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Abstract: Real-world anomaly detection for time series is
still a challenging task. This is especially true for periodic
or quasi-periodic time series since automated approaches
have to learn long-term correlations before they are able to
detect anomalies. Electrocardiography (ECG) time series,
a prominent real-world example of quasi-periodic signals,
are investigated in this work. Anomaly detection algo-
rithms often have the additional goal to identify anomalies
in an unsupervised manner.

In this paper we present an unsupervised time series
anomaly detection algorithm. It learns with recurrent Long
Short-Term Memory (LSTM) networks to predict the nor-
mal time series behavior. The prediction error on several
prediction horizons is used to build a statistical model of
normal behavior. We propose new methods that are es-
sential for a successful model-building process and for a
high signal-to-noise-ratio. We apply our method to the
well-known MIT-BIH ECG data set and present first re-
sults. We obtain a good recall of anomalies while having
a very low false alarm rate (FPR) in a fully unsupervised
procedure. We compare also with other anomaly detectors
(NuPic, ADVec) from the state-of-the-art.

1 Introduction

Anomaly detection in time series is of increasing impor-
tance in many application areas, e.g. health care [6, 4],
sensor networks [20, 14] or predictive maintenance [7].
Anomaly detection is a very active research area (for an
overview see [3]), yet it is not easy to come up with a gen-
eral definition of an anomaly. The notion of an anomaly
greatly depends on the application area and on character-
istics of the time series in question. To learn the char-
acteristics of nominal and anomalous behavior from data
it is often necessary to apply sophisticated methods from
natural computing (evolutionary neural networks [11] and
immune systems [26]). While some anomalies are simple
to detect (e.g. a sudden spike in a relatively constant sig-
nal may be detected by simple threshold heuristics), other
anomalies are subtle and more complex to detect. This is
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especially the case for periodic or quasi-periodic time se-
ries where the anomaly may be a time-shifted peak, a peak
with a different form or other patterns which only emerge
from a long-range analysis of the signal.

Electrocardiography (ECG) time series constitute a
prominent real-world example of quasi-periodic signals.
Anomaly detection in ECG readings plays an important
role in health care and medical diagnosis. There exist
well-maintained databases, e.g. the MIT-BIH database [9],
where a large body of data is annotated with numerous
types of anomalies which are characterized and verified
by medical experts. Automated anomaly detection in such
ECG data is still a challenging topic, because the devia-
tions from nominal behavior are often subtle and require
long-range analysis. Furthermore, there are considerable
signal variations from patient to patient or even within an
ECG time series.

Long short-term memory (LSTM) networks [13], which
are a special form of recurrent neural networks (RNN) and
thus belong to the class of deep learning methods, have
proven to be particularly useful in learning sequences with
long-range dependencies. They avoid the vanishing gra-
dient problem [12] and are more stable and better scal-
able [10] than other RNN architectures. LSTMs have been
successfully advanced the state-of-the-art in many applica-
tion areas like language modeling and translation, acoustic
modeling of speech, analysis of audio data, handwriting
recognition and others [10]. We will use stacked LSTMs
as the building block for our ECG time series prediction.

It is the purpose of the present paper to investigate
whether anomaly detection in quasi-periodic ECG time
series can be trained in an unsupervised manner, hence,
without the usage of the anomaly class labels. We will
describe in Sec. 2 an LSTM prediction model which is
trained to predict over multiple horizons and is applied to
time series containing nominal and also rare anomalous
data. We observe multidimensional error vectors (one vec-
tor for each point in time) and fit a multivariate Gaussian
distribution to them. Based on the Mahalanobis distance
we can assign to each point in time a probability of be-
ing anomalous. Sec. 3 describes our experimental setup
and the MIT-BIH Arrhythmia Database used in our exper-
iments. Sec. 4 presents and discusses our results, while
Sec. 5 concludes.
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1.1 Related Work

