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As potential candidates of dark matter, primordial black holes (PBHs) are within the core scopes of
various astronomical observations. In light of the explosive development of gravitational wave (GW) and
radio astronomy, we thoroughly analyze a stochastic background of cosmological GWs, induced by overly
large primordial density perturbations, with several spikes that was inspired by the sound speed resonance
effect and can predict a particular pattern on the mass spectrum of PBHs. With a specific mechanism for
PBH formation, we for the first time perform the study of such induced GWs that originate from both the
inflationary era and the radiation-dominated phase. We report that, besides the traditional process of
generating GWs during the radiation-dominated phase, the contribution of the induced GWs in the sub-
Hubble regime during inflation can become significant at the critical frequency band because of a narrow
resonance effect. All contributions sum together to yield a specific profile of the energy spectrum of GWs
that can be of observable interest in forthcoming astronomical experiments. Our study sheds light on the
possible joint probe of PBHs via various observational windows of multimessenger astronomy, including
the search for electromagnetic effects with astronomical telescopes and the stochastic background of relic
GWs with GW instruments.
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I. INTRODUCTION

Primordial black holes (PBHs) are hypothetical objects
predicted by many fundamental theories to form soon after
the big bang, and hence the search for PBHs offers an
inspiring possibility to probe physics in the early Universe
[1–3]. Since they could be a possible candidate for dark
matter (DM), the studies on cosmological implications of
PBHs are crucial for cosmologists [4–16]. Recently, it was
pointed out that the PBHs might be responsible for some
gravitational wave (GW) events [17–20], which were
detected by GW instruments such as the LIGO [21].
This observational possibility motivates many theoretical
mechanisms generating PBHs, which often require a power
spectrum of primordial density perturbations to be suitably

large on certain scales that are associated with a particularly
tuned background dynamics of the quantum fields in the
early Universe (e.g., see [22–32] for studies within infla-
tion, see [33,34] for discussions within bounce, and see
[35,36] for recent comprehensive reviews).
Primordial density perturbations, which seeded the large-

scale structure (LSS) of the Universe, are usually thought to
arise from quantum fluctuations during a dramatic phase of
expansion at early times, as described by inflationary
cosmology, from which a nearly scale-invariant power
spectrum with a standard dispersion relation is obtained
[37]. This was confirmed by various cosmological mea-
surements such as the cosmic microwave background
(CMB) radiation [38,39] and LSS surveys at extremely
high precision. It is interesting to note that, although
density and tensor perturbations evolve independently
through the early Universe at a linear level, they couple
with each other nonlinearly and hence can induce either the
non-Gaussianities or stochastic background of relic GWs
[40,41]. If these density perturbations could form PBHs,

*yifucai@ustc.edu.cn
†cchao012@mail.ustc.edu.cn
‡xtongac@connect.ust.hk
§wdgang@strw.leidenuniv.nl
¶sfyan22@mail.ustc.edu.cn

PHYSICAL REVIEW D 100, 043518 (2019)

2470-0010=2019=100(4)=043518(15) 043518-1 © 2019 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388642101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.043518&domain=pdf&date_stamp=2019-08-12
https://doi.org/10.1103/PhysRevD.100.043518
https://doi.org/10.1103/PhysRevD.100.043518
https://doi.org/10.1103/PhysRevD.100.043518
https://doi.org/10.1103/PhysRevD.100.043518


then it becomes possible to constrain primordial non-
Gaussianities with PBHs [42–47]. Moreover, it is intriguing
to search for PBHs via the measurements of the stochastic
GW background induced by overly large primordial
density perturbations [48–61]. The connection between
PBHs and the induced GWs has been extensively studied in
the literature, which mainly focused on the GW generation
during the radiation-dominated phase when PBHs were
formed. So far, the GW generation during the inflationary
phase remains unclear, which is one of the main subjects of
the present study.
Recently, a novel mechanism for PBH formation, called

sound speed resonance (SSR), was proposed in [11], where
an oscillating sound speed square leads to the nonpertur-
bative parametric amplification of certain perturbation
modes during inflation. As a result, the power spectrum
of the primordial density perturbations has a narrow major
peak on small scales, while it remains nearly scale invariant
on large scales as predicted by inflationary cosmology.
Note that several minor peaks of the power spectrum of the
primordial density perturbations on smaller scales are also
predicted by this novel mechanism. In [11] it was found
that the formation of PBHs caused by the resulting peaks in
SSR can be very efficient, which could be testable in future
observational experiments.
Moreover, the enhanced primordial density perturbations

are expected to induce large GW signals according to the
second-order cosmological perturbation theory. Motivated
by the aforementioned reasons, in the present paper we turn
to study the second-order GWs caused by the primordial
density perturbations with peaks in the SSR scenario.
Making use of this new mechanism, we perform a full
analysis of the GW signal that evolves through the infla-
tionary era until the present Universe.
First, we analyze the GWs induced by the enhanced

primordial density perturbations when the relevant modes
reenter the Hubble horizon during the radiation-dominated
era. Afterwards, we study GWs induced by the modes of
primordial density perturbations at the super-Hubble scales
during the inflationary era, which is often omitted in other
works. Our calculation reveals that this part of the contri-
bution is usually suppressed by the slow-roll parameter when
compared with that of the radiation-dominated era, but it
might be important if the slow-roll condition could be
violated for a short while during inflation. Finally, we
compute the GWs induced by quantum fluctuations that
remain inside the Hubble horizon during inflation, and we
find that this sub-Hubble contribution can become very
significant at the critical frequency band due to the narrow
resonance effect. We interestingly observe that, although the
spectrum is damping out at small scales due to a blue tilt,
there exists a narrowwindowwhere the induced GWs can be
resonantly enhanced, and the resulting amplitude can be
sizablewhen compared with the one derived in the radiation-
dominated phase. Therefore, this work provides for the first

time a comprehensive study on the stochastic GW back-
ground induced during both the inflationary and the radia-
tion-dominated eras. The resulting signal provides a new
target for various future GWexperiments, which also serves
as an independentwindow for probing PBHs in theUniverse.
The article is organized as follows. In Sec. II, we put

forward a novel parametrization form of the power spectrum
of primordial density perturbations that allows for several
spikes and discuss the associated realization from the
perspective of the SSR mechanism. In Sec. III, we work
out the GWs induced by primordial density perturbations
during the radiation-dominated phase, and by the super-
Hubble modes and the sub-Hubble modes during inflation,
respectively. In Sec. IV, we derive the energy spectra of the
induced stochastic GWs associatedwith PBH formation and
perform a comparison with the observational ability of
present and forthcoming GW experiments. Finally, we
conclude with a discussion in Sec. V. The detailed calcu-
lation of induced GWs is presented in the Appendixes.
Throughout the article, we adopt the natural units c ¼ ℏ ¼ 1

and the reduced Planck mass is defined as M−2
p ¼ 8πG.

