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Gravitational Waves from Generalized Newtonian Sources

J. W. van Holten

I review the elementary theory of gravitational waves on a Minkowski
background and the quadrupole approximation. The modified conservation
laws for energy and momentum keeping track of the gravitational-wave flux
are presented. The theory is applied to two-body systems in bound and
scattering states subject to newtonian gravity generalized to include a 1/r 3

force allowing for orbital precession. The evolution of the orbits is studied in
the adiabatic approximation. From these results I derive the conditions for
capture of two bodies to form a bound state by the emission of gravitational
radiation.

1. Introduction and Overview

The existence of gravitational waves is now well-established from
both direct and indirect observations.[1–4] A completely new field
of astronomy is opening up which will no doubt have an impact
also on other branches of astronomy and astrophysics such as
dynamics and evolution of stars and galaxies. The supermassive
black holes in the centers of galaxies, and possibly intermediate-
mass black holes in stellar clusters, will by the relatively large cur-
vature they create in the surrounding space enhance the emission
of gravitational waves from massive objects on trajectories pass-
ing close to them, whether these are on bound or open orbits.
The emission of gravitational waves can even lead to the capture
of objects originally in open orbits to end up in a bound state.
Apart from these radiative phenomena involving very mas-

sive black holes, the emission of gravitational waves also affects
more common binary star systems like the well-known close bi-
nary neutron stars, the recently discovered binary black holes and
presumably systems containing white dwarfs.[5] No doubt radia-
tion has an impact on three- and many-body systems, especially
on their stability. Detailed investigations of close binary star sys-
tems using high-order post-newtonian expansions of the Einstein
equations of General Relativity have been carried out with great
success; for a review see e.g. [6]. The inspiral and merger of ex-
treme mass-ratio binaries involving a very massive black hole
has also been studied directly in the background geometry of the
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black hole.[7–11] Whenever these theo-
retical investigations can be compared
with data they seem to describe the
dynamics of these systems very well,
thereby also confirming General Rela-
tivity to be the best available theory for
gravitational interactions.[12] The study of
radiation from two-body scattering has
been addressed as well,[13] although no
corresponding observations have been
announced so far.
Even though they may carry large

amounts of energy and momentum, the
deformations of space-time created by

gravitational waves are extremely small. For example a flux of
monochromatic gravitational waves with a frequency of 100 Hz
and an extreme intensity of 1 W/m2 will create spatial deforma-
tions of less than 1 part in 1019, the diameter of a proton over
a distance of 1 km. This testifies as to the extreme stiffness of
space and explains both why it is so difficult to create gravita-
tional waves and to observe them. It also implies that most po-
tential sources of gravitational waves are weak and many move
on close-to-stationary almost-newtonian orbits.
This review is devoted to gravitational radiation from such

weak or very weak sources. They produce the most abundant,
though maybe not the most spectacular, form of gravitational
waves in the universe and may eventually become relevant to
a wide range of astronomical and astrophysical observations. To
lowest order their description and propagation involve straight-
forward applications of linear field theory in Minkowski space-
time. This also provides the starting point for many more elabo-
rate and precise calculations.
We will begin by recapturing in fairly standard fashion the

wave equation for gravitational waves, its gauge invariance and
its implications for the propagation and polarization states of
gravitational waves. We address the quadrupole nature of the
waves and the associated sources, and explain how dynamical
mass quadrupole motion generates the simplest and most com-
mon weak gravitational waves. Next we derive the modification
of the conservation laws for energy, momentum and angular mo-
mentum by taking account of gravitational radiation. We present
equations for the transport of energy and angular momentum by
gravitational waves, keeping track of the anisotropic dependence
on directions.
This theory is then applied to systems of massive objects mov-

ing on generalized newtonian orbits, either in bound states or
on open scattering trajectories. The generalization includes the
effects of possible 1/r 3 forces causing orbital precession, which
may result e.g. from many-body or post-newtonian interactions.
We calculate the evolution of orbital parameters due to emis-
sion of gravitational radiation and their relations. We finish by
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establishing which binary scattering orbits are turned into bound
states by emission of radiation.

2. The Wave Equation

Weak gravitational waves are dynamical fluctuations of the space-
time metric about flat Minkowski geometry.[14–16] Thus we can
split the full space-time metric as

gμν = ημν + 2κhμν, (1)

where κ is the positive root of

κ2 = 8πG
c4

� 2.1× 10−41 kg−1 m−1 s2, (2)

G being the newtonian constant of gravity and c the speed of light
in vacuum. This endows hμν with the standard dimensions of a
bosonic tensor field. Up to non-linear corrections the tensor field
is postulated to satisfy the field equation

�hμν − ∂μ∂λhλν − ∂ν∂
λhλμ + ∂μ∂νhλ

λ

− ημν

(
�hλ

λ − ∂κ∂λhκλ

) = −κTμν,

(3)

where� = ημν∂μ∂ν is the d’Alembertian and the inhomogeneous
term Tμν on the right-hand side represents the sources of the
field. By factoring out the constant κ this tensor has the dimen-
sions of energy per unit of volume or force per unit of area. In this
treatise we always use the flat Minkowski metric ημν with signa-
ture (−,+, +, +) and its inverse ημν to raise and lower indices
on components of mathematical objects like vectors and tensors.
The motivation for postulating this field equation comes from

the physical properties of the tensor field hμν implied by its struc-
ture. First note that defining the linear Ricci tensor

Rμν = κ
(
�hμν − ∂μ∂λhλν − ∂ν∂

λhλμ + ∂μ∂νhλ
λ

)
, (4)

the trace of which reads

R = Rλ
λ = 2κ

(
�hλ

λ − ∂κ∂λhκλ

)
, (5)

the field equation takes the form

Rμν − 1
2

ημνR = −κ2 Tμν. (6)

This is the linearized version of Einstein’s gravitational field
equation in a flat background. Note also that

∂μRμν = 1
2

∂νR, (7)

and as a result the inhomogeneous field Equation (6) is seen to
imply a conservation law for the source terms:

∂μTμν = 0. (8)

As the energy-momentum tensor of matter and radiation has the
required physical dimensions and satisfies the condition (8) in

Minkowski space it is the obvious source for the tensor field.
As all physical systems possess energy and momemtum this ex-
plains the universality of gravity1.
An observation closely related to (7) is that the linear Ricci ten-

sor is invariant under gauge transformations

hμν → h′
μν = hμν + ∂μξν + ∂νξμ, R′

μν = Rμν. (9)

By such gauge transformations one can straightforwardly elimi-
nate four components of the field to reduce the number of inde-
pendent components from ten to six. To achieve such a reduction
in pratice the standard procedure is to impose the De Donder
condition

∂μhμν = 1
2

∂νhμ
μ. (10)

This condition reduces the linear Ricci tensor and its trace to the
expressions

Rμν = κ �hμν, R = κ �hλ
λ, (11)

and therefore the field equation turns into the inhomogeneous
wave equation

�
(
hμν − 1

2
ημνhλ

λ

)
= −κTμν. (12)

It is then convenient to redefine the field components by

h
μν

≡ hμν − 1
2

ημνhλ
λ, (13)

which transform under gauge transformations as

h′
μν

= h
μν

+ ∂μξν + ∂νξμ − ημν ∂λξλ. (14)

After implementing the De Donder condition the field is
divergence-free and satisfies the inhomogeneous wave equation:

∂μh
μν

= 0, �h
μν

= −κTμν. (15)

Finally a second gauge transformation can be made without
changing the De Donder condition provided the parameter satis-
fies itself the homogeneous wave equation:

∂μh′
μν

= ∂μh
μν

+ � ξν = 0 ⇔ � ξν = 0. (16)

Such a residual gauge transformation can be made in particular
on free fields to remove the trace of the tensor field:

h′ λ
λ

= hλ
λ
− 2 ∂λξλ = 0, (17)

in agreementwith the Equations (15) provided�ξν = 0 and Tλ
λ =

0. It follows automatically that the same condition holds for the
original tensor field: hλ

λ = 0. Removal of the trace reduces the
number of independent components of free fields to five, equal

1 As is well-known, requiring this universality to encompass the gravita-
tional field itself leads to the non-linear structure of the full theory of
General Relativity.
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to the dimension of the irreducible spin-2 representation of the
rotation group, However, as dynamical free wave fields propagate
on the light cone and have only transverse polarization states, the
actual number of independent dynamical components of gravita-
tional wave fields is two. This will be discussed in the following.