Anomaly detection in general has been done with meth-
ods from machine learning [3] and more precisely from
natural computing: Han and Cho [11] and other works
cited therein use evolutionary approaches in optimizing
neural networks for the task of intrusion detection. Kieu
et al. [15] use deep learning (LSTM, autoencoder) for
anomaly detection. [27] uses a multi-resolution wavelet-
based approach for unsupervised anomaly detection. Sti-
bor et al. [26] describe an immune-system approach to
anomaly detection: They tackle a problem prevalent in
anomaly detection (and relevant also for the ECG case):
Often only nominal data are available during training, nev-
ertheless the model should later detect anomalies as well.
This task, known as one-class classification or negative
selection, is solved in [26] with an immune-system ap-
proach. In our case we have an unknown, small number
of anomalies embedded in nominal data. We describe in
Sec. 2.5 a statistical test to find anomalies in an unsuper-
vised, threshold-free manner.

Much work is devoted to anomaly detection in ECG
readings: Several authors use multi-resolution wavelet-
based techniques [23, 27]. A novelty-search approach on
ECG data is taken in [18] in order to perform unsupervised
anomaly classification. Sivaraks et al. [25] use motif dis-
covery for robust anomaly detection.

The works of Malhotra [19] and Chauhan [4] are clos-
est to our present approach. They describe nicely the gen-
eral idea of LSTM based prediction and their application
to ECG, motor sensor or power-consumption time series.
But the big drawback of [19, 4] is that they need a manual
and supervised separation into up to six data sets: training,
validation, test sets which are further subdivided into nom-
inal & anomalous subsets. This means that for a real-world
application the ECG data for a new person would need
to undergo an expert anomaly classification prior to any
training. This will be highly unpractical in most applica-
tion scenarios. Our method instead aims at using the whole
body of data for a person and train the LSTMs, without the
necessity to have supervised anomaly information.

2 Methods

2.1 LSTM for Time Series Prediction

The learning task is formulated as a time series forecast-
ing problem. Hence, we attempt to train a model which is
able to predict future values in the time series. The intu-
ition behind this approach is that the usual quasi-periodic
patterns in the ECG time series should be predictable with
only small errors, while abnormal behavior should lead to
large deviations in the predictions. Although the presented
methodology is only applied to ECG data in this paper, it
is sufficiently general to be applied to other (predictable)
time series as well.

Data Preparation Consider a d-dimensional time series
of length T . In a first step, it is often recommendable to
scale or normalize the individual dimensions of the time
series. In our setup, each dimension of each ECG sig-
nal are scaled into the range [−1,1]. The training and test
samples are generated by extracting sub-sequences of suit-
able length from the original time series. This is done by
sliding a window of length W with a lag of 1 over the
time series and collecting the windowed data in a tensor
D ∈RT ′×W×din , where T ′ is the number of sub-sequences.
Usually, one would select all d dimensions of the time se-
ries, so that din = d. Then, the first 80% of the samples
of D are selected to form the training data Xtrain. The
remaining 20% are used as a test set Xtest to later com-
pute an unbiased error estimate. While the inputs are din-
dimensional, the output-targets for each time step have the
dimension m, since one can select for one time series mul-
tiple (m) prediction horizons. Technically, it is also possi-
ble to predict several time series dimensions with dout ≤ d
simultaneously in one model, however, we found in our
experiments that the results do not improve in this case
(for the investigated ECG time series data). The targets
~yt ∈ Rm are future values of the selected signal at times
t + hi for i ∈ {1, ...,m}, where the horizons are specified
in H = (h1,h2, . . . ,hm). Since we follow a many-to-many
time series prediction approach, where the algorithm per-
forms a prediction at each instance of time t, the tensor
containing the target signals has the shape RT ′×W×m with
T ′ = T −W −max(H)+ 1. T ′ is the same for the input-
and output tensor. As before, the first 80% of the targets
are used for training (Ytrain) and the remaining targets for
the test set (Ytest).