II. SOUND SPEED RESONANCE AND POWER
SPECTRUM WITH PEAKS

To generate PBHs within inflationary cosmology, the
key point is to amplify the amplitude of primordial density
perturbations for certain ranges of modes. For most of the
theoretical mechanisms studied in the literature, it requires
a manifest enhancement around a unique comoving
wave number, and accordingly, the mass spectrum of
PBHs displays a single peak around a critical mass scale.
However, it was recently pointed out in [14] that the PBHs
are likely to have an extended mass spectrum, in particular
with multiple peaks, which has crucial implications for the
interpretation of the observational constraints. This novel
phenomenon happens to be realized also in [11] in terms of
the SSR mechanism. We note that, for the sound speed, the
first peak of the resonant power spectrum, which corre-
sponds to the lowest comoving wave number, makes the
larger contribution to the PBH mass spectrum, but the rest
would affect the whole profile, in particular the tail of the
mass spectrum.
The causal mechanism of generating the power spectrum

suggests that primordial density perturbations initially
emerge inside the Hubble radius, then exit in the primordial
epoch, and eventually reenter at late times. One often uses a
gauge-invariant variable ζ, the curvature perturbation in
the comoving gauge, to depict the primordial inhomoge-
neities. For convenience, one can introduce a canonical
variable v≡ zζ, where z≡ ffiffiffiffiffi

2ϵ
p

a=cs [62,63]. Note that ϵ≡
− _H=H2 is often regarded as the Hubble slow-roll param-
eter, H ≡ _a=a is the Hubble parameter, and cs is the sound
speed parameter of the primordial Universe. The evolution
of one Fourier mode for this variable vkðτÞ satisfies
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v00k þ ðc2sk2 − z00=zÞvk ¼ 0, where the prime represents for
the derivative with respect to the conformal time τ.
To produce PBHs within inflationary cosmology

requires a dramatic amplification of the primordial curva-
ture perturbations for certain scales. In [11], a novel
mechanism was proposed by introducing an oscillating
correction to the sound speed parameter. In particular, a
parametric amplification of curvature perturbations caused
by resonance with oscillations in the sound speed param-
eter, which provides an efficient way to enhance the
primordial power spectrum around the astrophysical scales
where PBHs could account for DM in the current exper-
imental bounds. Such an oscillation correction could
arise when inflation models are embodied in UV-complete
theories, such as D-brane dynamics in string theory [64,65],
or by integrating out heavy modes from the effective field
theory viewpoint [66,67], or purely from a phenomeno-
logical construction [68–70].
Specifically, the sound speed parameter can be para-

metrized as c2s ¼ 1– 2ξ½1 − cosð2k�τÞ�with τ > τi, where ξ
is a small dimensionless quantity that measures the oscil-
lation amplitude and k� is the oscillation frequency. Note
that ξ < 1=4 is required such that cs is positively definite,
and the oscillation begins at τi, where k� needs to be deep
inside the Hubble radius with jk�τij ≫ 1. Moreover, we
set cs ¼ 1 before τi and assume that it can transit to
oscillation smoothly for simplicity. In this mechanism, the
perturbation equation can be reexpressed in the form of a
Mathieu equation [11], which then gives rise to a narrow
parametric resonance; i.e., the perturbation modes in the
neighborhood of the characteristic scale k� can be expo-
nentially enhanced, while the power spectrum on large
scales remains nearly scale invariant as predicted by the
standard inflationary cosmology. However, it is interesting
to observe that this mechanism also predicts several
secondary peaks on the scales with integer times of k�.
Accordingly, by taking these peaks in the power spectrum
into account, one can parametrize its form as follows:

PζðkÞ ¼ As

�
k
kp

�
ns−1

�
1þ ξk�

2
e−ξk�τi

×

�
δðk − k�Þ þ

X∞
n¼2

anδðk − nk�Þ
��

; ð1Þ

where As ¼ H2=8π2ϵM2
p is the amplitude of the power

spectrum predicted by the conventional inflationary para-
digm, ϵ is the Hubble slow-roll parameter as mentioned
above, and ns is the spectral index at the pivot scale kp ¼
0.05 Mpc−1 [39]. The resonant enhancements are charac-
terized by the delta functions inside the square brackets in
the second line of Eq. (1), where the amplitude of the nth
peak relative to the first one is quantified by a dimension-
less parameter an. Since we work in the perturbative
regime, the height of the peaks in PζðkÞ should be no

more than unity. This condition constrains the upper
bounds for the amplitudes of the induced GWs generating
from the inflationary era and the radiation-dominated era.
To illustrate the technique of calculating GWs induced

by the process of PBH production with multiple spikes,
throughout the whole analysis we will only take into
account the second and third peaks that are located at
2k� and 3k�, respectively. This is because the amplitudes of
other peaks at higher order are exponentially suppressed by
a factor of about Oð10−8Þ in the SSR mechanism and then
soon be out of observable interest. According to the
cosmological perturbation theory, different k-modes of
linear density perturbations can be mixed with each other
nonlinearly and this mixing can play the role of generating
tensor perturbations at second order [40,41].
In the literature, there were extensive studies on the GWs

induced by a single-peak pattern of the power spectrum of
primordial density perturbations with the scalar modes
reentering the Hubble radius during the postinflationary
phase [48–61]. For some specific models, the induced GWs
associated with PBHs can also be generated during
inflation [71,72]. These works have successfully demon-
strated that a possible measurement of the stochastic
background of GWs in future astronomical experiments
could provide a powerful window to search for PBHs or to
constrain the parameter space. However, it is crucial to
notice that this observational attempt requires a precise
quantification of the profiles of energy spectra of the
induced GWs, which takes into account the enhancement
effects from both inflation and later phases.
To address the aforementioned issues, in the present

article we perform a much more comprehensive analysis on
how the GWs were induced by a resonantly enhanced
power spectrum that began from the sub-Hubble regime of
the inflationary era, then evolved to the super-Hubble
regime during inflation, and finally reentered the Hubble
horizon during the radiation-dominated phase. The PBHs
form in the radiation-dominated phase, but the GWs can be
continuously produced throughout the whole evolution as
shall be seen in the following section.

III. GRAVITATIONAL WAVES GENERATED
IN A PRIMORDIAL UNIVERSE

In this section, we present a complete analysis of the
induced GWs throughout the whole evolution of a primor-
dial Universe. In order to make a comparison with the
pioneering works in the literature, we would like to show
the results backward in time. We begin by discussing the
induced GWs when the scalar modes reenter the Hubble
horizon during the radiation-dominated era.

A. Radiation-dominated era

In the Newtonian gauge, the line element in the perturbed
metric is expressed as [40,52,54]
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d2s ¼ a2ðτÞ
�
−ð1 − 2ΦÞdτ2 þ

�
ð1þ 2ΦÞδij

þ 1

2
hij

�
dxidxj

�
; ð2Þ

where τ is the conformal time, Φ is the Bardeen potential,
and hij is the tensor perturbation up to second order. The
equation of motion (EOM) for the induced GWs in the
Fourier space can be written as follows:

hλ
00
k ðτÞ þ 2Hhλ

0
kðτÞ þ k2hλkðτÞ ¼ SλkðτÞ; ð3Þ

where H≡ a0=a is the comoving Hubble parameter; λ ¼
þ;× denote two polarization modes of the GWs; and the
source term SλkðτÞ during the radiation-dominated era is
given by [40,41,54,57]

