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Thermodynamic equilibrium of binary mixtures on curved surfaces
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We study the global influence of curvature on the free energy landscape of two-dimensional binary mixtures
confined on closed surfaces. Starting from a generic effective free energy, constructed on the basis of symmetry
considerations and conservation laws, we identify several model-independent phenomena, such as a curvature-
dependent line tension and local shifts in the binodal concentrations. To shed light on the origin of the
phenomenological parameters appearing in the effective free energy, we further construct a lattice-gas model
of binary mixtures on nontrivial substrates, based on the curved-space generalization of the two-dimensional
Ising model. This allows us to decompose the interaction between the local concentration of the mixture and
the substrate curvature into four distinct contributions, as a result of which the phase diagram splits into critical
subdiagrams. The resulting free energy landscape can admit, as stable equilibria, strongly inhomogeneous mixed
phases, which we refer to as “antimixed” states below the critical temperature. We corroborate our semianalytical
findings with phase-field numerical simulations on realistic curved lattices. Despite this work being primarily
motivated by recent experimental observations of multicomponent lipid vesicles supported by colloidal scaffolds,
our results are applicable to any binary mixture confined on closed surfaces of arbitrary geometry.
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I. INTRODUCTION

Two-dimensional fluids represent a special class of mate-
rials, whose mechanical and thermodynamical properties are
simultaneously simple and exotic. Their dynamics and ther-
modynamics can be considerably less involved compared to
three-dimensional counterparts (see, e.g., Ref. [1]). Yet, being
lower-dimensional systems embedded in higher-dimensional
space, their geometry and topology may be nontrivial. This
gives rise to a variety of phenomena where the static and
dynamical configurations of the fluid conspire with the shape
of the underlying substrate, resulting in a wealth of complex
mechanical and thermodynamical behaviors, ranging from the
proliferation of defects in two-dimensional liquid crystals and
superfluids [2,3] to the emergence of topologically protected
oceanic waves [4].

Lipid membranes represent one of the most relevant and
largely studied realizations of two-dimensional fluids con-
fined on curved surfaces. Artificial lipid membranes, i.e.,
in vitro bilayers which have been purified from other com-
ponents, have served for decades as fruitful model systems
to investigate the stability and material properties of self-
assembled biological lipid structures (see, e.g., [5,6]). This
is especially true in the case of artificial bilayers consisting
of multiple lipid components (see, e.g., [7] and references
therein), where the heterogeneity of the system shortens the
gap between artificial and cellular membranes, despite main-
taining a physically tractable complexity.
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It is well known that multicomponent mixtures of phos-
pholipids and cholesterol have rich phase diagrams, including
two different types of liquids known as the (cholesterol-rich)
liquid-ordered (LO) and liquid-disordered (LD) phases. While
binary lipid mixtures, which provide the simplest example
of a multicomponent membrane, clearly exhibit coexistence
between liquid and solid phases [8], there is still lack of con-
clusive evidence in support of a genuine LO-LD coexistence
in mixtures of saturated lipids and cholesterol [9]. For this
reason, and because liquid-liquid phase separation is believed
to be very relevant for biological systems [10], most literature
shifted the attention toward ternary membranes, usually fea-
turing saturated and unsaturated lipids and cholesterol, where
the critical nature of the phase separation is unquestioned.
The LO-LD coexistence has so far been realized in several
experimental setups which have also shown a correlation be-
tween geometry and chemical composition: giant unilamellar
vesicles (GUVs) [11–15], supported lipid bilayers (SLBs)
[16,17], and scaffolded lipid vesicles (SLVs) [18].

Here we focus on SLVs, since it is the only experimen-
tal setup that is simultaneously closed (i.e., as in GUVs,
there is no exchange of lipids with the surrounding solvent)
and of prescribed shape (a property shared with SLBs). We
stress, nonetheless, that the results of the present work apply,
in principle, to any generic two-dimensional liquid mixture
confined on a curved substrate. SLVs have typical size of
a few micrometers [18], whereas a single lipid molecule
occupies an area on the membrane of order ∼1 nm [8];
therefore, the number of constituents is approximately in
the millions. With such a high number of molecules, it is
natural to describe the membrane as a single smooth surface
where the local composition is a continuous space-dependent
field. A satisfactory physical description can be attained by a
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coarse-grained two-dimensional scalar field theory, with the
fields representing the concentration of the various molecule
types. For incompressible liquids, an n-component mixture is
described by n − 1 fields.

Much of this work will focus on the ability of a single
scalar field, φ, to describe the curvature-composition inter-
actions. Despite being appropriate for binary systems only,
a single scalar degree of freedom can capture, at least qual-
itatively, the effect of geometry on the structure of the free
energy landscape and the resulting phase behavior. Further-
more, focusing on a single field has numerous advantages,
as it is rooted in the classical theory of phase separations
and was first used to model the interaction between curvature
and lipid lateral organization by Markin [19] and Leibler
[20]. In the latter work, the interplay between the membrane
chemical composition and geometry was modeled in terms
of a concentration-dependent spontaneous mean curvature,
leading to a linear coupling in the effective free energy,
analogous to that between an order parameter and an external
ordering field. Such coupling breaks the reflection symmetry
along the membrane midsurface, since the mean curvature is
sensitive to the surface orientation.

This type of interaction was adopted by many subse-
quent works (see, e.g., Refs. [21–28]), whereas others (e.g.,
Refs. [29–31]) considered also linear couplings with the
squared mean curvature, which is better suited to describe
symmetric bilayers. Conversely, other works did not introduce
any interaction terms, but rather studied the effects of a non-
trivial intrinsic geometry [32–34]. Explicit intrinsic couplings
were considered in Ref. [35], with a direct coupling to the
Gaussian curvature, and in Ref. [36], where the notion of
spontaneous geodesic curvature was introduced. Note that, be-
cause of the Gauss-Bonnet theorem, a direct coupling between
the Gaussian curvature and the concentration is irrelevant
for chemically homogeneous membranes, and likely for this
reason it has often been disregarded. Couplings quadratic and
cubic in φ were considered in other works (e.g., in Refs.
[37–44], and also by us in Ref. [18]) and appear to be the most
popular choice within the mathematics-oriented literature.

There is no general consensus on how to choose either the
type or the functional form of the couplings between the shape
and the concentration. Although linear terms are the natural
choice from a field-theoretic point of view, it is not clear
how model-specific will be the results obtained, and thus it is
hard do assess their general validity. Furthermore, most of the
cited works focus on the local and dynamical effect of given
couplings in an open setting. However, vesicle-shaped ob-
jects are inherently constrained systems, being topologically
spherical and with no relevant exchange with the surrounding
environment: the total number of molecules is an externally
fixed parameter. For these reasons, we try to have a more
systematic approach and explore all the possible equilibrium
configurations of closed two-dimensional systems. For the
sake of conciseness, we ignore the role of fluctuations (but
see, e.g., Ref. [6]).

The paper is organized as follows. In Sec. II we develop
an effective scalar field theory on curved backgrounds, using
only symmetry and scaling arguments as guiding principles.
We highlight a few possible general phenomena, such as local
shifts of the binodal concentrations and a curvature-dependent

line tension for interfaces separating different phases, and
highlight the regimes where Jülicher’s and Lipowsky’s sharp
interface theory [45] can be recovered from our diffuse inter-
face model. In Sec. III we explore in great detail a specific
geometry, the asymmetric dumbbell, and a specific micro-
scopic model, consisting of a curved-space generalization of
the mean-field two-dimensional Ising model. In the contin-
uum limit, we derive a functional form of the concentration-
dependent coefficients of the free energy, linking them to
four specific types of microscopic interactions. Within this
framework we can compute analytically the general quantities
defined in Sec. II. By approximating the dumbbell with two
disjoint spheres able to exchange molecules, we construct
temperature-concentration phase diagrams for any value of
the curvature couplings. Interestingly, we are able to give a
precise, model-independent definition of the antimixed state,
which we observed experimentally in Ref. [18]. Lastly, we
prove numerically that our results, and in particular the exis-
tence of the antimixed state, are robust and continue to apply
also to more realistic geometries.

II. MIXING AND DEMIXING ON CURVED SURFACES

A. Effective free energies for inhomogeneous systems

We consider a two-dimensional binary fluid and assume
that all the relevant degrees of freedom can be captured by
a single, generally space-dependent, scalar order parameter
φ = φ(r). If the fluid is incompressible and the average area
per molecule is the same for both components, φ can be
interpreted as the absolute concentration of either one of the
two components, e.g.,

φ = [A]

[A] + [B]
, (1)

where [. . .] indicate the concentration of the A and B
molecules. By construction, 0 � φ � 1 and any value other
than φ = 0 or φ = 1 indicates local mixing of the two compo-
nents. The system is defined on an arbitrarily curved surface
�. Crucially, we assume � fixed so that the local geometry
can influence the configuration of the order parameter φ, but
not vice versa. The most general free energy functional of
such a system will then be of the form

F =
∫

�

dAF (φ,∇φ,�), (2)

where F is a free energy density depending on φ, its surface-
covariant gradient ∇φ, and on the shape of the surface. Here
dA = dx1dx2

√
det h, with {x1, x2} local coordinates, is the

surface area element and hi j (i, j = 1, 2) is the metric tensor
on �.

In practice, the explicit form of F can be obtained upon
coarse-graining a microscopic model over a mesoscopic por-
tion of �. Such portion should be small compared to the
size of the whole system and yet large compared to typical
molecular length scales, which we call a. Alternatively, as
in most cases of practical interest, F is constructed phe-
nomenologically, on the basis of symmetry arguments and
physical insight. Because the order parameter is generally
nonuniform across the surface, the gradient ∇φ introduces
new length scales in the system. Here we assume that the
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spatial variation of the order parameter occurs on a length
scale much larger than the molecular size, namely, |∇φ| ∼
ξ−1 � a−1. Moreover, at physical equilibrium, gradients are
always negligible with the only possible exception for isolated
quasi-one-dimensional regions where the spatial variation of
the order parameter can be more pronounced. As we will
explain later, these regions correspond to diffuse interfaces
between bulk phases and, being lower-dimensional structures,
do not affect the bulk value of the free energy. Since integrated
variations have to be finite, ξ also sets the typical thickness of
these interfaces.

The symmetries of Eq. (2) dictate how F can depend on
the shape of �. If the fluid is isotropic (i.e., molecules do
not have a specific direction on the tangent plane of �),
F depends on the surface either intrinsically, through the
Gaussian curvature K , or extrinsically, through the mean cur-
vature H . Furthermore, if the molecules are insensitive to the
orientation of the surface (i.e., they do not discriminate convex
from concave shapes), F must be invariant for H → −H ,
since, on orientable surfaces, the sign of H depends uniquely
on the choice of the normal direction. Thus F depends on
the curvature only through H2, K , and, in principle, their
derivatives. Nonvanishing curvatures introduce further length
scales in the system, which we collectively denote as R and
assume larger or equal to ξ , thus R � ξ � a.

