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Abstract

Bacteria sense and respond to their environment through a highly conserved assembly of 

transmembrane chemoreceptors (MCPs), the histidine kinase (CheA), and the coupling protein 

CheW, hereafter termed “the chemosensory array”. In recent years, great strides have been made 

in understanding the architecture of the underlying chemosensory arrays and how these assemblies 

engender sensitive and cooperative responses. Nonetheless, a central outstanding question 

surrounds how receptors modulate the activity of the chemotaxis kinase CheA, the enzymatic 

output of the sensory system. With a focus on recent advances, we summarize the current 

understanding of array structure and function to comment on the molecular mechanism by which 

CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of 

bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with 

many different approaches. In particular, structural methods, genetics, cellular activity assays, 

nanodisc technology and cryo-electron tomography have provided advances that bridge length 

scales and connect molecular mechanism to cellular function. Given the high degree of component 

integration in the chemosensory arrays, we ultimately aim to understand how such networked 

molecular interactions generate a whole that is truly greater than the sum of its parts.
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1. Introduction

Motile bacteria control their movement in response to changes in their environment through 

a behavior known as bacterial chemotaxis (reviewed in [1–6]). 50 years ago chemotaxis in 

the γ-proteobacterium Escherichia coli (Ec) was shown to be a receptor-mediated process 

[7–9]. Since that time, our understanding of the underlying sensory system that mediates 

chemotaxis has steadily grown. Nonetheless, unresolved questions regarding molecular 

mechanism still remain [1–6]. The principal molecular components of the chemotaxis 

system are the transmembrane chemoreceptors, also called methyl-accepting chemotaxis 

proteins (MCPs). MCPs sense external ligands directly or through periplasmic binding 

proteins. The receptors transduce binding signals across the cellular membrane to regulate 

the autophosphorylation activity of the histidine kinase CheA (Fig. 1, 2). CheA is composed 

of five domains (P1 through P5) each with a distinct function (see below). Once activated, 

CheA initiates an intra-cellular phosphorelay that ultimately controls flagella rotation sense 

(Fig. 1, 3A). For the Ec system, an increase in repellent or decrease in attractant increases 

CheA autophosphorylation [1–6]. As an example of a “two-component” regulatory system 

[10, 11], phosphorylated CheA donates phosphate from phosphoryl-histidine to an aspartate 

residue on the response regulator protein CheY. Phosphorylated CheY (CheY-P) directly 

binds the flagellar rotor protein FliM to favor clockwise (CW) rotation of the flagella, 

promoting disassembly of the flagellar bundle, and cell tumbling. When CheA is deactivated 

by attractant, a reduction in CheY-P favors counterclockwise (CCW) rotation of the rotor, 

bundling of the flagellar filaments, and smooth straight swimming (generating a so-called 

run). By alternating between tumbling and smooth swimming, the cell tracks gradients of 

attractants and repellents through what is effectively a biased random walk. The action of 

two additional enzymes – the methyltransferase CheR and the methylesterase CheB – 

produce a slower adaptation response that aids the tracking of chemoattractant gradients. 

CheR and CheB alter the methylation status of specific glutamate residues on the receptors 

and thereby tune receptor ligand affinity and modulation of CheA activity (Fig. 1).

MCPs interact with CheA and a coupling protein CheW to form a supramolecular assembly 

called the chemosensory array (Fig. 2). High signal sensitivity, cooperative responses and a 

wide dynamic range emerge from direct interactions among the components and the 

methylation system involving CheR and CheB [12–21]}. Chemoreceptors function as 

trimers-of-receptor dimers [18, 19, 22–24] that further assemble into a large hexagonally 

packed lattice arrangement [25–28] (Fig.1, 2). The hexagonal lattice of the receptor trimers-

of-dimers is upheld by interactions among CheA P5, CheW, and the receptor tips [27, 28] 

(Fig. 2, 4C, 4D). Cryo-electron tomography (cryo-ET) maps generated from whole bacterial 

cells demonstrate that this general receptor arrangement is conserved in all classes of 

chemotactic bacteria studied [27, 29]. Reconstitution experiments with full-length receptors 

captured in defined oligomeric states [16, 17, 30–32] complement cellular studies [18, 19, 

24] to show that the receptors must assume a trimer-of-dimer arrangement to fully modulate 

CheA activity. Protein crystal structures and solution models generated with fragments of 

receptors, domains of CheA, and CheW allow for interpretation of in vivo cryo-ET maps in 

terms of the general arrangement of molecular components [27, 29, 33–35] (Fig. 4). 

However, resolution limitations of the cellular tomograms, coupled with regions of 
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indiscernible electron density as well as symmetries inherent to the assemblies leave some 

ambiguity with respect to component identity and positioning. Furthermore, the 

conformational changes in the array that generate CheA on-off switching are not yet fully 

defined. A detailed molecular explanation for how receptors engage and modulate CheA is 

the next step in understanding the emergent properties of this remarkable sensory system.

