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General introduction 

________________________________________________________ 

 

Agrobacterium  

 

Agrobacterium  tumefaciens is a soil-borne, Gram-negative, rod shaped bacterium, which is 

the causative agent of crown gall disease in plants (Smith and Townsend, 1907). The 

bacterium transfers a part of its DNA (T-DNA) located on a tumor-inducing plasmid (Ti-

Plasmid) simultaneously with virulence proteins expressed from the vir region, which is also 

located on the Ti-plasmid, into host cells resulting in tumor formation in plants (for reviews 

see: Tzfira and Citovsky, 2006; Gelvin, 2010). Because of its unique interkingdom gene 

transfer capability this bacterium was developed as a natural genetic engineer. A. tumefaciens 

has both a linear (2.1 Mbp) and a circular chromosome (2.8Mbp)  and virulent strains also 

have a Ti-plasmid (Vaudequin-Dransart et al., 1998; Goodner et al., 2001; Wood et al., 

2001). One of the important features of Agrobacterium  is its broad host range. 

Agrobacterium  can transfer T-DNA not only into dicot and monocot plants (Hooykaas-van 

Slogteren et al., 1984), but also into yeast (Bundock et al., 1995; Piers et al., 1996), fungi (de 

Groot et al., 1998), algae (Kumar et al., 2004), sea urchin embryos (Bulgakov et al., 2006) 

and possibly human cells (Kunik et al., 2001) under laboratory conditions. Therefore A. 

tumefaciens is used as a genetic tool to modify the genome of more and more different 

eukaryotic organisms for molecular biological  studies and for biotechnological purposes. 

Even though A. tumefaciens has such a broad host range, the efficiency with which certain 

species or even cultivars within a species are transformed may differ tremendously. Also 

different Agrobacterium  strains may differ in their host range for tumor induction.  This is 

mostly due to difference in the constitution of the virulence genes on the Ti plasmid 

(Melchers et al., 1990). The host range also relies on unknown properties of the recipient 

plant cells.  

 

Induction of the virulence genes 

The genes in the A. tumefaciens virulence region (vir region) are induced when the bacterium 

senses various plant-secreted compounds at the infected wound site on the plant (Stachel et 

al., 1986). These signals include phenolic compounds and monosaccharides. The phenolic 

compounds also serve as chemo-attractants for A. tumefaciens (Brencic et al., 2005; Palmer 

et al., 2004). The phenolic compound acetosyringone was the first identified inducer of A. 

tumefaciens virulence (Stachel et al., 1985). This compound is used in the laboratory for 

Agrobacterium  mediated transformation (AMT) of non-plant hosts (Bundock et al., 1995; de 

Groot et al., 1998). The Agrobacterium  sensory system consists of Ti-plasmid encoded 

proteins VirA and VirG and the chromosomally encoded sugar binding protein ChvE. VirA 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086400/#B93
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and VirG are parts of a two component regulatory system (for review see McCullen and 

Binns, 2006). The constitutively expressed membrane receptor VirA functions as a sensor for 

the plant-derived signals. VirA forms a dimer with four domains: the periplasmic, 

cytoplasmic linker, kinase, and receiver domains. Upon the presence of a sugar and phenolic 

signals, VirA phosphorylates VirG. Phosphorylated VirG binds to a 12 bp vir-box located 

upstream of the transcription initiation sites in the vir-region. VirG is thereby activating the 

transcription of the vir B, C, D, E, F, G and H operons. Phosphorylated VirG initiates its own 

expression by activating VirG transcription at the distal promoter (reviewed by Brencic and 

Winans et al., 2005).  

 

T-DNA processing 

After induction of the virulence genes, the relaxase VirD2 in cooperation with VirD1, VirC1 

and VirC2 nicks one of two imperfect direct repeats (left and right borders; LB and RB, 

respectively) surrounding the T-DNA (Atmakuri et al., 2007). These borders determine the 

T-region (van  Haaren et al., 1987)  and nicking is thought to promote DNA synthesis leading 

to the release of a piece of single stranded DNA (T-strand) (Atmakuri et al., 2007). VirD1 is 

facilitating in the nicking process by enhancing the binding of VirD2 and nicking of 

supercoiled DNA, while VirC1 and VirC2 act as specific binding proteins (Toro et al., 1988; 

Lu et al., 2009).  The VirD2 protein remains covalently attached to the 5’end of the T-strand 

forming a nucleo-protein complex (Ward et al., 1988; Pansegrau et al., 1993). This complex 

is recognized by the type IV secretion system (T4SS) and is translocated into the host cell 

(van Kregten et al., 2009).  

 

The type IV secretion system (T4SS) of Agrobacterium  

T4SSs are widely found in gram negative bacteria and serve as a conjugation system to 

exchange genetic information between bacteria or to deliver proteins to fungal, plant or 

mammalian cells. Conjugation enables bacteria to adapt to changes in the environment 

through acquisition of beneficial traits (reviewed by Rego et al., 2010). During AMT the T-

complex is translocated to the host cell through a specialized T4SS. In addition, a number of 

effector proteins, i.e. VirE2, VirE3, VirF and VirD5, is translocated through the T4SS 

independently from the T-complex (Vergunst et al., 2000; Schrammeijer et al., 2003). A 

translocation sequence at the C-terminus of the effector proteins is recognized resulting in 

translocation (Vergunst et al., 2005).  In A. tumefaciens the T4SS is composed of VirB1-11 
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and VirD4. Together they form a trans-envelope secretion channel, which on top has an 

outward extension, the T-pilus, which is mainly composed of VirB2 subunits. The process of 

T-DNA transfer through the T4SS consists of a series of temporally and spatially ordered 

close contacts of the T-complex with the T4SS forming proteins. In the T4SS, VirD4 

functions as a substrate receptor; VirB11,VirD4 and VirB4 are ATPases and provide the 

energy for the transfer through the inner membrane. Contacts with the VirB6 and VirB8 inner 

membrane subunits as well as the periplasmic- and outer-membrane-associated subunits 

VirB2 and VirB9 also participate in the protein translocation. VirD4 and VirB11 energize a 

structural transition in VirB10 that is required for a late-stage assembly or gating activity for 

DNA passage to the cell surface (extensively reviewed by Christie et al., 2014).  

 

Virulence proteins translocated into the host cell 

As mentioned above, during AMT independently from the T-strand – VirD2 complex  a 

number of virulence proteins (VirD5, VirE2, VirE3, VirF) are translocated in the host cell.  

The VirE2 protein is able to bind single-stranded DNA in a sequence–independent way. 

Inside Agrobacterium  the VirE2 protein is stabilized by its chaperone VirE1, which also 

protects its self-association and aggregation (Deng et al., 1999; McBride and Knauf, 1988). 

VirE1 is therefore also required for VirE2 translocation from A. tumefaciens into the plant 

cells (Sundberg et al., 1996), but otherwise VirE2 the translocation peptide suffices for the 

translocation of heterologous cargo (Vergunst et al., 2003). In the plant cell VirE2 binds to 

the T-strand and protects it from host cell nucleases ( Gietl et al., 1987; Citovsky et al., 1989; 

Sen et al., 1989) and may help the T-strand passing the lipid bilayers of membranes (Dumass 

et al., 2001). VirE2 may also hijack clathrin mediated endocytosis as recently reported by Li 

and Pan (2017). Furthermore, VirE2 helps in facilitating the nuclear uptake of the T-complex 

by converting it in a long thin thread and by guiding to the nucleus through binding of the 

VirE2 binding protein (VIP1) (Citovsky et al., 1989; Ziemienowicz et al., 2001). VIP1 is a 

transcription factor that responds to biotic and abiotic stresses by MPK3-mediated 

phosphorylation. Phosphorylated-VIP1 localizes to the plant nucleus leading to the 

expression of many defense-related genes. Therefore, VirE2-VIP1 interaction may direct the 

T-complex into the nucleus (Djamei et al., 2007; Pitzschke et al., 2009). However, recently 

such a role of VIP1 was disputed (Shi et al., 2014). Besides, it has been reported that VirE2 

facilitates the chromatin targeting of the T-complex through an association with VIP2 (Anand 

et al., 2007).  
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The VirD2 protein with a strong nuclear localization sequence (NLS) at its C-terminus is 

prime to guide the T-complex into the nucleus (Ziemienowicz et al., 2001). Recently 

interaction between VirD2 and histones in S. cerevisiae has been reported and it may help 

direct the T-DNA to the chromatin prior to integration into one of the chromosomes 

(Wolterink-van Loo et al., 2015). The virulence protein VirF is a host range factor of 

Agrobacterium  (Hooykaas et al., 1984; Melchers et al., 1990). VirF contains a putative F-

box and it has been shown that it associates with plant homologs of the yeast Skp1 protein 

suggesting a role of VirF in targeted protein degradation (Schrammeijer et al., 2001). Tzfira 

et al reported that VirF is involved in destabilization and degradation of VirE2 and VIP1; this 

would lead to the uncoating of the T-DNA enabling its integration into the host’s 

chromosomal DNA (Tzfira and Citovsky, 2001). Certain plants including Arabidopsis 

thaliana express an F-box protein called VBP which obviates the need for the VirF protein in 

transformation (Zaltsman et al., 2010). VirE3 interacts with pBrp, a plant-specific 

transcription factor (García-Rodríguez et al., 2006). pBrp localizes at the outside of plastids; 

however, when the cell is stressed or when VirE3 is present, pBrp translocates to the nucleus 

to stimulate transcription. Niu et al. (2015) showed that in Arabidopsis thaliana VirE3 

activates the VBF promoter and thus possibly by inducing the VBF F-box protein indirectly 

regulates the levels of VirE2 and VIP1. This clarifies why the transformation is only slightly 

decreased with a mutation in either virF or virE3, while the inactivation of both genes leads 

to low transformation efficiency (García-Rodríguez et al., 2006). The VirD5 protein binds to 

the VIP1-VirE2 complex, hence inhibiting the degradation of this complex (Wang et al., 

2014). VirD5 also interacts with another VirE2 binding protein, VIP2 (Wang et al., 2018). 

Zhang et al. (2017) showed that VirD5 binds to the kinetochores in host cells, resulting in 

chromosome mis-segregation during mitosis and inhibition of yeast and plant growth.  

 

T-DNA integration 

After nuclear uptake, the T-strand is converted in a double-stranded form and integrates into 

the host genome. In plants the T-DNA integrates by a process of non-homologous 

recombination (for review see: Gelvin, 2000); even when large segments of homology are 

present in the T-DNA integration by homologous recombination (HR) only occurs with a 

very low efficiency (Offringa et al., 1990). However, in the yeast S. cerevisae the T-DNA is 

preferentially integrated via homologous recombination (HR) showing that T-DNA 

integration is largely determined by the host (Bundock et al., 1995). In the absence of 
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homologous sequences in yeast and in many fungi the T-DNA is integrated via non 

homologous end-joining (NHEJ) that relies on Ku70, Ku80 and DNA ligase 4 proteins (van 

Attikum et al., 2001; van Attikum et al., 2003). Inactivation of one of the NHEJ factors 

prevented non-homologous integration in yeast and fungi (Kooistra et al., 2004), but in plants 

such mutation of host had as most a minor negative effect on integration (Park et al., 2015). 

Recently, van Kregten et al. (2016) showed that in Arabidopsis thaliana polymerase theta 

plays critical role in T-DNA integration. They have reported that POLQ mutant (teb1) plants 

are resistant to T-DNA integration, revealing that TMEJ (Theta-Mediated End Joining) is the 

prime pathway for T-DNA integration in plants. 
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Figure 1. Schematic overview of the main processes during Agrobacterium-mediated transformation 

of plant and yeast cells. (1) Wounded plant cells (e.g. N.tabacum) excrete sugars and phenolic compounds 

(1), or under laboratory condition presence of acetosyringone (I) are recognized by the ChvE and VirA 

proteins of the sensory system at the bacterial membrane (2). VirG is phosphorylated by VirA and induces 

expression of vir genes located on the Ti plasmid (3). A. tumefaciens forms a strong specific bond to the 

plant cell through interaction of bacterial and plant receptors (not shown in this picture). Virulence protein 

VirD2 forms a relaxosome and is involved in the generation of a T-strand that stays covalently bound to 

VirD2 (4). The nucleoprotein complex and the virulence proteins VirD5, VirE2, VirE3 and VirF are directed 

to a Type IV Secretion System (T4SS) (5). Inside the plant cell the VirE2, no longer bound to VirE1, coats 

the nucleoprotein complex and a mature T-complex is formed (5) which moves to the nucleus (6 and III); 

VirE2 protein is not necessary for yeast transformation. Interaction between host factors and virulence 

proteins assist in the nuclear uptake of the T-complex (7 and IV). Upon nuclear uptake, the T-strand is 

uncoated (8) and the Pol-Q polymerase facilitates T-DNA integration into random positions of the host 

genome via micro-homology-mediated recombination (9). The T-DNA integration into the yeast genome 

occurs via Rad52- mediated homologous recombination or via yKu70/80-mediated non-homologous end 

joining (V). 
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Other bacterial secretion systems 

The most conserved protein transport systems involved in protein translocation through the 

cytoplasmic membrane into either the periplasmic space or the inner membrane are the 

general secretion (Sec) system and the twin arginine translocation (Tat) system which have 

been identified in all bacteria (Natale et al., 2008; Papanikou et al., 2007; Lenz et al., 2003). 

Proteins are translocated in their unfolded state through the Sec system that is composed of a 

protein targeting part, a motor protein and a membrane integrated conducting channel 

(Papanikou et al., 2007). The Tat pathway, which consists of 2-3 subunits namely TatA, TatB 

and TatC, is used for secretion of folded proteins such as cytoplasmic synthesized redox 

factors (Natale et al., 2008; Robinson and Bolhuis, 2004; Berks et al., 2005). Pathogenic 

bacteria exploit various methods to infect mammalian and plant host cells and  to prevent the 

host immune defense response. Effector protein secretion is one of the crucial factors of the 

pathogenicity of these bacteria. Therefore, several different secretion systems are employed 

by the pathogenic bacteria to secrete their specific effector proteins from the bacteria into the 

host cells or the host environment to facilitate the infection processes (Deng et al., 2017; 

O’Boyle and Boyd, 2014). In general, bacterial protein secretion systems can be divided into 

five major classes, based on their structures, functions, and specificity namely the Type III 

Secretion System (T3SS), T4SS, T5SS, T6SS, and T7SS. The T3SS is a molecular machine 

similar evolutionary derived from the bacterial flagellar apparatus. Its capability to secrete 

effector proteins into the extrabacterial environment and into host cells was first proposed in 

Yersinia pestis (Rosqvist et al., 1994). Since then T3SSs have been found in many gram-

negative bacterial species, including pathogens and commensals of mammals, plants, and 

insects (see review, Troisfontaines and Cornelis et al., 2005). The T3SS is a complex 

structure composed of approximately 20 bacterial proteins (Coburn et al., 2007). For a 

description of the other system see the review by Green and Mecsas (2016). 

Detection of Type III and IV effector protein translocation  

To study protein translocation from bacteria into host cells, several different methods have 

been used over the past decades which are described here briefly (for review see O’Boyle et 

al., 2017). Effector‐CyaA fusion. In this method the desired effector protein is fused to the 

calmodulin-dependent adenylate-cyclase domain of adenylate cyclase (CyaA). After 

successful CyaA-tagged protein translocation through the T3SS into the host cell, calmodulin 
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activates the CyaA and it converts adenosine triphosphate into cyclic adenosine 

monophosphate (cAMP). The cAMP concentration can be measured using an enzyme-linked 

antibody, which is commercially available. This method has been used for detection of the 

translocation of translocated YopE and YopH proteins by Yersinia (Sory et al., 1995). 

Glycogen synthase kinase (GSK) tag is a 13-residue peptide derived from the human GSK-

3beta kinase. The GSK-tagged effector protein will be phosphorylated after protein 

translocation into a host cell which can be detected with antibodies. This technique has been 

used to detect translocation of Yersinia enterocolitica Yops proteins for instance (Sory and 

Cornelis, 1994).  

Direct tetracysteine-fluorescein biarsenical hairpin binder (4Cys‐FlAsH ) labelling. To 

visualize translocation of desired effector proteins they can be fused with a 12-18 residues 

amino acid tag including a 4Cys hairpin. 4Cys-tagged effector protein become fluorescent 

and detectable by binding of the FIAsH dye (Hoffmann et al., 2010). This has been applied 

for instance in Shigella and Salmonella to visualize translocation of  IpaB, IpaC and SopE2 

and SptP effector proteins into host cells (Enninga et al., 2005; Van Engelenburg and Palmer, 

2008). More recently two new techniques using split-GFP and phiLOV2.1 were described. 

These have been used in this thesis and will be described in more detail below.  

Split GFP complementation system  

Green fluorescent protein (GFP) is well known and widely used to visualize the location of 

proteins in living cells. It was discovered by Osamu Shimomura to be the agent responsible 

for fluorescence in jellyfish Aeqorea victoria (Shimomura et al., 1962). GFP can be excited 

at 470 nm and shows emission at 508 nm and requires no substrate and coenzyme (Tsien, 

1998; Morise et al., 1974). In 1992, the GFP gene was cloned and expressed in non-jellyfish 

organisms making those fluorescent (Prasher et al., 1992; Chalfie et al., 1994). Fusions to 

other proteins did not have a negative effect on its functionality. Thus, proteins fused with 

GFP can be followed inside the cells, with minimum light exposure and low photobleaching 

effects (Lippincott-Schwartz et al., 2000). Variants of GFP with different emission and 

excitation spectra were obtained by mutagenesis including cyan (CFP), blue fluorescent 

protein (BFP) (Heim et al., 1994; Rizzuto et al., 1996) and red-shifted yellow fluorescent 

protein (YFP) (Ormö et al., 1996). GFP was successfully used to visualize the translocation 

of effector proteins from the pathogenic fungus Magnaporthe oryzae into rice (Khang et al., 

2010). However, only one report of successful measurement of protein translocation in 
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bacteria using GFP is available, in contrast with all other negative results which were 

obtained. This is suggesting that GFP-tagged proteins do not pass through T3SS and T4SS. In 

addition, the large size of GFP (27 k Da) and loss of activity of some effector proteins after 

tagging with GFP make tagging with GFP less useful (Akeda and Galán, 2005; Chang et al., 

2014; Tanaka et al., 2015). 

The bimolecular fluorescence complementation (BiFC) assay can be used for visualization of 

protein-protein interactions in cells (Hu et al., 2002) or even in visualization of effector 

protein translocation from bacteria to its recipient cells (Sakalis et al., 2014). This technique 

is based on reassembly of two split fragments of a fluorescent protein such as EYFP, Venus, 

GFP, Cerulean and mRFP1 by fusion of each fragment to proteins that interact in the cell (Hu 

and Kerppola, 2006; Shyu et al., 2006; Huu and Kerppola, 2003; Jach et al., 2006). In 

addition, simultaneous detection of multiple binding partners of a desired protein can be 

accomplished using BiFC. However, physical constraints due to the properties of these large 

fusion proteins may prevent reconstitution of the fluorescent protein. Alternatively, split GFP 

fluorescent protein complementation system has been developed (Cabantous et al, 2005). In 

the split GFP system, the first 10 ß-strands of GFP containing amino acids 1-214 (GFP1–10) is 

expressed in host cells and the effector protein to be studied is tagged to the eleventh ß-strand 

of GFP containing amino acids 214-230 (GFP11) (Cabantus et al., 2005). After successful 

translocation of the GFP11-tagged effector protein into their recipient cells, the two non-

fluorescent parts reconstitute to form the complete GFP structure which is fluorescent and 

can be detected by confocal or fluorescent microscopy (Figure 2). The split‐GFP system was 

used to visualize translocation of Salmonella effector proteins PipB2 and SteA into human 

host cells (Van Engelenburg and Palmer). Recently Henry et al. (2017) used the split GFP 

system to directly visualize the translocation of bacterial effector proteins via T3SS in A. 

thaliana. They have shown the translocation of GFP11-tagged effector proteins AvrPto, 

AvrPtoB, AvrB from Pseudomonas syringae and effector protein PopP2 from Ralstonia 

solanacearum into leaf cells of A. thaliana expressing GFP1-10 during natural infection. 

Translocation of  virulence protein VirE2 from A. tumefaciens through the T4SS was 

successfully visualized using the split GFP system in yeast, Arabidopsis, and Nicotiana 

tabacum (Sakalis et al., 2014; Li et al., 2014; Li and Pan, 2017). Despite all of the benefits of 

the split GFP technique, it still has also some disadvantages. For instance, it can only be used 

for recipient cells that have been transformed to enable expression of GFP1-10. Another 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559743/#bib1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559743/#bib8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559743/#bib8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559743/#bib58
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559743/#bib37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559743/#bib36
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disadvantage is that the translocated proteins will only be detectable in cellular compartments 

where GFP1-10 is present (Park et al ., 2017).  

 

Direct labelling of effectors with phiLOV2.1 

A wide range of LOV domain-containing photoreceptors proteins have been found in 

bacteria, fungi and plants (Christie, 2007). The fluorescent properties of these plant blue-light 

receptor kinases are regulated either by Light, Oxygen or Voltage (Huala et al., 1997; 

Buckley et al., 2015). LOV domains can bind to the chromophore flavin mononucleotide 

(FMN) and subsequently emit green fluorescence upon blue/UV light irradiation. By protein 

production from pET-based vectors, it has been shown that the LOV-domain variant iLOV 

(improved LOV) is more effective as a fluorescent reporter (Chapman et al.,  2008). 

Moreover, tagging EspG with iLOV did not impede functionality of this effector protein 

upon microinjection into Normal Rat Kidney (NRK) cells which resulted in Golgi apparatus 

disruption (Gawthorne et al., 2012) as previously observed with GFP-tagged EspG (Selyunin 

et al., 2011). The structure of iLOV was further manipulated to generate novel, photostable 

variants that could readily be detected in bacterial and mammalian model systems. 

Subsequent structural analysis of a representative fraction of the resulting photostable iLOV 

variants revealed several additional possibilities to both improve the photochemical 

properties of iLOV, and also to generate alternative, photostable variants (phiLOV2.1), thus 

providing new LOV scaffold proteins as oxygen-independent fluorescence reporters (Christie 

et al., 2012a, b). The smaller size of LOV (12.1 kDa) in comparison with GFP (27 kDa) is an 

advantage and also the fact that no specific genetically modified recipient cells are required 

for the detection of  protein translocation into host cells (Chapman et al.,  2009).  PhiLOV2.1 

was used to observe Tir-phiLOV2.1 and IpaB-phiLOV2.1 expression inside E.coli O157H7 

and Shigella flexneri, respectively, and also the phiLOV2.1-tagged SipA effector protein of  

Salmonella was detected in macrophages and intestinal epithelial cells after translocation 

(Gawthorne et al., 2016; McIntosh et al., 2017).  

Each of the mentioned techniques have their strengths and drawbacks. Not all techniques are 

generally applicable. Some of these techniques give only information on the fact that protein 

translocation does occur, but give no information on the location of the translocated protein 

in the host cell.  In this thesis I was focused on two methods that are summarized in figure 2.  

 



20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Two techniques to visualize protein translocation from bacteria into living host cells. (A) The 

split GFP system. The effector protein is tagged with the non-fluorescent GFP11; the non-fluorescent GFP1-10 

is expressed in the host cell; upon successful translocation of the GFP11-tagged effector protein is will bind 

to GFP 1-10 and thus reassemble into a complete GFP fluorescent protein which can be detected. (B) The 

phiLOV2.1 tagging approach. The effector protein is tagged with the fluorescent protein phiLOV2.1. The 

effector protein can be detected upon expression inside the bacteria and after translocation into the recipient 

cell. 
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Visualization of effector protein translocation from Agrobacterium  into 

plant and yeast host cells. 

Vergunst et al. (2000 and 2005) used the Cre-Recombinase Reporter Assay For 

Translocation (CRAFT) to demonstrate for the first time that the VirF, VirD5, VirE3 and 

VirE2 virulence proteins are translocated from Agrobacterium  into plant cells through the 

T4SS directed by C-terminal translocational sequences. To this end, the effector proteins 

were tagged with the Cre-recombinase and host cells were used that contain a reporter gene 

disrupted by a segment of DNA flanked by two lox-sites. Upon translocation of the tagged 

effector protein, the floxed segment was excised and either a kanamycin resistance selection 

marker or a GFP reporter gene becomes active. By the same technique translocation of these 

virulence proteins into yeast host cells was demonstrated (Schrammeijer et al., 2003). 

Translocation of the effector proteins from Agrobacterium  into their host cells is 

independent of the translocation of T-DNA (Vergunst et al., 2005). However, reversely 

translocation of the T-DNA is dependent on the translocation of the relaxase VirD2, which 

has a more complex bipartite translocation signal (van Kregten et al., 2009). To directly 

monitor the translocation of virulence proteins from Agrobacterium  into host cells and the 

trafficking of these virulence proteins inside the host cell we (Sakalis et al., 2014) and 

another research group (Li et al., 2014) have visualized the translocation of VirE2 from 

Agrobacterium   into yeast and plant cells using BiFC and the split GFP system.  
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 Thesis outline 

In this thesis protein translocation from Agrobacterium  into yeast and plant cells is studied to 

obtain fundamental insights in the translocation process and in the fate of the translocated 

proteins in the host cells and the potential biotechnological applications of Agrobacterium  

mediated protein translocation were explored.  

In this thesis we studied the Agrobacterium  virulence protein expression, translocation and 

localization via direct visualization and also potential biotechnological applications of protein 

translocation from Agrobacterium  into the recipient cells. 

In Chapter 2, we used the split-GFP system to visualize translocation and localization of 

VirE2 and VirD2 in plant and yeast cells. We tagged  the VirE2 protein with GFP11 internally 

instead of N-terminally and  the quality of signal observation, biological activities and 

expression timing were greatly improved compared to our previous studies. Besides, we were 

able to capture the movement of internally tagged VirE2. By using the split-GFP system, we 

could observe translocation of VirD2 which accumulated in the nucleus and cytoplasm of 

plant and yeast cells, whether or not T-DNA was co-delivered from the Agrobacterium  

donor into the host. 

In Chapter 3, we made use of the novel phiLOV2.1 fluorescent peptide to directly visualize 

effector protein translocation to host cells. In contrast to previous GFP based methodologies, 

the new method does not rely on special transgenic host cells, thus we successfully visualized 

protein translocation into Arabidopsis thaliana root, tobacco leaf and yeast cells. 

In Chapter 4, we engineered Agrobacterium  so that it can translocate the HO endonuclease 

into the host cells. In this chapter, we show that the mating type of S. cerevisiae cells can be 

switched after the introduction of the HO endonuclease by protein translocation from 

Agrobacterium  into yeast. This chapter is a good example of using Agrobacterium  to deliver 

foreign proteins into eukaryotic cells as an epigenetic inducer or as a  tool for protein therapy.   

In Chapter 5, it was investigated whether AMT can be adapted in a way that transformation 

of organellar DNA may become possible. It was shown that VirE2 and VirD2 tagged with a 

mitochondrial or chloroplast targeting sequence can be directed into yeast mitochondria and 

plant chloroplasts, respectively. This result may be exploited in future research to target T-

DNA into organelles and may ultimately lead to organellar genome modification.  
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ABSTRACT 

During Agrobacterium -mediated transformation of eukaryotic organisms a number of 

effector proteins (VirD2, VirD5, VirE2, VirE3 and VirF) are translocated from the 

bacterium into the host cell. The VirE2 protein is an essential effector protein for the 

transformation of plant cells. It is thought that after translocation, it binds to the T-

strand to protect it from host nucleases and assist in its delivery into the nuclei of plant 

cells. However, the translocation process itself and the fate of translocated VirE2 inside 

the recipient cell are poorly understood. In this study, we used the split-GFP strategy 

for visualization of the translocation of VirE2 to both plant and yeast cells. To this end, 

we co-cultivated Agrobacterium  strains expressing VirE2 internally tagged with GFP11 

with host cells expressing the complementary part of GFP, GFP1-10. Already after 8 

hours of co-cultivation fluorescent filamentous and dot-like structures became visible in 

Saccharomyces cerevisiae, Arabidopsis thaliana and Nicotiana tabacum cells. Similar 

results were obtained when Agrobacterium  strains lacking T-DNA were used. The 

filamentous VirE2 structures translocated showed a random movement inside these 

plant cells, but not in yeast cells. Using a similar approach we could observe 

translocation of the VirD2 virulence protein, which accumulated in the nucleus and 

cytoplasm of plant leaves and yeast cells, whether or not T-DNA was co-delivered from 

the Agrobacterium  donor or host. 
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INTRODUCTION 

Agrobacterium  tumefaciens is a gram-negative soil-borne bacterium, which causes tumor 

formation in root crowns and stems of plants (Smith and Townsend, 1907)  by transferring 

part of its tumor-inducing plasmid (T-DNA) (Chilton et al., 1977). The host range of 

Agrobacterium  comprises a large number of dicotyledonous plant species as host cell (De 

Cleese and De Ley, 1976). The T-DNA is integrated in one of the plant chromosomes and 

expressed in plant cells. Transformed plant cells overproduce the plant growth regulators 

indole acetic acid (IAA; auxin) and cytokinin which initiates uncontrolled cell proliferations 

(Hooykaas and Schilperoort, 1992). In addition, crown gall cells secrete tumor-specific 

compounds called opines, which can be used as carbon and nitrogen source by A. tumefaciens 

(Petit et al., 1978). The bacterium uses a type IV secretion system (T4SS) to deliver single 

stranded copies of the T-DNA (T-strands)  and the effector proteins VirE2, VirE3, VirD2, 

VirD5 and VirF into the host cells (Vergunst et al., 2000). A. tumefaciens not only transforms 

plants, but also is able to transform yeast (Bundock et al., 1995; Piers et al., 1996), algae 

(Kumar et al., 2004) and fungi (de Groot et al., 1998) under laboratory conditions.  

Formation of the T-strand initiates with the nicking of the Ti plasmid at the 24bp left and 

right border repeats surrounding the T-region by the VirD2 endonuclease assisted by VirD1. 

Hereby VirD2 remains covalently attached to the 5’-end of the T-DNA. The liberated T-

strand with VirD2 still attached is then transferred into the host cells via T4SS (Mysore et al., 

1998 ; Porter et al., 1987; Herrera-Estrella et al., 1988; Ghai and Das, 1989). 

The virE operon consists of the virE1, virE2 and virE3 genes. The VirE2 protein is able to 

bind single-stranded DNA in a sequence–independent way (Gietl et al., 1987; Citovsky et al., 

1989; Sen et al., 1989). Inside Agrobacterium  the VirE2 protein is stabilized by its 

chaperone VirE1, which prevents its self-association and aggregates formation (Deng et al., 

1999; McBride and Knauf, 1988). Therfore, VirE1 is also required for VirE2 translocation 

from A. tumefaciens into plant cells (Sundberg et al., 1996). In the plant cell VirE2 is thought 

to bind to the T-strand, protect it from host cell nucleases (Citovsky et al., 1989; Sen et al., 

1989) and may help the T-strand in passing the lipid bilayers of membranes (Dumass et al., 

2001; Volokhina et al., 2012). Furthermore, VirE2 helps in facilitating the nuclear uptake of 

the T-strand in cooperation with VirD2 and VirE2-Interacting Protein 1(VIP1) 

(Ziemienowicz et al., 2001). VIP1 is a transcription factor that responds to biotic and abiotic 

stresses after its MPK3-mediated phosphorylation (Pitzschke et al., 2009; Wu et al., 2010; 
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Tsugama et al., 2012, 2013). Phosphorylated-VIP1 localizes in the plant nucleus leading to 

the expression of many stress-related genes (Djamei et al.,  2007). Therefore, it is though that 

the VirE2-VIP1 interaction may help to direct the T-complex into the plant cell nucleus 

(Gietl et al., 1987; Pitzschke et al., 2009). However, recently such a role of VIP1 was 

disputed (Shi et al., 2014). Besides, it has been reported that VirE2 facilitates the chromatin 

targeting of the T-complex through an association with VIP2 (Anand et al., 2007). The 

nuclear localization sequence (NLS) in the C-terminus of VirD2 was found to be essential for 

guidance of the T-complex to the nucleus (Ziemienowicz et al., 2001). Recently interaction 

between VirD2 and histones in S. cerevisiae has been reported and it may help direct the T-

DNA to the chromatin prior to integration into one of the chromosomes (Wolterink-van Loo 

et al., 2015).  

VirE2 also binds to the effector protein VirE3, which has a nuclear localization (Lacroix et 

al., 2005). In this way VirE3 may facilitate trafficking and nuclear import of  the T-complex 

inside the recipient cells by mimicking the function of VIP1 (Lacroix et al., 2005). Using a 

yeast two-hybrid screen interactions of VirE3 were found with A. thaliana importins, the 

Csn5 component of the host signalosome complex, and with pBrp, a plant-specific general 

transcription factor of the TFIIB family (García-Rodríguez et al., 2006). The interaction with 

pBrp suggests a role in transcriptional activation and recently  we  showed  that VirE3 may 

indeed have such a function. Upon expression of VirE3 in A. thaliana the expression levels 

of numerous genes are affected. This suggests that VirE3 affects the transcriptional 

machinery of the host cell to facilitate the transformation process (Niu et al., 2015).  

The virF gene identified on octopine type Ti plasmids (Hooykaas et al., 1984) is a host range 

determinant. For example, nopaline A. tumefaciens strains, which lack VirF, are not able to 

infect Nicotiana glauca, in contrast to octopine strains (Melchers et al., 1990). However, 

transgenic N. glauca, expressing the Agrobacterium  VirF protein showed tumor formation 

by VirF lacking strains and VirF mutants indicating that VirF functions within plant cells 

(Regensburg-Tuink and Hooykaas, 1993). VirF contains a putative F-box and it has been 

shown that it associates with plant homologs of the yeast Skp1 protein suggesting a role of 

VirF in targeted protein degradation (Schrammeijer et al., 2001). Tzfira et al, (2004) reported 

that VirF is involved in destabilization and degradation of VirE2 and VIP1 in the host 

nucleus leading to the uncoating of T-DNA enabling its integration into the host’s 

chromosomal DNA. VirD5 is not essential for A. tumefaciens tumorigenicity, but in its 

absence tumors are attenuated (Wang et al., 2018). It has been reported that VirD5 may 
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function as VirF stabilizer (Magori and Citovsky, 2011). Recently Zhang et al. (2017) 

showed that VirD5 binds to the kinetochores resulting in chromosome mis-segregation 

during mitosis and inhibition of yeast and plant growth. 

Although it is well documented that during AMT virulence proteins are translocated into 

eukaryotic host cells (Vergunst et al., 2001) , the mechanisms of their translocation and of 

their trafficking inside the host cell are only poorly understood. To further elucidate these 

mechanisms we (Sakalis et al., 2014) and others (Li et al., 2014) visualized the translocation 

of VirE2 into yeast and plant cells using the Split GFP system. This system makes use of the 

observation that GFP can be split into two non-fluorescent fragments: GFP1-10, consisting of 

ß-strands 1-10 containing 215 amino acids residues and GFP11, consisting of  ß-strand 11, 

containing 16 amino acids residues (Cabantous et al., 2005). The two parts can bind to each 

other and re-associate spontaneously and restore fluorescence. To visualize protein 

translocation, GFP1-10 is expressed in the host cells and the effector protein to be studied is 

tagged with GFP11. Following translocation of the GFP11-tagged effector protein, GFP 

fluorescence is restored (Cabantous et al., 2005) (Figure 2C). The yeast Saccharomyces 

cerevisiae is a good eukaryotic model system to study Agrobacterium  mediated 

transformation (Bundock et al., 1995; Bundock and Hooykaas, 1996; Van Attikum et al., 

2001). Also for studies on protein translocation this yeast has several advantages over plant 

cells, especially its lack of fluorescent chlorophyll. In this study, we used the split GFP 

system to visualize the translocation of the effector proteins VirE2 and VirD2 from 

Agrobacterium  into cells of the yeast S. cerevisiae and of the plants Arabidopsis thaliana 

and Nicotiana tabacum. Instead of biologically inactive N-terminally tagged GFP11-VirE2, 

we used internally tagged GFP11-VirE2 for visualization of VirE2 translocation, which 

greatly improved detection. 

 

MATERIALS AND METHODS 

Yeast strains and media. Yeast strains used in this study are listed in Table 1. All yeast 

strains were grown in YPD medium or selective MY medium supplemented, if required, with 

histidine, leucine, tryptophan and/or uracil to the final concentration of 20 mg/ml 

(Zonneveld, 1986). Yeast transformation was performed using Lithium Acetate method 

(Gietz et al., 1995). Yeast strains carrying plasmids were obtained by transforming parental 
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strains with the appropriate plasmids followed by selection for histidine, leucine and/or uracil 

prototrophy.   

Agrobacterium  strains and media. A. tumefaciens strains used in this study are listed in 

Table 2. All A. tumefaciens strains were grown in LC medium containing, if required, the 

appropriate antibiotics at the following concentrations: rifampicin, 20 μg/ml; gentamicin, 40 

μg/ml; kanamycin, 100 μg/ml. A. tumefaciens carrying plasmids were obtained by 

electroporation as described by Den Dulk-Ras and Hooykaas (1995). 

Plasmid constructions. All plasmids used and constructed in this study are listed in Table 3. 

Cloning steps were performed in E.coli strain XL1-Blue. PCR amplifications were done with 

PhusionTM High-Fidelity DNA Polymerase and Table 4 lists all primers used for PCR 

amplification.  

A permissive site for internal insertion in VirE2 protein without any effect on its functionality 

has been reported (Zhou and Christie, 1999) and to tag VirE2 internally with GFP11 at 

proline39 a 628 bp DNA fragment (Figure 1) was synthesized and cloned into pEX-A2 by 

Eurofins (Germany).  

 

 

 

 

 

 

 

Figure 1. The synthetic DNA fragment used to internally tag VirE2 with GFP11. The 48 bp GFP11-coding 

sequence (underlined) was inserted into virE2 at the CCT codon of Proline39 (bold). SpeI (red), NdeI (green) 

and BglII (blue) restriction sites were added at the end of the fragment.  

