, 10 U/mL 
collagenase IV (Worthington), 200 µg/mL DNAse I grade II (Roche Diagnostics), at 
37 °C overnight, after which cell suspensions were filtered through a 70 µm nylon 
cell strainer. Finally, the immune cells were isolated with a Percoll (GE Healthcare) 
gradient and stored in liquid nitrogen. 

Mass cytometry antibody staining and data acquisition
Details on antibodies used are listed in Table S1. Conjugation of the purified 
antibodies with metal reporters was performed with the MaxPar X8 antibody 
labeling kit (Fluidigm Sciences) according to the manufacturer’s instruction. 
Procedures for mass cytometry antibody staining and data acquisition were carried 
out as previously described18. Briefly, cells from fetal intestinal lamina propria were 
thawed and incubated with 1 mL 500x diluted 500 µM Cell-ID intercalator-103Rh 
(Fluidigm Sciences) for 15 min at rT to identify dead cells. Cells were then stained 
with metal-conjugated antibodies for 45 min at rT. After staining, cells were labeled 
with 1 mL 1,000x diluted 125 µM Cell-ID intercalator-Ir (Fluidigm Sciences) to stain 
all cells in MaxPar Fix and Perm Buffer (Fluidigm Sciences) overnight at 4 °C. Finally, 
cells were acquired by CyTOF 2TM mass cytometer (Fluidigm Sciences). Data were 
normalized by using EQ Four Element Calibration Beads (Fluidigm Sciences) with 
the reference EQ passport P13H2302 during the course of each experiment.

Mass cytometry data analysis
The biaxial plots showing antibody staining patterns in Fig. S1 were generated 
in Cytobank36. Data for single, live CD45+ cells gated from each fetal intestine 
individually using Cytobank 36 as shown in Fig. S1 A, were sample tagged and 
hyperbolic arcsinh transformed with a cofactor of 5 prior to t-SNE analysis. The 907 
clusters shown in Fig. S1 C were identified by analyzing the entire immune system 
(CD45+ cells) using the t-SNE-ACCENSE analysis pipeline as described before18. 
Next, t-SNE was performed for the ILC dataset using A-tSNE29 in Cytosplore21. 
t-SNE was carried out with default parameters (perplexity: 30; iterations: 1000). 
All t-SNE plots were generated in Cytosplore. Hierarchical clustering of the 
heatmap was created with Pearson Correlation and average linkage clustering in 
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MultiExperiment Viewer (http://www.tm4.org). Wanderlust analysis was performed 
on cells that were selected along the linear CD56 expression continuum at stage 4 
of the t-SNE computation with the CD56+CD8a+ ILC3 cluster as starting point (as 
this cluster is located at the outer end of the CD56 trajectory), using Cyt in Matlab24.

Antibodies and flow cytometry 
FITC-conjugated anti-CD11c (3.9), PerCP-Cy5.5-conjugated anti-CD45RO 
(UCHL1), PE/Dazzle 594-conjugated anti-CD45RA (HI100), PE-Cy7-conjugated 
anti-CD127 (A019D5), Brilliant Violet 605-conjugated anti-CRTH2 (BM16), 
anti-T-bet (4B10), PE-conjugated anti-T-bet (4B10), anti-IFN-g (4S.B3), anti-IL-5 
(TRFK5), anti-IL-13 (JES10-5A2), anti-IL-17A (BL168) and anti-TNF-α (Mab11) 
were purchased from Biolegend. The following monoclonal antibodies were 
purchased from BD: FITC-conjugated anti-CD3 (SK7), anti-CD19 (4G7) and anti-
CD14 (MφP9), APC-conjugated anti-CD117 (YB5.B8), APC-R700-conjugated 
anti-CD56 (NCAM16.2), V450-conjugated anti-CD7 (M-T701), Brilliant Violet 
605-conjugated anti-CD94 (HP-3D9), PE-conjugated anti-CD94 (HP-3D9), anti-
RORgt (Q21-559), anti-Ki-67 (B56), anti-Perforin (dG9), anti-IL-4 (3010.211). PE-
conjugated anti-Eomes (WD1928), anti-GATA3 (TWAJ), anti-Granzyme B (GB11), 
and eFluor 660-conjugated anti-GATA3 (TWAJ) were purchased from eBioscience. 
PE-conjugated anti-IL-22 (IC7821P) was purchased from R&D systems. Pacific 
Orange-conjugated anti-CD8a (3B5) was purchased from Life technologies.

For the cell surface staining, cells were incubated with fluorochrome-conjugated 
antibodies and human FC block (Biolegend) for 30-45 min at 4 °C. The transcription 
factor staining was performed by using Foxp3 Staining Buffer Set (eBioscience) according 
to the manufacturer’s instruction. For the intracellular cytokine staining/cytotoxic 
molecule, cells were stimulated with 0.1 mg/mL PMA (Sigma-Aldrich) and 1 µg/mL 
Ionomycin (Sigma-Aldrich) for 6 h at 37 °C and GolgiPlug (BD Biosciences) was added 
for the final 4 h after which cells were stained by using Fixation Buffer and Intracellular 
Staining Perm Wash Buffer (Biolegend). Cells were acquired on an LSR II cytometer 
(BD Biosciences) or sorted on a FACSAria™ III sorter (BD Biosciences) based on the 
gating strategy as shown in Fig. 3 A. Data were analyzed with FlowJo V10 software.