SλkðτÞ ¼ 4

Z
d3p
ð2πÞ3 e

λðk;pÞ½3ΦpΦk−p þH−2Φ0
pΦk−p

0

þH−1Φ0
pΦk−p þH−1ΦpΦk−p

0 �; ð4Þ

where the projections are defined as eλðk;pÞ≡eλlmðkÞplpm

[49]. They take the form of ð1= ffiffiffi
2

p Þp2ð1 − μ2Þ cos 2φ for
λ ¼ þ and ð1= ffiffiffi

2
p Þp2ð1 − μ2Þ sin 2φ for λ ¼ ×, where

μ≡ k · p=jkj · jpj ¼ cos θ, θ is the angle between the wave
vector k (of the induced GWs) and p (of the source), and φ
is the azimuth angle of p. The basic formulas above are
presented in Appendix A in more detail. Accordingly, the
EOMs for the induced GWs (3) are actually not equivalent
for different polarizations, and hence we keep the indices of
polarizations in the expressions. During the radiation-
dominated era, the Bardeen potential Φp in the source term
(4) is related to the primordial comoving curvature pertur-
bation ζp via the relation Φp ¼ ð2=3ÞTðkτÞζp, and the
transfer function TðkτÞ can be solved by the EOM for the
Bardeen potential (see Appendix B 1 for details) [40,41].
The special solution of the induced GWs (3) can be

determined by the Green function method. Note that, while
the induced GWs generated during the radiation-dominated
phase should also depend on the initial conditions that were
inherited from the inflationary phase, the main contribution
comes from the source term. From the EoM (3) and the
source term (4), one can see that the two-point correlation
function of the induced GWs can be roughly estimated as
the square of the two-point correlation function of ζp
[40,41]. After some lengthy calculations, one can derive the
power spectrum of the induced GWs during the radiation-
dominated phase as follows [40,41,54,57]:

PRD
h ðk; τÞ ¼

Z
∞

0

dy
Z

1þy

j1−yj
dx

�
4y2 − ð1þ y2 − x2Þ2

4xy

�
2

× PζðkxÞPζðkyÞFRDðk; τ; x; yÞ; ð5Þ

where we have introduced the variables x ¼ jk − pj=k and
y ¼ p=k. Moreover, the function FRDðk; τ; x; yÞ is given by

FRDðk; τ; x; yÞ

¼ 4

81

1

z2
½cos2ðzÞI2

c þ sin2ðzÞI2
s þ sinð2zÞIcI s�; ð6Þ

where z ¼ kτ has been introduced. The expressions for
the functions Icðx; yÞ and Isðx; yÞ are provided in
Appendix B 1 for detailed information. The formalism
(5) is the general expression to calculate the power
spectrum of the GWs induced by the primordial curvature
perturbation ζ when the associated Fourier modes of ζ
reenter the Hubble horizon during the radiation-dominated
era. The same modes of curvature perturbations can also
induce overly large density fluctuations that eventually
could form PBHs after reentering the Hubble horizon
during the radiation-dominated phase.
We comment that a significant property of the GWs

induced by the multispike power spectrum of the primor-
dial curvature perturbations is that the corresponding wave
band is wider than that of the single-peak case [73]. This
can lead to differences in the parametrization of the energy
spectrum for the induced GWs, which shall be discussed in
detail in Sec. IV. Note that the average amplitude of the
induced GWs is not altered by the multispike case, as this
amplitude mainly relies on the first peak that in the SSR
mechanism is always the dominant one.

B. Inflationary era

In this part, we investigate the induced GWs during the
inflationary era, which is often omitted in previous works.
In the SSR mechanism, the curvature perturbations are
amplified deep inside the Hubble horizon at the beginning
time τi while the sound speed starts oscillating. Then, the
curvature perturbations are exponentially enhanced due to
the narrow resonance effect until the relevant modes exit
the horizon, and they are frozen at the superhorizon scales.
In principle, the GWs could be induced in both the sub-
Hubble regime and the super-Hubble regime. Thus, the
total contributions to the induced GWs during the infla-
tionary era consist of these two regimes. First of all, we
calculate the power spectrum for the GWs induced by the
super-Hubble modes of the primordial curvature perturba-
tions with multiple peaks. Afterwards, we also calculate the
power spectrum of GWs induced by the sub-Hubble modes
of the primordial curvature perturbations which remain the
quantum nature.

1. Super-Hubble modes

During the inflationary era, the perturbed inflaton can
provide the anisotropic stress which then sources the GWs
nonlinearly. In this case, the source term in (3) becomes
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SλkðτÞ ¼ 4
c2s
M2

p

Z
d3p
ð2πÞ3 e

λðk;pÞδϕpðτÞδϕk−pðτÞ; ð7Þ

where δϕpðτÞ is the perturbed inflaton in the Fourier
space. We work in the spatially flat gauge, where the field
fluctuation δϕ is related to the curvature perturbation ζ via
ζ ¼ Hδϕ= _ϕ ¼ δϕ=

ffiffiffiffiffi
2ϵ

p
Mp at the super-Hubble scales.

After the lengthy calculations similar to (5), we obtain
the power spectrum for the induced GWs as follows:

PSuper
h ðk; τÞ ¼

Z
∞

0

dy
Z

1þy

j1−yj
dx

�
4y2 − ð1þ y2 − x2Þ2

4xy

�
2

× PζðkxÞPζðkyÞFInfðk; τ; uÞ: ð8Þ
The function FInfðk; τ; uÞ here is

FInfðk; τ; uÞ ≃ 16ϵ2u−2½uþ z cosðzþ uÞ − sinðzþ uÞ�2;
ð9Þ

whereu≡ k=p�, andp� is the characteristic frequency in the
SSR mechanism. Comparing the formula (8) to (5), we can
see that the difference between two power spectra of the
induced GWs is from the functions FInfðk; τ; uÞ and
FRDðk; τ; x; yÞ, since the source terms during the infla-
tionary era (7) and radiation-dominated era (4) are different.
We notice that the function FInfðk; τ; uÞ involves the slow-
roll parameter ϵ, and hence, the magnitude of the power
spectrum (8) is sensitive to the value of ϵ. Consequently, the
energy spectrum of the GWs induced by the super-Hubble
modes is about ϵ2 suppressed comparing with the GWs
induced during the radiation-dominated era; see Sec. IV. The
explicit expression for PSuper

h ðk; τÞ induced by the single-
peak pattern and multipeak pattern of PζðkÞ can be found
in (B19) and (B20) of Appendix B 2. According to our
analysis, the power spectrum for the induced GWs in the
super-Hubble regime is frozen at the end of inflation, and
PSuper
h ðk; τendÞ is shown in Fig. 1, where τend is the conformal

time at the end of inflation, i.e., τend → 0. It is easy to see that
the peak of the power spectrum (8) is located at k ≃ p�,
where the amplitude arrives at 10−12, and we use the values
of parameters as ϵ ¼ 10−3, v≡ −p�τi ¼ 200, ξ ¼ 0.1, and
ns ¼ 0.968, which are in agreement with the latest CMB
observations [39]. However, the effects ofmultiple peaks are
no longer manifest in the tail of the power spectrum due
to the suppression of the higher peaks by a factor of
about Oð10−8Þ.