Model Architecture and Training A stacked LSTM ar-
chitecture [13] with L= 2 layers is used to learn the predic-
tion task. Each layer consists of u = 64 units. A dense out-
put layer with m units and a linear activation generates the
predictions for the specified prediction horizons in H. The
net is trained with the sub-sequences of length W taken in
mini-batches of size B from the training inputs Xtrain and
targets Ytrain. 10% of the training data are held out for the
validation set. The LSTM model is trained by using the
Adam optimizer [16] to minimize the mean-squared-error
(MSE) loss. Other loss functions, such as log-cosh (loga-
rithm of the hyperbolic cosine) and MAE (mean absolute
error) were tested as well and produced similar results for
our data. Early stopping is applied to prevent overfitting
of the model and to reduce the overall time required for
the training process. For this purpose the MSE on the val-
idation set is tracked. For most of the investigated time
series, 10-20 epochs are sufficient to reach a minimum of
the validation error.

2.2 Modelling the Residuals with a multivariate
Gaussian Distribution
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Figure 1: Gaussian fit without and with the removal of out-
liers in the tails of the error distribution. Exemplarily, this
is shown for one dimension of the overall error distribu-
tion. The blue curve shows the empiric error distribution.
The red curve depicts the estimated Gaussian.

Computing the Prediction Errors for the full Time Se-
ries After the LSTM prediction model is trained, the
whole time series X∈RT×din of length T is passed through
the model and a tensor Ŷ of shape RT×m is predicted.
Then, the prediction errors E = Y− Ŷ are calculated,
where Y contains the true target values for the horizons
in H. Now, each row i in the matrix E represents an error
vector~ei ∈ Rm.

Removing Outliers from the Prediction Errors We no-
ticed in our initial experiments that it was not possible to
find good Gaussian fits for the individual dimensions of
the prediction errors in E. An example for this is shown in
Figure 1, upper part. This was due to the fact that the tails
of the error distributions contained many outliers, which
significantly distorted the estimated fit. Hence, we decided
to remove the outliers in the tails of each dimension (only
during the Gaussian modeling phase). We could find good
solutions by discarding the upper and lower 3% quantile
in each dimension. In our experiments we observed that
this approach usually removes slightly more than 20% of
the data records.

Estimating a multivariate Gaussian Distribution After
removing the outliers from the prediction errors E, the er-
rors are roughly Gaussian distributed and the parameters
of a multivariate Gaussian distribution can be estimated.
For this purpose the covariance matrix Σ and mean vec-
tor ~µ are computed for the cleaned matrix E. Then, the
squared Mahalanobis distance

M(~ei) = (~ei−~µ)T
Σ
−1(~ei−~µ) (1)

to the mean vector~µ is determined for each error vector~ei
in E.

2.3 Anomaly Detection

For most data points in the time series the corresponding
Mahalanobis distance will be comparably small, since they
are located close to the mean of the distribution. On the
other side, unusual patterns in the error vectors~ei – such as
large errors in one or more dimensions – will result in large
values in the Mahalanobis distance. Therefore, the Maha-
lanobis distance can be used as an indicator for anomalous
behavior in the time series signal. In our LSTM-AD al-
gorithm, points with a Mahalanobis distance larger than
a specified anomaly threshold will be flagged as anoma-
lous. Figure 2 shows exemplarily the Mahalanobis dis-
tance over time for a selected ECG signal. Depending on
the choice of threshold, more or less points will be clas-
sified as anomalous. If the threshold is set too small, the
algorithm will likely produce many false detections. If the
threshold is chosen too large, many anomalies might be
missed. Ideally, a threshold can be found which allows to
identify all anomalies without any false detections. How-
ever, in practice, one usually has to trade off true and false
detections and select the threshold according to the own
requirements.