Now, expanding Eq. (2) to the second order in the gradients
and the curvatures (thus with respect to a/ξ and a/R) yields

F � D(φ)

2
|∇φ|2 + f (φ) + k(φ)H2 + k̄(φ)K + · · · , (3)

where D, f , k, and k̄ are the resulting coefficients in the Taylor
expansion and the dots indicate higher-order terms. These
coefficients depend, in general, on the local order parameter
φ and cannot be determined from symmetry arguments. To
render Eq. (3) dimensionless, we rescale all the terms by a
constant energy density, in such a way that f is dimensionless,
whereas D, k, and k̄ have dimensions of area.

The physical meaning of the various terms in Eq. (3) is
intuitive and has been thoroughly discussed in the literature
of phase field models [39,40] and lipid membranes [46].
To have an energy bounded from below requires D � 0,
so that the first term promotes uniform configurations of
the order parameter. This term originates from the short-
range attractive interactions between molecules and gives rise
to a concentration-dependent diffusion coefficient (see, e.g.,
[33,41,47,48]). Notice that D does not depend on the curva-
tures, because of the quadratic truncation underling Eq. (3).
Higher-order terms coupling the order parameter gradients
and the curvature tensor have been discussed elsewhere (see,
e.g., [49–52]) and will not be considered here. The function
f is the local thermodynamic free energy in flat space. This
includes both energetic and entropic contributions, promoting
phase separation and phase mixing, respectively. In the case
of fluctuating surfaces, such as lipid membranes, f could
be interpreted as a concentration-dependent surface tension.
Finally, k and k̄ are, respectively, the bending and saddle splay
moduli of the mixture, expressing the energetic cost, or gain,
of having a given configuration of the field φ, in a curved
region of the surface. Analogously to f , for a fluctuating sur-
face these terms could be interpreted as curvature-dependent

contributions to the surface tension, introducing a departure
for the flat-space value. The length scale associated with these
deviations is commonly known as the Tolman length [53].
A generic surface may have up to two independent Tolman
lengths.

For systems sensitive to the orientation of the surface, such
as Langmuir monolayers and asymmetric lipid bilayers, the
expansion (3) is not required to be invariant for H → −H
and can feature linear contributions of the form cH , with
c = c(φ) a coupling coefficient, equivalent to a concentration-
dependent spontaneous curvature H0 = −c/(2k). For simplic-
ity, we will ignore this contribution, even if most of our results
can be easily extended to this case.

Equilibrium configurations are defined as the minima of
the free energy functional Eq. (2). Here we focus on closed
systems, where the order parameter is globally conserved.
Thus,

� = 1

A�

∫
�

dA φ = const, (4)

with A� the area of the surface. The problem then reduces to
finding the function φ minimizing the constrained free energy:

G = F − μ̂�, (5)

where μ̂ is the Lagrange multiplier enforcing the constraint
(4). For homogeneous systems, μ̂ is the chemical potential,
thermodynamic conjugate of the concentration. The first func-
tional derivative of G yields the equilibrium condition

f ′(φ)+k′(φ)H2 + k̄′(φ)K =D(φ)∇2φ+ 1
2 D′(φ)|∇φ|2+μ,

(6)

where the prime indicates differentiation with respect to φ

(e.g., f ′ = ∂ f /∂φ), ∇2 = hi j∇i∇ j is the Laplace-Beltrami
operator on �, and μ = μ̂/A� is the chemical potential
density. Equation (6) is too generic to allow specific conclu-
sions, unless the φ dependence of the various coefficients is
specified. In Sec. III we consider a specific lattice model, but,
before then, it is useful to review the case of homogeneous
potentials and make some general consideration on the lin-
earization of inhomogeneous terms.

B. Review of homogeneous potentials

In this section we review the classical theory of phase
coexistence and of thin interfaces for binary mixtures in
homogeneous backgrounds. For further references see, e.g.,
Refs. [54,55].

We now consider a flat and compact surface �, such as a
rectangular domain with periodic boundaries (i.e., a flat torus).
Thus H2 = K = 0, while the total area A� is finite. Since
D � 0, the homogeneous configuration is a trivial minimizer
of the free energy (5). In most physical systems at equilibrium,
field variations occur in almost-negligible portions of �, so
that, as a first crude approximation, gradient terms in G can
be ignored. Then, Eq. (6) reduces to the classical equilibrium
condition

f ′(φ) = μ. (7)

If f is convex, the single homogeneous phase φ = � is a solu-
tion of Eq. (7), corresponding to a stable thermodynamic state,
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FIG. 1. When the system phase-separates on a SLV [18], the
surface � (here shown as a generic closed surface) is partitioned into
two regions �±. The thin interface γ separating them is a curved strip
of finite geodesic width ∼2ξ , shown in red. In reality we require ξ

to be much smaller than any macroscopic length scale. In order to
study the behavior of φ(x) near the interface, we need to construct an
adapted geodesic frame, spanned by the coordinates s, the arclength
parameter of the sharp interface (shown in black), and by the normal
arclength coordinate z = w/ξ . Constant s lines are geodesics of �.

where the two components of the mixture are homogeneously
mixed with one another. We refer to this configuration as the
mixed phase. Consistently we must have

μ = f ′(�),
G

A�

= f (�) − f ′(�)�.

If, on the other hand, f is concave for some φ values (i.e.,
f ′′ < 0), then the mixed phase might become unstable and
it is energetically favorable to split the system into (at least)
two regions where φ takes different values, say φ− and φ+
(without loss of generality we choose φ− < φ+). We refer to
this configuration as the demixed (or phase-separated) phase:

φ(r) =
{
φ+, r ∈ �+,

φ−, r ∈ �−,
(8)

with �± the two domains into which � partitions (see Fig. 1).
Now, calling A± = ∫

�±
dA the respective areas and x± =

A±/A� their relative area fraction, with x+ + x− = 1, the total
fixed concentration is

� = x+φ+ + x−φ−. (9)

Since φ is assumed to vary smoothly over a region of neg-
ligible area, it is possible to formally integrate Eq. (7) with
respect to φ and obtain the set of equilibrium conditions

μ = f ′(φ±) = f (φ+) − f (φ−)

φ+ − φ−
, (10)

known as the Maxwell common-tangent construction; see
Fig. 2. The interval of � values for which the demixed phase,
Eq. (8), is the true minimum of the free energy (5) is always
strictly larger than the interval where f (�) is concave. Thus,
a mixed phase with total concentration � in the interval φ− <

� < φ+, but such that f ′′(�) > 0, is metastable, since such
phase can still resist small perturbations. The field values φ±
are known as binodal points, the interval [φ−, φ+] is known

FIG. 2. For concave free energies the thermodynamic minimum
is attained by demixed configurations when the total concentration
� lies within the miscibility gap. We show respectively in black and
gray the binodal and spinodal points relative to f (φ). The diagonal
dashed line is the common tangent which defines, via Eq. (10), the
binodal points. For a given �, the area fractions x± of the A and
B components are found with the lever rule, i.e., by solving (9)
combined with x+ + x− = 1.

as the miscibility gap, whereas the concentrations for which
f ′′(φ) = 0 are known as spinodal points (see, e.g., [56]).

A further layer of complexity is added if one allows for
smooth spatial variations of the order parameter φ. In this
case, the gradient terms in G becomes relevant, but, because
of the scale separation postulated in Sec. II A, D|∇φ|2 �
f , almost everywhere. Since |∇φ| ∼ ξ−1, by construction,
and D has dimensions of area in our units, this inequality
implies D ∼ ξ 2. We assume that D—which relates to both
compressibility and diffusion—does not depend strongly on
the local concentration (for instance, this is certainly the case
for lipid mixtures [57], where all molecules in the mixture are
roughly of the same size) and can be effectively treated as a
constant. Without loss of generality, one can then set D = ξ 2,
so that Eq. (7) reduces to a partial differential equation:

f ′(φ) = μ + ξ 2∇2φ. (11)

Since f ′ is, in general, a nonlinear function of φ, Eq. (11) is
often analytically intractable. However, as long as ξ is much
smaller than the system size, Eq. (8) is still a valid solution
over large portions of �. Globally, the solution can then be
constructed upon matching homogeneous configurations of
the field over different domains of � via perturbative solutions
of Eq. (11) within the boundary layers at the interface between
neighboring domains (see, e.g., Ref. [55]). This is a standard
technique which can be easily generalized to the case of
curved environments; see also [33].

C. The effect of curvature

We now consider the more generic case in which � has
nonvanishing curvatures H and K , but no explicit coupling
with the order parameter (a similar situation in dynamical
contexts was considered in Refs. [33,34]), by setting k = k̄ =
0 in Eq. (3). This scenario occurs, for instance, in mixtures
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whose components are equally compliant to bending; thus
there is no energetic preference for the order parameter φ

to adjust to the underlying curvature of the surface. Yet, as
any interface in the configuration of the field φ costs a finite
amount of energy, roughly proportional to the interface length,
the shape of � indirectly affects the spatial organization of the
binary mixture via the geometry of interfaces. In Ref. [58],
we have discussed this and other related phenomena in the
framework of the sharp interface limit (i.e., with ξ = 0). Here
we show how the present field-theoretical approach enables
one to recover and further extend these results.

Upon demixing, the system drives the formation of inter-
faces. This means that in regions of thickness ≈ ξ the field
φ is smoothly interpolating between the bulk values of the
two phases. Since we are in a regime where this thickness
is much smaller than the size of the system, we can take
Eq. (11) and expand it in powers of ξ . As shown in Fig. 1,
in the proximity of γ we need to adapt the coordinate system
to take into account both the curvature of the interface, as a
strip embedded on the surface, and of the intrinsic curvature
of the surface itself. We explain in detail how to build such
frame in Appendix A. Then, we can treat the scalar field as
a function of coordinates in this frame, φ = φ(s, z), where s
is the arclength parameter of the sharp interface γ (the black
curve in Fig. 1) and z is the normal geodesic distance from the
curve. Furthermore, variations along z happen on a scale ∼ξ ,
while variations along s become relevant only at macroscopic
distances. This implies that φ is a function of only the normal
coordinate z up to at least order ξ 2, and we can rescale the
variable z → w/ξ so that the values w → ±∞ correspond to
the bulk phases.