3. Solutions of the Inhomogeneous Wave Equation

The inhomogeneous linear wave Equation (15) has many solu-
tions: to a given solution one can always add any solution of the
homogeneous equation representing free gravitational waves.
Free gravitational waves can therefore appear as a background
to gravitational wave signals from specific sources.
In the absence of such a background the standard causal solu-

tion for sources localized in a finite region of space is the retarded
solution

h
μν
(x, t) = κ

4π

∫
Sr

d3x′ Tμν (x′, t − |x′ − x|)
|x′ − x| , (18)

where the integration volume Sr can be taken to be a large sphere
of radius r = |x| containing the finite region of the sources where
Tμν �= 0 in its center. To evaluate the field by performing the in-
tegration is difficult in practice for any realistic type of sources.
In order to make progress it makes sense to consider the sit-

uation in which the waves are evaluated at large distance from
the sources: the radius r of the sphere is taken to be much larger
than any typical dimension of the sources. For example we evalu-
ate the waves emitted by a binary star system of orbital extension
d at a distance r 	 d . Under this assumption one can expand the
integral expression on the right-hand side of (18) in inverse pow-
ers of r keeping only terms which do not fall off faster than 1/r.
This results in the simpler integral

h
μν
(x, t) = κ

4πr

∫
Sr

d3x′ Tμν (x′, t − r). (19)

Another simplification is possible as it is straightforward to show
that for localized sources these solutions have no dynamical time
components:

∂0h0μ = κ

4πr

∫
Sr

d3x′ ∂0T0μ = κ

4πr

∫
Sr

d3x′ ∂ ′
i Tiμ

= κ

4πr

∮
∂Sr

d2σ r̂′
i Tiμ = 0.

(20)

The second equality on the first line follows from energy-
momentum conservation, whilst the last equality uses Gauss’
theorem to convert the volume integral to a surface integral over
the corresponding normal component of the energy-momentum
tensor, r̂ being the radial unit vector pointing out of the spher-
ical surface ∂Sr. Finally the localization of the sources in a fi-
nite region near the center of the sphere guarantee the vanishing
of the energy-momentum tensor on the boundary. We infer that
the time components may represent static newtonian fields, but
they cannot contribute to the flux of dynamical waves across the
boundary of the sphere.

As concerns dynamical fields we are therefore left with the spa-
tial components of the outgoing wave solutions (19):

hi j = κ

4πr

∫
Sr

d3x′ Ti j (x′, t − r). (21)

In empty space far from the sources the expression on the right-
hand side actually represents an exact formal solution of the wave
equation. Now this solution was obtained by imposing the De
Donder condition (15); in addition, as argued after (17), in this
region one can always find a local gauge transformation of the
fields that makes them traceless. For the solution at hand this
implies that after such a gauge transformation

∂i hi j = 0 ⇒ r̂i hi j = 0. (22)

and

h j j = h j j = 0. (23)

A detailed discussion of the necessary gauge transformations is
presented in appendix A. Tensor fields obeying these conditions
of are called transverse and traceless (TT ) and satisfy hTTi j = hTTi j .
We will take these properties for granted in what follows and
omit the TT in the notation. Combining the above requirements
the outgoing wave fields far from the source must then be repre-
sented in the TT -gauge by an expression of the form

hi j (x, t) = hi j (x, t)

= κ

4πr
(δik − r̂i r̂k)

(
δ j l − r̂ j r̂l

) (
Ikl + 1

2
δkl r̂ · I · r̂

)
,

(24)

where the spatial symmetric 3-tensor I is traceless: Ikk = 0. Writ-
ing u ≡ t − r, agreement of this expression with the result (21)
up to gauge transformations is obtained by taking

Ii j (u) =
∫
Sr

d3x′
(
Ti j − 1

3
δi j Tkk

) (
x′, u

)
. (25)

With the help of energy-momentum conservation the integral
can be rewritten in terms of the quadrupole moment of the to-
tal energy density T00 of the sources:

Ii j (u) = 1
2

∂20

∫
Sr

d3x′
(
x′
i x

′
j − 1

3
δi j x′ 2

)
T00(x′, u). (26)

The proof is easier in backward fashion; first notice that as ∂0 =
∂u

∂20T00(x
′, u) = ∂0 ∂ ′

i Ti0 = ∂ ′
i∂

′
j Ti j (x

′, u); (27)

then perform two partial integrations with respect to x′ to reob-
tain (25), observing that the full energy-momentum tensor is sup-
posed to vanish at the boundary ∂Sr.
Finally considering non-relativistic sources in the center-of-

mass frame, the energy density is dominated by themass-density
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ρ(x, t), which allows us to replace the integral in (26) by the com-
ponents of the mass quadrupole moment and write explicitly:

Ii j = 1
2
d2Qi j

dt2
,

Qi j (u) =
∫
Sr

d3x′
(
x′
i x

′
j − 1

3
δi j x′ 2

)
ρ(x′, u).

(28)

Thus we get the final expression for the wave field hi j for non-
relativistic sources in the TT -gauge:

hi j (x, t) = κ

8πr
(δik − r̂i r̂k)

(
δ j l − r̂ j r̂l

)

× d2

dt2

(
Qkl + 1

2
δkl r̂ · Q · r̂

)
u=t−r

.

(29)

For the dynamical (non-Newtonian) metric fluctuations δgμν =
gμν − ημν , recalling Equations (1) and (2) this result implies that

δg00 = δg0i = 0;

δgi j = 2G
r
(δik − r̂i r̂k)

(
δ j l − r̂ j r̂l

)

× d2

dt2

(
Qkl + 1

2
δkl r̂ · Q · r̂

)
u=t−r

.

(30)

4. Conservation Laws and Gravitational-Wave
Fluxes

Free radiation fields (always taken in the TT -gauge) de-
fine conserved currents of energy, momentum and angular
momentum;[15,16] in the conventions of the previous sections

E = 1
2

(
∂0hi j

)2 + 1
2

(
∂khi j

)2
, Pk = ∂0hi j ∂khi j ,

Mk = ∂0hi j
(
2εkmi hmj − εkmnxm∂nhi j

)
.

(31)

Subject to the field equations and gauge conditions these quanti-
ties satisfy the continuity equations

∂E

∂t
= ∂ jP j ,

∂Pk

∂t
= ∂ jS j k,

∂Mk

∂t
= ∂ jJ j k, (32)

where

S j k = ∂ j hmn∂khmn + 1
2

δ j k
[
(∂0hmn)

2 − (∂l hmn)
2] ,

J j k = 2εkmnhml∂ j hnl − 1
2

ε j kl xl
[
(∂0hmn)

2 − (∂l hmn)
2] .