Quantitative Real-Time PCR (RT-PCR)
RNA extraction was performed with the NucleoSpin® RNA XS kit 
(Macherey-Nagel). cDNA was synthesized with the High Capacity cDNA 
Reverse Transcription kit (Applied Biosystems). RT-PCR was performed in a 
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StepOnePlus™ Real-Time PCR Systems (Applied Biosystems) with FastStart 
Universal SYBR Green Master Mix (Roche). ΔCt values were calculated using 
GAPDH as reference gene. The sequences of RT-PCR primers are as follows: 
GAPDH, forward primer: 5’-GTCTCCTCTGACTTCAACAGCG-3’; 
reverse primer, 5’-ACCACCCTGTTGCTGTAGCCAA-3’; AHR, 
forward primer: 5’-CTTAGGCTCAGCGTCAGTTA-3’; reverse 
primer, 5’-GTAAGTTCAGGCCTTCTCTG-3’; ID2, forward 
primer: 5’-TTGTCAGCCTGCATCACCAGAG-3’; reverse 
primer, 5’-AGCCACACAGTGCTTTGCTGTC-3’; NFIL3, forward 
primer: 5’-TGGAGAAGACGAGCAACAGGTC-3’; reverse 
primer, 5’-CTTGTGTGGCAAGGCAGAGGAA-3’; ZBTB16, 
forward primer: 5’-GAGCTTCCTGATAACGAGGCTG-3’; 
reverse primer, 5’-AGCCGCAAACTATCCAGGAACC-3’; TOX, 
forward primer: 5’-AGCATACAGAGCCAGCCTTG-3’; reverse 
primer, 5’-TGCATGGCAGTTAGGTGAGG-3’; and TCF1, forward 
primer: 5’-TGCAGCTATACCCAGGCTGG-3’; reverse primer, 
5’-CCTCGACCGCCTCTTCTTC-3’.

Cell culture and differentiation assays
OP9-DL1 or OP9 stromal cells were maintained in Minimum Essential Medium 
α (Lonza) supplemented with 10% FCS. Flow cytometry-purified CD8a- int-ILCs 
or CD94+CD117-, CD94-CD117- and CD94-CD117+ subpopulations (500 cells/
well) or CD8a+ int-ILCs (100 cells/well) were co-cultured with irradiated OP9 or 
OP9-DL1 stromal cells (1,500 RAD, 5,000 cells/well) in a 96 well plate (Corning) 
and maintained in culture medium (IMDM supplemented with 10% human serum 
or in culture medium containing 25 ng/mL SCF (Miltenyi Biotec), 25 ng/mL IL-7 
(Peprotech), 10 U/mL IL-2 (Novartis) and 10 ng/mL IL-15 (R&D Systems) or only 
IL-15. The phenotype of generated progeny was determined by flow cytometry.

Cytokine secretion
CD8a- int-ILCs and ILC3 (2,000 cells/well) were stimulated with 10 U/mL IL-2 
(Novartis), 50 ng/mL IL-1β (Peprotech) and 50 ng/mL IL-23 (Peprotech) for 4 days. 
TNF-α, IL-17A and IL-22 were measured by using Bio-Plex ProTM human cytokine 17-
plex panel kit and Bio-Plex ProTM human Treg cytokine panel 12-plex kit (Bio-Rad).
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SUPPLEMENTAL INFORMATION

Table S1. CyTOF antibody panel
The conjugation, validation and 
titration of all the antibodies which 
were not bought from DVS were 
done in house.

Antigen Tag Clone Supplier Cat. Final  dilution
1 CD127 165Ho AO19D5 DVS 3165008B 1/800
2 CCR6 141Pr G034E3 DVS 3141003A 1/200
3 CD8a 146Nd RPA-T8 DVS 3146001B 1/200
4 CD11c 162Dy Bu15 DVS 3162005B 1/200
5 CD38 172Yb HIT2 DVS 3172007B 1/200
6 CD45 89Y HI30 DVS 3089003B 1/100
7 CD117 143Nd 104D2 DVS 3143001B 1/100
8 CD4 145Nd RPA-T4 DVS 3145001B 1/100
9 CD16 148Nd 3G8 DVS 3148004B 1/100
10 CD25 149Sm 2A3 DVS 3149010B 1/100
11 CD123 151Eu 6H6 DVS 3151001B 1/100
12 CD7 153Eu CD7-6B7 DVS 3153014B 1/100
13 CD163 154Sm GHI/61 DVS 3154007B 1/100
14 CCR7 159Tb G043H7 DVS 3159003A 1/100
15 CD14 160Gd M5E2 DVS 3160001B 1/100
16 CD161 164Dy HP-3G10 DVS 3164009B 1/100
17 CD27 167Er O323 DVS 3167002B 1/100
18 CD45RA 169Tm HI100 DVS 3169008B 1/100
19 CD3 170Er UCHT1 DVS 3170001B 1/100
20 PD-1 175Lu EH 12.2H7 DVS 3175008B 1/100
21 CD56 176Yb NCAM16.2 DVS 3176008B 1/100
22 CD11b 144Nd ICRF44 DVS 3144001B 1/100
23 TCRgd 152Sm 11F2 DVS 3152008B 1/50
24 HLA-DR 168Er L243 BioL 307651 1/200
25 CD20 163Dy 2H7 BioL 302343 1/200
26 CD34 142Nd HIB19 BioL 343531 1/100
27 IgM 150Nd MHM88 BioL 314527 1/100
28 CD103 155Gd Ber-ACT8 BioL 350202 1/100
29 CRTH2 156Gd BM16 BioL 350102 1/100
30 CD28 171Yb CD28.2 BioL 302902 1/100
31 CD45RO 173Yb UCHL1 BioL 304239 1/100
32 CD122 158Gd TU27 BioL 339002 1/50
33 KLRG-1 161Dy REA261 MACS 120-014-229 1/50
34 CD8b 166Er SIDI8BEE ebio 14-5273 1/50
35 NKp46 174Yb 9E2 BioL 331902 1/40

