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ABSTRACT
The splashback radius rsp separates the physical regimes of collapsed and infalling material
around massive dark matter haloes. In cosmological simulations, this location is associated
with a steepening of the spherically averaged density profile ρ(r). In this work, we measure
the splashback feature in the stacked weak gravitational lensing signal of 27 massive clusters
from the Cluster Canadian Comparison Project with careful control of residual systematics
effects. We find that the shear introduced by the presence of additional structure along the line
of sight significantly affects the noise at large clustercentric distances. Although we do not
detect a significant steepening, the use of a simple parametric model enables us to measure
both rsp = 3.5+1.1

−0.7 comoving Mpc and the value of the logarithmic slope γ = log ρ/log r at
this point, γ (rsp) = −4.3+1.0

−1.5.
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1 IN T RO D U C T I O N

In the concordance lambda cold dark matter (�CDM) model, colli-
sionless dark matter acts as the building block of cosmic structure,
contributing about 25 per cent of the total energy density in the
Universe and the majority of the total mass (Planck Collaboration
XIII 2016). In this framework, gravity is the primary force behind
the growth of structure in the matter field and is able to form the
present-day cosmic web from an almost homogeneous initial state.
Fully collapsed structures, known as haloes, are thought to grow
both through mergers of smaller ones (hierarchical clustering) and
continuous infall of ambient dark matter (smooth accretion).

An intuitive understanding of this second mechanism is given
by the study of spherical collapse in an expanding Universe (see
Gunn & Gott 1972; Fillmore & Goldreich 1984, for some historic
landmark results). Shells of material surrounding an overdensity
eventually decouple from the Hubble flow and start collapsing
towards it. As more shells orbit the halo, the wrapping in phase space
of different streams results in caustics visible in the density profile.
Of particular interest is the region around the outermost caustic,
where the physical regimes of accreting and collapsed material
meet.

More recently, Diemer & Kravtsov (2014, DK14 from now on)
studied the spherically averaged density profile ρ(r) of these regions
in dark matter only simulations and have reported a change in slope
compared to the collisionless equilibrium profile (Einasto or NFW,
Einasto 1965; Navarro, Frenk & White 1997). More, Diemer &
Kravtsov (2015) argued that the splashback radius rsp, correspond-
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ing to the minimum logarithmic slope γ (r) = log ρ(r)/log r, could
function as a physically motivated definition for the boundary of
dark matter haloes. This role is usually assumed by proxies for
the virial radius such as r200m, defined as the radius inside which
the average halo density is 200 times the average matter density
of the Universe ρm. While this radius has a clear definition based
on analytical solutions of idealized virialization scenarios, the mass
contained within it, known as M200m, is an imperfect measure of
the halo mass. This is because it is subject to a pseudo-evolution
caused by the redshift dependence of ρm (Diemer, More & Kravtsov
2013). In contrast, because the caustic associated with splashback
is connected to the apocentre of recently accreted material, all the
material within rsp is necessarily collapsed material and should
rightfully contribute to the halo mass.

At larger distances, the presence of correlated structure surround-
ing the halo is expected to shape the density profile. Using the
language of the halo model (see e.g. Cooray & Sheth 2002, for a
review), this is a transition region from the 1-halo term to the 2-halo
term. DK14 have however reported that in the outermost regions (r
� 9r200m), the 2-halo term based on the matter correlation function
provides a worse fit to simulations compared to a simple power law.

Because the slope of the density profile at rsp is found to be, on
average, a decreasing function of the halo mass, DK14 first pointed
out that large overdensities are the ideal target for the detection
of this feature – i.e. measuring a significant departure from the
equilibrium profile. This makes galaxy clusters the ideal candidates
since they correspond to the most massive haloes in the Universe.
For this mass range, rsp is expected to be located around r200m, at a
cluster-centric distance of the order of a few Mpc.

The splashback feature should also be present in the radial
distribution of galaxies. This was first detected by More et al. (2016)

C© The Author(s) 2019.
Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/408/5315797 by Leiden U
niversity / LU

M
C

 user on 01 O
ctober 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388642099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-7699-6834
http://orcid.org/0000-0002-0641-3231
http://orcid.org/0000-0002-3196-5126
mailto:omar.contigiani@gmail.com
http://creativecommons.org/licenses/by/4.0/


Weak lensing constraints on splashback 409

using the large sample of redMaPPer clusters from Rykoff et al.
(2014), and studied further in Baxter et al. (2017). However, these
studies find a discrepancy between the inferred splashback radius
and the expected distribution of subhaloes based on dark matter only
simulations. Known physical processes (e.g. tidal disruption and
dynamical friction) are not expected to induce a mismatch between
the galaxy and subhalo distributions at splashback scales and this
deviation is still unexplained. In particular, while the results have
been shown to depend on the details of the cluster finding algorithm
(Busch & White 2017; Zu et al. 2017), it is still uncertain if this can
fully explain the discrepancy (Chang et al. 2018).