(33)

Applying them to the free fields (29) these expressions determine
the flux of energy, momentum and angular momentum carried
by outgoing gravitational waves far from the source region. First,
integration over a large sphere around the center of mass of the

source and using Gauss’ theorem gives the change in total en-
ergy, momentum and angular momentum of gravitational waves
in terms of surface integrals

dE
dt

=
∮

∂Sr

d2σ r̂iPi ,
d Pk
dt

=
∮

∂Sr

d2σ r̂iSik,

dMk

dt
=

∮
∂Sr

d2σ r̂iJik .

(34)

Next, on the spherical surface ∂Sr the surface element of integra-
tion taken in polar co-ordinates (r, θ, ϕ) is

d2σ = r2 sin θ dθdϕ ≡ r2d2�. (35)

Evaluating the integrands on the right-hand side in Equations
(34) while restoring factors of c then results in differential fluxes

dE
d2�dt

= − G
8πc5

[
Tr

···
Q 2 − 2̂r ·

···
Q 2 · r̂ + 1

2
(̂r·

···
Q ·̂r)2

]
u=t−r

,

d Pk
d2�dt

= − dE
d2� cdt

r̂k

= G
8πc6

r̂k

[
Tr

···
Q 2 − 2̂r ·

···
Q 2 · r̂ + 1

2
(̂r·

···
Q ·̂r)2

]
u=t−r

,

dMk

d2�dt
= − G

4πc5
εki j

[(
Q̈·

···
Q

)
i j

− (
Q̈ · r̂)i

( ···
Q ·̂r

)
j

+ r̂i

(
Q̈·

···
Q ·̂r − 1

2
Q̈ · r̂ r̂ ·

···
Q ·̂r

)
j

]
u=t−r

.

(36)

As usual overdots denote derivatives with respect to time t . The
integrands themselves represent the anisotropic angular distri-
bution of fluxes. The spherical surface integrals can be performed
taking note that the quadrupole moments depend only on re-
tarded time u = t − r , and that the angular integrals can be eval-
uated using the averaging procedure

〈X〉 ≡ 1
4π

∫
d2� X(θ, ϕ)

⇒ 〈r̂i 〉 = 〈r̂i1 r̂i2 r̂i3〉 = · · · = 〈r̂i1 · · · r̂i2n+1〉 = 0,

(37)

whilst

〈r̂i r̂ j 〉 = 1
3

δi j ,

〈r̂i r̂ j r̂kr̂l 〉 = 1
15

(
δi j δkl + δikδ j l + δilδ j k

)
.

(38)

Fortschr. Phys. 2019, 67, 1800083 1800083 (4 of 15) C© 2019 The Authors. Fortschritte der Physik Published by Wiley-VCH Verlag GmbH & Co. KGaA.

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

This results in [14–17]

dE
dt

= − G
5c5

Tr
···
Q 2,

d Pk
dt

= 0,

dMk

dt
= − 2G

5c5
εki j

(
Q̈·

···
Q

)
i j

.

(39)

Note that the total flux of linear momentum vanishes by sym-
metry (in the present approximation) as it involves only prod-
ucts of odd numbers of r̂i integrated over a full spherical surface,
whereas the integrands of the energy and angular momentum
contain even numbers of outward spherical unit vectors.

5. Generalized Newtonian 2-Body Forces

In the following we will apply the results to systems of masses
moving under the influence of mutual newtonian forces, consid-
ering two-body systems interacting via a central potential. The
classical description of such systems simplifies greatly, first as
one can effectively reduce it to a single-body system by separating
off the center-of-mass (CM) motion; second as angular momen-
tum conservation implies the relative motion to be confined to a
two-dimensional plane. Of course, the emission of gravitational
radiation introduces limitations to these simplifications, but as
long as the rate of energy and angular-momentum loss by the
system is small the orbits will change only gradually and one can
evaluate the effect of gravitational-wave emission in terms of adi-
abatic changes in the orbital parameters. In this section we first
discuss non-disspiative motion; the effects of gravitational wave
emission will be analysed afterwards.
Let the bodies have massesm1 andm2 and positions r1 and r2.

To make maximal use of the simplifications we work in the CM
frame in which

m1r1 + m2r2 = 0.

In terms of the relative separation vector r = r2 − r1 the positions
w.r.t. the CM are

r1 = −m2

M
r, r2 = m1

M
r,

and Newton’s third law of motion implies that

m1r̈1 = −m2r̈2 = μr̈ = F (r )̂r, (40)

where μ is the reduced mass

μ = m1m2

m1 + m2
,

and F (r ) is the magnitude of the central force acting on the
masses. As usual r and r̂ represent the modulus and unit direc-
tion vector of the separation. In the absence of dissipation the
energy and angular momentum of the system are conserved. In
the CM frame these quantities can be written as

E = 1
2

μṙ2 + V (r ), such that F (r ) = −dV
dr

, (41)

and

L = μr × ṙ. (42)

Angular momentum being a conserved vector, the relative mo-
tion takes place in the plane perpendicular to L, which we take to
be the equatorial plane θ = π/2. Then

r = r r̂ = r (cosϕ, sinϕ, 0) , (43)

and

L = (0, 0, μ�) , � = r 2ϕ̇. (44)

In the following we will always orient the orbit such that the mo-
tion is counter-clockwise and therefore � ≥ 0. The orbit is repre-
sented by the parametrized curve r (ϕ) such that

ṙ = r ′ϕ̇ = �r ′

r 2
, (45)

the prime denoting a derivative w.r.t. ϕ. Newton’s law of central
force (40) then takes the form

F (r ) = μ�2

r 3

(
r ′′

r
− 2r ′ 2

r 2
− 1

)
= −μ�2

r 2

[(
1
r

)′′
+ 1

r

]
. (46)

This result is tailored to suit Newton’s original program of
finding the law of force corresponding to a given orbit.[18] We
will demonstrate it for the particular case of precessing conic
sections: ellipses, parabolae and hyperbolae; these orbits are
parametrized by

r = ρ

1− e cos nϕ
. (47)

Here ρ is known as the semi-latus rectum; e is the eccentricity:
e = 0 for circles, 0 < e < 1 for precessing ellipses, e = 1 for sim-
ilar parabolae and e > 1 for hyperbolae. Finally the number n de-
termines the rate of precession. For circles this is of course irrel-
evant. For precessing ellipses the apastra occur for

ϕ = 2πk
n

, (48)

where k is an integer; thus the apastron shift is �ϕ = 2π (1−
n)/n per turn. For precessing parabolae n determines the angle
over which the directrix turns during the passage of the two bod-
ies, i.e. the asymptotic scattering angle due to precession, also
measuring

�ϕ = 2π (1− n)
n

. (49)

Similarly for hyperbolae it determines the angle between the in-
coming and outgoing asymptotes:

�ϕ = ϕout − ϕin = 2
n

(
π − arccos

1
e

)
. (50)
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Substitution of the expression (47) into Equation (46) leads to the
result

F (r ) = −μn2�2

ρ

1
r 2

− μ(1− n2)�2
1
r 3

, (51)

the sum of an inverse square and an inverse cube force. Identi-
fying the inverse square term with newtonian gravity and intro-
ducing an inverse cubic force with strength βμ:

F (r ) = −GMμ

r 2
− βμ

r 3
, (52)

we find

n2�2 = GMρ, n2 = GMρ

GMρ + β
. (53)

with M = m1 + m2 the total mass of the two-body system. Such
a force follows from a potential

V (r ) = −GμM
r

− βμ

2r 2
. (54)