2. Sub-Hubble modes

In this part, we continue to study the induced GWs from
the quantum fluctuations of the perturbed inflaton δϕ̂p

inside the Hubble horizon during the inflationary era.
Due to the narrow resonance effect in the SSR mechanism,
the sub-Hubble modes of δϕ̂p in the neighborhood of the

characteristic scale p� can be exponentially amplified,
leading to the first major peak in the curvature power
spectrum PζðkÞ (1). Since the sub-Hubble modes are time
dependent, it is not easy to calculate the four-point correlator
of the δϕ̂p as the previous calculations. Moreover, the
solution of the modes in the neighborhood of the character-
istic scale p� is a complicated combination of Mathieu
functions [11]. Therefore,we use a semianalyticalmethod to
compute the power spectrum for the GWs induced by the
sub-Hubble modes, instead of the previous analytical
approach used for the super-Hubble regime.
The power spectrum for the GWs induced by the sub-

Hubble modes at time τ� ¼ −p−1� can be calculated by the
formula [74],

PSub
h ðk;τ�Þ¼

4

π4M4
p
k3
Z

∞

0

dpp6

Z
π

0

dθsin5θ

×

				
Z

τ�

τi

dτ1c2sðτ1Þgkðτ�;τ1Þδϕpðτ1Þδϕjk−pjðτ1Þ
				2;

ð10Þ

where gkðτ�; τ1Þ is the Green’s function for the induced
GWs, and δϕp is the mode function of the quantum
fluctuation δϕ̂p. The angle θ is spanned by the wave vector
k and p. Equation (10) consists of two integrals, the phase
space integral ΔΠ ¼ R

dpp2d cos θdφ and the time

FIG. 1. The power spectra for the GWs induced by super-
Hubble modes (the blue dashed line) and sub-Hubble modes (the
red line) of curvature perturbations with multiple peaks (1). The
GWs induced by the super-Hubble modes are estimated at the end
of inflation τend, while the GWs induced by the sub-Hubble
modes are estimated at τ�, i.e., the Hubble crossing for the mode
p�. The average amplitude of the GWs induced by the sub-
Hubble modes is about 1010 larger than that of the super-Hubble
modes. The values of the parameters that we used are as follows:
ϵ ¼ 10−3, v ¼ 200, ξ ¼ 0.1, and ns ¼ 0.968.
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integral. For the phase space integral, we use the thin-ring
approximation (see Appendix B 3), while the integral over
interacting time τ1 is performed in a numerical way.
In the SSRmechanism, the full form of themode function

δϕ cannot be obtained analytically. Instead we use the
subhorizon approximation and neglect the Hubble friction
term in the EOM for the inflaton. After the approximation,
the equation is of the standard Mathieu form and can be
solved analytically in terms of Mathieu functions. The
validity of the approximation depends on the physical
wavelength of the considered mode. If its physical wave-
length is small compared to the Hubble horizon, the
approximation is expected to work well. Since here we
are considering the sub-Hubble contributions, we only need
to track δϕ down to its horizon-crossing time. Henceforth,
this approximation should be valid for the most region of
integration.
To better organize the calculation, we introduce a

dummy variable s≡ −p�τ1. Thus the time integral can
be rewritten asZ

τ�

τi

dτ1c2sðτ1Þgkðτ�; τ1Þδϕpðτ1Þδϕjk−pjðτ1Þ

¼ eiuþ2iv

4p5�u3
H2

Z
v

1

ds½1 − 2ξð1 − cosð2sÞÞ�M2ðs; vÞ

× eius½e−2iuð1þ iuÞð−i − usÞ
þ e−2iusð1 − iuÞði − usÞ�; ð11Þ

where the function Mðs; vÞ is

Mðs; vÞ ¼ SðsÞðiCðvÞ − C0ðvÞÞ þ CðsÞð−iSðvÞ þ S0ðvÞÞ
−SðvÞC0ðvÞ þ CðvÞS0ðvÞ :

ð12Þ
As a shorthand notation, we denote the Mathieu sine and
cosine functions as CðxÞ≡ Cð1; ξ; xÞ, SðxÞ≡ Sð1; ξ; xÞ
and C0ðxÞ≡ ∂Cð1; ξ; xÞ=∂x, S0ðxÞ≡ ∂Sð1; ξ; xÞ=∂x.
Therefore the contribution from the subhorizon modes is

written as

PSub
h ðk; τ�Þ ¼

�
16ξ2ϵ2A2

sð1 − u2
4
Þ2 1

u4 jIðu; vÞj2; u > ξ
2
;

32ξϵ2A2
sð1 − u2

4
Þ2 1

u3 jIðu; vÞj2; u < ξ
2
;

ð13Þ
where

Iðu;vÞ¼
Z

v

1

ds½1−2ξð1−cosð2sÞÞ�eius

× ½e−2iuð1þ iuÞð−i−usÞþe−2iusð1− iuÞði−usÞ�

×

�
SðsÞðiCðvÞ−C0ðvÞÞþCðsÞð−iSðvÞþS0ðvÞÞ

−SðvÞC0ðvÞþCðvÞS0ðvÞ
�
2

:

ð14Þ

Thus we arrive at the power spectrum PSub
h ðk; τ�Þ induced

by the first major peak in the power spectrum PζðkÞ (1).
The same treatments are applied to the analysis of the
second and third resonance peaks in PζðkÞ (1). Note that the
formula (10) and the thin-ring approximation can also
be applied to the calculations of the power spectrum for
the GWs induced by the super-Hubble modes at the end
of inflation, by changing the expressions for the mode
functions δϕp and the interval of the integral to (τ�, τend).
These two approaches give the same results, which confirm
our previous calculations in (8) and (9).
Note that the power spectrum for GWs induced by the

sub-Hubble modes is controlled by v ¼ −p�τi. This is the
exponential of e-folding numbers between the triggering of
resonance and the horizon exit of the characteristic inflaton
mode. Larger v gives a higher GW spectrum. However, this
amplification cannot grow indefinitely. In order to keep the
validity of our formalisms, we require Pζðp�Þ < 1 and
Ph < 1. The former bound is considered in [11] and gives

As <

�
p�
kp

�
1−ns

e−ξv: ð15Þ

Notice that p� and ns do not explicitly enter the expression
for PSub

h ðk; τ�Þ (13), but they do control the boundary of the
parameter region through (15).
In Fig. 1, we depict the power spectra in the super-

Hubble regime and the sub-Hubble regime for a viable set
of parameters indicated in the caption. We see that the
average amplitude of the GWs induced by the sub-Hubble
modes can be about 1010 larger than that of the super-
Hubble modes. This gives us ample reasons to think that no
significant corrections can arise from the evolution after τ�
(i.e., the super-Hubble regime). Physically speaking, it is
also reasonable since the induced GWs possess a compa-
rable wavelength as the characteristic mode. Therefore,
when the curvature perturbation of the characteristic mode
p� is frozen outside the horizon, the induced GWs freeze as
well. This conclusion is also confirmed by the numerical
result, and thus the induced GWs from inflation are
dominated by the contribution from the sub-Hubble regime,
i.e., PInf

h ðk; τendÞ ≃ PSub
h ðk; τ�Þ.