This DNA fragment containing the 5’-end of the virE2 gene, was cloned into 

pUG36YFP[VirE2] using SpeI and BglII to generate pUG36YFP-39GFP11[VirE2]. For 

expression in yeast an XbaI–XhoI fragment containing tagged virE2, was ligated into pUG34 

digested with XbaI and XhoI yielding pUG34[39GFP11-VirE2]. For expression in 

Agrobacterium  pSDM3163[39GFP11-VirE2] was constructed by replacing the NdeI – 

5’ACTAGTCATATGGATCTTTCTGGCAATGAGAAATCCAGGCCTTGGAAGAAGGCGAATGTCAG

TTCCAGCACCATCTCCGATATTCAGATGACGAATGGCGAAAACCTTGAATCAGGGAGCCCTCG

GGACCACATGGTGCTGCACGAGTACGTGAACGCCGCCGGCATCACAACCCGAACGGAAGTTTT

AAGCCCACGTCTGGATGATGGATCGGTCGATTCCTCCTCCAGCCTTTATTCTGGCAGCGAGCAC

GGAAATCAAGCTGAGATTCAAAAAGAGCTGTCCGCCTTGTTCTCGAACATGTCTTTGCCAGGC

AACGATCGGCGCCCGGACGAATACATTCTCGTGCGTCAAACGGGACAAGATGCTTTTACTGGT

ATTGCCAAAGGCAACCTCGACCACATGCCCACCAAGGCGGAATTTAACGCGTGCTGCCGTCTC

TACAGGGACGGAGCCGGTAATTACTATCCGCCACCTCTCGCGTTCGACAAGATTAGCGTTCCA

GCCCAACTGGAGGAAACATGGGGGATGATGGAGGCGAAGGAACGTAACAAACTACGGTTTCA

GTACAAGTTGGACGTATGGAATCATGCGCACGCTGATATGGGGATCACTGGCACAGAGATCT 

3’ 
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HindIII fragment with N-terminally tagged virE2 of pSDM3163[GFP11-VirE2] by the NdeI-

HindIII fragment of pUG34[39GFP11-VirE2] with internally tagged virE2 and the 

constructed plasmid was checked by sequencing using primers VirE2-seq-FW, VirE2-seq-

Rev and VirE2-seq-int (Table 4). The pURedStar2NLS was prepared by removing yEGFP3 

from the plasmid pUG36 by digestion with XbaI and BamHI. The RedStar2 gene was 

obtained by PCR on the vector pYM43 with the primers P1Redstar2-XbaI-Fw and 

P2Redstar2-BamHI-Rev (Table 4). After digestion with BamHI and XbaI, the fragment was 

ligated into BamHI- and XhoI-digested vector pUG36 yielding pURedstar36. Plasmid 

pURedstar2NLS allowing the expression of the RedStar2-NLS was obtained by ligation of an 

NLS fragment into the BamHI- and XhoI-digested pURedStar36. The NLS fragment was 

obtained as follows. The oligonucleotides O1RedStar2-NLS and O2 Redstar2-NLS (Table 4) 

were mixed, boiled for 5 minutes and then cooled overnight in the water bath (Rodrigues et 

al., 2001). pURedStar2NLS(CYC1) was created by inserting a SacI-XbaI fragment with the 

CYC1 promoter from p416CYC1 into pURedStar2NLS digested with SacI and XbaI.  
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Figure 2. Strategy used to study VirE2 translocation from Agrobacterium  into host cells. A, comparison 

of the N-terminal sequence of VirE2 from pTiB6 used in this study with that of VirE2 from pTiBo542 (Li et al., 

2014). The permissive site is indicated with an arrow. B, illustration of N-terminal and internal-tagging of VirE2 

with GFP11. C, the strategy used for the visualization of VirE2 translocation from A. tumefaciens into the host 

cells. 

 

Plant lines and media. Nicotiana tabacum SR1 expressing GFP1-10 (Sakalis et al., 2014) was 

grown on soil to full plants and after three weeks young leaves were selected for 

agroinfiltration. A. thaliana Columbia-0 seeds expressing GFP1-10 (M. Kahn, unpublished) 

were grown on MS-0 medium supplemented with hygromycin (50 µg/ml) for two weeks and 

then transferred to soil and grown for a week. The largest leaves were selected for 

agroinfiltration. The efr-1 (SALK_044334)  T-DNA insertion mutant line, ecotype Col-0, 

was obtained from Nottingham Arabidopsis stock center. 
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Transformation of A. tumefaciens by electroporation. 

Agrobacterium  competent cells preparation: 

Agrobacterium  was grown on LC agar medium for 3 days at 29°C. A loopful of bacteria was 

transferred into  2 ml of liquid LC medium and incubated at 29°C for 6 hours with agitation.  

One hundred µls of this preculture was used to inoculate 100 ml of LC medium and the 

culture was grown  till early log phase (A660=1.0-1.5). Then, cells were collected by 

centrifugation (4000g) at 4 °C for 20 minutes. Prior to electroporation, cells were washed 

three times with ice-cold HEPES (pH 7.0) followed by washing once with ice-cold 10% 

glycerol. The cell pellet was then re-suspended in 500-750 μl of ice-cold 10% glycerol and 

suspension distributed in 40 µl aliquots, freezed in liquid Nitrogen and stored at -80 °C (den 

Dulk-Ras and Hooykaas, 1995).  

 

Electroporation of Agrobacterium : 

Competent cells were gently thawed on ice and transferred into a pre-chilled 50*2mm 

Pulsestar electroporation cuvette (Westburg). The Gene Pulser II Electroporation System 

(Bio-Rad) was used for electroporation (Capacitance 25 μF, Voltage 2.5 kV,  Pulse controller 

set to 200 Ω). After electroporation, 1 ml of SOC-medium was quickly added into the cuvette 

and the cell suspension was transferred into a culture tube. After cultivation for 1-1.5 hours  

at 29 °C, 100 µl of cells were plated onto  LC agar plates with appropriate antibiotics for 

selection (den Dulk-Ras and Hooykaas, 1995). 

 

Co-cultivation of Agrobacterium   and yeast. Cocultivation of Agrobacterium  and yeast 

was performed using an adapted version of the published protocol (Bundock et al., 1995). 

Agrobacterium  strains were grown overnight in 15 ml of LC medium with appropriate 

antibiotics (Table 2) at 28°C. Subsequently, Agrobacterium  cells were centrifuged and re-

suspended in IM supplemented with 0.2 mM acetosyringone and grown at 28°C for 6 hours. 

After overnight incubation of yeast strain 426::GFP1-10 in 10 ml of YPD medium at 30°C, 100 

µl of cells were inoculated in 20 ml of fresh YPD medium and incubated for 6 hours more at 

28°C. Then, 1 ml of yeast culture was washed with 500 µl of IM and re-suspended in 1 ml of 

IM. Sixty microliters of Agrobacterium  suspension were mixed with 60 µl of yeast 

suspension  and 100 µl of the mixture were spotted on cellulose nitrate filters (Sartorius). 

Filters were dried at room temperature and were laid onto IM plates supplemented with 

histidine (2 mg/ml), uracil (2 mg/ml), tryptophan (2 mg/ml)  and incubated at 21°C. For 
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microscopy, cells were eluted from the filters by transferring the filters to an 2 ml Eppendorf 

tube, adding 0.5 ml of MY medium and vigorously vortexing, followed by two more washes 

with 0.5 ml MY medium. Cells were centrifuged  and were re-suspended into 200 µl of MY 

medium and  an aliquot (5µl) was used for microscopy. 

Determination of AMT efficiency with LBA1100(pRAL7100): 

After 6 to 9 days co-cultivation of Agrobacterium  strain  LBA1100 (pRAL7100) with yeast 

strain 426::GFP1-10 at 21°C, filters were transferred to 2 ml Eppendorf tubes, 1 ml minimal 

medium (MY) was added and tubes were vortexed vigorously to wash all the cells off the 

filters. Aliquots of  100 µl and 200 µl of the cell suspensions were applied on MY selection 

plates supplemented with tryptophan (2 mg/ml), histidine (2 mg/ml) and cefotaxime (200 

µg/ml) to quantify transformed yeast cells. The total number of survived yeast cells was 

quantified by plating 200 µl aliquots of 10-2 and 10-4 dilutions of the cell suspensions on MY 

plates contain tryptophan (2 mg/ml), histidine (2 mg/ml), uracil (2 mg/ml) and cefotaxime 

(200 µg/ml). To obtain the transformation efficiency, the number of colonies on the selective 

plates was divided by the number of colonies on the non-selective plates . 

Agroinfiltration of plants. After overnight growth of A. tumefaciens strains at 28°C in LC 

medium, cultures were diluted to the OD600≈0.8 in 10 ml of induction medium with 200 

µmol/L acetosyringone (AS) and incubated for three hours at 28°C. A blunt-tipped 10 ml 

plastic syringe (Nissho NIPRO Europe N.V) was used to inject smoothly and with gentle 

pressure the lower surface of the leaves of A. thaliana Columbia.0 and N. tabacum SR1 lines 

expressing GFP1-10. After 18 hours, the lower side of injected leaves was used for confocal 

microscopy (Wroblewski et al., 2005). 

Agroinfiltration sample preparation for microscopy: Eighteen hours after agroinfiltration a 

small piece of the lower side of the injected leaf was cut, transferred to a slide, one drop of 

immersion oil applied and images were captured by confocal microscopy. 

Tumor formation assay. A. tumefaciens cells were grown for overnight at 28°C in LC 

medium with the appropriate antibiotics. Then, cells were washed three times with 0.9% 

(w/v) NaCl solution and diluted to OD660≈ 1.0 in 0.9% (w/v) NaCl. One month old N. glauca 

plants were wounded at three sites on the stem with sterile toothpick. Subsequently, 20 µl of 

A. tumefaciens suspension was inoculated at each wounded site. Tumors were photographed 

one month after inoculation. 
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AGROBEST infection and GUS assay. AGROBEST infection procedure was performed as 

described by Wu et al., 2014 with some minor modifications. A. thaliana efr-1 seeds were 

sterilized and grown on plates containing MA medium. Seeds were grown for 4 days before 

AGROBEST infection.  

A. tumefaciens was freshly streaked out from the -80°C glycerol stock onto a LC agar plate 

containing appropriate antibiotics and incubated for 2 days at 28°C. A fresh single colony 

from the plate was used to inoculate 5 ml of LC liquid medium containing appropriate 

antibiotics at 28°C overnight with shaking. For pre-induction of A. tumefaciens vir gene 

expression, A. tumefaciens cells were pelleted and re-suspended to OD600 0.2 in 3ml of IM 

with 200 μM Acetosyringone with appropriate antibiotics and incubated at 20°C overnight. 

Before co-cultivation,  A. tumefaciens cells were pelleted and re-suspended in IM to 

OD600 0.02. The 4 days grown efr-1 seedlings were transferred into plates containing MA 

with 200 μM Acetosyringone and 200 μl  A. tumefaciens cells freshly prepared before was 

added to the 6-wells plates and incubated in growth chamber (16hr light/8hr darkness) at 

21°C for 4 days before GUS staining (Wu et al., 2014).  

For GUS staining, seedlings were stained with 5-bromo-4-chloro-3-indolyl glucuronide (X-

Gluc) at 37°C for 24 hrs in dark with gentle shaking. After overnight staining, seedlings were 

distained with 70% ethanol for 24 hrs. Then, pictures were taken with stereo microscope.  

 

Root Protein Translocation. In this study we used root transformation approach as 

described by Vergunst et al (2000). Root segments of A.thaliana Col-0 lines expressing 

GFP1-10 were co-cultivated with Agrobacterium  strains LBA2572(3163-39GFP11-VirE2), 

LBA2573(3163-39GFP11-VirE2) and LBA1010 as a negative control on callus induction 

medium with 200 μM Acetosyringone for 3 days in growth room (8hr light/24hr darkness) at 

24°C. After 3 days of co-cultivation, root segments were analyzed by confocal microscopy 

for protein translocation visualization.  

Confocal microscopy. To observe leaf epidermis, agro-infiltrated leaf tissues were detached 

from N. tabacum SR1 and A. thaliana Col-0 plants and put in 1.5% low-melting agarose gel 

on a glass slide with a coverslip. For yeast images, the cells were grown in MY medium 

supplemented with appropriate nutrients and then put on a slide with a coverslip. Plant and 

yeast cells were analyzed using a Zeiss LSM5 Exciter confocal microscope using a 20X and 

63X magnifying objective, respectively. GFP signal was detected using an argon 488 nm 

laser and a 505-600 nm band pass emission filter. RedStar2 was exited at 543 nm and emitted 
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light collected at 580-640 nm. Chlorophyll fluorescence was determined using a long pass 

650 nm emission filter after excitation at 488 nm. All images were processed using ImageJ 

1.48F software (Abràmoff et al., 2004).  
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 Table 1: Yeast strains used in this study 

Yeast strain Genotype Source/reference 

426::GFP1-10 

(GG3388) 

 MATa ura3-52 leu2-112 trp1-289 his3-

delta1leu2::pRS305[PMET25-GFP1-10-

TCYC1] (LEU2) 

(Sakalis et al., 

2014) 

426::GFP1-10[RedStar2NLS] 

 

MATa ura3-52 leu2-112 trp1-289 his3-

delta1 leu2::pRS305[PMET25-GFP1-10-

TCYC1] (LEU2), 

pURedStar2NLS(pRUL1352) (URA3). 

This study. 

 

 

 

Table 2: Agrobacterium  strains used in this study 

Agrobacterium  

strain 

Specifications a Source/reference 

LBA1010 C58 containing pTiB6, Rif  (Koekman et al., 

1982) 

LBA1100 C58 containing pTiB6Δ (ΔT-DNA, Δocc, Δtra), 

Rif, Spc 

Beijersbergen et 

al., 1992) 

LBA1100 

(pRAL7100) 

LBA1100 with binary vector pRAL7100, Rif, 

Km 

 

(Bundock et al., 

1995) 

LBA2572 

(LBA1010ΔE2) 

virE2 deletion in LBA1010, Rif  den Dulk-Ras, 

unpublished 

 

LBA2573 

(LBA1100 ΔE2) 

virE2 deletion in LBA1100, Rif, Spc (Hodges et al., 

2006) 

LBA2572 

(3163GFP11-E2) 

LBA2572 with pSDM3163[GFP11-VirE2]. 

Expression of the GFP11-VirE2 fusion protein 

under control of the virE promoter, Rif, Gm 

 

(Sakalis et al., 

2014) 

LBA2573 

(3163GFP11-E2) 

 LBA2573 with pSDM3163[GFP11-VirE2]. 

Expression of the GFP11-VirE2 fusion protein 

under control of the virE promoter, Rif, Spc,Gm 

(Sakalis et al., 

2014) 

LBA2560 

(3163GFP11-F) 

LBA2560 (∆irF in LBA1010) with 

pSDM3163[GFP11-F].Expression of the GFP 

11-VirF fusion protein under control of the virF 

promoter, Rif, Spc,Gm 

(Sakalis et al., 

2014) 

LBA2561 

(3163GFP11-F) 

LBA2561 (∆virF in LBA1100) with 

pSDM3163[GFP11-F].Expression of the GFP 11-

VirF fusion protein under control of the virF 

promoter, Rif, Spc,Gm 

 

(Sakalis et al., 

2014) 

LBA2569 

(3163GFP11-D2) 

LBA2569 (∆virD2 in LBA1010) with 

pSDM3163[GFP11-VirD2], expressing the GFP 

11-VirD2 fusion protein under control of the 

virD promoter, Rif, Gm 

(Sakalis et al., 

2014) 
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LBA2556 

(3163GFP11-D2) 

LBA2556 (∆virD2 in LBA1100) with 

pSDM3163[GFP11-VirD2], expressing the GFP 

11-VirD2 fusion protein under control of the 

virD promoter, Rif, Spc,Gm 

(Sakalis et al., 

2014) 

LBA2573 

(3163-39GFP11-

VirE2) 

LBA2573 with pSDM3163[39-GFP11-VirE2]. 

Expression of the internal-tagged GFP 11-VirE2 

fusion protein under control of the virE 

promoter, Rif, Spc,Gm 

This study. 

 

LBA2572 

(3163-39GFP11-

VirE2) 

LBA2572 with pSDM3163[39-GFP11-VirE2]. 

Expression of the internal-tagged GFP 11-VirE2 

fusion protein under control of the virE 

promoter, Rif, Spc,Gm  

This study. 

 

 a  tra: transfer region, occ: octopine catabolism, Rif: rifampicin, Spc: spectinomycin, Km: kanamycin, 

Gm: gentamicin, Δ: deletion 

 

 

Table 3. Plasmids used in this study 

Name Properties Source/reference 

pCAMBIA3301 High copy vector with GUS gene 

under control of the 35S promoter and 

the NOS terminator. (bacterial 

kanamycin resistance and plant 

bialophos/phosphinothricin  

selection) 

 

Cambia, Australia® 

pRS305-GFP1-10 

(pRUL1278) 

 

pRS305 containing GFP 1-10 under 

control of MET25 promoter and CYC1 

terminator. LEU2 marker, integration 

plasmid. 

 

P. A. Sakalis thesis  

 

pUG36YFP[VirE2] 

(pRUL1244)  

Centromeric plasmid with YFP-VirE2 

under control of MET25 promoter and 

CYC1 terminator. URA3 marker.  

P. A. Sakalis thesis  

 

pUG36YFP-39GFP11[VirE2] 

(pSDM3765) 

pUG36YFP[VirE2]  backbone with the 

coding sequence of proline39GFP11-

VirE2 under control of MET25 

promoter. 

This study. 

pURedStar2NLS (pRUL1352) pURedStar36 backbone with NLS 

fragment under control of CYC1 

promoter. 

Asmae Bakane ,MSc 

research project 

report 

pUG36YFP 

(pRUL1004) 

 

Centromeric plasmid to make N-

terminal YFP fusions under control of 

the MET25 promoter and CYC1 

terminator. URA3 marker. 

 

M. Miedema and 

G.P.H. van Heusden, 

unpublished  

pUG34  Centromeric plasmid to make N-

terminal GFP fusions under control of 

the MET25 promoter and CYC1 

terminator. HIS3 marker. 

U. Güldener and J.H. 

Hegemann, 

unpublished 
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pUG34[39GFP11-VirE2] 

(pSDM3766) 

pUG34 backbone with the coding 

sequence of proline39 GFP11-VirE2 

under control of MET25 promoter. 

This study. 

pUG34GFP11[VirD2] 

(pRUL1280) 

Centromeric plasmid with GFP11-

virD2 under control of the MET25 

promoter and CYC1 terminator. HIS3 

marker. 

(Sakalis, 2013) 

pUG36GFP11[VirE3] 

(pRUL1291) 

Centromeric plasmid with GFP 11-

VirE3 under control of the MET25 

promoter and CYC1 terminator. URA3 

marker. 

 

(Sakalis, 2013) 

pUG34GFP11[VirF] 

(pRUL1295) 

 

Centromeric plasmid with GFP 11-

VirF under control of MET25 promoter 

and CYC1 terminator. HIS3 marker. 

(Sakalis, 2013) 

pSDM3163[GFP11-VirE2] 

(pSDM3756) 

 

pSDM3163 backbone with the coding 

sequence of GFP 11-VirE2 under 

control of the virE promoter. 

 

P. A. Sakalis thesis  

 

pSDM3163[39GFP11-VirE2] 

(pSDM3767) 

pSDM3163 backbone with the coding 

sequence of proline39 GFP 11-VirE2 

under control of the virE promoter. 

 

This study. 

pSDM3163[GFP11-VirE2] 

(pSDM3756) 

 

pBBR6 backbone with the coding 

sequence of GFP11-VirE2 under 

control of the virE promoter. 

(Sakalis et al ., 2014) 

pSDM3163[GFP11-VirD2] 

(pSDM3755) 

pSDM3163 backbone with the coding 

sequence of GFP11-VirD2 under 

control of the virD promote 

(Sakalis, 2013) 

pYM43 Plasmid; Redstar2 natNT2 (Janke et al., 2004) 
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Table 4. Primers used in this study 

Primer name Sequence (5’  3’)a 

VirE2-seq-FW AAGTGCGACATCATCATCGG 

VirE2-seq-Rev GAGATGGTGCACGATGCACA 

VirE2-seq-int TCCAGGCTGGTTCGCTGCT 

VirE2-SmaI-Fw AACCCGGGATGGATCTTTCTGGCAA 

VirE2-PstI-Rev GGCTGCAGTCAAAAGCTGTTGACGC 

VirE2-BamHI-Fw AAAGGATCCATGGATCTTTCTGGCAATGA 

VirE2-XhoI-Rev GGGGCTCGAGTCAAAAGCTGTTGACGCTTT 

P1Redstar2-Fw-XbaI AATCTAGAGGAGCTGGAGCTGGTGCA 

P2Redstar2-Rev-BamHI AAGGATCCCAAGAACAAGTGGTGTCTAC 

O1RedStar2-NLS GATCGCCAAAAAAGAAGAGAAAGGTCGTTGTTAAATAG 

O2Redstar2-NLS TCGACTATTTAACAACGACCTTTCTCTTCTTTTTTGGC 

    a, restriction sites are underlined.
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RESULTS 

Biological functionality of 39-GFP11-VirE2 

To further elucidate the translocation of virulence proteins from Agrobacterium  into host 

cells and the trafficking of these virulence proteins inside the host cell we (Sakalis et al., 

2014) and another research group (Li et al., 2014) have visualized the translocation of VirE2 

from Agrobacterium   into yeast and plant cells using the split GFP system. Li et al. (2014) 

showed that VirE2 from the hypervirulent pTiBo542 plasmid internally tagged with GFP11 

gave a stronger signal than VirE2 from octopine pTiB6 plasmid N-terminally tagged with 

GFP11 as we used and preserved its virulence function. Therefore, in the present study, we 

internally tagged our octopine pTiB6 VirE2 with GFP11 and compared with our N-terminally 

tagged VirE2. As shown in figure 2A, the N-terminus of the two proteins is different. Li et al. 

introduced the GFP11 -tag next to proline54 (Li et al., 2014). The corresponding amino acid 

residue in our VirE2 is proline39, a site where small insertions are possible without 

interfering with the biological function (Christie et al., 1999)  (Figure 2A). Therefore, we 

tagged VirE2 at proline39, with GFP11. Indeed as shown in figure 3C expression of 39-GFP11 

[VirE2] in Agrobacterium  strains lacking virE2 resulted in restoration of virulence of the 

virE2 mutant Agrobacterium  strains, indicating that the internally tagged VirE2 had retained 

its biological activity. The N-terminally tagged VirE2 had lost its biological activity (Figure 

3D) and could not complement the virE2 mutant. When we tagged another virulence protein, 

VirD2 at the N-terminus with GFP11, this kept its virulence properties and could complement 

a virD2 mutant (Figure 3E). This was further confirmed in a transformation experiment with 

strains carrying the binary vector pCAMBIA 3301, where we used β-Glucuronidase (gus) 

activity as a read out of transformation. As can be seen in figure 3G,  (β-Glucuronidase) blue 

positive  

spots  were observed in A. thaliana (efr-1 mutant) leaves transformed with A. tumefaciens 

LBA2573ΔvirE2 mutant complemented by carrying (3163-39GFP11-VirE2)  and carrying 

pCAMBIA3301. This confirmed that the internally tagged VirE2 is still biologically active 

and mediates transformation as seen by transient gene expression. However, blue positive 

spots were not observed in A. thaliana (efr-1mutant) leaves inoculated with the virE2 

deletion mutant LBA2573 harboring pCAMBIA3301as a negative control (Figure 3F).  
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Comparison of N-terminally and internally tagged GFP11-VirE2  

To compare our new internally tagged VirE2 (39-GFP11-VirE2)  with the N-terminally 

tagged GFP11-VirE2 (N-GFP11-VirE2) used previously (Sakalis et al., 2014) both proteins 

were expressed in yeast strain 426::GFP1-10. As shown in figure 4A, expression of N-GFP11-

VirE2 resulted in fluorescent dot-shaped structures as observed before (Sakalis et al., 2014, 

Li and Pan, 2014). Expression of 39-GFP11-VirE2 resulted also in fluorescent dot-shaped and 

filamentous structures in the  majority of yeast cells (Figure 4 B).  

 

 

 

 

 

 

 

H 

Figure 3. Biological activity assessments. Tumor formation on Nicotiana glauca plants inoculated with 

different A. tumefaciens strains (A) Negative control, LBA2572 (LBA1010ΔE2). (B) Positive control, 

LBA1010. (C) LBA2572 (3163-39GFP11-VirE2). (D) LBA2572 (3163-GFP11-VirE2).   (E) LBA2569 

(LBA1010ΔD2+3163-GFP11-VirD2). Transient expression (GUS assay) in A.thaliana efr-1 mutant 

transformed with A. tumefaciens strains (F) Negative control, LBA2573 (LBA1100ΔVirE2) carrying 

pCAMBIA3301 and (G) LBA2573 (3163-39GFP11-VirE2) carrying pCAMBIA3301. 
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Localization of 39-GFP11[VirE2] in yeast 

One of the proposed roles of VirE2 in the transformation process is targeting of the T-

complex into the nucleus of the host cell. After ectopic expression in plants VirE2 was 

initially reported to be localized in the nucleus (Citovsky et al., 1990), but later other groups 

reported a cytoplasmic localization (Bhattacharjee et al., 2008). On the other hand no 

evidence of nuclear import of VirE2 in yeast or mammalian cells was found  (Tzfira et al., 

2001) but in these cells VirE2 remained in the cytoplasm. We found that N-terminally tagged 

VirE2 ectopically expressed in yeast co-localized and physically interacted with microtubules 

in the cytoplasm. Similarly, in plants addition of oryzalin, which disrupt microtubules, led to 

the dissociation of VirE2 filaments (Sakalis et al., 2014). Now we studied the localization of 

biologically active 39-GFP11[VirE2] protein in yeast. To this end 39-GFP11[VirE2] was 

expressed in yeast strain 426::GFP1-10 containing plasmid pURedStar2NLS expressing the 

nuclear marker Redstar2NLS. As shown in figure 5, the fluorescence contributed by the 39-

GFP11[VirE2] protein was present in filamentous and dot-like structures that occasionally 

overlapped or were present inside the nucleus in 4 out of 26 counted cells. 

GFP VISIBLE 

Merged 

Figure 4. Confocal microscopy of yeast strain 426::GFP1-10 expressing N-terminally GFP11-tagged VirE2 (A) 

or 39-GFP11[VirE2] (B). Arrows indicate GFP-VirE2 localization as filamentous and dot-like (perinuclear-like 

aggregates) structures in yeast. Scale bars: 5µm.  

 

 

A 
Bright field GFP 

N
-t

er
m

in
a
ll

y
 t

a
g
g
ed

 

B 

In
te

rn
a
ll

y
 t

a
g
g
ed

 



56 

 

   

 

  

 

 

 

 

 

 

Visualization of 39GFP11[VirE2] in yeast after Agrobacterium-mediated 

transformation 

To visualize VirE2 delivery from Agrobacterium  into the yeast cells, A. tumefaciens strains 

expressing 39-GFP11 [VirE2] and yeast strain 426::GFP1-10 were co-cultivated for various 

times (2-4-6-8-10-12-16-20-24 hours) and the cells were analyzed by confocal microscopy. A 

GFP signal was not observed during the first 6 hrs of co-cultivation and after 8 hrs. 

fluorescent dot-shaped structures started to appear inside the yeast cells (Figure 6A). After 24 

hours of co-cultivation, longer and intense fluorescent structures were seen in the cells 

receiving 39-GFP11[VirE2] (Figure 6C). Sakalis et al. (2014) started to observe translocation 

of N-terminus tagged GFP11-VirE2 only after 25 hrs. To investigate whether the presence of 

T-DNA influenced the translocation of 39-GFP11[VirE2] similar co-cultivations were done 

using Agrobacterium  strains lacking T-DNA. As shown in figures 6B and 6D, the 

translocation of VirE2 was not affected by the presence of T-DNA. To further analyze the 

other Agrobacterium  effector proteins VirF and VirE3, yeast strain 426::GFP1-10  was 

chemically transformed with pUG34-GFP11[VirF] and pUG36-GFP11]VirE3]. As shown in 

figure 15, we were not able to obtain reliable signals after expression of GFP11-VirF and 

GFP11-VirE3. 

 

 

 

Figure 5. Localization of 39-GFP11[VirE2] in yeast strain 426::GFP1-10 containing  plasmid pURedStar2NLS 

encoding the nuclear marker Redstar2NLS. VirE2 filamentous (A) and dot-like structures (B) (displayed in 

green) localized in or near the nucleus (red). Scale bars: 5µm.   
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Visualization of  39-GFP11[VirE2] translocation from A. tumefaciens to N. 

tabacum SR1 leaves and A. thaliana Col.0 leaves and roots expressing GFP1-10  

To visualize translocated VirE2 inside plant leaf cells, A. tumefaciens strains LBA2572-

39GFP11[VirE2] containing T-DNA and LBA2573-39GFP11[VirE2] lacking T-DNA were 

infiltrated into transgenic N. tabacum SR1 and A. thaliana Col.0 leaves expressing GFP1–10.  

As shown in figures 7B-C and 8B-C in all cases both filamentous and dot-like structures 

were detected in the cytosol of plant cells 18 hours after agroinfiltration indicating that the 

presence of T-DNA does neither influence the delivery of VirE2 into the plant cells nor the 

formation of thread-like structures which is consistent with the observations in yeast cells 

(Figure 6). After co-cultivation with the negative control strain LBA1100  that does not 

encode GFP11-VirE2, no GFP signals were observed in the plant tissues (Figure 7A and 8A). 

Figure 6. Confocal microscopy of 426::GFP1-10 cells after co-cultivation with Agrobacterium strains 

expressing 39-GFP11[VirE2] for  8 (A and B) or 24 hours (C and D). (A and C) Co-cultivation of A. 

tumefaciens strain LBA2572-39GFP11[VirE2] (+ T-DNA) and yeast strain 426::GFP1-10. (B and D)  Co-

cultivation of A. tumefaciens strain LBA2573-39GFP11[VirE2] (- T-DNA) and yeast strain 426::GFP1-10. 

Scale bars: 5µm. 

A 

GFP Merged 
+ TDNA GFP - TDNA Merged 

B 
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To analyze VirE2 protein translocation into a different plant tissue, A. tumefaciens strains 

LBA2572-39GFP11[VirE2], LBA2573-39GFP11[VirE2], and LBA1010 were similarly co-

cultivated with transgenic A. thaliana Col.0 root explants expressing GFP1–10. As shown in 

figures 9B, C and D, again cord-like and dot-like structures were observed at the periphery of 

cells and in the cytosolic regions of root cells after 3 days of co-cultivation. In contrast with 

cells in plant leaves, movements of VirE2 were not observed in root cells (see next 

paragraph).  
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Figure 7. Visualization of 39-GFP11[VirE2] translocation into leaf cells of N. tabacum SR1, 18 hours after 

agroinfiltration. (A) Co-cultivation of N. tabacum SR1 expressing GFP1-10,with A. tumefaciens strains 

LBA1100(pRAL7100) used as negative control. (B and C) Formation of VirE2 filamentous and dot-like 

structures after co-cultivation of N. tabacum SR1 expressing GFP1-10,with A. tumefaciens strains LBA2572-

39GFP11-VirE2 (+T-DNA) and (D) with LBA2573-39GFP11-VirE2 (-T-DNA). Scale bars: 15 µm. Arrows 

indicate reconstituted GFP signal in plant cells. CF, chlorophyll fluorescence. 
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Figure 8. Visualization of 39-GFP11[VirE2] translocation into leaf cells of A. thaliana Col-0 18 hours after 

agroinfiltration. Co-cultivation of A. thaliana Col-0 expressing GFP1-10 with A. tumefaciens strain LBA1100 

(pRAL7100) used as negative control (A). Formation of filamentous and dot-like structures by VirE2 

translocated from A. tumefaciens strains LBA2572-39GFP11  (B,C; +T-DNA) and LBA2573-39GFP11 (D; -T-

DNA) into A. thaliana Col-0 expressing GFP1-10. Scale bars: 15µm. Arrows indicate reconstituted GFP signal 

in plant cells. CF, Chlorophyll florescence. 
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Figure 9. Visualization of 39-GFP11[VirE2] translocation into A. thaliana Col-0 72 hours after root infection. 

A. tumefaciens strain LBA1010 used as negative control (A). Formation of filamentous and dot-like structures 

by VirE2 translocated form A. tumefaciens strains LBA2572-39GFP11 (B,C; +TDNA) and LBA2573-39GFP11 

(D; -TDNA) into A. thaliana Col-0 roots expressing GFP1-10.. Red square is enlargement of part of the picture 

which indicated with red arrows. zoom in Scale bars: 15µm. Arrows indicate reconstituted GFP signal in plant 

root cells. 
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Visualization of  the transformation of VirE2 protein movement inside  N. 

tabacum SR1 and A. thaliana Col-0 cells 

VirE2  may play an important role in T-complex trafficking inside the plant cells, for 

example by hijacking the MAPK-targeted VIP1 defense signaling pathway (Pitzschke et al., 

2009). Furthermore, the localization of VirE2 at the cytoplasmic microtubules in yeast and 

plant cells suggested a possible movement along the cytoskeleton (Sakalis et al., 2014). To 

investigate whether movement of the translocated VirE2 can be visualized, time-lapse 

experiments were performed in both N. tabacum SR1 and A. thaliana Col-0. As shown in 

figures 10 and 11 in leaf cells of both plants movement of translocated 39-GFP11[VirE2] was 

observed. This movement was random and not directed towards the nucleus.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 10. Analysis by confocal laser-scanning microscopy of 39-GFP11[VirE2] trafficking inside N. tabacum 

SR1 expressing GFP1-10 18 hours after agroinfiltration. The initial position of the fluorescent signal is 

indicated by a white arrow and the observed position with a red arrow. Cells were photographed in 30s 

intervals at 20X magnification. Scale bars: 15µm. The time after agroinfiltration is shown above each image; 

h: hours and m: minutes. 
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Figure 11.  Analysis by confocal laser-scanning microscopy of 39-GFP11[VirE2] trafficking in A. thaliana 

Col-0 expressing GFP1-10 18 hours after agroinfiltration. The initial position of the fluorescent signal is 

indicated by a white arrow and the observed position with a red arrow. Cells were photographed in 30s 

intervals at 20X magnification. Scale bars: 15µm. The time after agroinfiltration is shown above each image; 

h: hours and m: minutes.   
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Visualization of the translocation of the VirD2 virulence proteins into Yeast 

from Agrobacterium  

We tested whether translocation of any of the other effector proteins could be detected after 

fusion of GFP11 to the N-terminus. Clear signals were obtained only in case of VirD2. 

Previously, nuclear localization of VirD2 was reported (Ziemienowicz et al., 2001; 

Wolterink-van Loo et al., 2015). The VirD2 protein had been visualized by Sakalis (2013) 

and these initial experiments suggested that the presence of T-DNA may influence where the 

VirD2 accumulates in the cell. To further analyze the influence of T-DNA on the localization 

of translocated VirD2, yeast strain 426::GFP1-10 expressing Redstar2NLS was co-cultivated 

with A. tumefaciens strains LBA2569(3163GFP11-D2) and LBA2556(3163GFP11-D2). As 

shown in figure 12,  translocated GFP11-VirD2 accumulated both in the nucleus and in the 

cytoplasm. This localization was similar, irrespective of whether or not T-DNA was present. 
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Figure 12. Presence of VirD2 in yeast after translocation from Agrobacterium after 48 hours of co-

cultivation. Co-cultivation of A. tumefaciens strains LBA2569(LBA1010ΔVirD2)(3163GFP11-D2) (A) or 

LBA2556(LBA1100ΔVirD2)(3163GFP11-D2) (B and C) with yeast strain 426::GFP1-10 expressing 

Redstar2NLS. GFP11-VirD2 was found  both in the nucleus and elsewhere in cells whether T-DNA was 

cotransferred or not. The white arrows indicate GFP11-VirD2 and red arrows indicate Redstar2NLS 

marking the nucleus.  Scale bars: 5µm. 
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Visualization of  GFP11[VirD2] translocation from A. tumefaciens to N. 

tabacum SR1 and A. thaliana Col.0 plants expressing GFP1-10  

We applied the split GFP system to visualise translocation of virulence protein VirD2 into N. 

tabacum SR1 and A. thaliana Col-0 leaf cells as a recipients. N. tabacum SR1 cells and A. 

thaliana Col-0 cells were expressing GFP1-10. The pictures were taken  by CSL microscopy 

20 hours after agroinfiltration of the 5 weeks old N. tabacum SR1 and A. thaliana Col-0 

plants. Due to fluorescence originating from the chlorophyll, even in untransformed plants, 

fluorescence was detected in the GFP channel, irrespective of protein translocation. The CF 

channel shows the chlorophyll fluorescence and autofluorescence. Figure 13 shows 

translocation of the virulence proteins from Agrobacterium  LBA2569(3163GFP11-D2), 

LBA2556(3163GFP11-D2) and negative control strain LBA1100 (pRAL7100) to A. thaliana 

Col-0 cells. Figure 14 shows translocation of the virulence proteins from Agrobacterium  

LBA2569(3163GFP11-D2), LBA2556(3163GFP11-D2) and LBA1100(pRAL7100) to N. 

tabacum SR1 cells. The virulence protein translocation from A. tumefaciens to 5 week old N. 

tabacum plants and A. thaliana plants expressing GFP1-10 was observed 20 hours after 

agroinfiltration with GFP11-tagged virulence proteins VirD2. Similar results were obtained 

with the Agrobacterium  strain LBA2556 (3163GFP11-D2) lacking T-DNA and LBA2569 

(3163GFP11-D2) with T-DNA. Due to fluorescence originating from the chlorophyll, even in 

the negative control LBA1100 without the GFP11 construct, background fluorescence was 

detected (Figure 13A and Figure 14A). As indicated in figure 13 (B and C) and Figure 14 (B 

and C) by arrowheads,  additional signals of reconstructed GFP were seen in A. thaliana and 

N. tabacum  leaves, infiltrated with A. tumefaciens strains delivering GFP11-tagged VirD2. 

Protein translocation was observed into the epidermal cells of the leaves. 
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Figure 13. Visualization of GFP11-VirD2 translocation from Agrobacterium to A. thaliana leaves. (A) 

The negative control LBA1100 without any GFP11 construct. (B) Translocation of GFP11-VirD2 (+T-DNA), 

(c) translocation of GFP11-VirD2 (-T-DNA) (C), from A. tumefaciens to A. thaliana Col-0 leaf cells 

expressing GFP1-10, 20 hours after agroinfiltration. Analysis of CF chloroplast fluorescence (CF) and 

reconstituted GFP were performed with the Zeiss Imager. Scale bar, 15 µm. Arrows indicate reconstituted 

GFP signals in the plant cells. 
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Figure 14. Visualization of GFP11-VirD2 translocation from Agrobacterium to N. tabacum leaves. (A) 

The negative control LBA1100 without any GFP11 construct. (B) translocation of GFP11-VirD2 (+T-DNA), 

(C) translocation of GFP11-VirD2 (-T-DNA), from A.tumefaciens to N.tabacum SR1 leaf cells expressing 

GFP1-10, 20 hours after agroinfiltration. Analysis  of CF chloroplast autofluorescence (CF) and 

reconstituted GFP were performed with the Zeiss Imager. Scale bar, 15 µm. Arrows indicate reconstituted 

GFP signals in the plant cells. 
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Figure 15. Summary of the results of this chapter.  