DVS Sciences (DVS), eBioscience (eBio) and Biolegend (BioL).
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Fig. S1. Analysis of the entire immune system in the human fetal intestine using mass cytometry.
(A) Representative biaxial density dot plots from one fetal intestine showing the gating strategy for single, 
live CD45+ cells with percentages analysed by mass cytometry (N=7). Event length is a mass cytometry 
parameter defined as signal duration for the number of scans taken to acquire a given ion cloud. (B) 
Representative biaxial density dot plots from one fetal intestine showing the typical cell staining profiles of 
the antibodies used in mass cytometry after gating as shown in panel A (N=7). Gated cell populations are 
annotated above the plots. (C) A heatmap showing the median ArcSinh5-transformed marker expression 
values of the total 907 clusters identified by analyzing the entire immune system (CD45+ cells) from 7 
fetal intestines using the t-SNE-ACCENSE analysis pipeline (clustering per individual sample) for each of 
the 6 major immune lineages individually, as described before18, and hierarchical clustering thereof. four 
independent experiments).
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of the collective CD45+ cells (2.2x105 cells) from 7 fetal intestines at single-cell resolution. Colors of cells 
represent ArcSinh5-transformed expression values of indicated markers.
(B) Monitoring t-SNE computation dynamics for each individual fetal intestine. t-SNE embeddings of 
the ILC mass cytometry data showing single cells at stage 4 of the optimization course of the t-SNE 
computation for each individual fetal intestine (N=7). Colors represent the cluster partitions.
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Fig. S3. Ki-67 and transcription factor expression profiles of fetal intestinal ILCs ex vivo. (A) Minimal 
antibody panel required for phenotyping ILC and int-ILC subsets in the human fetal intestine. Biaxial plots showing 
the expression of the indicated markers by ILC1, ILC2, ILC3, NK and int-ILC subsets based on mass cytometry 
data derived from 7 human fetal intestines. Color represents the different subsets identified by the t-SNE-based 
analysis shown in Fig. 1 B and numbers of x-axis and y-axis represent ArcSinh5-transformed expression values of 
indicated markers. (B) Quantification of Ki-67 positive cells within indicated subsets obtained from 3 different human 
fetal intestines (Two independent experiments). Error bar shows mean ± SD. (C) Relative mRNA expression of ID2, 
TCF, AHR, NFIL3, ZBTB16 and TOX by the purified ILC subsets, B and T cell lines analyzed by RT-PCR (Three 
independent experiments). GAPDH as reference gene. # indicates that the ∆Ct value is below -10. Error bar shows 
mean ± SD. (D) Representative biaxial plots showing the expression of T-bet and Eomes, and GATA3 and RORγt 
by fetal intestinal CD127+ ILC. (E-F) Representative biaxial plots showing the expression of T-bet and Eomes by 
(E) fetal intestinal NK cells, and (F) CD8a+ int-ILC as defined in Fig. 3 A with flow cytometry. (G) Representative 
biaxial plots showing the combinatorial expression profiles of Eomes, T-bet, GATA3 and RORγt by fetal intestinal 
CD8a- int-ILC. (H) Expression of Eomes and RORγt by fetal intestinal T-bet+GATA3+CD8a- int-ILC. (I) Quantification 
of transcription factor positive cells of fetal intestinal CD8a- int-ILC. (Two independent experiments).
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Fig. S4. CD8a- int-ILC can differentiate into CD45RA+ NK Cells and ILC3. (A-E) Purified CD8a- int-ILC (500 
cells/well) and CD8a+ int-ILC (100 cells/well) populations were co-cultured with irradiated OP9-DL1 or OP9 stromal cells 
for 7 days either with culture medium supplemented with SCF, IL-7, IL-2, IL-15 (referred to as NK cytokine mix) or 
supplemented with IL-15. Generated cells were harvested and analyzed by flow cytometry. Duplicated wells were included 
for each condition in each experiment. Representative plots show a single duplicate. (A and B) Biaxial plots show the 
expression of CD94 (A) and the transcription factor Eomes (B) by generated CD45RA+ NK cells from sorted CD8a- 
int-ILCs with NK cytokine mix. (Three to five independent experiments). (C-E) Representative biaxial plots depict the 
phenotypes of the generated Lin-CD7+ cells from (C) sorted CD8a- int-ILCs with NK cytokine mix with irradiated OP9-DL1 
or OP9 stromal cells and (D) sorted CD8a+ int-ILCs with NK cytokine mix and (E) sorted CD8a- int-ILCs with IL-15. (Two 
independent experiments). (F-H) Purified CD8a- int-ILC (500 cells/well) were co-cultured either with irradiated OP9-DL1 
or with OP9 stromal cells with cytokine-free culture medium for 14 days (F) and 7 days (G and H). Generated cells were 
harvested and analyzed by flow cytometry (F and G). Representative biaxial plots depict the phenotypes of the generated 
Lin-CD7+ cells. (Two independent experiments). (H) Quantification in absolute cell number (left axis) and fold change (right 
axis) compared to the number of initially sorted cells. (Two independent experiments). Error bar shows mean ± SEM.
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CHAPTER 7

Summarising Discussion

Definition of a distinct immune subset
It is increasingly recognized that in order to gain further insights into human 
disorders and develop new therapeutic strategies and diagnostic tools, it is 
critical to have a comprehensive overview of immune cell subsets resident in 
tissues under physiological and pathological conditions. Flow cytometry has 
been the golden standard for analyzing immune cell subsets, and with a typical 
experiment dozens of immune subsets can be discriminated. Due to the lack of 
spectrally-resolvable fluorochromes, mass cytometry utilizing metal-conjugated 
antibodies has shown to be a powerful tool for dissecting the immune landscape 
even further1. It currently allows for the simultaneous measurement of up to 40 
markers, three times as many as flow cytometry. While most mass cytometry 
studies have so far focused on in-depth analysis of one immune lineage1, we choose 
a broad coverage approach by analyzing across all immune lineages simultaneously. 
We applied this to intestinal samples obtained from controls and patients with 
intestinal diseases, celiac disease and inflammatory bowel disease (IBD) in 
particular.  While the role of several immune subsets in driving intestinal pathology 
had been studied for various intestinal diseases2, 3, this broad and system-wide 
approach revealed previously unappreciated heterogeneity in the mucosal immune 
system and provided evidence for tissue- and disease-specific immune signatures. 

Indeed, mass cytometry and other high-dimensional, single-cell analysis techniques 
have greatly increased the number of phenotypically distinct cell subsets within the 
immune system. In our first study on gastrointestinal disorders (Chapter 2) we 
were able to distinguish 142 distinct immune subsets using a 28-antibody panel, and 
in our second study focusing on IBD (Chapter 5) we distinguished 309 distinct 
immune subsets in the intestine alone using a 36-antibody panel. These findings 
have raised obvious questions about the true distinctiveness and function of such 
cell subsets, and concerns on the definition of a ‘‘subset’’. Our view is that a subset 
is a set of similar cells displaying a distinct marker expression pattern based on the 
complete mass cytometry-antibody panel, where unsupervised computer-generated 
subset definition is manually checked for validity. Indeed, many of them could be 
defined as the same immune cell population displaying different levels of activation 
or maturation stages. To uncover potential relationships between immune subsets, 
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we exploited the ability of Cytosplore (Chapter 3) to visualize the evolution of 
the t-SNE map (Chapter 6), a pathway analysis. These results demonstrated several 
potential differentiation trajectories of innate lymphoid cell (ILC) subsets in the 
human fetal intestine, confirmed by in vitro experiments. This suggests that these 
subsets are indeed interconnected. Nonetheless, the biological significance of a large 
number of immune subsets we identified needs to be investigated in future studies. 