Furthermore, the induced GWs from the inflationary era
are large enough to be of observational interest and could
be comparable to the induced GWs from the radiation-
dominated era. We shall give more detailed discussion on
this point in Sec. IV. Here, we notice that the peak of the
induced GWs by the sub-Hubble modes is located around
ξp�=2, which in our specific example takes 0.05p�. Thus
the location of the peak differs from the one of the induced
GWs by the super-Hubble modes, as well as the one from
the radiation-dominated era, both of which are located in
the neighborhood of p�. This shift of the peak is due to the
interplay of the phase integral and time integral in (10).
First, since the mode functions take the complicated forms
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in terms of Mathieu functions at the sub-Hubble scales; the
integral (11) of mode functions would have significant
effects on the location of the peak of the power spectrum
PSub
h ðk; τ�Þ. Secondly, at small k, the thin ring deforms to a

shell due to the geometric effects; see Appendix B 3 for
details. Another different feature compared with the power
spectrum induced by the super-Hubble modes is that the tail
of the power spectrum in the sub-Hubble regime has
sharp peaks.
We comment that the large GWs induced by the sub-

Hubble modes arise from two effects. First, the expansion
of the Universe from the beginning of the sound speed
oscillation to the Hubble crossing of the mode p�:
ðτi − τ�Þ=τ� ≃ eΔN , where ΔN is the e-folding number
for this period of inflation. The GWs induced by the super-
Hubble modes are actually contributed from the integralR
τend
τ�

in (10), i.e., from the Hubble crossing of the mode p�
to the end of inflation τend: ðτ� − τendÞ=τ� ≃ 1. In the SSR
mechanism, eΔN ∼Oð100Þ is quite larger than 1. Another
effect is during the late stage of the resonance, the
mode function δϕp�ðτÞ oscillates in a trigonometric way,
giving rise to a nonvanishing central value of δϕ2

p� which
accumulates in the time integral in (10).
In Fig. 2, we choose three sets of independent para-

meters ϵ, v, and ξ to study the dependence of inflationary
power spectra PInf

h ðk; τendÞ on them. As expected, the
power spectra are diminished by decreasing any of them
while the shapes of the curves remain barely changed. This
is reasonable since v controls the duration of resonance and
ξ controls the rate of amplification. A decrease in either of
them should cause PInf

h ðk; τendÞ to drop down. The slow-roll
parameter ϵ appears in the overall normalization and has a
simple quadratic dependence.

IV. RESULTS

In the previous sections, we provided theoretical analyses
of cosmological GWs induced by primordial curvature
perturbations with multiple spikes (1) from the inflationary
era to the radiation-dominated era. We derived the power
spectra for the induced GWs, which are listed in Eqs. (5), (8),
and (10), respectively. Now we turn to forecast the observa-
tional implications on these induced GWs with the forth-
comingGWexperiments, e.g., theLaser Interferometer Space
Antenna (LISA) [75], Big-Bang Observer (BBO) [76], Deci-
hertz InterferometerGravitationalWaveObserver (DECIGO)
[77], and TianQin [78]. Moreover, the induced GWs at a
low frequency band within the range of ½10−9; 10−7� Hz
may be accessible by the planned pulsar timing array experi-
ments, e.g., the Square Kilometre Array (SKA) [79] and
International Pulsar Timing Array (IPTA) [80]. To combine
the observational windows of radio surveys and GW inter-
ferometers, the search for PBHs by virtue of probing the
induced GWs is becoming promising in the era of multi-
messenger astronomy.
When the induced GWs associated with PBH formation

evolve into the present along with the expansion of our
Universe, they become a stochastic GW background which
can be characterized by their energy spectra ΩGWðτ0; kÞh20
[81,82]. Usually this is defined as the energy density of the
GWs per unit logarithmic frequency, and h0 is the reduced
dimensionless Hubble parameter at the present time τ0.
According to the definition of the effective energy for the
GWs and the energy spectrum (see Appendix A), we get the
relation between the energy spectrum and the power
spectrum for the GWs [see (A15)] when the modes of
GWs are well inside the Hubble horizon. For the induced
GWs from the radiation-dominated era as shown in Eq. (5),
the energy spectrum observed today is estimated as [49,55]

ΩGWðτ0; kÞ ¼ Ωr;0ΩGWðτf; kÞ; ð16Þ

where τf is some time near the end of the radiation-
dominated era and Ωr;0 is the present radiation energy
density fraction. Since the energy density of GWs scales as
radiation along with the cosmic expansion, the energy
spectrum for the induced GWs does not dilute during the
radiation-dominated era.
For the induced GWs during the inflationary era, which

are given by Eqs. (8) and (10), the present energy spectrum
can be approximately written as [83,84]

ΩGWðτ0; kÞ ≃ 1.08 × 10−6PInf
h ðk; τendÞ; ð17Þ

for the frequency f > 10−10 Hz.
The present energy spectra ΩGWðfÞh20 of the induced

GWs combined with the sensitivity curves of LISA, SKA,
and IPTA are shown in Figs. 3 and 4, respectively. Also, the
ratio fPBHðMÞ of the energy density of PBHs to DM is

= = =

= = =

= = =

= = =

FIG. 2. The inflationary power spectra of the induced GWs for
different parameter choices. Since super-Hubble contributions are
significantly smaller, here we can safely use sub-Hubble results to
account for the whole PInf

h ðk; τendÞ.
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another important phenomenological parameter. In both
figures, we also include the latest observational constraints
on fPBH from the corresponding electromagnetic windows
[85], i.e., constraints fromwhite dwarves (WDs) [86]; micro-
lensing events (EROS/MACHO survey [87], SubaruHSC
[88], OGLE [89], and type Ia supernova SNe [90]); dynamic
effects from ultra faint dwarves (UFDs) [91]; and CMB
[92,93]. Here the relation between PBH mass and the
frequency of the induced GWs follows an inverse-square
law, namely, f21=f

2
2 ∝ M2=M1. In order to show the corre-

spondence between GW signals and PBH generation

explicitly, we match the horizontal axes of GW frequency
f and PBHmassMPBH in Figs. 3 and 4. ThereforeMPBH has a
reversing axis direction. For the sensitivity of LISA, we have
chosen the scale p� ∼ pLISA ∼ 2 × 1012 Mpc−1 associated
with a PBH of mass 10−12MSun [55], and the scale near the
sensitivities of SKA and IPTA p� ∼ 3 × 106 Mpc−1 corre-
sponds to the PBHs with a mass of about 1MSun.
In both Figs. 3 and 4, we can see that the present energy

spectra from the inflationary era are dominated by the sub-
Hubble contribution, which are comparable to the present
energy spectrum from the radiation-dominated era when we
choose the values of parameters as follows: ϵ ¼ 10−3,
v ¼ 200, ξ ¼ 0.1, and ns ¼ 0.968. In Fig. 3, the energy
spectra of the induced GWs, both from the inflationary era
and the radiation-dominated era, exceed the sensitivity of
LISA, and their peaks are located in the sensitive region

FIG. 3. Upper panel: The fPBHðMÞ spectrum (notice that
the mass scale decreases from left to right) corresponding to
the sensitivity of LISA (the grey region) [75]. Lower panel: The
present energy spectra for the GWs with a limit by the sensitivity
curve of LISA. The blue solid line denotes the spectrum of the
induced GWs from the radiation-dominated era, and the purple
dotted line is its envelope. The red solid line denotes the induced
GWs from inflation, which is dominated by the contribution from
the sub-Hubble regime as the previous discussions in Sec. III.
Note that the present energy spectra of the induced GWs from
inflation could be comparable to the induced GWs from the
radiation-dominated era when we choose the values of parameters
as follows: ϵ ¼ 10−3, v ¼ 200, ξ ¼ 0.1, and ns ¼ 0.968. Note
that the frequency for the peak of ΩGWðfÞh20 from inflation is
lower than the induced GWs from the radiation-dominated era.