Upper panel, confocal microscopy of yeast strain 426::GFP1-10 chemically transformed with pUG36-

39GFP11[VirE2] (internally tagged) (A), with pUG36-GFP11[VirE2] (N-terminally tagged) (B), with 

pUG36-GFP11[VirD2] (C), with pUG34-GFP11[VirF] (D), with pUG36-GFP11-VirE3 (E). Scale bars: 5 

µm.  Middle panel, confocal microscopy of 426::GFP1-10 yeast cells after co-cultivation with 

Agrobacterium strains LBA2572-39GFP11-[VirE2] (F), with LBA2572-GFP11-VirE2) (G) or with 

LBA2556-GFP11-[VirD2] (H).  

Lower panel, visualization of VirE2 and VirD2 virulence proteins translocation into leaf cells of N. 

tabacum SR1, approximately 20 hours after agroinfiltration. VirE2 translocated from A. tumefaciens 

strains LBA2572-39GFP11[VirE2] (K), LBA2572-GFP11[VirE2] (L), and  VirD2 translocated from A. 

tumefaciens strain LBA2556-GFP11[VirD2] into leaf cells of N. tabacum SR1. Scale bars: 15µm.  
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DISCUSSION 

Agrobacterium  is known as a natural genetic engineer that can deliver DNA into 

dicotyledonous plant cells (Hooykaas and Schilperoort, 1992)  and into many different types 

of host cells under laboratory conditions (Bundock et al., 1995; Piers et al., 1996; Kumar et 

al., 2004; de Groot et al., 1998). In addition to T-DNA, virulence proteins, VirE2, VirF, 

VirD2, VirE3 and VirD5, can translocate via the T4SS into the host cells during AMT 

(Vergunst et al., 2000; Schrammeijer et al., 2003). Translocation of these virulence proteins 

was detected initially by the development of the CRAFT system, in which co-delivery of the 

Cre-recombinase fused N-terminally to these virulence proteins resulted in a DNA 

recombination event that could be detected (Vergunst et al., 2000, 2005). However, the 

translocation process itself, its timing and the fate of the translocated effector proteins inside 

the recipient cell are still only partly understood. In order to get more information on the 

translocation of effector proteins we made use of the split-GFP system. This system was 

originally used to study effector protein translocation from Salmonella (PipB2, SteA and 

SteC) to host cells through a type 3 secretion system (Van Engelenburg and Palmer, 2010). 

Later, we (Sakalis et al., 2014), and others (Li et al., 2014) used the split GFP system to 

visualize the translocation of the Agrobacterium  VirE2 protein into yeast and plant cells. In 

our previous study we used N-terminally tagged GFP11-VirE2 from the octopine Ti plasmid 

pTiB6 (Sakalis et al. 2014) whereas Li et al, (2014) used internally tagged GFP11-VirE2 from 

the hypervirulent pTiBo542. The VirE2 amino acid sequences from these two different 

Agrobacteria are somewhat different (Figure 2A). In our experiments GFP11-VirE2 

translocation to yeast was observed after more than 24 hours of co-cultivation (Sakalis et al., 

2014), whereas Li et al, (2014) found protein translocation already after 4 hours of co-

cultivation. In our new study we found that translocation of the VirE2 isoform used in our 

laboratory internally tagged GFP11 (39-GFP11[VirE2]) became visible after 8 hours of co-

cultivation indicating that the position of the GFP11-tag strongly affected the time when 

translocation can be observed. The GFP11-tag at the N-terminus may hinder proper 

functioning of VirE2 possibly by blocking its self-association. The biological activity of 

internally tagged-VirE2 was confirmed by tumor formation and GUS assays as shown in 

figure 3. The internally-tagged VirE2 signals were detected more clearly and were observed 

earlier after cell infection in comparison with N-terminus tagged VirE2 signals. Translocation 

of 39-GFP11[VirE2] to N. tabacum cells was observed 18 hrs. after agroinfiltration, similarly 

as was previously observed for N-terminally tagged-GFP11[VirE2] (Sakalis et al., 2014). 
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Translocated 39-GFP11 [VirE2] was rapidly moving inside the host plant cells (Figures 10 

and 11), which was not observed previously for N-terminally tagged-GFP11 [VirE2]. 

Previously, Sakalis et al (2014) showed that VirE2 formed cord-like structures that 

colocalized with the microtubules. Hence, it will be interesting to investigate whether the 

movement is along microtubules or not. VirE2 protein translocation could also be observed 

into root cells when A. tumefaciens strains were co-cultivated with transgenic A. thaliana 

Col-0 root explants expressing GFP1–10. A reconstituted GFP signal, resulting from 39GFP11-

VirE2 translocation into root cells from Agrobacterium  was first detected only after 3 days 

of co-cultivation. This delay in comparison to leaf cells, where a signal was observed already 

after 18 hrs, might be due to slow translocation or slow aggregation and thread and dot 

formation of VirE2 in root cells. In this study the split GFP system was also used to visualize 

the translocation of N-terminally GFP11-tagged virulence protein VirD2 into yeast and plant 

cells. The  reconstituted GFP signal, resulting from GFP11-VirD2 translocation into yeast and 

plant cells from Agrobacterium  was first detected after 20 and 48 hours of co-cultivation in 

plant and yeast cells respectively. The translocation of VirE3 and VirF could not be studied 

as the GFP11-fusions did not lead to GFP reconstitution with GFP1-10. This is possibly due 

to steric hindrance by the virulence proteins parts preventing GFP reconstitution. The lack of 

data in case of VirF and VirE3 promoted us to look for an alternation system. The split-GFP 

system has the disadvantage that transgenic lines expressing GFP1-10 need to be developed 

first before the system can be used. Therefore, in Chapter 4 we analyzed whether the LOV 

fluorescent protein may be a better alternative to study protein translocation. 
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Chapter 3 

__________________________________________________ 

Application of phiLOV2.1 as a fluorescent marker for 

visualization of Agrobacterium  effector protein 

translocation 
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ABSTRACT 

Agrobacterium  tumefaciens can genetically transform plants by translocating a piece of 

oncogenic DNA, called T-DNA, into host cells. Transfer is mediated by a type IV 

secretion system (T4SS). Besides the T-DNA which is transferred in a single stranded 

from and at its 5’ end covalently bound to VirD2, several other effector proteins (VirE2, 

VirE3, VirD5 and VirF) are translocated into the host cells. The fate and function of the 

translocated proteins inside the host cell is only partly known. Therefore, several studies 

were conducted to visualize the translocation of the VirE2 protein. As GFP-tagged 

effector proteins are unable to pass the T4SS, other approaches like the split GFP 

system were used, but these require specific transgenic recipient cells expressing the 

complementary part of GFP. Here, we investigated whether use can be made of the 

photostable variant of LOV, phiLOV2.1, to visualize effector protein translocation from 

Agrobacterium  to non-transgenic yeast and plant cells. We were able to visualize the 

translocation of all five effector proteins, both to yeast cells, and to cells in Nicotiana 

tabacum leaves and Arabidopsis thaliana roots. Clear signals were obtained that are 

easily distinguishable from the background, even in cases where by comparison the split 

GFP system did not generate a signal.  
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INTRODUCTION 

Dicotyledonous plants are susceptible to infection by Agrobacterium  tumefaciens resulting 

in the formation of crown gall tumors (De Cleene and De Ley, 1976; Nester et al., 1984). 

During infection a segment of oncogenic DNA, called T-DNA, is translocated to the nucleus 

of host cells, where it is integrated into the genome (Tinland et al ., 1994). The T-DNA and 

other genes that are involved in virulence are located on a tumor inducing (Ti) plasmid (van 

Larebeke et al., 1974; Nester et al., 1975). The virulence (vir) region on this plasmid consists 

of several operons: virA-R (Zhu et al., 2000). Wounded plant cells excrete several 

compounds, including phenolic compounds and sugars. These compounds activate VirA and 

VirG, resulting in expression of the other vir genes (Lee et al ., 1996). It has been shown that 

the effector proteins VirD2, VirD5, VirE2, VirE3 and VirF are translocated into the host cell 

through a type 4 secretion system (T4SS) formed by VirB1 to 11 and VirD4 (Vergunst et al., 

2000). This translocation is mediated by C-terminal signal sequences and can occur 

independently of T-DNA transfer (Vergunst et al., 2000; Vergunst et al., 2005). The T-DNA 

is translocated into host cells in a single strand form, the T-strand (Stachel and Nester, 1986). 

The VirD2 protein is covalently linked to the 5’ end of the T-strand when acting as a relaxase 

and is responsible for the transport of the T-DNA into host cells (van Kregten et al., 2009). 

However, even in absence of T-DNA, VirD2 can be transported through the T4SS (Vergunst 

et al., 2005). VirD2 contains nuclear localization signals (NLS) that may guide the T-DNA to 

the nucleus of the host cell (Ziemienowicz et al., 2001). VirE2 binds cooperatively to single-

stranded DNA without any sequence specificity (Gietl et al ., 1987). Inside the host cell, the 

T-strand may be coated by VirE2 proteins and thereby VirE2 may protect the T-strand 

against host nucleases (Citovsky et al ., 1989; Rossi et al., 1996). VirE2 has two putative 

NLSs, but their activity is weak and they may be hidden when the protein is bound to the T-

strand (Citovsky et al., 1992). Also whether these NLSs are involved in nuclear import of 

VirE2 is still unclear. Ziemienowicz et al. (2001) suggested that VirD2 is essential and 

sufficient for import of short single-stranded DNA into the plant nucleus, whereas for import 

of longer DNA VirE2 is also required. Djamei et al. (2007) were unable to obtain evidence 

that VirE2 by itself is imported into the nucleus of Arabidopsis thaliana cells. Instead, the 

VirE2 Interacting Protein 1 (VIP1) may guide VirE2 and the associated T-complex into the 

nucleus. VIP1 may also be important for the association of the T-complex with the host 

chromatin (Tzfira et al., 2001) However, recently the role of VIP1 in the transformation 

process was questioned (Shi et al., 2014). The virulence protein VirF is a host range factor of 
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Agrobacterium  (Hooykaas et al., 1984; Melchers et al., 1990). This protein contains an F-

box domain, and may form a Skp-Cullin-F-box protein (SCF) complex by interacting with 

the plant proteins ASK1 and ASK2 (Schrammeijer et al., 2001; Magori and Citovsky, 2011). 

This complex may enable T-DNA integration by  proteasomal degradation of VIP1 and 

VirE2 (Tzfira et al., 2004). In addition, it may destabilize VFP4, a transcriptional activator of 

defense response genes (García-Cano et al , 2018). VBF, a plant F-box protein, might 

functionally replace VirF in plant species that do not require VirF for successful 

transformation (Zaltsman et al., 2010). VirE3 interacts with pBrp, a plant-specific 

transcription factor (García-Rodríguez et al., 2006). pBrp localizes at the outside of plastids; 

however, when the cell is stressed or when VirE3 is present, pBrp translocates to the nucleus 

to stimulate transcription. Niu et al . (2015) showed that VirE3 activates the VBF promoter 

and thus possibly indirectly regulates the levels of VirE2 and VIP1. This clarifies why the 

transformation is only slightly decreased with a mutation in either virF or virE3, while the 

inactivation of both genes leads to low transformation efficiency (García-Rodríguez et al., 

2006). VirD5 has two bipartite NLSs, but is not essential for tumor formation. Wang et al. 

(2014) demonstrated that VirD5 can interact directly with the VIP1. They showed that VirD5 

competes with VBF to bind to the VIP1-VirE2 complex, thereby inhibiting the degradation of 

this complex. In addition, VirD5 interacts with another VirE2 binding protein, VIP2 (Wang 

et al., 2018). On the other hand, Zhang et al. (2017) showed that VirD5 can inhibit yeast and 

plant growth by binding to the kinetochores and thus provoking spindle checkpoint and 

chromosome mis-segregation during mitosis.  

Several studies were initiated to visualize protein translocation into the host cell. Such studies 

are hampered by the inability of GFP-tagged proteins to translocate through the T4SS 

probably due to the rigidness of the GFP protein. By using the split GFP technique developed 

by van Engelenburg and Palmer (2010),  translocation of the Agrobacterium  effector protein 

VirE2 could, however, successfully be visualized (Sakalis, 2013; Sakalis et al., 2014; Li et al 

., 2014). Saccharomyces cerevisiae and plants expressing the first ten helices of GFP (GFP1-

10) were infected with Agrobacterium  strains expressing VirE2 tagged with the remaining 

helix of GFP (GFP11). After translocation of the GFP11-tagged effector protein into the host 

cell, GFP is reconstituted and the translocated protein can be visualized. GFP11-VirE2 formed 

dot-shaped and filamentous structures of different lengths after translocation to yeast and 

plant cells (Sakalis et al., 2014; Li et al., 2014). Unfortunately, the split GFP technique has 

some drawbacks. First of all, it can only be used with a genetically modified host expressing 



83 

 

GFP1-10. Another disadvantage is that translocated proteins will only be visible in those 

cellular compartments where also GFP1-10 is available (Park et al ., 2017). Recently, protein 

translocation into mammalian cells through the type 3 secretion system of Shigella flexneri 

was visualized using phiLOV2.1, an improved version of LOV (Gawthorne et al ., 2016). 

The LOV domain is responsible for the fluorescent properties of the plant blue-light receptor 

kinases called phototropins, regulated either by Light, Oxygen or Voltage (Huala et al., 

1997; Buckley et al., 2015). Compared to LOV phiLOV2.1 has increased fluorescence and 

photostability (Christie et al ., 2012a, b). phiLOV2.1 is much smaller than GFP, 12.1 kDa vs. 

27 kDa, which may be compatible with protein translocation through the T4SS. 

In this study, we used phiLOV2.1 to tag virulence proteins VirD2, VirD5, VirE2, VirE3 and 

VirF to visualize their translocation and localization in cells of the yeast S. cerevisiae, in 

Nicotiana tabacum leaves and in A. thaliana roots.  

 

MATERIAL AND METHOD 

Yeast strains and media. Yeast strains used in this study are listed in supplementary Table 

S1. All yeast strains were grown in YPD medium or selective MY medium supplemented, if 

required, with histidine, tryptophan, methionine and/or uracil to the final concentration of 20 

mg/ml (Zonneveld, 1986). Yeast transformation was performed using the Lithium Acetate 

method (Gietz et al., 1995). Yeast strains carrying plasmids were obtained by transforming 

parental strains with the appropriate plasmids followed by selection for histidine and/or uracil 

prototrophy.  

Agrobacterium  strains and media. The Agrobacterium  strains used are listed in 

supplementary Table S2. Agrobacterium  was grown in LC supplemented with the 

appropriate antibiotics (40 µg/ml gentamicin, 20 µg/ml rifampicin) at 28˚C and 175 rpm. 

Agrobacterium  strains carrying plasmids were obtained by electroporation as described by 

den Dulk-Ras and Hooykaas, (1995). 

Plant lines. The plant lines used in this study were: Nicotiana tabacum (SR1), N. tabacum 

(SR1) expressing GFP1-10 (Sakalis et al., 2014), Nicotiana glauca, A. thaliana Columbia-0 

(Col-0) and A. thaliana Col-0 mRFP-NLS (At2051) (obtained from Prof. Dr. S. B. Gelvin , 

Purdue University). 



84 

 

Agroinfiltration. N. tabacum was grown on soil at 25°C, 50% relative humidity and 16 

hours photoperiod, to full plants and after one month young leaves were selected for 

agroinfiltration. After overnight growth of Agrobacterium  strains at 28°C in LC medium, 

cultures were resuspended to the OD600≈0.8 in 10 ml of induction medium with 200 µM 

acetosyringone (AS) and incubated for three hours at 28°C. The lower surface of the leaves 

of one-month-old N. tabacum SR1 was injected with this culture with a blunt-tipped 10 ml 

syringe using gentle pressure. After 10-48 hours the lower side of the leaves was analyzed 

using confocal microscopy. 

Tumor formation assay. To assess whether the tagged virulence proteins are still 

biologically active, a tumor formation assay was performed. The plasmids with the genes for 

the tagged effector proteins were introduced in Agrobacterium  strains with a deletion for that 

particular vir gene. An overnight culture of Agrobacterium  was washed and resuspended 

with 0.9% (w/v) NaCl solution to an OD600 of 1.0. After growing the N. glauca plants for six 

to seven weeks at 25°C, 75% relative humidity and 16 hours photoperiod, their stem was 

damaged with a sterile toothpick, followed by the inoculation of 20 µl of the Agrobacterium  

culture. After four weeks the tumor formation was scored and photographed. 

Arabidopsis root transformation assay. A. thaliana Col-0 seeds were surface-sterilized and 

incubated at 4°C for 4 days. They were placed into liquid B5 medium supplemented with 3% 

sucrose and 0.5 g 2-(N-morpholino) ethanesulfonic acid (MES), pH 5.7 (Vergunst et al., 

1998). The flasks were incubated under a 16 hours photoperiod at 21°C for 10 days with 

gentle shaking. Roots from individual seedlings were cut into 0.3-0.5 cm long segments and 

re-suspended in 20 ml of fresh B5 medium containing A. tumefaciens cells at a concentration 

of 109 cells/ml. The mixtures were spread onto B5 plates containing 200 µM acetosyringone 

and subsequently incubated at 24°C for 2 days. The root segments were washed three times 

with liquid B5 and then aligned onto B5 medium plates containing 100 mg/ml Timentin and 

kept at 24°C for 4 weeks.  

Root protein translocation assay. A. thaliana Col-0 wild type and A. thaliana Col-0 mRFP-

NLS (At2051) were used for the root protein translocation assays. Approximately 3 mg of 

sterilized seeds were grown in 50 ml of B5 medium while shaking 90 rpm at 21°C with 16 

hours of light per day and 50% relative humidity. After at least eight days the roots were 

separated from the hypocotyls and placed on callus induction medium (CIM) for three days. 
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Subsequently, the roots were placed in a clean sterile petri dish containing 20 ml of the 

Agrobacterium  overnight culture with a OD600 of 0.3 and incubated for at least 20 min at 

room temperature. The roots were then dried on a sterile paper towel and placed on CIM 

containing 100 µM acetosyringone. The cocultivation plates were placed underneath a piece 

of aluminum foil in the growth chamber with a temperature of 24°C and 50% relative 

humidity. After 20 to 48 hours, root protein translocation was analyzed using confocal laser 

scanning microscopy. LBA1010 was used as a negative control. B5 and CIM are described 

by Vergunst et al. (1998) as liquid growth medium (LGM) and callus induction medium 

(CIM), respectively.  

Protoplast transformation. Protoplasts were derived from a five days old A. thaliana Col-0 

cell suspension as described by Schirawski et al. (2000) and were transformed with 10 μg of 

plasmid DNA per 106 protoplasts using Polyethyleneglycol (PEG) (Schirawski et al ., 2000). 

The transformed protoplasts were incubated at 27°C in the dark for 24 hours before 

treatments and microscopy.  

 

Microscopic analysis. The localization of fluorescent proteins in yeast and plants was 

analyzed using the Zeiss Imager M1 confocal microscope equipped with a LSM5 Exciter, 

using a 40x (aperture 1.30) or a 63x (aperture 1.40) magnifying objective. phiLOV2.1 and 

reconstituted GFP were detected using an argon laser of 488 nm and a band-pass emission 

filter of 505-600 nm. The nuclear marker NLS::RFP was captured with an excitation 

wavelength of 543 nm and a 650 nm long-pass emission filter. CFP signals were detected 

after excitation at 458 nm using a 475-515 nm emission filter. Microscopy of Agrobacterium  

expressing phiLOV2.1-tagged effector proteins was done with an Axioplan2 imaging 

microscope equipped with DIC and fluorescent filters to detect phiLOV2.1 signals at 

excitation wavelength of 488 and emission of 505-600 nm. The ImageJ (Abràmoff et al ., 

2004) software was used to process and analyze the pictures.  

Plasmid constructions. All plasmids used and constructed in this study are listed in 

supplementary Table S3. E. coli strain XL1-Blue was used for cloning of the plasmids and 

the cultures were grown in LC medium containing 10 µg/ml gentamycin or 100 µg/ml 

carbenicillin while shaking 175 rpm at 37˚C. PCR amplifications were done with PhusionTM 

High-Fidelity DNA Polymerase. Supplementary Table S4 lists all primers used for PCR 

amplification and sequencing. 
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DNA fragments with phiLOV2.1 including or lacking its stop codon, were amplified by PCR 

on pGEX-6p1[phiLOV2.1]  using primer pairs XbaI-phiLOV2.1-Fw and BamHI-phiLOV2.1-

Rev or XbaI-phiLOv2.1-Fw and BamHI-phiLOv2.1ΔTAA-Rev, respectively. Then, they 

were used to replace GFP in pUG36 after digesting with XbaI and BamHI, yielding 

pUG36phiLOV2.1 and pUG36phiLOV2.1ΔTAA, respectively. 

Li et al , 2014 showed that VirE2 (from Agrobacterium  strain EHA105) can be tagged 

internally at proline-54 with GFP11 without loss of function, as originally found by (Zhou and 

Christie, 1999). The corresponding site in VirE2 from the octopine Ti-plasmid used in our 

studies, is proline-39. To insert GFP11 at this position, a DNA fragment was synthesized 

containing the 5’ -end of virE2 and GFP11 adjacent to the codon for proline-39, with SpeI and 

BglII restriction sites at the ends by Eurofins (Germany):  

5’ACTAGTCATATGGATCTTTCTGGCAATGAGAAATCCAGGCCTTGGAAGAAGGCG

AATGTCAGTTCCAGCACCATCTCCGATATTCAGATGACGAATGGCGAAAACCTTG

AATCAGGGAGCCCTCGGGACCACATGGTGCTGCACGAGTACGTGAACGCCGCCG

GCATCACAACCCGAACGGAAGTTTTAAGCCCACGTCTGGATGATGGATCGGTCG

ATTCCTCCTCCAGCCTTTATTCTGGCAGCGAGCACGGAAATCAAGCTGAGATTCA

AAAAGAGCTGTCCGCCTTGTTCTCGAACATGTCTTTGCCAGGCAACGATCGGCGC

CCGGACGAATACATTCTCGTGCGTCAAACGGGACAAGATGCTTTTACTGGTATTG

CCAAAGGCAACCTCGACCACATGCCCACCAAGGCGGAATTTAACGCGTGCTGCC

GTCTCTACAGGGACGGAGCCGGTAATTACTATCCGCCACCTCTCGCGTTCGACAA

GATTAGCGTTCCAGCCCAACTGGAGGAAACATGGGGGATGATGGAGGCGAAGG

AACGTAACAAACTACGGTTTCAGTACAAGTTGGACGTATGGAATCATGCGCACG

CTGATATGGGGATCACTGGCACAGAGATCT-3’  (underlined: 48 bp GFP11-coding 

sequence; bold:  the CCT codon of Proline39; double underlined: SpeI restriction site; italics: 

NdeI restriction site;  dots: BglII restriction site). To insert the phiLOV2.1 coding sequence 

adjacent to the codon for proline-39, a similar DNA fragment was synthesized in which the 

GFP11 coding sequence was replaced by the 339  bp phiLOV2.1 coding sequence: 

5’ATGATAGAGAAGAGTTTCGTCATCACTGATCCTAGGCTTCCCGACTATCCCATT

ATCTTTGCATCAGACGGCTTTCTTGAATTGACAGAGTATTCGCGCGAGGAAATAA

TGGGGAGAAATGCCCGGTTTCTTCAGGGGCCAGAGACAGATCAAGCGACTGTCC

AGAAGATAAGGGACGCAATTAGAGATCAGAGGGAGACTACTGTGCAGTTGATAA

ACTACACTAAAAGCGGAAAGAAATTCTGGAACTTACTCCACCTGCAACCTGTGC
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GTGATCGGAAGGGAGGGCTTCAATACTTCATCGGTGTGCAGCTCGTTGGAAGTG

ATCATGTACCCTAA-3’. To obtain full length VirE2 internally tagged with GFP11 or 

phiLOV2.1 the synthetic DNAs were used to replace the  SpeI - BglII fragment with the 5’-

end of virE2 of pUG36YFP::VirE2 to generate pUG36YFP::39GFP11-VirE2 and 

pUG36YFP::39phiLOV2.1-VirE2, respectively. For expression in yeast an XbaI–XhoI 

fragment containing tagged virE2, was ligated into pUG34 digested with XbaI and XhoI 

yielding pUG34::39GFP11-VirE2 and pUG34::39phiLOV2.1-VirE2. For expression in 

Agrobacterium  pBBR6::39GFP11[VirE2] and pBBR6::39phiLOv2.1[VirE2] (pBBR6-

derived plasmids) were constructed by replacing the NdeI – HindIII fragment with N-

terminally tagged virE2 of pSDM3163::GFP11[VirE2] (Sakalis et al., 2014) by the NdeI-

HindIII fragment of pUG34-39GFP11[VirE2] and pUG34-39phiLOV2.1[VirE2]. The 

constructed plasmids were checked by sequencing using primers VirE2-seq-FW, VirE2-seq-

Rev and VirE2-seq-int (Table S4).  

To express phiLOV2.1-tagged VirD2, VirD5, VirF and VirE3 in protoplasts  under control of 

35S promoter (not used in this study), the EcoRI-phiLOV2.1VirD2-XbaI, KpnI-

phiLOV2.1VirD5-XbaI, EcoRI- phiLOV2.1VirF-HindIII and EcoRI-phiLOV2.1VirE3-

HindIII PCR fragments were generated using the primer pairs of EcoRI- phiLOVD2-Fw & 

XbaI-phiLOVD2-Rev, KpnI-phiLOVD5-Fw & XbaI-phiLOVD5-Rev, EcoRI-phiLOVF-Fw 

& HindIII-phiLOVF-Rev or EcoRI-phiLOVE3-FW & HindIII-phiLOVE3 and  pSDM3777, 

pSDM3780, pSDM3778 and pSDM3779 respectively, as templates. These PCR fragments 

were cloned into pART7 digested via either EcoRI and XbaI (VirD2), KpnI and XbaI (VirD5) 

or EcoRI and HindIII (VirF and VirE3), to obtain pART7[phiLOV2.1-VirD2], 

pART7[phiLOV2.1-VirD5], pART7[phiLOV2.1-VirF] and pART7[phiLOV2.1-VirE3]. 

For expression of other phiLOV2.1-tagged effector proteins in yeast, plasmid pUG36 was 

used. A XbaI-phiLOV2.1VirD2-EcoRI PCR fragment, amplified using the primers XbaI-

phiLOVD2-Fw and EcoRI-phiLOVD2-Rev and pART7[phiLOV2.1-VirD2] as template, was 

cloned into the pUG36 digested with XbaI and EcoRI creating pUG36[phiLOV2.1-VirD2]. 

To produce pUG36[phiLOV2.1-VirD5], the XbaI-phiLOV2.1VirD5-SalI DNA fragment 

amplified by PCR using the XbaI-phiLOVD5-Fw and SalI-phiLOVD5-Rev primers and 

pART7[phiLOV2.1-VirD5] as a template, was inserted into XbaI and SalI digested pUG36. 

A XbaI-phiLOV2.1VirF-HindIII and XbaI-phiLOV2.1VirE3-HindIII PCR fragments were 

produced by PCR using XbaI-phiLOV-Fw and HindIII-phiLOVF-Rev or HindIII-phiLOVE3-
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Rev primers and pART7[phiLOV2.1-VirF] and pART7[phiLOV2.1-VirE3], respectively as 

template, ligated into digested (with XbaI and HindIII) pUG36, to obtain pUG36[phiLOV2.1-

VirF] and pUG36[phiLOV2.1-VirE3] respectively.  

For expression of phiLOV2.1-tagged effector proteins in Agrobacterium , plasmid pBBR6 

was used. To construct pBBR6[phiLOV2.1-VirD2], first a DNA fragment with the virD 

promoter was amplified from pSDM3076 by PCR using the primers EcoRI-pVirD2-Fw and 

PstI-pVirD2-Rev. This fragment was ligated into pBBR6 after digestion with EcoRI and PstI. 

Subsequently, a DNA fragment with phiLOV2.1 was amplified from pUG36phiLOV2.1 

using the primers PstI-phiLOV2.1-Fw and SpeI-phiLOV2.1ΔTAA –Rev and ligated into 

pBBR6-pVirD2 digested with PstI and SpeI. SpeI-VirD2-Fw and XbaI-VirD2-Rev were used 

to get the fragment SpeI-VirD2-XbaI using pSDM3149 as a PCR template, which was then 

cloned in pBBR6-phiLOV2.1 digested with SpeI and XbaI. pBBR6[phiLOV2.1-VirD5] was 

constructed by ligation of the fragment EcoRI-virD promoter-PstI, obtained by PCR from 

pSDM3759 with the primers EcoRI-pVirD-Fw and PstI-pVirD-Rev, into pBBR6 using 

EcoRI and PstI. The primers PstI-phiLOV2.1-Fw and XmaI-phiLOV2.1-Rev were used to 

generate PstI-phiLOV2.1-XmaI from pUG36 phiLOV2.1 and followed by ligation into 

pBBR6-pvirD plasmid digested by PstI and XmaI. The primers, XmaI-VirD5-Fw and XbaI-

VirD5-Rev were used to generate XmaI-VirD5-XbaI from pSDM3759. Subsequently, XmaI-

VirD5-XbaI fragment was ligated into pBBR6 containing the virD promoter and phiLOv2.1 

using  XmaI and XbaI. The plasmids pBBR6[phiLOV2.1-VirE2] and pBBR6[phiLOV2.1-

VirE3] were made by ligating first the EcoRI-virE promoter-PstI fragment into the vector 

pBBR6. This promoter was obtained by PCR using EcoRI-pVirE-Fw and PstI-pVirE-Rev on 

pBBR6::39phiLOv2.1[VirE2]. A PstI-BamHI fragment containing phiLOV2.1ΔTAA was 

obtained by PCR from pUG36phiLOV2.1 with the primers PstI-phiLOV2.1-Fw and BamHI-

phiLOV2.1ΔTAA-Rev and subsequently ligated into pBBR6-VirE promoter backbone 

digested with PstI and BamHI to generate pBBR6-pVirE-PhiLOv2.1. To create 

pBBR6[phiLOV2.1-VirE2], the BamHI-VirE2-XbaI fragment, obtained with BamHI-VirE2-

Fw and XbaI-VirE2-Rev from pJET[VirE2], was ligated into pBBR6[pVirE- phiLOV2.1] 

digested with BamHI and XbaI. pBBR6[phiLOV2.1-VirE3] was constructed in the same way, 

using pUG36[GFP11-VirE3] as a template for the PCR, using primers BamHI-VirE3-Fw and 

XbaI-VirE3-Rev. To express phiLOV2.1-tagged VirE2 under control of 35S promoter in 

protoplasts, we constructed pART7[39phiLOV2.1-VirE2]. To this end, first phiLOV2.1-



89 

 

tagged virE2, was amplified by PCR on pBBR6[39phiLOV2.1-VirE2] using the primers 

KpnI-39phiLOVE2-Fw and XbaI-39phiLOVE2-Rev. Then, pART7[39phiLOV2.1-VirE2] 

was created by ligation of XbaI-KpnI 39phiLOV2.1-VirE2 fragment into XbaI and KpnI 

digested pART7.  

 

Table1.Yeast strains used in this study 

Yeast strain Genotype Source/reference 

BY4741 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 (Brachmann et al ., 

1998) 

CEN.PK2-1C MATa  ura3-52 leu2-112 trp1-289 his3-∆1 P. Kötter, 

Göttingen, 

Germany. 

426::GFP1-10 

(GG3388) 

CEN.PK2-1C 

leu2::pRS306[PMET25-GFP1-10-TCYC1] (LEU2) 

(Sakalis et al ., 

2014) 

426::GFP1-10-34GFP11 

(GG3389) 

CEN.PK2-1C 

leu2::pRS306[PMET25-GFP1-10-TCYC1] (LEU2) 

pUG34[PMET25-GFP11-TCYC1] (HIS3) 

(Sakalis, 2013) 

426::GFP1-10-

34GFP11[VirE2] 

(GG3390) 

CEN.PK2-1C 

leu2::pRS306[PMET25-GFP1-10-TCYC1] (LEU2) 

pUG34[PMET25-GFP11-VirE2-TCYC1] (HIS3) 

(Sakalis, 2013) 

426::GFP1-10-

34GFP11[VirD2] 

(GG3392) 

CEN.PK2-1C 

leu2::pRS306[PMET25-GFP1-10-TCYC1] (LEU2) 

pUG34[PMET25-GFP11-VirD2-TCYC1] (HIS3) 

(Sakalis, 2013) 

426::GFP1-10-

34GFP11[VirD5] 

(GG3393) 

CEN.PK2-1C 

leu2::pRS306[PMET25-GFP1-10-TCYC1] (LEU2) 

pUG34[PMET25-GFP11-VirD5-TCYC1] (HIS3) 

(Sakalis, 2013) 

BY4741 – CFP-TUB1 

(GG3456) 

BY4741 leu2::pRS306[TUB1] (LEU2) This study. 

BY4741 – CFP-TUB1 

+pUG34[39philOV2.1] 

(GG3457) 

BY4741 leu2::pRS306[TUB1] (LEU2) 

pUG34[PMET25-39phiLOv2.1-VirE2-TCYC1] (HIS3) 

This study. 
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Table 2. Agrobacterium  strains used in this study 

Agrobacterium  strain Specifications  Source/reference 

LBA1010 C58 containing pTiB6, Rif  (Koekman et al ., 

1982) 

LBA1100 C58 containing pTiB6Δ (ΔT-DNA, Δocc, 

Δtra), Rif, Spc† 

 

(Beijersbergen et al ., 

1992) 

LBA1100 

(pRAL7100) 

LBA1100 with binary vector pRAL7100, Rif, 

Km† 

 

(Bundock et al ., 1995) 

AGL1 

(pCambia1302-GFP1-10) 

AGL1 with pCambia1302-GFP1-10 

(pSDM3764);pCambia1302 with GFP 1-10 

under control of the 35S promoter and the 

CaMV terminator). 

 

(Sakalis et al ., 2014) 

LBA1143 

(LBA1100ΔB4) 

virB4 deletion in LBA1100,Rif, Spc, T4SS 

deficient 

(Beijersbergen et al ., 

1992) 

LBA2572 

(LBA1010ΔE2) 

virE2 deletion in LBA1010, Rif  den Dulk-Ras, 

unpublished 

 

LBA2573 

(LBA1100 ΔE2) 

 

virE2 deletion in LBA1100, Rif, Spc (Hodges et al ., 2006) 

LBA2556 

(LBA1100ΔD2) 

 

virD2 deletion in LBA1100, Rif, Spc Jurado-Jácome, den 

Dulk-Ras, Vergunst, 

and Hooykaas, 

unpublished 

 

LBA2560 

(LBA1010ΔF) 

 

virF deletion in LBA1010, Rif (Schrammeijer et al., 

1998) 

LBA2561 

(LBA1100ΔF) 

 

virF deletion in LBA1100, Rif, Spc (Schrammeijer et al., 

1998) 

LBA2564 

(LBA1010ΔE3) 

 

virE3 deletion in LBA1010, Rif (García-Rodríguez et 

al., 2006) 

LBA2565 

(LBA1100ΔE3) 

 

virE3 deletion in LBA1100, Rif, Spc (Schrammeijer et al., 

1998) 

LBA2566 

(LBA1010ΔE3/F) 

 

virE3 and virF deletion in LBA1010 (García-Rodríguez  

et al., 2006) 

LBA2569 

(LBA1010ΔD2) 

 

virD2 deletion in LBA1010, Rif Vergunst, den Dulk- 

Ras and Hooykaas, 

unpublished 

LBA3550 

(LBA1010ΔD5) 

 

virD5 deletion in LBA1010, Rif Ouwehand, Vergunst 

and Hooykaas, 

unpublished 
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LBA3551 

(LBA1100ΔD5) 

 

virD5 deletion in LBA1100, Rif, Spc den Dulk-Ras, 

unpublished 

 

LBA2573 

(3163-GFP11-VirE2) 

LBA2573 with pSDM3163[GFP11-VirE2]. 

Expression of the GFP11-VirE2 under control 

of the virE promoter, Rif, Spc, Gm 

(Sakalis et al., 2014) 

LBA2572 

(3163-GFP11-VirE2) 

LBA2573 with pSDM3163[GFP11-VirE2]. 