Remaining challenges for data analysis
Up to recently, analysis of flow cytometry data was mainly performed with gating 
strategies based on primarily bimodal expression patterns. Mass cytometry data 
analysis, however, requires computational tools to distil this large body of data into 
interpretable forms. The high-dimensionality, large size, and non-linear structure of 
the data poses considerable challenges. Dimensionality reduction-based techniques 
like t-SNE offer single-cell resolution and is one of the leading techniques for data 
visualization and clustering. However, three major caveats to the t-SNE method 
were that it lacked interactivity, yields incomplete density-based clustering, and, most 
importantly, was limited by the number of cells that can be analyzed. Therefore, the 
existing dimension reduction techniques were not optimal for mass cytometry data. 
Through fruitful collaborations with computer scientists from Technical University 
Delft, we succeeded to solve these issues. We developed Cytosplore (Chapter 
3), an interactive visual analysis system where we incorporated state-of-the-art 
clustering and t-SNE-based techniques, for the efficient data-driven specification of 
phenotypically distinct subsets in cytometry data. It provides a highly engaging user-
friendly experience by providing direct feedback and linked views, and is coupled to 
clinical parameters allowing rapid identification and visualization of patient-specific 
features. In addition, the inclusion of the HSNE algorithm (Chapter 4) allows the 
exploration of millions of cells without the need for downsampling the data. What 
makes HSNE particularly useful is that it preserves local data structure while allowing 
examination of the full dataset at single-cell resolution. This application can be used not 
only for complex mass cytometry datasets, but also for standard 12-parameter flow 
cytometry datasets. Therefore, Cytosplore allows us to go beyond data sizes currently 
possible to handle with other tools, a useful development considering expected 
increases in acquisition rate and dimensionality in mass- and flow cytometry4, 5.

Further analysis improvements are still needed to exploit the full potential of 
mass cytometry. Methods that can quantify cellular heterogeneity, identify critical 
cell subset features and assign biological identity to computer-identified subsets 
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will be particularly useful. For the latter two, a recent report has taken the first 
steps into this direction. Diggins et al. presented marker enrichment modeling6, 
an algorithm that objectively describes cell subsets by quantifying contextual 
marker enrichment. This provides a standardized language to annotate the 
key distinguishing features of immune subsets identified in cytometry data. 

Moreover, despite the vast amounts of data generated by the mass cytometry 
community, increasing exponentially each year (Figure 1), there has hardly been 
any comparisons of datasets as of yet. This is a serious shortcoming as much more 
can be learned from these experiments. To accomplish this, a public mass cytometry 
data repository needs to be established through international efforts, with the aim 
of data integration. How to shape this? One of the challenges is the antibody panel 
composition designed specifically for each study. Different datasets can only be 
matched based on the presence of overlapping markers, where the accuracy of 
matching is proportional to the number of shared markers in the panels. Although 
thousands of immune-system-wide markers are available, generally the core immune 
markers providing phenotypic information are confined to a much smaller number. 
Also, recently Fluidigm started providing standardized antibody panel kits, such 
as the 29-antibody cocktail specifically designed for human immune monitoring. 
Therefore, I anticipate that many independent mass cytometry studies (will) share a 
sufficient number of markers for comparative dataset analysis. Machine-learning and 
classification methods need to be developed to impute marker expression profiles 
and assess cell subset similarities between mass cytometry studies. This will enable 
meta-analyses across multiple mass cytometry experiments, revealing differences 
and commonalities in cellular profiles between different types of immune-mediated 
diseases.
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Unique individual fingerprint of the immune system
In our first study (Chapter 2), the peripheral blood and intestinal samples from 
six patients that were biopsied twice, with a 3- to 6-months time interval, clustered 
tightly together in the data analysis. When comparing the immune cell composition 
of intestinal biopsies from the same individual but at different intestinal location or 
inflammatory state, the large interindividual variation as compared to intraindividual 
variation was striking (Chapter 5). In several cases, samples derived from the same 
individual clustered together. Indeed, cell compositions and other immune markers 
have been described to be different across individuals by several reports investigating 
peripheral blood7, 8, 9, 10. These studies demonstrate that the heterogeneity in the 
immune system increases with age, largely driven by non-inheritable factors. In 
addition, it was observed that collective sets of immune cell frequencies could 
predict diverse functional responses7, 8, suggesting that the composition of an 
individual’s immune system reflects a functional network of cell subsets and that 
the balance between these cell subsets determines the overall responsiveness of 
the immune system. In agreement, our results confirm the presence of a unique 
individual ‘fingerprint’ in immune cell composition in the periphery. In addition, 
we have provided evidence that the collective immune cell composition in the 
intestine is also individual-specific, emphasizing the need for personalized care.

Mass cytometry as an application in clinical medicine
The heterogeneous nature and suboptimal clinical response to treatment observed 
in gastrointestinal and other immune-mediated disorders highlight the need for 
improved strategies and personalized patient care. Mass cytometry has shown 
great promise in identifying immune profiles that associate with disease. So how 
far is mass cytometry as an application in clinical medicine? Recently, clinical studies 
implementing mass cytometry have been performed to investigate immunological 
aspects that underlie clinical outcomes11, 12, help monitor disease progression13, and 
to predict responses to therapy14, 15. As a direct diagnostic tool, mass cytometry 
might be rendered unsuitable due to the currently relative low sample throughput 
and high cost. Rather, mass cytometry is more often applied as a discovery tool. In 
this thesis, we have mainly investigated diagnostic specimens from untreated patients 
with gastrointestinal diseases, mapping immune compositions in health and disease 
(Chapter 2 and Chapter 5).  An important next step would be to design a longitudinal 
study where the effect of treatment (such as anti-TNF) in IBD could be examined, 
to identify immunological parameters that correlate with therapeutic responses. 
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An important consideration in the design of a longitudinal study employing mass 
cytometry is the need for standardizing experimental procedures thoroughly. 
This is especially important because of the required unbiased data analysis. 
Currently, mass cytometry cell acquisitions are accompanied with calibration 
beads for data normalization between experiments, enabling correction of signal 
fluctuations16. Further standardization might include multiplexing clinical samples 
into one processing tube using (live-cell) barcoding17, 18, stained with a pre-
aliqouted antibody cocktail (stable at -80 °C), combined with a consistent internal 
control sample for normalization of staining variability between experiments. 

