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ABSTRACT: The interpretation of high-dimensional struc-
ture−activity data sets in drug discovery to predict ligand−
protein interaction landscapes is a challenging task. Here we
present Drug Discovery Maps (DDM), a machine learning
model that maps the activity profile of compounds across an
entire protein family, as illustrated here for the kinase family.
DDM is based on the t-distributed stochastic neighbor
embedding (t-SNE) algorithm to generate a visualization of
molecular and biological similarity. DDM maps chemical and
target space and predicts the activities of novel kinase inhibitors
across the kinome. The model was validated using independent
data sets and in a prospective experimental setting, where DDM
predicted new inhibitors for FMS-like tyrosine kinase 3 (FLT3),
a therapeutic target for the treatment of acute myeloid leukemia.
Compounds were resynthesized, yielding highly potent, cellularly active FLT3 inhibitors. Biochemical assays confirmed most of
the predicted off-targets. DDM is further unique in that it is completely open-source and available as a ready-to-use executable
to facilitate broad and easy adoption.

■ INTRODUCTION

Chemical space is vast and can only be explored to a small
extent with experimental methods to find suitable hits for drug
discovery programs.1,2 The search for new chemical starting
points to modulate therapeutic targets is essential for the
development of novel drugs. It has been postulated that the
best way to find a new drug is to start with an old drug.3 This is
in line with the central paradigm in medicinal chemistry that
similar structures exert similar biological activities.4 Protein
kinases are an important class of drug targets because of their
key role in intracellular signal transduction processes involved
in cancer, autoimmune diseases, and (neuro)inflammation.5,6

The therapeutic value of the protein kinase family is
demonstrated by the 38 kinase inhibitors (KIs) currently
approved by the FDA and a plethora of molecules being tested
in clinical trials for this enzyme family.7 It is anticipated that
these clinically approved KIs may serve as starting points to
identify novel drug candidates for other kinases.
Most KIs interact with a structurally and functionally

conserved ATP-binding site that is present in all 518 human
protein kinases. It is well established that KIs bind multiple
members of the kinase family and that this may affect their
efficacy and toxicity.8 Detailed investigation of the target

interaction landscape of KIs is therefore important to
understand their molecular mode of action and offers the
opportunity to identify new starting points for other
therapeutically interesting kinases. Many complex, high-
dimensional data sets with structure−activity relationships
(SARs) of KIs over a broad selection of kinases have become
available (Table S1).9−14 These empirical data sets may serve
as guides to explore chemical space around this drug target
family and predict (off-)target activity using advanced
computational chemistry methods, such as quantitative SAR
(QSAR) models, the similarity ensemble approach (SEA),
support vector machines, k-nearest neighbor, random forest,
naiv̈e Bayes, (deep learning) neural networks (NNs), and
principal component analysis (PCA).15−18

Advanced machine learning models promise to revolutionize
the field of drug discovery. Employing high-dimensional data
sets, these models are used to predict a wider range of
biological activities for a compound compared with traditional
drug design methods (e.g., molecular modeling, docking, and
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early QSAR models such as Hansch and Free−Wilson
analyses19). However, advanced machine learning models are
hampered in their applicability by a lack of clear interpretation
and a tendency to overfit high-dimensional data. Many of the
best-performing machine learning models are black boxes in
which it is unclear how the data are used to generate novel
hypotheses. They also require in-depth knowledge of advanced
cheminformatics and highly specialized or purpose-built
software. These technical requirements slow the implementa-
tion of the tools in the daily practice of drug discovery and
consequently prevent the research community from taking full
advantage of the wealth of data becoming available. Therefore,
there is a clear need for better tools to interpret and visualize
complex, high-dimensional SAR data sets in an easy and
intuitive manner and to predict the biological activity profiles
of novel hits for drug discovery programs. Here we present
Drug Discovery Maps (DDM), a machine learning tool that
allows the visualization and prediction of target−ligand
interaction landscapes.