Expression of the GFP11-VirE2 under control 

of the virE promoter, Rif, Spc, Gm 

(Sakalis et al., 2014) 

LBA2569(3163GFP11-

D2) 

 

LBA2569 with pSDM3163[GFP11-

VirD2],expressing the GFP11-VirD2 under 

control of the virD promoter, Rif, Gm 

(Sakalis, 2013) 

LBA2556(3163GFP11-

D2) 

 

LBA2556 with pSDM3163[GFP11-VirD2], 

expressing the GFP11-VirD2 under control of 

the virD promoter, Rif, Spc, Gm 

(Sakalis, 2013) 

LBA3567 (placZ-GFP) 

 

LBA1100 with pSDM1761 expressing EGFP. (Wolterink-van Loo et 

al., 2015) 

LBA3551(3076GFP11-

D5) 

 

LBA3551 with pSDM3076[GFP11-VirD5]. 

Expression of the GFP11-VirD5 under control 

of the virD promoter, Rif, Spc, Gm 

(Sakalis, 2013) 

LBA3550(3076GFP11-

D5) 

 

LBA3550 with pSDM3076[GFP11-VirD5]. 

Expression of the GFP11-VirD5 under control 

of the virD promoter, Rif, Spc, Gm 

(Sakalis, 2013) 

LBA2573 

(pBBR6-39GFP11-

VirE2) 

LBA2573 with pBBR6[39-GFP11-VirE2]. 

Expression of the internally-tagged GFP11-

VirE2 fusion protein under control of the virE 

promoter, Rif, Spc,Gm 

 

This study. 

 

LBA2572 

(pBBR6-39GFP11-

VirE2) 

LBA2572 with pBBR6[39-GFP11-VirE2]. 

Expression of the internally-tagged GFP11-

VirE2 fusion protein under control of the virE 

promoter, Rif, Spc,Gm  

 

This study. 

 

LBA2573 

(pBBR6-39phiLOV2.1-

VirE2) 

LBA2573 with pBBR6[39phiLOV2.1-VirE2]. 

Expression of the internal-tagged phiLOV2.1-

VirE2 fusion protein under control of the virE 

promoter, Rif, Spc, Gm 

 

This study. 
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LBA2572 

(pBBR6-39phiLOV2.1-

VirE2) 

LBA2572 with pBBR6-39phiLOV2.1-VirE2. 

Expression of the internal-tagged phiLOV2.1-

VirE2 fusion protein under control of the virE 

promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2573 

(pBBR6-phiLOV2.1-

VirE2) 

LBA2573 with pBBR6[phiLOV2.1-VirE2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirE2 fusion protein under control 

of the virE promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2572 

(pBBR6-phiLOV2.1-

VirE2) 

LBA2572 with pBBR6[phiLOV2.1-VirE2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirE2 fusion protein under control 

of the virE promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2572 

(pSDSM3163) 

LBA2572 with pBBR6[VirE1-VirE2] 

Expression of the VirE1-VirE2 under control 

of the virE promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2556 

(pBBR6-phiLOV2.1-

VirD2) 

 

LBA2556 with pBBR6[phiLOV2.1-VirD2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under 

control of the virD2 promoter, Rif, Spc, Gm 

 

This study. 

LBA2560 

(pBBR6-phiLOV2.1-

VirF) 

 

LBA2560 with pBBR6 [phiLOV2.1-VirF]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirF fusion protein under control 

of the virF promoter, Rif, Gm 

 

This study. 

LBA2561 

(pBBR6-phiLOV2.1-

VirF) 

 

LBA2561 with pBBR6 [phiLOV2.1-VirF]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirF fusion protein under control 

of the virF promoter, Rif, Spc, Gm 

 

This study. 

LBA2564 

(pBBR6-phiLOV2.1-

VirE3) 

 

LBA2564 with pBBR6 [phiLOV2.1-VirE3]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirE3 fusion protein under control 

of the virE promoter, Rif, Gm 

 

This study. 

LBA2565 

(pBBR6-phiLOV2.1-

VirE3) 

 

LBA2565 with pBBR6 [phiLOV2.1-VirE3]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirE3 fusion protein under control 

of the virE promoter, Rif, Spc, Gm 

 

This study. 

LBA2569 

(pBBR6-phiLOV2.1-

VirD2) 

 

LBA2569 with pBBR6 [phiLOV2.1-VirD2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under 

control of the virD2 promoter, Rif, Gm 

 

This study. 
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LBA3550 

(pBBR6-phiLOV2.1-

VirD5) 

 

LBA3550 with pBBR6 [phiLOV2.1-VirD5]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD5 fusion protein under 

control of the virD promoter, Rif, Gm 

 

This study. 

LBA3551 

(pBBR6-phiLOV2.1-

VirD5) 

 

LBA3551 with pBBR6 [phiLOV2.1-VirD5]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD5 fusion protein under 

control of the virD promoter, Rif, Spc,Gm 

 

This study. 

†,  Rif: rifampicin;, Spc: spectinomycin; Km: kanamycin; Gm: gentamicin 

 

 

Table 3. Plasmids used in this study 

Name Properties Source/reference 

pART7 Plant cloning vector with 35S promoter, 

octopine synthase (OCS) terminator and 

ampicillin resistance marker. 

(Gleave, 1999) 

pART7-39phiLOv2.1-VirE2 

(pSDM3774) 

pART7 based vector with 

39phiLOV2.1-virE2 under control of 

35S promoter and octopine synthase 

(OCS) terminator. 

This study. 

pBBR6 Broad host range, non-mobilizable 

plasmid with Gentamycin resistance 

marker derived from pBBR1-MSC2. 

(Kovach et al.,1994) 

pBBR6-phiLOV2.1-VirE2 

(pSDM3775) 

pBBR6 backbone with the coding 

sequence of  phiLOV2.1-virE2 (N-

terminally tagged) under control of the 

virE promoter. 

 

This study. 

pBBR6-39phiLOV2.1-VirE2 

(pSDM3776) 

pBBR6 backbone with the coding 

sequence of  39phiLOV2.1-virE2 under 

control of the virE promoter. 

This study. 

pBBR6-phiLOV2.1-VirD2 

(pSDM3777) 

pBBR6 backbone with the coding 

sequence of phiLOV2.1-virD2 under 

control of the virD2 promoter. 

This study. 

pBBR6-phiLOV2.1-VirF 

(pSDM3778) 

pBBR6 backbone with the coding 

sequence of phiLOV2.1-virF under 

control of the virF promoter. 

 

This study. 

pBBR6-phiLOV2.1-VirE3 

(pSDM3779) 

pBBR6 backbone with the coding 

sequence of phiLOV2.1-virE3 under 

control of the virE promoter. 

 

This study. 
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pBBR6-phiLOV2.1-VirD5 

(pSDM3780) 

pBBR6 backbone with the coding 

sequence of phiLOV2.1-virE2 under 

control of the virD promoter. 

 

This study. 

pCambia1302  

 

High copy vector with mGFP under 

control of the 35S promoter and the 

CaMV terminator. (Bacterial 

kanamycin resistance, plant hygromycin 

selection) 

 

Cambia®, Australia 

pCambia1302-GFP1-10 

(pSDM3764) 

 

pCambia1302 with mGFP replaced by 

GFP1-10 under control of the 35S 

promoter and the CaMV terminator. 

 

(Sakalis et al., 2014) 

pGEX-6p1[phiLOV2.1] 

 

Bacterial vector for expressing GST in 

frame fusion with phiLOV2.1 protein 

under tac promoter.  

(Christie et al., 2012) 

pJET1.2[VirE2] 

(pRUL1236) 

pJET1.2 with virE2 flanked by SpeI and 

XmaI restriction sites. 

(Sakalis et al., 2014) 

pRS306[CFP-Tub1] Yeast integrative vector with CFP-

TUB1 under control of the HIS 

promoter and terminator. URA3 marker. 

(Jensen et al., 2001) 

pSDM3149 virD2 under control of the virD 

promoter, located on plasmid pBBR6 

(pVD43 was cloned as EcoRV -EcoRI 

fragment in pIC2OH by Amke den 

Dulk).  

(Rossi et al., 1993) 

pSDM1761 Plasmid that confers tetracycline 

resistance in E. coli and rhizobia, 

carrying EGFP from pME2444.  

(Bloemberg et al., 

2000) 

pSDM3163 pBBR6 with coding sequence of virE1 

and virE2 under control of the virE 

promoter. 

Dennis Schneider, 

unpublished. 

pSDM3076 pBIN19 backbone with coding sequence 

of virD5 under control of the virD 

promoter 

Amke den Dulk, 

unpublished 

pSDM3163[GFP11-VirE2] 

(pSDM3756) 

 

pBBR6 backbone with the coding 

sequence of GFP11-VirE2 under control 

of the virE promoter. 

(Sakalis et a ., 2014) 

pBBR6[39GFP11-VirE2] 

(pSDM3767) 

pBBR6 backbone with the coding 

sequence of 39phiLOV2.1-virE2 under 

control of the virE promoter. 

 

This study. 



95 

 

pSDM3163[GFP11-D5] 

(pSDM3759) 

 

pSDM3076 backbone with coding 

sequence of GFP11-VirD5 under control 

of the virD 

promoter. 

(Sakalis, 2013) 

pSDM3163[GFP11-VirD2] 

(pSDM3755) 

 

pSDM3163 backbone with the coding 

sequence of GFP11-VirD2 under control 

of the virD promote 

(Sakalis, 2013) 

pUG34 Centromeric plasmid to express N-

terminal GFP fusions in yeast under 

control of the MET17 (alias MET25) 

promoter and CYC1 terminator. HIS3 

marker. 

 

U. Güldener and J.H. 

Hegemann, 

unpublished. 

pUG34GFP11[VirD2] 

(pRUL1280) 

Centromeric plasmid with GFP11-virD2 

under control of the MET25 promoter 

and CYC1 terminator. HIS3 marker. 

(Sakalis, 2013) 

pUG34GFP11[VirE2] 

(pRUL1282) 

Centromeric plasmid with GFP11-VirE2 

under control of MET25 promoter and 

CYC1 terminator. HIS3 marker. 

(Sakalis, 2013) 

pUG34GFP11[VirD5] 

(pRUL1294) 

Centromeric plasmid with GFP11-VirD5 

under control of MET25 promoter and 

CYC1 terminator. HIS3 marker. 

(Sakalis, 2013) 

pUG34[39GFP11-VirE2] 

(pSDM3766) 

Centromeric plasmid for expression of 

proline39 GFP11-VirE2 in yeast under 

control of the MET25 promoter and 

CYC1 terminator. HIS3 marker. 

 

This study. 

pUG34-phiLOV2.1-VirE2 

pSDM3781) 

Centromeric plasmid for expression of 

phiLOV2.1-VirE2 in yeast under 

control of MET17 promoter and CYC1 

terminator. HIS3 marker. 

 

This study. 

pUG34-39phiLOV2.1-VirE2 

(pSDM3782) 

Centromeric plasmid for expression of 

39phiLOV2.1-VirE2 in yeast under 

control of MET17 promoter and CYC1 

terminator. HIS3 marker. 

 

This study. 

pUG36  Centromeric plasmid to express N-

terminal GFP fusions in yeast under 

control of the MET25 promoter and 

CYC1 terminator. URA3 marker. 

 

U. Güldener and J.H. 

Hegemann, 

unpublished. 
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pUG36phiLOV2.1 

(pSDM3783) 

Centromeric plasmid for expression of 

free phiLOV2.1 under control of 

MET25 promoter and CYC1 terminator. 

URA3 marker. 

 

This study. 

pUG36phiLOV2.1ΔTAA 

(pSDM3784) 

Centromeric plasmid containing 

phiLOV2.1 without stop codon under 

control of MET25 promoter and CYC1 

terminator. URA3 marker. 

 

This study. 

pUG36-phiLOV2.1-VirE2 

(pSDM3785) 

Centromeric plasmid for expression of 

phiLOV2.1-VirE2 (N-terminal) under 

control of MET25 promoter and CYC1 

terminator. URA3 marker. 

 

This study. 

pUG36-39phiLOV2.1-VirE2 

(pSDM3786) 

Centromeric plasmid for expression of 

39phiLOV2.1-VirE2 under control of 

MET25 promoter and CYC1 terminator. 

URA3 marker. 

This study. 

pUG36-phiLOV2.1-VirD2 

(pSDM3787) 

Centromeric plasmid for expression of 

phiLOV2.1-VirD2 under control of 

MET25 promoter and CYC1 terminator. 

URA3 marker. 

 

This study. 

pUG36-phiLOV2.1-VirE3 

(pSDM3788) 

Centromeric plasmid for expression of 

phiLOV2.1-VirE3 under control of 

MET25 promoter and CYC1 terminator. 

URA3 marker. 

 

This study. 

pUG36-phiLOV2.1-VirF 

(pSDM3789) 

Centromeric plasmid for expression of 

phiLOV2.1-VirF under control of 

MET25 promoter and CYC1 terminator. 

URA3 marker. 

 

This study. 

pUG36-phiLOV2.1-VirD5 

(pSDM3790) 

Centromeric plasmid for expression of 

phiLOV2.1-VirD5 under control of 

MET25 promoter and CYC1 terminator. 

URA3 marker. 

 

This study. 

 pUG36YFP[VirE2] 

(pRUL1244)  

Centromeric plasmid for expression of 

YFP-VirE2 under control of MET25 

promoter and CYC1 terminator. URA3 

marker.  

 

(Sakalis et al., 2014) 

pUG36YFP-39GFP11[VirE2] 

(pSDM3791) 

pUG36YFP[VirE2]  backbone with the 

coding sequence of 

proline39phiLOV2.1-VirE2 under 

control of MET25 promoter. 

 

This study. 
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Table 4. Primers used in this study 

Primer name Sequence (5’  3’) 

EcoRI-pVirD-Fw AAAGAATTCCTGATCCCGCCTGTCCTGTG 

PstI -pVirD-Rev AAACTGCAGCCTCCAAAAAAAGCGGAAGG 

EcoRI-pVirD2-Fw AAAGAATTCAAACGGAGTGCATTTGTATTTTTG 

PstI -pVirD2-Rev AAACTGCAGAGCTTCCTCCAAAAAAAGCG 

EcoRI-pVirE-Fw AAAGAATTCCGGCTGCTCGTCACCAAC 

PstI -pVirE-Rev AAACTGCAGTGTTCTCTCCTGCAAAATTGCG 

EcoRI-pVirF-Fw GGGGAATTCTACCGAGCTCCTATGATAGTCG 

PstI -pVirF-Rev GGGCTGCAGGCTCCTGTGCTTTTGAAAGG 

PstI-phiLOV2.1-Fw GGCTGCAGATGATAGAGAAGAGTTTC 

SpeI -phiLOV2.1ΔTAA-Rev GGACTAGTTACATGATCACTTCCAAC 

PstI- phiLOV2.1-Fw GGCTGCAGATGATAGAGAAGAGTTTC 

XmaI - phiLOV2.1ΔTAA-Rev GGCCCGGGTACATGATCACTTCCAAC 

PstI-phiLOV2.1-Fw GGCTGCAGATGATAGAGAAGAGTTTC 

BamHI -phiLOV2.1ΔTAA-Rev AAAGGATCCTACATGATCACTTCCAACGAG 

XmaI-VirD5-Fw GGCCCGGGATGACAGGAAAGTCGAAAG 

XbaI -VirD5-Rev GGTCTAGATTATCAGCGTTTAAACGC 

SpeI-VirD2-Fw GGACTAGTATGCCCGATCGCG 

XbaI -VirD2-Rev GGTCTAGATAGGTCCCCCCG 

BamHI-VirE2-Fw GGGGGATCCATGGATCTTTCTGGCAATG 

XbaI -VirE2-Rev GGTCTAGATCAAAAGCTGTTGACGCTTTG 

BamHI-VirE3-Fw GGGGGATCCATGGTGAGCACTACGAAGAAAAG 

XbaI -VirE3-Rev GGTCTAGATTAGAAACCTCTGGAGGTGG 

BamHI-VirF-Fw GGGGGATCCATGAGAAATTCG 

XbaI -VirF-Rev GGTCTAGATCATAGACCGCGC 

KpnI-39phiLOVE2-Fw     CCCGGTACCATGGATCTTTCTGGCAATGAG 

XbaI-39phiLOVE2-Rev    GGTCTAGATCAAAAGCTGTTGACGC 

EcoRI-phiLOVE3-Fw     CCCCCGAATTCATGATAGAGAAGAGTTTCGTC 

HindIII-phiLOVE3-Rev    GGGAAGCTTTTAGAAACCTCTGGAGGTG 

EcoRI-phiLOVD2-Fw     CCCCCGAATTCATGATAGAGAAGAGTTTCGTC 
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XbaI-phiLOVD2-Rev     GGTCTAGACTAGGTCCCCCCGC 

XhoI-phiLOVE2-Fw      GGGGCTCGAGATGATAGAGAAGAGTTTCGTC 

XbaI-phiLOVE2-Rev     GGTCTAGATCAAAAGCTGTTGACGC 

EcoRI-phiLOVF-Fw     CCCCCGAATTCATGATAGAGAAGAGTTTCGTC 

HindIII-phiLOVF-Rev    GGGAAGCTTTCATAGACCGCGCG 

KpnI-phiLOVD5-Fw    CCCGGTACCATGATAGAGAAGAGTTTCGTC 

XbaI-phiLOVD5-Rev    GGTCTAGATCAGCGTTTAAACGC 

XbaI-phiLOVD2-Fw GGTCTAGAATGATAGAGAAGAGTTTCGTC 

EcoRI-phiLOVD2-Rev CCCCCGAATTCCTAGGTCCCCCCGC 

XbaI-phiLOVD5-Fw GGTCTAGAATGATAGAGAAGAGTTTCGTC 

SalI-phiLOVD5-Rev AAAGTCGACTCAGCGTTTAAACGC 

NcoI-GFP1-10-Fw  GCCCATGGTTTCGAAAGGCGAGGA 

BstEII-GFP1-10-Rev  GGGTCACCTTATTTCTCGTTTGGGTCTT 

XbaI-GFP1-10-Fw  GCTCTAGAATGGTTTCGAAAGGCGA 

XhoI-GFP1-10-Rev  CCCTCGAGTTATTTCTCGTTTGGGT 

    a, restriction sites are underlined.
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RESULTS 

Ectopic expression of phiLOV2.1-tagged virulence proteins in yeast 

First we investigated whether Agrobacterium  effector proteins can be visualized by confocal 

microscopy when tagged with phiLOV2.1. To this end, we ectopically expressed N-

terminally phiLOV2.1-tagged effector proteins in yeast under control of the MET17 (alias 

MET25) promoter. In addition, a plasmid was constructed expressing VirE2 internally tagged 

with phiLOV2.1 at proline-39 (39phiLOV2.1-VirE2). Tagging with GFP11 or insertion of a 

peptide at this position was shown not to affect the biological activity of VirE2 (Zhou and 

Christie, 1999; Li et al., 2014). As shown in Figure 1 (A-F) a fluorescent signal was found 

for all five phiLOV2.1-tagged effector proteins. However, no fluorescent signals were 

detected in yeast cells containing plasmid pUG36ΔGFP which lacks genes encoding 

phiLOV2.1 or GFP (Figure 1G). To study whether the subcellular localization of the 

phiLOV2.1-tagged effector proteins is similar to that found using other fluorescent tags, we 

expressed GFP11-tagged effector proteins in a yeast strain expressing GFP1-10. This resulted 

in a fluorescent signal, except for GFP11-tagged VirE3 and VirF (Figure 1, H-M). As shown 

in Figure 1(N), fluorescent signals were not detected in yeast cells containing plasmid 

pUG36ΔGFP. The localizations of the effector proteins observed after using the different tags 

are highly similar for all the effector proteins. We observed filamentous structures and dots 

inside cells expressing either internally or N-terminally tagged phiLOV2.1-VirE2 and also in 

cells expressing VirE2 internally-tagged with GFP11 (Figure 1A, B and H). In contrast, only 

sporadically a dot-like structure was found in cells expressing N-terminally tagged GFP11-

VirE2 (Figure 1I), similarly as we reported previously (Sakalis et al., 2014). VirD2 and 

VirD5 were found concentrated in the nucleus, independently of the tag used (Figure 1, C, E, 

J, L). This nuclear localization was confirmed by 4',6-diamidino-2-phenylindole (DAPI) 

staining (Figure S1). phiLOV2.1-VirF was observed all over the yeast cell (Figure 1D), but 

we were not able to obtain reliable signals after expression of GFP11-VirF. phiLOV2.1-VirE3 

was located inside the nucleus (Figure 1F). Also this nuclear localization was confirmed by 

DAPI staining (Figure S1). No fluorescence could be detected after expression of GFP11-

VirE3. Expression of free phiLOV2.1 in yeast resulted in a fluorescent signal all over the 

yeast cell (supplementary Figure S2A), indicating that phiLOV2.1 itself is not targeted to a 

specific cellular location. 
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Expression of phiLOV2.1-tagged virulence proteins in Agrobacterium  

To study the expression of virulence proteins in Agrobacterium  and their translocation to 

yeast and plant cells, we created phiLOV2.1 fusions in the pBBR6 plasmid backbone under 

control of the endogenous promoters. These constructs were introduced into Agrobacterium  

strains lacking the corresponding  endogenous vir gene. The expression of the vir genes was 

induced by addition of acetosyringone to a final concentration 200μM. After 6 and 24 hours 

expression was analyzed by fluorescence microscopy. As shown in figure 2A, in the 

Agrobacterium  strain LBA2572(pBBR6-39phiLOV2.1-VirE2) after 6 hours expression of 

39phiLOV2.1-VirE2 was observed in about half of the Agrobacterium  cells. In many cells 

signals were more concentrated at cellular poles. After 24 hours, 39phiLOV2.1-VirE2 was 

localized in horseshoe-like structures in the majority of cells (Figure 2B). Very weak 

fluorescent signals were found in cells expressing the other phiLOV2.1-tagged virulence 

proteins (not shown). As expected, no fluorescence was seen in an Agrobacterium  strain 

harboring the empty plasmid pBBR6 after induction for 12 and 24 hours with acetosyringone 

(supplementary Figure S2, C and D). 

 

Figure 1. Visualization of ectopically expressed phiLOV2.1- and GFP11-tagged Agrobacterium effector 

proteins in yeast. Upper panel, confocal microscopy of yeast strain BY4741 transformed with pUG36-

39phiLOV2.1-VirE2 (A), with pUG36-phiLOV2.1-VirE2 (N-terminally tagged) (B), with pUG36-

phiLOV2.1-VirD2 (C), with pUG36-phiLOV2.1-VirF (D), with pUG36-phiLOV2.1-VirD5 (E), with 

pUG36-phiLOV2.1-VirE3 (F) and with pUG36ΔGFP as a negative control (G). Lower panel, confocal 

microscopy of yeast strain 426::GFP1-10 transformed with pUG34[39GFP11-VirE2] (H), with 

pUG34GFP11[VirE2] (N-terminally tagged) (I), with pUG34GFP11[VirD2] (J), with pUG34GFP11[VirD5] 

(I) or with pUG36ΔGFP as a negative control (N).  Scale bars: 5 µm. 
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Biological activity  of phiLOV2.1-tagged virulence proteins   

To check whether the virulence proteins had retained their biological activity after tagging 

with phiLOV2.1 we performed tumor formation assays in N. glauca shoots and A. thaliana 

Col-0 roots. To this end, N. glauca shoots were injected with the different Agrobacterium  

strains and after 4 weeks tumor formation was scored. Tumors were easily visible after 

injection of the positive control strain LBA1010, whereas no tumors were formed after 

injection of the control strain lacking T-DNA (LBA1100) (supplementary Figure S3 A and B, 

respectively). Injection of LBA2572 (the virE2 mutant) or LBA2572(pBBRR6-phiLOV2.1-

VirE2) expressing N-terminally tagged phiLOV2.1-VirE2, did not result in tumor formation, 

confirming the important role of VirE2 in tumorigenesis and that N-terminal tagging of 

VirE2 results in loss of activity (Figure S3 C and D). In contrast, injection of 

LBA2572(pBBR6-39phiLOV2.1-VirE2), which expresses 39phiLOV2.1-VirE2, resulted in 

tumor formation, although the tumors were somewhat smaller in size (Figure S3E). This 

indicates that VirE2 internally-tagged with phiLOV2.1 at proline-39 kept, albeit somewhat 

reduced, biological activity. Injection of LBA2572(pBBR6-39GFP11-VirE2) resulted in 

slightly larger tumors compared to injection of LBA2572(pBBR6-39phiLOV2.1-VirE2) 

Figure 2. Analysis of 39phiLOV2.1-VirE2 expression in Agrobacterium by fluorescent microscopy. 

LBA2572(pBBR6-39phiLOV2.1-VirE2) was induced with acetosyringone for 6 (A) or 24 (B) hours. Scale 

bars: 2µm. 
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indicating that tagging with GFP11 has less negative effect on VirE2 than tagging with 

phiLOV2.1(Figure S3F). After injection of LBA2569, a virD2 mutant, no tumors were found, 

in agreement with the essential role of VirD2 in Agrobacterium-mediated transformation 

(AMT) (Figure S3G). However, infection with LBA2569(pBBR6-phiLOV2.1-VirD2) 

expressing phiLOV2.1-VirD2, resulted in tumor formation, indicating that phiLOV2.1-VirD2 

is at least partially functional (Figure S3H). As VirD5, VirE3 and VirF are not essential for 

tumor formation on N. glauca, the activity of the phiLOV2.1-tagged versions of these 

proteins could not easily be tested. García-Rodríguez et al. (2006) showed that deletion of 

both virE3 and virF resulted in a decreased tumor size. As shown in Figure S3I, the virE3 

virF double mutant LBA2566 generated none or very small tumors. Complementation with 

phiLOV2.1-VirF generated a strain that was clearly more tumorigenic (Figure S3J), while 

complementation with phiLOV2.1-VirE3 had less clear effect (Figure S3K). 

To further investigate to what extent the phiLOV2.1-tag affects the biological activity of the 

effector proteins, we performed Arabidopsis root transformation assays. In these assays 

segments of Arabidopsis roots were co-cultivated with Agrobacteria and after 4 weeks tumor 

formation was observed. While the virE2 mutant LBA2572 harboring the empty plasmid 

pBBR6 was not able to induce tumor formation in this assay (supplementary Figure S4A), 

tumors were seen after complementation with either pBBR6-VirE2 (Figure S4B) or pBBR6-

39phiLOV2.1-VirE2 (Figure S4C)  confirming that 39phiLOV2.1-tagged VirE2 is still at 

least partly active. Similarly, whereas no tumors were found after infection with the 

Agrobacterium  virD2 mutant LBA2569 (Figure S4D), comparable tumors were observed in 

root segments infected with Agrobacterium  strains LBA2569(pBBR6-phiLOV2.1-VirD2) 

and LBA2569(pBBR6-VirD2), expressing phiLOV2.1-tagged and untagged VirD2, 

respectively (Figure S4F and E) revealing the biological activity of phiLOV2.1-tagged 

VirD2. Infection of the virE3 virF double mutant resulted in small tumors (Figure S4 G). 

Complementation of this double mutant with phiLOV2.1-tagged-VirE3 or phiLOV2.1–VirF 

resulted in the formation of larger tumors (Figure S4 H and I, respectively), indicating that 

tagging VirE3 and VirF with phiLOV2.1 did not inactivate these proteins. 
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Visualization of translocation of phiLOV2.1- or GFP11-tagged effector proteins 

into yeast after AMT.   

To visualize the translocation of effector proteins into yeast during AMT we employed 

Agrobacterium  strains expressing phiLOV2.1- and GFP11-tagged effector proteins in co-

cultivation experiments. Agrobacterium  strains expressing phiLOV2.1-tagged effector 

proteins were co-cultivated for 24-48 hours with BY4741, whereafter clear fluorescent 

signals became visible inside the yeast cells for all five effector proteins (Figure 3 A-F). 

Using an Agrobacterium  strain lacking phiLOV2.1 such fluorescence signals could not be 

detected (supplementary Figure S2 B). Also fluorescent signals could not be detected in the 

yeast cells after co-cultivation with an Agrobacterium  virB4 mutant expressing the same 

phiLOV2.1-tagged effector proteins (Figure 3, G-L). As the virB4 mutant is unable to 

assemble the VirB T4SS, this indicates that the observed fluorescent signals are the result of 

T4SS-dependent protein translocation. For comparison, similar co-cultivations were done 

with the Agrobacterium  strains expressing the GFP11-tagged effector proteins with a yeast 

strain expressing GFP1-10 as recipient. As shown in Figure 3 M-R, a clear fluorescent signal 

was observed in the yeast cells after co-cultivation for 42 hours with Agrobacterium  strains 

expressing GFP11-tagged VirE2, -VirD2 and -VirD5. No signals were found upon co-

cultivation with Agrobacterium  strains expressing GFP11-tagged virF and virE3, which was 

not unexpected as these proteins in yeast also did not lead for visualization of expression. The 

number of yeast cells in which a fluorescent signal is seen after co-cultivation is rather low, 

less than one percent for all virulence proteins which is line with even lower frequencies of 

transformation (Bundock et al, 1995; Sakalis et al., 2014; Li et al, 2014). For most virulence 

proteins dot–shaped fluorescent structures were observed, irrespective of the tag used.  

Because of weak signals, it was difficult to perform additional staining to identify subcellular 

organelles. Although fluorescence could be seen in Agrobacteria cultured in induction 

medium, Agrobacteria recovered from the co-cultivation mixture had hardly detectable 

phiLOV2.1-fluorescence, corroborating that the fluorescent signals detected were the result 

of protein translocation.  
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Translocation of phiLOV2.1-tagged effector proteins from Agrobacterium  into 

cells in A. thaliana roots  

To visualize 39phiLOV2.1-VirE2 translocation to plant cells, A. thaliana root explants were 

co-cultivated with Agrobacterium  strain LBA2573(pBBR6-39phiLOV2.1-VirE2) for 15 

hours. Confocal microscopy revealed many fluorescent dot-shaped structures inside the root 

cells (supplementary Figure S5). To also investigate a possible nuclear localization of the 

translocated virulence proteins, we further used A. thaliana Col-0 (NLS-RFP) root explants 

expressing nuclear RFP. As shown in Figure 4A translocated 39phiLOV2.1-VirE2 formed 

fluorescent dot-shaped structures with cytoplasmic or perinuclear localizations. A minority (5 

out of 37) of these dot shaped structures may co-localize with the nuclear marker (Figure 4A, 

Figure 3. Visualization of translocated phiLOV2.1- and GFP11-tagged effector proteins in yeast by 

confocal microscopy. Confocal microscopy of BY4741 (A-L) and 426::GFP1-10 (M-R) yeast cells after co-

cultivation with Agrobacterium strains LBA2573(pBBR6-39phiLOV2.1-VirE2)(A), with LBA2573(pBBR6-

phiLOV2.1-VirE2) (B), with LBA2556(pBBR6-phiLOV2.1-VirD2) (C), with LBA2561(pBBR6-phiLOV2.1-

VirF) (D), with LBA3551(pBBR6-phiLOV2.1-VirD5) (E), with LBA2565(pBBR6-phiLOV2.1-VirE3) (F), 

with virB4 mutant LBA1143(pBBR6-39phiLOV2.1-VirE2)(G), with LBA1143(pBBR6-phiLOV2.1-VirE2) 

(H), with LBA1143(pBBR6-phiLOV2.1-VirD2) (I), with LBA1143(pBBR6-phiLOV2.1-VirF) (J), with 

LBA1143(pBBR6-phiLOV2.1-VirD5) (K), with LBA1143(pBBR6-phiLOV2.1-VirE3) (L) with 

LBA2573(pBRR6-39GFP11-VirE2) (M), with LBA2573(3163-GFP11-VirE2) (N), with LBA2556(3163-

GFP11-D2) (O), or with LBA3551(3076GFP11-D5) (Q). Scale bars: 5 µm. 
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insert). However, whether these structures have a genuine nuclear localization still has to be 

established.  

To visualize the translocation of the other effector proteins, A. thaliana Col-0 (NLS-RFP) 

root explants were co-cultivated with Agrobacterium  strains LBA2569(pBBR6-phiLOV2.1-

VirD2), LBA3550(pBBR6-phiLOV2.1-VirD5) and LBA2560(pBBR6-phiLOV2.1-VirF). As 

shown in Figure 4, translocation of these effector proteins was detected. Nuclear localization 

of translocated VirD2 and VirD5 was observed after co-cultivation for 42 hours (Figure 4B 

and C). Only few phiLOV2.1-VirF fluorescent signals reflecting VirF translocation events 

could be detected, and these localized outside the nucleus. After co-cultivations with wild-

type strain LBA1010 lacking any phiLOV2.1 protein or the virB4 mutant LBA1143 

containing pBBR6-39phiLOV2.1-VirE2, pBBR6-phiLOV2.1-VirD2, pBBR6-phiLOV2.1-

VirF or pBBR6-phiLOV2.1-VirD5 with A. thaliana Col-0 (NLS-RFP) root explants for 42 

hours, no phiLOV2.1 fluorescence could be detected as expected (supplementary Figure 

S6A, Figure 4B, D, F and H, respectively). Therefore, detected signals reflected translocation 

of virulence proteins from Agrobacterium  into the plant cells via T4SS rather than virulence 

protein expression in Agrobacterium . As mentioned above, Agrobacteria recovered from the 

co-cultivation mixture, had very weak fluorescent signals suggesting low levels of the 

phiLOV2.1-tagged effector proteins. Also we found that after co-cultivation of A. thaliana 

roots with Agrobacterium  strain LBA3567(placZ-GFP) constitutively expressing GFP, no 

GFP fluorescence signals inside cells could be detected, even after inspection of more than 

20 root explants in two separate experiments. This shows that Agrobacteria are not taken up 

by plant cells. Instead, only fluorescent Agrobacterium  cells attached to the outside of the 

roots were observed (supplementary Figure S6B). 
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Translocation of phiLOV2.1-tagged effector proteins from Agrobacterium  into 

cells in N. tabacum leaves 

In previous studies the split GFP approach was used to visualize VirE2 translocation from A. 

tumefaciens into N. benthamiana and N. tabacum cells in leaf tissues (Sakalis et al.,  2014; Li 

et al., 2014). Translocated VirE2 was mostly found in dot-shaped and filamentous structures. 

Li and Pan (2017) showed data which suggested that in N. benthamiana Agrobacterium -

delivered GFP11-VirE2 initially accumulated on plant cytoplasmic membranes that 

subsequently were internalized through clathrin-mediated endocytosis to form 

endomembrane compartments. To investigate translocation of 39phiLOV2.1-VirE2 into 

tobacco cells four weeks old N. tabacum SR1 leaves were infiltrated with Agrobacterium  

Figure 4. Translocation of phiLOV2.1-tagged effector proteins from Agrobacterium to A. thaliana Col-0 

(NLS-RFP) roots. Roots were agroinfiltrated with Agrobacterium strains LBA2573(pBBR6-39phiLOV2.1-

VirE2) (A), with LBA2569(pBBR6-phiLOV2.1-D2) (C), with LBA3550(pBBR6-phiLOV2.1-D5) (E), with 

LBA2560(pBBR6-phiLOV2.1-F) (G) LBA1143(pBBR6-39phiLOV2.1-VirE2) (B), with LBA1143(pBBR6-

phiLOV2.1-D2) (D), with LBA1143(pBBR6-phiLOV2.1-D5) (F), or with LBA1143(pBBR6-phiLOV2.1-F) 

(H). Images were captured 15 hours (A), 42 hours (C), 44 hours (E) and 23 hours (G) after agroinfiltration. 

Images for negative controls (B, D, F and H) were captured 48 hours after co-cultivations. White arrows 

indicate perinuclear and nuclear signals. Scale bars: 15 µm. 
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strains LBA2572 (containing T-DNA) or LBA2573 (lacking T-DNA) harboring pBBR6-

39phiLOV2.1-VirE2. Both after 21 and 48 hours filamentous and dot-like structures of VirE2 

were found in the cytoplasm and near the plasma membrane of leaf epidermal cells (Figure 5 

A-B and D-E, respectively). No fluorescent signals could be detected after N. tabacum leaf 

agroinfiltration with the Agrobacterium  virB4 mutant (T4SS deficient) harboring pBRR6-

39phiLOV2.1-VirE2 (Figure 5C), not even after 48 hours co-cultivation (Figure 5F).  

 

After infiltration of N. tabacum SR1 with Agrobacterium  strains LBA2564(pBBR6-

phiLOV2.1-VirE3), LBA2569(pBBR6-phiLOV2.1-VirD2), LBA2560(pBBR6-phiLOV2.1-

VirF) or LBA3551(pBBR6-phiLOV2.1-VirD5), sometimes fluorescent signals near the 

plasma membrane (possibly the endomembrane) were observed for phiLOV2.1-tagged 

VirE3, VirD2, VirF and VirD5 (Figure 6). Agroinfiltration of N. tabacum SR1 leaves with 

the Agrobacterium  virB4 mutant containing either pBBR6-phiLOV2.1-VirE3 (Figure 6B), 

pBBR6-phiLOV2.1-VirD2 (Figure 6D), pBBR6-phiLOV2.1-VirF (Figure 6F) or pBBR6-

Figure 5. Visualization of 39phiLOV2.1-

VirE2 translocation from Agrobacterium  to 

N. tabacum leaves. Leaves of N. tabacum 

SR1 wild type plants were agroinfiltrated with 

LBA2572(pBBR6-39phiLOV2.1-VirE2) 

(containing T-DNA)(A and D) or with 

LBA2573(pBBR6-39phiLOV2.1-VirE2) 

(lacking T-DNA)(B and E) and images were 

captured after 21 hrs (A and B) or after 48 hrs 

(D and E). Both cytoplasmic localizations (A 

and B) and membrane localizations (D and E) 

of translocated 39phiLOV2.1-VirE2 were 

observed. Agrobacterium strain 

LBA1143(ΔvirB4) harboring pBBR6-

39phiLOV2.1-VirE2 was infiltrated into N. 

tabacum SR1 leaves and images were 

captured afer 21 hours (C) or 48 hours (F) 

(negative controls).   CF, chlorophyll 

fluorescence. Scale bars: 30µm.  
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phiLOV2.1-VirD2 (Figure 6H) did not yield any phiLOV2.1 fluorescent signals inside the 

plant cells. These results show that the observed signals are representing proteins that are 

translocated through the T4SS inside plant cells rather than proteins that are  present in 

bacterial cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Translocated phiLOV2.1-tagged VirE3, -VirD2, -VirF and -VirD5 localized near the plasma 

membrane in N. tabacum SR1 leaves. N. tabacum SR1 wild type plants were agroinfiltrated with 

LBA2564(pBBR6-phiLOV2.1-VirE3) (A), with LBA2569(pBBR6-phiLOV2.1-VirD2) (C), with 

LBA2560(pBBR6-phiLOV2.1-F) (E) or with LBA3551(pBBR6-phiLOV2.1-VirD5) (G), with 

LBA1143(ΔvirB4)(pBBR6-VirE3) (B), LBA1143(pBBR6-VirD2) (D), LBA1143(pBBR6-VirF) (F) or 

LBA1143(pBBR6-VirD5) (H). Images were captured by confocal microscopy after 42 hours. Red signals, 

chlorophyll fluorescence. Scale bars: 25µm. Representative images are shown; similar localizations were 

found in the majority of cells containing fluorescent structures. 