The five domains of CheA each have distinct functions. The P1 domain contains the 

substrate histidine that becomes phosphorylated, P2 docks the response regulator proteins 

CheY and CheB, P3 dimerizes the protein, P4 binds Mg+2-ATP and catalyzes phosphoryl 

transfer to the histidine substrate on P1, and P5 couples CheA to the other array components 

by binding both CheW and the chemoreceptors. CheA functions as a dimer in that the P4 

domain of one subunit trans phosphorylates the P1 domain of the adjacent subunit [36, 37]. 

The P1 and P2 domains are separated from the P3-P5 domains by long flexible linkers that 

vary considerably in length and protein sequence among CheA orthologs [38] (Fig. 3A). The 

mobility of the P1 and P2 domains makes structural characterization of full-length CheA 

challenging. Although high-resolution crystal structures of each domain have been 

determined, a full-length structure of CheA has been elusive (Fig. 3A). However, a structure 

of the full-length kinase free from array incorporation is perhaps of limited relevance. More 

complex assemblies must be either reconstituted for study or probed in situ. Below we 

discuss aspects of chemotaxis signaling from the perspective of the CheA kinase and build 

to the central question of how CheA autophosphorylation activity is regulated by 

chemoreceptors.

2. Roles of individual CheA domains and array components

2.1 The P1 substrate domain and the P2 docking domain

The P1 domain is an HPt domain (Histidine Phosphotransfer) that consists of 5 helices (A-

E), with A-D comprising a tightly associated four-helix bundle (Fig. 3B) and helix E 

associated with and connected to the bundle by a flexible linker [39, 40] (Fig. 4A). HPt 

domains transfer phosphate groups to target proteins via phosphorylation of a histidine 

residue and can either function as an independent protein or as fused to a histidine kinase 

[41]. The substrate histidine of CheA P1 corresponds to residue H48 on helix B in Ec and 

H45 in the thermophile Thermotoga maritima (Tm), which has served as a useful source for 

well-behaved chemotaxis proteins (Fig. 3B). Site-directed mutagenesis of residues adjacent 

to Ec H48 indicates that phosphorylation depends on a local hydrogen bonding network 

[42]. In the Tm enzyme, residues K48, H64 and E67 elevate the pKa of the substrate H45 to 

6.9 and stabilize the Nᵟ1H tautomer that is necessary for CheA autophosphorylation [42]. In 

this tautomeric form the nucleophilic Nε2 atom of the substrate histidine attacks the γ-

phosphate of the P4-bound ATP [42]. Key aspects of P1 autophosphorylation and 

phosphotransfer have been elucidated, including the association of P1 with CheY bound to 

P2 [43]. However, the docking interaction between P1 and P4 has yet to be fully defined, 

despite models from both computation and experiment [37, 44–46].

Specific sites on P1 have been identified to interact directly with CheA P4, CheY and the 

methyl-esterase CheB (see below) [42, 46, 47]. Separation of the P1 domain from the kinase 

core (P3P4P5) demonstrates that a covalent connection to P1 is not essential for 
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phosphorylation in vitro [46, 48, 49] or in vivo [50]. However, overexpression of P1 is 

needed to attain normal in vivo chemotaxis behavior [46, 50]. Therefore, the long P1 linker 

may be important for increasing the local concentration of P1 in the vicinity of the kinase 

core. Progressive shortening of the linker between P1 and P3 in a Tm CheA variant devoid 

of the P2 domain disfavors trans subunit autophosphorylation relative to cis, but activity 

does not increase to the degree predicted by a random chain model [37]. These data suggest 

that domain arrangements and possibly interactions within the CheA dimer influence the 

ability of P1 to access P4. Crystal structures of truncated CheA variants also reveal 

interactions between P4 and linker segments N-terminal to P3 [37].

The P2 domain docks CheY and CheB to CheA [51–53]. Although P2 is not essential for 

phosphotransfer to CheY or CheB, it greatly accelerates the rate of phosphotransfer [54]. 

Despite a conserved structural fold, P2 orthologs do not bind CheY in the same manner, 

suggesting that the specific mode of recognition is not critical for phosphotransfer [55]. 

CheA devoid of P2 still supports chemotaxis, albeit tumbling responses are impaired [56]. 

Interestingly, overexpression of the P1 domain largely rescues the defect caused by removal 

of P2, further indicating that productive interactions between CheY and phosphorylated P1 

do not require P2, and that P2 likely functions to increase the CheY concentration local to 

P1 [56]. Overall, tethering both P1 and P2 to the kinase core (P3-P4-P5) facilitates rapid 

phosphate transfer from ATP to CheY.