■ RESULTS

t-SNE Maps the Molecular Similarity of Experimental
Drugs in Chemical Space. On the basis of the principle that
the chemical structure of a compound determines its biological
and chemical properties, a machine learning algorithm that
predicts target−ligand interaction landscapes should be able to
recognize molecular similarity between different molecules.
Traditionally, chemical similarity is measured by the Tanimoto
coefficient (Tc).20 A molecular fingerprint, which is a high-
dimensional bit vector that captures the presence or absence of
chemical groups in a molecule, is used by the Tc to calculate
the similarity between compounds. As a similarity metric the
Tc has its limitations, predominantly because it averages
differences over all bits, thereby losing information.21 Thus, we
envisioned that the data contained in the molecular fingerprint
could be used more efficiently by a machine learning algorithm
to determine molecular similarity.
In recent years, the t-distributed stochastic neighbor

embedding (t-SNE) algorithm has been shown to be a
powerful tool to visualize complex high-dimensional data sets
in diverse experimental settings.22−26 This state-of-the-art
unsupervised machine learning technique is especially powerful

Figure 1. t-SNE visualization of chemical space. (a) t-SNE embedding of the “launched” drugs in the Drug Repurposing Hub. Embedding is based
on the 4096-bit Morgan fingerprint. t-SNE settings: perplexity = 25, learning rate = 50, iterations = 10 000. Markers are colored according to 27
manually attributed chemotypes. An animation of the process of embedding is included in the supporting video. (b) t-SNE embedding of the
Published Kinase Inhibitor Set. Embedding is based on the 4096-bit Morgan fingerprint. t-SNE settings: perplexity = 50, learning rate = 50,
iterations = 10 000. Markers are colored according to 31 manually attributed chemotypes.
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in preserving local data structures in high-dimensional data. It
can be readily applied to bit strings of any length and as such is
easily applicable to chemical structures represented by
molecular fingerprints. We aimed to use t-SNE at the core of
our prediction model, where the algorithm is used to find and
cluster the most similar molecules in a large data set and
visualize that similarity clustering in two-dimensional space.
We decided to apply the t-SNE algorithm to visualize the

molecular similarity of molecules from the Drug Repurposing
Hub, an online repository containing compounds that have
been clinically tested in humans.27 We selected only the
launched drugs (2274) and manually classified them into 27
chemotypes. Morgan fingerprints (RDKit, 4096 bits, radius =
2) were generated for each of these 2274 clinical compounds
using KNIME, an open-source software package.28,29 The
fingerprints were fed into the Python implementation of the
Barnes−Hut t-SNE algorithm to generate a map of the drug-
like chemical space.30 The resulting map (Figure 1A) shows
remarkable colocalization of most of the chemotypes. As an
example, the family of penicillin-like structures at the far right
of the plot (cyan) is completely separated from all other
chemical matter. Some unannotated molecules (in gray) are
visible in the cluster, but upon detailed inspection they all
constitute β-lactams in which the sulfur is either substituted or
omitted. In addition, many other highly dense clusters are
visible at the boundaries of the map, corresponding to highly
defined chemotypes such as the rapamycin, conazole, and
oxytocin analogues. It is noteworthy that even in the
apparently less defined center of the map, clear colocalization
of similar molecules can be observed, for example, a cluster of
aspirin-like molecules (orange, near the origin). Thus, t-SNE is
able to map the chemical space of approved drugs following a
chemist’s intuition and recognizes molecular similarity in a
broad set of diverse drug-like molecules.

Next, we wanted to test whether t-SNE is still able to
recognize molecular similarity within a smaller set of drug-like
molecules that is more homogeneous and has higher molecular
similarity. To this end, we performed t-SNE-mediated
clustering of the molecules from the Published Kinase
Inhibitor Set (PKIS).31 The PKIS is a 364-member library of
molecules assembled by GSK that are all classified as inhibitors
of protein kinases. The PKIS represents 31 chemotypes, and
their activities have been measured on 200 kinases.13 The
resulting map of chemical space representing the KIs (Figure
1B) again shows clear colocalization of specific chemotypes. A
more in-depth analysis (see the Supporting Information and
Figure S1) confirms the initial visual inspection and shows high
statistical correlation between the autonomously derived
clustering and the human annotation. Of the 31 chemotypes
annotated, 23 were fully collected in one computationally
assigned cluster. For example, the orange and gold clusters on
the left of the map are completely isolated and comprise all of
the compounds of those chemotypes (Figure S1). This
illustrates how t-SNE is capable of recognizing and clustering
molecular entities in a highly specific manner and allows the
visual inspection of high-dimensional chemical structural data,
or chemical space, in an easy and intuitive way.