 



109 

 

VirE2 interactions with microtubules in yeast  and A. thaliana protoplasts 

Salman et al. (2005) showed that VirE2 can bind in vitro to microtubules. In addition, we 

obtained evidence that filaments formed by VirE2 in yeast cells are associated with the 

microtubules (Sakalis et al., 2014). As shown in Figure 1B ectopic expression of 39-

phiLOV2.1-VirE2 in yeast resulted in the formation of fluorescent filamentous structures. 

Expression of 39-phiLOV2.1-VirE2 or CFP-Tub1 in yeast resulted in fluorescent filamentous 

structures (Figures 7 A and B). Co-expression of the two fluorescent proteins in the same 

yeast cell showed colocalization of the VirE2 filaments with the tubulin structures (Figure 

7C). To investigate the effect of tubulin disruption on these filamentous structures we treated 

cells expressing 39phiLOV2.1-VirE2 and CFP-Tub1 for various times with benomyl, a 

component known to disrupt microtubules (Thomas et al., 1985). As shown in Figure 7 (D-I) 

this treatment resulted in a decreased length of the filaments over time and finally in a total 

disruption of the VirE2 filaments along with the tubulins. Determination of the length of the 

filaments observed in control cells treated for 90 min with DMSO showed an average length 

of 2.8 ± 0.4 µm (mean ± SD; n=25). After treatment with benomyl for 45 or 90 min the 

average length decreased significantly (P<0.01) to 1.8 ± 0.3 µm (n=28) or 1.4 ± 0.3  µm 

(n=20), respectively. To investigate the effect of tubulin disruption on VirE2 filaments in a 

plant background, we expressed 39phiLOV2.1-VirE2 in A. thaliana protoplasts and disrupted 

the microtubulins by oryzalin treatment (Baskin et al., 1994). As shown in figure 7 (J-K), 

39phiLOV2.1-VirE2 formed dot-shaped structures in protoplasts and these structures are 

spread all over the cells. Upon treatment with oryzalin these structures are located more 

closely to the cell membrane (Figure 7, L-M). 
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Figure 7. Effect of the microtubule-disturbing drugs benomyl and oryzalin on the 39phiLOV2.1-

VirE2 filamentous structures in yeast and A. thaliana protoplasts. Cells of yeast strain BY4741 

harboring pUG34-39phiLOV2.1-VirE2 (A), of yeast strain BY4741—CFP-TUB1 (B) or of yeast strain 

BY4741—CFP-TUB1 harboring pUG34-39phiLOv2.1-VirE2 (C-I) were exposed to benomyl or DMSO for 

the indicated times and the fluorescent structures were analyzed by confocal microscopy (A-I). Scale bars: 

5 µm. A. thaliana protoplasts harboring pART7[39phiLOV2.1-VirE2] were exposed to oryzalin (L-M) or 

DMSO (J-K) for 60 min and the localization of 39phiLOv2.1-VirE2 was analyzed by confocal microscopy. 

Scale bars: 25µm.  

 

 



111 

 

DISCUSSION 

Effector protein translocation is essential for the trans-kingdom transfer of T-DNA from 

Agrobacterium  into eukaryotic host cells. Despite its importance many aspects of the 

translocation process and the fate of the translocated proteins in the host cell have not yet 

been clarified. Visualization in vivo may provide more detailed information on the 

translocation process. GFP-tagging of effector proteins was not successful, because of the 

inability of GFP-tagged proteins to translocate through the T4SS, probably due to the 

rigidness of the GFP protein. On the other hand, we applied successfully Bimolecular 

Fluorescence Complementation (BiFC) to visualize translocation of VirE2 into yeast cells 

(Sakalis et al., 2014). To this end, yeast cells expressing VirE2 tagged with one half of the 

YFP analog Venus were co-cultivated with Agrobacterium  expressing VirE2 tagged with the 

remaining half of Venus. As VirE2 binds to itself, protein translocation brings the two parts 

of Venus close together, resulting in a fluorescent protein. Alternatively, the split GFP system 

(Van Engelenburg and Palmer, 2010) was used for the same purpose. Yeast and plants 

expressing the first ten helices of GFP (GFP1-10) were infected with Agrobacterium  strains 

expressing VirE2 tagged with the remaining helix of GFP (GFP11). After translocation of the 

GFP11-tagged effector protein into the host cell, GFP was reconstituted and the translocated 

protein could be visualized. With this approach translocation of VirE2 was visualized 

(Sakalis et al., 2014; Li et al., 2014). Although versatile, the split GFP technique has some 

shortcomings. It may require several hours before GFP1-10 is matured and reconstituted with 

GFP11 (Van Engelenburg and Palmer, 2010). Furthermore, a genetically modified host 

expressing GFP1-10, is needed. Another disadvantage is that the translocated proteins will 

only be visible in those cellular compartments where also GFP1-10 is available (Park et al., 

2017). Therefore, in this study we explored whether the LOV-derived fluorophore 

phiLOV2.1 can be employed to study protein translocation from Agrobacterium  to yeast and 

plant cells. The key advantages of using phiLOV2.1 as a reporter are its stability over a wide 

range of pH values, its molecular oxygen independency and its small size (12.1 kDa). On the 

other hand, photo bleaching and weaker signals are disadvantages (Buckley et al., 2015). 

Recently, protein translocation into mammalian cells through the type 3 secretion system of 

Shigella flexneri was successfully visualized using phiLOV2.1 (Gawthorne et al., 2016). 

Translocation of VirE2 has been studied before by using the BiFC and split GFP approaches 

(Sakalis, 2013; Sakalis et al.,  2014; Li et al., 2014). Translocated VirE2 was found in dot-
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shaped and filamentous structures in both yeast cells as well as in N. tabacum and N. 

benthamiana leaves. In this study, translocated 39phiLOV2.1-VirE2 was found in similar 

dot-shaped and filamentous structures inside N. tabacum leaf cells (Figures 5 and 6). In yeast 

and A. thaliana root cells translocated 39phiLOV2.1-VirE2 was mainly present in dot-shaped 

structures (Figures 3 and 4, respectively). In 5 out of 37 of A. thaliana root cells which 

showed phiLOV2.1-VirE2 signals, we found translocated 39phiLOV2.1-VirE2 colocalizing 

with the nuclear marker (Figure 4A, insert). However, further studies are needed to show 

whether this small fraction of translocated VirE2 entered the nucleus or was perinuclear. Li et 

al, (2014)  observed trafficking of GFP11-tagged VirE2 inside plant cells but not in yeast. We 

were able to observe similar movement of 39GFP11-VirE2 translocated to N. tabacum cells 

(Movie S1). Our attempts to record movement of translocated 39phiLOV2.1-VirE2 in plant 

cells were unsuccessful mainly because of the fast bleaching of the phiLOV2.1 fluorescence. 

Previously, we showed that ectopically expressed GFP/YFP/CFP-tagged VirE2 formed 

filamentous structures associated with the microtubules in both yeast and A. thaliana 

protoplasts (Sakalis et al , 2014). Similar filamentous structures were found in the present 

study for ectopically expressed 39phiLOV2.1-VirE2 (Figures 1 and 7). These structures were 

strongly affected by treatments disrupting microtubules (Figure 7). Inside Agrobacterium  39-

phiLOV2.1-VirE2 was localized at the bacterial membrane visible as horseshoe-like 

structures in approx. 80% of the cells in which florescent signals were observed (Figure 2B). 

This localization is in line with the detection of VirE2 in the membrane fraction of 

Agrobacterium  (Christie et al., 1988; Dumas et al., 2001) and with the observation that 

VirE2 acts as a channel to transfer ss-DNA in vitro (Duckely and Hohn, 2003).   

VirD2 contains nuclear localization signals that guide the T-complex to the nucleus of the 

host cell (Ziemienowicz et al., 2001). Ectopically expressed GFP-VirD2 has a nuclear 

localization in both yeast and plant cells (Citovsky et al., 1994; Wolterink-van Loo et al., 

2015). In this study we found a similar localization for both GFP11- and phiLOV2.1-tagged 

VirD2 ectopically expressed in yeast (Figures 1 and S1). VirD2 translocation from 

Agrobacterium  to yeast could be shown for both GFP11- and phiLOV2.1-tagged VirD2. The 

translocated VirD2 is most likely located in the nucleus, but because of the low amount of 

translocated VirD2 we were unable to determine the exact subcellular localization. Using the 

BiFC approach translocated VirD2 was shown to interact with yeast nuclear histone proteins 

(Wolterink-van Loo et al., 2015). phiLOV2.1-VirD2 translocated to A. thaliana root cells 
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was found in the nucleus (Figure 4), whereas in N. tabacum leaves it was found in dot-shaped 

structures close to or at the cell membrane (Figures 6).  

Localization of the other effector proteins after translocation from Agrobacterium  has not 

been studied before. VirE3-RFP expressed in A. thaliana protoplasts has a nuclear 

localization (Niu et al.,  2015). As shown in Figure 3 in yeast translocated phiLOV2.1-VirE3 

localizes in dot-shaped structures, inside the nucleus. In A. thaliana roots translocated 

phiLOV2.1-VirE3 also localizes in dot-shaped structures, some of them close to the cell 

membrane (Figure 6). Recently, Zhang et al  showed ectopically expressed GFP-VirD5 was 

clustered in bright dots in the nucleus in yeast (Zhang et al , 2017). Translocated phLOV2.1-

VirD5 was found both inside and outside the nucleus in A. thaliana root cells (Figure 4). 

Reconstituted GFP signals were not detected in yeast cells expressing GFP11-tagged VirE3 

and VirF, possibly due to inaccessibility of the GFP11-tag for GFP1-10. Translocation of 

phiLOV2.1-VirE3 and of phiLOV2.1-VirF from Agrobacterium  to both yeast and plant cells 

could be shown (Figures 3, 4 and 6). This indicates that when the split GFP approach does 

not provide signals the phiLOV2.1 tag may sometimes come to the rescue.  

Li and Pan, (2017) provided evidence that Agrobacterium  VirE2 delivery into host cells was 

facilitated by the clathrin endocytosis pathway mediated by interaction of dileucine motifs of 

VirE2 with the AP2M clathrin adaptor. Initially, translocated VirE2 was at the plasma 

membrane and subsequently entered the cell by trapping inside endocytosis vesicles. We 

observed a similar localization near the plasma membrane not only for VirE2 (Figure 5 C and 

D) but also for VirD2, VirF, VirD5 and VirE3 (Figure 6). Analysis of the amino acid 

sequences of these effector proteins for putative endocytic motifs by the Eukaryotic Linear 

Motif resource for functional sites in proteins (www.elm.eu.org) revealed the presence of 

tyrosine-based, dileucine and DPF/W motifs in VirD2, VirF, VirE2, VirD5 and VirE3 which 

may interact with the AP adaptor (supplemental Figure S7). Therefore, these proteins may 

enter the host cell by the endocytosis pathway as well. However, further studies are required 

to establish whether the clathrin-mediated endocytosis pathway is indeed involved in the 

uptake of the effector proteins. 

In summary, we can conclude from this study that phiLOV2.1 can successfully be used to 

study protein translocation from Agrobacterium  to yeast and plant cells. A great advantage 

over the split GFP approach is that it can be used with non-transgenic host cells because 

http://www.elm.eu.org/
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expression of GFP1-10 in the host is not needed. On the other hand fluorescence signals were 

weaker than seen with split GFP. Despite we used the improved phiLOV2.1 form of LOV, 

photobleaching is still considerable. Translocated effector proteins were often found in dot-

shaped and filamentous structures. It remains to be established whether the effector proteins 

are functional while in such structures. It is expected that host cells respond to the presence 

of unwanted proteins by degradation or transport to sites where these are shielded from the 

rest of the cell. So, it is possible that the majority of the translocated proteins are not involved 

in the transformation process and only a minor fraction can escape the degradation process 

and can fulfill their role in the transformation process. 
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Figure S1. Nuclear localization of ectopically expressed GFP11- and phiLOV2.1-tagged VirD2, 

VirD5 and VirE3 in yeast. Confocal microscopy of DAPI stained 426::GFP1-10 cells transformed with 

pUG34GFP11[VirD5] (A), or with pUG34GFP11[VirD2] (B) and of BY4741 cells transformed with 

pUG36-phiLOV2.1-VirD5 (C), with pUG36-phiLOV2.1-VirD2 (D), or with pUG-phiLOV2.1-VirE3 (E). 

Scale bars: 5 µm. 
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Figure S2. Control microscopy for 

the detection of phiLOV2.1 in yeast 

and Agrobacterium. A, Confocal 

microscopy of yeast strain BY4741 

containing pUG36phiLOV2.1 

expressing free phiLOV2.1. B, 

confocal microscopy of BY4741 after 

co-cultivation with Agrobacterium 

strain LBA1010 (lacking phiLOV2.1) 

for 48 hours. C and D, Agrobacterium 

strain LBA2572 containing pBBR6-

VirE2 induced with acetosyringone for 

6 and 24 hours, respectively. Scale 

bars: 5 µm.  
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Figure S3. Biological activity assessments. Tumor formation on N. glauca plants inoculated with 

different A. tumefaciens strains. A, LBA1010 (positive control); B, LBA1100 (T-DNA deficient, 

negative control); C, LBA2572 (LBA1010ΔVirE2); D, LBA2572(pBBR6-phiLOV2.1-VirE2)(N-

terminally tagged); E, LBA2572(pBBR6-39phiLOV2.1-VirE2); F, LBA2572(pBBR6-39GFP11-

VirE2); G, LBA2569 (LBA1010ΔVirD2); H, LBA2569(pBBR6-phiLOV2.1-VirD2); I, 

LBA2566(LBA1010ΔVirE3ΔVirF); J, LBA2566(pBBR6-phiLOV2.1-VirF); K, LBA2566(pBBR6-

phiLOV2.1-VirE3). 
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Figure S4. Arabidopsis root transformation assays. A. thaliana Col-0 root segments were infected with 

different A. tumefaciens strains. A, LBA2572 (LBA1010ΔVirE2); B, LBA2572(pSDM3163); C, 

LBA2572(pBBR6-39phiLOV2.1-VirE2); D, LBA2569 (LBA1010ΔVirD2); E, LBA2569(pBBR6-

VirD2); F, LBA2569(pBBR6-phiLOV2.1-VirD2); G, LBA2566 (LBA1010ΔVirE3ΔVirF); H, 

LBA2566(pBBR6-phiLOV2.1-VirE3); I, LBA2566(pBBR6-phiLOV2.1-VirF). Photographs were taken 4 

weeks after infection. 
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Figure S5. Confocal microscopy of A. thaliana root  explants co-cultivated for 48 hours with 

Agrobacterium strain LBA2573(pBBR6-39phiLOV2.1-VirE2). Scale bars: 30 µm.  
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Figure S6. Control microscopy for the detection of phiLOV2.1 in plants. A, A. thaliana Col-0 (RFP-

NLS) root explants co-cultivated for 20 hours with Agrobacterium strain LBA1010 (lacking phiLOV2.1). B,  

A. thaliana Col-0 root explants co-cultivated for 48 hours with LBA3567(placZ-GFP) (expressing GFP). C, 

N. tabacum SR1 agroinfiltrated with Agrobacterium strain LBA1010; images were taken after 24 hours. 

Scale bars: 30 µm. CF, chlorophyll fluorescence. 
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Figure S7. Schematic overview of the putative endocytic motifs. Analysis of the amino acid sequences of 

Agrobacterium VirD2, VirE2, VirE3, VirD5 and VirF effector proteins based on putative endocytic motifs 

identified by the Eukaryotic Linear Motif resource for functional sites in proteins (www.elm.eu.org). 

 

http://www.elm.eu.org/
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translocation to induce mating type switching in the 

yeast Saccharomyces cerevisiae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M.Reza Roushan, Paul J.J. Hooykaas and G. Paul H. van Heusden  

Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The 

Netherlands. 

 

 



130 

 

ABSTRACT 

The yeast Saccharomyces cerevisiae is an eukaryotic unicellular organism that exists 

either in haploid or diploid form. Haploid S. cerevisiae can have either the a or α mating 

type determined by the presence of either of two alleles in the mating-type locus, MATa 

or MATα. Homothallic S. cerevisiae strains can switch their mating type, a process 

initiated by a double-strand break in the MAT locus by the HO endonuclease. 

Agrobacterium  tumefaciens is able to genetically transform plants and fungi by 

transferring a DNA fragment (T-DNA) into the host cells. During Agrobacterium -

mediated transformation, in addition to T-DNA, a number of  virulence proteins are 

translocated from the bacterium into the host cells to assist in the transformation 

process. Agrobacterium  can be engineered to translocate other proteins as well into the 

host cells. This property makes Agrobacterium  an ideal tool to introduce proteins useful 

for molecular genetic studies, epigenetics or protein therapy into eukaryotic cells. In 

this study, we showed that the mating type of S. cerevisiae cells can be switched after 

translocation of the HO protein from Agrobacterium  into yeast yielding an alternative 

method for mating type switching of yeast cells.  
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INTRODUCTION 

The yeast Saccharomyces cerevisiae is an unicellular eukaryote, existing either in haploid 

form with the a or α mating type or in a diploid form. The mating type of S. cerevisiae is 

determined by the presence of either the MATa or MATα allele in the mating-type locus [for 

review see: (Klar, 1987))(Herskowitz, 1988)(Haber, 1992)(Haber, 2012)]. The proteins 

encoded by the MATα locus. i.e. MATα1 and MATα2, activate a set of MATα-specific genes, 

encoding for instance the Ste2 pheromone receptor and the alpha factor pheromone (Bruhn 

and Sprague, 1994; Hagen et al., 1993). Matα2 represses MATa –specific genes (Strathern et 

al., 1988). Likewise, MATa consists of two open reading frames, namely MATa1 and MATa2 

(Tatchell et al., 1981; Goutte and Johnson, 1988). MATa1 encodes a homeobox-domain 

protein that, along with MATα2, represses transcription of haploid-specific genes in diploid 

cells. The function of MATa2 is still unclear (Jensen et al.,1983; Klar, 1987; Haber 2012). In 

addition to the active MATa or MATα alleles the yeast chromosome contains two silent 

cryptic copies of mating-type sequences i.e. HMLα and HMRa at a distance of ~ 91kb.  

Homothallic S. cerevisae cells can switch their mating type from a to α and vice versa. This 

process is initiated by activation of the HO (HOmothallic switching endonuclease) gene 

(Nasmyth et al, 1987). This gene encodes an endonuclease that can create a double strand 

break at a specific site in the MAT locus during the late G1 phase of haploid cells (Strathern 

et al., 1982). This double-strand break leads to an intra-chromosomal gene conversion. 

Hereby either MATa or MATα genes present at the silent HMR or HML loci are copied into 

the active MAT locus by homologous recombination. Thus, once the double-strand break is 

generated, the break in the MAT locus  is repaired using either HMR or HML as template 

(Figure 1). 
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Agrobacterium  tumefaciens is a gram-negative soil-born bacterium which causes crown gall 

disease in a wide range of dicotyledonous plants (Smith and Townsend 1907; for recent 

review see Gelvin, 2012). During the infection a piece of single-stranded DNA, called T-

DNA, is translocated to the nucleus of host cells where it is integrated into the genome  

(Hooykaas and Schilperoort, 1992; Tinland et al., 1994). Expression of plant growth 

hormone genes present on the T-DNA leads to uncontrolled cell proliferation and as a result 

tumor formation. Simultaneously with T-DNA transfer, several effector proteins (VirD2, 

VirE2, VirE3, VirD5 and VirF) are translocated into plant cells via the Type IV secretion 

system (T4SS) of A. tumefaciens (Vergunst et al., 2000). Under laboratory conditions, A. 

tumefaciens can also  transform yeast (Bundock et al., 1995), algae (Kumar et al., 2004) and 

fungi (de Groot et al., 1998). A. tumefaciens can be engineered to be able to transfer foreign 

proteins into eukaryotic cells. For example, Cre recombinase can be delivered from A. 

tumefaciens into recipient cells when expressed as an in frame fusion with the C-terminal 

T4SS targeting signal of the VirE2 or VirF protein (Vergunst et al. 2000).   

In this study we used A. tumefaciens to introduce the HO endonuclease into yeast cells and 

showed that the translocated endonuclease was able to induce mating type switching. These 

results further highlight the potential use of Agrobacterium  in biotechnology and provide an 

alternative protocol for artificial mating type switching.   

Figure 1. A schematic overview of  switching from mating type a to mating type α. Upon induction of 

HO, HMR is used as the preferred donor of genetic information to repair the gap in the MAT locus by 

homologous recombination. Hatched blocks illustrate silenced genes. 
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MATERIALS AND METHODS 

Yeast strains and media. Yeast strains used in this study are listed in Table 1. All yeast 

strains were grown in YPD medium or selective MY medium supplemented, if required, with 

histidine, leucine, tryptophan, methionine and/or uracil to the final concentration of 20 mg/L 

(Zonneveld, 1986). Yeast transformation was performed using the Lithium Acetate method 

(Gietz et al., 1995). Yeast strains carrying plasmids were obtained by transforming parental 

strains with the appropriate plasmids followed by selection for uracil and/or histidine 

prototrophy.   

Agrobacterium  strains and media. A. tumefaciens strains used in this study are listed in 

Table 2. All A. tumefaciens strains were grown in LC medium containing, if required, the 

appropriate antibiotics at the following concentrations: rifampicin, 20 μg/ml; gentamicin, 40 

μg/ml; kanamycin, 100 μg/ml. A. tumefaciens carrying plasmids were obtained by 

electroporation as described by den Dulk-Ras and Hooykaas (1995). 

Plasmid constructions. All plasmids used and constructed in this study are listed in Table 3. 

Cloning steps were performed in E.coli strain XL1-Blue. PCR amplifications were done with 

PhusionTM High-Fidelity DNA Polymerase. Correct construction of plasmids was confirmed 

by sequencing. Table 4 lists all primers used for PCR amplifications and sequencing. 

 

In order to enable the translocation of the HO endonuclease from A. tumefaciens to yeast, 

plasmid pBBR6[HO] (pSDM3768) was constructed. To this end, a DNA fragment containing 

the virD promoter with HindIII and EcoRV restriction sites was generated by PCR 

amplification using HindIII-VirD2-Fw and EcoRV-VirD2-Rev primers and pSDM3149 as 

template. After digestion with HindIII and EcoRV this fragment was cloned into pSDM3264 

digested with the same enzymes to give pSDM3774. Next, the HO endonuclease coding 

sequence (without stop codon) with EcoRV and XhoI restriction sites was amplified by PCR 

from yeast BY4741 genomic DNA using the EcoRV-HO-Fw and XhoI-HO-delTAA-Rev 

primers. After digestion with EcoRV and XhoI this fragment was cloned into pSDM3774 

digested with the same enzymes to yield pSDM3773. Following digestion with XbaI and 

XhoI the pvirD-HO-VirF37C fragment from the latter plasmid was cloned into pBBR6 

digested with the same enzymes to construct pBBR6[HO] (pSDM3768). Correct construction 
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of the plasmid was confirmed by sequencing using the primers Seq-HO-Fw, Seq-HO-Rev, 

Int-HO-Fw and Int-HO-Rev.   

To enable isolation of yeast cells that have switched their mating type, plasmids were 

constructed allowing mating type-specific expression of HIS3. To this end, a DNA fragment 

with BamHI and XbaI restriction sites was generated by PCR amplification on BY4741 

genomic DNA of the HIS3 coding sequences plus additional 200 bp downstream sequences 

using primers BamHI-HIS3[Ter]-Fw and XbaI-HIS3[Ter]-Rev. After digestion with BamHI 

and XbaI this fragment was  cloned into pRS316 digested with the same enzymes. Promoter 

sequences of STE2 and STE3 were amplified by PCR using primer combinations SalI-

STE2[Promo]-Fw – BamHI-STE2[Promo]-Rev and SalI-STE3[Promo]-Fw - BamHI-

STE3[Promo]-Rev, respectively. For the STE6 promoter, fragments of 440 bp and 862 bp 

were amplified using primer combinations SalI-STE6-Fw1 - BamHI-STE6-Rev or SalI-

STE6-Fw2 - BamHI-STE6-Rev, respectively. In this way DNA fragments were obtained 

with restriction sites for SalI and BamHI at the ends. These promoter fragments were inserted 

upstream of the HIS3 coding sequence in the plasmid construct described above. In this way, 

plasmids pRS316[PSTE2-HIS3] (pSDM3769), allowing expression of HIS3 in MATa cells and 

pRS316[PSTE3-HIS3] (pSDM3770), pRS316[PSTE6(440)-HIS3] (pSDM3771) and 

pRS316[PSTE6(862)-HIS3] (pSDM3772) allowing expression of HIS3 in MATα cells were 

obtained. Constructed plasmids were sequenced using primers M13-Fw(-20) and M13-Rev(-

24). 

Transformation of A. tumefaciens by electroporation 

Agrobacterium  competent cells preparation: 

Agrobacterium  was grown on LC agar medium for 3 days at 29°C. A loopful of bacteria was 

transferred into  2 ml of liquid LC medium and incubated at 29°C for 6 hrs with agitation. 

One hundred µls of this preculture was used to inoculate 100 ml of LC medium and the 

culture was grown till A660=1.0-1.5. Then, cells were collected by centrifugation (4000xg) at 

4 °C for 20 minutes. Cells were washed three times with ice-cold HEPES (pH 7.0) followed 

by washing once with ice-cold 10% glycerol. The cell pellet was re-suspended in 500-750 μl 

of ice-cold 10% glycerol and this suspension was distributed in 40 µl aliquots, frozen in 

liquid nitrogen and stored at -80 °C (den Dulk-Ras and Hooykaas, 1995).  
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Electroporation of Agrobacterium : 

Competent cells were gently thawed on ice and transferred into a pre-chilled 50*2mm 

PulseStar electroporation cuvette. The Gene Pulser II Electroporation System (Bio-Rad) was 

used for electroporation (Capacitance 25 μF, Voltage 2.5 kV,  Pulse controller set to 200 Ω). 

Immediately after electroporation, 1 ml of SOC-medium was added into the cuvette and the 

cell suspension was transferred into a culture tube. After cultivation for 1-1.5 hrs at 29 °C, 

100 µl of cells were plated onto LC agar plates with appropriate antibiotics for selection of 

transformants (den Dulk-Ras and Hooykaas, 1995). 

 

Co-cultivation of Agrobacterium  and yeast. Co-cultivation of Agrobacterium  and yeast 

was performed using an adapted version of the published protocol (Bundock et al., 1995). 

Agrobacterium  strains were grown overnight in 15 ml of LC medium with appropriate 

antibiotics (Table 2). Subsequently, Agrobacterium  cells were centrifuged and re-suspended 

in IM medium supplemented with 0.2 mM acetosyringone and grown at 28°C for 6 hrs. After 

overnight incubation of the yeast strain in 10 ml of YPD medium at 30°C, 100 µl of cells 

were inoculated in 20 ml of fresh YPD medium and incubated for an additional 6 hrs at 28°C. 

Then, 1 ml of yeast culture was washed with 500 µl of IM medium and re-suspended in 1 ml 

of IM medium. Sixty microliters of Agrobacterium  suspension were mixed with 60 µl of 

yeast suspension  and 100 µl of the mixture were spotted on cellulose nitrate filters (Sartorius 

Stedim Biotech). Filters were dried at room temperature and were laid onto IM plates 

supplemented with appropriate nutrients and incubated at 21°C for 24-48 hrs.  

Visualization of yeast mating type switching. To visualize mating type switching the 

EcoRI - XhoI fragment from the pHMR::PURA3-GFP-URA3 plasmid was used to transform 

yeast strain CEN.PK113-3B and transformants were selected for uracil prototrophy yielding 

strain GG3430. Correct integration at the HMR locus was confirmed by PCR analysis with 

the A1-HMR, A2-HMR, S1-HMR and S2-HMR primers (Table 4). In this way, GFP, under 

the control of the URA3 promoter, was integrated at the silent donor locus HMR. After HO 

induction HMR is used as a template to repair the gap in the MAT locus by homologous 

recombination. This will lead to copying the GFP coding sequence into the active MAT locus. 

Hence, every cell that has switched its mating type from α to a, expresses GFP and can be 

detected by fluorescence microscopy (Figure 2A). To study mating type switching by 

translocation of HO from Agrobacterium  into yeast cells, GG3430 was co-cultivated for 24 
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hrs with LBA1010[HO] or LBA1100[HO]. For microscopy, cells were eluted from the filters 

by transferring the filters to a 2 ml Eppendorf tube, adding 0.5 ml of MY medium and 

vigorously vortexing, followed by two more washes of the filter with 0.5 ml MY medium. 

Cells were centrifuged and re-suspended into 200 µl of MY medium and an aliquot (5µl) was 

used for confocal microscopy. 

 

Isolation of yeast cells after mating type switching. To enable isolation of mating type 

switched cells, CEN.PK113-3B (MATα) was transformed with pRS316[PSTE2-HIS3], whereas 

CEN.PK2-1C and BY4741 (MATa) were transformed with pRS316[PSTE3-HIS3], 

pRS316[PSTE6(440)-HIS3] or pRS316[PSTE6(862)-HIS3]. The resulting strains were co-cultivated 

with Agrobacterium  strains LBA1100 or LBA1010 expressing the HO endonuclease 

(LBA1100[HO] and LBA1010[HO], respectively). After 24 hrs of co-cultivation, filters were 

transferred to 2ml Eppendorf tubes, 1 ml (MY) was added and the tubes were vortexed 

vigorously to wash all the cells off the filters. Aliquots of  200 µl of the cell suspensions were 

applied on MY plates supplemented with cefotaxime (200 µg/ml) to select for histidine and 

uracil prototrophic yeast cells. To induce loss of plasmid pRS316[PSTE2-HIS3] yeast cells 

were streaked on MY plates supplemented with uracil and histidine containing 5-fluoroorotic 

acid (5-FOA; 1 mg/ml) and  incubated for 3 days at 30 °C. Colonies were selected and 

incubated again in the presence of 5-FOA. One of the colonies was selected for further 

studies yielding strain GG3431. 

Confirmation of mating type switching by PCR. Three oligonucleotide primers were used 

for determination of the mating type. The M1 oligonucleotide corresponds to a sequence at 

the right side of and directed towards the MAT locus. The M2 oligonucleotide corresponds to 

a sequence within the MATα and HMLα loci and the M3 oligonucleotide corresponds to a 

sequence within the MATa and HMLa loci. When these three oligo’s are used in a single 

PCR, the MATα locus generates a 404 bp product, whereas the MATa locus generates a 544 

bp product. For commonly used  laboratory strains, haploid strains yield either the MATα or 

MATa-specific product corresponding to their mating type, while diploid strains yield both 

products (adapted from Nasmyth et al., 1980). 

Confocal microscopy. For confocal microscopy yeast cells were grown in MY medium 

supplemented with appropriate nutrients and a 5 µl aliquot was analyzed using a Zeiss LSM5 

Exciter confocal microscope using a 63X magnifying objective. GFP signal was detected 
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using an argon 488 nm laser and a 505-600 nm band pass emission filter. All images were 

processed using ImageJ 1.48F software (Abràmoff et al., 2004).  

 

 

Table 1. Yeast strains used in this study 

Yeast strain Genotype Source/reference 

BY4741 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 (Brachmann et 

al., 1998) 

CEN.PK113-3B 

 

 MATα  ura3-52 his3Δ1 P. Kötter, 

Göttingen, 

Germany. 

CEN.PK2-1C MATa  ura3-52 leu2-112 trp1-289 his3∆1 P. Kötter, 

Göttingen, 

Germany. 

CEN.PK111-32D 

 

MATa leu2-112 P. Kötter, 

Göttingen, 

Germany. 

GG3430 MATα ura3-52 his3Δ1 ura3-52::pHMR::PURA3-

GFP-URA3 (CEN.PK113-3B with GFP in silent 

HMR locus) 

This study 

GG3431 MATa ura3-52 his3Δ1 (CEN.PK113-3B 

transformant No. 9 after successful mating type 

switching: with GFP at MAT locus) 

This study 

 

 

Table 2. Agrobacterium  strains used in this study 

Agrobacterium  strain Specifications a Source/reference 

LBA1010 C58C9 containing pTiB6, Rif  (Koekman et al., 

1982) 

LBA1010[HO] LBA1010 with pBBR6[HO] encoding the HO 

endonuclease fused to the virF T4SS-

translocation sequence under control of virD 

promoter, Gm  

This study. 

LBA1100 C58C9 containing pTiB6Δ (ΔT-DNA, Δocc, 

Δtra), Rif, Spc 

Beijersbergen et 

al., 1992) 

LBA1100 

(pRAL7100) 

LBA1100 with binary vector pRAL7100, Rif, Km 

 

(Bundock et al., 

1995) 

LBA1100[HO] LBA1100 with pBBR6[HO] encoding the HO 

endonuclease fused to the VirF T4SS-

translocation signal under control of virD 

promoter, Gm 

This study. 

a,  Rif: rifampicin; Spc: spectinomycin; Km: kanamycin; Gm: gentamicin 
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Table 3. Plasmids used in this study  

Name Properties Source/reference 

pBBR6 Derivative plasmid of pBBR1-MSC2 

vector which is broad host range, 

nonmobilizable plasmid with 

Gentamycin resistance marker. 

(Kovach et al.,1995) 

(pSDM3768) 

pBBR6[HO] 

 

pBBR6 with coding sequence of HO 

endonuclease under control of virD 

promoter in frame fusion with virF 

T4SS-translocation sequence. 

This study. 

pRS316 Yeast centromeric plasmid (URA3, 

CEN6, ARSH4). 

(Sikorski and Hieter, 1989) 

pHMR::PURA3-GFP-

URA3 

pUC19 containing yEGFP under 

control of URA3 promoter and ADHI 

terminator. URA3 marker. 

 

(Laney and Hochstrasser, 

2003) 

pSDM3149 virD2 under control of the virD 

promoter, located on plasmid pBBR6 

(pVD43 was cloned as EcoRV -

EcoRI fragment in pIC2OH by Amke 

den Dulk).  

(Vergunst, unpublished) 

pSDM3172 pUC18 with cre::virF translocational 

fusion 

(Vergunst, unpublished) 

 (pSDM3264) pUC18 with virF promoter-NLS-

VirF37C with BglII-XhoI linker 

inserted between NLS and VirF. 

(Vergunst, unpublished) 

(pSDM3774) 

pSDM3172[pvirD-

VirF37C] 

 

pSDM3264, but virF promoter 

replaced by virD promoter. 

This study. 

(pSDM3773) 

pSDM3172[pVirD-HO-

VirF37C] 

 

pSDM3177 with HO endonuclease 

inserted in frame fused to virF37C. 

This study. 

(pSDM3769) 

pRS316[PSTE2-HIS3] 

 

pRS316 containing HIS3 under 

control of the STE2 promoter and 

HIS3 terminator. URA3 marker. 

This study. 

(pSDM3770) 

pRS316[PSTE3-HIS3] 

 

pRS316 containing HIS3 under 

control of the STE3 promoter and 

HIS3  terminator. URA3 marker. 

This study. 

(pSDM3771) 

pRS316[PSTE6(440)-HIS3]  

pRS316 containing HIS3 under 

control of the STE6 promoter [440bp] 

and  HIS3 terminator. URA3 marker. 

This study. 

(pSDM3772) 

pRS316[PSTE6(862)-HIS3]  

pRS316 containing HIS3 under 

control of STE6 promoter [862bp] 

and  HIS3 terminator. URA3 marker. 

This study. 
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Table 4. Primers used in this study 

Primer name Sequence (5′  3′); restriction sites underlined. 

A1-HMR GGACCTAATGCTTCAACTAAC 

S1-HMR CAAGCAAGTG GGGTAACTTAG 

A2-HMR GCGCTTGACAATTCTATATGC 

S2-HMR GCGAGATACCCAGATCATATG 

Int-HMR-Fw GATTTGAATGCGAGATAAACTG 

EcoRV-HO-Fw AAGATATCATGCTTTCTGAAAAC 

XhoI-HO-del TAA-Rev AAAACTCGAGGCAGATGCGCGCACCTGC   

Seq-HO-Fw TCGTAAGAGAATAAAAGCGGC 

Seq-HO-Rev CGATTCATTAATGCAGCTGGC 

Int-HO-Fw  CAGCAACATTACAGTCGTATG 

Int-HO-Rev CCAGTACTCGCAGGAAATG 

HindIII- VirD2-Fw GGGAAGCTTCCATCAAACGGAGTGCATTTG 

EcoRV- VirD2-Rev GGGATATCAGCTTCCTCCAAAAAAAGCGG 

SalI-STE2[Promo]-Fw CCCGTCGACCAAAACGTATTTTGTTAATTGGC 

BamHI-STE2[Promo]-Rev CCCGGATCC ATTCTTGGATATGGTTCTTAACG 

SalI-STE3[Promo]-Fw CCCGTCGACTGTTTTCTCCTTCTTTACATG 

BamHI-STE3[Promo]-Rev CCCGGATCCGAAAATTTTGATAGTATTTTGCC 

BamHI-HIS3[Ter]-Fw CCCGGATCCATGACAGAGCAGAAAGCCC 

XbaI-HIS3[Ter]-Rev CCTCTAGATCGAGTTCAAGAGAAAAAAAAAG 

M1 AGTCACATCAAGATCGTTTATGG 

M2 GCACGGAATATGGGACTACTTCG 

M3 ACTCCACTTCAAGTAAGAGTTTG 

SalI-STE6-Fw1 CCCGTCGAC TCCCACAGAGGGCATTTGA    

SalI-STE6-Fw2 CCCGTCGACCCTTGCAATATTTCTCTCTCC 

BamHI-STE6-Rev CCCGGATCC GACGTAGCTTGTTCTTTGTTTC    

Seq-T4SS-Rev GATCGAGGTCTGTCCGCCGACATTA 

M13-Fw(-20) GTAAAACGACGGCCAGT 

M13-Rev(-24) AACAGCTATGACCATG 

 

 

 

 



140 

 

RESULTS 

During Agrobacterium  mediated transformation of eukaryotic organisms, in addition to T-

DNA, a number of  virulence proteins are translocated from the bacterium into the host cell 

to assist in the transformation process. This property of Agrobacterium  can be exploited to 

deliver proteins into host cells to manipulate these cells. In this chapter we address the 

possibility to induce mating type switching by translocation of the HO endonuclease from A. 

tumefaciens to yeast cells. 