2.4 Window-Based Error Correction

Initially, we could not obtain very good results when run-
ning our algorithm on several example ECG time series.
The Mahalanobis distance signal was rather noisy and
could not be used to distinguish between nominal and ab-
normal patterns in the data. In Figure 2 (top) this problem
is visualized for one example time series. Further investi-
gation showed that the predictions of the LSTM network
were good in general, but not sufficiently accurate near the
heart beat peaks where the prediction had been slightly
shifted (up to 10 time steps) forwards or backwards com-
pared to the real signal. We could identify that the quasi-
periodic character of most ECG signals (small but ubiq-
uitous frequency changes in the heart beat) is the main
source of this problem. The following solution for this
problem is proposed: In order to address the variability in
the frequency of the signal, small corrections in the predic-
tions of the individual horizons will be permitted. For each
output dimension k ∈ {1, . . . ,m} the target values yt,k are
compared to the neighbored predictions ŷ ∈ Ŷ (win)

t,k and the
prediction with the smallest absolute error is effectively
taken:

ŷt,k← argmin
ŷ∈Ŷ (win)

t,k

|yt,k− ŷ| (2)

Ŷ (win)
t,k = [ŷt−ck,k, . . . , ŷt,k, . . . , ŷt+ck,k] (3)

We found that reasonable results can be achieved with
window parameters ck up to a length of 10, depending on
the prediction horizon hk:

ck = min(hk,10). (4)



Figure 2: Mahalanobis distance over an ECG time series, before and after the window-based error correction method is
applied.

The window-based error correction is applied right after
the LSTM prediction of Ŷ and before the prediction errors
E are computed in Sec. 2.2.

Although this approach corrects the predictions of the
LSTM network explicitly with the true target values Y of
the time series, it is not supervised in the sense that no
anomaly labels are presented to the algorithm at any time
of the training and correction process. As will be shown in
Sec. 4, we could significantly improve the performance of
LSTM-AD utilizing this correction step.

2.5 Threshold-free Anomaly Detection

For determining which points are anomalous, we extend
Rosner’s outlier test [24] to a multivariate scenario. This
means that we want to test the hypothesis:

H0 : There are no anomalies in the data.
Ha : There are up to ν percent of anomalies in the data.

We assume that the residuals of each output k with k ∈
{1, ...,m} are approximately normal distributed. Based on
these residuals we iteratively calculate a multivariate nor-
mal distribution with mean ~µ and covariance matrix Σ. In
a next step we calculate the differences of an observed vec-
tor compared to this underlying multivariate normal distri-
bution. We do so by calculating the squared Mahalanobis
distance according to Eq. (1), which can be assumed to be
χ2-distributed with m degrees of freedom.

The proposed algorithm selects the highest value of
the Mahalanobis distance M j = maxi M(~ei) and evaluates
whether this value is above the 1−α quantile of the χ2

m-
distribution. We refer to this quantile for the ease of nota-
tion as χ2

m(1−α). If so, the observation is considered to
be an anomaly. A row window around the anomaly index
is then deleted from the data set and the algorithm pro-
ceeds with calculating the multivariate normal distribution
based on the reduced data set. The procedure stops when

at most ν% of the data were labeled as an anomaly or if
M j ≤ χ2

m(1−α).
The procedure is summarized in Algorithm 1.

Algorithm 1 Extended Rosner test
1: procedure TEST(ν ,α,D) . ν : maximal percentage

of anomalies; D ∈ Rn×m: set of residuals, 1−α confidence
level

2: N← dν ·ne
3: for j = 1,2, . . . ,N do
4: ~µ ← MEAN(D), Σ← COV(D)
5: M j←maxi M(~ei) . M acc. to Eq. (1) for all~ei ∈D
6: if M j ≥ χ2

m(1−α) then
7: D ←D \{a window around index of M j}
8: end if
9: end for

10: Set q to the last index where M j > χ2
m(1−α)

11: return {M1,M2, . . . ,Mq} and corresp. row indices.
12: end procedure

3 Experimental Setup

3.1 The MIT-BIH Arrhythmia Database

For our experiments we use the MIT-BIH Arrhythmia
database [9, 21, 22], which contains two-channel electro-
cardiogram (ECG) signals of 48 patients of the Beth Is-
rael Hospital (BIH) Arrhythmia Laboratory. Each record-
ing has a length of approximately half an hour, which
corresponds to 650 000 data points each. The two chan-
nels recorded are the modified limb lead II (MLII) and a
modified lower lead V5. For our LSTM-AD algorithm,
both the MLII and V5 signal will be used as inputs of
the LSTM model and only the MLII signal is predicted
for the specified horizons.1 The individual signals have a

1We also performed experiments where both signals (MLII and V5)
are predicted, but could not observe any noticeable improvement.