t-SNE Map of the Target Space of Kinases Recapit-
ulates Phylogenetic Information. On the basis of the
observation that binding sites in closely related proteins bind
similar endogenous molecules and (experimental) drugs, we
wanted to determine whether the t-SNE algorithm is capable
of clustering proteins on the basis of the chemical similarity of
their amino acids in the binding pocket. Conceptually, this
approach is analogous to proteochemometric modeling.32 To
this end, we chose the protein kinase family as the drug target
class because this is a large family of over 500 members that all
use ATP in their active site and often show cross-reactivity
toward (experimental) drugs. To quantify the similarity of

Figure 2. t-SNE visualization of kinase domains reveals phylogenetic information. (a) t-SNE embedding of physicochemical fingerprints of the
kinase domains of 535 human kinase domains. t-SNE settings: perplexity = 50, learning rate = 50, iterations = 25 000. Arbitrary t-SNE coordinates
are rotated to match the dendrogram orientation of Manning et al.34 Markers are colored according to the 12 groups defined by Manning et al., and
the background is colored on the basis of the DBSCAN-generated clustering, colored by the dominant kinase group in that cluster (blanks are
unclustered kinases). (b) Manning et al. manually curated kinome dendrogram overlaid with circles colored according to the background coloring
from the t-SNE map in (A) based on the unsupervised DBSCAN clustering.39
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kinases, we aligned the amino acid sequences of the whole
kinase domains containing the ATP-binding pocket and used a
fingerprint based on physicochemical properties of the amino
acids.33 The fingerprints were used to create a two-dimensional
map of the target space by the t-SNE algorithm. The resulting
map (Figure 2A) is striking, as it almost seamlessly recreates
the phylogenetic tree published by Manning et al. in 2002.34

To assign the kinases to clusters, the coordinates of the t-SNE
embedding were fed into the unsupervised clustering algorithm
DBSCAN (see Supporting Information for details).35 All 10
assigned clusters were significantly (P < 0.0001, hyper-
geometric test) enriched for a specific kinase group as assigned
by Manning et al. (Figure 2A). Closer inspection of some of
the kinases unassigned by DBSCAN reveals that they belong to
distinct branches of the phylogenetic tree, corresponding to
their separation from the main clusters. As an example, the four
TK kinases at the far right of the embedding (burgundy) all
belong to the JAK family (JAK1, -2, and -3 and Tyk2) but only
represent their second kinase domain. The first kinase domain
is more closely associated with the rest of the TK group and
lies just outside the DBSCAN-assigned cluster. The close
association of the second kinase domains with the RGC cluster

(colored brown) is especially striking, as these domains, just
like the RGC kinases, are considered to be pseudokinases. The
same holds true for MLKL, IRAK2, and IRAK3. Intriguingly,
the IRAK family of TKL kinases has four members, of which
IRAK1 and IRAK4 are catalytically active whereas IRAK2 and
IRAK3 are not.36 In the t-SNE embedding, the former are
located in the major TKL cluster (orange), whereas the latter
are actually assigned to the RGC-dominated cluster. MLKL
has also been shown to lack catalytic activity in at least one
report.37

Another interesting feature is the separation of a group (left
of the plot) of TKL kinases from the major cluster. This subset
features all but one of the STKR family of cell-surface-bound
receptor kinases. Upon closer inspection, even the subfamilies
of STRK1 and -2 are discernible. Strikingly, the MISR2
(AMHR2) kinase receptor is located with kinases categorized
as “Other”. This receptor kinase has an atypical DFG motif
(DLG) and as such can indeed be classified as a pseudokinase,
although phosphorylation activity has experimentally been
shown.38 The other members of the STKR family do all share
the conserved DFG motif. Finally, on the lower side of the t-
SNE plot, several AGC-colored kinases have been clustered

Figure 3. Schematic overview of the DDM workflow. In this example, the targets of erlotinib are predicted. On the basis of a t-SNE embedding
(top left), the PKIS inhibitors nearest to erlotinib are found (top right). For these, the inhibition data as measured by Elkins et al.13 are averaged
and used as an initial prediction (bottom right). These targeted kinases are then looked up in the t-SNE embedding (bottom left), where the most
similar kinases are added to yield the final prediction (center).
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with the CAMK kinases. These actually represent the second

kinase domains of the RSK family, which were also attributed

to the CAMK group by Manning et al.34

In summary, this analysis of target space of the binding site

of protein kinase domains ensured us that this embedding is

able to recognize overall similarity but also detect subtle

differences between the different binding domains of most
kinase inhibitors.

