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Abstract—Geometric Deep Learning (GDL) methods have
recently gained interest as powerful, high-dimensional models
for approaching various geometry processing tasks. However,
training deep neural network models on geometric input requires
considerable computational effort, even more so if one considers
typical problem sizes found in application domains such as
engineering tasks, where geometric data are often orders of
magnitude larger than the inputs currently considered in GDL
literature. Hence, an assessment of the scalability of the training
task is necessary, where model and data set parameters can
be mapped to the computational demand during training. The
present paper therefore studies the effects of data set size and the
number of free model parameters on the computational effort of
training a Point Cloud Autoencoder (PC-AE). We further review
pre-processing techniques to obtain efficient representations of
high-dimensional inputs to the PC-AE and investigate the effects
of these techniques on the information abstracted by the trained
model. We perform these experiments on synthetic geometric data
inspired by engineering applications using computing hardware
with particularly recent graphics processing units (GPUs) with
high memory specifications. The present study thus provides
a comprehensive evaluation of how to scale geometric deep
learning architectures to high-dimensional inputs to allow for
an application of state-of-the-art deep learning methods in real-
world tasks.
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I. INTRODUCTION

Geometric deep learning (GDL) methods have recently
gained interest as powerful, high-dimensional models for the
application in geometry processing tasks such as segmentation
[1], classification [2], or object recognition [3], and others [4],
[5]. The increasing availability of 3D data as well as powerful
computing hardware drive the adaption of successful deep
learning architectures to the 3D- and non-Euclidean domain in
general [6]. However, training deep neural network models on
geometric input requires considerable computational effort and
often real-world input data sizes are prohibitively large. For
example, in application domains such as engineering, where
3D data is ubiquitous, typical problem sizes are orders of
magnitude larger than the inputs currently considered in GDL
literature. For these domains it is necessary to assess whether
deep learning models can be applied in their current form, and

where further development is necessary to harness the power
of recent architectures for solving real-world tasks.

Central to an efficient processing of 3D data is the chosen
data representation. Here, various approaches have been pro-
posed [4], [5]: For example, volumetric approaches represent
shapes as occupied voxels in a 3D grid, which due to its
Euclidean structure allows for an adaption of deep learning
concepts from image processing to 3D input. However, com-
putational and storage demand for voxel representations is
cubic in the input size, which severely limits the maximum
achievable resolution [5], [7]. More efficient representations
have been proposed in the non-Euclidean domain, such as
polygon meshes and point clouds.

Polygon meshes represent 3D shapes as vertices and their
Cartesian coordinates, with an embeddeded description of
the connectivity between these vertices. Meshes are popular
due to their efficiency in describing surfaces with high-
resolution, however, translating successful concepts like shift-
invariance from the 2D to the non-Euclidean domain is not
straightforward [6]. Attempts to adapt these concepts have
been made by replacing convolutional filters with local patch
operators in the 3D domain [8], [9]. Yet, calculating local
operators per node is computationally expensive and becomes
infeasible for large mesh sizes. On the other hand, mesh-based
approaches that do not define local operators on the shape such
as spectral approaches are currently limited to topologically
similar shapes, due to requirements like constant connectivity
or close correspondence between vertices (e.g., [10]).

Point clouds have recently been introduced as powerful and
efficient representations of shapes for geometric deep learning
[11], [12]. In comparison to voxel or mesh representations,
they are memory efficient while being able to preserve a
high amount of geometric detail. Architectures proposed for
the processing of point clouds do not require topological
similarity in the input such as mesh-based models. Point
clouds have further been popularized through advances in data-
acquisition and 3D scanning technologies, especially in the
fields of computer vision, robotics and autonomous driving,
which use point clouds for the representation of objects and
scenes [13]–[15]. Generating point clouds is computationally
cheap, especially compared to other data generation algorithms



such as meshing: they may either be acquired directly from
physical objects via various data-acquisition techniques that
typically require only minor post-processing for denoising and
interpolation of occluded regions [16]–[18]; on the other hand,
point clouds may be acquired from other 3D representations
through virtual sampling of surfaces or by re-using mesh
vertices, where the latter approach allows to preserve valuable
information like surface normals.