Results of clinical studies utilizing mass cytometry might help establish 
minimal sets of measurements critical in immune monitoring and personalized 
patient care. These could either be translated to high-throughput and cost-
effective technologies, such as flow cytometry. Alternatively, if mass cytometry 
continues to develop further, the identification of disease-associated 
changes in immune composition may potentially lead to the development of 
unbiased diagnostic procedures based on a single mass cytometric analysis.

Rare cell subsets matter
The study of rare cell populations is of growing importance in diagnostics and 
therapeutics. Specifically, the detection of circulating tumor cells19, tumor stem 
cells20, endothelial cells21, hematopoietic stem cells22, HIV-infected cells23, invariant 
NK-T cells24, fetal cells25, ILCs26, antigen-specific T cells27, and the monitoring of 
minimal residual disease28 provides valuable clinical information. The term “rare” 
typically refers to cell counts with a frequency of 0.01% or less29. It is challenging 
to accurately identify rare cells due to the requirement of many phenotypic 
markers, large data sizes and limitations of pre-existing computational tools. 
Often, rare cells had been mistaken for noise by clustering algorithms or lost in 
the downstream analysis due to the necessity of downsampling the data. In fact, 
we have demonstrated that downsampling introduces a potential bias in observed 
heterogeneity in the immune system, affecting mainly rare cells (Chapter 4). We 
have shown that the HSNE method (Chapter 4) Is superior to other single-
cell analysis methods in identifying rare cell populations in mass cytometry data. 
Two features make HSNE particularly suitable for this: (1) The preservation of 
nonlinearity of the data, key for separating distinct rare cells from abundant cell 
populations. (2) Allowing the examination of the full dataset at single-cell resolution, 
providing increased detail and confidence in establishing the phenotypes of rare cells. 
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Our analysis on rare cells in the human fetal intestine resulted in the identification 
of a previously unidentified innate cell population, termed int-ILCs (Chapter 6). 
These cells have the capacity to differentiate into NK cells and ILC3-like cells in 
vitro. We speculate that this cell population provides plasticity in the intestine in 
response to external stimuli. Interestingly, we identified the same cells in intestinal 
ileum biopsies of children and adults associated with an unaffected-IBD and control 
profile (Chapter 5), while effector NK cells and ILC3s were more readily detectable 
in affected-IBD specimens. It is tempting to speculate that under inflammatory 
conditions the int-ILC may differentiate into these effector cell types in the intestine. 
This also illustrates that research on the physiological and early-life development 
of the mucosal immune system improves our understanding of factors that may 
contribute to derailment of disease-associated immune responses.

Moreover, our results have indicated that disease-specific immune subsets reside 
mainly in the affected organ and are much less readily detectable in peripheral blood 
(Chapter 2). However, upon reanalyzing the dataset using HSNE (Chapter 4), 
we were able to identify a rare population of CD28- effector memory CD4+ T 
cells specifically in blood of some Crohn’s disease patients, which was missed in 
the original analysis (Chapter 2) due to downsampling. This suggests that rare 
intestinal disease-associated CD4+ T cells can be detected in peripheral blood. In 
addition, we identified a CD4+ T cell effector memory population distinguished 
by the expression of HLA-DR and CD38 while lacking CD27 and CD127 
specifically in the intestine of 17 out of 29 IBD patients (Chapter 5). Together 
with previous observations30, 31, there is strong evidence that in a subgroup of 
IBD patients the CD4+ T cell population is altered during inflammation, and 
possibly detectable in blood. This might present an opportunity to circumvent 
invasive gastrointestinal endoscopy for disease monitoring, but requires further 
investigations. Therefore, the identification of circulating, rare immune subsets 
offers possibilities to determine cellular parameters that correlate with disease.

Assessing antigen-specificity 
Celiac disease is an intestinal autoimmune disease driven by dietary gluten and 
gluten-specific CD4+ T cell responses. We have identified a celiac disease-associated 
immune composition in the small intestine, mainly characterized by the presence 
of distinctive TCRgd subsets and CD8+ T cell subsets while lacking certain innate 
lymphocyte subsets (Chapter 2). Following oral gluten challenge, concomitant with 
gluten-specific CD4+ T cells, the appearance of activated, gut-homing CD8+ T cells 
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and TCRgd cells in peripheral blood of celiac patients was detected in a recent study32. 
However, it is currently unclear where the gluten-specific CD4+ T cells reside in the 
high-dimensional immune landscape in the intestine we described. Possibly within the 
PD-1+CD161+ CD4+ T cell effector memory subset as this subset was increased in 
numbers in celiac biopsies compared with control (Chapter 2).  As mentioned above, 
the CD4+ T cell compartment also appears to be implicated in IBD (Chapter 5), but 
unlike celiac disease the potential causative antigens in IBD are yet to be identified.

Newell et al. developed an elegant method that allows the simultaneous identification 
of many antigen-specific T cells, by combining mass cytometry with combinatorial 
peptide-MHC tetramers33. Using this method, they succeeded to screen for 109 
different tetramers while retaining 23 metal channels to analyze other phenotypic or 
functional markers in a single sample. In addition, such an approach revealed that virus-
specific CD8+ T cells occupied distinct niches of phenotypic and functional diversity34. 
However, these analyses focused on CD8+ T cells which require the more stable MHC 
class I tetramer reagents, while the development of MHC class II tetramers required 
for analyzing antigen-specific CD4+ T cells is more complicated. Combining mass 
cytometry with tetramers has a great potential in providing a comprehensive analysis 
of specific T cell responses, distinguishing antigen-specific T cells from bystander T 
cells, and might be a useful application to study inflammatory intestinal diseases.