FIG. 4. Upper panel: The fPBHðMÞ spectrum (notice that the
mass scale decreases from left to right) corresponding to the
sensitivities of SKA (the yellow region) [79] and IPTA (the purple
region) [80]. Lower panel: The present energy spectra for the
GWs with a limit by the sensitivity curves of SKA and IPTA.
The blue solid line denotes the spectrum of induced GWs from
the radiation-dominated era, and the green dotted line is its
envelope. The red solid line denotes the induced GWs from
inflation. The values of the parameters that we used are as
follows: ϵ ¼ 10−3, v ¼ 200, ξ ¼ 0.1, and ns ¼ 0.968.
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of LISA. Moreover, the frequency of the peak of the energy
spectrum contributed from the inflationary era is around
10−1 lower than that of the radiation-dominated era, so it is
hopeful that we may distinguish these two signals in future
LISA experiments. In Fig. 4, the induced GWs from the
inflationary era and the radiation-dominated era both
exceed the sensitivities of SKA and IPTA; nevertheless
the signal from the inflationary era is smaller than the signal
from the radiation-dominated era. However, the above
conclusions are based on the choice of the characteristic
scale p� in sound speed oscillation. If we choose an
appropriate scale p�, the signal of the induced GWs from
the inflationary era becomes detectable by LISA, SKA, and
IPTA. Hence, through the GW observations we can extract
constraints on parameters p�, ξ, and v ¼ −p�τi in the SSR
mechanism.
The shapes of energy spectra of the stochastic GW

background are crucial for the GW observations. As an
approximation, we introduce the parametrization of the
energy spectrum in the power-law form1:

ΩGWðfÞh20 ∼
(
Að ffcÞ

α; f < fc;

Að ffcÞ
β; f > fc;

ð18Þ

where A represents the amplitude of the energy spectrum at
the critical frequency fc, i.e., ΩGWðfcÞh20. α and β are the
indices of the spectrum. For the induced GWs from the
inflationary era, the parameters are given by

A ≃ 4.31 × 10−7;

α ≃ 3.0; β ≃ −5.4; fc ¼ 0.08f�: ð19Þ

For the induced GWs from the radiation-dominated era, we
have

A ≃ 8.41 × 10−8 ðLISAÞ;
A ≃ 2.05 × 10−7 ðSKA& IPTAÞ;
α ≃ 2.0; β ≃ −50.4; fc ¼ 1.6f�: ð20Þ

Note that because the term ðp�=kpÞns−1 appears in the
power spectrum (5), the amplitudes of the parametrized
energy spectra from the radiation-dominated era would
change in different frequency ranges. As we have men-
tioned before, for the induced GWs from the sub-Hubble
regime, the term ðp�=kpÞns−1 does not explicitly enter the
expression for PSub

h (13); hence the amplitudes of the
parametrized energy spectra are the same in both frequency
ranges of LISA and SKA (IPTA).

V. CONCLUSION

In this article we perform a comprehensive analysis of the
stochastic background of GWs induced nonlinearly by
overly large primordial density perturbations that are
accompanied with a process of PBH production. We report
for the first time that the induced GWs can be resonantly
enhancedwithin the sub-Hubble regime during inflation and
hence make a significant contribution to the energy spectra
that are of observable interest in the forthcoming GW
experiments. Our study also confirms that the contribution
of inducedGWs in the super-Hubble regime during inflation
is secondary due to the nature of slow-roll suppression.
Accordingly, after summing up all contributions, the energy
spectra of the induced GWs display a unique double-peak
pattern that is innovative when compared with other works.
To develop the technique of computation, we proposed a
novel parametrization of the power spectrum of primordial
density perturbations with several spikes as inspired by the
SSR mechanism. It is acknowledged that the first two peaks
of the power spectrum would make the most important
contribution to induce GWs nonlinearly. While the remain-
ing peaks could continue to contribute at a secondary level,
there is a steep tail on the profile of energy spectra at the high
frequency band that damps out soon. This is manifestly
different from the single peak case where the energy spectra
were almost cut off at certain frequencies. In order to
precisely characterize the energy spectra of the induced
GWs from the SSRmechanism, we put forward an envelope
parametrization of their profiles, which are expected to be
measured in future astronomical observations.
Note that, depending on the mass scales of the PBHs, the

characteristic peaks of energy spectra of the induced GWs
may be locatedwithin the frequency band of ½10−5; 10−2� Hz,
which is sensitive to the satellite projects of GW astronomy,
or even as low as the frequency band of ½10−9; 10−8� Hz,
which then is most relevant to radio astronomy. It is interest-
ing to observe that, even for those PBHs with extremely light
masses that have already been evaporated in the history of our
Universe, they may leave a relic of induced GWs at a high
frequency band, namely, within the LIGO range or even the
kHz regime. This remarkable feature implies that the probe of
the energy spectra of induced GWs in multimessenger
astronomy has crucial implications for the search of PBHs
at almost full frequency bands, even if those black holes may
already disappear due to themass loss via Hawking radiation.
Moreover, by comparing the observational abilities of

GWastronomy with those of traditional telescopes upon the
PBH mass spectrum, our results show explicitly that the
observational window of GW instruments shall be more
promising. Specifically, one could constrain the parameter
space of the SSR mechanism by testing the energy
spectrum of induced GWs within the scope of LISA, while
the dominant peak of the corresponding mass spectrum
might be far from the sensitivities of traditional telescopes.
This fact, from another perspective, has well illustrated that

1The parametrization of the stochastic GW background is
found to be powerful in probing the cosmic history, such as
in [94].
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the development of multimessenger astronomy shall
become more and more promising in particular on the
power of future GW detections.
In the end, we wish to highlight the implications of

the present analysis on future studies from several per-
spectives. First of all, although our analysis is based on
the SSR mechanism, from the perspective of methodol-
ogy, the techniques developed in the present article can
easily be extended into other scenarios with an extended
mass spectrum for PBHs. Moreover, our results indicate
that, for the study of induced GWs, the traditional
approach may be incomplete, since it only focuses on
the radiation-dominated stage, but there can also be
significant contributions from the sub-Hubble regime
during inflation. Therefore it is worth checking the
GW signals from other PBH generation mechanisms,
and also taking into account the contribution from the
inflation stage. Phenomenologically, an important lesson
from our study is that the probe of the information about
the very early Universe is no longer limited by the
traditional CMB and LSS surveys, but also includes other
astronomical telescopes at much smaller scales, as well as
a brand new window of GW experiments. On the other
hand, in the era of multimessenger astronomy, the search
for PBHs are becoming more and more promising, making
for a more and more serious DM candidate, which would
inspire appropriate designs for the forthcoming experi-
ments. In particular, a possible measurement of energy
spectra of stochastic GW background with high precision
could shed light on the nature of black holes existing in
our Universe.
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APPENDIX A: BASIC FORMULAS FOR THE
INDUCED GRAVITATIONAL WAVES

We review the basic formulas for the induced GWs
[40,41,83,95]. The EOM for the GWs hijðτ;xÞ induced by
a source Slmðτ;xÞ can be written as

h00ijðτ;xÞ þ 2Hh0ijðτ;xÞ −∇2hijðτ;xÞ ¼ −4T̂ lm
ij Slmðτ;xÞ;