The discussed characteristics make point clouds a promising
representation, for example, for 3D-data from computer aided
engineering (CAE), where shapes are typically represented as
surface meshes. For CAE data, point clouds can be sampled
virtually from an initial representation based on meshes or
from non-parametric functions (e.g. NURBS) [19]. The quality
of the obtained point cloud and how well it can be used in
machine learning tasks then depends on the characteristics of
the sampling algorithm, in particular, the density and regularity
of the sampling, which determines how and which geometric
information is preserved. Therefore, algorithm choice is es-
sential for the performance of the model subsequently trained
on the data.

Yet, even though point clouds are a promising data repre-
sentation in geometric processing they also pose challenges for
GDL. In particular, point clouds can be considered unordered
sets, which requires operations on point clouds to be invariant
to permutations in the ordering of input points. Several ar-
chitectures adressing this problem using permutation-invariant
operations wihtin the network have been proposed [11], [20],
[21]. A second challenge is the high dimensionality of the in-
put, especially if a high resolution in the input representations
is required. In CAE applications this may generally be the
case, even more so if the machine learning task to be solved
is to learn a predictive or regression model from data [22].

Currently, the scalability of point cloud GDL architectures
to input sizes allowing for the application in data analysis tasks
typically encountered in various application domains is lack-
ing. The present paper therefore investigates how point cloud
models scale for increasing input size, where we extend an ex-
isting point cloud architecture and loss function to investigate
a (re-)sampling scheme as a preprocessing technique in order
to encode relevant geometric information more efficiently.The
architecture considered is a point cloud autoencoder (PC-
AE) presented in [21]. Autoencoders learn low-dimensional,
latent representations of complex input data, either in order to
identify latent variables underlying the data generation process
or to use the low-dimensional representations as input to fur-
ther machine learning tasks [23]. We perform experiments on
synthetic geometric data inspired by engineering applications,
where we have full control over the data generation process.
We evaluate whether the PC-AE is able to recover the latent
features underlying the data generation process as a function
of the sampling scheme used. In particular, by focusing on
the learning of constantly varying features within an object
class we evaluate to what extend the learned variables are
able to represent such finer geometric features, which may be
relevant in tasks such as predictive modeling. We complement

our experiments with an evalution of practical running times
on different computing hardware, in particular recent graphics
processing units (GPUs) with high memory specifications. The
present study thus provides a first evaluation of how targeted
sampling of input data can be used to scale geometric deep
learning architectures to high-dimensional inputs to allow for
an application of state-of-the-art deep learning methods in real-
world tasks.

II. LITERATURE REVIEW

In order to address the scalability of a PC-AE to high-
dimensional point clouds, it is important to first identifiy what
are the constraints for training such models. Mandikal and
Babu explore in [24] a deep learning architecture for handling
the reconstruction of dense 3D point clouds from RGB images.
The authors point out that scaling the size of the point clouds
lead to a corresponding increase in the number of parameters
to be trained, therefore also the difficulty to abstract the
dataset. Furthermore, permutation-invariant loss functions such
as the Chamfer Distance (CD) [11], [21], [25], are computed
point-wise and thus might lead to prohibitive computational
costs when applied to large point clouds. Starting with the
first, in the following we will therefore review existing GDL
architectures for processing point clouds with a focus on the
number of model parameters and how this number scales as a
function of input size.

Qi et al. were the first to propose an architecture taking
point clouds as inputs, called PointNet [11], which consists
of multiple fully connected layers with a pre-processing step
to make the input representation order invariant. The work
was later extended in [20] to PointNet++, which consists of
stacked PointNet architectures and a clustering operation to
support the identification of local features. For such networks
with only fully connected layers and bias, we calculate the
number of free parameters, Np, as

Np = H1(Ni + 1) +

L−1∑
l=1

Hl(Hl–1 + 1) +Ni(HL + 1), (1)

where L is the number of layers, Hl is the number of neurons
in the layer l and Ni is the size of the input. Hence, the number
of model parameters grows linearly in the input size such that
training effort grows linearly in the size of point clouds and
depends on the number of neurons in the layers adjacent on
the input and output only. In practice, due to the spatial nature
of the input, the number of parameters has to be multiplied by
a factor of three because each Euclidean dimension is being
treated by an individual set of fully connected layers.