Table 1: Anomaly types in the 13 ECG signals considered
for the experiments. The descriptions are taken from [21].
The second column shows the overall number of the vari-
ous anomaly types for the 13 considered ECG signals.

Code # Description
A 44 Atrial premature beat
V 53 Premature ventricular contraction
| 17 Isolated QRS-like artifact
a 6 Aberrated atrial premature beat
F 2 Fusion of ventricular and normal beat
x 8 Non-conducted P-wave (blocked APC)

quasi-periodic behavior, with differing heart-beat patterns
for each subject.

There are a multitude of different events in all ECG time
series, which were labelled by human experts. The whole
list of heart beat annotations can be viewed at [21]. For
this initial investigation which presents first results of our
unsupervised approach, we decide to limit ourselves to all
time series with 50 or fewer events. Overall, 13 time se-
ries will be considered for our experiments. The selected
time series contain 130 anomalous events from 6 anomaly
classes, which are listed in Table 1. Since only one point
is labelled for each anomaly, we place an anomaly win-
dow of length 600 around each event, which roughly cor-
responds to the length of one heart beat before and after
the labeled point. A more detailed database description
can be found in [22].

3.2 Parameterization of the Algorithms

All algorithms compared in this work require a set of pa-
rameters, which are – if not mentioned otherwise – fixed
for all experiments. For each algorithm an anomaly thresh-
old can be set, which specifies the sensitivity of the algo-
rithm towards anomalies and which trades off false detec-
tions (false positives) and missed anomalies (false nega-
tives). This threshold is usually set according to the re-
quirements of the anomaly detection task – allowing either
a higher precision or a higher recall.

LSTM-AD We implemented our proposed algorithm
using the Keras framework [5] with a TensorFlow [1]
backend. The parameters of the algorithm are summa-
rized in Table 2. Most of the parameters are related to the
stacked LSTM network. We did not systematically tune
the parameters.

ADVec Twitter’s ADVec algorithm [28] is a time series
anomaly detection algorithm, which is based on the gen-
eralized ESD test and other robust statistical approaches.
There are mainly two parameters which have to be pro-
vided: The first parameter α represents the level of statis-
tical significance with which to accept or reject anomalies.
Although we did not tune the parameter extensively, we
found the α = 0.05 to deliver the best results. The sec-
ond parameter maxanoms specifies the maximum number

Parameter value Parameter value
H (1,3, . . . ,47,49) L MSE
L 3 u (64,64)
B 2048 W 80

optimizer ADAM αinit 0.001
din 2 dout 1 (MLII)

Table 2: Summary of the the parameters used for the
LSTM anomaly detector.

of anomalies that the algorithm will detect as a percentage
of the data. This parameter is used as anomaly threshold.

NuPic Numenta’s anomaly detection algorithm [8] has
a large set of parameters which have to be set. Although
the parameters can be tuned with an internal swarming
tool [2], we decided to use the standard parameter set-
tings recommended in [17], since the time-expensive tun-
ing process is not feasible for the data considered in this
work. NuPic outputs an anomaly likelihood for each time
series point in the interval [0,1], which is suitably thresh-
olded to control the sensitivity of the algorithm.