DDM Can Predict Target−Ligand Interaction Land-
scapes. On the basis of chemical and target space maps of
kinases and their inhibitors, we envisioned that these could
provide a workflow to predict the activity of novel compounds
for the entire kinome. We dubbed this approach Drug

Figure 4. Discovery of novel FLT3 inhibitors using DDM. (a) Scatter plot of all compounds and their inhibitory effects at 10 μM as measured in
the high-throughput screen. DDM-predicted molecules are marked red. (b) Structures and syntheses of the two compounds resynthesized and
tested in situ against MV4:11 cells. Reagents and conditions: (i) cyanamide, nitric acid, ethanol, 78 °C, 76%; (ii) dimethylformamide diethyl acetal,
toluene, 80 °C, 80%; (iii) K2CO3, ethanol, 78 °C, 31%; (iv) 4-aminophenol, NaOH, DMSO, 100 °C, 65%; (v) triphosgene, DCM, 40 °C; (vi) 1,4-
dioxane, 110 °C, 44% over two steps. (c) Dose−response curves for compounds 1 and 2 against recombinant FLT3 in a FRET-based activity assay.
Markers denote mean ± SD (N = 4). Dotted lines denote the 95% confidence intervals of the EC50 fits. (d) Dose−response curves of compounds 1
and 2 against MV4:11 leukemia cells. Markers denote mean ± SD (N = 3). Dotted lines denote the 95% confidence intervals of the EC50 fits. (e)
Docking poses of 1 and 2 in the 3D models of FLT3 and the corresponding 2D interaction plots.
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Discovery Maps (DDM). The bioactivity data measured by
Elkins et al.13 for the PKIS were used as the training set, as the
PKIS contains the most unique interactions of all open data
sets (Table S1). The optimization of the workflow with all of
the parameters is described in more detail in the Supporting
Information. The final architecture of the algorithm is depicted
in Figure 3 and illustrated for the EGFR inhibitor erlotinib. At
first, a t-SNE embedding is generated in which erlotinib is
mapped onto the chemical space of the PKIS (top left). This
information is used to find the nine most similar molecules
(top right). Of these, the inhibition data measured by Elkins et
al. are averaged, and all of the kinases above a threshold value
C are considered targets (bottom right). A view the inhibition
profiles for this process is included in Figure S5. These kinases
are then looked up in the target space map (Figure 2), and the
most similar kinases are appended (bottom left) to yield the
final prediction (center). As the molecular t-SNE embedding is
slightly stochastic, the described process is repeated several
times (R), and the number of times a kinase is predicted is
tracked. Our DDM model was validated using an independent
data set generated by Karaman et al.9 The resulting prediction
statistics for each of the 38 compounds in this test set are
summarized in Table S2. The average positive prediction value
(PPV) was 40% with a Matthews correlation coefficient
(MCC) of 0.21. We compared these statistics with previously
published methods and found that DDM was better than
QSAR models and equal in performance to random-forest-
based proteochemometric models (Figure S2). A receiver
operating characteristic (ROC) analysis of the performance of
DDM on this test set showed an area under the curve (AUC)
of 0.76 (Figure S3). Taken all together, these result show that
we have developed and validated a novel machine learning
model to predict kinome inhibitor landscapes.
Discovery of Novel FLT3 Inhibitors Using DDM. To

investigate the utility of the model in early drug development,
it was applied for the identification of new inhibitors for FMS-
like tyrosine kinase 3 (FLT3). FLT3 is implicated in advanced
myeloid leukemia, where approximately 30% of patients carry
an internal tandem duplication (ITD) in their FLT3 gene that
activates the kinase and acts as a driver mutation.40 Recently,
midostaurin has been approved by the FDA for the treatment
of acute myeloid leukemia (AML) patients, and several other
inhibitors are currently being tested in clinical trials. However,
fast adaptive mutations in the FLT3 gene quickly result in
drug-induced resistance of the AML, warranting the search for
novel chemotypes to inhibit this kinase. To this end, the DDM
model was used to predict the kinome−ligand interaction
landscape of a small kinase-focused library of 1152 molecules.
They were analyzed using various values for the activity cutoff
C and were ultimately filtered with C = 40% and a prediction
count of at least nine out of 10 runs in order to have a balanced
number of molecules to be tested. These stringent cutoffs
yielded a set of 44 compounds predicted to be active at FLT3.
To validate our virtual DDM screen, we performed a time-