Functionality of immune subsets 
Functionality of immune cells relates to their gene and protein expression profiles. 
As mentioned above, studies have shown that cellular immune compositions could 
predict functional responses7, 8. In contrast, a study on acute myeloid leukemia 
revealed that although surface and signaling phenotypes of immune cells displayed 
tight coregulation in healthy samples, this was not the case in leukemia35. This raises 
the question to what extent the surface phenotypes of immune subsets serve as 
proxies of cellular state and function in intestinal disorders. We have mainly focused 
on characterizing the immune cell landscape in health and disease (Chapter 2 
and Chapter 5), not its functionality. There are several ways how mass cytometry 
can be utilized for assessing immune cell function. For example, once immune 
subsets of interest have been discovered, a minimal marker gating strategy can be 
devised, either supervised or automated, to specifically identify these subsets using 
flow cytometry. This allows for the purification of viable cells of these subsets for 
further in vitro analysis. We have applied this approach to study the functionality 
of various ILC subsets in the human fetal intestine (Chapter 6), assessing their 
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cytokine production profiles and differentiation potential. Alternatively, mass 
cytometry can also be used directly for the analysis of functional states of the 
immune system36, 37, 38, 39. Due to the availability of many channels, mass cytometry 
permits the combination of multiple phenotypic surface markers with multiple 
functional intracellular markers, under unstimulated and stimulated conditions. 

An elegant study by Bodenmiller et al. demonstrated the power of applying 
multiplexed mass cytometry for the profiling of cellular states perturbed by small 
molecule regulators39. By dedicating 7 metals to cellular barcoding they could 
multiplex an entire 96-well plate, characterizing immune cell signaling dynamics and 
the effects of 27 inhibitors on this system. For each inhibitor, they could measure 14 
phosphorylation sites in 14 cell types at 96 conditions, resulting in 18,816 quantified 
phosphorylation levels from each multiplexed sample. Therefore, this analysis allows 
the high-throughput characterization of cell type selectivity and responsiveness to 
a given stimulation or drug for dozens of cell types simultaneously. The cellular 
responsiveness can either be measured by analyzing the major signaling pathways or 
production of effector molecules, such as cytokines. Now that we have profiled the 
immune system with a 36-surface antibody panel in IBD (Chapter 5), it would be 
interesting to determine the minimal set of markers required to preserve most of 
the disease-associated immune heterogeneity. This would make space in the panel 
for building in several intracellular signaling or cytokine markers to investigate the 
functionality of these disease-associated subsets. A major challenge would be the 
determination of the minimal number of cells required per condition for a reliable 
read-out using this assay. With the Helios-upgraded CyTOF system, approximately 
50,000 live immune cells can be detected from 2 intestinal biopsies in total, while in the 
original study about 200,000 cells per well was used39. If feasible, this assay may provide 
a unique opportunity to screen for the functionality of the immune subsets implicated 
in IBD with a high-dimensional approach. It might also be an attractive method for 
drug screening of immune cells from clinical biopsies, to categorize drug effects or 
drug combinations, to eventually guide personalized therapeutic strategies in IBD.

The architecture of the tissue microenvironment in health and diseases
Many types of cells must cooperate in tissues in order to mount an inflammatory 
immune response. Therefore, we choose a broad coverage approach by analyzing 
across all immune lineages simultaneously. Results of the gastrointestinal studies we 
employed (Chapter 2 and Chapter 5) elucidated that underlying the identified 
disease-associated profiles, the differentiating subsets were often a combination of 
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both the innate and the adaptive immune compartment. This raises the question 
whether these disease-specific cells are interacting with each other in the tissue. 
However, with conventional mass cytometry we analyze single-cell suspensions 
and, therefore, lose the spatial context. Many studies of intestinal immunology 
have not taken into account that the intestine comprises several anatomically 
defined segments that each have distinct physiological roles and immunological 
components40. A promising technological development is imaging-mass cytometry, 
a combination of mass cytometry with laser ablation that allows the simultaneous 
analysis of over 30 markers on tissue sections with subcellular resolution41, 42. 

We performed preliminary experiments using imaging-mass cytometry with a 
15-antibody panel on sections from the fetal intestine (Figure 2). Prior to ablation, 
the tissue section can be examined by a camera allowing the identification of 
regions of interest, such as the intestinal villi (Figure 2A). After data acquisition, 
the expression of a few individual markers can be visualized with classic coloring 
overlays (Figure 2B). The resolution of imaging-mass cytometry is comparable 
with standard immunofluorescence, but unhampered by autofluorescence. Coloring 
overlays of individual markers, however, is not capable of visualizing over 4 markers 
simultaneously. To comprehensively visualize all markers simultaneously at 1 µM 
pixel resolution, we exploit the ability of HSNE (Chapter 4) of allowing the high-
dimensional analysis of millions of data points, followed by clustering of similar 
pixels. Subsequently, the pixels are projected back onto the original image, but now 
color-coded according to the HSNE clustering (Figure 2C). Using this approach we 
obtain an immediate, reconstructed overview of the architecture of the intestine in 
a complete data-driven fashion. This analysis demonstrates the presence of a tissue 
organization between T cells, ILCs and myeloid cells in the fetal intestine, and this 
will be investigated further in the future. Furthermore, we are currently working 
on integrating the imaging-mass cytometry analysis over several layers, from the 
pixel level to the cellular level to the tissue level, each interacting with another. 

This provides a unique opportunity to comprehensively determine the cellular 
neighborhood of disease-associated immune subsets in the tissue-specific 
microenvironment. Ultimately, a three-dimensional architecture of the intestine 
could be reconstructed where the microenvironment of immune cells composed of 
structural proteins and stromal cells could be visualized and analyzed interactively, 
providing a more integrated view of disease-specific changes.
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Figure 2. Imaging-mass cytometry on the human fetal intestine. (A) A camera showing regions of 
the tissue section prior to ablation. (B) Color overlays for the markers DNA (blue), CD7 (red), and CD3 
(green). (C) HSNE analysis of the single-pixel data projected back onto the image. Color represents 
HSNE pixel clusters, indicating epitelium (black), nerves (purple), IgM+ cells (blue), T cells (red), ILCs 
(pink) and myeloid cells (green) 
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Systems Immunology
Moving forward, it will be important to investigate the immune system by integrating 
mass cytometry with other technologies, such as single-cell transcriptomics, 
proteomics, metabolomics, T cell and antibody repertoire sequencing, multi-
parameter imaging and cytokine bead-based multiplex assays. Such an approach, 
also known as ‘Systems Immunology’43, will enable us to gain insight into how 
different components of the immune system function and interact in the tissue 
context in health and disease. Additionally, It would be of great value to correlate 
this with the composition of the microbiota, since multiple profiling studies have 
described characteristic shifts in the microbiota composition associated with the 
pathogenesis of IBD44. Moreover, single-cell RNA sequencing of samples prior 
to CyTOF antibody panel design might aid in the identification of unanticipated 
candidate markers in an unbiased manner. A great barrier to implementing 
systems immunology successfully, however, is the requirement of a highly-skilled 
multi-disciplinary team. Collaborations between clinicians, technology experts, 
bioinformaticians and immunologists are key for such an undertaking. Combining 
these technologies will offer new opportunities to define a comprehensive landscape 
of the immune system and provide a framework for understanding the essential 
features of an immune response that may correlate with useful clinical outcomes. 