ðA1Þ
where H≡ a0=a is the comoving Hubble parameter, the
prime denotes the derivative with respect to the conformal
time τ, and the projector operator T̂ lm

ij is used to extract the
transverse and traceless part of the source, i.e.,

T̂ lm
ij Slmðτ;xÞ ¼

X
λ¼þ;×

Z
d3k
ð2πÞ3 e

ik·x

× eλijðkÞeλlmðkÞSlmðτ;kÞ: ðA2Þ
Note that repeated latin indices refer to summation, and
λ ¼ þ;× denotes the polarizations of the GWs. The
polarization tensor eλijðkÞ is expressed in terms of a pair
of polarization vectors eiðkÞ and ēiðkÞ, both of which are
orthogonal to the wave vector k:

eþijðkÞ ¼
1ffiffiffi
2

p ½eiðkÞejðkÞ − ēiðkÞējðkÞ�;

e×ijðkÞ ¼
1ffiffiffi
2

p ½eiðkÞējðkÞ þ ēiðkÞejðkÞ�: ðA3Þ

Then one can write the EOM (A1) for the GWs in
Fourier space as

hλ
00
k ðτÞ þ 2Hhλ

0
kðτÞ þ k2hλkðτÞ ¼ SλkðτÞ; ðA4Þ

where

SλkðτÞ ¼ −4eλlmðkÞSlmðτ;kÞ: ðA5Þ
Here we take the Fourier transformations as

Slmðτ;kÞ ¼
Z

d3xe−ik·xSlmðτ;xÞ; ðA6Þ

and

hijðτ;xÞ ¼
X
λ¼þ;×

Z
d3k
ð2πÞ3 e

ik·xhλkðτÞeλijðkÞ: ðA7Þ

The particular solution of the EOM (A4) is given by the
Green function method,

hλkðτÞ ¼
Z

∞

−∞
dτ1gkðτ; τ1ÞSλkðτ1Þ; ðA8Þ

where the Green function gkðτ; τ1Þ satisfies
g00kðτ; τ1Þ þ 2Hg0kðτ; τ1Þ þ k2gkðτ; τ1Þ ¼ δðτ − τ1Þ: ðA9Þ
The canonical quantization of the GWs (A7) can be

written as ĥλk ¼ hλkðτÞâλk þ hλ�k ðτÞâλ†−k, and the operator ĥij
is Hermitian, i.e., ĥλk ¼ ĥλ†−k. The annihilation and creation
operators âλk and âλ†k satisfy the ordinary canonical com-
mutation relations at the same time:
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½âλk; âs†p � ¼ δλsð2πÞ3δð3Þðk − pÞ;
½âλk; âsp� ¼ ½âλ†k ; âs†p � ¼ 0: ðA10Þ

The correlator for the GWs is defined as

hĥλkðτÞĥsk0 ðτÞi¼ð2πÞ3δλsδð3Þðkþk0Þ2π
2

k3
Phðk;τÞ; ðA11Þ

where Phðk; τÞ is the dimensionless power spectrum for the
GWs of each polarization.
Similarly, the power spectrum for the comoving curva-

ture perturbation ζkðτÞ is given by

hζ̂kðτÞζ̂k0 ðτÞi ¼ ð2πÞ3δð3Þðkþ k0Þ 2π
2

k3
Pζðk; τÞ; ðA12Þ

A stochastic background of the GWs can be character-
ized by its energy density fraction ΩGW [81,82], which is
defined as the energy density of the GWs per unit
logarithmic frequency,

ΩGWðτ; kÞ ¼
1

ρcðτÞ
dρGWðτ; kÞ

d ln k
; ðA13Þ

where ρcðτÞ ¼ 3M2
pH2ðτÞ is the critical energy density at

the conformal time τ, and HðτÞ is the Hubble parameter.
The effective energy density of the GWs is usually defined
as [81,83]

ρGW ¼ 1

32πGa2ðτÞ hh
0
ijh

0
iji; ðA14Þ

where the bracket means the time average over several
periods of the GWs. When the relevant modes of the GWs
are well inside the Hubble radius, one relates the ΩGWðτ; kÞ
and Phðk; τÞ as [81,83]

ΩGWðτ; kÞ ¼
1

24

�
k
H

�
2

Phðk; τÞ; ðA15Þ

where the overbar denotes the time average over several
periods of the GWs.

APPENDIX B: POWER SPECTRUM FOR THE
INDUCED GRAVITATIONAL WAVES

1. Radiation-dominated era

There are many early works on the induced GWs during
the radiation-dominated era, and the details of calculations
are presented in, e.g., [40,41,57] and the references therein.
Here we list the major formulas.
The relation between the first-order Bardeen potential

and comoving curvature perturbations in the radiation-
dominated era is

ΦkðτÞ≡ 2

3
TðkτÞζk; ðB1Þ

where the transfer function TðkτÞ can be solved from the
EOM for the Bardeen potential

TðzÞ ¼ 9

z2

�
sinðz= ffiffiffi

3
p Þ

z=
ffiffiffi
3

p − cosðz=
ffiffiffi
3

p
Þ
�
; ðB2Þ

where z ¼ kτ.
We rewrite the source term (A6) as

SλkðτÞ ¼
16

9

Z
d3p
ð2πÞ3 e

λðk;pÞfðk;p; τÞζpζk−p; ðB3Þ

where

fðk;p; τÞ ¼ 3TðpτÞTðjk − pjτÞ þH−2T 0ðpτÞT 0ðjk − pjτÞ
þH−1T 0ðpτÞTðjk − pjτÞ
þH−1TðpτÞT 0ðjk − pjτÞ: ðB4Þ

Note that the prime still denotes the derivative with respect
to the conformal time τ.
During the radiation-dominated era, it is more conven-

ient to use the canonical form for hλk, and the correlator for
hλk is expressed as

hĥλkðτÞĥsk0 ðτÞi ¼ 1

a2ðτÞ
Z

τ
dτ1

Z
τ
dτ2gkðτ; τ1Þgkðτ; τ2Þ

× aðτ1Þaðτ2ÞhŜλkðτ1ÞŜsk0 ðτ2Þi; ðB5Þ

where the Green function satisfies the equation,

g00kðτ; τ1Þ þ
�
k2 −

a00ðτÞ
aðτÞ

�
gkðτ; τ1Þ ¼ δðτ − τ1Þ; ðB6Þ

and one can find the solution during the radiation-
dominated era,

gkðτ; τ1Þ ¼
1

k
sinðkτ − kτ1ÞΘðτ − τ1Þ: ðB7Þ

From the source term (B3), the two-point correlator
hŜλkðτ1ÞŜsk0 ðτ2Þi can be expressed by the four-point corre-
lator hζ̂pζ̂k−pζ̂qζ̂k0−qi. By the Wick theorem, we obtain
[40,41]

hζ̂pζ̂k−pζ̂qζ̂k0−qi¼hζ̂pζ̂qihζ̂k−pζ̂k0−qiþhζ̂pζ̂k0−qihζ̂k−pζ̂qi:
ðB8Þ

Note that since hζ̂pζ̂k−pi ¼ 0withk ≠ 0, this connectiondoes
not contribute to the four-point correlator hζ̂pζ̂k−pζ̂qζ̂k0−qi.
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After having calculated the two-point correlator of the
induced GWs (B5), we get the power spectrum for the
induced GWs,

PRD
h ðk; τÞ ¼

Z
∞

0

dy
Z

1þy

j1−yj
dx

�
4y2 − ð1þ y2 − x2Þ2

4xy

�
2

× PζðkxÞPζðkyÞFRDðk; τ; x; yÞ; ðB9Þ
where

FRDðk; τ; x; yÞ

¼ 4

81

1

z2
½cos2ðzÞI2

c þ sin2ðzÞI2
s þ sinð2zÞIcIs�; ðB10Þ

and the functions Ic and Is are given by

Icðx; yÞ ¼ 4

Z
∞

1

dz1ð−z1 sinz1Þf2Tðxz1ÞTðyz1Þ

þ ½Tðxz1Þ þ xz1T 0ðxz1Þ�½Tðyz1Þ þ yz1T 0ðyz1Þ�g;
ðB11Þ

Isðx; yÞ ¼ 4

Z
∞

1

dz1ðz1 cosz1Þf2Tðxz1ÞTðyz1Þ

þ ½Tðxz1Þ þ xz1T 0ðxz1Þ�½Tðyz1Þ þ yz1T 0ðyz1Þ�g;
ðB12Þ

respectively, where z1 ¼ kτ1.