Laney and Hochstrasser (2003) have developed an assay to visualize mating type switching. 

They introduced the GFP coding sequence into the silent HMR locus and upon switching 

from mating type α to a the GFP sequence is copied into the active MAT locus resulting in 

GFP expression (Figure 2A). In order to study the possibility to induce mating type switching 

by delivering the HO endonuclease via Agrobacterium -mediated protein translocation, we 

constructed pBBR6[HO] containing a gene encoding the S. cerevisiae HO coding sequence 

fused to sequences required for protein translocation through the T4SS under control of the 

Agrobacterium  virD promoter. The plasmid was introduced into A. tumefaciens strain 

LBA1010 (containing T-DNA) and A. tumefaciens strain LBA1100 (T-DNA deficient) 

yielding LBA1010[HO] and LBA1100[HO], respectively. These strains were co-cultivated 

for 24 hrs with yeast strain GG3430 which has the GFP coding sequence integrated into the 

silent HMR locus of CEN.PK113-3B. As shown in figure 2 a number of cells show GFP 

expression after co-cultivation either with the Agrobacterium  strain containing T-DNA (Fig. 

2 B and C) or with the strain lacking T-DNA (Fig 2 D and E). Strong GFP expression 

representing mating type switching could not be detected after co-cultivation of GG3430 with 

A. tumefaciens strain LBA1010 lacking pBBR6[HO] as a negative control (data not shown). 

To estimate the percentage of mating type switched yeast cells based on GFP expression, 

several random images were captured by confocal microscopy and the number of highly 

fluorescent cells was counted. Co-cultivation with Agrobacterium  LBA1010[HO] or  

LBA1100[HO] yielded 5.4 and 3.4 percent fluorescent cells, respectively  (11 out of 204 and 

6 out of 176, respectively). After co-cultivation with the control A. tumefaciens strain  

LBA1010 lacking HO, highly fluorescence cells were not seen. A few cells (4 out of 236) 

were weakly fluorescent.  
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Figure 2. Visualization of yeast mating type switching. (A) Experimental design. GFP was introduced 

into the silent HMR locus (hmr::GFP) (Adapted from Laney and Hochstrasser, 2003). When the HO 

endonuclease induces a break in the MAT locus, hmr::GFP can be used as a template for repair by 

homologous recombination leading to expression of GFP. (B and C) Confocal microscopy of GG3430 cells 

(MATα  hmr::GFP) after co-cultivation for 24 hrs with A. tumefaciens strain LBA1010 (containing T-DNA) 

carrying pBBR6[HO]. (D and E) Confocal microscopy of GG3430 cells (MATα hmr::GFP) after co-

cultivation for 24 hrs with A. tumefaciens strain LBA1100 (lacking T-DNA) carrying pBBR6[HO]. Scale 

bars: 10µm. 
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To enable isolation of cells that have switched their mating type, we constructed plasmids 

that allow mating type-specific expression of HIS3 (Figure 3A). For this purpose we used the 

STE2 promoter (Blumer & Thorner 1990) for expression in a cells (pRS316[PSTE2-HIS3]) and 

the STE3 and STE6 promoters (Chen and Davis, 2000; Ketchum et al., 2001; Kuchler et 

al.,1989) for expression in alpha cells (pRS316[PSTE3-HIS3] and pRS316[PSTE6-HIS3]). 

CEN.PK113-3B (MATα) cells containing pRS316[PSTE2-HIS3] were unable to grow on 

media lacking histidine, whereas introduction of this plasmid in the MATa strains BY4741 

and CEN.PK2 resulted in histidine prototrophy, indicating mating type specific expression of 

HIS3 (data not shown). On the other hand, the STE3 and STE6 promoters were less mating 

type specific as both CEN.PK113-3B (MATα) and BY4741 and CEN.PK2 (MATa) cells 

carrying (pRS316[PSTE3-HIS3] or pRS316[PSTE6-HIS3]) grew on media lacking histidine 

(data not shown).   

In an initial experiment we co-cultivated MATα strain CEN.PK113-3B carrying 

pRS316[PSTE2-HIS3] for 24 hrs with Agrobacterium  strain LBA1010 harboring 

pBBR6[HO]. As shown in Figure 3C histidine prototrophic colonies were selected, indicative 

of mating type switching. Such colonies were also selected when a T-DNA-deficient 

Agrobacterium  strain (LBA1100pBBR6[HO]) was used (Figure 3B). On the other hand, 

His+ transformants were not found when Agrobacterium  strain LBA1010 lacking HO was 

used for co-cultivation as a negative control (Fig. 3D). After continued co-cultivation for 48 

hrs. a few small His+ colonies were found (Figure 3E). To investigate whether the His+ yeast 

cells had indeed successfully switched their mating type we used a PCR based protocol 

(Nasmyth et al., 1980). Using a mixture of a MATa-specific, a MATα-specific and a mating 

type independent-PCR primer the mating type can be determined (Figure 4A). Both after co-

cultivation with Agrobacterium  strains containing or lacking T-DNA, 5 out of 14 

transformants indeed obtained mating type a (Figures 4B and C, respectively). To investigate 

mating type switching in a more quantitative way, in two rounds of experiments 105 histidine 

prototrophic colonies were analyzed. The number of histidine prototrophic transformants 

with successful mating type switching after co-cultivation with the A. tumefaciens strain 

containing T-DNA was 15 out of 49 (31%) and after co-cultivation with the A.tumefaciens 

strain lacking T-DNA was 24 out of 56 (43%).Co-cultivation with Agrobacterium  strain 

LBA1010 (lacking HO) resulted in one His+ transformant (out of 19 His+ transformants; 5 %) 

with a MATa PCR fragment. This indicates that the number of mating type switching events 
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is considerably increased after co-cultivation with A. tumefaciens expression the HO 

endonuclease.  

 

 

 

 

 

 

 

 

 

 

 

 

               

                                          

  

 

A 

Figure 3. Selection of cells that have potentially switched mating type. A. Experimental setup: 

pRS316[PSTE2-HIS3] allows MATa specific expression of HIS3. B-E. Selection of histidine prototrophic 

cells after co-cultivation of CEN.PK113-3B containing pRS316[PSTE2-HIS3]  with Agrobacterium strain 

LBA1100 carrying pBBR6[HO] (B), LBA1010 carrying pBBR6[HO] (C) or with LBA1010 lacking HO (D) 

co-cultivated for 24 hrs and or co-cultivated with LBA1010 lacking HO for 48 hrs (E). Red arrows indicate  

small His+  colonies appeared on negative control plates.  
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In order to exclude the possibility that the  pBBR6[HO] plasmid instead of the HO protein 

was translocated from Agrobacterium  into the yeast cells via an unknown mechanism, the 

DNA isolated from the transformants was analyzed for sequences of this plasmid by PCR. As 

shown in Figure 5, such sequences could not be  detected in the analyzed His+ transformants.   

Figure 5. Absence of pBBR6[HO] sequences in DNA isolated from His+ transformants. PCR 

was performed using primers HindIII- VirD2-Fw and Seq-T4SS-Rev detecting sequences of the 

pBBR6[HO] using the indicated DNAs as template. Lane 1, pBBR6[HO] plasmid without Phusion 

DNA polymerase. Lane 2, pBBR6[HO] plasmid as positive control. Lane 3, DNA of yeast strain 

CEN.PKII.1C. Lane 4, as one of the unchanged mating type samples. Lane 5-7, transformants 

with a successful mating type switch. Lane 8, DNA ladder. 

 

   1     2     3     4      5     6      7     8 

B    C LBA1010[HO] (24 hrs)   LBA1100[HO] (24 hrs)   

LBA1010[HO] (48 hrs)   LBA1100[HO] (48 hrs)   

A    

Figure 4. Analysis of mating type switching by PCR. Using a mixture of a MATa-specific, a MATα-specific 

and a mating type-independent PCR primer the MATα locus generates a 404 bp product whereas the MATa 

locus generates a 544 bp product (Nasmyth et al., 1980) (A). Genomic DNA was extracted from histidine 

prototrophic transformants of CEN.PK113-3B (MATα) containing pRS316[PSTE2-HIS3] after co-cultivation 

with Agrobacterium  strain LBA1010 (B) or LBA1100 (C) containing pBBR6[HO] and the MAT locus was 

analyzed by PCR. Upper panels represent colonies obtained after 24 hrs co-cultivation, bottom panels after 

48 hrs co-cultivation 
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After a successful mating type switch, the yeast cells still contain plasmid pRS316[PSTE2-

HIS3]. To induce plasmid loss the strains were grown on plates containing 5-fluoroorotic 

acid (5-FOA).  CEN.PK113-3B yeast strain with MATa mating type yielded a number of 

colonies on this medium indicative of plasmid loss. These colonies were unable to grow on 

MY medium lacking histidine or uracil (data not shown), in agreement with the absence of 

the plasmid. These results show that transient introduction of the HO endonuclease protein 

into S. cerevisiae can successfully induce mating type switching. All of the analyzed 

transformants were able to mate with opposite mating type α (data not shown). 

DISCUSSION 

It is well known that A. tumefaciens has the unique capability to transfer T-DNA into a wide 

range of plant species through its T4SS which results in T-DNA integration into the host 

genome (Hooykaas and Schilperoort, 1992; for a recent review see Gelvin, 2012). Under 

laboratory conditions, Agrobacterium  is not only able to  infect plants, but also other 

organisms such as yeasts, algae and fungi (Bundock et al., 1995; de Groot et al., 1998; 

Kumar et al., 2004). Together with T-DNA effector proteins (VirD2, VirE2, VirE3, VirD5 

and VirF) are translocated to facilitate the transformation procedure (Vergunst et al., 2000). 

This property of Agrobacterium  can be exploited to introduce proteins and enzymes into 

eukaryotic cells to manipulate them to acquire desired properties. In this study, we 

successfully used Agrobacterium  to translocate the HO endonuclease into yeast cells to let 

them switch from mating type α to a.  

As shown in figure 3 upon co-cultivation of yeast cells carrying a plasmid allowing mating 

type specific expression of HIS3 with A. tumefaciens strains expressing the HO endonuclease 

we isolated yeast cells that switched from mating type α to a. Unfortunately we could not use 

the same procedure to obtain the reverse mating type switch as the mating type alpha-specific 

STE3 and STE6 promoters in our selection plasmids were also active in mating type a cells. 

Addition of 3-amino-1,2,4-triazole, an inhibitor of histidine biosynthesis, to a concentration 

of up to100 mM was unable to inhibit growth of CEN.PK113-3B cells containing 

pRS316[PSTE3-HIS3], indicating a substantial leakage of the STE3 promoter (data not shown). 

Other promoters, or mutated forms of the STE3 or STE6 promoters, may appear useful for 

selection of mating type alfa cells.  

In another study a GAL-HO plasmid was used to induce mating type switching. This plasmid 

allows expression of the HO endonuclease under control of the GAL1 promoter and upon 
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cultivation on media with galactose mating type switching was observed (Jensen and 

Herskowitz, 1984). This protocol is not suitable for mating type switching of yeast strains 

that grow poorly on media with galactose as sole carbon source. Mating type switching by 

HO endonuclease translocation from Agrobacterium  may be a good alternative for those 

strains. Recently, Xie et al. (2018) established a new protocol to induce mating type 

switching in yeast using CRISPR/Cas9 technology. Although they claimed that using optimal 

gRNA resulted in less off-target effects, still there is a chance to have double strand breaks 

anywhere in the yeast genome which could result in unexpected mutations (Zhang et al., 

2015, Chapman et al., 2017). 

In this study we made use of protein translocation from Agrobacterium  to yeast cells to 

induce mating type switching. Also Agrobacterium  strains lacking T-DNA are able to induce 

mating type switching (Figure 2-4) indicating that T-DNA translocation is not required. In 

addition, sequences derived from the pBBR6[HO] plasmid could not be detected in the yeast 

cells after induction of the mating type switch. Thus, using Agrobacterium  to induce mating 

type switching does not require the introduction of foreign DNA into the yeast cells. In our 

study we still made use of a plasmid (pRS316[PSTE2-HIS3]) to facilitate selection. However, 

using alternative selection procedures like high throughput PCR, isolation of cells in which 

mating type switching has occurred, will be possible without any genetic manipulation of the 

yeast cells. Although the yeast strains used in this study were heterothallic and thus lacking 

expression of HO, one His+ transformant was found that switched its mating type. This could 

be due to expression of the silent HO gene or due to another unknown recombination event. 

However the efficiency of mating type switching was much higher after co-cultivation with 

strains expressing HO. This study further highlights the potential of exploiting the ability of 

Agrobacterium  to deliver proteins into eukaryotic cells for inducing epigenetic changes, for 

drug delivery and for protein therapy. In other studies Agrobacterium  was successfully used 

to introduce the Cre-recombinase into yeast, fungal and plant cells to allow recombination 

(Vergunst et al., 2000;Vergunst et al., 2005), to target meganuclease I-SceI into yeast cells to 

enhance targeted integration (Rolloos et al., 2015) and also into plant cells (van Kregten., 

2011). 
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Chapter 5 

_________________________________________________ 

Targeting Agrobacterium  tumefaciens virulence 

proteins into the organelles of plant and yeast cells 
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ABSTRACT 

Agrobacterium  mediated transformation (AMT) is broadly used as a tool to modify 

plant nuclear chromosomes. However, for transgenic crops introduction of the 

transgene into organellar DNA would have advantages over introduction into 

chromosomal DNA. During AMT, a number of effector proteins i.e. VirD2, VirD5, 

VirE2, VirE3 and VirF, are translocated from the bacterium into the host cell. Among 

them, VirE2 and VirD2 play an essential role in the transformation of plant cells and 

help targeting the T-DNA into the nucleus. In this study we have investigated whether it 

is possible to redirect the VirD2 and VirE2 effector proteins towards plant chloroplasts 

or towards yeast mitochondria as a first step to develop AMT systems by which 

organellar genomes can be modified.  To this end, a mitochondrial or chloroplast 

targeting signal was fused to VirE2 and VirD2 and translocation of these modified 

virulence proteins was visualized using the fluorescent protein phiLOV2.1 or the split 

GFP technique. It was found that both proteins can be targeted to mitochondria of the 

yeast Saccharomyces cerevisiae, to chloroplasts of Arabidopsis thaliana protoplasts, and, 

to some extent possibly also to the chloroplasts of cells in Nicotiana tabacum leaves. Our 

results form the basis for future research towards the modification of organellar 

genomes by AMT.  
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INTRODUCTION 

Agrobacterium  tumefaciens, a Gram-negative soil born bacterium, can cause crown gall 

disease in many plants by transferring a piece of oncogenic DNA, the T-DNA, into its host 

cells (Smith and Townsend, 1907; Chilton et al., 1977). This DNA is integrated into one of 

the chromosomes, resulting in expression of genes on the T-DNA responsible for opine 

synthesis and tumor formation. As foreign genes can be introduced into the T-DNA 

Agrobacterium  is widely used for the generation of transgenic plants. Simultaneously with 

T-DNA transfer, several effector proteins (VirD2, VirE2, VirE3, VirD5 and VirF) are 

translocated into plant cells via the Type IV secretion system (T4SS) of A. tumefaciens 

(Vergunst et al., 2000). These effector proteins assist in the transformation process and 

enable targeting of the T-DNA into the nucleus. 

Genetic modification of organellar DNA has great potential for biotechnology. One of the 

advantages of the introduction of transgenes into the chloroplast or mitochondrial genome 

instead of into the nuclear genome is that these organelles are maternally inherited, which 

means that no spreading of the transgenic trait occurs via pollen (Bansal and Sharma, 2003; 

Sharma et al., 2005). Furthermore, organelle transformation allows stable transgene 

expression by the lack of epigenetic interference and also transgene stacking in operons 

(Wang et al., 2009) and expression of multiple proteins from polycistronic mRNAs may be 

possible. High yields of transgenic products may be achieved because of the high number of 

chloroplast and mitochondrial genomes per cell. Each plant cell contains aapproximately 100 

chloroplasts with up to 50 genome copies per chloroplast, although these numbers vary to 

some extent depending on cell age and tissue type (Boffey and Leech, 1982; Daniell et al., 

2002; Flores-Perez and Jarvis, 2013). Another advantage is that chloroplast and mitochondria 

have an active homologous recombination system that allows precise targeting into a specific 

genome area during the transformation (Cerutti et al., 1995; Maliga et al., 1994; Meyers et 

al., 2010). Besides the introduction of transgenes genetic manipulation of chloroplast DNA 

can potentially improve the efficiency of photosynthesis in plants  (Ort et al., 2015).  

 

The techniques which have been used to transform chloroplasts are particle bombardment 

(Svab and Maliga, 1993; Hanson et al., 2013; Yu et al., 2017) and polyethylene glycol-

mediated (PEG) transformation of protoplasts (Golds et  al., 1993). However, these are 

applicable only in few plant species such as Nicotiana tabacum and Arabidopsis thaliana and 

the efficiency of these techniques is low. Using the gold particle bombardment technique is 
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pricy and requires expensive devices (Daniell et al., 2005; Liu et al., 2013). PEG-mediated 

transformation requires tedious treatment, precise maintenance and regeneration of 

protoplasts (Meyers et al., 2010). In an indirect way site-directed mutagenesis of chloroplast 

DNA was achieved by introduction of a gene encoding the homing endonuclease CreII 

tagged with a chloroplast targeting signal into nuclear DNA via Agrobacterium  mediated 

transformation (AMT) (Avila et al., 2016). Similarly, chloroplast genome interrogation using 

nuclear encoded artificial transcription factors with zinc fingers as DNA binding domains has 

been achieved resulting in modulation of photosystem II efficiency in A. thaliana (van Tol, 

2016).     

This study aims to find ways to target the T-DNA into mitochondria or chloroplasts instead 

of to the nucleus during AMT. As a first step, we investigated whether it is possible to target 

the Agrobacterium  effector proteins VirD2 and VirE2 into these organelles. VirD2 and 

VirE2 are essential mediators of T-DNA transfer and are responsible for directing the T-

complex into the nucleus (Yanofsky et al., 1986; Gietl et al., 1987; Christie et al., 1988; 

Ward and Barnes, 1988; Citovsky et al., 1992; Howard et al., 1992; Atmakuri et al., 2003). 

In order to direct VirD2 and VirE2 into yeast mitochondria and plant chloroplasts, they were 

N-terminally tagged with the mitochondrial targeting sequence of yeast citrate synthase 1 

(MTS) (Okamoto et al., 2001) or the chloroplast targeting sequence (CTS) of the FedA gene 

including the first 8 amino acids of  mature FedA (Smeekens et al., 1987; Jin et al., 2003 ), 

respectively. To visualize the translocation and localization of the tagged proteins we used 

the fluorescent protein phiLOV2.1 (Gawthorne et al., 2016; McIntosh et al., 2017; Roushan 

et al., 2018) and the split GFP technique (Van Engelenburg and Palmer, 2010; Sakalis et al., 

2014, Li and Pan, 2014,; Kamiyama et al., 2016; Roushan et al., 2018). With this approach 

we were able target both VirE2 and VirD2 to mitochondria of the yeast Saccharomyces 

cerevisiae and to the chloroplasts of Nicotiana tabacum leaves and Arabidopsis thaliana 

protoplasts. 
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MATERIALS AND METHODS 

Yeast strains and media. Yeast strains used in this study are listed in Table 1. All yeast 

strains were grown in YPD medium or selective MY medium supplemented, if required, with 

histidine, tryptophan, methionine and/or uracil to the final concentration of 20 mg/ml 

(Zonneveld, 1986). Yeast transformation was performed using the Lithium Acetate method 

(Gietz et al., 1995). Yeast strains carrying plasmids were obtained by transforming parental 

strains with the appropriate plasmids followed by selection for histidine, leucine and/or uracil 

prototrophy.  

Agrobacterium  strains and media. The Agrobacterium  strains used are listed in Table 2. 

Agrobacterium  was grown in LC supplemented with the appropriate antibiotics (40 µg/ml 

gentamicin, 20 µg/ml rifampicin) at 28˚C and 175 rpm. Agrobacterium  strains carrying 

plasmids were obtained by electroporation as described by den Dulk-Ras and Hooykaas, 

(1995). 

Plasmid constructions. All plasmids used and constructed in this study are listed in Table 3. 

E. coli strain XL1-Blue was used for cloning of the plasmids and the cultures were grown in 

LC medium containing 10 µg/ml gentamycin or 100 µg/ml carbenicillin while shaking 175 

rpm at 37˚C. PCR amplifications were done with PhusionTM High-Fidelity DNA Polymerase. 

Table 4 lists all primers used for PCR amplification and sequencing.  

To target VirE2 and VirD2 into yeast mitochondria the following plasmids were made: 

pRS305[MTS-GFP1-10], pUG36[MTS-39GFP11-VirE2], pBBR6[MTS-39GFP11-VirE2], 

pUG36[GFP11-VirD2(mod)] and pUG36[MTS-GFP11-VirD2(mod)]. In these plasmids, we 

inserted the N-terminal mitochondrial targeting sequence (MTS) of the S. cerevisiae Citrate 

synthase 1 (CIT1) which is able to target GFP into yeast mitochondria (Okamoto et al., 

2001). To generate the MTS, a DNA fragment was amplified from yeast strain BY4741 

genomic DNA with XbaI restriction sites at the ends using XbaI-MTS-Fw and XbaI-MTS-

Rev primers and ligated into vector pJET1.2 plasmid yielding pJET1.2[XbaI-MTS-XbaI]:  

5’TCTAGAATGTCAGCGATATTATCAACAACTAGCAAAAGTTTCTTATCAAGGGG

CTCCACAAGACAATGTCAAAATATGCAAAAGGCTCTTTTTGCACTATTGAATGCT

CGCCACTATAGTAGCGCCTCCGAACAAACGTTGAAGGAGAGATTTGCTGAAATT

TCTAGA3’. 
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Subsequently, the XbaI-MTS-XbaI DNA fragment was ligated into pRS305-GFP1-10 and 

pUG36 after digestion with XbaI and dephosphorylation, to create pRS305[MTS-GFP1-10] 

and pUG36[MTS], respectively. The integrative plasmid pRS305[MTS-GFP1-10] was used to 

transform strain CEN.PK2-1C followed by selection for leucine prototrophy. To confirm 

correct integration, isolated genomic DNA was analysed by PCR using combination of Leu2 

1A & Leu2 1S and Leu2 2A & Leu2 2S primers that generated DNA fragments of 2399 bp 

and 2724 bp, respectively. To obtain pUG36[MTS-39GFP11-VirE2], pBBR6[39GFP11-

VirE2] (Roushan et al., 2018) was digested with NdeI and XbaI and the NdeI-39GFP11-

VirE2-XbaI DNA fragment was ligated into pUG36[MTS] digested by NdeI and XbaI 

restriction enzymes. Plasmid pBBR6[MTS-39GFP11-VirE2] was constructed by insertion of a 

NdeI-MTS-NdeI DNA fragment amplified from pRS305[MTS-GFP1-10] as a template with 

primers NdeI-MTS-Fw and NdeI-MTS-Rev into pBBR6[39GFP11-VirE2] (Roushan et al., 

2018) after digestion with NdeI and dephosphorylation of the vector.  

A DNA fragment with virD2(mod), i.e. the virD2 relaxase part of virD2 containing the virF 

type four secretion translocation signal (van Kregten et al., 2009), was obtained by PCR 

using pBBF[flag-D2-204-F] as template using BamHI-VirD2mod-Fw and ClaI-VirD2mod-

Rev primers. pUG36[GFP11] was constructed by replacement of the GFP coding sequence of 

pUG36 by a DNA fragment with the 48 bp coding sequences of GFP11 linked to a 27 bp 

linker sequence (Kaddoum et al., 2010), which was generated by annealing phosphorylated 

oligonucleotides XbaI-GFP11-Fw and SpeI-GFP11-Rev. To this end, the oligonucleotides were 

mixed, boiled for 5 min and incubated at room temperature for 3 hours. This fragment, which 

is flanked by XbaI and SpeI compatible overhangs, was inserted into digested pUG36 with 

XbaI and SpeI. 

To target and visualize VirD2(mod) into yeast mitochondria, pUG36[GFP11-VirD2(mod)] 

and pUG36[MTS-GFP11-VirD2(mod)] were constructed. pART7[phiLOV2.1-VirD2(mod)] 

(see below) was digested with BamHI and ClaI restriction enzymes to obtain the BamHI-

VirD2(mod)-ClaI DNA fragment. Subsequently, this fragment was ligated into 

pUG36[GFP11] digested with BamHI and ClaI resulting in pUG36[GFP11-VirD2(mod)]. 

Finally, the XbaI-MTS-XbaI DNA fragment was digested from pJET1.2[XbaI-MTS-XbaI] 

and ligated into digested  (XbaI) and dephosphorylated  pUG36[GFP11-VirD2(mod)] to 

produce pUG36[MTS-GFP11-VirD2(mod)]. 
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To produce pBBR6[pvirE], the EcoRI-pvirE-PstI fragment was obtained by PCR with 

EcoRI-pvirE-Fw and PstI-pvirE-Rev primers using pSDM3756 (Sakalis et al., 2014) as a 

template, and the PCR fragment was ligated into pBBR6 digested with EcoRI and PstI. To 

construct pBBR6[pvirF] plasmid, the virF promoter was amplified from pSDM3760. The 

EcoRI-pvirF-PstI PCR fragment, amplified with EcoRI-pvirF-Fw and PstI-pvirF-Rev 

primers, was cloned into pBBR6 digested with EcoRI and PstI yielding pBBR6[pvirF]. The 

N-terminal chloroplast targeting sequence (CTS) of the A. thaliana FedA gene was amplified 

from pCTP-Linker plasmid (van Tol, 2016). A PstI-CTS-XmaI PCR fragment, amplified 

using the primer pair PstI-CTS-Fw and XmaI -CTS-Rev, was cloned into the pBBR6[pvirE] 

and pBBR6[pvirF] constructing pBBR6[pvirE-CTSXmaI] and pBBR6[pvirF-CTSXmaI], 

respectively. To generate pBBR6[pvirE-phiLOV2.1BamHI], pBBR6[pvirF-phiLOV2.1BamHI], 

pBBR6[pvirE-CTS-phiLOV2.1BamHI] and pBBR6[pvirF-CTS-phiLOV2.1BamHI], DNA 

sequence coding for phiLOV2.1ΔTAA was amplified from pSDM3784 (Roushan et al., 

2018). A XmaI-phiLOV2.1ΔTAA-BamHI PCR fragment, amplified with the XmaI-

phiLOV2.1-Fw and BamHI-phiLOV2.1ΔTAA-Rev primers, was cloned into the 

pBBR6[pvirE], pBBR6[pvirF], pBBR6[pvirE-CTS] and pBBR6[pvirF-CTS].  

A BamHI-VirE2-XbaI PCR fragment was produced by PCR using BamHI-VirE2-Fw and 

XbaI-VirE2-Rev primers and pJET1.2[VirE2] (Sakalis et al., 2014) as template and was 

ligated into digested (with BamHI and XbaI) pBBR6[pVirE], pBBR6[pvirE-CTSBamHI], 

pBBR6[pvirE-phiLOV2.1] and pBBR6[pvirE-CTS-phiLOV2.1] to obtain pBBR6[pvirE-

VirE2], pBBR6[pvirE-CTS-VirE2], pBBR6[pvirE-phiLOV2.1-VirE2] and pBBR6[pvirE-

CTS-phiLOV2.1-VirE2], respectively.  

To produce pBBR6[pvirF-phiLOV2.1-VirD2], the SpeI-VirD2-XbaI DNA fragment 

amplified by PCR using the SpeI-VirD2-Fw and XbaI-VirD2-Rev primers and pSDM3149 as 

a template, was inserted into SpeI and XbaI digested pBBR6[pvirF-phiLOV2.1]. The BamHI-

VirD2mod-XbaI PCR fragment, amplified with  BamHI-VirD2mod-Fw and XbaI-VirD2mod-

Rev primers, was cloned into pBBR6[pvirF], pBBR6[pvirF-phiLOV2.1], pBBR6[pvirF-

CTSBamHI] and pBBR6[pvirF-CTS-phiLOV2.1] digested with BamHI and XbaI to produce 

pBBR6[pvirF-VirD2(mod)], pBBR6[pvirF-PhiLOV2.1-VirD2(mod)], pBBR6[pvirF-CTS-

VirD2(mod)] and pBBR6[pvirF-CTS-phiLOV2.1-VirD2(mod)], respectively.  
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A PstI-CTS-SphI-SpeI PCR fragment, amplified using the primers PstI-CTS-Fw and 

SphISpeI-CTS-Rev and pCTP-Linker plasmid as template, was cloned into the 

pBBR6[pvirF] creating pBBR6[pvirF-CTSSphISpeI]. Next, the sequence coding for the 

phiLOV2.1ΔTAA, amplified by using SphI-phiLOV2.1-Fw and SpeI-phiLOV2.1ΔTAA-Rev 

as primers  and pUG36[phiLOV2.1ΔTAA] (Roushan et al., 2018) as PCR template, was 

inserted into pBBR6[pvirF-CTSSphISpeI] after digestion with SphI and SpeI, generating 

pBBR6[pvirF-CTS-PhiLOV2.1SpeI]. A SpeI-VirD2-XbaI PCR fragment was obtained by PCR 

using pSDM3149 as template and the primers SpeI-VirD2-Fw and XbaI-VirD2-Rev. This 

PCR fragment was cloned into pBBR6[pvirF], pBBR6[pvirF-phiLOV2.1], pBBR6[pvirF-

CTSSpeI] and pBBR6[pvirF-CTS-phiLOV2.1] digested by SpeI and XbaI, generating 

pBBR6[pvirF-VirD2], pBBR6[pvirF-phiLOV2.-VirD2], pBBR6[pvirF-CTS-VirD2] and 

pBBR6[pvirF-CTS-phiLOV2.1-VirD2], respectively.  

All plasmids with pBBR6 backbone were sequenced with pBBR6-80bpseq-FW and pBBR6-

80bpseq-Rev primers. The pBBR6[pvirF-CTS-VirD2(mod)], pBBR6[pvirF-phiLOV-

VirD2(mod)], pBBR6[pvirE-CTS-VirE2], pBBR6[pvirE-phiLOV-VirE2], pBBR6[pvirE-

CTS-phiLOV-VirE2], pBBR6[pvirF-CTS-VirD2], pBBR6[pvirF-phiLOV-VirD2] and 

pBBR6[pvirF-CTS-phiLOV-VirD2] were additionally sequenced with the use of sequencing 

primers Seq-pvirF-VirD2mod-Fw and Seq-pvirF-VirD2mod-Rev, Seq-pvirE-VirE2-Fw and 

Seq-pvirE-VirE2-Rev, Seq-int-CTS and Seq-int-VirD2wt, respectively.  

To express phiLOV2.1-tagged VirE2, VirD2 and VirD2(mod) with or without CTS in 

protoplasts under control of 35S promoter, the XhoI-CTS-phiLOV2.1-VirE2-XbaI, ClaI-

CTS-phiLOV2.1-VirD2-XbaI and ClaI-CTS-phiLOV2.1-VirD2(mod)-XbaI PCR fragments 

were generated using the primer pairs of XhoI-CTS-VirE2-Fw & XbaI-VirE2-Rev, ClaI-

CTS-VirD2-Fw & XbaI-VirD2-Rev or  ClaI-CTS-VirD2(mod)-Fw & XbaI-VirD2-Rev and 

pBBR6[CTS-phiLOV2.1-VirE2], pBBR6[CTS-phiLOV2.1-VirD2] and pBBR6[CTS-

phiLOV2.1-VirD2(mod)], respectively, as templates. These PCR fragments were cloned into 

pART7 digested via either XhoI and XbaI (VirE2) or ClaI and XbaI (VirD2 and 

VirD2(mod)), to obtain pART7[CTS-phiLOV2.1-VirE2], pART7[CTS-phiLOV2.1-VirD2] 

and pART7[CTS-phiLOV2.1-VirD(mod)]. To generate, pART7[39phiLOV2.1-VirE2], first 

phiLOV2.1-tagged virE2, was amplified by PCR on pBBR6[39phiLOV2.1-VirE2] using the 

primers KpnI-39phiLOVE2-Fw and XbaI-39phiLOVE2-Rev. Then, pART7[39phiLOV2.1-

VirE2] was created by ligation of this 39phiLOV2.1-VirE2 fragment into pART7 after 
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digestion with XbaI and KpnI. An XhoI-phiLOV2.1-VirD2-XbaI PCR fragment was obtained 

using the XhoI-phiLOV2.1-Fw and XbaI-VirD2-Rev primers and pBBR6[phiLOV2.1-VirD2] 

as template. This PCR fragment was ligated into pART7 after digestion with XhoI and XbaI 

to obtain pART7[phiLOV2.1-VirD2]. Plasmid pART7[CTS-phiLOV2.1-VirD2(mod)] was 

digested with SmaI and XbaI to obtain smaI-phiLOV2.1-VirD2(mod)-XbaI and this fragment 

was ligated into the pART7 after digestion with SmaI and XbaI to generate  

pART7[phiLOV2.1-VirD2(mod)].  

Plant lines. The plant lines used in this study were: Nicotiana tabacum (SR1), Arabidopsis 

thaliana Col-0, A.thaliana efr-1 (SALK_044334)  and Nicotiana glauca. 

Co-cultivation of Agrobacterium   and yeast. Cocultivation of Agrobacterium  and yeast 

was performed using an adapted version of the published protocol (Bundock et al., 1995). 

Agrobacterium  strains were grown overnight in 15 ml of LC medium with appropriate 

antibiotics (Table 2) at 28°C. Subsequently, Agrobacterium  cells were centrifuged and re-

suspended in IM supplemented with 0.2 mM acetosyringone and grown at 28°C for 6 hours. 

After overnight incubation of yeast strains in 10 ml of YPD medium at 30°C, 100 µl of the 

culture was inoculated in 20 ml of fresh YPD medium and incubated for 6 hours at 28°C. 

Then, 1 ml of yeast culture was washed with 500 µl of IM and re-suspended in 1 ml of IM. 

Sixty microliters of Agrobacterium  suspension were mixed with 60 µl of yeast suspension  

and 100 µl of the mixture were spotted on cellulose nitrate filters (Sartorius). Filters were 

dried at room temperature and were laid onto IM plates supplemented with histidine (2 

mg/ml), uracil (2 mg/ml), tryptophan (2 mg/ml)  and incubated at 21°C. For microscopy, 

cells were eluted from the filters by transferring the filters to an 2 ml Eppendorf tube, adding 

0.5 ml of MY medium and vigorously vortexing, followed by two more washes with 0.5 ml 

MY medium. Cells were centrifuged  and were re-suspended into 200 µl of MY medium and  

an aliquot (5µl) was used for microscopy. 

Agroinfiltration of plants. After overnight growth of A. tumefaciens strains at 28°C in LC 

medium, cultures were diluted to the OD600≈0.8 in 10 ml of induction medium with 200 µM 

acetosyringone (AS) and incubated for three hours at 28°C. A blunt-tipped 10 ml plastic 

syringe (Nissho NIPRO Europe N.V) was used to inject smoothly and with gentle pressure 

into the lower surface of the leaves of N. tabacum SR1. After approximately 24 hours, the 

lower side of injected leaves was used for confocal microscopy (Wroblewski et al., 2005). 
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Tumor formation assay. A. tumefaciens was grown overnight at 28°C in LC medium with 

the appropriate antibiotics. Then, cells were washed three times with a 0.9% (w/v) NaCl 

solution and diluted to OD660≈ 1.0 in 0.9% (w/v) NaCl. One month old N. glauca plants were 

wounded at three sites on the stem with a sterile toothpick. Subsequently, 20 µl of A. 

tumefaciens suspension was inoculated at each wounded site. Tumors were photographed one 

month after inoculation. 

AGROBEST infection and GUS assay. The AGROBEST infection procedure was 

performed as described by Wu et al., 2014 with some minor modifications. A. thaliana efr-1 

seeds were sterilized and grown on 6-wells plates containing MA medium. Seeds were grown 

for 4 days before AGROBEST infection. A. tumefaciens was freshly streaked from -80°C 

glycerol stock onto a LC agar plate containing appropriate antibiotics and incubated for 2 

days at 28°C. A fresh single colony from the plate was used to inoculate 5 ml of LC liquid 

medium containing appropriate antibiotics and the culture was incubated at 28°C overnight 

with shaking. For pre-induction of A. tumefaciens vir gene expression, A. tumefaciens cells 

were pelleted and re-suspended to OD600 0.2 in 3ml of IM with 200 μM Acetosyringone with 

appropriate antibiotics and incubated at 20°C overnight. Before co-cultivation, A. 

tumefaciens cells were pelleted and re-suspended in IM to OD600 0.02. The 4 days grown efr-

1 seedlings were transferred into plates containing MA with 200 μM Acetosyringone and 200 

μl  A. tumefaciens cells freshly prepared was added to the 6-wells plates and incubated in a 

growth chamber (16hr light/8hr darkness) at 21°C for 4 days before GUS staining (Wu et al., 

2014).  