Chang et al. (2018) studied a sample of redMaPPer clusters
selected in Dark Energy Survey year 1 data. For this large sample,
they detected a splashback feature in the galaxy distribution and
from weak lensing measurements. The latter has the advantage that
the lensing signal probes the matter distribution directly (see e.g.
Hoekstra et al. 2013, for a review). The first attempt to detect the
splashback feature using weak gravitational lensing was presented
in Umetsu & Diemer (2017), who used a sample of 16 high-
mass clusters in the Cluster Lensing and Supernova survey with
Hubble (CLASH). Unfortunately, the limited field of view (foV) of
Suprime-Cam prevented precise measurements in the outer regions,
and as a result, Umetsu & Diemer (2017) could only provide a lower
limit on the splashback radius.

In this work, we provide a measurement1 of splashback using
weak lensing observations for a sample of 27 massive clusters
of galaxies that were observed as part of the Canadian Cluster
Comparison Project (CCCP; Hoekstra et al. 2012). Hence our
strategy is similar to that employed by Umetsu & Diemer (2017),
but we take advantage of the fact that the CCCP observations were
obtained using MegaCam, which has a foV of 1 deg2, and enables
us to measure the lensing signal beyond the splashback radius. The
paper is organized as follows: in Section 2 we present our dataset
and describe our lensing analysis, in Section 3 we show the results
of our fit and the implications for splashback, and in Section 4
we draw our conclusions. Throughout the paper we employ a flat
�CDM cosmology with H0 = 70 Mpc km−1 s−1, �m = 0.3, �c =
0.25, and σ 8 = 0.80.

2 C LUSTER LENSING

In this section, we discuss how the sheared images of distant galaxies
can be used to constrain the matter distribution of clusters along the
line of sight. After introducing our cluster sample, we present the
weak lensing measurements and explain our methodology, with a
particular focus on systematic effects and noise estimation.

2.1 Sample characterization

Our dataset is based on the CCCP, a survey targeting X-ray-
selected massive clusters at z � 0.5 introduced for the first time
in Hoekstra et al. (2012) and re-analysed in Hoekstra et al. (2015,
H15 from now on). The starting points of our analysis are the r-band
images of 27 clusters captured by MegaCam at the Canada–France–
Hawaii Telescope. We exclude from the original CCCP images those
corresponding to on-going mergers: Abell 115, Abell 222/3, Abell
1758, and MACS J0717.5+3745 because these systems display a

1In the interest of reproducibility we make our splashback code publicly
available at https://github.com/contigiani/splash/.

visible double peaked matter distribution for which two splashback
surfaces might intersect each other.

The objects are characterized by masses 3.8 < M200m/(1014 M�)
< 26.4 and cover a redshift range 0.15 < z < 0.55, with only six of
them located at z > 0.3. Table 1 reviews the sample and presents the
quantities relevant for this work. For more details about the cluster
sample we refer the reader to Hoekstra et al. (2012), H15 for a
description of the weak lensing analysis, and the companion paper
Mahdavi et al. (2013) for the analysis of X-ray observations.

In simulations, DK14 found a correlation between the splashback
feature and the halo mass. We, therefore, define a high-mass
subsample of our clusters, containing the 13 most massive objects.
The average M200m of the sample and the subsample, weighted
by the signal-to-noise ratio (SNR), equal 1.7 and 2.0 × 1015 M�,
respectively. We choose to employ the gas mass Mg within r500c

reported by Mahdavi et al. (2013) to define our high-mass threshold.
This is because this value is found to be a robust estimator of
the weak lensing mass and its measurement is mostly independent
from it since it is based on a different physical mechanism. A
weak dependence between the two is left due to the lensing-based
definition of r500c.