With this construction at hand, we collect the various
terms in (11), order by order in ξ , and solve iteratively the
differential equation. At O(1) we find the so-called profile
equation, which, after matching with the bulk values of φ

away from the interface, reads

1
2ϕ2

w = g(ϕ), (12)

where ϕ(w) = φ(z/ξ ) is the order parameter expressed as
function of the rescaled normal coordinate w, and g is the
shifted potential

g(ϕ) = f (ϕ) + (φ− − ϕ) f (φ+) − (φ+ − ϕ) f (φ−)

φ+ − φ−
, (13)

which has the properties g(φ±) = g′(φ±) = 0 and g′′(ϕ) =
f ′′(ϕ); i.e., g shares the same binodal points with f . Typically,
solutions of Eq. (12) decay exponentially toward the bulk
phases and interpolate monotonically between the two phases.
As we shall later see, this will not necessarily be the case for
nonhomogeneous systems.

Solving Eq. (11) at O(ξ ) is slightly more involved (see
Appendix B for more details), but leads to a series of simple
and interesting results. First, in regions where ξ 2K is small,
the equilibrium interface must obey

κg = const, (14)

with κg the geodesic curvature of the interface γ (see Ap-
pendix A for definitions). Equation (14) is the simplest two-
dimensional version of the Young-Laplace equation on a

curved geometry. The value of the constant, which is propor-
tional to the lateral pressure difference on the two sides of the
interface, sets the radius of curvature of the interface. While
on a flat plane constant κg lines are circles (and geodesics
are straight lines), on an arbitrary surface they can have
significantly less trivial shapes. We explored this subject in
much more detail in [58], and refer the interested reader
there. Note that (14) does not constrain the topology of γ :
in principle it could consist of many simple curves, provided
they all have the same curvature. In this case, the constraint
on κg is nonlocal [33].

From this it can be shown that a nongeodesic interface
induces a modification of the equilibrium chemical potential

μ = f (φ+) − f (φ−)

φ+ − φ−
+ σκg

φ+ − φ−
, (15)

where we introduced the interfacial line tension σ , defined as

σ = ξ

∫ φ+

φ−
dϕ

√
2g(ϕ). (16)

Equation (15) implies that, for nongeodesic interfaces, equi-
librium bulk concentrations slightly deviate from the Maxwell
values. This phenomenon is entirely absent in phase separa-
tions of open systems, where instead the bulk phases concen-
trations are not affected by the interface curvature.

Such an effect is manifest also when evaluating the equi-
librium free energy up to O(ξ ). Namely, we find

F = σ�γ +
∑
α=±

Aα

[
f (φα ) + σκg

f ′(φα )

(φ+ − φ−) f ′′(φα )

]
. (17)

The above relation shows that σ is precisely the coefficient
that couples to the interface length, �γ , and hence is a proper
interfacial tension. Furthermore, since the two-dimensional
lateral pressures are defined as

pα = ∂F

∂Aα

, (18)

we see that the pressure difference p = p+ − p− does in-
deed depend on the interfacial curvature. Although small—it
is an O(ξ ) correction—this contribution is always present in
the phase coexistence of closed systems. It was first derived
by Kelvin [59] from the Young-Laplace equation.

D. Coupling mechanisms between curvature
and order parameter

Here we consider the most generic scenario in which all
terms in Eqs. (3) and (6), including k and k̄, are nonvanishing.
In this case the local curvature affects directly the magnitude
of the order parameter φ, instead of just indirectly influencing
lateral displacement through nontrivial topology and intrinsic
geometry.

Without specifying the shape of � nor the functional form
of k(φ) and k̄(φ) it is hard to make precise predictions. We
will deal with a specific model and specific geometries in
the next section. Here we instead consider an approximately
flat membrane, so we can treat the curvature terms as pertur-
bations. If k(φ)H2 and k̄(φ)K are much smaller than f , we
get that the binodal points of the free energy are shifted by a
small, curvature-dependent amount. More precisely (see also
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Appendix C), we have that the Maxwell values are shifted as
φ± → φ± + δφ±, with

δφ± = kH2 + k̄K

φ+ − φ−
− k(φ±)H2 + k̄(φ±)K

f ′′(φ±)
, (19)

where k = k(φ+) − k(φ−) and k̄ = k̄(φ+) − k̄(φ−) are
the differences between the bending moduli evaluated on the
homogeneous binodal concentrations. Equation (19) shows
how the equilibrium bulk phases are directly influenced by
local curvature.

Since ξ is smaller than any other scale, we can still assume
that the interface separating the two phases lies entirely in
a region where curvature can be considered to be constant
along the z geodesic normal direction. This implies that we
can use again Eq. (16) to compute the line tension using the
shifted binodal values (19), finding a curvature-dependent line
tension σ̃ ,

σ̃ � σ + δkH2 + δk̄K + · · · , (20)

where the dots stand for higher-order terms in the curvatures.
The two coefficients δk,k̄ are defined as integrals over the
homogeneous miscibility gap

δk,k̄ = ξ

∫ φ+

φ−
dϕ

gk,k̄ (ϕ)√
2g(ϕ)

, (21)

where g is defined in (13) and gk,k̄ are defined in a similar
manner; i.e., gk,k̄ (φ±) = g′

k,k̄
(φ±) = 0 and g′′

k,k̄
(ϕ) coincides

with the second derivative of the bending moduli [see the
derivation of Eq. (C9) for more details]. Interestingly, the
terms δk/σ and δk̄/σ in Eq. (20) resemble one-dimensional
analogs of the Tolman lengths (see Sec. II A and Ref. [53]).

If instead the curvature couplings are so small that they
enter in the effective free energy F as O(ξ ) terms, they have a
different effect. Formally, this can be achieved by replacing
k(φ)H2 + k̄(φ)K with ξ (k(φ)H2 + k̄(φ)K ) in Eq. (3) and
Eq. (6). This means that, contrary to the case we just dis-
cussed, the curvature interactions will not affect the interface
profile Eq. (12), nor will they influence the line tension or the
bulk phase values φ±. Rather, they will only affect equilibrium
at O(ξ ); thus they will contribute to the determination of
interface position. It is easy to show that in this case it is
Eq. (14) that needs to be modified to

σκg − kH2 − k̄K = const. (22)

Not surprisingly, this equation is precisely the one obtained by
the first functional variation of the Jülicher-Lipowsky sharp
interface model [45], which we treated in detail in [58].

This latter result hints at a more general concept. When
adding environmental couplings to sharp interface models
there is an implicit assumption about the subleading character
of the interactions—relative to an expansion in the interface
thickness—since they can affect the position of the interface
but not its inner structure. Physical interfaces have however
finite thickness, and thus any coupling with other degrees
of freedom will naturally influence the interface as a diffuse
thermodynamic entity, rather than just as a geometric subman-
ifold. For this reason thin interface models, where ξ is small
but nonzero, can produce more physically reliable results.

III. A SIMPLE MODEL

The rich phenomenology of binary mixtures on curved sur-
faces has much more to offer than the general results outlined
in Sec. II. To draw more precise conclusions, however, it is
indispensable to make the φ dependence of the functions D,
f , k, and k̄ in Eq. (3) explicit, and thus focus our analysis on
a specific subset of possible material properties. Whereas this
operation can be performed in multiple ways (see Sec. II A),
here we propose a simple and yet insightful strategy based on
a curved-space generalization of the most classic microscopic
model of phase separation, namely the lattice-gas model.

To this purpose, we discretize � into a regular lattice,
with coordination number q and lattice spacing a, this being
defined as the geodesic distance between neighboring sites.
We ignore the fact that, for closed surfaces with genus g = 1,
there are topological obstructions to construct regular lattices,
and point defects (i.e., isolated sites where the coordination
number differs from q) become inevitable. We assume that
these isolated points give a negligible contribution to the free
energy in the continuum limit. Each site is characterized by
a binary spin si = ±1, serving as a label for either one of
the molecular components (e.g., si = +1 indicates that the ith
site is occupied by a molecule of type A, while si = −1 in
the case in which the molecule is of type B). Because of
the short-range interactions between the molecules, the total
energy of the system is computed via the Ising Hamiltonian:

H = −
∑
〈i j〉

Ji jsis j −
∑

i

hisi, (23)

where i = 1, 2, . . . , N and 〈i j〉 indicates a sum over all the
pairs of nearest neighbors in the lattice. Finally, conservation
of the total number of molecules implies

∑
i

(
1 + si

2

)
= �N. (24)

Now, in the classic lattice-gas model, the coupling constant
Ji j and the external field hi are uniform across the system.
Here, we allow them to depend on the local geometry of �.
Using the same assumptions underlying the expansion (3),
augmented by the additional symmetry Ji j = Jji, yields

Ji j = 1

4

(
J + Qk

H2
i + H2

j

2
+ Qk̄

Ki + Kj

2

)
, (25a)

hi = − 1
2

(
LkH2

i + Lk̄Ki
)
, (25b)

where Hi and Ki are respectively the mean and the Gaussian
curvature evaluated at the ith lattice site. The Q couplings
modulate the relative strength of the attraction or repulsion
between molecules, reflecting that both the distance and rel-
ative orientation of neighboring molecules vary across the
surface. Similarly, the L couplings measure the propensity of
a molecule to adapt to the local curvature. In particular, we
note that Lk̄ is exactly the only curvature coupling employed
in Ref. [35] to describe the interaction of binary mixtures with
minimal surfaces. We stress that in order for the Hamiltonian
(23) to admit phase separation, Ji j > 0. As the local Gaus-
sian curvature can be both positive and negative, this is not
necessarily true for a generic surface and an arbitrary choice
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of the constants J , Qk , and Qk̄ . In the following, we assume
that J > 0 is sufficiently large to prevent Ji j from changing
sign. Furthermore, we assume for simplicity all the other
constants in Eqs. (25) to be positive. The latter assumption
is not indispensable and does not have qualitative effects on
the structure of the free energy landscape and on the phase
diagram.