Mutational analyses of P1 and P4 define the P1:P4 interaction site required for 

phosphotransfer [46]. Random mutagenesis screens in Ec suggest that residues on helices A 

and B of P1 directly interact with the P4 domain [46] (Fig. 4A). These data, along with 

docking simulations done with crystal structures and homology models [57], cysteine-

scanning studies carried out with Salmonella enterica (Se) CheA, [58] and cross-linking and 

linker-length experiments with Tm CheA [37] all suggest a similar interaction mode 

between P1 and P4. Intriguingly, NMR chemical shift perturbations with liberated P1 and 

P3-P4 from Tm CheA indicate that the strongest interaction between P1 and P4 involves 

helix D of P1 (Fig. 3B). This region is distal from the substrate histidine (H45) and interacts 

with a site on P4 that is remote from the nucleotide binding region [47]. Furthermore, 

residue substitutions in this region do moderately increase basal activity. These findings 

suggest that there may be a non-productive interaction between P1 and P4 that does not 

facilitate autophosphorylation but could be regulatory in nature.

2.2 The P4 kinase domain

The kinase domain of CheA (P4) that binds Mg2+-ATP is composed of seven α-helices and 

a five-stranded β-sheet [59, 60]. The central part of the structure consists of an α-β sandwich 

with three of the helices packed against the β-sheet. Three other helices surround the Mg2+-

ATP pocket, and a short loop between two helices comprises the lid to the nucleotide pocket. 

Mg2+ is essential for histidine activation, and significantly increases nucleotide affinity. 

Crystal structures of Tm P4 without nucleotide or reconstituted with nucleotides (ADP, 

ADPCP, TNP-ATP, ADP-MTSL) reveal that the conformation of the ATP-lid changes 

dramatically upon nucleotide binding [60, 61]. When P4 is reconstituted with the non-

hydrolysable ATP-analog ADPCP and Mg2+, the ATP-lid folds into a short helix to partially 
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sequester the binding pocket. In all other crystal structures, the ATP lid is conformationally 

variable (Fig. 4A). Spatial ordering and folding of the ATP lid likely influence interactions 

between P4 and P1 (Fig. 4A). Molecular dynamics studies of docked P1 and P4 complexes 

further suggest that motions of ATP itself induce conformational changes within the ATP-lid 

that “open” the binding site and facilitate P1 engagement [44].

The P4 domain is structurally homologous to a class of bacterial ATPases called the GHL 

family, named after three representative proteins (Gyrase B, Hsp90, and MutL), and to the 

kinase domains of sensor kinases [59, 62]. Although the overall structure of CheA and the 

GHL proteins vary, they all possess a deep ATP-Mg2+ binding pocket formed by a conserved 

topology of four α-helices, five β-strands and an ATP lid that changes conformation upon 

nucleotide binding (Fig. 4A). However, CheA diverges from the GHL proteins in several 

aspects. Whereas GHLs possess a strictly conserved glutamate residue essential for ATP 

hydrolysis, the glutamate residue responsible for histidine phosphorylation in CheA is 

instead located on the P1 domain near the histidine substrate [42] (Fig. 3B, 4A). The 

divergent mechanism for ATP hydrolysis in CheA results in phospho-transfer as opposed to 

phosphate release as catalyzed by the GHLs. Additionally, structures of GHLs and CheA 

bound to nucleotide analogs reveal that GHLs have a more extensive network of residues 

that recognize and bind ATP than does CheA. Presumably, additional interactions with the 

P1 domain may further stabilize ATP-binding (Fig. 4A). Furthermore, CheA P4 has a larger 

ATP-lid than do the histidine sensor kinases [62]. Although the function of the increased 

ATP-lid size is unclear, it may interact with other components of the array in a regulatory 

function in addition to involvement in P1 autophosphorylation.

2.3 The P5 regulatory domain and the CheW adaptor protein

CheW and the CheA P5 domain are paralogs that compose hexagonal ring structures of the 

chemosensory arrays (Fig. 2, 4B). They each share a duplicated SH3-domain-like topology 

that domain-swaps one β-hairpin, thereby producing two intertwined five-stranded β-barrels 

(designated subdomains 1 and 2). The P3-proximal barrel of P5 (subdomain 1) binds CheW 

subdomain 2 through a pseudosymmetric contact that involves conserved hydrophobic 

residues on each domain [34, 35, 63] (Fig. 4B, 4C). This so-called “interface 1” interaction 

is mirrored by a pseudosymmetric “interface 2” interaction involving P5 subdomain 2 and 

CheW subdomain 1 [35]. When modified, sites in P5 subdomains 1 and 2 produce 

chemotaxis defects or affect CheW binding [64–67]. Notably, Cys-substitutions (and their 

subsequent modification) in subdomain 2, several of which localize to interface 2, cause 

defects in CheA regulation, primarily deactivation [64]. Thus, the ring contacts that couple 

two CheA dimer core complexes play an important role in kinase regulation, as will be 

discussed further below.