Targeted observations such as the ones discussed in this work
currently represent the most efficient approach to study clusters of
virial mass around 1015 M�. In particular, such a sample cannot be
obtained by present-day or near-future wide surveys, e.g. DES (DES
Collaboration 2017) or the Kilo-Degree Survey (de Jong et al. 2017),
because massive haloes are rare (i.e. �1 per FoV) and targeted
deep data result in a higher SNR compared to wide surveys. For
these reasons, the SDSS and DES studies of More et al. (2016),
Baxter et al. (2017), and Chang et al. (2018) are based instead on
large samples of low-mass clusters: 8649 clusters with 〈M200m〉 =
2.7 × 1014 M� for SDSS (Miyatake et al. 2016) and 3684 clusters
with 〈M200m〉 = 3.6 × 1014 M� for DES Y1. In contrast, our dataset
is much closer in nature to the CLASH sample used in Umetsu &
Diemer (2017), also based on targeted observations. In particular,
the mass of their stacked ensemble, M200m = 1.9 × 1015 M�,
matches ours. Nevertheless, we want to mention one feature unique
to CCCP: the FoV of MegaCam (1 × 1 deg) is significantly larger
than that of Suprime-Cam (34 × 27 arcmin), the instrument used
for the CLASH profile reconstruction at large scales (Umetsu et al.
2016). This is particularly suited for our purposes since it allows us
to better cover cluster-centric distances where the splashback radius
is located.

2.2 Tangential shear

In the weak lensing regime, the shear field is found by averaging
the PSF-corrected ellipticities of a sample of background sources.
We follow H15 and use sources in the magnitude range 22 < mr <

25. The lower limit reduces the presence of foreground objects such
as bright galaxies belonging to the clusters, which are abundant
in the central regions and are not sheared by the cluster’s mass
distribution. Because this operation is unable to completely remove
cluster members, we chose to model the residual contamination
statistically, as explained in Section 2.3.

Shapes are measured using an improved KSB method (Kaiser,
Squires & Broadhurst 1995; Luppino & Kaiser 1997; Hoekstra
et al. 1998). The quadrupole moments of the galaxy images are
used to construct a polarization tensor e, which is then corrected
for the point spread function (PSF) of the observing instrument.
In Section 2.3 we address this step in more detail and mention
the improvements we have implemented since H15. The shear

MNRAS 485, 408–415 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/408/5315797 by Leiden U
niversity / LU

M
C

 user on 01 O
ctober 2019

https://github.com/contigiani/splash/


410 O. Contigiani, H. Hoekstra and Y. M. Bahé

Table 1. The full cluster sample, ‘CCCP all’, used in this paper. RA and Dec. are the sky position of the cluster centre (brightest cluster galaxy, or X-ray peak
for coordinates marked with §), z is the cluster redshift, 〈β〉 is the average value of DLS/DS (see Section 2.2), Mg is the gas mass within r500c, defined as the
radius of the sphere inside which the mean halo density is 500 times the critical density of the Universe at redshift z and M200m is the mass enclosed within
r200m. These values are recovered from the NFW fit performed in H15. The values for Mg are taken from the X-ray analysis of M13 or, for values marked with
†, they are defined using the scaling relations found in the same paper. Clusters listed below the horizontal line belong to the high-mass subsample.

Name RA Dec. z 〈β〉 Mg M200m

(J2000) (J2000) (1013 M�) (1014 M�)