The free energy of the mixture can now be easily calcu-
lated using the mean-field approximation, upon assuming the
variables si to be spatially uncorrelated (i.e., 〈sis j〉 = 〈si〉〈s j〉,
with 〈· · · 〉 the ensemble average). Thus, letting

P(si ) = φiδsi,1 + (1 − φi )δsi,−1, (26)

the probability associated with finding a molecule of type
A or type B at the ith site yields, after standard algebraic
manipulations (see, e.g., Ref. [60]),

F = −
∑
〈i j〉

Ji j (2φi − 1)(2φ j − 1) +
∑

i

hi(2φi − 1)

+ T
∑

i

[φi ln φi + (1 − φi ) ln(1 − φi )], (27)

with T the temperature in units of kB. Coarse-graining Eq. (27)
over the length scale ξ finally yields Eqs. (2) and (3), with

D(φ) = ξ 2J, (28a)

f (φ) = qJφ(1 − φ) − TS (φ), (28b)

k(φ) = qQkφ(1 − φ) + Lkφ, (28c)

k̄(φ) = qQk̄φ(1 − φ) + Lk̄φ, (28d)

where S (φ) = −φ ln φ − (1 − φ) ln(1 − φ) is the mixing en-
tropy and we dropped φ-independent terms from the bending
moduli. The symmetry φ ↔ 1 − φ is explicitly broken only
by linear L couplings. Note that because of the total constraint
on � we can disregard homogeneous terms linear in φ, but
we are not allowed to do the same for linear terms which
depend on local geometry. Consistently with the assumptions
about the separation of scales outlined in Sec. II (i.e., ξ 2H2 ∼
ξ 2K ≈ 0), we have dropped curvature-dependent terms in the
expression of D.

A. Surfaces of constant curvature

With Eqs. (28) in hand, we are now ready to fully explore
the phase diagram of binary mixtures on curved surfaces. As a
starting point, we consider the case of surfaces with constant
curvatures, such as the sphere or the cylinder. In this case, the
coupling of the order parameter with the curvatures, embodied
by the third and second terms in Eq. (3), merely results in a
renormalization of the critical temperature. In fact, if T > Tc,
with

Tc = q

2
(J + QkH2 + Qk̄K ), (29)

the free energy density f (φ) + k(φ)H2 + k̄(φ)K is always
convex, and thus the homogeneously mixed configuration,
φ = �, is the only stable equilibrium. Evidently, the linear
terms in Eqs. (28) do not affect the convexity of the free
energy, and thus do not contribute to the critical temperature.

Despite the known limitations of mean-field theory in two
dimensions—here further corroborated by the experimental

evidence that lipid mixtures belong to the same universal-
ity class as the two-dimensional Ising model [61–63]—it is
nonetheless instructive to see how the generic picture illus-
trated in Sec. II C specializes for the choice of potentials given
by Eqs. (28) when T � Tc (which is the case for the majority
of experiments on lipid membranes at room temperature).

At the first order in the Ginzburg-Landau expansion, the
binodal concentrations are

φ± � 1

2

(
1 ±

√
3

Tc − T

T

)
. (30)

From these we can compute the shifted potential g(ϕ) of
Eq. (13),

g(ϕ) � 4T

3
(ϕ − φ+)2(ϕ − φ−)2, (31)

which is, as expected, a symmetric double-well quartic poly-
nomial potential with minima at the binodal points. From here
we can explicitly solve the interface profile equation (12),
finding the well-known hyperbolic tangent kink

ϕ(w) � φ+ + φ−
2

+ φ+ − φ−
2

tanh

(√
2

Tc − T

J
w

)
, (32)

where the zero of the geodesic normal coordinate w (see
the inset of Fig. 1) has been chosen such that the integral
of the difference |ϕ − φ−| for w < 0 matches the integral of
|ϕ − φ+| for w > 0 [this is the definition of the Gibbs sharp
interface; see Eq. (B13)].

The interface width, defined as the length scale over which
φ changes from φ− to φ+, scales as ∼ξJ1/2(T − Tc)−1/2 and
diverges for T → Tc. On the other hand the line tension can
be computed to be

σ̃ � ξ
1

T

√
2

J
(Tc − T )3/2, (33)

which instead vanishes at the critical temperature. With these
results we can compute explicitly the quantities discussed
in Sec. II D when the curvatures are small. In particular,
the curvature-dependent line tension can be evaluated us-
ing Eq. (21)—or equivalently, by substituting Eq. (29) into
Eq. (33) and expanding for small curvatures—finding

δk,k̄

σ
� qQk,k̄

3

4
(Tc − T )−1. (34)

Since this ratio is diverging for T → Tc, it implies that
curvature-dependent effects to the line tension, in our mean-
field model, become more relevant near the critical tempera-
ture.

Similarly, if the curvature couplings are O(ξ ) and thus do
not influence the interface profile or the homogeneous binodal
points, then the bending moduli differences of the Jülicher-
Lipowsky model—as defined in Eq. (22)—are

k � Lk

√
3

T
(Tc − T )1/2, (35a)

k̄ � Lk̄

√
3

T
(Tc − T )1/2, (35b)
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FIG. 3. (a) Experimental scanning electron microscopy image of an asymmetric dumbbell-shaped colloid used as a scaffold for the
lipid membrane in SLVs (taken from [18]). (b) To maintain analytical control over computations, we approximate the surface in (a) as
two disconnected spheres exchanging order parameter φ between each other but isolated from the environment. (c) Full three-dimensional
reconstruction of the dumbbell. The surface is an axisymmetric approximation of the image in (a), with two spherical caps attached to a
necklike region obtained with a polynomial interpolation of order eight. It has area ∼17.11R2

1, volume ∼5.40R3
1, and Willmore energy ∼37.96.

The triangulated surface consists of 33 131 vertices.

which vanish at the critical temperature and depend only on
the L couplings since only terms that break the symmetry φ ↔
1 − φ can produce a bending moduli difference.

More generally, since the linear couplings Lk,k̄ give no
contribution to the redefinition of the critical temperature,
Eq. (29), or to the line tension, Eq. (33), it might appear that
they play no role in shaping the equilibrium phase diagram of
the binary mixture. One would expect that adding a linear in-
teraction term has no effect on the global thermodynamic sta-
bility of the system. In the next section we will show how this
is not the case when inhomogeneous surfaces are considered.

B. The phase diagram of disjoint spheres

In order to gain a deeper understanding of the role of
curvature on the thermodynamics of phase separation, we
need to consider a specific inhomogeneous shape. Building
on our recent experimental results on SLVs [18], we focus on
asymmetric dumbbell-shaped substrates, as the one depicted
in Fig. 3(a).

In this case, � consists approximately of two spherical
caps connected to each other. We call the portion of the
surface where the two spheres are in contact the “neck region.”
While the principal curvatures on the caps are approximately
constant and proportional to their inverse radius, on the neck
they reach higher values, so that both the mean and the
(negative) Gaussian curvatures are significantly larger [64]. In
terms of area, however, the neck occupies a relatively small
portion of the whole surface. For the latter reason, in this
section we trade an accurate depiction of the geometry for
analytic tractability and make the strong assumption that the
neck will play a minor role in determining the equilibrium
phase diagram of dumbbell-shaped two-dimensional liquid
mixtures. Under this assumption, we approximate � with a
closed system consisting of two disjoint spheres, S1 and S2,
of different radii, allowed to exchange molecules with one
another, as shown in Fig. 3(b). Thus the total concentration
can be expressed as

� =
∑

a=1,2

xaφa, (36)

where φa = 1/Aa
∫

Sa
dA φ, is the average concentration over

the Sa sphere (a = 1, 2), with Aa = 4πR2
a the sphere area

and Ra the radius. Analogously, xa = Aa/A� represents the
area fraction of each sphere. Equation (6) can now be solved
using the mean-field parameter given by Eqs. (28), averaged
over each sphere. Since for spheres H2 = K = R−2, the four
geometric couplings of Eqs. (28) become pairwise equiva-
lent, thus reducing the number of independent parameters to
two: a symmetry-preserving quadratic term and a symmetry-
breaking linear term. To see this explicitly we first minimize
the free energy separately on each sphere, which gives the
equations

1 − 2φa = tanh
T (a)

L + 2T (a)
c (1 − 2φa) − μ

2T
, (37)

where we defined the local critical temperature by means of
Eq. (29),

T (a)
c = q

2

(
J + Qk + Qk̄

R2
a

)
, (38)

and we introduced the curvature-dependent energy scale asso-
ciated with the linear coupling,

T (a)
L = Lk + Lk̄

R2
a

. (39)

Constructing the equilibrium phase diagram of this system is a
two-step process. First, one must find the values φa satisfying
Eq. (37) and the constraint (36). Once these have been found,
one must check the stability of each average concentration
against spontaneous phase separation, i.e., verify whether φa

lies within the local miscibility gap [φ(a)
− , φ

(a)
+ ] on each sphere.

For fixed values of temperature and curvature couplings,
the solutions of Eq. (37) define a family of curves in the
{φ1, φ2} plane, as the total concentration � is smoothly
changed from 0 to 1. We refer to these curves as “lines of
equilibrium” and show some examples of them in Fig. 4.
Although smooth, these lines do not need to be connected.
Mathematically, they correspond to the set of points in
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FIG. 4. Lines of equilibrium. Solutions of Eq. (37) for two
spheres with radii ratio R2/R1 = 2/3 at subcritical temperature T =
0.45qJ . (a) Lines have all T (a)

L = 0 but regularly increasing T (a)
c

from (1/2)qJ (red) to [1/2 + (1/10)R−2
a ]qJ (blue). (b) Lines have

all Tc = 0 while T (a)
L increases from 0 (red) to (1/20)R−2

a qJ (blue).
The black, thick, dashed line corresponds to the infinite T (a)

L limit.
Note that the homogeneous solution φa = � (the diagonal red line
in both panels) is possible only in the absence of direct curvature
couplings. Diagonal dashed lines are of constant �. Notice that for a
given � there can be multiple equilibrium solutions.

concentration space where the gradient of the free energy is
proportional to the vector {1, 1}.

Figure 4(a) shows the effect of varying the local critical
temperature T (a)

c on each sphere. Since the free energy is
still symmetric under the exchange φ ↔ 1 − φ, the lines of
equilibrium are invariant under the mapping φa → 1 − φa.
Different colors correspond to different Qk + Qk̄ values in
Eq. (38), ranging from 0 (red) to (1/10)qJR2

1 (blue). All
curves pass through φ1 = φ2 = 1/2. Figure 4(b) shows the
effect of the linear L couplings: Lk + Lk̄ is increased from
0 (red) to (1/20)qJR2

1 (blue). In both panels the temperature
is T = (9/2)qJ , and the spheres have radii R1 = 1 and R2 =
2/3.