The eccentricity is determined by the radial velocity when the sys-
tem is at the semi-latus rectum ϕ = π/2n, r = ρ:

ṙ |ϕ=π/2n = − en�
ρ

= −e

√
GM
ρ

. (55)

Evaluating the total energy at the semi-latus rectum and observ-
ing it is a constant of motion then tells us that

E = GMμ

2ρ

(
e2 − 1

)
. (56)

This confirms that for e2 < 1 the orbits are bound, whilst for e2 ≥
1 the orbits are open. Obviously the total angular momentum is
by definition

Lz = μ� = μ
√
GMρ + β. (57)

Note that taking the first-order result for relativistic precession in
Schwarzschild space-time with innermost circular orbit Risco =
6GM/c2 one gets

n2 � 1− 6GM
c2ρ

⇒ β = 6G2M2

c2
= GMRisco. (58)

6. Gravitational Waves from Two-Body Systems

In this section and the following we address the emission of grav-
itational radiation by the two-body systems described in section 5.
As announced we treat this as a form of adiabatic dissipation
changing the orbital parameters (ρ, e, n) of the system. This ap-
plies only to systems in which no head-on collisions or merg-
ers involving strong gravity effects take place; these require more
powerful methods of computation.[6]

To compute the amplitude hi j from Equation (29) for point
masses on the quasi-newtonian orbits (47) we must first de-
termine the components of the quadrupole moment and their
derivatives. For a two-body system in the CM frame they read

Qi j = m1

(
r1i r1 j − 1

3
δi j r 21

)
+ m2

(
r2i r2 j − 1

3
δi j r 22

)

= μr 2
(
r̂i r̂ j − 1

3
δi j

)
≡ μr 2 R̂i j ,

(59)

where r̂ is the orbital unit vector in the equatorial plane defined in
(43). We explicitly factor out the three-tensor array R̂with compo-
nents R̂i j describing the angular dependence of the orbits used
in computing the quadrupole moments:

R̂ = 1
2

⎡
⎣cos 2ϕ + 1

3 sin 2ϕ 0
sin 2ϕ − cos 2ϕ + 1

3 0
0 0 − 2

3

⎤
⎦ . (60)

Next we want to compute the time derivatives of the quadrupole
momentQ. For ease of computation it is convenient to introduce
a set of basic three-tensors in which all our results can be ex-
pressed:

M =
⎡
⎣cos 2ϕ sin 2ϕ 0
sin 2ϕ − cos 2ϕ 0
0 0 0

⎤
⎦ , N =

⎡
⎣− sin 2ϕ cos 2ϕ 0

cos 2ϕ sin 2ϕ 0
0 0 0

⎤
⎦ ,

(61)

and

I =
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , J =

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ , E =

⎡
⎣ 1

3 0 0
0 1

3 0
0 0 − 2

3

⎤
⎦ .

(62)

They have simple algebraic properties

E2 = 2
9
I− 1

3
E, M2 = N2 = −J2 = 2

3
I+ E,

E ·M = M · E = 1
3
M, E · N = N · E = 1

3
N,

M · N = −N ·M = J.

(63)

In addition their derivatives are

dM
dt

= 2�
r 2

N,
dN
dt

= −2�
r 2

M,

dE
dt

= dI
dt

= dJ
dt

= 0.

(64)
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It follows that

R̂ = 1
2
(E+M) . (65)

Using these results and the ones in appendix B it is now straight-
forward to establish expressions for the quadrupole moment and
its derivatives:

Q = μr 2

2
(E+M) , Q̇ = μ�

(
r ′

r
E+ r ′

r
M+ N

)
,

Q̈ = μ�2

r 2

[(
r ′′

r
− r ′ 2

r 2

)
E+

(
r ′′

r
− r ′ 2

r 2
− 2

)
M+ 2r ′

r
N

]
,

···
Q = μ�3

r 4

[(
r ′′′

r
− 5r ′′r ′

r 2
+ 4r ′ 3

r 3

)
(E+M)

+ 4
(
r ′′

r
− 2r ′ 2

r 2
− 1

)
N

]
.

(66)

More generally we can write for the n-th derivative

Q(n) = μ�n

r 2(n−1)

(
Q(n)

E E+ Q(n)
M M+ Q(n)

N N
)

, n = 0, 1, 2, 3, . . . ,

(67)

where the coefficients Q(n)
E ,M,N can be read off from the expres-

sions (66) or computed by taking still higher derivatives. These
results can now be used to evaluate the amplitude hi j (x, t); the
expression (29) for the amplitude is equivalent to

hi j (x, t) = κ

8πr

[
Q̈i j − r̂i (Q̈ · r̂) j − r̂ j (Q̈ · r̂)i

+ 1
2

(
δi j + r̂i r̂ j

)
r̂ · Q̈ · r̂

]
u=t−r

.

(68)

Note that the direction of the observer is given by the polar unit
vector

r̂ = (sin θ cosφ, sin θ sinφ, cos θ ), (69)

which is distinct from the orbital unit vector r̂; then the amplitude
in three-tensor notation takes the form

h = κ

8πr

μ�2

r 2

[
Q(2)

E E+ Q(2)
MM+ Q(2)

N N

− r̂
(
Q(2)

E E · r̂ + Q(2)
MM · r̂ + Q(2)

N N · r̂
)T

−
(
Q(2)

E E · r̂ + Q(2)
MM · r̂ + Q(2)

N N · r̂
)

r̂T

+ 1
2

(
I+ r̂ r̂T

) (
Q(2)

E r̂ · E · r̂ + Q(2)
M r̂ ·M · r̂ + Q(2)

N r̂ · N · r̂
)]

.

(70)

To evaluate this expression use

E · r̂ = 1
3
(sin θ cosφ, sin θ sinφ, −2 cos θ ) ,

M · r̂ = sin θ
(
cos(2ϕ − φ), sin(2ϕ − φ), 0

)
,

N · r̂ = sin θ
(− sin(2ϕ − φ), cos(2ϕ − φ), 0

)
,

(71)

and

r̂ · E · r̂ = sin2 θ − 2
3
, r̂ ·M · r̂ = sin2 θ cos 2(φ − ϕ),

r̂ · N · r̂ = sin2 θ sin 2(φ − ϕ).

(72)

The simplest case is that of circular orbits with r ′ = 0 and � =
ωr 2, where ω is the constant angular velocity such that ϕ(t) = ωt .
Then

Q(2)
E = Q(2)

N = 0, Q(2)
M = −2, (73)

and

h = κμω2r 2

8πr

[−2M+ 2̂r (M · r̂)T + 2(M · r̂) r̂T

− r̂ ·M · r̂ (
I+ r̂ r̂T

)]
.

(74)

In particular in the equatorial plane θ = π/2 and

h = κμω2r 2

16πr
cos 2(φ − ωt)

⎛
⎝1− cos 2φ − sin 2φ 0

− sin 2φ 1+ cos 2φ 0
0 0 −2

⎞
⎠ .

(75)

whilst along the axis perpendicular to the equatorial plane θ = 0
and

h = −κμ ω2r 2

4πr
M

= κμ ω2r 2

4πr

⎡
⎣sin 2(φ − ωt)

⎛
⎝sin 2φ cos 2φ 0
cos 2φ − sin 2φ 0
0 0 0

⎞
⎠

− cos 2(φ − ωt)

⎛
⎝cos 2φ sin 2φ 0
sin 2φ − cos 2φ 0
0 0 0

⎞
⎠

⎤
⎦ .

(76)

Note that the frequency of the gravitational waves is twice that
of the orbital motion, which is a direct consequence of their
quadrupole nature.