MS 0440.5+0204 04h43m09.s0 +02◦10
′
19′′ 0.19 0.656 2.4 3.8

Abell 1234 11h22m30.s0 +21◦24
′
22′′ 0.163 0.699 3.8† 8.3

RX J1524.6+0957 15h24m38.s3 +09◦57
′
43′′ 0.516 0.329 4.1 6.5

Abell 1942 14h38m21.s9 +03◦40
′
13′′ 0.224 0.621 4.4 14.6

Abell 2259 17h20m09.s7 +27◦40
′
08′′ 0.164 0.697 5.0 8.6

MACS J0913.7+4056 09h13m45.s5 +40◦56
′
29′′ 0.442 0.396 5.3 6.8

Abell 1246 11h23m58.s5 +21◦28
′
50′′ 0.19 0.661 5.6† 9.5

MS 1008.1−1224 10h10m32.s3 −12◦39
′
53′′ 0.301 0.526 5.8 17.4

3C 295 14h11m20.s6 +52◦12
′
10′′ 0.46 0.374 6.2 12.6

Abell 586 07h32m20.s3 +31◦38
′
01′′ 0.171 0.674 6.5 5.0

Abell 611 08h00m56.s8 +36◦03
′
24′′ 0.288 0.533 6.6 10.0

Abell 2104 15h40m07.s9 −03◦18
′
16′′ 0.153 0.712 6.8 17.2

Abell 2111 15h39m40.s5 +34◦25
′
40.′′5 0.229 0.614 7.4 10.2

Abell 959 10h17m36.s0 +59◦34
′
02′′ 0.286 0.549 7.5 21.1

Abell 520 04h54m10.s1§ +02◦55
′
18′′§ 0.199 0.654 8.5 16.6

Abell 2537 23h08m22.s2 −02◦11
′
32′′ 0.295 0.532 8.6 22.4

Abell 851 09h42m57.s5§ +46◦58
′
50′′§ 0.407 0.421 9.7 22.6

Abell 1914 14h26m02.s8§ +37◦49
′
28′′§ 0.171 0.693 9.9 14.7

MS 0451.6−0305 04h54m10.s8 −03◦00
′
51′′ 0.54 0.315 10.3 18.0

Abell 521 04h54m06.s9 −10◦13
′
25′′ 0.253 0.577 10.6 11.5

Abell 2204 16h32m47.s0 +05◦34
′
33′′ 0.152 0.714 11.6 21.8

Abell 1835 14h01m02.s1 +02◦52
′
43′′ 0.253 0.58 12.1 21.5

Abell 2261 17h22m27.s2 +32◦07
′
58′′ 0.224 0.621 14.6 26.4

CIZA J1938+54 19h38m18.s1 +54◦09
′
40′′ 0.26 0.569 15.6† 18.6

Abell 697 08h42m57.s6 +36◦21
′
59′′ 0.282 0.552 15.6 15.1

RX J1347.5−1145 13h47m30.s1 −11◦45
′
09′′ 0.451 0.377 16.3 20.9

Abell 2163 16h15m49.s0 −06◦08
′
41′′ 0.203 0.63 23.3 18.9

polarizability P̃ γ quantifies how the observed polarization of an
individual galaxy is related to the gravitational shear. For an
ensemble of sources the shear components are hence measured
as a noise-weighted average, 〈ei/P̃

γ 〉, where the individual weights
are written as (Hoekstra, Franx & Kuijken 2000)

w = 1

〈ε2〉 + (
σe/P̃ γ

)2 . (1)

In this expression two sources of noise are included: the scatter
introduced by the intrinsic variance of galaxy ellipticities 〈ε2〉 and
the uncertainty in the measured polarization σ e due to noise in the
imaging data. Following Hoekstra et al. (2000) we use 〈ε2〉1/2 =
0.25.

For an isolated circular overdensity, the induced shear is purely
tangential, i.e. the deformation is parallel to the radial direction.
In general, this shear component is related to the projected mass
surface density 
(R) as a function of the radial coordinate R:

γt(R) = 
(< R) − 
(R)


cr
= �
(R)


cr
, (2)


cr = c2

4πG

1

〈β〉
1

DL
. (3)

In these expressions, the profile �
(R) is called excess surface den-
sity and the critical density 
cr is a geometrical factor quantifying

the lensing efficiency as a function of the relative position of source
and lens. The definition above applies for a lens at distance DL

shearing an ensemble of sources. 〈β〉 is the average of the quantity
max[0, DLS/DS] for each source, with DLS being the individual
lens-to-source distance2 and DS the distance to the source.

Because we work with single-band observations, we are unable
to derive individual photometric redshifts. Fortunately, a represen-
tative photometric redshift distribution is sufficient to estimate β.
This distribution is obtained for all clusters by magnitude-matching
the most recent COSMOS photometric catalogue (COSMOS2015,
Laigle et al. 2016) to our source r-band magnitude range.

We point out that the measured average ellipticity is an estimator
of the reduced shear

gi = γi(R)

1 − 
(R)/
crit
. (4)

However, because we are interested in constraining a feature located
in a low-density region, for our main analysis we will assume the
first-order approximation gi 	 γ i when fitting a model. From our
source catalogues we extract the tangential component gt(θ j) in
radial bins and estimate for each cluster the data covariance matrix
as the sum of two terms: the first accounts for statistical noise in
the average ellipticity and the second one takes into account the

2Note that DLS is negative for foreground sources.
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Figure 1. Lensing signal. The top panel shows the noise-weighted stacked
signal of the 27 clusters in our sample as a function of comoving cluster-
centric distance, together with a best-fitting NFW profile to the first five
data points (see Section 2.2 for more information). The arrow points to
the inferred location of r200m; in simulated galaxy clusters the splashback
feature is located around this position. The larger error bars are the full
1σ errors for the data points, while the inner error bars account only for
statistical uncertainty. The difference between the two is apparent only in
the last few data points. The bottom panel shows an estimate of the expected
residual systematics left after the corrections discussed in Section 2.3 are
applied, expressed as a fraction of the total uncertainty. These effects are
found to be consistent with the error bars.

presence of additional shear introduced by uncorrelated structure
along the line of sight. More details about the evaluation are
presented in Appendix A.