Concluding remarks
Inflammatory intestinal diseases can only be understood by studying specialized 
cell types within the tissue niche itself. Mass cytometry and data-driven, automated 
analysis approaches have proven to be a powerful approach to investigate complex 
compositions of heterogeneous cell subsets, such as those encountered in intestinal 
biopsies. Future improvements on interactions between datasets and integrations 
with other –omics technologies, such as imaging, are required to exploit the full 
potential of mass cytometry. These types of data have the potential to greatly improve 
our understanding on human disease. In concert with clinical data, mass cytometry 
could enable a finer classification of patients, and might aid in the development 
of improved diagnostics, prognostics and personalized therapeutic regimens. 
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Het afweersysteem 
Ons afweersysteem bestaat uit een gemengde verzameling van witte bloedcellen 
met verschillende functies. Er zijn bijvoorbeeld afweercellen die ziekmakende 
indringers herkennen, ‘killercellen’ die tumoren vernietigen, cellen die antistoffen 
maken en cellen die alle rommel opruimen. Dit is een kleine greep uit het volledige 
assortiment afweercellen, waarvan er miljoenen overal in ons lichaam actief zijn. 
Op basis van hun functie worden de afweercellen onderverdeeld in hoofdgroepen, 
zoals T-cellen, B-cellen, NK-cellen en myeloide cellen. Binnen die hoofdgroepen 
onderscheiden we weer allemaal subgroepen.

Het verschil zit onder andere in de eiwitten aan de buitenkant van de cel. Die 
eiwitten bepalen aan welk soort cel de afweercel kan binden, waarmee hij kan 
communiceren of die hij kan doden. De afweercellen kunnen we karakteriseren 
door deze eiwitten te bestuderen.

Chronische ontstekingsziekten in het darmstelsel
Het afweersysteem is noodzakelijk in de strijd tegen infecties die veroorzaakt worden 
door bacteriën, virussen of parasieten. Desalniettemin kan het afweersysteem 
ontsporen wat bijdraagt aan het ontstaan van (immuungerelateerde) ziekten als 
type 1 diabetes en reuma, maar ook chronische ziekten in het darmstelsel, zoals 
de ziekte van Crohn, ulceratieve colitis en coeliakie. Bij deze ziekten reageert het 
afweersysteem ten onrechte op bepaalde stoffen of valt het lichaamseigen weefsel 
aan. 

Bij coeliakie zorgt het eten van gluten, dat onder andere in tarwe en andere granen 
zit, voor heftige ontstekingen in de dunne darm. Een levenslang, strikt glutenvrij 
dieet is de enige behandeling die we nu kennen. Sommige coeliakiepatiënten hebben 
milde symptomen, terwijl anderen zeer ernstige vormen ontwikkelen. Bij patiënten 
met de ziekte van Crohn of ulceratieve colitis reageert het afweersysteem in de 
darm overdreven sterk op onschadelijke bacteriën. Ook hier leidt dat tot ernstige, 
vaak chronische ontstekingen. De behandeling bestaat uit het toedienen van 
ontstekingsremmende medicijnen, maar lang niet alle patiënten reageren daar even 
goed op.  Bij een kwart van de patiënten met de ziekte van Crohn zijn de ontstekingen 
dusdanig ernstig dat een operatie nodig is om de schade te herstellen. De toename 
in het voorkomen van deze ziekte bij jonge kinderen met vaak een agressiever 
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ziekteverloop is verontrustend. Waarom krijgt de één een ernstige vorm en de 
ander niet? Om te kunnen begrijpen hoe ziekten in/van het afweersysteem ontstaan 
en waarom we zulke grote verschillen zien tussen patiënten is het noodzakelijk dat 
de verschillende typen afweercellen in detail in kaart worden gebracht.

Massa cytometrie
Met de nu gangbare methode “flow cytometrie” kunnen cellen van elkaar worden 
onderscheiden door er verschillende antilichamen aan toe te voegen. Deze hechten 
zich aan specifieke eiwitten (markers) op het celoppervlak. Deze markers bepalen 
de identiteit van de cel. Aan ieder antilichaam is een specifiek lichtgevend molecuul 
gekoppeld dat zichtbaar gemaakt kan worden in een flowcytometer. Maar er is een 
limiet: er kunnen niet meer dan 12 antilichamen tegelijkertijd gemeten worden, 
omdat de verschillende kleuren licht elkaar dan gaan overlappen.