3. Architecture of the chemosensory arrays

MCPs form transmembrane homodimers that are composed of mostly helical domains that 

stack together to form long thin molecules that can extend ~380 Å in some receptor classes 

[68] (and reviewed in [2–4]). Most MCPs, including the Ec receptors Tar (for aspartate 

sensing) and Tsr (for serine sensing) are shorter (~310 Å) and contain periplasmic, 
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transmembrane and intracellular domains that are primarily helical in topology. The 

extracellular domains, which are the most variable among MCPs, bind ligands whereas the 

intracellular domains, which conserve a mainly 4-helix bundle structure (~220 Å for Tar and 

Tsr), consist of regions with defined functions for transducing receptor response and 

regulating CheA activity (Fig. 1). The intracellular region most proximal to the cell 

membrane is called the HAMP domain (for proteins in which it is found: Histidine kinases, 

Adenylyl cyclases, Methylaccepting chemotaxis proteins, and Phosphatases). The HAMP 

domain undergoes structural rearrangements upon ligand binding that are transmitted to the 

receptor tip (Fig. 1; reviewed in [69]) (Fig. 1). C-terminal to the HAMP domain are residues 

that undergo reversible methylation as part of an adaptation process that allows cells to keep 

a temporal record of ligand concentration (Fig. 1) [70–77]. Glutamate residues in this region 

are methylated and demethylated by the SAM-dependent methyltransferase CheR [78, 79] 

and the methylesterase CheB [80–82], respectively (Fig. 1). CheB possesses an N-terminal 

CheY-homology domain that is phosphorylated by CheA to activate the methylesterase, 

thereby allowing the level of CheA activity to influence adaptation [83, 84] (Fig. 1). The 

methylation status of the adaptation region influences receptor dynamics near the 

intracellular tip, which modulates CheA kinase activity [85–88]. Methylation of glutamate 

residues by CheR biases the receptor to an activated (kinase-on) conformation in Ec (Fig. 1). 

Adjacent to the methylation region, a glycine hinge provides flexibility to assemble the 

receptor tips into trimers and also facilitates on-off switching [89–92]. Notably, different 

types of chemoreceptors can assemble into heterotrimeric “teams” of trimers, provided they 

belong to the same length class [23, 68, 93]. The region at the intracellular tips of the 

receptors, called the protein interaction region (PIR), directly interacts with CheA and CheW 

to form the chemoreceptor ternary complex [2, 3, 35, 85] [94, 95] (Fig. 1, 4C, 4D). In a case 

of structural quasi-equivalence, every dimeric receptor that binds CheA or CheW via the PIR 

has a symmetry-related PIR that associates with PIRs from two other receptors on the trimer 

axis [18, 19, 22–24]. Thus, the PIR region can interact with either P5, CheW or another 

receptor (Fig. 2).

A model of a receptor:CheA:CheW cytoplasmic ternary complex generated by application 

of site-specific spin labeling and pulsed-dipolar electron spin resonance (ESR) spectroscopy 

[33] indicated that the receptor tip binds CheW but also interacts near the P4 and P5 

domains of CheA. The ESR model also suggested that the receptor stalk aligns along the 

CheA dimerization domain, and the P1 substrate and P4 kinase project away from the 

receptor tips [33], in agreement with data based on chemical modification studies of the 

complex [58] (Fig. 4D). Furthermore, taken with the receptor trimer-of-dimer crystal 

structure [22], the ESR model suggested that the P5 and CheW units may form rings [33]. 

Several crystal structures comprising a receptor fragment in complex with CheA P5 and 

CheW revealed important interactions for array formation and signal propagation [27, 35] 

(Fig. 4A–D). These structures served as components to interpret cryo-ET reconstructions of 

intact arrays [27–29, 96–98] (Fig. 2B). The crystal structures contained hexagonal rings of 

CheA P5 and CheW that agree well with the cryo-ET images. In the crystal structures the 

receptor fragments bind on the outside of the rings at a groove between the β-barrels that is 

common to both P5 and CheW (Figs. 2 and 4), These interactions, which are consistent with 

the native-cell tomograms, serve to anchor the CheA:CheW assembly to the cell membrane. 

Muok et al. Page 6

Biochim Biophys Acta Biomembr. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CheW-P5 rings are then held together by the receptor trimers and by the P3 dimerization 

domain of CheA (Figs. 2 and 4). Within each receptor dimer one subunit directly contacts 

CheW or P5 and the other interacts with two other receptor subunits within the trimer 

arrangement (Figs. 2 and 4). Cryo-ET data from in vitro assembled arrays also indicate that 

the otherwise “open” hexagons of the array may be occupied by CheW-only rings [98]. 

Mutational studies of the Ec Tsr receptor [94, 95] and molecular dynamic simulations of an 

isolated receptor dimer [99] demonstrate that residues within the PIR are important for 

trimerization and signaling [88, 100].

Notably, a high degree of pseudo-symmetry in the arrays raises the possibility of alternative 

configurations across species or even receptor class. Pseudosymmetry relates subdomains 1 

and 2 of CheW and P5 and the two proteins are very similar in structure to each other. In 

addition, equivalent receptor N-terminal helices run in opposite polarity when binding the 

analogous recognition grooves of CheW and P5. Crystal structures of receptor fragments 

bound to P5 and CheW do define these orientations in the context of the known crystal 

lattices [27, 35], but only small thermodynamic differences may distinguish the alternative 

conformations. Targeted disulfide cross-linking experiments provide in vivo validation of the 

current array “handedness” (i.e. the relative locations of P5 and CheW in the rings) [101] 

(Fig. 4), but even in these studies the “up” and “down” configurations of the receptor 

interactions are difficult to distinguish, owing in part to the two-fold symmetry of the 

receptors themselves. As discussed below, arrays from different bacterial species display 

some variations in their assembly states; and thus, changes in handedness or ring 

composition may also be possible.