The top panel of Fig. 1 presents the average noise-weighted
signal of the full cluster sample. The double error bars in the figure
illustrate how the inclusion of the second source of noise has an
impact on the uncertainties at large scales. An indicative NFW fit,
obtained using the virial overdensity from Bryan & Norman (1998)
at an assumed redshift z = 0.25, is also shown. The position of r200m

for the best-fitting model is also indicated in the same figure.

2.3 Residual systematics

In this section, we address the effects of the corrections we have
implemented to tackle two systematic effects that are particularly
important for our analysis: PSF anisotropy and cluster member
contamination. In particular, we estimate the amplitude of any
residual systematic effects as plotted in the bottom panel of Fig. 1.

In the KSB method, the observed galaxy polarizations are
corrected for PSF anisotropy using

ei → ei −
∑

j

P sm
ij p∗

j , (5)

Figure 2. PSF correction improvements. Image simulations are used to
quantify the residual additive bias not captured by the correction obtained in
H15. The circles show how residual additive bias in the average shear 〈γ 1〉
was present in the presence of simulated PSF anisotropy (ePSF

1 �= 0). In this
work (filled points) we are able to nullify this effect by boosting the KSB
smear polarizability Psm. See Section 2.3 for more details.

where the smear polarizability Psm quantifies how susceptible a
source is to PSF distortions and pj is the PSF anisotropy measured
using point-like sources (see e.g. Hoekstra et al. 1998).

The observed polarizations and polarizabilities are, however,
biased because of noise in the images. If unaccounted for, this
leads to biased cluster masses. For the shear, these corrections can
be expressed in terms of a multiplicative and additive bias, μ and
b:

γi → (1 + μ)γi + b. (6)

To ensure accurate mass estimates, H15 focused on the impact
of multiplicative bias. To do so, they used image simulations with
a circular PSF to calibrate the bias as a function of source SNR
and size. However, the actual PSF is not round and H15, therefore,
quantified the impact of an anisotropic PSF on the multiplicative
bias correction. The details of these simulations, based on galsim
(Rowe et al. 2015), can be found in section 2.2 and appendix A
of H15. The galaxy properties are based on HST observations,
resulting in images that match the cluster data. The PSF is modelled
as a Moffat profile, which is a good representation of ground based
data. Appendix A in H15 examines the impact of PSF anisotropy
and revealed that about 4 per cent of this source of bias remains
after correction (see their fig. A1). While the impact of this residual
bias is negligible, further study revealed that it can be reduced
by empirically correcting the smear polarizability for noise bias.
We have increased Psm by a factor of 1.065, such that no residual
additive bias remains visible, see Fig. 2. We also verified that
this latest correction does not introduce significant trends with
source characteristics. We use the difference between the ensemble
lensing signal measured before and after this improvement as a
(conservative) estimate of any unknown systematics affecting the
shape measurement method.

The second effect we account for is the presence of cluster
members in our source catalogues. Note that in this case, we have
not updated the methodology from H15, but we still report it here
for completeness. If we assume that cluster members are randomly
oriented, as found by Sifón et al. (2015), their inclusion among our
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sources has the effect of diluting the measured shear. To correct for
this, we multiply γ t(R) by a boost factor B(R) defined as a function
of the projected comoving distance R:

B(R) = 1 + fcont(R)/fobs(R). (7)

The contamination term fcont accounts for the decrease of the
ellipticity average due to the presence unsheared sources and, by
comparison with blank fields, it is found to be (1) a decreasing
function of distance from the cluster centre and (2) negligible
beyond a distance rmax. An extra factor fobs is also introduced to
model the reduced background galaxy counts due to obscuration
by cluster members. This factor is computed by stacking the
cluster images with simulated blank fields and measuring how many
simulated sources are obscured.

The functions appearing in the boost factor are written empiri-
cally as

1

fobs(R)
= 1 + 0.021

0.14 + (R/r500)2
and (8)

fcont(R) = n0

(
1

R + Rc
− 1

rmax + Rc

)
; (9)

where n0 and Rc are fitted independently for each cluster and B(R) =
0 for R > rmax ≡ 4(1 + z) Mpc.

To quantify the amplitude of residual systematics for this second
correction, we refer to H15, where a residual scatter of about
2 per cent around the ensemble correction was reported.