In order to address unsupervised learning tasks, while sig-
nificantly reducing network size, Yang et al. proposed an au-
toencoder architecture named FoldingNet [26]. On the encoder
side, FoldingNet uses the PointNet architecture, while the
decoder architecture is fundamentally different from previous
approaches and uses two 3-layer perceptrons to perform an
operation analogous to folding a 2D grid into the format of the
output shape in order to generate a point cloud from the latent



representation. The authors claim that the approach reduced
the number of parameters in the decoder to 7 % of the number
achieved with conventional fully connected layers.

The PC-AE proposed by Achlioptas et al. in [21] is an
example of the most recent architectures, where convolutions
substitute fully connected layers and the input data remains in
point cloud format. The encoder-part of the network consists
of five layers with 1-D convolutions followed by ReLU
activation functions, which is in turn followed by a max
pooling operation over the calculated features (Figure 1). The
unidimensional convolutions allow the network to address
each point individually, which, together with the max pooling
operation, makes the network order-invariant, overcoming one
of the major difficulties in data processing with point clouds.

Fig. 1. Representation of the architecture proposed by Achlioptas et al. in
[21] with indication of the filter sizes and activation functions.

Analogous to Equation 1, we can calculate the number of
parameters in the PC-AE with respect to input size, Ni, and
assuming a point cloud defined in 3D Euclidean space as

N∗p =Fc,1(3 + 1) +

5∑
l=2

[
Fc,l(Fc,l−1 + 1)

]

+ 3

[ 7∑
l=6

Hl(Hl–1 + 1) +Ni(H8 + 1)

]
,

(2)

where Fc,l is the number of features in the convolutional filter
used in layer l, and H5, the size of the latent layer. Hence,
other than for fully connected layers, the size of the point
cloud affects only the number of parameters in the last layer
of the decoder, yielding a linear dependency on the size of the
output layer.

Due to smaller number in model parameters, the approach
proposed in [21] is expected to scale better to larger input sizes
than previous PC-AE architectures. However, when increasing
the size of input point clouds, it has to be considered that
at some point a higer number of points, i.e., a more densily

sampled surface, may lead to an oversampling of the shape.
In fact, Tenbrinck et al. report in [27] that dense point
clouds are prone to represent redundant data. Hence, when
increasing the sampling density one has to take care not to
include irrelevant or redundant geometric information such as
to not unnecessarily increasing computational demand without
providing additional geometric information, from which the
PC-AE can learn a meaningful latent representation of the
input.

Along the lines of avoiding an oversampling of the shape,
Gadelha et al. propose a multi-resolution PC-AE [28], where
a large base point cloud was downsampled to two different
lower-dimensional ones and provided as parallel input to the
autoencoder. Throughout the architecture, the convolutions
applied to each resolution were dependent, therefore, the fea-
tures related to fine details contained in the highest-resolution
point cloud could be abstracted, while the characteristics
related to the positioning and distribution of the geometry over
space was enforced by the lower-dimensional representations.
Nevertheless, the results achieved for classification and shape
reconstruction were comparable to the state-of-the-art [11],
[20], while the complexity of the network increased.

An alternative approach to modifying the architecture to
handle large inputs, is to change how the point cloud is
sampled either from physical objects or from other 3D repre-
sentations. In particular, a sampling scheme targeted at certain
features can be used to adapt the dimensionality of input
shapes to PC-AEs available in the literature. In [27] the
authors propose a weighted graph-based sparsification method
for point clouds, inspired by the Cut Pursuit algorithm [29] and
motivated by the sensitivity of the current methods, such as
random sampling and tree-based selection, to noise and lack of
adaptability. In the paper, the authors claim that the method can
be extended to higher dimensional data structures and higher
computational efficiency. An interesting aspect of the study
in [27] is the use of graph information reducing the dimen-
sionality of the geometric representation. Undirected graphs
are widely used for domain representation in engineering
applications, where they are usually named as meshes. Hence,
for point clouds derived from such representations, graph-
based sampling or filtering represents a great potential for pre-
reduction of dimensionality in large point clouds, increasing
the efficiency of the representation for deep learning tasks.

Chen et al. discuss in in [30] fast resampling methods for
point clouds based on graph operators, where the problem
is approached from a theoretical signal processing perspec-
tive. Their approach aims at achieving an optimum sampling
distribution while maintaining certain features contained in
the shape. In order to do so, the authors define filters using
an approximation of the adjacency matrix, which is used to
calculate a metric that indicates the probability for each point
of being kept in the representation. Figure 2 shows examples
of resampled point clouds using three sampling schemes:
random-uniform sampling, as well as low-pass and high-pass
filtering as proposed in the paper. The low-pass approach leads
to higher number of samples in smooth areas, such as the



flat faces in the plate, while the high-pass filter increases the
probability of point on edges and abrupt changes in the mesh
to be selected.