For GUS staining, seedlings were stained with 5-bromo-4-chloro-3-indolyl glucuronide (X-

Gluc) at 37°C for 24 hours in dark with gentle shaking. After staining, seedlings were 

destained with 70% ethanol for 24 hours. Then, pictures were taken with a Leica MZ16 FA 

fluorescence stereomicroscope using zoom drive of 7.17X (exposure: 1.1 s, gain: 1.0, 

saturation: 1.0, gamma: 1.21).  

 

Protoplast transformation. Protoplasts were derived from a five days old A. thaliana Col-0 

cell suspension as described by Schirawski et al. (2000) and were transformed with 10 μg of 

plasmid DNA per 106 protoplasts using Polyethyleneglycol (PEG) (Schirawski et al., 2000). 

The transformed protoplasts were incubated at 27°C in the dark for 24 hours before 

treatments and microscopy.  
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Confocal microscopy. To observe leaf epidermis, agro-infiltrated leaf tissues were detached 

from N. tabacum SR1 plants and put in 1.5% low-melting agarose gel on a glass slide with a 

coverslip. For yeast images, the cells were grown in MY medium supplemented with 

appropriate nutrients and then put on a slide with a coverslip. Plant and yeast cells were 

analyzed using a Zeiss LSM5 Exciter confocal microscope using a 20X and 63X magnifying 

objective, respectively. GFP and phiLOV2.1 signal were detected using an argon 488 nm 

laser and a 505-600 nm band pass emission filter. Yeast cells were visualized directly or after 

staining with MitoTracker (MitoTracker Red FM) according to the standard protocol from 

Molecular Probes (Invitrogen). MitoTracker and RFP were exited at 543 nm and emitted 

light collected at 580-640 nm. Chlorophyll fluorescence was determined using a long pass 

650 nm emission filter after excitation at 488 nm. All images were processed using ImageJ 

1.48F software (Abràmoff et al., 2004).  
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Table 1: Yeast strains used in this study 

Yeast strain Genotype Source/reference 

CEN.PK2-1C MATa  ura3-52 leu2-112 trp1-289 his3-∆1 P. Kötter, Göttingen, 

Germany. 

426::GFP1-10 

(GG3388) 

CEN.PK2-1C 

leu2::pRS306[PMET25-GFP1-10-TCYC1] (LEU2) 

(Sakalis et al ., 

2014) 

MTS-GFP1-10 

(GG3458) 

CEN.PK2-1C 

leu2::pRS305[PMET25-MTS-GFP1-10-TCYC1] (LEU2) 

This study. 

MTS-GFP1-10-

34GFP11[VirD2] 

(GG3459) 

CEN.PK2-1C 

leu2::pRS305[PMET25-MTS-GFP1-10-TCYC1] (LEU2) 

pUG34[PMET25-GFP11-VirD2-TCYC1] (HIS3) 

This study. 

MTS-GFP1-10-

36::39GFP11[VirE2] 

(GG3440) 

CEN.PK2-1C 

leu2::pRS305[PMET25-MTS-GFP1-10-TCYC1] (LEU2) 

pUG36[PMET25-39GFP11-VirE2-TCYC1] (URA3) 

This study. 

426::GFP1-10-

34GFP11[VirD2] 

(GG3392) 

CEN.PK2-1C 

leu2::pRS305[PMET25-GFP1-10-TCYC1] (LEU2) 

pUG34[PMET25-GFP11-VirD2-TCYC1] (HIS3) 

(Sakalis, 2013) 

426::GFP1-10-

36GFP11[VirD2(mod)] 

(GG3441) 

CEN.PK2-1C 

leu2::pRS305[PMET25-GFP1-10-TCYC1] (LEU2) 

pUG36[PMET25-GFP11-VirD2(mod)-TCYC1] (URA3) 

This study. 

426::GFP1-10-

36GFP11[MTS-

VirD2(mod)] 

(GG3442) 

CEN.PK2-1C 

leu2::pRS305[PMET25-GFP1-10-TCYC1] (LEU2) 

pUG36[PMET25-MTS-GFP11- VirD2(mod)-TCYC1] 

(URA3) 

This study. 

MTS-GFP1-10-

36GFP11[VirD2(mod)] 

(GG3443) 

CEN.PK2-1C 

leu2::pRS306[PMET25-MTS-GFP1-10-TCYC1] (LEU2) 

pUG36[PMET25-GFP11-VirD2(mod)-TCYC1] (URA) 

This study. 

MTS-GFP1-10-

36GFP11[MTS-

VirD2(mod)] 

(GG3444) 

CEN.PK2-1C 

leu2::pRS306[PMET25-MTS-GFP1-10-TCYC1] (LEU2) 

pUG36[PMET25-MTS-GFP11-VirD2(mod)-TCYC1] 

(URA) 

This study. 
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Table 2: Agrobacterium  strains used in this study 

Agrobacterium  

strain 

Specifications  Source/reference 

LBA1010 C58 containing pTiB6, Rif  (Koekman et al ., 

1982) 

LBA1100 C58 containing pTiB6Δ (ΔT-DNA, Δocc, Δtra), 

Rif, Spc† 

 

(Beijersbergen et al ., 

1992) 

LBA1100 

(pRAL7100) 

LBA1100 with binary vector pRAL7100, Rif, 

Km† 

 

(Bundock et al ., 1995) 

LBA2572 

(LBA1010ΔE2) 

virE2 deletion in LBA1010, Rif  den Dulk-Ras, 

unpublished 

 

LBA2573 

(LBA1100 ΔE2) 

 

virE2 deletion in LBA1100, Rif, Spc (Hodges et al ., 2006) 

LBA2556 

(LBA1100ΔD2) 

 

virD2 deletion in LBA1100, Rif, Spc Jurado-Jácome, den 

Dulk-Ras, Vergunst, 

and Hooykaas, 

unpublished 

 

LBA2569 

(LBA1010ΔD2) 

 

virD2 deletion in LBA1010, Rif Vergunst, den Dulk- 

Ras and Hooykaas, 

unpublished 

LBA1010(pBBR6) LBA1010 with pBBR6. Rif, Gm This study. 

 

LBA1100(pBBR6) LBA1100 with pBBR6. Rif, Spc, Gm This study. 

 

LBA2572(pBBR6) LBA2572 with pBBR6. Rif, Gm This study. 

 

LBA2569(pBBR6) LBA2569 with pBBR6. Rif, Gm This study. 

 

LBA2573 

(pBBR6-phiLOV2.1-

VirE2) 

LBA2573 with pBBR6[phiLOV2.1-VirE2]. 

Expression of the internal-tagged phiLOV2.1-

VirE2 fusion protein under control of the virE 

promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2572 

(pBBR6-phiLOV2.1-

VirE2) 

LBA2572 with pBBR6[phiLOV2.1-VirE2]. 

Expression of the internal-tagged phiLOV2.1-

VirE2 fusion protein under control of the virE 

promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2572 

(pBBR6-VirE2) 

LBA2572 with pBBR6-VirE2. 

Expression of the VirE2 protein under control 

of the virE promoter, Rif, Spc, Gm 

 

This study. 
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LBA2573 

(pBBR6-CTS-

phiLOV2.1-VirE2) 

LBA2573 with pBBR6[CTS-phiLOV2.1-

VirE2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirE2 fusion protein under control 

of the virE promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2572 

(pBBR6-CTS-

phiLOV2.1-VirE2) 

LBA2572 with pBBR6[CTS-phiLOV2.1-

VirE2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirE2 fusion protein under control 

of the virE promoter, Rif, Spc, Gm 

 

This study. 

 

LBA2556 

(pBBR6-phiLOV2.1-

VirD2) 

 

LBA2556 with pBBR6[phiLOV2.1-VirD2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Spc, Gm 

 

This study. 

LBA2569 

(pBBR6-VirD2) 

 

LBA2569 with pBBR6 [VirD2]. 

Expression of VirD2 protein under control of 

the virD promoter, Rif, Gm 

 

This study. 

LBA2569 

(pBBR6-phiLOV2.1-

VirD2) 

 

LBA2569 with pBBR6 [phiLOV2.1-VirD2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Gm 

 

This study. 

LBA2556 

(pBBR6-CTS-

phiLOV2.1-VirD2) 

 

LBA2556 with pBBR6[CTS-phiLOV2.1-

VirD2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Spc, Gm 

 

This study. 

LBA2569 

(pBBR6-CTS-

phiLOV2.1-VirD2) 

 

LBA2569 with pBBR6 [CTS-phiLOV2.1-

VirD2]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Gm 

 

This study. 

LBA2556 

(pBBR6-VirD2(mod)) 

 

LBA2556 with pBBR6[VirD2(mod)]. 

Expression of the VirD2(mod) protein under 

control of the virD promoter, Rif, Spc, Gm 

 

This study. 

LBA2556 

(pBBR6-phiLOV2.1-

VirD2(mod)) 

 

LBA2556 with pBBR6[phiLOV2.1-

VirD2(mod)]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Spc, Gm 

 

This study. 
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LBA2569 

(pBBR6-phiLOV2.1-

VirD2(mod)) 

 

LBA2569 with pBBR6 [phiLOV2.1-

VirD2(mod)]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Gm 

 

This study. 

LBA2556 

(pBBR6-CTS-

phiLOV2.1-

VirD2(mod)) 

 

LBA2556 with pBBR6[CTS-phiLOV2.1-

VirD2(mod)]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Spc, Gm 

 

This study. 

LBA2569 

(pBBR6-CTS-

phiLOV2.1-

VirD2(mod)) 

 

LBA2569 with pBBR6 [CTS-phiLOV2.1-

VirD2(mod)]. 

Expression of the N-terminally-tagged 

phiLOV2.1-VirD2 fusion protein under control 

of the virD promoter, Rif, Gm 

 

This study. 

 

Table 3: Plasmids used in this study 

Name Properties  Source/reference 

chloroplast-mCherry (CD3-

1000) 

pFGC plasmid with targeting sequence (first 

79 amino acids) of the small subunit of 

tobacco rubisco fused with mCherry under 

control of 35S promoter. Glufosinate 

selection. 

  

Nelson et al., 

2007). 

pART7 Plant cloning vector containing 35S 

promoter, octopine synthase (OCS) 

terminator and ampicillin resistance marker. 

(Gleave, 1999) 

pART7[39phiLOV2.1-VirE2] 

(pSDM3774) 

 

pART7 based vector containing internally-

tagged phiLOV2.1-virE2 under control of 

35S promoter and octopine synthase (OCS) 

terminator. 

(Roushan et al., 

2018). 

pART7[CTS-39phiLOV2.1-

VirE2] 

(pSDM4124) 

pART7 based vector containing chloroplast 

targeting sequence (CTS) of FedA gene 

fused to 39phiLOV2.1-virE2 under control 

of 35S promoter and octopine synthase 

(OCS) terminator. 

This study. 

pART7[phiLOV2.1-VirD2] 

(pSDM4125) 

pART7 based vector containing phiLOV2.1-

virD2 under control of 35S promoter and 

octopine synthase (OCS) terminator. 

This study. 
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pART7[CTS-phiLOV2.1-

VirD2] 

(pSDM4126) 

pART7 based vector containing chloroplast 

targeting sequence (CTS) of FedA gene 

fused to phiLOV2.1-virD2 under control of 

35S promoter and octopine synthase (OCS) 

terminator. 

This study. 

pART7[phiLOV2.1-

VirD2(mod)] 

(pSDM4127) 

pART7 based vector containing phiLOV2.1-

virD2(mod) under control of 35S promoter 

and octopine synthase (OCS) terminator. 

This study. 

pART7[CTS-phiLOV2.1-

VirD2(mod)] 

(pSDM4128) 

pART7 based vector containing chloroplast 

targeting sequence (CTS) of FedA gene 

fused to phiLOV2.1-virD2(mod) under 

control of 35S promoter and octopine 

synthase (OCS) terminator. 

This study. 

pBBF[flag-D2-204-F] pBBF containing the relaxase domain of 

VirD2 with a flag tag and the 

terminator/T4SS translocation signal of VirF 

(van Kregten et 

al., 2009) 

pBBR6 Broad host range, non-mobilizable plasmid 

with Gentamycin resistance marker derived 

from pBBR1-MSC2. 

(Kovach et al., 

1994) 

pBBR6[pvirE] 

(pSDM4129) 

pBBR6 backbone containing virE promoter. This study. 

pBBR6[pVirF] 

(pSDM4130) 

pBBR6 backbone with virF promoter. This study. 

pBBR6[39GFP11-VirE2] 

(pSDM4131) 

pBBR6 backbone containing 39GFP11-virE2 

under control of the virE promoter. 

This study. 

pBBR6[pVirE- CTSXmaI] 

(pSDM4132) 

pBBR6 backbone containing chloroplast 

targeting sequence (CTS) of FedA under 

control of the virE promoter. 

This study. 

pBBR6[pVirF-CTSXmaI] 

(pSDM4133) 

pBBR6 backbone containing chloroplast 

targeting sequence (CTS) of FedA under 

control of the virF promoter. 

This study. 

pBBR6[pVirF-CTSSphISpeI] 

(pSDM4134) 

pBBR6 backbone containing chloroplast 

targeting sequence (CTS) of FedA under 

control of the virF promoter. 

This study. 
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pBBR6[pVirE-

phiLOV2.1BamHI] 

(pSDM4135) 

pBBR6 backbone containing phiLOV2.1 

under control of the virE promoter. 

This study. 

pBBR6[pVirF-

phiLOV2.1BamHI] 

(pSDM4136) 

pBBR6 backbone containing phiLOV2.1 

under control of the virF promoter. 

This study. 

pBBR6[MTS-39GFP11-VirE2] 

(pSDM4137) 

pBBR6 backbone containing mitochondrial 

targeting sequence (MTS) of citrate synthase 

I fused to 39GFP11-virE2 under control of the 

virE promoter. 

This study. 

pBBR6[pVirF-CTS-

phiLOV2.1SpeI] 

(pSDM4138) 

pBBR6 backbone containing chloroplast 

targeting sequence (CTS) of FedA fused to 

phiLOV2.1under control of the virF 

promoter. 

This study. 

pBBR6[pVirE-VirE2] 

(pSDM4139) 

pBBR6 backbone containing the virE2 gene 

under control of the virE promoter. 

This study. 

pBBR6[pVirE-CTS-VirE2] 

(pSDM4140) 

pBBR6 backbone with chloroplast targeting 

sequence (CTS) of FedA fused to virE2 

under control of the virF promoter. 

This study. 

pBBR6[pVirE-phiLOV2.1-

VirE2] 

(pSDM4141) 

pBBR6 backbone containing phiLOV2.1-

virE2 under control of the virE promoter. 

This study. 

pBBR6[pVirE-CTS-

phiLOV2.1] 

(pSDM4142) 

pBBR6 containing chloroplast targeting 

sequence (CTS) of FedA fused to 

phiLOV2.1 under control of the VirE 

promoter. 

This study. 

pBBR6[pVirE-CTS-

phiLOV2.1-VirE2] 

(pSDM4143) 

pBBR6 containing the CTS of FedA fused to 

phiLOV2.1 under control of the VirE 

promotor. 

This study. 

pBBR6[pVirF-VirD2] 

(pSDM4144) 

pBBR6 containing virD2 under control of 

the VirF promotor. 

This study. 
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pBBR6[pVirF-CTS-VirD2] 

(pSDM4145) 

pBBR6 containing CTS of FedA tagged to 

virD2 under control of the virF promotor. 

This study. 

pBBR6[pVirF-phiLOV2.1-

VirD2] 

(pSDM4146) 

pBBR6 containing phiLOV2.1 tagged to 

virD2 under control of the virF promotor. 

This study. 

pBBR6[pVirF-CTS-

phiLOV2.1] 

(pSDM4147) 

pBBR6 containing phiLOV2.1 tagged with 

the CTS of FedA under control of the 

promotor VirF. 

This study. 

pBBR6[pVirF-CTS-

phiLOV2.1-VirD2] 

(pSDM4148) 

pBBR6 containing the CTS of FedA tagged 

to phiLOV2.1-virD2 under control of the 

promotor VirF. 

This study. 

pBBR6[pVirF-VirD2(mod)] 

(pSDM4149) 

pBBR6 containing the relaxase domain of 

VirD2 under control of the VirF promotor. 

This study. 

pBBR6[pVirF-CTS-

VirD2(mod)] 

(pSDM4150) 

pBBR6 containing the CTS of FedA tagged 

to relaxase domain of VirD2 under control 

of the VirF promotor. 

This study. 

pBBR6[pVirF-phiLOV2.1-

VirD2(mod)] 

(pSDM4151) 

pBBR6 containing the phiLOV2.1 tagged to 

relaxase domain of VirD2 under control of 

the VirF promotor. 

This study. 

pBBR6[pVirF-CTS-

phiLOV2.1-VirD2(mod)] 

(pSDM4152) 

pBBR6 containing the CTS of FedA tagged 

to phiLOV2.1-VirD2(mod) under control of 

the VirF promotor. 

This study. 

pCTP-Linker Plasmid containing the chloroplasts transit 

peptide of A. thaliana  FedA and the first 

8amino acids of the FedA protein with a 

linker.  

(van Tol, 2016) 

pJET1.2[XbaI-MTS-XbaI] ClonejetTM PCR cloning pUC19 based 

vector for blunt cloning with MTS flanked 

by XbaI and XbaI restriction sites. 

This study. 

pJET1.2[VirE2] ClonejetTM PCR cloning pUC19 based 

vector for blunt cloning containing VirE2. 

(Sakalis et al., 

2014) 
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pRS305[MTS-GFP1-10] 

(pSDM4153) 

Yeast integrative vector with MTS-GFP1-10 

under control of the MET25 promoter and 

terminator. LEU2 marker. 

This study. 

pSDM3149 virD2 gene (wildtype) behind virD promoter, 

located on plasmid pBBR6 (pVD43 was 

cloned as EcoRV/EcoRI fragment in 

pIC2OH by Amke den Dulk).  

(Vergunst, 

unpublished) 

 

pSDM3163[GFP11-VirF] 

(pSDM3760) 

pSDM3163 backbone with coding sequence 

of GFP11-virF under control of the virF 

promoter 

(Sakalis, 2013) 

pUG36[phiLOV2.1ΔTAA] 

(pSDM3784) 

pUG36 centromeric plasmid containing 

phiLOV2.1 without stop codon under 

control of MET25 promoter and CYC1 

terminator. URA3 marker. 

 

(Roushan et al., 

2018)(Chapter 3) 

pUG34[GFP11-VirD2] 

(pRUL1280) 

Centromeric plasmid with GFP 11-virD2 

under control of the MET25 promoter and 

CYC1 

terminator. HIS3 marker. 

(Sakalis, 2013) 

 pUG36[phiLOV2.1ΔTAA] 

(pSDM3784) 

 

Centromeric plasmid containing phiLOV2.1 

without stop codon under control of MET25 

promoter and CYC1 terminator. URA3 

marker. 

(Roushan et al., 

2018) 

pUG36[GFP11] 

(pSDM4154) 

Centromeric plasmid containing GFP11 

under control of MET25 promoter and CYC1 

terminator. URA3 marker. 

This study. 

pUG36[GFP11-VirD2(mod)]  

(pSDM4155) 

Centromeric plasmid for expression of 

GFP11-VirD2(mod) under control of MET25 

promoter and CYC1 terminator. URA3 

marker. 

This study. 

pUG36[MTS-GFP11-

VirD2(mod)] 

(pSDM4156) 

Centromeric plasmid for expression of 

mitochondrial targeting sequence (MTS) of 

citrate synthase I fused to GFP11-

VirD2(mod) under control of MET25 

promoter and CYC1 terminator. URA3 

marker. 

This study. 
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pUG36[MTS] 

(pSDM4157) 

Centromeric plasmid containing 

mitochondrial targeting sequence (MTS) of 

citrate synthase I under control of MET25 

promoter and CYC1 terminator. URA3 

marker. 

This study. 

pUG36[MTS-39GFP11-VirE2] 

(pSDM4158) 

Centromeric plasmid for expression of  

mitochondrial targeting sequence (MTS) of 

citrate synthase I gene fused to 39GFP11-

VirE2 under control of MET25 promoter and 

CYC1 terminator. URA3 marker. 

This study. 

 

Table 4: Primers used in this study 

Primer name Sequence (5’  3’)a,b 

XbaI-MTS-Fw AATCTAGAATGTCAGCGATATTATCAACAAC 

XbaI-MTS-Rev AATCTAGAAATTTCAGCAAATCTCTCCTTC 

NdeI-MTS-Fw AACATATGTCAGCGATATTATCAACAAC 

NdeI-MTS-Rev AACATATGAATTTCAGCAAATCTCTCCTTC 

XbaI- GFP11-Fw CTAGA 

CGGGACCACATGGTGCTGCACGAGTACGTGAACGCCGC

CGGCATCACA ggcgacggcggcagcggcggcggcagc A 

SpeI-GFP11-Rev CTAGT gctgccgccgccgctgccgccgtcgcc 

TGTGATGCCGGCGGCGTTCACGTACTCGTGCAGCACCAT

GTGGTCCCG T 

Leu2 1A CAAGGATCTTACCGCTGTTG 

Leu2 1S AGAGGTCGCCTGACGCATAT 

Leu2 2A ACAACGACCAAGCTCACATC 

Leu2 2S ACTGGAACAACACTCAACCCTA 

EcoRI-pVirE-Fw GGGGAATTCCGGCTGCTCGTCACCAAC 

PstI-pVirE-Rev GGGCTGCAGTGTTCTCTCCTGCAAAATTGCG 

EcoRI-pVirF-Fw GGGGAATTCTACCGAGCTCCTATGATAGTCG 

PstI-pVirF-Rev GGGCTGCAGGCTCCTGTGCTTTTGAAAGG 

PstI-CTS-Fw GGCTGCAGATGGCTTCCACTGCTCTCTC 
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XmaI-CTS-Rev GGCCCGGGGATGAACTTGACCTTGTATGTAGC 

BamHI-CTS-Rev GGGGGATCCGATGAACTTGACCTTGTATGTAGC 

SpeI-CTS-Rev GGACTAGTGATGAACTTGACCTTGTATGTAGC 

SphISpeI-CTS- Rev GGACTAGTGCATGCGATGAACTTGACCTTGTATGTAGC 

XmaI-phiLOV-Fw GGCCCGGGATGATAGAGAAGAGTTTC 

BamHI-phiLOV(ΔTAA)-Rev AAAGGATCCTACATGATCACTTCCAACGAG 

SpeI-phiLOV(ΔTAA)-Rev GGACTAGTTACATGATCACTTCCAAC 

SphI-phiLOV-Fw GGGGCATGCATGATAGAGAAGAGTTTC 

BamHI-VirD2mod-Fw AAAGGATCCATGGCCGACTACAAGGACG 

ClaI-VirD2mod-Rev GGGGATCGATGGATTAGACCGCGCGTTGATC 

XbaI-VirD2mod-Rev GGTCTAGATCATAGACCGCGCGTTG 

BamHI-VirE2-Fw GGGGGATCCATGGATCTTTCTGGCAATG 

XbaI-VirE2-Rev GGTCTAGATCAAAAGCTGTTGACGCTTTG 

SpeI-VirD2-Fw GGACTAGTATGCCCGATCGCG 

XbaI-VirD2-Rev GGTCTAGACTAGGTCCCCCCGC 

pBPR6-80bpseq-Fw CAGGGTTTTCCCAGTCACGAC 

pBPR6-80bpseq-Rev GACCATGATTACGCCAAGCGCG 

Seq-pVirF-VirD2mod-Fw GCCTATCATCGTCTGACTGAC 

Seq-pVirF-VirD2mod-Rev ACTTCTATGCCACCGATC 

Seq-pVirE-VirE2-Fw GCGCTTGACGGTGTGTTCAA 

Seq-pVirE-VirE2-Rev GACAGAGTATTCGCGCGAGG 

Seq-int-CTS-Fw GCTCCAATCAGTCTCCGTTC 

Seq-int-VirD2wt CGTGGTAGGCTGTCAGATAG 

XhoI-CTS-VirE2-Fw AAAACTCGAGTGGCTTCCACTGCTCTCTC 

ClaI-CTS-VirD2-Fw GGGGATCGATATGGCTTCCACTGCTCTCTC 

XbaI-VirD2-Rev AATCTAGACTAGGTCCCCCCGCG 

ClaI-CTS-VirD2mod-Fw GGGGATCGATATGGCTTCCACTGCTCTCTC 

XbaI-VirD2mod-Rev AATCTAGATAGACCGCGCGTTGATC 
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a, (partial) restriction sites are underline. 

b, linker sequences are annotated in lowercase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XhoI-phiLOV2.1-Fw GGGGCTCGAGATGATAGAGAAGAGTTTCGTC 

KpnI-39phiLOVE2-Fw  CCCGGTACCATGGATCTTTCTGGCAATGAG 

XbaI-39phiLOVE2-Rev GGTCTAGATCAAAAGCTGTTGACGC 

pART7-Seq-Fw GCGATAAAGGAAAGGCTATC  

pART7-Seq-Rev GTACAATCAGTAAATTGAACGG  

BamHI-phiLOV(ΔTAA)-Rev AAAGGATCCTACATGATCACTTCCAACGAG 
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RESULTS 

Targeting VirD2 and VirE2 into yeast mitochondria 

The effector protein VirD2 contains NLSs and as shown in Chapters 2 and 3 it is targeted 

into the nucleus both after ectopic expression in yeast as well as after AMT of plants and 

yeast. In this way, VirD2 may guide the T-DNA into the nucleus. In order to guide VirD2 

into organelles we made use of VirD2(mod) which is the relaxase part of VirD2 lacking the 

NLSs and to which the VirF T4SS signal was added at the C-terminus. It has been shown that 

VirD2(mod) can replace wild type VirD2 during AMT (van Kregten et al., 2009). To target 

VirD2(mod) and VirE2 into yeast mitochondria these proteins were tagged with the 

mitochondrial targeting sequence (MTS) of citrate synthase 1 (CIT1) consisting of the first 52 

amino acids of Cit1 (Okamoto et al., 2001).  

To visualize the localization of MTS-VirD2 and MTS-VirD2(mod), the split-GFP technique 

was used. To this end, MTS-VirD2 and MTS-VirD2(mod) were tagged with GFP11. The 

remaining part of GFP, GFP1-10, was expressed in yeast. As GFP1-10 may not enter the 

mitochondria, we also constructed yeast strains expressing GFP1-10 tagged with the MTS 

(MTS-GFP1-10). To study the localization of those newly constructed proteins yeast strain 

CEN.PK2-1C expressing GFP1-10 was transformed with pUG34[GFP11-VirD2], with 

pUG36[GFP11-VirD2(mod)] and with pUG36[MTS-GFP11-VirD2(mod)] and yeast strain 

CEN.PK2-1C expressing MTS-GFP1-10 likewise was transformed with pUG34[GFP11-

VirD2], with pUG36[GFP11-VirD2(mod)] and with pUG36[MTS-GFP11-VirD2(mod)].  

A nuclear localization of GFP11-VirD2 (wild type) was observed in most cells of yeast strain 

CEN.PK2-1C expressing GFP1-10 (Figure 1A-C) similarly as we reported previously (Sakalis 

et al., 2014; Chapters 2 and 3). In contrast, no reconstituted GFP signal was found in yeast 

strain CEN.PK2-1C expressing GFP1-10 and GFP11-VirD2(mod) (Figure 1G-I), suggesting 

that VirD2(mod) is degraded when not entering the nucleus. Tagging GFP11-VirD2(mod) 

with the MTS did not give a reconstituted GFP signal in the yeast strain expressing GFP1-10 

(Figure 1J-L). However, MTS- GFP11-VirD2(mod) gave a very clear signal in the yeast strain 

expressing MTS-GFP1-10 (Figure 1 P-R). This signal was not observed in strains expressing 

MTS-GFP1-10 and GFP11-VirD2(mod) (Figure 1M-O) nor in strains expressing MTS-GFP1-10 

and  GFP11-VirD2 (wild type) (Figure 1D-F). These results show that only when GFP1-10 and 

GFP11-VirD2(mod) are both tagged with the MTS a clear fluorescent signal is found in the 

transformed cells. To confirm that the signal is indeed localized in the mitochondria, we 

visualized the mitochondria by using the MitoTracker fluorescent dye. As shown in figure 2 
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the reconstituted GFP signal co-localized with the Mito Tracker signal, indicating that MTS- 

GFP11-VirD2(mod) was successfully targeted to the mitochondria. In a similar way we 

investigated whether VirE2 can be targeted into mitochondria. To this end, we ectopically 

expressed MTS-39GFP11-VirE2 in yeast strain CEN.PK2-1C expressing MTS-GFP1-10. As 

shown in Figure 3 (D-F) a clear GFP signal was found, similar as for MTS-GFP11-

VirD2(mod) (Figure 2). Staining with the MitoTracker fluorescent dye confirmed the 

mitochondrial localization of the GFP signal (Figure 3 D-F). The GFP signal was not found 

in a yeast strain expressing MTS-GFP1-10 but lacking MTS-39GFP11-VirE2 (Figure 3A-C).  
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Figure 1. Microscopy of different MTS-tagged VirD2 and VirD2(mod) variants in yeast.  Confocal 

microscopy of yeast strain CEN.PK2-1C expressing GFP1-10 chemically transformed with pUG34[GFP11-

VirD2] (a-c), with pUG36[GFP11-VirD2(mod)] (g-i) or with pUG36[MTS-GFP11-VirD2(mod)] (j-l) and of yeast 

strain CEN.PK2-1C expressing MTS-GFP1-10 transformed with pUG34[GFP11-VirD2] (d-f), with 

pUG36[GFP11-VirD2(mod)] (m-o) or with pUG36[MTS-GFP11-VirD2(mod)] (p-r). Scale bars: 5 µm. 
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To study whether MTS-39GFP11-VirE2 that is translocated from Agrobacterium  into yeast 

cells can also be targeted into the mitochondria, we cocultivated yeast strain CEN.PK2-1C 

expressing MTS-GFP1-10 with Agrobacterium  strain LBA2572 harboring pBBR6[MTS-

39GFP11-VirE2] for 24 hours. As shown in Figure 3 G-I, the GFP signal partly colocalized 

with the MitoTracker signal, indicating that a significant part of the translocated MTS-

39GFP11-VirE2 is targeted into the mitochondria.   

 

 

 

  

 

Figure 2. Localization of ectopically expressed MTS-tagged VirD2(mod) in yeast mitochondria. Confocal 

microscopy of yeast strain CEN.PK2-1C expressing MTS-GFP1-10 transformed with pUG36[MTS-GFP11-

VirD2(mod)] stained with the MitoTracker dye. A, GFP fluorescence; B, MitoTracker signal; C, merged with 

the bright field signal. Scale bars: 5 µm. 
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Targeting VirD2 and VirE2 into chloroplasts in A. thaliana protoplasts  

To target VirD2 and VirE2 into chloroplasts we made use of the CTS of the Arabidopsis 

FedA protein including the first 8 amino acids of mature FedA and for visualization of the 

CTS-tagged proteins we made use of the phiLOV2.1 fluorescent protein (Gawthorne et al., 

2016; McIntosh et al., 2017; Chapter 3). To investigate the localization of the tagged 

virulence proteins we expressed them in A. thaliana Col-0 cell suspension protoplasts 

together with a chloroplast mCherry marker. As shown in Figure 4 (a-d) phiLOV2.1-VirD2 

Figure 3. Localization of ectopically expressed and translocated MTS-tagged VirE2 in yeast 

mitochondria. Confocal microscopy of yeast strain CEN.PK2-1C expressing MTS-GFP1-10 (a-c), of 

CEN.PK2-1C expressing MTS-GFP1-10 transformed with pUG36[MTS-39GFP11-VirE2] (d-f) and of 

CEN.PK2-1C expressing MTS-GFP1-10 after cocultivation for 24 hours with Agrobacterium  strain 

LBA2572 harboring pBBR6[MTS-39GFP11-VirE2] (g-i). Mitochondria were stained with MitoTracker. 

Scale bars: 5 µm. 
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(wild type) is localized, as expected, in a structure resembling the nucleus. However, tagging 

phiLOV2.1-VirD2 (wild type) with the CTS resulted in colocalization of the phiLOV2.1 

fluorescence with that of the chloroplast mCherry marker (Figure 4 e-h). This indicates that 

CTS-phiLOV2.1-VirD2 is targeted into the chloroplasts, despite the presence of NLSs in the 

wild type VirD2 protein. The localization of phiLOV2.1-VirD2 (mod) which lacks the NLSs 

is different from that of phiLOV2.1-VirD2 (wild type), which contains the NLSs (Figure 4 i-

l). After tagging phiLOV2.1-VirD2 (mod) with the CTS, fluorescence was found in 

structures containing the chloroplast mCherry marker, indicating that the protein was 

successfully targeted into the chloroplasts (Figure 4 m-p). The phiLOV2.1-VirE2 protein is 

localized in structures not containing the chloroplast mCherry marker when the CTS tag is 

lacking (Figure 4 q-t). However, after tagging with the CTS also VirE2 was successfully 

targeted to the chloroplasts (Figure 4 u-x).  
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Figure 4. Retargeting of VirE2, VirD2 and VirD2(mod) after chloroplast transit peptide fusion into 

chloroplasts of A. thaliana Col-0 cell suspension protoplasts. Protoplasts of A. thaliana Col-0 were co-

transformed with chloroplast-mCherry (CD3-1000) and plasmids pART7(phiLOV2.1-VirD2)  (A-D), with 

pART7(CTS-phiLOV2.1-VirD2) (E-H), with pART7(phiLOV2.1-VirD2(mod)) (I-L), with pART7(CTS-

phiLOV2.1-VirD2(mod))  (M-P), with pART7(39phiLOV2.1-VirE2) (Q-T) and with pART7(CTS-

39phiLOV2.1-VirE2) (U-X). Images were captured 24 hours after PEG transformation. Scale bars: 15µm.  
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Biological activity of CTS -tagged VirE2 and VirD2  

To investigate whether virulence proteins have retained their biological activity after tagging 

with the CTS and phiLOV2.1, tumor formation assays were performed on N. glauca shoots. 

To this end,  N. glauca shoots were injected with the different Agrobacterium  strains and 

after 4 weeks tumor formation was scored. Tumors were clearly visible after injection of the 

positive control strains LBA1010 and LBA1010(pBBR6), and tumors were not formed after 

injection of the negative control strains lacking T-DNA (LBA1100) and LBA1100(pBBR6) 

(Figure 5 A-D). The tumors of LBA1010 and LBA1010(pBBR6) were comparable in size 

suggesting that the presence of pBBR6 did not interfere with tumor formation (Figure 5A and 

C). N. glauca shoots which were infected with Agrobacterium  strain LBA2572(pBBR6) 

which lacks virE2, did not develop tumors, in line with the essential role of virE2 in AMT 

(Figure 5F). Agrobacterium  strains LBA2572(pBBR6-CTS-VirE2), LBA2572(pBBR6-

phiLOV2.1-VirE2) and  LBA2572(pBBR6-CTS-phiLOV2.1-VirE2) did not induce tumor 

growth (Figure 5 H, I and J, respectively) as expected because of the negative effect of N-

terminally tagging of VirE2. Unexpectedly, no tumor formation was observed after injection 

of LBA2572 (pBBR6-VirE2) expressing untagged VirE2 (Figure 5G). This may be caused 

by an imbalance between the expression of VirE1 and VirE2 (Zhou et al., 1999). 

Agrobacterium  strain LBA2569(pBBR6) which lacks virD2, did not induce tumor formation 

(Figure 5K), in line with the essential role of virD2 in AMT. This virD2 deficiency can be 

complemented by expression of untagged VirD2, CTS-VirD2, phiLOV2.1-VirD2 and CTS-

phiLOV2.1-VirD2 (Figure 5 l-o)., indicating that intact, CTS-, phiLOV2.1 and CTS-

phiLOV2.1- tagged VirD2 had retained at least some biological activity. To check whether 

the biological activity of VirD2(mod) was affected by tagging with CTS, phiLOV2.1 or CTS-

phiLOV2.1 N.glauca shoots were infected by virD2 deficient Agrobacterium  strains 

expressing VirD2(mod), CTS-VirD2(mod), phiLOV2.1-VirD2(mod)) and CTS-phiLOV2.1-

VirD2(mod). As shown in Figures 5 p-s all these strains could induce tumors. 