3 SPLA SH BAC K

In this main part of the paper, we fit the observed weak lensing signal
using the spherical density profile presented in DK14. This profile is
designed to reproduce the expected flattening of the density profile
at large radii due to the presence of infalling material, as seen in
numerical simulations.

3.1 Fitting procedure

The projected surface density profile 
(R) for a spherical lens with
matter density ρ(r) is


(R) = 2
∫ ∞

0
dr ′ ρ

(√
r ′2 + R2

)
, (10)

where we limit the integration range of the line of sight variable r
′

to [0, 40] Mpc for our numerical calculations. We also verify that
the chosen upper limit has no effect on our results by repeating
the analysis with a wider range [0, 80] Mpc. For cosmological
overdensities, this profile can be connected to the lensing signal
through equations (2) and (4).

In this section we use a model for ρ(r) first introduced by DK14
with the following components: an Einasto profile ρEin (Einasto
1965) to model the inner dark matter halo, a transition term ftrans(r)
to capture a steepening effect at the halo edge and a power-law
ρout(r) to model the distribution of infalling material in the outer
regions. The mathematical expressions are the following:

ρ(r) = ρEin(r)ftrans(r) + ρout(r); (11)

ρEin(r) = ρs exp

(
− 2

α

[(
r

rs

)α

− 1

])
, (12)

ftrans(r) =
[

1 +
(

r

rt

)β
]−γ /β

, (13)

ρout = ρ0

(
r

r0

)−se

. (14)

In DK14 the infalling term includes an offset corresponding to
the average matter density, but this is not present in our fitting
function because the tangential shear in equation (2) is completely
insensitive to it.

In its general form, this model depends on a large number of
parameters. In order to reduce its degrees of freedom we, therefore,
choose to set strong priors on a few parameters. As done in Baxter
et al. (2017) and Chang et al. (2018) we do not fit both ρ0 and
r0, but choose to fix one of them, as they are degenerate. We
impose Gaussian priors log (0.2) ± 0.1, log (6) ± 0.2 and log (4)
± 0.2 on the logarithms of the exponents log α, log β, and log γ ,
respectively. The loose prior on the Einasto shape parameter α is
motivated by dark matter only simulations and its 1σ interval covers
the expected scatter due to the redshift and mass distribution of our
sample (Gao et al. 2008; Dutton & Macciò 2014), while for the
exponents in the transition term the stringent priors are centred on
the values suggested by DK14. We also set a Gaussian prior on the
truncation radius rt, 4 ± 2, based on the same results. The location
of the median is based on the r200m inferred from our NFW fit
and the selected standard deviation covers the expected range due
to the mass distribution of our sample. Finally, based on previous
measurements, we also set a minimum value of 1 for the outer slope
se and a physically motivated minimum value of 0 for the density
parameters ρs and ρ0.

A rescaling of the radial coordinate with an overdensity radius
(e.g. r200m) is often employed when fitting the profile described
above. We also attempt to rescale our coordinates with either r500c or
r200m, but due to the uncertainties on the individual cluster profiles,
no rescaling results in the splashback feature being constrained with
higher precision. Despite this, we still attempt to remove the redshift
dependence of the average matter density of the Universe by using
comoving coordinates.

We follow Umetsu & Diemer (2017) and do not include a
miscentring term in our tangential shear model. In general, a shift
in position of the cluster centres reported in Table 1 would cause a
smoothing of the lensing profile in the central region. An estimate of
the area affected by such an effect can be obtained by considering the
difference between two independent estimators of the halo centre:
the position of the brightest cluster galaxy or the X-ray luminosity
peak. Our sample is found to be well centred (see M13) with the
root mean square of the offset between the two σ off = 33 kpc. For
the scales plotted in Fig. 3 we therefore do not expect our data to
be affected by miscentring.

A fit to the input data γ t(R) with the covariance matrix defined in
Section 2 is performed by sampling the posterior distribution of the
parameters [ρs, rs, log α, rt, log β, log γ , ρ0, se] using the Markov
Chain Monte Carlo ensemble sampler emcee3 (Foreman-Mackey
et al. 2013, based on Goodman & Weare 2010).