Fig. 2. From the left to the right, top view of a point cloud followed by
downsampled representations obtained with random uniform selection, low-
and high-pass filters, according to the proposal in [30].

In contrast to graph-based sampling approaches, Öztireli et
al. in [31] point out that manifold sampling is essentially a
hard problem, since standard signal processing methods are
not applicable and there is not a single parameterization for
the complete domain. In order to overcome these difficulties
and avoid the use of piece- or patch-wise methods, the authors
propose sampling techniques based on spectral properties of
manifolds: instead of operating on graphs, the method assumes
that a set of points with corresponding normal vectors and a
defined kernel function are provided, and the essence of the
algorithm relies on measuring the relevance of a point to the
manifold using the Laplace-Beltrami spectrum, using matrix
perturbation theory. According to their research, the spectral
characteristics of a manifold are nearly unique, i.e. there are
rare cases where different manifolds share the same spectrum,
enabling the use of those properties as metrics for comparing
manifolds. The quality of the surface reconstruction achieved
in the experiments was comparable or better than the methods
available in the literature, within reasonable computational ef-
fort (e.g. subsampling and surface reconstruction from 14×106
to 300 × 103 samples in 6 minutes). However, there is no
theoretical guarantee of optimal sampling and all experiments
were performed using nearly uniformly sampled geometries.
Hence, the reported performance might decrease in the general
case.

III. EXPERIMENTAL SET-UP FOR EVALUATING PC-AE
TRAINING EFFICIENCY AND SAMPLING STRATEGIES

We investigated the scalability of PC-AEs using a two-step
approach: first, we investigated the computational demand of
the training for increasing point cloud sizes in terms of running
time and GPU memory usage. In particular, we determined
limits in computing capabilities with respect to the maximum
point cloud size that could be processed on current GPU
hardware. All tests were performed using a PC-AE, which
was adapted from [21] in order to reduce computational
demand during training and to improve the ability to learn
latent representations for the use in further machine learning
applications. Second, we investigated whether through targeted
sampling of shapes, a better trade-off between point cloud
size and the encoding of relevant geometric information could
be achieved. To this end, we applied a high-pass filtering
sampling-approach that specifically encoded high-frequency

features on the shape. We compared the high-pass filtered sam-
pling to random uniform sampling in terms of reconstruction
loss in training and test set. We applied our model to synthetic
data where we had full control over the data generation
process, such that we could evaluate the learned latent features
by correlating them to the known true parameters underlying
the generation of the input data set.

All experiments were performed on a machine with two
Intel Xecon CPUs, clocked at 2.10 GHz (16 cores, times 2
hyperthreaded), with two Nvidia Quadro RTX 8000 GPUs (48
GB). Each model was trained using a single GPU such that
two models could be trained simultaneously per experiment.

A. Dataset generation

To be able to analyze learned latent features, we generated
a synthetic data set from a controlled number of parameters,
such that the behaviour of the learned latent variables could be
related to the true parameters underlying the data generation
process. In particular, we investigated the performance of the
PC-AE on finer, i.e., high-frequency, features that may be of
particular interest in application domains such as CAE. The
proposed synthetic dataset was generated from a parameterized
3D shape, based on the model used in [32].

As base shape a thin plate was used, to which an elliptic
orifice was added (Figure 3). The orifice was parameterized by
coordinates (x1, x2) of the ellipsoid’s center, the orientation x3
of the principal axis, and the aspect ratio between the principal
and secondary axis, x4. The range of parameter values was
constrained such that the external borders of the plate was
preserved for all shapes and any pair of designs could not be
symmetric to each other.

Fig. 3. Parameterization of the base geometry used for generating the dataset.

For the study, 1000 geometries with parameter values drawn
randomly from a uniform distribution were generated, using a
pipeline of custom Python code, FreeCAD, and Meshlab. Data
were generated in FreeCAD as solid and base STL meshes.
The latter was then refined in Meshlab to a size of approx-
imately 25000 nodes, which was considered comparable to
resolutions found in CAE applications.