The CheA dimerization domain P3 plays a critical role in the array by associating the 

hexagonal rings; however, P3 itself may exhibit substantial mobility. Cryo-ET of native 

arrays generally reveal only sparse electron density for the P3 domain [27, 28, 92, 102] and 

spin-labeling experiments of reconstituted CheA complexes indicate highly variable P3 

orientations [33]. However, cryo-ET of in vitro reconstituted arrays provide accurate 

placement of the P3 domains [98], likely owing to the selection of highly ordered volumes 

of the tomograms for classification and averaging.

4. Chemosensory arrays in bacteria other than Escherichia coli.

4.1 Salmonella enterica, Bacillus subtilis and Thermotoga maritima

Whereas Ec has the best understood chemotaxis system, research on several other model 

organisms provides a more comprehensive understanding of chemotaxis across Bacteria. 

The Salmonella enterica (Se) system, which very closely resembles the Ec system, has 

elucidated aspects of CheA modulation and also provided a useful model to study 

chemotaxis effects on host-pathogen enteric interactions [103]. Research with the gram-

positive bacteria Bacillus subtilis (Bs) has identified a more complex chemotaxis system that 

includes proteins without counterparts in the Ec and Se systems [104, 105]. Furthermore, 

chemotaxis homologs from the thermophile Tm have provided thermostable proteins that are 

well-suited for in vitro biochemical and structural experiments [62]. As such, many 

chemotaxis protein crystal structures have been determined by utilizing Tm homologs [27, 

34, 106]. Importantly, chemotaxis studies from diverse bacteria reveal key differences in 
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molecular signaling. For instance, the Ec and Se systems are very similar and they utilize 

four common chemoreceptors (Tsr, Tar, Aer, Trg); however, they also each employ unique 

chemoreceptors specific to their environmental needs [107]. Furthermore, in Ec and Se 
attractants downregulate CheA kinase activity and repellants upregulate activity [107], but in 

organisms such as Bs the opposite signaling logic is used, i.e. attractants activate CheA. To 

compensate for this switch, CheY-P causes counterclockwise, rather than clockwise, 

flagellar rotation in Bs [108]. Bioinformatics analyses reveal that the Ec and Se chemotaxis 

systems belong to the same evolutionary class (F7), whereas those from Bs and Tm belong 

to a different class (F1) [38]. Receptor sequences from these organisms also indicate that Ec/

Se fall into one signaling class, whereas Bs/Tm also fall into a different signaling domain 

classes (36H and 44H, respectively, where “#H” stands for the number of helical heptads 

within the cytoplasmic signaling domain) [68]. Therefore, the signaling logic used by the 

chemotaxis systems appears to correlate with the evolutionary class of the chemotaxis 

proteins [109].

Both Bs and Se also contain the CheV protein, which was first identified as a component of 

the adaptation system in Bs [110–112]. CheV is a homolog of CheW but also contains a 

CheY-like response regulator domain that CheA phosphorylates [111, 113]. Bioinformatics 

analyses indicate that CheV co-evolved with certain classes of MCPs and interacts 

preferentially with them. It has been suggested that CheV either substitutes for CheW in the 

arrays or perhaps only interacts with itself in CheV-only rings [114]. The mechanism 

through which CheV acts is unclear, but it has been suggested that the response-regulator 

domain may serve as a sink to buffer phosphate transfer to CheY [114, 115]. Interestingly, 

Helicobactor pylori contains three CheV proteins, one of which is critical for chemotaxis 

[116, 117].

4.2 Nonstandard arrays in Vibrio cholerae

Although the general arrangement of the chemotaxis machinery in the arrays is conserved 

across several bacterial phyla [29, 96, 97, 118], the proteins involved in these systems and 

their general mechanisms are variable [119]. Bioinformatics analyses of bacterial genomes 

reveals that there are nineteen different chemotaxis classes but only two of these classes have 

been studied extensively—class F1 (Bs and Tm) and F7 (Ec and Se) [119]. Research with 

less commonly used bacterial models has revealed variations in array composition and 

structure. For example, cryo-ET of arrays from Vibrio cholerae show that the abundance of 

CheA is much lower compared to Ec in the supramolecular assembly and cooperativity may 

therefore play an even greater role in signal transduction in this organism [120]. 

Furthermore, one class of array in V. cholerae is purely cytoplasmic and is stabilized by an 

unusual chemoreceptor with a doubled signaling domain [121].