3.2 Interpretation

Fig. 3 visually presents our results. The left-hand panel shows
the best-fitting model to the lensing signal, while the right-hand

3https://emcee.readthedocs.io/
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Figure 3. Splashback measurement. The left-hand panel shows the measured lensing signal for our full sample and a subsample of the 13 most massive
clusters as a function of comoving clustercentric distance, together with the 68 per cent confidence intervals from the DK14 fit. The right-hand panel shows the
posterior of the three-dimensional logarithmic slope for the same model. The histograms on the horizontal axis are the distributions of the inferred position for
the minimum of γ (i.e. the splashback radius rsp), while the histograms on the vertical axis are the distributions of γ (rsp). The solid black lines refer to the
NFW fit shown in Fig. 1, while the dashed lines correspond to predictions from hydrodynamical simulations of massive clusters (Hydrangea). The amplitude
of the Hydrangea and CCCP signals are different because we match the virial mass of our observed sample at z � 0.2 with simulated clusters at z = 0.

panel shows the posterior distribution of the inferred profile. To
better highlight the splashback feature we choose to focus on the
dimensionless logarithmic slope γ = dlog ρ/dlog r = r/ρ dρ/dr
when plotting the posterior of our model.

For both CCCP samples considered a minimum of the slope is
identified. At larger distances, the results are the least interesting. In
these regions, the power-law term becomes dominant and the value
of the slope is set exclusively by the exponent se. In particular, its
lower limit is artificially imposed by our prior.

What is more relevant to our study is the minimum value of
the slope γ (r) and its location, i.e. the splashback radius rsp. The
68 per cent credible intervals of both quantities are indicated as
shaded sections of the vertical and horizontal histograms. Our
measured 99.7 per cent confidence interval of γ (rsp) for the full
sample is [−10.9, −2.3], meaning that we are unable to measure a
significant departure from the slope expected for an NFW profile
(about −2.5). Despite this, we are still able to constrain the value of
both the splashback radius and the logarithmic slope at this point,
rsp = 3.5+1.1

−0.7 Mpc and γ (rsp) = −4.3+1.0
−1.5. We also highlight that

the high-mass sample returns similar constraints with only half the
sample size, rsp = 3.5+1.3

−0.8 and γ (rsp) = −3.7+0.9
−1.6.

As a point of reference, we also show the expected profiles from
a suite of zoom-in hydrodynamical simulations of massive clusters
(Hydrangea, Bahé et al. 2017). From the full Hydrangea sample, we
have selected the eight most massive clusters for this comparison

in order to obtain a sample with an average value of 〈M200m〉 =
1.7 × 1015 M�, similar to our dataset, but evaluated at z = 0 instead
of z = 0.2. Note that the amplitude of the signal plotted in Fig. 3
is lower than the observed sample due the evolution of the average
matter density of the Universe. Our slope measurements are found
to be agreement with what is seen in simulations.

As done in Umetsu & Diemer (2017), we study the impact of
the model parameters on the predictions for rsp and γ (rsp) to verify
that our dataset is informative and we are not simply sampling
our model priors. Of crucial importance is the truncation radius rt,
which, in the original definition of the DK14 profile, explicitly sets
the position of the splashback feature.

Similarly to Umetsu & Diemer (2017), we also find that we are
unable to fully constrain this parameter. This can be seen in Fig. 4,
where we plot the posteriors of three relevant parameters for two
different choices of the rt prior: the Gaussian assumed in our main
study and a flat prior in the range [0, 20] Mpc. While the posterior
for γ (rsp) (middle row) is mostly unaffected by this choice, we
obtain a looser upper limit on the splashback radius (top panel) in
the second case: rsp = 3.9+2.4

−0.9. As visible in the bottom-left panel,
this is due to a clear correlation with rt.

We find no correlation between rsp and rt for rt � 10 Mpc.
In this regime, the location of the minimum of γ (r) is controlled
by the presence of the infalling term ρin(r) ∝ r−se . Because the
slope se is relatively gentle, if rt is large enough the truncation
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Figure 4. Impact of the prior on the truncation radius rt on our results.
The corner plot presents the two-dimensional and marginalized posterior
distributions for the DK14 parameter rt, the inferred splashback position
rsp, and logarithmic slope γ (rsp). If, instead of a Gaussian prior (dashed red
line), a flat prior is assumed (dashed black line), the parameter rt has no
upper bound. This translates into weaker constraints on rsp.

happens in a region dominated by the infalling material and cannot
be constrained. Because the truncation is expected to be visible in
the transition regime, our Gaussian prior on rt effectively forces it
to a physically motivated position and, from the figure, we confirm
that it does not introduce a biased posterior peak.

4 C O N C L U S I O N S

We have shown in this work that targeted weak lensing observations
of massive clusters can be used to measure the splashback feature
and that particular care is required when correcting for residual PSF
contaminations, which should be well understood, and estimating
the data covariance matrix, which should take into account the
presence of additional structure along the line of sight. Using a stack
of 27 massive clusters from CCCP we have fully constrained for
the first time the splashback radius around massive clusters, rsp =
3.6+1.2

−0.7, and similar precision has also been achieved with as little as
13 objects. We stress that, because of the purely gravitational nature
of weak lensing, minimal assumptions are required to interpret our
signal.