B. Point cloud sampling

As a baseline for all experiments, we used random-uniform
sampling (RUS), which is unbiased, does not rely on domain-
specific assumptions, and can be easily implemented in several



applications. We compared RUS to sampling using the graph-
based high-pass filter (HPF) proposed in [30]. The filter was
applyed to the vertices of the refined mesh, where we obtain
the filter-response of the ith point in the graph vertex as

(hHH(A)X)i = xi −
∑
j∈Ni

Ai,jxj , (3)

where N represents the point cloud domain, xi the vector of
the ith point’s coordinates, and A is the transition matrix,

A = D−1W (4)

where W is the symmetric adjacency matrix that representing
connectivity between nodes, and D is the diagonal degree ma-
trix, obtained from the sum of the columns of W . When using
the transition matrix, the filter reflects how much information
is known about a point based on its neighborhood, and it is
furthermore shift- and rotation-invariant.

The optimal resampling distribution π∗ is proportional to
the response of the graph to the filter,

π∗ =
(hHH(A)X)

‖(hHH(A)X)‖1
(5)

which is the vector of the graph response normalized by its
`1 norm, such that the components sum to 1. Components of
higher probability are associated with points close to abrupt
changes in the geometries, e.g. edges, while components of
lower probability are associated with smoother surfaces.

In [30], the authors assume that typically only the point
cloud is known, but not the adjacency matrix, W , which
has to be estimated. This step is omitted in the present
work since point clouds are extracted from STL meshes, for
which the connectivity between points is known. The proposed
modification was verified through visual inspection of re-
sampled point clouds from geometries randomly selected from
the generated dataset (Figure 4).

Fig. 4. Point cloud resampling according to the modified high-pass filtering
approach proposed in [30]. From the left to the right, full point cloud (25,000
points), 256-point and 2048-point representation.

C. Point cloud autoencoder architecture and training

The PC-AE implemented for the experiments is based on the
architecture presented in [21]. The architecture was modified
by replacing the ReLU activation functions in the last convo-
lutional layer of the encoder by hyperbolic tangent functions,
and the ReLU functions in the last decoder layer by sigmoid
functions. We chose the sigmoid function such that the range
of the activation function matched the normalized coordinate
values of the shapes in the dataset. For the activation functions

in the latent layer, we chose the hyperbolic tangent to limit
the values of the latent variables such as to increase the
interpretability of the latent variables.

Further modifications were performed on the training pro-
cedure. As discussed above, the loss function is one of the
potential bottlenecks for training large network architectures.
Therefore, the training was divided into two parts, where in
the first part, a computationally cheaper coarse training was
performed by pre-ordering the input point cloud and using the
mean square distance between points as loss function under
the assumption that the order of the points was the same for
input and output. Thus, the costly search part of the Chamfer
Distance (CD) was avoided [25]. In the second part of the
training, indicated by a stagnation of the loss function, the
conventional CD approach was used. The CD algorithm used
in the experiments was implemented according to [21] and the
epoch when the loss function changed its behavior was defined
based on observations made during tests with the dataset and
architecture, but kept the same for all the experiments.

In order to impose an ordering on the point clouds, a data
partitioning tree algorithm was adopted as a pre-processing
step [28]: the point cloud was recursively divided into two
parts according to the mean value of the points’ coordinates,
for each axis and partitioning. Hence, the points were orga-
nized as a list of patches which should be consistent among
all geometries in the dataset. A disadvantage of the method is
that the size of the point clouds becomes constrained to the
power of the number of partitions, which in this case was set
to two.

In order to verify effects of the modification in the archi-
tecture, a model was trained on the car class from ShapeNet
Core [33] and compared to the performance reported in
[21]. In total, 6350 shapes in batches of 50 were used for
training and 375 shapes were used for testing. Parameters were
fitted using the Adam optimizer [34] with learning rate of
5× 10−4, β1 = 0.9 and β2 = 0.99 over 500 generations. The
switch to the CD was performed after 200 iterations, where
this value was identified manually. The reconstruction loss
obtained with the proposed architecture was comparable to
the results reported in [21] (Table I). We therefore considered
the architecture feasible for the experiments performed.