4.3 Spirochetes

Many spirochetes possess variants of chemotaxis proteins that have yet to be fully 

characterized. For example, the pathogens Borrelia burgdorferi (Bb) and Treponema 
denticola (Td) both contain atypical CheA and CheW proteins [122–124]. CheA from these 

organisms have longer linkers connecting the P1–P2 and P2–P3 domains. While the function 

of the increased linkers is unknown, the connection length between P1 and the kinase core 
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influences CheA activity and the effective concentration of P1 in the vicinity of the P4 

domain [37] (Fig. 3). Therefore, it is possible the linker lengths modulate CheA in a manner 

relevant to function. Furthermore, Td and Bb CheA also have additional residues between 

the two conserved helices of the P3 domain. Secondary structure prediction suggests that 

these residues form additional helices, and thus may allow an extension of the P3 domain 

toward the top of the array. An increased length in the P3 domain could provide additional 

stability to the CheA dimer or supply a direct interaction with adjacent receptors. Bb 
contains three CheW paralogs. Of these an atypical CheW contains a C-terminal domain 

with homology to some CheR proteins [122, 123]. Deletion of the CheR-like domain in Bb 
does not impair chemotaxis under standard laboratory conditions, and thus the function of 

the domain remains unclear [125].This unusual CheW/CheR-like fusion protein is also 

present as the sole CheW in Td, but the importance of the CheR-like domain on chemotaxis 

has yet to be explored [123].

4.4 Rhodobacter sphaeroides

Rhodobacter sphaeroides (Rs) contains transmembrane chemosensory arrays for the 

detection of external attractant and repellant concentrations and cytoplasmic chemosensory 

arrays for monitoring the metabolic state of the cell [126]. Rs possesses three homologs of 

CheA that vary in length, cellular localization, and interacting response regulators [127]. 

The Rs CheA2 protein contains the typical five domains of the kinase and associates with 

transmembrane arrays. However, this organism also encodes the two proteins, CheA3 and 

CheA4 that localize to cytoplasmic arrays and only contain the P1P5 and P3P4P5 domains, 

respectively [126]. Neither protein can autophosphorylate on its own. Instead, CheA4 

phosphorylates the P1 of CheA3 [128]. As a photosynthetic organism Rs is metabolically 

diverse. The complexity of its chemotaxis system likely reflects integration from both 

external and internal signals that together allow the cell to assess the energy status of its 

environment [127].

5. How then is CheA regulated by chemoreceptors?

5.1 CheA activation

Central to the chemotaxis response is the large change in activity that the CheA kinase 

undergoes in response to receptor stimulation. Early work demonstrated that Ec CheA 

operates at three general levels of autophosphorylation: a “closed” state in its free form, an 

“open” or “on” state when complexed with chemoreceptors and a “sequestered” or “off” 

state when the receptors were bound to chemoattractants [129, 130]. The receptor-inhibited 

or off state was designated as “sequestered” because, unlike the open state, the sequestered 

state cannot exchange phosphate with ATP or ADP [129]. Moreover, although sequestered 

CheA can be dephosphorylated by CheY, further autophosphorylation is blocked [129]. The 

progression of studies on CheA autophosphorylation illustrate the challenges of 

reconstituted systems when key features of assembly state are yet to be understood. Initial 

work with isolated Ec membranes showed a roughly 300-fold increase of activation between 

the closed (free) and open (receptor-bound state) for CheY-P production, but only a minimal 

change in CheA autophosphorylation rates [130]. Subsequent studies on purified and 

reconstituted systems with receptors in isolated membranes or liposomes revealed a roughly 
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10-fold increase in CheA autophosphorylation in the open form [129, 131, 132]; albeit these 

were likely underestimates owing to the challenges associated with reforming the then 

unknown chemosensory arrays. Experiments with recombinant receptor fragments produced 

much larger increases in CheA autophosphorylation, with activation levels seen in excess of 

300-fold [133–136]. Considerable biochemical data and cryo-ET imaging have indicated 

that changes in CheA activity do not result from association or disassociation of components 

within the complexes and that the integrity of the arrays do not change with signaling state 

[25, 102, 137–140]. Indeed, engineered disulfide cross-linking and targeted protein 

modification suggest that relatively subtle changes in CheA conformation are involved in its 

activation and regulation by receptors [58, 64, 65, 101, 141, 142]. These conformational 

changes may involve domain motions within CheA. Specific residues in linkers that connect 

P4 to both P3 and P5 are critical for signal propagation through the kinase [143–145]. 

Residue substitutions in the P3–P4 linker decrease basal kinase activity and also receptor-

mediated activation to some extent [143, 145], whereas those in the P4–P5 linker can both 

decrease and increase kinase activity but consistently hamper receptor activation [144, 145]. 

Interestingly, residue substitutions in the P4–P5 linker that impair receptor coupling also 

affect CheA activity even in the absence of the P5 domain [145]. Thus, the receptors may 

modulate kinase activity by controlling the positioning or catalytic efficiency of the P4 

domain via the P3–P3 and P4–P5 linker conformations. Indeed, alterations to the P4–P5 

linker directly influence the structure and dynamics of the ATP binding site [143].