In the last few years, the study of the physics of accretion at
the outskirts of massive dark matter haloes has become observa-
tionally viable. Splashback offers a unique view into the phase-
space configuration of haloes, which has not yet been explored
in observations. In particular, the physics behind it appears to be
remarkably uncomplicated and semi-analytical models of spherical
collapse for cold dark matter are able to reproduce the expectations
from N-body simulations (e.g. Adhikari, Dalal & Chamberlain
2014; Shi 2016). The fact that these results are based only on the
dynamics of collapsing dark matter in an expanding Universe makes
splashback a remarkable prediction of general relativity and dark
matter. More generally, its connection to the growth of cosmological
structures makes it a test for �CDM. As an example, it has also
been shown recently that modifications of gravity have a significant

impact on this feature (Adhikari et al. 2018). As the first results are
starting to appear in the literature, we argue that splashback solicits
further investigation exactly because it is a falsifiable prediction of
the current paradigm.

We found that at the relevant scales a significant contribution
to the lensing signal is cosmic noise. In the near future, this term
can be reduced significantly with larger cluster samples. Looking
further ahead, deep wide-area surveys such as Euclid (Laureijs et al.
2011) and LSST (LSST Science Collaboration 2009) will provide
unprecedented depth and survey area, and thus deliver the data
required to study splashback over a wider mass and redshift range.
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R. F. J., Sand D. J., Graham M. L., 2015, A&A, 575, A48
Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, ApJ, 761,

152
Umetsu K., Diemer B., 2017, ApJ, 836, 231
Umetsu K., Broadhurst T., Zitrin A., Medezinski E., Coe D., Postman M.,

2011, ApJ, 738, 41
Umetsu K., Zitrin A., Gruen D., Merten J., Donahue M., Postman M., 2016,

ApJ, 821, 116
Zu Y., Mandelbaum R., Simet M., Rozo E., Rykoff E. S., 2017, MNRAS,

470, 551

APPENDIX: NOISE C OVARIANCE MATRIX

For each cluster we model the noise covariance matrix for the
lensing signal as the sum of two components:

C = Cstat + Clss. (A1)

The first is a diagonal matrix accounting for the statistical error
on the weighted average of the measured ellipticities and the second
quantifies the additional shear variance caused by the presence
of cosmic structure between viewer and source (Hoekstra 2003;
Umetsu et al. 2011)

Clss
i,j = 2π

∫ ∞

0
d� �Pκ (�)g(�, θi)g(�, θj ), (A2)

where Pκ (�) represents the projected convergence power spectrum
for the multipole number �. For an angular bin θ extending from

Figure A1. Covariance matrix.Visualization of the two components of the
covariance matrix C = Cstat + Clss for the data points plotted in Fig. 1. The
diagonal matrix (left) is the statistical error Cstat, the second one (right) is
the component due to uncorrelated structure along the line of sight, Clss.
The top-left corner corresponds to the first data point.

θ− to θ+, g(l, θ ) is defined using the Bessel functions of the first
kind of order zero and one, J0 and J1:

g(�, θ ) =
[

1 − 2 ln θ−
π (θ2+ − θ2−)

]
θ−J1(�θ−)

�
−

[
1 − 2 ln θ+
π (θ2+ − θ2−)

]
θ+J1(�θ+)

�

− 2

π (θ2+ − θ2−)

∫ θ2

θ1

dφ φ log φJ0(lφ). (A3)

For a given cosmology, Pκ (�) can be evaluated using the Limber
projection starting from a source redshift distribution and a model
for the non-linear matter power spectrum (Kilbinger 2015). For
this work, this is done using CAMB4 (Lewis 2013) and HALOFIT

(Takahashi et al. 2012). As an example, the resulting covariance
matrices for the average signal in Fig. 1 are presented in Fig. A1.

A third term accounting for the intrinsic variance in a particular
realization of galaxy clusters should be added to the matrix in
equation (A1). For massive clusters in the considered redshift range,
this term is found to be dominated by Poissonian scatter in the
number of haloes contained within the correlated neighbourhood
(Gruen et al. 2015). We neglect this term because in similar lensing
analyses (e.g. Umetsu et al. 2016; Miyatake et al. 2018) it is always
found to be sub-dominant to statistical and large-scale structure
noise, especially on the scales of interest for this work.

4https://camb.info/
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