TABLE I
RECONSTRUCTION LOSS OF THE PC-AE TRAINED ON THE CAR CLASS

FROM SHAPNET CORE

Reference Modified
Architecture

Modified Loss
Function

CDtraining 3.34E-04 2.91E-04 2.96E-04
CDtest (4.00 ± 0.9)E-04 (3.03 ± 0.8)E-04 (3.08 ± 0.8)E-04

When training the model with the mean squared distance,
the reconstructed point clouds were arranged in a grid-like
structure, which could be observed in all models. After 100
iterations using the CD, points started to diverge from the grid
and spread over the surface of the shape (Figure 5). The grid-
like ordering could be an effect of the partitioning algorithm
dividing samples into patches.



Fig. 5. Shape reconstruction for a sample in the dataset. From the left to the
right, the shapes were retrieved after 200 and 300 iterations, respectively.

D. Experiments

We ran experiments in order to evaluate RUS compared to
sampling with the HPF in terms of running time of the training,
as well as reconstruction loss. We varied the input point cloud
size between, 2048, 4096, and 8192 points, where 2048 is the
input size commonly used in the literature (e.g., [11], [20],
[21]). We furthermore analyzed 8-, 16- and 32-dimensional
latent representations, using multiples of four, i.e., the number
of parameters underlying the generation of the input data set.
Most of the training hyperparameters were kept the same
as in [21], except for the number of iterations, which was
increased to 8000. We furthermore applied data augmentation
by generating three random rotations around the z-axis for
each geometry [21], with rotations within the interval [-π/2,
π/2].

In order to analyze the maximum point cloud size that
could be processed with the given hardware and PC-AE, we
performed a run-to-crash test by systematically increasing the
size of the point clouds with redundant data.

Finally, the analysis of learned or abstracted features was
performed in two steps: First, models were evaluated using
shapes from different datasets and different sampling schemes,
in order to identify overfitting and potential for generalization.
In a second step, the models were verified by visually compar-
ing the reconstructed point clouds with their respective inputs,
as well as by performing interpolations within the learned
latent variables.

IV. RESULTS AND DISCUSSION

A. Running time for PC-AE training

The running time of the PC-AE training in terms of time
elapsed per epoch was more sensitive to the size of the point
cloud than to the dimensionality of the latent space, as was
expected according to eqs. 1 and 2 (Table II). Running times
were approximately equal for both sampling methods since
the pre-processing stage was not taken into account.

B. Evaluation of maximum input size

In order to asses the maximum point cloud size that could
be processed using the available hardware and architecture, a
run-to-crash test was performed. In this experiment, the size of
the point clouds was gradually increased by replicating points,
and the algorithm performed an attempt to start the training
process for 20 iterations. The maximum number of samples
achieved was 131,072 (217), with an average GPU memory
usage of (56.49 ± 14.58) %, for a single graphic card, and
elapsed time for 10 iterations over 260s. If the data partitioning

TABLE II
TIME AND MEMORY REQUIREMENTS FOR DIFFERENT POINT CLOUD (PC)

AND LATENT REPRESENTATION (LR) SIZES.

LR size PC GPU memory usage ∆t10epochs

8 2048 (15.89 ± 0.99)% 9s
4096 (28.14 ± 2.04)% 11s
8192 (40.12 ± 3.25)% 17s

16 2048 (17 ± 1.28)% 10s
4096 (30.86 ± 3.65)% 10s
8192 (44.15 ± 4.74)% 15s

32 2048 (17.85 ± 1.16)% 11s
4096 (31.77 ± 2.61)% 11s
8192 (47.97 ± 3.54)% 16s

tree was not used, the size of the point clouds can be increased
to 200,000 points, achieving (45.38 ± 19.91) % of memory
usage, on average, and elapsed time per 10 iterations of 450s.

C. Reconstruction quality for RUS and HPF sampling
schemes

We compared the reconstruction error from a PC-AE trained
on data sampled either using RUS or using HPF and found
that both sampling schemes had losses of comparable order
of magnitude (Table III). However, networks trained on ge-
ometries sampled with HPF performed better during training,
while the RUS led to better performance on unseen data. The
overall best performance on test data for point clouds of size
8192 was achieved using a latent space size of 8 and the RUS.