3.3 Algorithm Evaluation

In order to evaluate and compare the performance of our
proposed LSTM-AD algorithm and the two other algo-
rithms, several common performance quantities are used
in this paper. Similarly to ordinary classification tasks,
a confusion matrix can be constructed for each time se-
ries, containing the number of true-positives (TP), false-
positives (FP), false-negatives and true-negatives (TN).
TP indicates the number of correctly identified anomalies,
whereby only one detection within the anomaly window
(Sec. 3.1) is counted. All false detections outside any
anomaly window are considered as false-positives (FP)
and each anomaly window missed by an algorithm will be
counted as a false negative (FN). All other points are con-
sidered as true-negatives (TN). From the confusion ma-
trix, the additional well-known metrics precision p, re-
call r (true-positive rate, TPR) can be derived, as well as
the false-positive rate (FPR), the positive likelihood ratio
(PLR), and the F1-score, which are defined as:

FPR =
FP

FP+T N
, PLR =

T PR
FPR

, F1 =
2p · r
p+ r

. (5)

4 Results & Analysis

Firstly, we confirm that our LSTM models do not overfit,
since the training and test set errors are for all time series
nearly the same. The median of all such training and test
errors is 2.91 ·10−3 and 3.43 ·10−3, respectively. The first
80% of each time series is used as training set and the re-
maining 20% is used subsequently for the test set.

The anomaly results for the ECG readings are summa-
rized in Table 3 and Table 4. In Table 3, the anomaly



threshold for the Mahalanobis distance was tuned individ-
ually to maximize the F1-score for each ECG signal. As
seen in the table, the Mahalanobis distance is generally
a good indicator for separating nominal from anomalous
behavior in the heartbeat signals, if a suitable threshold is
known. For all time series a recall value of 0.5 or larger
can be observed and with one exception, also the F1-score
exceeds the value 0.5. On average, a F1-score of approxi-
mately 0.81 can be achieved for all time series. Note that
all FPRs are smaller than 3 ·10−5.

Table 3: Results for all ECG time series with less than
50 anomalies (in total 13). For these results, the anomaly
threshold is chosen for each time series individually, so
that the F1-score is maximized.

No. threshold TP FN FP Prec Rec F1 FPR PLR
∗105 /105

1 49.31 17 17 14 0.55 0.50 0.52 2.15 0.23
2 71.31 6 0 4 0.60 1.00 0.75 0.62 1.62
4 11.25 1 1 0 1.00 0.50 0.67 0.00 Inf
9 27.12 15 13 3 0.83 0.54 0.65 0.46 1.16

10 14.96 33 7 6 0.85 0.82 0.84 0.92 0.89
11 60.75 1 0 0 1.00 1.00 1.00 0.00 Inf
12 59.18 2 0 0 1.00 1.00 1.00 0.00 Inf
13 116.93 6 0 0 1.00 1.00 1.00 0.00 Inf
15 99.74 5 0 5 0.50 1.00 0.67 0.77 1.30
17 40.02 1 0 0 1.00 1.00 1.00 0.00 Inf
20 75.40 1 0 0 1.00 1.00 1.00 0.00 Inf
21 30.30 1 0 0 1.00 1.00 1.00 0.00 Inf
22 121.42 3 0 7 0.30 1.00 0.46 1.08 0.93

mean – 7 2 3 0.82 0.87 0.81 0.46 Inf
Σ – 92 38 39 0.70 0.71 0.70 0.46 1.53

Since the anomaly threshold is used to trade off false-
positive and false-negatives (precision and recall), one can
vary the threshold in a certain range and collect the results
for different values. This is done in Figure 3, which also
shows the results for different thresholds for ADVec and
NuPic. It has to be noted that ADVec accounts only for
fixed-length seasonalities, it is not built for quasi-periodic
signals as they occur in ECG readings, so it is quite under-
standable that it has only low performance here.

Table 4 shows the results which are obtained when no
prior knowledge about the anomaly threshold is assumed.
Instead, the threshold is calculated automatically and in-
crementally by our approach from Sec. 2.5 which is in-
spired by Rosner’s ESD test. The average precision and
F1 are lower than in Table 3 since the false positives (FP)
are higher.