7. Radiative Energy Loss

The first Equation (36) describes the energy flux of gravitational
waves per unit of spherical angle as a function of the direc-
tion specified by the unit vector r̂. Equations (66) specify the
quadrupole moments and their derivatives for two-body systems
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in generalized newtonian orbits (47). To evaluate the differential
energy flux these quadrupole moments are to be substituted into
the energy flux equation. First we compute

[
Q(3)]2 = μ2�6

r 8

[
2
3

(
1
3
Q(3) 2

E + Q(3) 2
M + Q(3) 2

N

)
I

+
(

−1
3
Q(3) 2

E + Q(3) 2
M + Q(3) 2

N

)
E

+ 2
3
Q(3)

E Q(3)
M M+ 2

3
Q(3)

E Q(3)
N N

]
.

(77)

It follows that

Tr
[
Q(3)]2 = 2μ2�6

r 8

(
1
3
Q(3) 2

E + Q(3) 2
M + Q(3) 2

N

)
, (78)

and

r̂ · [
Q(3)]2 · r̂ = μ2�6

r 8

[
4
9
Q(3) 2

E

+ sin2 θ

(
−1
3
Q(3) 2

E + Q(3) 2
M + Q(3) 2

N

+ 2
3
cos 2(φ − ϕ) Q(3)

E Q(3)
M + 2

3
sin 2(φ − ϕ) Q(3)

E Q(3)
N

)]
.

(79)

Finally

r̂ ·Q(3) · r̂ = μ�3

r 4

[
−2
3
Q(3)

E

+ sin2 θ
(
Q(3)

E + cos 2(φ − ϕ) Q(3)
M + sin 2(φ − ϕ) Q(3)

N

)]
.

(80)

Inserting the coefficients taken from Equation (66):

Q(3)
E = Q(3)

M =
(
r ′′′

r
− 5r ′′r ′

r 2
+ 4r ′ 3

r 3

)
≡ A,

Q(3)
N = 4

(
r ′′

r
− 2r ′ 2

r 2
− 1

)
≡ B,

(81)

the general result is

dE
d2�dt

= − Gμ2�6

8πc5r 8
[
2

(
A2 + B2) cos2 θ

− 2 A2 sin2 θ cos 2(φ − ϕ)− 2 AB sin2 θ sin 2(φ − ϕ)

+ 1
2
sin4 θ

(
A2 + B2 + 2 A2 cos 2(φ − ϕ)

+ 2 AB sin 2(φ − ϕ)+ (
A2 − B2) cos2 2(φ − ϕ

+ 2 AB sin 2(φ − ϕ) cos 2(φ − ϕ)
)]

.

(82)

For purely Keplerian orbits this result was derived in [20]. Using
the results from appendix B for the generalized newtonian orbits
(47) the expressions for the quantities A and B take the form

A = n3r
ρ

√
(e2 − 1)

r 2

ρ2
+ 2r

ρ
− 1,

B = −4n2r
ρ

+ 4
(
n2 − 1

)
.

(83)

The intensity distribution of gravitation radiation emitted by
a bound binary system in elliptical orbit, precessing and non-
precessing, is illustrated for a particular choice of parameters in
appendix C.
After integrating the result (82) over all angles the standard

result (39) for the total energy loss becomes

dE
dt

= −2Gμ2�6

15c5r 8
(
4A2 + 3B2) . (84)

Substitution of the expressions (83) then results in

dE
dt

= −8G4M3μ2

15c5n6ρ5

[
n6

(
e2 − 1

) ρ4

r 4
+ 2n6

ρ5

r 5

− n4
(
n2 − 12

) ρ6

r 6
− 24n2

(
n2 − 1

) ρ7

r 7
+ 12(n2 − 1)2

ρ8

r 8

]
.

(85)

In the simplest case, that of a circular orbit with e = 0, n = 1,
r = ρ and with angular velocity given by

�2 = r 4ω2 = GMρ, (86)

this result reduces to the well-known expression

dE
dt

= −32G4M3μ2

5c5ρ5
= −2

5

(
2GM
c2ρ

)4
μ2c3

Mρ
. (87)

The last result has been cast in terms of the dimensionless
compactness parameter 2GM/c2ρ, defined as the ratio of the
Schwarzschild radius for the combined system and the actual or-
bital scale characterized by ρ. For non-precessing orbits for which
n = 1, �2 = GMρ, the rate of energy loss is

dE
dt

= − 1
30

(
2GM
c2ρ

)4
μ2c3

Mρ

[(
e2 − 1

) ρ4

r 4
+ 2

ρ5

r 5
+ 11

ρ6

r 6

]
.

(88)

The expression (85) can also be used to compute the total energy
lost by the two-body system in a definite period between times t1
and t2, e.g. between two periastra for bound orbits, or during the
total passage of two objects in an open orbit:

�E =
∫ t2

t1

dt
d E
dt

= ρ2

�

∫ ϕ2

ϕ1

dϕ
r 2

ρ2

dE
dt

= ρ2

n�

∫ ψ2

ψ1

dψ
r 2

ρ2

dE
dt

,

(89)
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where we have introduced the integration variable ψ = nϕ. Now
substitute (84) for the energy change and use

ρ

r
= 1− e cosψ.

Recalling that n2�2 = GMρ and expanding the integrand trans-
forms the expression to

�E = −
√
2

30n6

(
2GM
c2ρ

)7/2
μ2c2

M

∫ ψ2

ψ1

dψ
[
12+ n6e2

+ e cosψ
(
24n2 − 72− 2n6e2

)
+ e2 cos2 ψ

(−n6 + 12n4 − 120n2 + 180+ n6e2
)

+ e3 cos3 ψ
(
2n6 − 48n4 + 240n2 − 240

)
+ e4 cos4 ψ

(−n6 + 72n4 − 240n2 + 180
)

+ e5 cos5 ψ
(−48n4 + 120n2 − 72

)
+ 12(n2 − 1)2e6 cos6 ψ

]
.

(90)

The adiabatic approximation implies that we treat the parameters
e and n in this interval as constants; then it is straightforward to
perform the integrations. For a bound orbit with succesive peri-
astra at ψ1 = 0 and ψ2 = 2π the total energy lost per period to
gravitational waves is

�E = −4π
√
2

5n6

(
2GM
c2ρ

)7/2
μ2c2

M

[
1+ e2

24

(
n6 + 12n4 − 120n2 + 180

)

+ e4

96

(
n6 + 216n4 − 720n2 + 540

) + 5e6

16

(
n2 − 1

)2]
.

(91)

In particular for non-precessing orbits with n = 1:

�E = −4π
√
2

5

(
2GM
c2ρ

)7/2
μ2c2

M

(
1+ 73

24
e2 + 37

96
e4

)
. (92)

For the simplest case, a circular orbit with e = 0:

�E = −4π
√
2

5

(
2GM
c2ρ

)7/2
μ2c2

M
. (93)

On the other hand, for open orbits with e ≥ 1 and asymptotic
values of the azimuth (ψ1, ψ2) satisfying

cosψ1 = cos nϕ1 = 1
e
, sinψ1 = 1

e

√
e2 − 1,

ψ2 = 2π − ψ1,

(94)

the result of the integral (90) in a somewhat hybrid notation is

�E = −
√
2

15n6

(
2GM
c2ρ

)7/2
μ2c2

M

6∑
k=0

Ik(n, ψ1) ek, (95)

with coefficients

I0 = 12 (π − ψ1) , I1 = (−24n2 + 72
)
sinψ1,

I2 = 1
2

(
3n6 + 12n4 − 120n2 + 180

)
(π − ψ1)

+ 1
2

(
n6 − 12n4 + 120n2 − 180

)
sinψ1 cosψ1,

I3 = (
48n4 − 240n2 + 240

)
sinψ1

+ 1
3

(
2n6 − 48n4 + 240n2 − 240

)
sin3 ψ1,

I4 = 1
8

(
n6 + 216n4 − 720n2 + 540

)
(π − ψ1)

+ 1
8

(
n6 − 360n4 + 1200n2 − 900

)
sinψ1 cosψ1

− 1
4

(
n6 − 72n4 + 240n2 − 180

)
sin3 ψ1 cosψ1,

I5 = (
48n4 − 120n2 + 72

) (
sinψ1 − 2

3
sin3 ψ1 + 1

5
sin5 ψ1

)
,

I6 = 12
(
n2 − 1

)2 [
5
16

(π − ψ1)

− cosψ1

(
11
16

sinψ1 − 13
24

sin3 ψ1 + 1
6
sin5 ψ1

)]
.