In order to verify the capacity of the network to generalize to
unseen data, the models were tested on 500 shapes sampled
with the opposing approach, i.e. networks trained on RUS-
sampled geometries were tested on HPF data, and vice versa
(Table IV, where CDa,b indicates training on dataset a and
testing on dataset b). Results indicate that models trained using
the RUS dataset tended to handle unseen data better, except
for increasing sizes of point clouds and latent representations.
The behavior observed in the experiment may be explained
by the variety of information contained in the dataset, which
is expected to be higher with the RUS approach, since the
method is not feature-aware and the sampling follows a
uniform distribution. Hence, when the number of samples
increases, the HPF approach starts to select points less relevant
with respect to changes in the geometry, approximating itself
to the RUS method, and increasing generalization-ability. An
increase in the dimensionality of the latent space furthermore
means increasing the number of parameters in the network
and, therefore, its ability to abstract data, which is also in line
with the observed results.

D. Evaluation of learned latent representations

To illustrate that training a network on point clouds applying
HPF learned different features from training the network using
RUS, we show the reconstruction of an exemplary shape,
once for the sampling scheme for the example shape and
matching the sampling in the training data set, and once for the
sampling schemes not matching (Figure 6). When comparing
the reconstruction (red) to the reference point clouds (blue), it



TABLE III
CHAMFER DISTANCE (CD) CALCULATED ON THE TRAINING AND TEST SETS SAMPLED ACCORDING TO THE RUS APPROACH, FOR DIFFERENT POINT

CLOUD (PC) AND LATENT REPRESENTATION (LR) SIZES.

CDtraining CDtest

LR size PC size RUS HPF RUS HPF
8 2048 1.18E-04 5.12E-05 (1.95 ± 0.20)E-04 (2.15 ± 0.67)E-04

4096 6.33E-05 3.29E-05 (1.20 ± 0.12)E-04 (1.39 ± 0.21)E-04
8192 4.01E-05 3.37E-05 (9.29 ± 0.10)E-05 (12.9 ± 1.7)E-05

16 2048 9.45E-05 3.02E-05 (1.89 ± 0.25)E-04 (1.44 ± 0.22)E-04
4096 4.76E-05 2.54E-05 (1.13 ± 0.05)E-04 (1.37 ± 0.14)E-04
8192 3.93E-05 1.32E-05 (9.58 ± 0.01)E-04 (1.23 ± 0.15)E-04

32 2048 8.16E-05 2.64E-05 (1.73 ± 0.21)E-04 (1.25 ± 0.11)E-04
4096 4.27E-05 1.60E-05 (1.03 ± 0.06)E-04 (1.17 ± 0.11)E-04
8192 2.96E-05 1.15E-05 (1.18 ± 0.18)E-04 (1.23 ± 0.15)E-04

TABLE IV
CHAMFER DISTANCE OBTAINED FROM TESTS ON DATASETS GENERATED

WITH DIFFERENT SAMPLING TECHNIQUES.

LR size PC size CDRUS,HPF CDHPF,RUS

8 2048 (4.28 ± 0.56)E-04 (5.72 ± 1.50)E-04
4096 (3.55 ± 0.48)E-04 (4.10 ± 1.30)E-04
8192 (3.98 ± 0.52)E-04 (4.44 ± 1.00)E-04

16 2048 (4.07 ± 0.92)E-04 (5.87 ± 1.60)E-04
4096 (3.92 ± 0.66)E-04 (3.60 ± 0.96)E-04
8192 (3.91 ± 0.49)E-04 (11.7 ± 1.4)E-04

32 2048 (4.07 ± 0.96)E-04 (4.00 ± 0.49)E-04
4096 (3.92 ± 0.66)E-04 (3.46 ± 1.10)E-04
8192 (3.91 ± 0.49)E-04 (3.45 ± 0.41)E-04

can be seen that both models provide a good approximation
of the geometry when the sampling scheme matches the one
used in the training data set and that this is no longer the
case for a mismatch in sampling schemes. Furthermore, the
PC-AE trained on RUS training data lead to a visullay better
approximation of the input than the HPF example, matching
the quantitative results reported above.

Fig. 6. Reconstruction of geometries using the architectures trained on
different datasets. The blue markers indicate the points of the input point
cloud.

As a second visual verification, we interpolated between
two shapes in the latent space, using a PC-AE trained on
different datasets (see Figure 7 for an example). Regardless
of the accuracy in the reconstruction, the trained models were
capable of smoothly interpolating between several different
shapes, indicating that the latent representation was able to
successfully abstract and represent the geometric features.