In Figure 4, two excerpts of time series No. 13 (left)
and No. 10 (right) with the detections of our LSTM-AD
algorithm, NuPic and ADVec are exemplarily shown. In
both examples it can be seen that LSTM-AD detects all
indicated anomalies, while NuPic and ADvec only detect
two and one anomaly, respectively. Additionally, the other
two algorithms produce several false positives.

The importance of our proposed window-based error
correction method (Sec. 2.4) is illustrated in Figure 2 for
ECG signal No. 13: If no window-based error correction
is applied, the obtained Mahalanobis distance cannot be
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Figure 3: Precision-Recall plot for LSTM-AD, NuPic and
ADVec. Precision and recall are computed over the sum
of TP, FP, FN of the 13 ECG time series. For all three
algorithms, each point is generated by scaling the individ-
ual best thresholds up and down by a common factor. For
LSTM-AD, the best thresholds are reported in Table 3.

Table 4: Results for the considered 13 ECG signals for the
threshold-free method based on Rosner’s ESD test.

ECG No. threshold TP FN FP Prec Rec F1 FPR PLR
∗105 /105

1 11.30 7 27 3 0.70 0.21 0.32 0.46 0.45
2 11.30 5 1 4 0.56 0.83 0.67 0.62 1.35
4 11.30 2 0 4 0.33 1.00 0.50 0.62 1.62
9 11.30 10 18 0 1.00 0.36 0.53 0.00 Inf

10 11.30 6 34 4 0.60 0.15 0.24 0.62 0.24
11 11.30 1 0 8 0.11 1.00 0.20 1.23 0.81
12 11.30 2 0 5 0.29 1.00 0.44 0.77 1.30
13 11.30 6 0 4 0.60 1.00 0.75 0.62 1.62
15 11.30 4 1 5 0.44 0.80 0.57 0.77 1.04
17 11.30 1 0 7 0.12 1.00 0.22 1.08 0.93
20 11.30 1 0 5 0.17 1.00 0.29 0.77 1.30
21 11.30 1 0 8 0.11 1.00 0.20 1.23 0.81
22 11.30 3 0 7 0.30 1.00 0.46 1.08 0.93

mean 11.30 3 6 4 0.41 0.80 0.41 0.76 Inf
Σ 146.92 49 81 64 0.43 0.38 0.40 0.76 0.50

suitably used to distinguish between nominal and anoma-
lous patterns in the displayed ECG data. Only after ap-
plying our approach, a better signal-to-noise ratio is es-
tablished which allows to perfectly separate the anomalies
from the nominal points. For most of the investigated ECG
readings we found that the window-based error correction
significantly improves the signal-to-noise ratio in the Ma-
halanobis distance. Table 5 shows: The average F1-score
increases from F1=0.50 when no window-based error cor-
rection is applied to F1=0.81.

In Table 6, various measures are listed for the individual
anomaly classes. The anomaly types a, F and x can all be
detected by LSTM-AD. Also for the anomaly class V a
high recall can be achieved. However, the two remaining
types appear to be hard to detect for our algorithm.

5 Conclusion & Future Work

We have presented a fully unsupervised method to detect
anomalies in ECG readings. This method relies on an ac-
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Table 5: Comparison of the results for all considered time
series, with and without the window-based error correc-
tion, as described in Sec. 2.4. The last column F1(Corr)
is copied from Table 3. The remaining columns depict
the quantities which are obtained, if no window-based er-
ror correction is applied (thresholds chosen such that F1 is
maximized).