5.2 In vivo FRET assays to measure chemotaxis gain

Two advances in assaying kinase activity have been critical for delineating key aspects of 

CheA regulation. The first was the development of an in vivo FRET assay by Sourjik and 

Berg that allows kinase activity to be monitored directly in Ec cells upon stimulation with 

attractant [146–148]. This assay, designed to monitor the interaction between the CheA 

product CheY-P and its phosphatase CheZ, has been employed to investigate cooperativity in 

the chemotaxis response and provide a quantitative measure of the so-called chemotaxis gain 

[74], which relates the change in fractional kinase activity to the change in receptor:ligand 

occupancy [12, 14] (Fig. 1). Sourjik and Berg revealed that ~35-fold gain derives from the 

receptor response [12] and modeled this gain in terms of a Monod-Wyman-Changeux 

(MWC) model of allostery [14]. The MWC model has subsequently undergone modification 

and refinement by several groups to account for receptor modification state, stimulation by 

different ligands, and physical details of the receptor-kinase array architecture [149–151] 

(and reviewed in [152]). Parkinson and coworkers have further exploited the in vivo FRET 

assay to study the effects of extensive residue substitutions on the core components of the 

receptor arrays [67, 95, 153]. Array cooperativity depends on receptor composition and to 

some degree modification state (i.e. which and how many glutamate residues are 

methylated) [12, 14, 20, 154], although strains with only one type of homogeneous receptor 

that have either uniform high or low methylation states can both exhibit cooperative 

responses [14, 154, 155]. Importantly, higher order interactions within the P5-CheW layer 

underlie cooperativty [66, 67]. In particular, the so-called interface 2 contacts between 

CheW and P5 subdomain 2 link core particles both structurally and functionally (Fig. 4B) 

[64–67]. Genetic experiments confirm that disruption of interface 2 produces arrays with 

aberrant organization and diminished cooperativity [65, 66]. These specific lesions were 
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further investigated to demonstrate that the coupling of core complexes through CheW:P5 

interactions increases the sensitivity of the array to chemoattractants and maintains 

appropriate adaptational responses [67]. These results, particularly the lower ligand response 

thresholds for the interface 2 mutants, indicate that interface 2 may be weakened in the 

kinase-off state; interestingly, targeted disulflide cross-linking experiments suggest that the 

same may be true for interface 1 [141] (Fig. 6A). These studies show that minor 

conformational changes can have pronounced effects on activity and response without 

substantial disruption of the array structure or destabilization of the core components. 

Nonetheless, the strength of interactions within the CheW/P5 rings likely depends on 

signaling state. Early mutational work and genetic suppressor studies pointed to functionally 

key contacts between the receptor and CheW [156–158]. In fact, contacts between the 

receptor and CheW appear to dominate signal conveyance to the kinase over contacts 

between receptor and the P5 domain, despite these interactions being pseudosymmetric [27, 

153]. In addition, in vivo crosslinking experiments identified two contacts between CheW 

and the Tsr receptor that are increased in the presence of a chemoattractant, thereby 

demonstrating that receptor conformational changes alter interactions with CheW to perhaps 

distribute signals across the molecular lattice [142].

5.3 Kinetic considerations of autophosphorylation

In the second advance, nanodisc technology has quantified kinetic parameters for CheA in 

controlled and defined assembly states [16, 17, 30–32]. Nanodisc complexes with CheA 

truncated to its core components (domains P3P4P5) have been used to phosphorylate a free 

P1 domain and thereby allow for P1 steady-state turnover to be studied directly, instead of 

through the accumulation of CheY-P [48]. Basal kinase activity kcat values for free P1 are 

similar to those characterized previously for full-length CheA coupled to CheY [159]. 

However, CheA engagement by nanodisc particles greatly increases kcat for P1 

phosphorylation while only producing a modest change to the Michaelis-Menten constants 

(KM) for ATP and P1 [48]. Thus, receptors may modulate the catalytic efficiency of the 

CheA P4 domain by communication through the P5-CheW layer, and/or the P4 linkers to the 

catalytic center. These changes then effectively alter the active fraction of the kinase. 

Because the steady-state parameters reflect only active kinase, KM values for P1 and ATP 

are relatively unchanged. In both isolated membranes and in reconstituted systems with full-

length CheA, P1-P accumulates with the expected first order kinetics; however, the 

amplitude of the response drops dramatically upon receptor inhibition, which suggests that a 

large percentage of CheA cannot autophosphorylate to an appreciable degree in the off state 

[49, 129]. The ability of receptors to produce a large range of kinase activity with free P1 

implies that kinase regulation does not depend on imposing constraints on P1 through its 

attachment to the kinase core [48]. Rather, occlusion of P1 or possibly the ATP binding site 

on P4 may better embody the inactive form. Nevertheless, the off state could also involve an 

inhibitory binding site for P1 that interferes with the productive site and does not depend on 

covalent attachment of P1. Kinetic modeling of extensive rate data from nanodiscs and 

membranes further indicates that receptors activate CheA by regulating both phosphoryl 

transfer from ATP (which could include both P1 binding and the catalysis step) as well as 

ATP binding [160]. Remarkably, receptors appear to alter the kinetic barriers between key 
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steps in the reaction without changing the free energy differences between states [160]. A 

P1/P4 occlusion mechanism would be consistent with such behavior.