Fig. 7. Interpolation between geometries using the dataset sampled with the
HPF method. The progression goes from left to right, top to bottom.

We further verified that the PC-AE indeed learned the latent
features underlying the used synthetic data set by calculating
the Pearson correlation coefficient between design variables
(DVs), xi, and learned latent variables (LV) on 150 shapes
from each dataset. As a validation, we calculated the pair-
wise correlation between DVs to assert that design variables
were indeed independent, where the highest magnitude among
the coefficients was 0.24 between variables x2 and x3, and all
other correlations were close to zero.

Next, correlations between LVs and DVs were calculated.
For simplicity, only the models with eight latent variables and
trained on the datasets with 8096 points were considered for
the PC-AE trained on the RUS and HPF datasets, respectively
(Figure 8). Based on the similar magnitude of correlations
found in both autoencoders, we conclude that both sampling
schemes lead to an equal ability of the PC-AE to abstracted
the features of the dataset. The model trained on the RUS
dataset presented a higher correlations overall.
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0.8

0.4

0.0

0.4

0.8

Pe
ar

so
n 

co
rre

la
tio

n 
co

ef
fic

ie
nt

 

Fig. 8. Pearson correlation between the design variables xi and latent
variables (LV) obtained from the network trained on the RUS (left) and HPF
dataset (right).



Finally, when analyzing the pair-wise correlation between
LVs for both models, the HPF method yielded less correlated
variables than the RUS (Figure 9). Potentially, HPF lead to
a more homogeneous problem and hence to more uniform
features in the HPF dataset across models. On the other hand,
when RUS is used, the process of sampling the points is
independent for each model such that the models are less
similar. Therefore, for RUS, abstracting the features used to
generated the dataset becomes harder and the distributions of
points in the models are mapped differently. This is in line
with the superior, generalization capabilities observed for PC-
AE models trained on RUS data.
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Fig. 9. Pearson correlation between latent variables (LV) obtained from the
network trained on the RUS (left) and HPF dataset (right).

V. CONCLUSION

The research on GDL has advanced considerably in the
recent years and the boost provided by the development of
powerful processing units such as GPUs played an important
role in this process. Among the data representations used
for GDL, point clouds have become a promising approach
due to their simple structure, efficiency, and potential to
resolve 3D objects with high resolution, which is required
for an application in the automotive digital development. The
present work investigated the scalability of PC-AE from two
perspectives.

First, we proposed a modification in the loss function, in
order to avoid using point-wise operations during the complete
training phase, which is one of the bottlenecks for using
large point cloud models. Our approach was tested on the
car class from ShapeNet Core [33] and achieved comparable
performance to the architecture proposed in [21]. The per-
formance of the PC-AE in the experiments was evaluated in
terms of computational effort and abstraction of features. In
terms of computational effort, our approach could be scaled
up to 200,000 points, two orders of magnitude greater than
the models used in most of the reviewed works. Comparing
the runtime and memory usage for different combinations of
sizes of the latent representation and the point cloud. The latter
had a higher influence on the computational costs, due to the
resulting increase in units in the input layer, leading to greater
increase in model parameters than increasing the size of the
latent layer.

Second, we proposed the reduction of the dimensionality
of the point clouds by a sampling scheme based on fine-

feature detection (HPF). In order to assess the effects of
the sampling scheme on the learned features, a synthetic
dataset was generated allowing for full control over the data
generation process in terms of known number and types
of parameters, as well as their values. This dataset allowed
for the straightforward evaluation of learned features through
correlation of latent space actications and design parameters.
When comparing sampling HPF to random uniform sampling,
achieved reconstruction losses indicated that models trained
on randomly sampled geometries generalized better than the
ones trained on the dataset sampled using a HPF, since they
had more information about the overall geometry while the
HPF focused on the detection of edges and vertices.

Finally, the latent variables of the PC-AE trained on the
RUS dataset showed a stronger correlation to the design
parameters, which supports the good generalization capability
of the model. However, the model trained on the HPF sampled
dataset showed weaker correlation within the latent space,
which was a possible sign that the sampling method enabled
the autoencoder to differentiate the geometric features more
efficiently. Future work should investigate if tasks other than
reconstruction, as solved by the autoencoder, benefit from the
proposed preprocessing through feature detection.
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