It is instructive to compare, in closer detail, these results
with those obtained in the absence of explicit coupling be-
tween the order parameter and the curvature, namely, T (a)

L = 0
and T (1)

c = T (2)
c (the reddest lines in both panels). In this case,

the lines of equilibrium consist of two mutually intersecting
curves: a diagonal straight line φ1 = φ2 = �, corresponding
to the usual homogeneously mixed phase, and a second oval-
shaped closed curve. The latter curve implies the existence
of a second branch of solutions, where the amount of order
parameter on each sphere is different from the total average.
This result might be surprising, given that in this case the free
energy density is homogeneous. However, it can be easily
argued that this is an artifact of our model, originating from
the following two arguments. First, the geometry we are
considering is exceptional: the two spheres are not in direct
contact and having φ1 = φ2 does not cost any extra interfacial
energy, as would be the case for a single connected surface. In
fact, nonzero gradients would be strongly disfavored. Second,
it can be verified that the oval always lies within the misci-
bility gap of the potential and, therefore, even if mathemat-
ically possible, these extra solutions are thermodynamically
metastable at best. This case alone shows another, rather
general fact: for a given set of external parameters, there can
be multiple pairs of solutions of Eq. (37), each corresponding
to a possible (meta)stable equilibrium state.

Spatial curvature changes this picture by introducing a
smooth deformation of the lines of equilibrium. In Fig. 4(a)
the straight line and the oval merge together into a single
S-shaped connected curve, while in Fig. 4(b) one portion of
the oval and of the straight line merge into a single line, and
the rest splits into a closed curve. The latter becomes smaller
and smaller as T (a)

L increases, and eventually disappears,
leaving a single branch of equilibrium solutions. Our sign
choices are such that it is thermodynamically preferable to
first build up nonzero φ on the largest sphere up to its maxi-
mum capacity (i.e., φ1 ≈ � and φ2 ≈ 0), rather than keeping
the concentration everywhere uniform. Hence, at small �,
the lines of equilibrium bend toward the lower right half of the
diagram. For the linear coupling, this trend continues until the
larger sphere is almost saturated. Then the concentration starts
increasing on the small sphere too [so that the closed curves
on the top left of Fig. 4(b) are always metastable]. For the
quadratic coupling the situation is more symmetric, in such a
way that, for larger � values, it is more convenient to have
a higher concentration on the small sphere. Note that because
of the classic double-well structure of the thermodynamics po-
tentials, for a given � value there can be up to three different
equilibrium solutions. Regardless of these quantitative differ-
ences, the main qualitative feature of the toy model described
in this section is that as a consequence of the influence of cur-
vature on the free energy landscape of the binary mixture, the
two disjoint spheres exhibit different concentrations despite
being still in the “mixed” phase, i.e., without developing any
interface. Interestingly, this phenomenon has some similarity
with the thermodynamics of lipid membranes adhering onto
nonhomogeneous flat substrates [65].

Figure 5 shows the phase diagram of the two-sphere sys-
tem, obtained upon varying the temperature T and the total
concentration �, while keeping T (a)

c and T (a)
L fixed. To high-

light the specific role of each of these couplings, we isolate
the effect of the quadratic coupling in Fig. 5(a) and that of the
linear couplings in Fig. 5(b), by setting T (1)

L = T (2)
L and T (1)

c =
T (2)

c , respectively. We see that there are essentially three stable
phases (for the sake of simplicity, we focus only on stable
phases and ignore metastable states): there is a mixed phase
with no interfaces (red and yellow shades), there is a partially
demixed phase with interfaces only on one sphere (lighter
gray), and finally there is fully demixed phase with phase
separation occurring on both spheres (darker gray). To better
characterize the mixed phase we introduce the difference

φ = φ1 − φ2, (40)

which quantifies the departure of the concentration on a single
sphere from the total average. A completely homogeneous
mixed phase would then have φ = 0. The different shades
of red and yellow in Fig. 5 indicate different values of φ,
as shown in the legend. From the diagrams it is clear that,
even in absence of genuine phase separation, one needs to
relax and generalize the notion of mixing in order to grasp
the complexity of the current scenario in comparison to the
traditional picture. In fact, outside local miscibility gaps the
“mixed” phase has a nonzero φ. This effect is enhanced
when there is a linear coupling, as in Fig. 5(b), especially
below Tc and for concentrations close to the relative area ratio
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FIG. 5. Equilibrium phase diagrams in the presence of curvature interactions for the two-sphere system of Fig. 3(b) with R1 = 1 and R2 =
2/3. The solid black lines separate the generalized mixed phase (different shades of red and yellow, corresponding to degrees of inhomogeneity
as shown in the legend) from the partially demixed phase (lighter gray). The dot-dashed line outlines the fully demixed phase (darker gray). All
transition lines are binodals. (a) Effect of the quadratic coupling, with Qk + Qk̄ = (1/5)R2

1qJ . Each sphere has a different critical temperature,
namely T (1)

c = 0.55qJ and T (2)
c = 0.65qJ . Since TL = 0, the diagram is symmetric for � → 1 − �. The inhomogeneity of the mixed phase

is small and relevant only in the proximity of the critical temperatures. (b) Effect of the linear coupling, with Lk + Lk̄ = (1/10)R2
1qJ . The

critical temperature is the same for both spheres at Tc = (1/2)qJ . The generalized mixed phase is strongly inhomogeneous in the region below
Tc and for concentrations � ∼ x1.

of the two spheres, � ∼ x1 (which is equal to ∼0.69 in the
figure).

Before going into a detailed description of this phe-
nomenon, let us emphasize that what we call here inhomo-
geneous mixing is not a new thermodynamic phase, but rather
the generalization of mixing to macroscopically nonhomoge-
neous closed systems. In fact, the effect of inhomogeneities is
smoothly smeared out at high temperatures, where the usual
homogeneous mixing is always the true equilibrium.

To see this, consider the limit where T � T (a)
c and

T � T (a)
L . We can then linearize the curvature couplings

in Eq. (37) and solve the equilibrium equation perturba-
tively. To this purpose, let us introduce the average critical
temperature

T̂c = T (1)
c + T (2)

c

2
, (41)

and the two energy scale differences

Tc = T (1)
c − T (2)

c

2
, TL = T (1)

L − T (2)
L

2
. (42)

By expanding Eq. (37) to first order in Tc and TL, we
get the deviation of the local concentrations from the total
average,

φ = CQ(�, T̂c/T )
Tc

T
− CL(�, T̂c/T )

TL

T
, (43)

where CQ and CL are derived exactly in Appendix D. Their
only relevant property is that they take finite values in the
large-T limit, namely,

CQ(�, 0) = 4�(1 − �)(2� − 1), (44a)

CL(�, 0) = 2�(1 − �). (44b)

Equation (43) clearly shows that regardless of the mag-
nitude of the curvature couplings, homogeneous mixing is
always restored at high temperature. Furthermore, as the free

energy is a continuous function of the concentrations φa, such
a crossover between inhomogeneous and homogeneous mix-
ing occurs continuously, i.e., without passing through a first-
order phase transition. This argument can straightforwardly
be extended to any arbitrary perturbative order in Tc and
TL, demonstrating that equilibria with φ = 0 and φ = 0
correspond to different states of the same phase.

Despite the spatial curvature not giving rise to additional
thermodynamic phases, its effect below the critical temper-
ature is nonetheless dramatic as indicated by Fig. 5(b). In
this region of the phase diagram, the binodal line splits
into two disconnected regions, separated by an intermediate
continuum of states where φ is large and positive; hence the
concentration on the two spheres is highly nonhomogeneous.
In a previous work, we have reported a direct experimental
observation of these type of states and named the phenomenon
“antimixing” [18].

An intuitive understanding can be achieved by considering
the limiting case in which |TL| outweighs any other energy
scale. Since the linear interaction breaks the φ → 1 − φ sym-
metry, the energetic cost of having low or high concentrations
of the order parameter becomes highly uneven and position-
dependent. Specifically, if Lk + Lk̄ is large and positive, with
R1 > R2, having φ2 = 0 will cost much more energy than a
nonzero concentration on S1. Thus, any increment of the total
concentration � will be first accommodated by S1 until satura-
tion (i.e., φ1 = 1) and only later the order parameter will start
propagating on S2. The corresponding lines of equilibrium
associated with this scenario are represented as thick dashed
black lines in Fig. 4(b) and consist of two perpendicular
segments. The horizontal segment, i.e., {0 � φ1 � 1, φ2 = 0},
represents the buildup of the order parameter on the sphere
S1, whereas the vertical segment, i.e., {φ1 = 1, 0 � φ2 � 1},
indicates the subsequent buildup of the order parameter on the
sphere S2.

In this limit, the overall phase diagram is simply a disjoint
union of the phase diagrams of each subsystem, given the
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FIG. 6. The equilibrium phase diagram in the strong linear
coupling limit. This figure is analogous to Fig. 5, with nonzero
linear and quadratic couplings: we set Qk + Qk̄ = (1/5)R2

1qJ and
Lk + Lk̄ = (7/4)R2

1qJ . The critical temperatures on each sphere are
T (1)

c = 0.55qJ and T (2)
c = 0.65qJ . The green lines are the analytic

binodal lines obtained from Eq. (45). In the lighter gray region where
phase separation happens on S1, we have φ2 = 0. Conversely, in the
region where phase separation happens on S2, we have φ1 = 1. The
two black dots are the critical points relative to each sphere, with
critical concentrations given by Eq. (46).

simple mapping between φa and �. This is illustrated in
Fig. 6. Analyzing the stability of the mixed phase on each
sphere is straightforward and leads to the conclusion that
global phase separation is impossible in such a large TL

limit, since there is no overlap between miscibility gaps of
the two spheres. Moreover, the binodals of each sphere (the
green lines in Fig. 6) can be analytically derived:

T (1)
binodal = T

(
�

x1

)
, (45a)

T (2)
binodal = T

(
� − x1

x2

)
, (45b)

with T (y) = (1 − 2y)/arctanh(1 − 2y). Clearly, there are two
distinct critical points of the system, specific for each sphere,
located at {�(a)

c , T (a)
c } in the phase diagram. The associated

two critical temperatures are given by Eq. (38), while the
critical concentrations are

�(1)
c = x1

2
, �(2)

c = x1 + x2

2
. (46)

With these analytical results it is then possible to give a
precise definition of the antimixing phenomenon first reported
in Ref. [18]: we define as antimixed the mixed phase of an
inhomogeneous binary fluid at subcritical temperature with
nonoverlapping local miscibility gaps.

Now, from a strictly technical point of view, it may be ar-
gued that our treatment of the substrate geometry is oversim-
plified, as we approximate the dumbbell-shaped membrane of
Fig. 3(a) with the two disjoint spheres of Fig. 3(b). Evidently,
a real membrane is a single structure, and having φ = 0 will
inevitably induce gradients in the neck region that interpolates
between the two lobes. Could these interfacial effects destroy
the antimixed state? This question is addressed in the follow-
ing section.