2. Inflationary era

In the spatially flat gauge, one can write the source term
in (A1) contributed by the comoving curvature perturbation
ζ as

Slmðτ;xÞ ¼
c2sðτÞ
M2

p
∂lδϕðτ;xÞ∂mδϕðτ;xÞ; ðB13Þ

where δϕ is the perturbed inflaton, and cs is the sound
speed of δϕ. The δϕ relates to ζ by ζ ¼ ðH= _ϕ0Þδϕ ¼
ð1= ffiffiffiffiffi

2ϵ
p

MpÞδϕ. In the SSR mechanism, the modes of δϕ
which are in the neighborhood of the characteristic scale p�
can be exponentially enhanced by the narrow resonance
effect, and they lead to the narrow peaks in the power
spectrum PζðkÞ (1). The source term SλkðτÞ in (A4) during
inflation reads

SλkðτÞ ¼ 4
c2sðτÞ
M2

p

Z
d3p
ð2πÞ3 e

λðk;pÞδϕpðτÞδϕk−pðτÞ: ðB14Þ

It is sufficient to use the de Sitter (dS) approximation to
get the Green function for the induced GWs during the
inflationary era, so that aðτÞ ¼ −1=ðHτÞ and H ¼ a0=a ¼
−1=τ, and the Green function is given by [74,96]

gkðτ; τ1Þ ¼
1

2k3τ21
e−ikðτþτ1Þ½e2ikτð1 − ikτÞð−iþ kτ1Þ

þ e2ikτ1ð1þ ikτÞðiþ kτ1Þ�Θðτ − τ1Þ: ðB15Þ
The Green function only depends on the magnitude of
wave vector k, i.e., k ¼ jkj, and Θðτ − τ1Þ is the Heaviside
step function, such that Θðτ − τ1Þ ¼ 0 when τ < τ1 and
Θðτ − τ1Þ ¼ 1 when τ > τ1. When we consider the modes
of δϕ which are outside the Hubble horizon during
inflation, the correlator for the induced gravitational waves
is given by (A8),

hĥλkðτÞĥsk0 ðτÞi ¼
Z

τ

τ�
dτ1

Z
τ

τ�
dτ2gkðτ; τ1Þgk0 ðτ; τ2ÞhŜλkŜsk0 i;

ðB16Þ
where τ� ¼ −1=p� is the conformal time when the char-
acteristic scale p� exits the Hubble horizon during the
inflationary era.
After calculations similar to the previous one (B9), we

acquire

PSuper
h ðk; τÞ ¼

Z
∞

0

dy
Z

1þy

j1−yj
dx

�
4y2 − ð1þ y2 − x2Þ2

4xy

�
2

× PζðkxÞPζðkyÞFInfðk; τ; uÞ: ðB17Þ
Since the period of the sound speed oscillation cs is larger
than the period from the Hubble crossing to the end of
inflation, and the amplitude of oscillation (i.e., ξ) is also
small, hence the function FInfðk; τ; uÞ is approximately

FInfðk; τ; uÞ ≃ 16ϵ2u−2½uþ z cosðzþ uÞ − sinðzþ uÞ�2;
ðB18Þ

where u ¼ k=p�. For the single-peak pattern of the power
spectrum [i.e., considering the first major peak in (1)] Pζ,
we get

FIG. 5. A sketch of the thin-ring approximation for the phase
integral calculation. The phase integral is performed over the
thin-ring region (in green).
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PSuper
h ðk; τÞ ≃ 1

4
ξ2ϵ2A2

se−2ξp�τi

�
p�
kp

�
2ns−2

× ½uþ z cosðzþ uÞ − sinðzþ uÞ�2
× ð4u−2 − 1Þ2Θð2 − uÞ: ðB19Þ

For the multispikes pattern of the power spectrum Pζ (1),
we obtain

PSuper
h ðk; τÞ ≃ 1

4
ξ2ϵ2A2

se−2ξp�τi

�
p�
kp

�
2ns−2

× ½uþ z cosðzþ uÞ − sinðzþ uÞ�2PðuÞ;
ðB20Þ

where the function PðuÞ is

PðuÞ ¼ ð4u−2 − 1Þ2Θð2 − uÞ þ 4ns−3a22ð16u−2 − 1Þ2Θð4 − uÞ þ 9ns−3a23ð36u−2 − 1Þ2Θð6 − uÞ
þ 2ns−3a2½16u−2 − ð1þ 3u−2Þ2�2Θð3 − uÞΘðu − 1Þ þ 3ns−3a3½36u−2 − ð1þ 8u−2Þ2�2Θð4 − uÞΘðu − 3Þ
þ 2ns−3a2½4u−2 − ð1 − 3u−2Þ2�2Θð3 − uÞΘðu − 1Þ þ 3ns−3a3½4u−2 − ð1 − 8u−2Þ2�2Θð4 − uÞΘðu − 3Þ
þ 6ns−3a2a3½36u−2 − ð1þ 5u−2Þ2�2Θð5 − uÞΘðu − 1Þ þ 6ns−3a2a3½16u−2 − ð1 − 5u−2Þ2�2Θð5 − uÞΘðu − 1Þ:

ðB21Þ

We notice that the power spectra for the induced GWs in
(B19) and (B20) exhibit the IR divergence. However, when
the induced GWs evolve to the end of inflation, the power
spectra are frozen and the IR divergence shifts to the much
more lower frequency region, which does not affect the
physical signals of the observable frequency ranges.

3. The Thin-Ring Approximation

In order to calculate the phase space integral ΔΠ ¼R
dpp2d cos θdφ in Eq. (10), we use the thin-ring approxi-

mation. First, without loss of generality, we fix the direction
of the wave vector k of the induced GWs to lie along the
z-direction. Then, considering the narrowness of the reso-
nance band, and the fact that only those modes very close to
it get amplified, we only need to integrate over a subspace in
the entirep space. That is, the ringlike intersection of the two
spheres centering at 0 and k, each with a radius p�. This
region is shown in Fig. 5.Notice that the cross section is not a
round disk but a rhombic. Afterwards, simple geometrical

calculation reveals the volume of the available phase space,
namely, ΔΠ ¼ 2πξ2p4�=k. The approximation is based on
the ringlike shape of the overlapping region. However, at
small k≲ ξp�, geometric effects deform the ring into a shell
and naturally cut off the IR divergence inΔΠ, giving a finite
result. Therefore, the full expression for ΔΠ is written as
2πξ2p4�=k with k > ξ

2
p� and 4πξp3� with k < ξ

2
p�. Then the

power spectrum (10) becomes

PSub
h ðk; τ�Þ

¼ 4

π4M4
p
k3 ×

ΔΠ
2π

p4�sin4θ

×

				
Z

τ�

τi

dτ1c2sðτ1Þgkðτ�; τ1Þδϕpðτ1Þδϕjk−pjðτ1Þ
				2;
ðB22Þ

while the time integral over interacting time τ1 is performed
numerically.
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