resolved fluorescence resonance energy transfer (FRET)-based
biochemical assay with all 1152 compounds against FLT3 at an
initial concentration of 10 μM. This screen yielded 184 actives
with >50% loss of activity (16% of all compounds). Of these
compounds, the pEC50 values were measured, resulting in 135
compounds with pEC50 > 5, with a mean of 6.7 ± 0.9. Eighteen
of the 184 compounds were also identified by our DDM
screen, which results in a PPV (or hit rate) of 41% (Figure 4A,
P < 0.0001 (hypergeometric test)), which is almost 3-fold

higher than the hit rate of the biochemical assay. Interestingly,
15 of the predicted compounds demonstrated EC50 values of
<2 μM (34%, P < 0.0001 (hypergeometric test)) with an
average pEC50 of 7.3 ± 1.1; this group included the most active
compound found in the screen, crenolanib (pEC50 = 9.0). The
hit rate was nearly identical to the validation statistics for the
test set (Figure S2), where an overall PPV of 40% was
achieved. The same holds for the negative predictive value
(89%) and the sensitivity (11%). The successful application of
our model for the FLT3 screen may partially be attributed to
the high coverage for the TK family of kinases. It should be
noted that the relatively low sensitivity (11%) is a balanced
choice between minimizing the number of compounds to
screen and finding more actual hits. This can easily be tuned by
varying the cutoff parameter.
Two of the predicted compounds, 1 and 2 (Figure 4B), were

selected on the basis of their chemical properties, novelty
regarding FLT3 inhibition, and predicted interaction profiles
(vide infra). These compounds were resynthesized using
established methods (see Figure 4B and the Supporting
Information). The activity of the compounds was confirmed in
a FRET assay using recombinant human FLT3 (Figure 4C).
Compounds 1 and 2 showed a concentration-dependent
activity with pEC50 values of 7.3 ± 0.1 and 8.8 ± 0.1,
respectively. To determine the cellular activities of these two
compounds, a cell proliferation assay using the FLT3-
dependent AML cell line MV4:11 was performed. Both 1
and 2 showed clear cellular activity with pEC50 values of 6.3 ±
0.1 and 8.5 ± 0.1, respectively (Figure 4D). In summary, the
experimental validation of the hits illustrates the power of our
DDM workflow for compound selection in the lab.
Finally, to explain the potential binding mode of compounds

1 and 2, these compounds were docked using a DFG-in model
for 1 and a DFG-out structure (PDB entry 4RT7) for 2
(Figure 4E). Compound 1 binds to the hinge region with the
aminopyrimidine moiety in a fashion typical for type 1 kinase
inhibitors. Compound 2 binds in the DFG-out conformation
much like RIPK2 (PDB entry 5AR7) by forming hydrogen
bonds to the DFG motif using the urea functionality and to the
hinge region using the pyridine nitrogen.41

Kinome Activity Spectrum Prediction Using DDM. To
reduce potential toxic side effects, kinase cross-reactivity is
ideally minimized. DDM enables rapid assessment of the
predicted cross-reactivity because by default DDM predicts the
interactions with the entire kinome. Thus far, however, only
the FLT3 prediction has been taken into account. As final
validation, we tested the activities of the two inhibitors on the
predicted off-targets in biochemical assays. In addition to
FLT3, compounds 1 and 2 were predicted to be active against
35 and 33 kinases, respectively (C = 40%, R > 0.5). The off-
targets were validated using KinaseProfiler by Eurofins at 10
μM. The inhibition data per compound are shown in Table S3.
For compound 1 the predictions were 69% accurate (24 of the
35 off-targets confirmed (<50% remaining activity) with two
additional off-targets in the low 50% residual activity range).
For compound 2 the prediction was exceedingly accurate, as
26 of the 33 targets (79%) were indeed inhibited >50%. To
conclude, DDM was able to predict the kinome−inhibitor
interaction landscape with a relatively high accuracy.