C. Numerical results on more general surfaces

In this section we test whether our predictions on the
existence of inhomogeneous mixing and antimixing hold
for more realistic geometries. In particular, we must verify
whether these bulk equilibrium states are compatible with
the existence of concentration gradients. Therefore, let us
now consider a new axisymmetric approximation of Fig. 3(a),
i.e., the rotationally invariant surface of Fig. 3(c). Its radial
profile has been obtained by joining two circular arcs by an
interpolating polynomial of degree eight, chosen such that the
neck interpolation and the circular arc match smoothly up to
the fourth derivative at each of the two gluing points.

Our general strategy to find the equilibria is to implement
an evolution equation that lets an arbitrary configuration
smoothly flow toward minima of Eq. (5). Inspired by [33] we
choose to implement gradient flow with the conserved global
order parameter:

∂tφ = −δG

δφ
= D∇2φ − f ′(φ) − k′(φ)H2 − k̄′(φ)K + μ,

(47)

where φ = φ(r, t ) is now a function of both space and flow
parameter t . We stress that the L2-gradient flow generated by
Eq. (47) is purely fictitious and does not reflect the actual
coarsening dynamics the binary fluid. However, this approach
offers a practical way to generate stable equilibrium configu-
rations for arbitrary geometries.

We then solve Eq. (47) numerically using a finite-
difference scheme on unstructured triangular meshes. More
details about our numerical methods can be found in Ref. [18]
and our code is available for download on GitHub [66].
Meshes are constructed using the software package “GMSH”
[67]. As in the case of planar droplets on the plane, the rota-
tional symmetry of the substrate is not necessarily inherited by
the minimizers of the Gibbs free energy G; thus it is necessary
to solve the full two-dimensional problem.

Our main numerical results are shown in Fig. 7(a). We
focus on the linear couplings that explicitly break the φ →
1 − φ symmetry of the free energy, since they offer the most
interesting phenomenology. In all the simulations summarized
in Fig. 7, we set the temperature to T = 0.9Tc with Tc = qJ/2
uniform over all �. As a guide to the eye, the numerical
data are superimposed to the stable branch of the lines of
equilibrium associated with the two disconnected spheres [see
also Fig. 4(b)], with Lk + Lk̄ = (1/40)qJR2

1. This value is
almost an order of magnitude lower than the one used to
construct the phase diagram of Fig. 5(b), yet it can be shown
that it retains antimixed states as equilibrium solutions. Each
data point is obtained upon averaging the numerically found
stationary solutions of Eq. (47) over ten random initial field
configurations. To facilitate the comparison, the φa values are
computed by integrating φ over axisymmetric regions which
have the same area fraction x1 as the one occupied by S1

in the case of the two disjoint spheres. The solid horizontal
(vertical) lines correspond to the Maxwell values φ± on the
small (large) sphere. In general, if the local concentrations
take the binodal values, φa = φ±, it means that the system
is likely phase separated, with the interface lying in only one
subregion of �.

032604-11



FONDA, RINALDIN, KRAFT, AND GIOMI PHYSICAL REVIEW E 100, 032604 (2019)

FIG. 7. Equilibrium states of the axisymmetric geometry of
Fig. 3(c), obtained from numerical solutions of Eq. (47) with mean-
field potentials from (28) at subcritical temperature T = 0.45qJ .
(a) Lines of equilibrium for different L couplings: the solid blue
squares have Lk = (1/40)qJR2

1, the empty red squares have Lk̄ =
(1/40)qJR2

1, and the empty green circles have no direct interactions.
The dashed black line is the line of equilibrium obtained as in Fig. 4
for the two-sphere geometry with Lk + Lk̄ = (1/40)qJR2

1. The solid
vertical and horizontal lines are the binodal concentrations φ± at zero
coupling. The inset shows what the four different equilibria look
like at the same total concentration � = 0.55 (shown as a dashed
gray line in the main plot). (b) Concentration profiles as a function
of the arclength axisymmetric coordinate z, for the three dumbbells
shown in the inset of (a). The thin black line in the background shows
the radial profile of the surface (in cylindrical arclength coordinates,
the profile of a sphere looks like a trigonometric sine). The two
horizontal dashed lines correspond to the Maxwell values φ±. In all
simulations we set ξ = 0.024R1.

The different colors denote different values of Lk and/or
Lk̄ , while keeping the Q couplings to zero. Different data
points with the same color correspond to different values of �.
The green circles correspond to the homogeneous case, where

also Lk,k̄ = 0, and demixing occurs uniformly over the entire
surface. Outside of the binodal interval, i.e., for either � < φ−
or � > φ+, the equilibrium state is homogeneously mixed
with φ1 = φ2 = � and the data points are aligned along the di-
agonal. Conversely, phase separation occurs when φ− � � �
φ+, for which the data points depart from the diagonal and
either φ1 or φ2—the one containing no interfaces—coincides
with φ±.

The square dots correspond to either Lk (full blue) or Lk̄
(empty red) equal to (1/40)qJR2

1, with all other couplings set
to zero. In both cases we find that the numerical results follow
qualitatively the dashed line of equilibrium. The coupling with
the squared mean curvature, Lk , seems to be the one that
follows the two disjoint sphere results more closely, and is
the only one of the two data sets that features configurations
with φ1 > φ+ and φ2 < φ− [see the bottom right corner of
Fig. 7(a)].

Interestingly, for some �, the equilibrium concentrations
depart from a line of equilibrium and follow the horizontal
(or vertical) binodal line, although only in a specific range of
parameters (e.g., red dots, with � < 0.5) do the data exhibit φ

values that approximate the binodal value φ− with reasonable
accuracy. In all other cases, φa relaxes toward different �-
independent values. This behavior likely originates from one
or both of the following features of our model. First, the
interpretation of φa is less stringent when applied to a con-
nected dumbbell, where the two lobes are not geometrically
distinct regions. Second, there might be additional contri-
butions resulting from the finite thickness of the interface
(ξ = 0.024R1 in Fig. 7). In general, these observation indicate
that in nonhomogeneous spaces, the definition itself of phase
separation requires special care.

This latter statement can be made more precise by consid-
ering the inset of Fig. 7(a) and Fig. 7(b). In both plots, � =
0.55, corresponding to the dashed diagonal line in Fig. 7(a).
This value lies within the miscibility gap; thus, in the absence
of an explicit coupling with the curvature, the system phase
separates, and since � = xa, the expected areas occupied by
the two phases do not match the relative size of the two lobes,
so that the interface will lie away from the dumbbell’s neck.
The snapshots in the inset of Fig. 7(a) are color-coded based
on the local φ value, with φ = 0 in magenta, φ = 1 in green,
and φ = 1/2 in white. The rightmost snapshot illustrates the
case of homogeneous phase separation with the associated
interface lying along a constant geodesic curvature line, as
predicted by Eq. (14) for homogeneous potentials.

Figure 7(b) shows a plot of φ along a meridian as a
function of the arclength z from the equator of the larger
sphere. The green dots show the interfacial profile of the
classical phase-separated configuration, i.e., the hyperbolic
tangent kink, given by Eq. (32), interpolating between φ+ and
φ−. The dots are not perfectly aligned since the interface itself
is not axisymmetric, so the arclength z does not match exactly
the geodesic normal coordinate we employed in Sec. II C.
When either Lk (blue dots) or Lk̄ (red dots) is switched on,
the configuration of the phase field φ changes dramatically.
The field now interpolates between values which are not
the binodal values—shown as two horizontal dashed lines in
the plot—a signature of the fact that the curvature affects the
bulk concentration, even away from high-curvature regions.
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The influence of the curvature becomes particularly striking
in the neck region, where the Gaussian and mean curvature
couplings give rise to opposite effects. Since H2 is always
positive, the coupling LkφH2 > 0 favors small φ values in
regions of high curvature, as demonstrated by the prevalence
of magenta tones around the neck. Conversely, since K < 0,
the coupling Lk̄φK is negative and favors higher φ values, as
indicated by the prevalence of green tones. This behavior is
reversed in the case in which Lk̄ < 0, but, given the arbitrari-
ness in the definition of the field φ, this does not change the
qualitative picture.

Notice that in both cases the interface is slightly shifted
away from the neck, a phenomenon which is reminiscent of
the behavior of phase domains in axisymmetric sharp interface
models of freestanding lipid membranes [68]. Interestingly,
both the blue and green profiles are not monotonic functions
of z. Finally, note that all three cases interpolate between
different values in the two bulk regions; this proves that,
in general, the distinction between inhomogeneous mixing
and demixing is not well defined. We choose to interpret the
blue curve as the realization of the antimixed state (since the
profile interpolates between values which are outside the local
miscibility gap) on a single, connected, smooth geometry.

IV. DISCUSSION

In this work we investigated the thermodynamic equilib-
rium of two-dimensional fluids confined on closed spatially
curved substrates. Our model is primarily intended to describe
self-organization in scaffolded lipid vesicles (SLVs) [18], i.e.,
self-assembled lipid bilayers supported by arbitrarily shaped
colloidal particles. Our results, however, are also immediately
applicable to any other mixture forced to lie on a curved sur-
face, such as in the case of coating and adsorption phenomena
at liquid interfaces.

We considered a binary mixture that can be characterized
by a single scalar order parameter φ. Crucially, we focused
on closed thermodynamical systems, i.e., systems where there
is no exchange of φ with the surrounding environment. This
implies that the average total concentration, �, is an ex-
ternally fixed parameter. Equilibrium states are found from
minimization of the Gibbs free energy G = F − μ̂�, where
the chemical potential μ̂ is here set by the constraint on the
total concentration.

In Sec. II A we constructed the most general form for F ,
using only symmetry and scaling arguments, and identified
four φ-dependent parameters that, together with the total con-
centration �, determine the equilibrium state of the system.
These are the compressibility D, the homogeneous free energy
density f , and the two bending moduli k and k̄. In Sec. II B
we reviewed the classical theory of phase separation for
coexisting liquids. In Sec. II C and Appendix B we reviewed
the boundary layer analysis of the thin interface limit of two-
dimensional phase-field models on curved surfaces, without
direct curvature interactions. We derived the two-dimensional
versions of the Young-Laplace and of the Kelvin equations.

In Sec. II D and Appendix C we considered the case
where the bending moduli are small and yet nonvanish-
ing. Depending on their scaling with respect to D, they
produce very different effects. In case k, k̄ ∼ O(

√
D), the

Young-Laplace equation is changed to the equilibrium equa-
tion of the Jülicher-Lipowsky model [45], which we studied
in detail in Ref. [58]. If, on the other hand, the bending
moduli are of the same order of f , curvature effects become
more dramatic and can result in local shifts of the binodal
concentrations and a spatial dependence in the line tension
σ . The deviation of σ from its flat space value is parametrized
by two length scales, which are the one-dimensional analogs
of the Tolman lengths [53] for three-dimensional droplets.