To further investigate to what extent CTS tagging affects the biological activity of the 

effector proteins, we co-cultivated A. thaliana seedlings with various Agrobacterium  strains 

expressing the tagged virulence proteins and harboring the pCAMBIA3310 plasmid. This 

plasmid contains the β-glucuronidase (GUS) marker gene on its T-DNA. When the T-DNA is 

successfully transferred and the gusA gene is (transiently) expressed, transformed cells in the 

seedlings are able to process 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc) and blue 

spots will be detectable in the seedlings (Jefferson et al., 1987). Co-cultivation with 
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Agrobacterium  control strains lacking virD2 or virE2 did not generate blue spots (Figure 6 A 

and B). On the other hand, clear blue spots were visible upon co-cultivation with 

Agrobacterium  strains expressing CTS-VirD2, CTS-VirD2(mod) or CTS-VirE2 (Figure 6 C-

E). These results indicate that that the CTS tagging approach did not destroy the biological 

activity of the tested effector proteins in the transient gene expression assay. Remarkably, 

while no biological activity was detected in the tumor assay, at least some biological activity 

of CTS-VirE2 was seen in the Gus assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Tumor formation on N. glauca plants inoculated with A. tumefaciens strains expressing CTS-

tagged VirE2 and VirD2. N. glauca stems were infected with different Agrobacterium  strains and after 4 

weeks tumor formation was scored. A, LBA1010 (positive control); B, LBA1100 (T-DNA deficient, 

negative control); C, LBA1010(pBBR6); D, LBA1100(pBBR6); E, LBA2573(pBBR6-VirE2); F, 

LBA2572(pBBR6); G, LBA2572(pBBR6-VirE2); H, LBA2572(pBBR6-CTS-VirE2); I, LBA2572(pBBR6-

phiLOV2.1-VirE2); J, LBA2572(pBBR6-CTS-phiLOV2.1-VirE2); K, LBA2569(pBBR6); L, 

LBA2569(pBBR6-VirD2); M, LBA2569(pBBR6-CTS-VirD2); N, LBA2569(pBBR6-phiLOV2.1-VirD2); 

O, LBA2569(pBBR6-CTS-phiLOV2.1-VirD2); P, LBA2569(pBBR6-VirD2(mod)); Q, LBA2569(pBBR6-

CTS-VirD2(mod)); R, LBA2569(pBBR6-phiLOV2.1-VirD2(mod)) and S, LBA2569(pBBR6-CTS-

phiLOV2.1-VirD2(mod)).  
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Targeting VirD2 and VirE2 into chloroplasts after AMT in N. tabacum leaves 

To investigate whether the virulence proteins can also be targeted into the chloroplasts after 

AMT, N. tabacum leaves were infiltrated with Agrobacterium  strains harbouring wild type 

or CTS-tagged 39phiLOV2.1-VirE2, phiLOV2.1-VirD2 (wild type) or phiLOV2.1-

VirD2(mod). As shown in Figure 7 A-F untagged 39phiLOV2.1-VirE2 was translocated into 

the leaf cells and was localized close to the cell membrane and in the cytoplasm, similar as 

described in Chapter 3. The localization was not influenced by the presence of T-DNA. 

Localization of VirE2 in chloroplasts was not found in case of untagged VirE2 (Figure 7 A-

F) (0 out of counted 150).  After tagging VirE2 with the CTS, the protein was found 

colocalizing in 6 out of 158 counted chloroplasts in cells in which fluorescent signals were 

seen (Figure 7 G-L). Co-localization with the chloroplasts was observed both in the absence 

as in the presence of T-DNA. It was also found near the cell membrane and in the cytoplasm, 

indicating that the CTS only partly guides VirE2 to the chloroplasts. Although CTS-

39phiLOV2.1-VirE2 colocalized with the chloroplasts, it is still unclear whether the protein 

is really present inside the chloroplasts. Hanson and Sattarzadeh (2008) visualized 

chloroplast stromules in N. tabacum (Figure 8D-F) and we interestingly found a pattern for 

the CTS-phiLOV2.1-VirE2 localization strongly resembling that of stromules (Figure 8A). 

To visualise the effect of the CTS-tag on the localization of phiLOV2.1-VirD2 N. tabacum 

leaves were infiltrated with Agrobacterium  strains LBA2556 (T-DNA deficient) and 

LBA2569 (T-DNA containing) carrying pBBR6[phiLOV2.1-VirD2] or pBBR6[CTS-

phiLOV2.1-VirD2]. As shown in figure 9, phiLOV2.1-VirD2 was found in structures 

resembling the nucleus (Figure 9B-C, insert) and in the cytoplasm (Figure 9D-F) 

Figure 6. Transient expression of the T-DNA derived β-glucuronidase (GUS) after co-cultivation with A. 

tumefaciens strains expressing CTS-tagged VirE2 and VirD2. A. thaliana efr-1 mutant seedlings were 

transfected with the A. tumefaciens strains containing pCAMBIA3301, i.e. LBA2556 (LBA1100ΔVirD2) 

(A), LBA2573 (LBA1100ΔVirE2) (B), LBA2556 (pBBR6::CTS-VirD2) (C), LBA2556 (pBBR6::CTS-

VirD2(mod))(D) or LBA2573(pBBR6-CTS-VirE2)(E), and the GUS activity was determined. 
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approximately 24 hours after agroinfiltration. We saw overlap in  2 out of 260 green 

fluorescent signals with chloroplasts present in the cells. CTS-phiLOV2.1-VirD2 was found 

colocalizing with the chloroplasts in 3 out of 148 chloroplasts present in cells in which 

fluorescent signals were detected (Figure 9 G-I). This low number not significantly different 

from that are without CTS which is probably due to the dominant effect of the NLSs over the 

CTS. Indeed, CTS-phiLOV2.1-VirD2(mod) colocalized more frequently with the 

chloroplasts (in 20 out of 360 chloroplasts present in cells in which fluorescent signals were 

detected) (Figure 10 I-P). Untagged phiLOV2.1-VirD2(mod) was not detectable after 

agroinfiltration with LBA2556(pBBR6-phiLOV2.1-VirD2(mod)) (lacking T-DNA) or with 

LBA2569(pBBR6-phiLOV2.1-VirD2(mod)) (containing T-DNA) (Figure 10 A-F), which 

might be due to low levels of VirD2(mod) as it possibly spread all over the cell or is 

degraded when not targeted to the nucleus or chloroplasts. Like CTS-VirE2, also translocated 

CTS-VirD2 and CTS-VirD2(mod) may be located in the stromules  (Figure 8B and C, 

respectively).  
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+T-DNA 

-T-DNA 

+T-DNA 

-T-DNA 

Figure 7. Localization of (CTS)-phiLOV2.1-VirE2 in N. tabacum leaf cells after AMT. Leaves of N. 

tabacum SR1 plants were agroinfiltrated with LBA2572(pBBR6-39phiLOV2.1-VirE2) (containing T-

DNA)(a-c); with LBA2573(pBBR6-phiLOV2.1-VirE2) (lacking T-DNA)(d-f); with LBA2572(pBBR6-

CTS-phiLOV2.1-VirE2) (g-i) and with LBA2573(pBBR6-CTS-phiLOV2.1-VirE2) (j-l). Images were 

captured between 19 and 29 hours after agroinfiltration. Both cytoplasmic localizations and membrane 

localizations of translocated phiLOV2.1-VirE2 were observed (a-f). Partially chloroplast colocalization of 

translocated CTS-phiLOV2.1-VirE2 was observed (g-l). CF, chlorophyll fluorescence. Scale bars: 10µm.  
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Figure 8. Possible localization of CTS-39-phiLOV2.1-VirE2, CTS-phiLOV2.1-VirD2 and CTS-

phiLOV2.1-VirD2(mod) in chloroplast stromules after translocation from Agrobacterium   to N. 

tabacum leaves. Leaves of N. tabacum SR1 wild type plants were agroinfiltrated with LBA2573(pBBR6-

CTS-39phiLOV2.1-VirE2) (a); with LBA2569(pBBR6-CTS-phiLOV2.1-VirD2) and with 

LBA2569(pBBR6-CTS-phiLOV2.1-VirD2(mod)). Images were captured between 19 and 29 hours after 

agroinfiltration. (A-C) suggesting the accumulation of virulence proteins targeted into stromules localized 

between chloroplasts (yellow arrows). CF, chlorophyll fluorescence. Scale bars: 10µm. For comparison: d – 

f: Laser scanning confocal microscopy images of chloroplasts and stromules in N. tabacum expressing 

chloroplast marker TOC34–GFP, taken from Hanson and Sattarzadeh, (2008). (d), GFP fluorescence, (e) 

chlorophyll fluorescence, and (f) merged image of (d) and (e); scale bar: 7.5 µm. 
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-T-DNA 

-T-DNA 

Figure 9. Analysis of the effect of the CTS-tag on phiLOV2.1-VirD2 localization in N. tabacum leaves 

after AMT. Leaves of N. tabacum SR1 plants were agroinfiltrated with LBA2556(pBBR6-phiLOV2.1-

VirD2) (lacking T-DNA) (a-c); with LBA2569(pBBR6-phiLOV2.1-VirD2) (containing T-DNA) (d-f); or 

with LBA2556(pBBR6-CTS-phiLOV2.1-VirD2) (g-i). Images were captured between approximately 24 

hours after agroinfiltration. Both nuclear (insert) (a-c) and cytoplasmic (d-f) (white arrows) localizations of 

translocated phiLOV2.1-VirD2 were observed. Translocated CTS-phiLOV2.1-VirD2 partially colocalized 

with chloroplasts (g-i) (yellow arrow). CF, chlorophyll fluorescence. Scale bars: 10µm.  
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Figure 10. Analysis of the effect of the CTS-tag on phiLOV2.1-VirD2(mod) localization in N. tabacum 

leaves. Leaves of N. tabacum SR1 plants were agroinfiltrated with LBA2556(pBBR6-phiLOV2.1-

VirD2(mod)) (lacking T-DNA) (a-c); with LBA2569(pBBR6-phiLOV2.1-VirD2(mod)) (containing T-

DNA) (d-f); with LBA2556(pBBR6-CTS-phiLOV2.1-VirD2(mod)) (g-i); or with LBA2556(pBBR6-CTS-

phiLOV2.1-VirD2(mod)) j-l). Images were captured approximately 24 hours after agroinfiltration. No 

phiLOV2.1 signal was observed after phiLOV2.1-VirD2(mod) translocation (a-f). A partial colocalization of 

translocated CTS-phiLOV2.1-VirD2(mod) with chloroplasts was observed (g-l). CF, chlorophyll 

fluorescence. Scale bars: 10µm.  
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DISCUSSION 

Agrobacterium  is an excellent tool to modify the plant nuclear genome by transferring a T-

DNA with the genes of interest into plant cells. During transformation several Agrobacterium  

effector proteins (VirD2, VirD5, VirE2, VirE3 and VirF) are translocated from 

Agrobacterium  into the recipient cells. While strains lacking VirD5, VirE3 and VirF are 

almost as good as wild type in plant transformation under the lab conditions, strains lacking 

VirD2 or VirE2 are no longer able to do so. The proteins VirD2 and VirE2 play an important 

role in nuclear targeting and delivery, and in protection of the T-complex against host cell 

endonucleases (for a recent review see Gelvin, 2012). Agrobacterium  can therefore not only 

be exploited to introduce foreign DNA into cells (AMT), but also to introduce foreign 

proteins into eukaryotic cells (AMPT) to manipulate them to acquire desired properties.  

Genetic modification of organellar DNA has great potential for biotechnology. For example, 

chloroplast genome engineering can be considered as an option for improving photosynthesis 

(Ort et al., 2015). However, few protocols are available for transformation of organellar 

DNA, namely PEG-mediated transformation (Svab and Maliga, 1993; Hanson et al., 2013; 

Yu et al., 2017) and particle bombardment (Golds et  al., 1993). Cells contain many plastids 

and therefore in extensive selection procedure is needed to obtain a homoplasmic plant. Yu et 

al. (2017) established a protocol to transform A. thaliana leaves by gold particle 

bombardment resulting in 100 fold increase in chloroplast transformation efficiency 

compared to transformation of N. tabacum. However, despite this improvement the 

transformation efficiency of this techniques is still low. Moreover, the biolistic technique 

requires an expensive device and it is costly because of using gold particles (Daniell et al., 

2005; Liu et al., 2013). The disadvantages of PEG-mediated transformation of protoplasts 

relate to the tedious treatment, maintenance and regeneration of  protoplasts (Meyers et al., 

2010). Although Agrobacterium-mediated chloroplast transformation was reported by 

DeBlock et al (1985), this result has never been repeated and therefore may reflect a rare, 

exceptional event. To facilitate AMT of organellar DNA, in theory, the first step that needs to 

be done is to modify VirD2 and VirE2, so that they are targeted into the desired cell 

organelles instead of the nucleus. To this end, nuclear localization sequences (NLS) need to 

be removed as much as possible and a mitochondrial or chloroplast-targeting signal needed to 

be added to these proteins. Targeting of virD2 and VirE2 to the organelles may also direct the 

complete T-complex to the mitochondria or chloroplasts, respectively. Of course the T-DNA 
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itself needs to be modified so that it can integrate in the organellar genome by homologous 

recombination and selection of transformants is possible. As a first step we investigated 

whether it is possible to target VirD2 and VirE2 into yeast mitochondria. Previously, we 

showed that ectopically expressed GFP/YFP/CFP-tagged VirE2 formed filamentous 

structures associated with the microtubules in both yeast and A. thaliana protoplasts (Sakalis, 

2013; Sakalis et al , 2014). Similar localization was found for GFP11-tagged VirE2 in yeast 

cells expressing GFP1-10 (Sakalis et al, 2014; Chapter 2). As shown in Figure 3 addition of the 

MTS to GFP11-VirE2 indeed targeted most of the protein to the mitochondria. Also MTS-

GFP11-VirE2 translocated from Agrobacterium  after AMT, was partly localized in the 

mitochondria (Figure 3 G-I). VirD2 contains nuclear localization signals (NLS) that facilitate 

nuclear uptake of the T-complex into the nucleus of the host cell (Ziemienowicz et al., 2001). 

Ectopically expressed GFP-VirD2 has a nuclear localization in both yeast and plant cells 

(Citovsky et al., 1994; Wolterink-van Loo et al., 2015). A nuclear localization was also 

found for GFP11-VirD2 in yeast cells expressing GFP1-10 (Figure 1 A-C)(Chapter 3; Roushan 

et al., 2018). Removal of the C-terminal part of VirD2 containing the NLSs (VirD2(mod)) 

abolished this nuclear localization (Figure 1G-I). Addition of the MTS to GFP11-

VirD2(mod) successfully targeted most of the protein to the mitochondria (Figure 1 P-R; 

Figure 2). The successful targeting of both VirE2 and VirD2 into the yeast mitochondria 

opens ways for new studies to target T-DNA into the yeast mitochondria and to modify the 

mitochondrial genome. 

To investigate targeting of VirE2 and VirD2 into chloroplasts we made use of A. thaliana 

protoplasts as well as N. tabacum leaves. In protoplasts ectopically expressed 39phiLOV2.1-

VirE2 was found in dot-shaped structures associated with tubulins (Figure 4Q-T) (Roushan et 

al., 2018). These structures were not overlapping with chloroplasts (Figure 4Q-T). However, 

after tagging with a CTS, the protein (CTS-phiLOV2.1-VirE2) colocalized to some extent 

with the chloroplast marker protein (Figure 4 U-X). Ectopically expressed GFP-VirD2 has a 

nuclear localization in both yeast and plant cells (Citovsky et al., 1992; Wolterink-van Loo et 

al., 2015). We found a similar nuclear localization for phiLOV2.1-VirD2 in both yeast and A. 

thaliana root cells (Chapter 3)(Roushan et al. (2018). As expected, phiLOV2.1-VirD2 was 

localized in a structure resembling the nucleus in A. thaliana protoplasts (Figure 4 A-D). The 

nuclear localization of VirD2 vanished and phiLOV2.1 signals overlapped with the mCherry 

chloroplast marker upon tagging with CTS (Figure 4 E-H). The first 228 amino acids of 



190 

 

VirD2, containing the relaxase domain, is required for the endonuclease activity of VirD2 

(Steck et al., 1990). The relaxase domain was further minimized to 204 amino acids based on 

sequence comparison between different relaxases (van Kregten et al., 2009). Because of the 

removal of the C-terminal NLSs, we hypothesized that the VirD2 relaxase domain by itself 

would no longer be targeted to the nucleus. Indeed, we found that after transfection of A. 

thaliana protoplasts with pART7[phiLOV2.1-VirD2(mod)], there was no longer a condense 

nuclear localization, but dot-shape accumulations of VirD2(mod) with subcellular 

localization that did not overlap with chloroplasts were seen (Figure 4 I-L). The CTS-tagged 

VirD2(mod) protein was shown to be localized in chloroplasts (Figure 4 M-P). Thus, 

ectopically expressed phiLOV2.1-VirE2 and phiLOV2.1-VirD2 can indeed by targeted into 

the chloroplasts by tagging these proteins with a CTS. 

To investigate whether VirE2 and VirD2 originating from Agrobacterium  during AMT can 

be targeted into the chloroplasts, we made use of agroinfiltration of N. tabacum leaves. Li 

and Pan (2017) presented data which may suggest that in N. benthamiana leaf cells 

Agrobacterium -delivered GFP11-VirE2 initially accumulated on plant plasma membranes, 

but was subsequently internalized through clathrin-mediated endocytosis resulting in 

accumulation of GFP11-VirE2 in the endomembrane compartments. Fluorescent signals in the 

cytoplasm and near the plasma membrane were detected by us after N. tabacum leaf 

agroinfiltration with the Agrobacterium  strains LBA2572 or LBA2573 harboring pBRR6-

phiLOV2.1-VirE2 (Figure 7A-C and D-F, respectively) as we showed previously (Chapter 

3). To investigate the effect of the CTS on the localization of phiLOV2.1-VirE2 in tobacco 

cells, four weeks old N. tabacum SR1 leaves were infiltrated with Agrobacterium  strains 

LBA2572 (containing T-DNA) or LBA2573 (lacking T-DNA) harboring pBBR6-CTS-

phiLOV2.1-VirE2. After approximately 24 hours filamentous and dot-like structures of 

VirE2 were found partially colocalizing with the chloroplasts of leaf epidermal cells (Figure 

7 G-I and J-L, respectively). After infiltration of N. tabacum leaves with Agrobacterium  

strains LBA2556 (pBBR6-phiLOV2.1-VirD2) and LBA2569 (pBBR6-phiLOV2.1-VirD2), 

fluorescent signals were seen in the nucleus (Figure 9 A-C, insert), cytoplasm and near the 

plasma membrane (Figure 9 D-F). These signals did not overlap with chlorophyll 

fluorescence. After tagging with a CTS hardly any phiLOV2.1 fluorescence was found in the 

chloroplasts (9 G-I). Agroinfiltration of N. tabacum SR1 leaves with the Agrobacterium  

strains  LBA2556 and LBA2569 harboring pBBR6-phiLOV2.1-VirD2(mod) did not yield 
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any phiLOV2.1 fluorescent signals inside the plant cells probably due to the low fraction of 

VirD2(mod) concentrated inside a specific cell compartment or it might be due to rapid 

degradation of phiLOV2.1-VirD2(mod) in plant cells. Upon infiltration of N. tabacum SR1 

leaves with Agrobacterium  strains  LBA2556 and LBA2569 harboring pBBR6-CTS-

phiLOV2.1-VirD2(mod), however a clear signal was obtained, which overlapped to some 

extent with the chlorophyll fluorescence signals (Fig.10 G-I and J-L, respectively), indicating 

that the CTS of FedA allowed for translocation of some CTS-phiLOv2.1-VirD2(mod) into 

the chloroplasts of the plant cells.  

In summary, we can conclude from this study that the crucial effector proteins of the AMT 

process VirE2 and VirD2(mod), were successfully modified so that they are now targeted 

from Agrobacterium  to mitochondria (of yeast) and chloroplasts (of plant cells). However, 

the protein translocation frequencies are quite low and the proteins are only partially targeted 

into the organelles. On the other hand our results make it very worthwhile to further 

investigate strategies to use AMT to manipulate mitochondrial or chloroplast genomes using 

organelle targeting of the VirE2 and VirD2 virulence proteins.    
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Summary 

The soil-borne bacterium Agrobacterium  tumefaciens has a  unique interkingdom gene 

transfer capability and is  known as natural genetic engineer. A. tumefaciens transfers part of  

its DNA (T-DNA) located on a tumor-inducing plasmid (Ti-Plasmid) into host cells resulting 

in tumor formation on plants, the crown gall disease. Agrobacterium  can transfer T-DNA not 

only into plants, but also into yeast, fungi, algae, sea urchin embryos and possibly even 

human cells under laboratory conditions. Therefore, A. tumefaciens can be used as a genetic 

tool to modify eukaryotic organisms for molecular biology and  biotechnology purposes. 

During Agrobacterium-mediated transformation (AMT), simultaneously with T-DNA 

transfer, effector proteins such as VirD2, VirE2, VirF, VirE3 and VirD5 are translocated into 

the host cells which play important roles in transformation (for reviews see: Tzfira and 

Citovsky, 2006; Gelvin, 2010). Many aspects about the exact functions of these proteins, the 

mechanisms of their translocation and their trafficking inside the host cell are unknown. To 

further investigate about Agrobacterium  effector protein translocation, localization and 

trafficking we have developed two different visualization approaches which are described 

specifically in Chapter 2 and Chapter 3. Furthermore, as A. tumefaciens can be engineered 

to be able to transfer foreign proteins into eukaryotic cells, in Chapter 4, we took advantage 

of its protein translocation capability to change the yeast mating type by Agrobacterium-

mediated protein translocation (AMPT) of the HO-endonuclease. Subsequently, in Chapter 5 

we studied whether we could modify the essential two T-DNA nuclear uptake mediators 

VirE2 and VirD2 in such a way that they would be targeted to the mitochondria or 

chloroplasts instead of the nucleus. This as a first step towards the development of a system 

of Agrobacterium  mediated organelle transformation  using AMPT. 

In Chapter 2, we have used the split-GFP system to visualize translocation and localization 

of VirE2, VirD2, VirF and VirE3 in plant and yeast cells. This system makes use of the 

observation that GFP can be split into two non-fluorescent fragments: GFP1-10 and GFP11 

(Cabantous et al, 2005).To visualize protein translocation, genetically modified recipient 

cells are needed to express GFP1-10. Following translocation of the GFP11-tagged effector 

protein, GFP fluorescence is restored and can be detected under confocal or fluorescent 

microscopes (Henry et al., 2017; Li et al., 2014; Sakalis et al., 2014).  In this chapter, we 

tagged  the VirE2 protein with GFP11 internally instead of N-terminally and  the quality of 

signal observation, biological activities and expression timing were greatly improved 

compared to those obtained with N-terminally tagged VirE2. Besides, we were able to 
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capture the movement of internally tagged VirE2 which was impossible using N-terminally 

tagged GFP11-VirE2. Despite all of these improvements the system still has clear limitations. 

The most important  being that GFP1-10 expressing  transgenic plant and yeast cell lines are 

required. Also we were unsuccessful in detecting translocation of the virulence proteins VirF 

and VirE3 by the split-GFP system, possibly due to conformational restraints allowing GFP 

reconstitution. This encouraged us to test another fluorescent protein with possible 

advantages over split GFP. Hence, we have used the LOV fluorescent protein to study 

Agrobacterium  protein translocation which is described in Chapter 3.  

In Chapter 3, we made use of the phiLOV2.1 fluorescent protein to directly visualize 

effector protein translocation the host cells (Christie, 2007; Huala et al., 1997; Buckley et al., 

2015; Chapman et al.,  2008; Gawthorne et al., 2016; McIntosh et al., 2017). In contrast to 

previous GFP based methodologies, the new method does not rely on special transgenic host 

cells and we successfully visualized VirE2, VirD2, VirE3, VirF and VirD5 effector protein 

translocation into Arabidopsis thaliana root, tobacco leaf and yeast cells. Clear signals were 

obtained that are easily distinguishable from the background, even in cases of VirE3 and 

VirF where the split GFP system did not generate signals in plant and yeast cells. Regardless 

of these advantages, weaker fluorescence signals were seen than with the split-GFP system;  

also photobleaching of phiLOV2.1 fluorescent protein and the more often observation of dot-

shaped and filamentous structures of effector proteins are concerning. Therefore, 

combination of different techniques and fluorescent proteins is more efficient and reliable.  

Inside Agrobacterium  internally tagged phiLOV2.1-VirE2 was localized at the bacterial 

membrane as revealed by horseshoe-like structures. This is in line with the detection of 

VirE2 in the membrane fraction of Agrobacterium  (Christie et al., 1988; Dumas et al., 2001) 

and with the observation that VirE2 may act as a channel to transfer ss-DNA in vitro 

(Christie et al., 1988; Dumas et al., 2001; Duckely and Hohn, 2003). Recently, Li and Pan 

(2017) proposed that VirE2 enters the host cell by hijacking the clathrin-mediated 

endocytosis pathway, but first is localized at the plant cell membrane. We also observed the 

(near) plasma membrane localization of not only VirE2, but also VirD2, VirF, VirD5 and 

VirE3 effector proteins which would suggest a similar pathway for the other effector proteins 

to penetrate into the host cells. Previously, we showed that 39phiLOV2.1-VirE2 formed 

filamentous and dot-like structures in yeast cells and plant cells that were strongly affected by 
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treatments disrupting microtubules. This is suggesting the existence of another pathway for 

effector protein trafficking inside the host cells. Further investigations are clearly needed.  

In Chapter 4, we used A. tumefaciens to introduce the HO endonuclease into yeast cells and 

showed that the translocated endonuclease was able to induce mating type switching. 

Recently a research group established a new protocol to induce mating type switching in 

yeast using CRISPR/Cas9 technology (Xie et al., 2018). This chapter further emphasize the 

potential of exploiting the ability of Agrobacterium  to deliver proteins into eukaryotic cells. 

Translocation of proteins may result in altered properties of the target cells without genetic 

transformation. In other studies Agrobacterium  was successfully engineered to introduce the 

Cre-recombinase into yeast, fungal and plant cells to allow recombination ( Vergunst et al., 

2000; Vergunst et al., 2005), to target meganuclease I-SceI into yeast and plant cells to 

enhance targeted integration (Rolloos et al., 2005; van Kregten et al., 2011). Recently the 

ability of Agrobacterium  to transfer protein into plant cells has been exploited to enhance the 

regeneration of recalcitrant plants such as tulip and sweet pepper via transferring the BABY 

BOOM developmental regulator (Khan, 2017). Also Schmitz (2018) showed that targeted 

mutagenesis the Nicotiana benthamiana is achievable by translocating the Cas9 protein 

translocation from Agrobacterium  (Schmitz, 2018). Furthermore, a novel approach is 

described to transfer isopentenyl transferase (IPT) for selection of transformed plants in 

Arabidopsis using Agrobacterium  mediated protein translocation (Schmitz, 2018). 

Engineering of organellar DNA is of great interest for biotechnology. One of the advantages 

of introducing transgenes into the chloroplast or mitochondrial genome instead of into the 

nuclear genome is that these organelles are maternally inherited, (Bansal and Sharma, 2003; 

Sharma et al., 2005), organelle transformation allows stable transgene expression by the lack 

of epigenetic interference, and transgene stacking in operons (Wang et al., 2009) and 

expression of multiple proteins from polycistronic mRNAs may be possible. High yields of 

transgenic products may be achieved because of the high number of chloroplast or 

mitochondrial genomes per cell. We assumed that Agrobacterium  with an unique ability of 

transferring T-DNA facilitated by VirE2 and VirD2 virulence proteins into the host cell 

nucleus might be a good candidate to develop into an organelle vector. To end this, we aimed 

first to modify VirE2 and VirD2 in such a way that they would be targeted into the 

mitochondria and chloroplasts. In Chapter 5, we showed that modified VirE2 and VirD2 

tagged with mitochondrial and chloroplast targeting sequence can be directed into the 
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mitochondria and chloroplasts of yeast and plant cells, respectively. However, while targeting 

to yeast mitochondria seemed efficient targeting to the chloroplasts was inefficient. 

Nevertheless, our results make it very worthwhile to invest in further optimization and to test 

whether T-DNA transfer into the organelles becomes possible with these modified effector 

proteins.  
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Samenvatting 

De bodembacterie Agrobacterium  tumefaciens heeft het unieke vermogen om genetisch 

materiaal over te dragen naar organismen behorend tot andere fylogenetische koninkrijken, 

met name planten, en staat daarom bekend als een natuurlijke genetische ingenieur. 

Agrobacterium  draagt een deel van zijn DNA (T-DNA), dat zich op een tumor-inducerend 

plasmide (Ti-plasmide) bevindt, over naar gastheercellen. Dit resulteert in de vorming van 

tumoren op planten, een fenomeen dat bekend staat als wortelhalsknobbel of kroongalziekte. 

Agrobacterium  kan T-DNA niet alleen overbrengen naar planten, maar ook naar gist, 

schimmels, algen, zee-egelembryo's en mogelijk zelfs naar menselijke cellen onder 

laboratoriumomstandigheden. Daarom kan Agrobacterium  worden gebruikt als een 

hulpmiddel om eukaryote organismen genetisch te modificeren voor moleculair biologische 

en biotechnologische doeleinden. Tijdens Agrobacterium-gemediëerde transformatie (AMT) 

worden naast het T-DNA ook effectoreiwitten  (VirD2, VirE2, VirF, VirE3 en VirD5) 

overgedragen naar de gastheercellen. Ook deze effectoreiwitten spelen een belangrijke rol bij 

het proces van transformatie (voor overzichtsartikelen zie: Tzfira en Citovsky, 2006; Gelvin, 

2010). Veel aspecten van de functies van deze eiwitten, de mechanismen van hun translocatie 

en hun transport binnen de gastheercel zijn onbekend. Om verder onderzoek te doen naar 

translocatie, lokalisatie en intracellulair transport van de Agrobacterium  effectoreiwitten heb 

ik twee verschillende visualisatiebenaderingen ontwikkeld die specifiek in Hoofdstuk 2 en 

Hoofdstuk 3 van dit proefschrift worden beschreven. In Hoofdstuk 4 heb ik gebruik 

gemaakt van het feit dat Agrobacterium  ook kan worden gemanipuleerd om andersoortige 

eiwitten over te brengen naar eukaryote cellen, door via Agrobacterium-gemediëerde 

eiwittranslocatie (AMPT) van het HO-endonuclease het paringstype van bakkersgist te 

veranderen. Vervolgens heb ik in Hoofdstuk 5 onderzocht of we de twee effectoreiwitten die 

essentieel zijn voor de opname van het T-DNA in de celkern van de gastheercellen, VirE2 en 

VirD2, zodanig gemodificeerd konden worden dat ze getransporteerd zouden worden naar de 

mitochondriën of chloroplasten in plaats van de celkern. Dit is een eerste stap naar de 

ontwikkeling van een systeem van Agrobacterium-gemediëerde transformatie van 

celorganellen. 

In Hoofdstuk 2 hebben we het zogenaamde  “split-GFP” systeem gebruikt om de translocatie 

en lokalisatie van de effectoreiwitten VirE2, VirD2, VirF en VirE3 in planten- en gistcellen 

te visualiseren. Dit systeem maakt gebruik van het feit dat GFP kan worden opgesplitst in 
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twee niet-fluorescerende fragmenten: GFP1-10 en GFP11 (Cabantous et al, 2005). Om de 

translocatie van eiwitten via deze methode te visualiseren, zijn genetisch gemodificeerde 

gastheercellen nodig die GFP1-10 tot expressie te brengen. Na translocatie van een 

effectoreiwit dat gekoppeld is aan GFP-11 wordt de fluorescentie van GFP hersteld en kan 

dan worden gedetecteerd met behulp van confocale of fluorescentiemicroscopen (Henry et 

al., 2017; Li et al., 2014; Sakalis et al., 2014). In dit hoofdstuk hebben we het effectoreiwit 

VirE2 intern gelabeld met GFP11 in plaats van aan de N-terminus, waardoor de kwaliteit van 

het fluorescentiesignaal, de biologische activiteit en de timing van de expressie sterk 

verbeterden in vergelijking tot die verkregen met N-terminaal gelabeled VirE2. Bovendien 

konden we de beweging van intern gelabeld VirE2 vastleggen, wat onmogelijk was met 

behulp van N-terminaal gelabeled GFP11-VirE2. Ondanks al deze verbeteringen heeft het 

systeem nog steeds duidelijke beperkingen. De belangrijkste beperking is dat transgene plant- 

en gistcellen nodig zijn die GFP1-10 tot expressie brengen. Ook was het niet mogelijk om de 

translocatie van de effectoreiwitten VirF en VirE3 met het split-GFP-systeem te detecteren, 

mogelijk als gevolg van conformationele beperkingen die GFP-reconstitutie onmogelijk 

maken. Dit moedigde mij aan om een ander fluorescerend eiwit te testen met mogelijke 

voordelen ten opzichte van het split-GFP systeem. Daartoe hebben we het fluorescerende 

eiwit LOV in huis gehaald om de translocatie van Agrobacterium-eiwitten te bestuderen, een 

aanpak die in Hoofdstuk 3 wordt beschreven. 

In Hoofdstuk 3 hebben we gebruik gemaakt van het fluorescerende eiwit phiLOV2.1 om 

translocatie van effectoreiwitten naar gastheercellen direct te kunnen visualiseren (Christie, 

2007; Huala et al., 1997; Buckley et al., 2015; Chapman et al., 2008; Gawthorne et al., 2016; 

McIntosh et al., 2017). In tegenstelling tot eerdere, op GFP gebaseerde methodologieën, is 

deze nieuwe methode niet afhankelijk van speciale transgene gastheercellen. Via deze aanpak 

hebben we met succes translocatie van VirE2, VirD2, VirE3, VirF en VirD5 naar cellen van 

wortels van Arabidopsis thaliana, tabaksbladeren en bakkersgist gevisualiseerd. Er werden 

duidelijke signalen verkregen die gemakkelijk te onderscheiden waren van het 

achtergrondsignaal, zelfs in de gevallen van VirE3 en VirF, waarvoor met het split-GFP-

systeem geen signalen in planten- en gistcellen konden worden verkregen. Er werden echter 

zwakkere fluorescentiesignalen waargenomen dan met het split-GFP-systeem. Ook 

‘photobleaching’ van phiLOV2.1 en de vaker voorkomende observatie van puntvormige en 

filamenteuze structuren van de effectoreiwitten vormen mogelijke nadelen. Daarom lijkt een 
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combinatie van het gebruik van verschillende technieken en fluorescerende eiwitten 

efficiënter en betrouwbaarder. Binnen Agrobacterium cellen was intern gelabeld phiLOV2.1-

VirE2 gelocaliseerd bij de celmembraan in zichtbare, hoefijzervormige structuren. Dit is in 

overeenstemming met de detectie van VirE2 in de membraanfractie van Agrobacterium  

(Christie et al., 1988; Dumas et al., 2001) en met de waarneming dat VirE2 kan fungeren als 

een kanaal om enkelstrengs DNA in vitro over te brengen (Christie et al., 1988; Dumas et al., 

2001; Duckely and Hohn, 2003). Onlangs hebben Li en Pan (2017) voorgesteld dat VirE2 de 

gastheercel binnentreedt door de clathrine-gemedieerde endocytose-route te kapen, maar 

eerst gelokaliseerd is bij de membraan van de plantencel. Wij observeerden ook de (bijna) 

plasmamembraanlokalisatie van de effectoreiwitten VirD2, VirF, VirD5 en VirE3, daarmee 

een vergelijkbare route suggererend waarmee de andere effectoreiwitten de gastheercel 

binnen komen. Eerder hebben we echter aangetoond dat het 39phiLOV2.1-VirE2 eiwit 

filament-achtige en punt-achtige structuren vormt in gist- en plantencellen die sterk 

beïnvloed werden door behandelingen die microtubuli verstoorden. Of dit het een andere 

route voor het transport van effectoreiwitten in de gastheercellen indiceert, zal verder 

onderzoek moeten uitwijzen. 

In Hoofdstuk 4 hebben we Agrobacterium  gebruikt om het HO-endonuclease te 

introduceren in gistcellen en aangetoond dat het overgedragen eiwit het wisselen van het 

paringstype van de gistcellen kon induceren. Dit hoofdstuk benadrukt verder het potentieel 

van het benutten van AMPT naar eukaryote cellen. Translocatie van eiwitten kan resulteren 

in veranderde eigenschappen van de doelcellen zonder genetische transformatie. In eerdere 

studies is Agrobacterium  met succes gemanipuleerd om het Cre-recombinase te introduceren 

in gist-, schimmel- en plantencellen om DNA-recombinatie te bewerkstelligen (Vergunst et 

al., 2000; Vergunst et al., 2005), en om het meganuclease I-SceI naar gist- en plantencellen 

over te dragen om gerichte integratie van DNA te verbeteren (Rolloos et al., 2005; van 

Kregten et al., 2011). Daarnaast is onlangs AMPT naar plantencellen ingezet om de 

regeneratie van recalcitrante plantensoorten zoals tulp en paprika te verbeteren via de 

overdracht van de ontwikkelingsregulator BABYBOOM (Khan, 2017). Schmitz (2018) 

toonde aan dat gerichte mutagenese van Nicotiana benthamiana haalbaar is door translocatie 

van het Cas9 eiwit via AMPT. Verder wordt in deze studie een nieuwe benadering 

beschreven om isopentenyltransferase (IPT) over te dragen voor selectie van 

getransformeerde Arabidopsis planten met behulp van AMPT (Schmitz, 2018). 
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De manipulatie van het DNA van celorganellen is van groot belang voor de biotechnologie. 

Een van de voordelen van het introduceren van transgenen in het chloroplast of 

mitochondriaal genoom in plaats van in het nucleaire genoom is dat deze organellen alleen 

maternaal worden overgeërfd (Bansal and Sharma, 2003; Sharma et al., 2005).  

Transformatie van organellen maakt ook stabiele expressie van transgenen zonder 

epigenetische interferentie mogelijk en faciliteert de introductie van meerdere transgenen 

tegelijkertijd in een operonstructuur (Wang et al., 2009), leidend tot gelijktijdige expressie 

van meerdere eiwitten via polycistronische mRNAs. Daarnaast kunnen hoge opbrengsten van 

transgenproducten worden bereikt door het grote aantal kopieën van de chloroplast- of 

mitochondriale genomen per cel. Agrobacterium  zou, door zijn unieke vermogen om T-DNA 

efficiënt over te dragen in gastheercellen, een ideale kandidaat zijn om te ontwikkelen tot een 

organelvector. Om dit te bewerkstelligen, moesten VirE2 en VirD2, de belangrijke 

effectoreiwitten die transformatie via AMT faciliteren, zodanig gemodificeerd worden dat ze 

getransporteerd worden naar de mitochondriën en chloroplasten. In Hoofdstuk 5 heb ik 

aangetoond dat VirE2 en VirD2, voorzien van mitochondriale en chloroplast 

overdrachtpeptides, kunnen worden overgedragen naar respectievelijk de mitochondriën en 

chloroplasten van gist en plantencellen. Hoewel translocatie naar de mitochondriën van gist 

efficiënt was, was overdracht naar chloroplasten van cellen van Arabidopsis dat niet. 

Desondanks maken onze resultaten het zeer de moeite waard om te investeren in verdere 

optimalisatie van deze aanpak en om te testen of de overdracht van T-DNA naar de 

organellen mogelijk wordt met deze gemodificeerde effectoreiwitten. 
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