ECG No. threshold TP FN FP Prec Rec F1 F1(Corr)
1 20.60 12 22 23 0.34 0.35 0.35 0.52
2 5.83 2 4 2 0.50 0.33 0.40 0.75
4 7.03 1 1 0 1.00 0.50 0.67 0.67
9 16.83 13 15 10 0.57 0.46 0.51 0.65

10 16.21 28 12 2 0.93 0.70 0.80 0.84
11 40.60 1 0 0 1.00 1.00 1.00 1.00
12 28.48 1 1 1 0.50 0.50 0.50 1.00
13 93.83 5 1 130 0.04 0.83 0.07 1.00
15 87.97 2 3 5 0.29 0.40 0.33 0.67
17 35.90 1 0 38 0.03 1.00 0.05 1.00
20 25.10 1 0 1 0.50 1.00 0.67 1.00
21 32.31 1 0 0 1.00 1.00 1.00 1.00
22 77.33 2 1 37 0.05 0.67 0.10 0.46

mean – 5 4 19 0.52 0.67 0.50 0.81
Σ – 70 60 249 0.22 0.54 0.31 0.70

Table 6: Various metrics for 5 different anomaly classes.
The threshold was tuned individually for each time series
by attempting to maximize the F1-score.

TP FN Prec Rec F1 FPR ∗105 PLR /105

A 23 21 0.65 0.52 0.58 0.14 3.64
V 44 9 0.73 0.83 0.78 0.19 4.36
| 9 8 0.63 0.53 0.58 0.06 8.49
a 6 0 0.79 1.00 0.88 0.02 53.44
F 2 0 0.65 1.00 0.79 0.01 80.16
x 8 0 0.73 1.00 0.85 0.03 29.15

curate LSTM predictor to learn the nominal behavior of
the ECG for several prediction horizons. By learning the
error distribution between predicted and perceived values,
a multivariate normal error model for the nominal data is

built. When applying the model, anomalous events have a
high probability of being detected through an unusual high
Mahalanobis distance.

Our method is unsupervised in the sense that no
anomaly class labels are needed for training the algorithm.
In fact, it is even not necessary that anomalous events are
present at all in the training data, i.e. our algorithm can
operate as a one-class classificator. We checked this by
repeating the experiment leading to Table 3, but this time
removing all data around anomalies during LSTM train-
ing. When using the trained model as anomaly detector
on all data, it worked as accurate as in Table 3, the mean
F1-score being now F1 = 0.83.

We achieve for the ECG readings these high precision,
recall and F1-values (on average higher than 80%, see Ta-
ble 3), if we tune the final threshold for the Mahalanobis
distance such that F1 is maximized. Admittedly, this last
step is not unsupervised, since we calculate the confusion
matrix based on the true anomaly labels.

The alternative unsupervised case based on Rosner’s
test (Sec. 2.5 and Table 4) is weaker in terms of preci-
sion and recall. This may be due to the fact that the cur-
rent error data do not fulfill the assumption of being nor-
mally distributed and therefore also the assumption of a
χ2-distribution is violated. This results in the χ2-criterion
giving no useful thresholds.

It has to be noticed that the measure ’Mahalanobis dis-
tance’ has the same discriminative power in both cases. It
is only that the final threshold is not adjusted optimally for
the individual time series in the alternative case. Viewed
from the practitioner’s perspective, it may be acceptable to
start with a non-optimal threshold and adjust it in a human-
in-the-loop approach. However, a fully unsupervised high-
quality method would be nicer.

We have shown that the window-based error correction
is essential to achieve a Mahalanobis distance graph where
the anomaly cases clearly stand out (Fig. 2 and Table 5).



Our LSTM-AD algorithm outperformed two state-of-
the-art anomaly detection algorithms (NuPic and ADVec)
on the investigated ECG readings, achieving a higher pre-
cision and recall over a large range of anomaly thresholds.

In this work we have presented first results of an un-
supervised anomaly detector suitable for ECG readings or
other quasi-periodic signals. The results are encouraging,
but there is still room for improvement. Possible future
works include: 1) Improving the modeling step such that
the nominal error distribution comes closer to a Gaussian
shape and hence the nominal Mahalanobis distance closer
to a χ2-distribution. Then the unsupervised extended Ros-
ner test can be expected to work better. 2) To do so, one
has to address the problem of non-stationarity in the ECG
readings, e. g. by applying suitable preprocessing steps to
reduce the effect of signal quality changes. 3) Enrich the
model by multi-resolution approaches to span larger pre-
diction horizons on a coarser scale.
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