Met massa cytometrie, of CyTOF, is de basis hetzelfde maar hier zijn antilichamen 
voor detectie gekoppeld aan metalen: elk antilichaam aan een ander metaal. Door te 
meten welke metalen zich aan een bepaalde cel gehecht hebben, weten we met welk 
type cel we te maken hebben. Voor het verkrijgen van deze meetgegevens gebruiken 
we een Massacytometer. In dit apparaat bevindt zich een gloeiendheet plasma met 
een temperatuur van 2.700 °C, equivalent aan de zon, dat cellen één-voor-één tot 
op atoomniveau uit elkaar doet spatten. Die metaalatomen hebben allemaal een 
verschillende massa en die verschillen worden heel nauwkeurig gemeten met een 
massaspectrometer. Deze nieuwe techniek is een grote verbetering ten opzichte 
van de gangbare methode (flow cytometrie). Met de CyTOF kunnen we nu drie keer 
zoveel celoppervlakmarkers tegelijk bepalen - momenteel 40 - en in de toekomst 
valt dat aantal zelfs nog uit te breiden naar meer dan honderd. Dat betekent weer 
een enorme toename in de mate waarin cellen verder van elkaar onderscheiden 
kunnen worden. De acquisitie van data gaat met een razend tempo van duizend cellen 
per seconde. Hiermee kunnen we dus snel van honderdduizenden afweercellen uit 
bijvoorbeeld het darmslijmvlies of bloed in detail karakteriseren. Concluderend 
kunnen we zeggen dat we met de CyTOF zeer uitgebreide celanalyses kunnen 
uitvoeren en zodoende de complexiteit van het afweersysteem in detail kunnen 
bestuderen.
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Analyse van complexe CyTOF-gegevens 
De analyse in de eerste CyTOF studie naar diverse chronische darmziekten die 
wij hebben uitgevoerd hebben we gedaan met 5.2 miljoen cellen. In de tweede 
studie, specifiek gericht op de ziekte van Crohn en ulceratieve colitis konden we 
8.9 miljoen cellen analyseren. Eén cel kan meerdere markers hebben en ook in een 
specifieke combinatie. Het vergt dus slimme datatechnieken om wijs te worden uit 
de gigantische hoeveelheid informatie die de CyTOF genereert. De methoden die er 
bestonden om de CyTOF data te analyseren waren nog zeer beperkt. Ze gaven een 
globaal beeld van alle cellen of ze gaven een gedetailleerd beeld van een willekeurig 
deel van de cellen. Soms maar 20%. Deze beperkingen in de analyse werden 
veroorzaakt door gebrek aan computerkracht. Het was daardoor onmogelijk om de 
verschillende cellen van elkaar te onderscheiden. Hierdoor werden onderzoekers 
gedwongen hun dataset te verkleinen en een willekeurig selectie van de totale 
hoeveelheid cellen te analyseren. Echter, de meest interessante celtypen in een 
weefselmonster, celtypen die te maken hebben met ziek of gezond zijn, zijn vaak 
zeldzaam en je mist ze als je slechts een deel van de cellen gedetailleerd bestudeerd. 

Een nieuwe analysetechniek genaamd Hierarchical Stochastic Neighbour Embedding 
(HSNE) die wij in samenwerking met computerwetenschappers van de Technische 
Universiteit Delft hebben ontwikkeld samen met de Cytosplore software, lost 
dat probleem op. De gebruiker krijgt eerst een tweedimensionaal plaatje op zijn 
computerscherm waarin de cellen uit het weefselmonster op basis van onderlinge 
gelijkenissen zijn gegroepeerd. De cellen staan er niet individueel in weergeven: 
dat zou resulteren in een onoverzichtelijke massa punten. In plaats daarvan zijn er 
‘landmarks’, representatieve cellen die op elkaar lijkende cellen vertegenwoordigen. 
Dit overzicht laat de details weg, maar alle informatie is gebruikt om deze landmarks 
te berekenen. Vervolgens kan in stappen ingezoomd worden op een groep cellen 
naar keuze tot de individuele cellen met bijbehorende markers in beeld zijn. 
Het is te vergelijken met Google Earth, waar je begint met de hele aarde en kunt 
inzoomen tot de straat waar je woont. Deze interactieve, visuele, hiërarchische 
methodiek is gebruikersvriendelijk en werkt makkelijk, snel en goed. De landmarks 
vertegenwoordigen bekende hoofgroepen van cellen, zoals (bepaalde) T-cellen en 
B-cellen van het afweersysteem. Door in te zoomen kun je zeldzamen celtypen 
ontdekken binnen deze hoofdgroepen die ontbreken of juist aanwezig zijn bij een 
bepaalde ziekte. Dat levert aanknopingspunten op voor het begrijpen van die ziekte, 
diagnostiek en doelgerichte behandeling. 
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Identificatie van ziekte-geassocieerde afweercelpopulaties
Om de verschillen tussen de afweercellen van patiënten met chronische darmziekten 
in kaart te brengen hebben we (een set van) bloedmonsters en stukjes darmweefsels 
geanalyseerd met de CyTOF. In de eerste studie waren de monsters afkomstig van 
patiënten met verschillende stadia van coeliakie of Crohn en van een zogeheten 
controlegroep – mensen met darmklachten die een endoscopie (inwendig 
darmonderzoek) moesten ondergaan waaruit bleek dat er geen darmontsteking te 
vinden was. Een van de meest opvallende resultaten was het sterke verschil tussen 
bloed en darmweefsel. Zonder vooraf te weten welk monster gemeten was, maakte 
deze techniek probleemloos onderscheid tussen afweercellen uit bloed en uit 
darmweefsel. Een belangrijk resultaat, want het laat zien dat een bloedmonster zeer 
beperkt informatie geeft over wat er in het darmweefsel aan de hand is. 

Verder bleek aan de hand van onze resultaten dat het afweersysteem veel complexer 
is dan gedacht. Een aantal soort cellen was al bekend, maar nu blijken het er nog veel 
meer te zijn. We vonden in totaal 142 verschillende subgroepen van afweercellen 
in de weefsels die we bestudeerden. Een belangrijke bevinding was dat we met 
deze methode scherp onderscheid konden maken tussen de verschillende groepen 
patiënten. De afweercellen uit het darmweefsel van coeliakiepatiënten vormden een 
duidelijk aparte groep, net als die van de ziekte van Crohn patiënten, anders dan in 
het darmslijmvlies van gezonde mensen. Ook konden we de verschillende stadia en 
complicaties eenvoudig van elkaar onderscheiden. 

Conclusie
De CyTOF studies hebben nieuwe inzichten gegeven in de betrokkenheid van 
afweercellen in chronische darmziekten. Deze verschillen in samenstelling van 
afweercellen tussen patiënten levert aangrijpingspunten om behandeling veel 
gerichter op de individuele patiënt af te stemmen en zo de gezonde cellen met 
rust te laten. Daarnaast hebben we nu een stap gezet waarmee we de patiënten, 
na een behandeling bijvoorbeeld, in de loop van tijd kunnen volgen door de ziekte-
specifieke abnormale cellen te volgen (immuno-monitoring). Wij verwachten dat de 
techniek toepassingen zal krijgen voor patiënten, voor het stellen van een diagnose 
en om vast te stellen of een behandeling het gewenste effect heeft.
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