■ DISCUSSION
Drug discovery is still largely an empirical process that is
challenging, time-consuming and hard.42 Multiparameter
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optimization of chemical structures, which is needed to balance
the activity and selectivity of a drug candidate, requires the
understanding of high-dimensional data sets. Machine learning
algorithms have been employed to analyze and predict
compound activity using large data sets with varying
success.15−17 Some of the major drawbacks of most computa-
tional models are the complexity of the algorithm and the
“black box” nature of the systems. Implementation and
interpretation of such systems is not trivial, and consequently,
they have not been widely adopted by the drug discovery
community.
Here we present DDM, which is an intuitive, data-driven

(bio)molecule similarity clustering procedure using state-of-
the-art machine learning techniques. The model is based on
the t-distributed stochastic neighbor embedding (t-SNE)
algorithm to generate a visualization of molecular similarity
in two dimensions.43,44 Color is used as a third dimension to
interactively visualize the biological activity or compound class
(chemotype). DDM combines two different maps. The first
map depicts the chemical space, in which compounds are
clustered on the basis of their molecular similarity, whereas in

the second map protein targets are clustered on the basis of the
chemical similarity of the amino acids making up the kinase
domain. By combining the two maps, DDM is able to predict
bioactivities of small molecules across a protein family. We
applied DDM to visualize the chemical space of currently
available drugs, the published kinase inhibitor set (PKIS) and
the target space of the protein kinase family (kinome). DDM
was able to predict the kinome activity profile of another
independent set of kinase inhibitors with comparable or better
scores than the currently available machine learning
techniques. We applied DDM to identify new hits for the
oncogene FMS-like tyrosine kinase 3 (FLT3), a validated
therapeutic target for the treatment of acute myeloid
leukemia.45 The hits were resynthesized, and their biological
activities were validated in biochemical and cellular assays.
Finally, the off-target profiles of the hits as predicted by DDM
were validated in a panel of kinase assays.
Although our model performs equally well or better than the

current computational drug discovery tools, it is envisioned
that our model can be further improved when more
comprehensive data sets become available in the public

Figure 5. Graphical user interface (left) and generated output (right) of the Python implementation of the DDM algorithm presented here. Only a
SMILES string is required as input, and the output is provided as depicted on the right. The packaged executable as well as the original Python
script have been made available online.46
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domain. In the PKIS training set, 364 inhibitors were tested at
only two concentrations on approximately 200 unique wild-
type kinases. A more expansive data set of a broader set of
more diverse compounds tested on a larger number of kinases
in a concentration−response fashion would inherently improve
the predictions generated over the entire kinome.
The added value of direct knowledge of the off-targets of

these compounds enables prioritization in medicinal chemistry
efforts, as demonstrated by the KinaseProfiler screen of
predicted off-targets. This allows medicinal chemists to rank
scaffolds on the basis of acceptable off-targets, which in turn
depends on biological questions or medical indications. The
information obtained from the docking poses of these
molecules can also be used for structure-based design, directly
incorporating the knowledge derived from the clinically
relevant mutations into the hit-optimization project.
The DDM concept presented here can easily be adapted to

work with any data set available. Because all data, algorithms,
and data processing tools used are in the public domain or
open-source, it is highly adaptable and extensible. Concrete
examples include different druggable protein classes, such as G-
protein-coupled receptors, ion channels, or nuclear hormones,
or the ability to be trained on a different molecular set
altogether, e.g., solubility, membrane permeability, metabolic
stability, pharmacokinetics, or toxicological data.
To aid in the implementation of our tool as it is presented

here, a Python-based executable including a graphical user
interface (Figure 5) has been made available online via
Github.46 The unpackaged Python script with a list of
dependencies is also available. Also included is a fully
annotated KNIME workflow to allow step-by-step execution
and analysis. This set of tools should enable the integration of
this data-driven approach into any project without any need of
investments a priori.
To conclude, the machine learning algorithm Barnes−Hut t-

SNE was successfully implemented in a drug discovery setting
to predict ligand−protein interaction landscapes. The concept
of DDM is applicable to a multitude of drug discovery
challenges, which, given the proper data set, can be used to
design a small molecule with a balanced set of physicochemical
and biological properties as required for drug candidates. It is
envisioned that DDM may make the drug discovery process
more efficient.
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