(96)

For non-precessing orbits with n = 1 the expression simplifies as
I5 = I6 = 0. The simplest case is the parabolic orbit with e = 1,
n = 1 and ψ1 = 0, resulting in

�E = −433π
√
2

120

(
2GM
c2ρ

)7/2
μ2c2

M
. (97)

These results are based on the generalized newtonian approxima-
tion. Results for scattering in the Effective One-Body formalism
to all orders in v/c have been obtained in ref. [19].

8. Radiative Loss of Angular Momentum

The gravitational waves emitted by a system of masses in motion
not only carry away energy, they also change the system’s angular
momentum. The last Equation (36) quantifies the directional an-
gularmomentum loss per unit of time of a non-relativistic system
in terms of the change in themass quadrupole. In this section we
compute the angular momentum lost by a quasi-newtonian two-
body system as we did for the energy in the previous section.
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After substitution of Equations (66), (67) in the expression (36)
for the differential flux of angular momentum we get

dMk

d2�dt
= − G

4πc5
μ2�5

r 6
εki j

×
[(

Q(2)
E E+ Q(2)

MM+ Q(2)
N N

)
·
(
Q(3)

E E+ Q(3)
MM+ Q(3)

N N
)
i j

−
(
Q(2)

E E · r̂ + Q(2)
MM · r̂ + Q(2)

N N · r̂
)
i

×
(
Q(3)

E E · r̂ + Q(3)
MM · r̂ + Q(3)

N N · r̂
)
j

+ r̂i
(
Q(2)

E E+ Q(2)
MM+ Q(2)

N N
)
j l

×
(
Q(3)

E E · r̂ + Q(3)
MM · r̂ + Q(3)

N N · r̂
)
l

− 1
2

r̂i
(
Q(2)

E E · r̂ + Q(2)
MM · r̂ + Q(2)

N N · r̂
)
j

×
(
Q(3)

E r̂ · E · r̂ + Q(3)
M r̂ ·M · r̂ + Q(3)

N r̂ · N · r̂
)]

(98)

The total loss of angularmomentum obtained by integration over
all angles as given by the result (39) is

dMk

dt
= − 2G

5c5
εki j [Q(2) ·Q(3)]i j .

According to the expansion (67) and the multiplication rules (63)
the only antisymmetric contribution to the product of Q(2) and
Q(3) comes from

M · N = −N ·M = J,

which has only a non-vanishing Jxy = −Jyx = 1 component. As
the only non-trivial component of orbital angular momentum is
Mz this is as expected. Using the results of appendix B it follows
that

dMz

dt
= −4Gμ2�5

5c5r 6

(
Q(2)

M Q(3)
N − Q(2)

N Q(3)
M

)

= −8Gμ2�5

5c5r 6

[
n4(1− e2)

r 3

ρ3

− 2n2(n2 − 1)(1− e2)
r 2

ρ2
+ n2(n2 + 2)

r
ρ

− 4(n2 − 1)
]

.

(99)

For circular orbits with r = ρ, e = 0 and n = 1 this reduces to

dMz

dt
= −32G3μ2M2

5c5ρ3

√
GM
ρ

= −2
√
2

5

(
2GM
c2ρ

)7/2
μ2c2

M
,

(100)

and for other non-precessing orbits

dMz

dt
= −

√
2

10

(
2GM
c2ρ

)7/2
μ2c2

M

[
(1− e2)

ρ3

r 3
+ 3

ρ5

r 5

]
. (101)

Following a procedure similar to the treatment of energy we can
compute the change in angular momentum in a fixed period of
time between precessing angles ψ1,2:

�Mz = ρ2

n�

∫ ψ2

ψ1

dψ
r 2

ρ2

dMz

dt

= − 1
5n5

(
2GM
c2ρ

)3
μ2ρc
M

∫ ψ2

ψ1

dψ
[
4+ e2n2(n2 − 2)

+ e cosψ
(
6n2 − 16− e2n2(3n2 − 4)

)
+ e2 cos2 ψ

(
n4 − 16n2 + 24+ 2e2n2(n2 − 1)

)
+ e3 cos3 ψ

(−n4 + 14n2 − 16
) − 4(n2 − 1)e4 cos4 ψ

]
.

(102)

It follows that for a bound state the angular momentum lost per
period between successive periastra ψ1 = 0 and ψ2 = 2π is

�Mz = − 8π
5n5

(
2GM
c2ρ

)3
μ2ρc
M

[
1+ e2

8

(
3n4 − 20n2 + 24

)

+ e4

8

(
2n2 − 3

) (
n2 − 1

)]
.

(103)

For n = 1 this becomes:

�Mz = − 8π
5n5

(
2GM
c2ρ

)3
μ2ρc
M

[
1+ 7e2

8

]
; (104)

for circular motion just take e = 0. Next considering open orbits
with asymptotic directions as in (94) Equation (102) takes the
form

�Mz = − 2
5n5

(
2GM
c2ρ

)3
μ2ρc
M

4∑
k=0

mk(n, ψ1) ek, (105)

with coefficients

m0 = 4 (π − ψ1) , m1 = (−6n2 + 16
)
sinψ1,

m2 =
(
3
2
n4 − 10n2 + 12

)
(π − ψ1)

−
(
1
2
n4 − 8n2 + 12

)
sinψ1 cosψ1,

m3 = (
4n4 − 18n2 + 16

)
sinψ1 (106)

−1
3

(
n4 − 14n2 + 16

)
sin3 ψ1,

m4 = (
n2 − 1

) [(
n2 − 3

2

)
(π − ψ1)
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−
(
n2 − 5

2

)
sinψ1 cosψ1 − sin3 ψ1 cosψ1

]
.

In particular for parabolic orbits with e = n = 1 and ψ1 = 0:

�Mz = −3π
(
2GM
c2ρ

)3
μ2ρc
M

. (107)

In ref. [13] a similar result was derived for small-angle scattering
in purely newtonian gravity with β = 0.