Although very general, the results of Sec. II have limited
predictive power, since the φ dependence of the phenomeno-
logical parameters is left unspecified. In order to overcome
this limitation, in Sec. III we derived these parameters from
the mean-field approximation of a microscopic lattice-gas
model with curvature-dependent interactions [see Eqs. (28)].
We found that the curvature of the substrate directly affects the
structure of the free energy landscape via four nonequivalent
couplings, which either break or preserve the symmetry of
the free energy under exchange of the two phases (i.e., φ →
1 − φ). We refer to them respectively as Q and L interactions.

Motivated by the experimental results we reported in
Ref. [18], we applied our model to dumbbell-shaped mem-
branes, as shown in Fig. 3. For simplicity, we first approxi-
mated this surface as consisting of two disjointed spheres, al-
lowed to exchange the order parameter, but otherwise isolated
from the environment (see Sec. III B). We found that L interac-
tions, which linearly couple with the order parameter φ, favor
inhomogeneous mixing, i.e., a single phase with nonuniform
concentration across the system. For our simple two-sphere
geometry, this implies that each sphere is characterized by a
distinct φ value, depending upon the strength of the Q and L
couplings and the local curvature radius.

Exceptionally, for certain specific � values, such an inho-
mogeneously mixed phase remains stable even below the crit-
ical temperature. In this regime, the inhomogeneity becomes
more severe and the two spheres exhibit a stark concentration
difference, even though phase separation has not occurred.
We named this peculiar phenomenon, that was observed in
Ref. [18] experimenting with SLVs, antimixing, to stress that,
albeit still in the mixed phase, the equilibrium concentrations
split on the two opposite sides of a local miscibility gap.
Surprisingly, this behavior depends on the linear couplings
between the concentration and the local curvature (i.e., the
L coupling, in our notation), despite these not altering the
Maxwell construction and being thermodynamically irrele-
vant in binary membranes confined on homogeneous sub-
strates. This originates from the fact that in the presence
of sufficiently large geometrical inhomogeneities and suffi-
ciently strong symmetry-breaking coupling with the curva-
ture, the phase diagram partitions into two subdiagrams, each
with its own distinct critical point (see Fig. 6).

Lastly, in Sec. III C, we verified that inhomogeneous mix-
ing and antimixing persist also on more realistic dumbbell-
shaped substrates, obtained by connecting two spherical caps
with a smooth neck [see Fig. 3(c)]. In this case, inhomoge-
neous mixing demands the occurrence of sharp concentration
gradients, whose structure is substantially different from that
of standard interfacial profiles. Most importantly, the average
concentrations on the spherical lobes, i.e., the regions away
from the neck, differ from the binodal values, even if the
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thermodynamic potential has the same Maxwell concentra-
tions everywhere. This phenomenon is somewhat similar to
the change in the bulk lateral pressure due to curved inter-
faces, as predicted by the Kelvin equation, whereas now the
ambient curvature is inducing this change. Finally, we found
that the Lk , i.e., the linear interaction with the squared mean
curvature, produces equilibrium concentrations which match
very closely the values found from the two-sphere simplified
geometry, thus indirectly confirming that the antimixed state
is a valid concept also for connected geometries.

Beyond mixing and demixing

We have demonstrated that the thermodynamics of mix-
tures confined on inhomogeneous closed substrates entails a
spectrum of interesting phenomena that is, perhaps, broader
than initially thought. In particular, the importance of close-
ness (i.e., the fact that a mixture cannot exchange material
with the external environment) might have been overlooked
in the past, even though, after the seminal work by Baumgart
et al. [11], the interplay between geometry and chemical com-
position in multicomponent membranes has become a subject
of thorough theoretical and experimental investigations.

One of the most fundamental outcomes of our analysis
is that curvature inhomogeneities force us to relax the usual
distinction between mixed and demixed phases, since now
concentration gradients and interface-like structures can be
induced by curvature rather than spinodal instabilities. The
very existence of antimixing, on dumbbell-shaped substrates,
provides a prominent example of stable equilibrium states
which have features of both phases.

From a model-building perspective, this implies that ex-
treme care must be used in choosing the functional form of
the bending moduli profiles k(φ) and k̄(φ), since, even the
simplest interaction term (e.g., the linear coupling introduced
by Markin [19]) can produce highly nontrivial effects to
the equilibrium phase diagram of closed systems. Further-
more, slightly different choices can lead to very different
phenomenologies, thus negatively affecting the validity of a
given model.

Some of our predictions appear amenable to a reasonably
viable experimental verification. First, we have shown that
Q interactions may induce a curvature-dependent line ten-
sion and critical temperature. Even experiments on multi-
component spherical vesicles can potentially test this effect
by searching for a possible dependence of σ and Tc on the
vesicle’s radius. Furthermore, we recall that curvature terms
were neglected in deriving D from the lattice-gas model [see
Eq. (28a)] to comply with the general assumptions of Sec. II.
Lifting these assumptions yields in fact

D = ξ 2(J + QkH2 + Qk̄K ), (48)

which reveals a curvature dependence exactly analogous to Tc

in Eq. (29), since the mean-field value of the nearest-neighbor
interaction simultaneously affects both quantities. Note that
this effect does not have any implications when only L inter-
actions are considered; thus our conclusions on the antimixed
state are unchanged. However, this relation does predict that
not only compressibility but also the effective diffusion (e.g.,
as measured from photobleaching experiments) of lipids on

a vesicle might depend on the vesicle size. To the best of
our knowledge, neither one of these phenomena has yet been
experimentally investigated.

Finally, the analysis presented here in the case of binary
fluids could be generalized for arbitrary n-nary mixtures on
curved surfaces by introducing n − 1 scalar fields representing
the relative concentrations of each pair of components. The
case n = 3 is especially relevant as it could also serve as a
model for lipid bilayers with different composition on each
one of the two leaflets (see, e.g., Ref. [69]).
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APPENDIX A: GEODESIC NORMAL COORDINATES

If the equilibrium configuration is in a phase-separated
state, then φ develops linear interfaces. In this Appendix we
show how to construct a set of coordinates which is adapted
to the arbitrary shape of the system. We suppose that locally
the effective free energy is homogeneous, so the two Maxwell
values of the pure phases φ± are well defined. We then define
the interface γ (the black curve in Fig. 1) as the level set

γ =
{

r ∈ � : φ(r) = φ+ + φ−
2

}
. (A1)

The fact that we choose the average value between the two
pure phase concentrations φ± as defining the interface is
purely conventional and does not carry any special meaning.
Any other level set would work equally well. Note that γ

in general will consist of multiple curves, which we assume
to be not mutually intersecting. If ∂� = ∅, the curves will
be closed. From now on we restrict ourselves to the case
of the interface consisting of a single, closed, and simple
curve, although the generalization to multiple interfaces is
straightforward.

We can parametrize γ by its arclength s, define the tan-
gent two-vector T i(s) ≡ ∂sxi(s) (i = 1, 2), and fix the normal
Ni(s) to consistently point in the �+ domain. The geodesic
curvature of the curve is defined as

κg = T iT j∇iNj, (A2)

with ∇i the covariant derivative on � (see the appendices of
[58] for much more detail on the theory of curves applied
to linear interfaces). The arclength condition implies that
the norm of the tangent vector is constant when parallel-
transported along γ , i.e., T iT j∇iTj = 0. The fact that also
Ni is of unit norm along γ implies that T iN j∇iNj = 0.
Orthogonality to T i implies κg = −T iN j∇iTj .

Note that T i and Ni are two-vector fields which are defined
only along the curve, so that we are allowed to take derivatives
of them only along T i, and not in directions normal to the
curve. To this purpose, we need to extend the coordinate
system away from γ . The most natural way to do so is
to use geodesic normal coordinates. In a sufficiently small
neighborhood of γ we associate with every point P in � the
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coordinate pair (s, z), where z represents the length of the
(unique) geodesic segment starting from P and intersecting γ

orthogonally. The point where this intersection occurs defines
the value of s (see the inset of Fig. 1). To these coordinates
we associate the two vector fields t i = ∂s and ni = ∂z with the
defining properties

t i|z=0 = T i, ni|z=0 = Ni, (A3)

and nit i = 0 in the whole neighborhood. Note however that
t i is not unit normalized outside of γ : s is the arclength only
of the z = 0 line. On the other hand nini = 1 throughout the
whole patch. The induced metric on � is diagonal,

hi j = tit j + nin j . (A4)

With these definitions, the gradient of the scalar field φ(s, z)
is

∇iφ = tiφs + niφz, (A5)

where φs = ∂sφ and φz = ∂zφ. We are finally able to compute
the action of the Laplace-Beltrami operator on a scalar func-
tion in the adapted frame,

∇2φ = t itiφss + φzz + κφz, (A6)

with the vector norm computed with respect to the induced
metric. There is no mixed term φsz because of the orthogonal-
ity of the coordinates, and there is no φs term because of the
geodesicity of ∂z. Here κ = t it j∇in j is the geodesic curvature
of the z = constant lines and satisfies

κ|z=0 = κg. (A7)

The z dependence of κ is nontrivial and for arbitrary geome-
tries it cannot be computed explicitly. In the neighborhood
of the interface we can expand for small z and use standard
formulas for normal variations of geometric invariants (see,
e.g., Ref. [70]), finding

κ = κg − z
(
κ2

g + K
) + O(z2). (A8)

In general higher-order terms in z become increasingly com-
plicated, depending on derivatives of K along z. However, in
the case of K = constant it is possible derive exact results. For
instance, for a flat surface with K = 0 it is easy to prove (see
also, e.g., Appendix A of Ref. [54])

κ = κg

1 + zκg
, (A9)

whereas for a sphere of radius R (thus with K = 1/R2), we get

κ = 1

R
cot

[
arccot(κgR) + z

R

]
. (A10)

APPENDIX B: THIN-INTERFACE LIMIT

In this Appendix we review the technical details of the thin-
interface approximation D = ξ 2 � A� , for equations of the
form given by Eq. (11). Since the diffusive length is small,
we can look for perturbative solutions. Being the thickness
of interface also O(ξ ), there are essentially two regimes to
consider: the bulk phases where gradients are mild (the so-
called outer region) and the interface itself where derivatives
are unbounded (the inner region). At each order in ξ , the outer

expansion provides the correct boundary conditions for the
inner expansion.