9. Evolution of Orbits

The flux of energy and angular momentum carried by gravita-
tional waves as expressed by Equations (34) can be determined
only if all components of the wave signal are known.With present
interferometric detectors this is barely possible by combining the
signals received by at least three instruments at different loca-
tions. However, the loss of energy and angular momentum by
sources such as binary star systems is observable and allows the
gravitational-wave flux to be reconstructed as in the well-known
case of the binary pulsar systems. Therefore it is of some prac-
tical use to evaluate the orbital changes due to the emission of
gravitational radiation by such systems. Here as in the previous
sections we consider non-relativistic two-body systems, either in
bound orbit or on scattering trajectories.
In the adiabatic approximation on which our calculations

are based the orbits of two-body systems in the CM frame are
parametrized by the expression (47). We take the orbital parame-
ters (ρ, e, n) to be slowly changing functions of time; they would
be constant in the absence of gravitational radiation. According to
Equations (56) and (57) the orbital energy and angular momen-
tum are expressed in terms of these parameters by

E = GMμ

2ρ

(
e2 − 1

)
, Lz = μ

√
GMρ + β. (108)

For comparison with observational data of bound orbits it is
sometimes convenient to consider the (possibly precessing)
semi-major axis of the orbit related to the semi-latus rectum by

a = ρ

1− e2
⇒ E = −GMμ

2a
. (109)

This quantity is also related to the precession parameter by

1
n2

= 1+ β

GMρ
⇒ Lz = μ

n

√
GMρ. (110)

It follows that for bound orbits the orbital parameter changes are
related to change in orbital energy and angular momentum by

dE
dt

= GMμ

2a2
da
dt

,
dLz

dt
= nμ

2

√
GM
ρ

dρ
dt

. (111)

As these parameters are related by (109) the changes in ρ and in
eccentricy e are related as well:

1
ρ

dρ
dt

= 1
a
da
dt

− 1
1− e2

de2

dt
. (112)

Also for constant β:

1
ρ

dρ
dt

= 2
n(1− n2)

dn
dt

. (113)

Now by equating the change in energy and orbital angular mo-
mentum to the amount of energy �E and angular momentum
�Mz carried away by gravitational waves we can relate the change
in orbital parameters to these parameters themselves. In particu-
lar according to Equations (91) and (103) during a period between
to succesive periastra the orbital parameters change by

�a
a

= −�E
E

= −16π
√
2

5n6
μ

M

(
2GM
c2ρ

)5/2 1
1− e2

×
[
1+ e2

24

(
n6 + 12n4 − 120n2 + 180

)

+ e4

96

(
n6 + 216n4 − 720n2 + 540

) + 5e6

16

(
n2 − 1

)2]
,

�ρ

ρ
= 2

nμ
√
GMρ

�Mz

= −16π
√
2

5n6
μ

M

(
2GM
c2ρ

)5/2

×
[
1+ e2

8

(
3n4 − 20n2 + 24

) + e4

8

(
2n2 − 3

) (
n2 − 1

)]
,

(114)

Furthermore from these results we can determine the period of
the orbit between periastra and its evolution. The period itself is

T =
∫ 2π/n

0
dϕ

dt
dϕ

= ρ2

n�

∫ 2π

0
dψ

1
(1− e cosψ)2

= 2π
(1− e2)3/2

ρ2

n�
= 2πa3/2√

GM
.

(115)

This is the appropriate generalization of Kepler’s third law for
precessing orbits, which holds provided the period T is taken to
be that between two periastra. From this it follows that the rate
of change of the period is

dT
dt

= 3π

√
a

GM
da
dt

, (116)
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and the relative change per turn is

�T
T

= 3
2

�a
a

. (117)

This amounts to a generalization of the Peter-Matthews
Equation[20]

dT
dt

� �T
T

= −192π
5c5

G5/3M2/3μ

(1− e2)7/2

(
T
2π

)−5/3

×
[
1
n6

+ e2

24

(
1+ 12

n2
− 120

n4
+ 180

n6

)

+ e4

96

(
1+ 216

n2
− 720

n4
+ 540

n6

)
+ 5e6

16n6
(
n2 − 1

)2]
.

(118)

Next we consider open orbits. These we will characterize in terms
of ρ and e directly with rates of change determined by (108) and
(111)

1
e2 − 1

de2

dt
= 1

ρ

dρ
dt

+ 1
E

dE
dt

. (119)

This results in

dρ
dt

= − 2
5n6

μc
M

(
2GM
c2ρ

)3 [
n4(1− e2)

ρ3

r 3

−2n2(n2 − 1)(1− e2)
ρ4

r 4
+ n2(n2 + 2)

ρ5

r 5
− 4(n2 − 1)

ρ6

r 6

]
,

(120)

de2

dt
= 1

60n6
μc
Mρ

(
2GM
c2ρ

)3 [
24n4

(
e2 − 1

)2 ρ3

r 3

−n2(e2 − 1)
(
n4 + 48(n2 − 1)(e2 − 1)

) ρ4

r 4

−2n2 (
n4 + 12(n2 + 2)(e2 − 1)

) ρ5

r 5

+ (
n2(n2 − 12)+ 96(n2 − 1)(e2 − 1)

) ρ6

r 6

+24n2 (
n2 − 1

) ρ7

r 7
− 12

(
n2 − 1

)2 ρ8

r 8

]
.

(121)

The corresponding changes over the complete orbit are

�ρ

ρ
= −4

√
2

5n6
μ

M

(
2GM
c2ρ

)5/2 4∑
k=0

mk(n, ψ1)ek, (122)

and

�e2 = (
e2 − 1

) �ρ

ρ
− 4

√
2

15n6
μ

M

(
2GM
c2ρ

)5/2 6∑
k=0

Ik(n, ψ1)ek .

(123)

The total energy change in such an open orbit is given by

�E
E

= − 4
√
2

15n6
μ

M

(
2GM
c2ρ

)5/2 ∑6
k=0(Ike

k)
e2 − 1

. (124)

Finally one can determine for which open orbits the loss of en-
ergy by gravitational radiation results in a bound orbit, at least
in lowest-order approximation. Such a capture process happens
when the initial energy is positive and the final energy is negative:
|�E | > E . From (124) this requires

4
√
2

15n6(e2 − 1)
μ

M

6∑
k=0

Ik(n, ψ1)ek >

(
c2ρ
2GM

)5/2

.

As the semi-latus rectum ρ must be greater than the
Schwarzschild radius of the system, the quantity on the
left-hand side must be definitely larger than one, and as μ < M
it follows that e2 − 1 must be small, i.e. the orbit must be close
to parabolic.

Appendix A: The Transverse Traceless Gauge

In this appendix we explain in more detail how starting from an
arbitrary solution of the field Equations (3) for the massless ten-
sor field one can reach the TT -gauge (24) in the far-field region.
We will do this in the hamiltonian formulation in which space-
and time components of the fields are considered separately. In
this formulation the space-components hi j and their conjugate
momentum fields πi j satisfy field equations which are first-order
in time derivatives. In contrast the time components represent
auxiliary fields N = −h00 and Ni = h0i acting as Lagrage mul-
tipliers to impose constraints: time-independent field equations
restricting the allowed field configurations of the space compo-
nents. The full set of dynamical equations for these fields read

πi j = ḣi j − δi j ḣkk + 2δi j ∂kNk − ∂i Nj − ∂ j Ni ,

π̇i j = �hi j − ∂i∂khkj − ∂ j ∂khki + ∂i∂ j hkk

− δi j (�hkk − ∂k∂l hkl )− δi j�N + ∂i∂ j N + κTi j .