We focus now on the inner expansion. Since the interface
γ is assumed to be a smooth curve, we can use the adapted
coordinate system outlined in the previous Appendix. The
normal coordinate will lie in an interval of order z ∈ [−ξ, ξ ],
with positive (negative) z pointing along �+ (�−) domains.
In this approximation, we expand the scalar field and the
chemical potential as

φ(s, z) = φ(0)(z) + ξφ(1)(z) + · · · , (B1a)

μ̂ = μ(0) + ξμ(1) + · · · , (B1b)

where the dots stand for O(ξ 2) terms.
As specified in the main text, we assume that over the

interface the z derivatives scale at most as ξ−1. The O(1) inner
expansion of the equilibrium condition is thus

f ′(φ(0) ) = μ(0) + ξ 2φ(0)
zz . (B2)

Asymptotic matching with the bulk boundary conditions
shows unsurprisingly that μ(0) is precisely the chemical po-
tential obtained by the common tangent construction, while
φ(0) approaches the bulk values φ±. We can rescale the
geodesic normal distance by ξ so that the variable w = z/ξ
spans approximately the full real line w ∈ [−∞,∞]. Defin-
ing ϕ(w) ≡ φ(0)(wξ ) we can rewrite (B2) as

ϕww = g′(ϕ), (B3)

where g is the shifted potential

g(ϕ) = f (ϕ) − ϕ
f (φ+) − f (φ−)

φ+ − φ−
+ φ− f (φ+) − φ+ f (φ−)

φ+ − φ−
,

(B4)

which satisfies the properties g(φ±) = g′(φ±) = 0 and
g′′(ϕ) = f ′′(ϕ). Equation (B3) can be multiplied by ϕw and
integrated—the choice of g is such that the integration con-
stant is zero—and one obtains the equipartition relation in
the main text, namely Eq. (12), whose solutions are one-
dimensional kinks. Without specifying f it is not possible to
solve further; however note that since g and its first derivative
approach zero in the limit w → ±∞, we have that the decay
toward φ± of ϕ is always exponential |ϕ − φ±| ∼

w→±∞ e∓λ±w

with decay lengths

λ± = ξ√
f ′′(φ±)

, (B5)

which are diverging at critical points.
We now consider the next term in the inner expansion.

Equation (11) at order O(ξ ), upon the substitution z → w/ξ ,
reads

f ′′(ϕ)φ(1) = μ(1) + φ(1)
ww + κgϕw. (B6)

We now multiply this equation by ϕw and integrate over w.
By using the identity∫ +∞

−∞
dw

[
φ(1)

ww − f ′′(ϕ)φ(1)
]
ϕw

=
∫ +∞

−∞
dw

[
ϕwww − f ′′(ϕ)

]
φ(1) = 0, (B7)
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which follows from (B3) and ϕw(±∞) = ϕww(±∞) = 0, we
find the relation

μ(1) = κgZ

φ+ − φ−
, (B8)

which proves that equilibrium interfaces must be curves of
constant geodesic curvature. In the above expression we de-
fined

Z =
∫ +∞

−∞
dw(ϕw )2 =

∫ φ+

φ−
dϕ

√
2g(ϕ), (B9)

where the last equality follows from (B3).
By taking the limit w → ±∞ of (B6), one finds the

asymptotic relation for φ(1),

φ(1)(±∞) = μ(1)

f ′′(φ±)
= κgZ

(φ+ − φ−) f ′′(φ±)
. (B10)

This result (which was also derived, e.g., in [33]) is in striking
contrast with the usual O(ξ ) matching condition for noncon-
served order parameters: the chemical potential renders φ(1)

nonzero also in the bulk phases.
Having specified how to expand (11) perturbatively in

powers of ξ and having solved the equations (B2) at O(1)
and (B6) at O(ξ ), the last step is to evaluate the free energy
on the equilibrium solutions. To this purpose we assume that
at finite ξ , � is partitioned into three distinct regions: a strip
γ (ξ ) centered at γ and of width ∼2ξ separating the two bulk
domains �

(ξ )
± which consist of �± with the half-strip region

removed. The area of the strip is ≈2ξ�γ with �γ the length of
the interface. The area of the two bulk domains is

Area
(
�

(ξ )
±

) = x±A� − ξ�γ + O(ξ 2). (B11)

Now integrals over the whole surface can be split into the sum
of three terms: if G(φ) is an arbitrary function of φ and its
derivatives, its integral over � can be computed as

1

A�

∫
�

dAG(φ) = x+G(φ+) + x−G(φ−)

− ξ�γ

A�

[
G(φ+) + G(φ−) − lim

ξ→0

1

ξ

∫ +ξ

−ξ

dzG(φ(0) )

]

+ ξμ(1)

[
x+

G ′(φ+)

f ′′(φ+)
+ x−

G ′(φ−)

f ′′(φ−)

]
+ O(ξ 2). (B12)

There are two contributions of O(ξ ): one from the integration
of O(1) terms on the strip, the other from the O(ξ ) corrections
to the bulk integrals. The integral in the second line can be
evaluated by substituting dz = ξdw and integrating over the
real line.

By picking G(φ) = 1 one immediately recovers the general
condition x+ + x− = 1, which obviously does not take any
correction. Instead, by picking G(φ) = φ one computes the
total average concentration. In this case the second line of
(B12) vanishes, because of

lim
ξ→0

1

ξ

∫ +ξ

−ξ

dz φ(0)(z) = 2φ(0)(0), (B13)

and of the definition of γ , (A1). This result contains however
some degree of arbitrariness, since we defined the limit in
(B13) in a symmetric manner: any other choice of the location

of the interface within the strip γ (ξ ) would have led to a
different value. This ambiguity is fixed in general by an
appropriate shift of the zero point of the geodesic normal
coordinate in such a way that the following equality holds,

∫ +∞

0
dw(ϕ − φ+) +

∫ 0

−∞
dw(ϕ − φ−) = 0, (B14)

which defines the so-called Gibbs interface. This condition
states that the integrated difference between inner and outer
concentrations should match on both sides of the z = 0 line.
Formally, we should replace definition (A1) with (B14), even
if nothing of the following results depends on this choice. We
finally find that

� = x+φ+ + x−φ− + μ(1)(x+λ+ + x−λ−); (B15)

i.e., the total concentration does indeed pick a contribution
from the interface and deviates from the homogeneous re-
lation (9). The extra factor depends on penetration depths
defined in (B5), and vanishes for geodesics.

By plugging G(φ) = f ′(φ) into (B12), we precisely re-
obtain the chemical potential expansion (B1b). Instead, by
choosing G(φ) = f (φ) one finds∫

�

dA f (φ) = 1

2
σ�γ + A�

∑
α=±

xα

×
[

f (φα ) + σκg
f ′(φα )

(φ+ − φ−) f ′′(φα )

]
, (B16)

with σ ≡ ξZ . Finally, with G(φ) = ξ 2/2∇iφ∇iφ one finds

ξ 2

2

∫
�

dA∇iφ∇iφ = 1

2
σ�γ . (B17)

Combining the last two expression we obtain the O(ξ ) expan-
sion for the total free energy, Eq. (17).

APPENDIX C: LINEAR CORRECTIONS
TO THE MAXWELL CONSTRUCTION

In this Appendix we show how to compute the linear
corrections when the free energy f (φ) of Eq. (11) is modified
by a small perturbation,

f̃ (φ) = f (φ) + εh(φ), (C1)

with ε � 1. In the following, we will keep only first-order
corrections in ε. The Maxwell common tangent condition
reads

f ′(φ̃±) + εh′(φ̃±) = f̃ (φ̃+) − f̃ (φ̃−)

φ̃+ − φ̃−
, (C2)

where φ̃± = φ± + εδφ± + · · · are the shifted values of the
bulk phases. The O(ε) solution to these equations gives

δφ± = h(φ+) − h(φ−)

φ+ − φ−
− h(φ±)

f ′′(φ±)
. (C3)

We now compute the O(ε) correction to the line tension (16).
First, it is easy to see that the shifted potential g defined in
(B4) becomes

g̃(φ) = g(φ) + εgh(φ), (C4)
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with

gh(φ) = h(φ) + h(φ−)(φ − φ+) − h(φ+)(φ − φ−)

φ+ − φ−
, (C5)

which remarkably does not depend on f (φ) or on its deriva-
tives. Substituting the above expression in (16) and expanding
again, one finds

σ̃ = σ + εδh, (C6)

where

δh = ξ

∫ φ+

φ−
dϕ

gh(ϕ)√
2g(ϕ)

. (C7)

Note that in (C6) there are no end-point contributions at order
O(ε) since g(φ±) = 0. The integral in the above expression
can be rewritten by means of the Gibbs condition (B14). For-
mally we can compute the integral of the linear and constant
terms as∫ +∞

−∞
dw

h(φ−)(φ+ − ϕ)

φ+ − φ−
=

∫ 0

−∞
dw h(φ−), (C8a)

∫ +∞

−∞
dw

h(φ+)(ϕ − φ−)

φ+ − φ−
=

∫ +∞

0
dw h(φ+), (C8b)

where the integration limits should be thought as momentarily
regularized. Plugging this into (C7), we find

δh = ξ

∫ +∞

0
dw[h(ϕ) − h(φ+)]

+ ξ

∫ 0

−∞
dw[h(ϕ) − h(φ−)], (C9)

which shows how the first correction to the line tension is due
to the integrated difference between the zeroth-order inner and
outer values of h(φ), evaluated on either side of the Gibbs
interface. Any term which is symmetric with respect to the

exchange z → −z, such as constant and linear terms, will give
a vanishing contribution to δh. In the main text, we replace ε

with H2 or K , and h(φ) with either k(φ) or k̄(φ).

APPENDIX D: HIGH-TEMPERATURE EXPANSION
OF THE INHOMOGENEOUS MIXING

Given the definition of φ in Eq. (40), we can rewrite the
local concentrations as

φ1 = � + x2φ, (D1a)

φ2 = � − x1φ, (D1b)

and the local quadratic and linear couplings as

T (a)
c,L = T̂c,L + (−1)aT̂c,L, (D2)

where T̂c is defined in Eq. (41), T̂L has an obvious analogous
definition, and Tc,L are defined by Eqs. (42). By plugging
these expressions into (37) and expanding for small differ-
ences we get the equation

T φ

�(1 − �)
− 4φT̂c + 4(1 − 2�)Tc + 2TL = 0, (D3)

whose solution is of the form (43) with coefficients

CQ(�, T̂c/T ) = 4
�(1 − �)(2� − 1)

1 − 4 T̂c
T �(1 − �)

(D4)

and

CL(�, T̂c/T ) = 2
�(1 − �)

1 − 4 T̂c
T �(1 − �)

. (D5)

These are always finite quantities whenever T > 2T̂c; thus
expansion (43) can be trusted only in the high-temperature
limit, where they approach the values of (44).
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