(125)

The constraints imposed by the auxiliary fields are

�h j j − ∂i∂ j hi j = −κT00, ∂ jπ j i = κTi0. (126)

Together these equations are fully equivalent to the covariant field
Equations (3). Our analysis will show that the split in dynamical
space- and non-dynamical time components is in full agreement
with the properties of the causal solutions (18)–(21).
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As expected the full set of Equations (125), (126) is invariant
under local gauge transformationswhich in this formulation take
the form

h′
i j = hi j + ∂iξ j + ∂ j ξi , N′

i = Ni + ξ̇i + ∂iξ,

π ′
i j = πi j + 2δi j�ξ − 2 ∂i∂ j ξ, N′ = N − 2 ξ̇ ,

(127)

Observe that hi j changes only by terms depending on ξi , whilst
the change of πi j is determined only by ξ . Clearly the transforma-
tions of the auxiliary fields (N, Ni ) suffice to remove these com-
ponents by taking

ξ̇ = 1
2
N, ξ̇i = Ni − ∂iξ. (128)

This results in N′ = N′
i = 0 and

π ′
i j = ḣ′

i j − δi j ḣ′
kk,

π̇ ′
i j = �h′

i j − ∂i∂kh′
k j − ∂ j ∂kh′

ki + ∂i∂ j h′
kk

− δi j
(
�h′

kk − ∂k∂l h′
kl

) + κTi j ,

(129)

constrained by

�h′
j j − ∂i∂ j h′

i j = −κT00, ∂ jπ
′
j i = κTi0 (130)

Now note that the choice of gauge parameters (128) does not
fix these transformations completely: one can still make resid-
ual gauge transformations with parameters (ξ ′, ξ ′

i ) subject to the
conditions

ξ̇ ′ = 0, ξ̇ ′
i = −∂iξ

′, ξ̈ ′
i = 0. (131)

To see how these can be used, first note that combining the sec-
ond field Equation (129) with the first constraint (130) results in

π̇ ′
j j = κ

(
Tj j + T00

)
. (132)

This condition is invariant under the residual gauge transforma-
tions, and therefore in empty space where Tj j = T00 = 0 the trace
π ′
j j is seen to be constant in time and can be removed by a time-

independent gauge transformation:

�ξ ′ = −1
4

(
π ′
j j

)
t=0 ⇒ π ′′

j j = π ′
j j + 4�ξ ′ = 0. (133)

In view of the first Equation (129) this also implies that at all
times ḣ′′

j j = 0 and therefore h′′
j j is time-independent. In empty

space the first constraint (130) then asserts that also ∂i∂ j h′′
i j is

time-independent. Next the residual gauge parameters ξ ′
i can be

used to restrict the field combination

∂ j h′′
j i − 1

2
∂i h′′

j j = ∂ j h′
j i − 1

2
∂i h′

j j + �ξ ′
i . (134)

First it can be removed from the initial configuration by taking

�ξ ′
i = −

(
∂ j h′

j i − 1
2

∂i h′
j j

)
t=0

⇒
(

∂ j h′′
j i − 1

2
∂i h′′

j j

)
t=0

= 0.

(135)

In combination with the first constraint (130), and knowing that
h′′
j j and ∂i∂ j h′′

i j themselves are constant in time, this implies that
in empty space

(
�h′′

j j

)
t=0 = (

∂i∂ j h′′
i j

)
t=0 = 0 ⇒ �h′′

j j = ∂i∂ j h′′
i j = 0 (136)

at all times. Finally one can still make one more residual gauge
transformation, with harmonic parameters (ξ ′′, ξ ′′

i ) satisfying

�ξ ′′
i = 0, �ξ ′′ = −∂i ξ̇

′′
i = 0. (137)

These transformations can be used to remove the trace of the field
at t = 0 and therefore at all times:

∂iξ
′′
i = −1

2

(
h′′
j j

)
t=0

⇒ h′′′
j j = (

h′′′
j j

)
t=0 = (

h′′
j j + 2∂iξ ′′

i

)
t=0 = 0.

(138)

Finally as the second constraint (130) in empty space requires

∂ j ḣ′′′
j i = 0, (139)

we also find that by combining with (135) and (138)

∂ j h′′′
j i = (

∂ j h′′′
j i

)
t=0 = 0. (140)

In conclusion, we have proved that we can find local gauge trans-
formations such that in empty space any solution of the field
equation can be transformed to the TT -gauge

∂ j h′′′
j i = h′′′

j j = 0,

by the gauge transformations specified in (128), (133), (135) and
(138). The vanishing of the trace also implies that in the TT -
gauge h′′′

i j = h′′′
i j .

We close this section by noting that the hamiltonian field Equa-
tions (125), (126) follow directly from the action

S =
∫

d4x
(
ḣi jπi j − H

)
, (141)

with hamiltonian density

H = 1
2

π 2
i j − 1

4
π 2
j j + 1

2

(
∂khi j

)2 −
(

∂ j h j i − 1
2
∂i h j j

)2

− 1
4

(
∂i h j j

)2 − κhi j Ti j − 2Ni
(
∂ jπ j i − κTi0

)
+ N

(
�h j j − ∂i∂ j hi j + κT00

)
.

(142)

As is to be expected, in the TT -gauge this hamiltonian reduces
to the energy density (31).
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Figure B1. Intensity patterns of gravitational radiation emitted by a binary system in (quasi-)elliptical orbits (characterized by the value of n) with
eccentricity e = 0.25 at three different points in the orbit at orientations ϕ = (0, π/2, π), and as emitted in three different directions w.r.t. the polar axis:
θ = 90◦ (blue inner contour), θ = 60◦ (red middle contour) and θ = 30◦ (green outer contour). Note that the scales agree in vertical columns, but differ
from left to right in proportion 10 : 65 : 200.
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Appendix B: Generalized Newtonian Orbits

The generalized newtonian orbits (47) are parametrized by

r = ρ

1− e cos nϕ
.

In our computations we also need the derivatives of this expres-
sion, up to the third derivative. Taking anti-clockwisemotion they
read

r ′

r
= −n

√
(e2 − 1)

r 2

ρ2
+ 2r

ρ
− 1,

r ′′

r
= n2

[
2

(
e2 − 1

) r 2
ρ2

+ 3r
ρ

− 1
]

,

r ′′′

r
= −n3

[
6

(
e2 − 1

) r 2
ρ2

+ 6r
ρ

− 1
] √

(e2 − 1)
r 2

ρ2
+ 2r

ρ
− 1.

(143)

Appendix C: Intensity of Emission from a Binary
System

In this appendix we show an example of the intensity distribution
of gravitational-wave emission in various directions produced by
generalized newtonian binary systems in elliptic orbit with ec-
centricity e = 0.25 and precession rates n = 1 (newtonian, non-
precessing), n = 0.9 (prograde precession) and n = 1.1 (retro-
grade precession). The intensity distribution is represented by
the dimensionless quantity

Y(θ, φ) = −128πn6 M
2

μ2

(
c2ρ
2GM

)4
ρ d(E/Mc2)
cdt d2�

= ρ8

r 8

[
2

(
A2 + B2) cos2 θ − 2A2 sin2 θ cos 2(φ − ϕ)

− 2AB sin2 θ sin 2(φ − ϕ)+ 1
2
sin4 θ

(
A2 + B2

+ 2A2 cos 2(φ − ϕ)+ 2AB sin 2(φ − ϕ)

+ (
A2 − B2) cos2 2(φ − ϕ)

+ 2AB sin 2(φ − ϕ) cos 2(φ − ϕ)
)]

.

(144)

It is plotted as a function of azimuth φ for three different po-
lar angles θ : in the equatorial plane θ = 90◦, and in the direc-

tions θ = 60◦ and θ = 30◦ with respect to the axis of angular
momentum, at three different instants during the orbit where
the relative orientation of the two masses is ϕ = 0, ϕ = 90◦ and
ϕ = 180◦ corresponding in the non-precessing case with n = 1
to apastron, semi-latus rectum and periastron. The same distri-
butions for the same polar angles are also plotted for the case of
prograde precession with n = 0.9, and for retrograde precession
with n = 1.1.
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