5.4 Structural implications for CheA down-regulation

From identifying the unusual assemblies of chemoreceptors [26, 97, 161, 162], through 

providing details on component arrangements [27, 28, 98], to suggesting mechanisms of 

regulation [25, 102, 163], the impact of cryo-ET on our understanding of chemosensory 

array structure and function cannot be overstated. For example, cryo-ET of native receptor 

arrays indicates that the kinase becomes more ordered in the inhibited state [92, 102] (Fig. 

5). Reconstructions of the core complex from Ec cell membranes with a set of variant 

receptors that shift the system through a range of activity levels show more ordered density 

at the tip of the receptors as CheA inhibition increases [102]. The additional electron density 

has the shape of a “sailboat keel” joining two trimers-of-receptor dimers and is of a volume 

consistent with the binding of the P1 and P2 domains to the core P3–P4–P5 unit (Fig. 5). 

Although limitations in resolution prevent unambiguous placement of the P1, P2 and P4 

domains, keel density was lost when arrays were produced with truncated CheA proteins 

lacking P1 and P2 (Fig. 5). In support of an ordered kinase in the inhibited state, CheA is 

also more resistant to proteolytic digestion when inhibited [102].

CheA heterodimers that contain only one P1 domain have higher autophosphorylation 

activity than full-length symmetric dimers, suggesting that the P1 domains may interfere 

with each other [37, 164]. Furthermore, P1 domains can be cross-linked to each other [37] 

and P1 contributes to CheA dimer stability (by presumably providing inter-subunit contacts, 

perhaps in the form of P1–P1 interactions) [165]. Thus, despite assuming a broad 

distribution of states [33], the P1 domains may not always be widely separated, even in the 

free kinase. Indeed, recent spin-labeling studies provide evidence for organization of the P1 

and P2 domains by their linkers [166]. The P4 domains may also participate in functionally 

important contacts with other array components. Several different modeling studies with 

crystals structures, tomogram density and MD simulations position the P4 ATP-lid of P4 

next to the P5-CheW layer [37, 98]. In addition, α10 of P5 was found to partially block the 

ATP pocket in one subunit of the original CheA P3–P4–P5 dimer structure [59, 62]. Such 

interactions may provide means for the P5-CheW rings to affect the P4 catalytic center [37] 

(Fig. 4D, 6). Movement of P4 away from the P5:CheW layer would then allow P1 to access 

ATP in the P4 pocket (Fig. 6). Such a P4 dipping motion was observed in large-scale 

molecular dynamics simulations in combination with high-resolution cryo-ET 

reconstructions of in vitro assembled arrays [98]. If the inhibited state of CheA involves a 

constrained conformation that blocks access of P1 and perhaps ATP to the kinase active 

center, specific mutations would be expected to destabilize key domain interfaces and 

increase the active fraction of kinase. However, few residue substitutions have been found to 

activate CheA, and those that do generally have modest effects. Of these, several mutations 

have intriguing mechanistic implications given that they alleviate the non-productive binding 

site for P1 on P4 [47], affect positions far removed from the P4 active center [167] or reside 

on the P4–P5 linker [145]. Interestingly, a monomeric P4 domain phosphorylates P1 very 

poorly, but this activity substantially increases when P3 dimerizes P4 [37, 133]. Thus, either 

high kinase activity requires two P4 domains or P3 is needed to provide a structural interface 
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for one P4 domain and its flanking linkers. Furthermore, high negative cooperativity of ATP 

binding in T. maritima CheA [168] implies that the two kinase domains influence each other 

in some manner, despite the two ATP binding sites being far apart in most models [27, 28, 

37, 98]. Finally, experiments with isolated core complexes reconstituted into nanodiscs 

demonstrate allosteric coupling between CheA subunits in the active dimer [17]. Thus, 

changes in P4 juxtaposition may be a consequence of receptor regulation.

6. Conclusions

The CheA kinase should be thought of as an integrated system of protein modules that 

assumes a fully functional state when networked with receptors and CheW. In the absence of 

the other core components, Ec CheA does not attain high levels of autophosphorylation 

activity. Array incorporation imparts the kinase-on state and enables regulation of that state 

by chemoattractant. However, the conformational changes that tune CheA activity within the 

arrays are relatively subtle (Fig. 6). Structural alterations within the P5-CheW layer induced 

by signals primarily through the receptor:CheW interface may be transmitted to P4 through 

its flanking P5 linker. P3 may also repack in response to a conformational change in the 

receptors and convey signals to P4 through the P3 linker. Indeed, the entire lattice may 

reorganize in a highly cooperative manner. It is likely that the P1, P2 and P4 domains are 

less mobile and more closely associated at the base of the P5-CheW layer when the kinase is 

less active (Fig. 6). Occlusion of both ATP and P1 from the P4 catalytic center, through 

either interaction of P4 with P5-CheW, or its symmetric subunit, may embody the essential 

feature of the aptly named sequestered state (Fig. 6). That said, the low activity of free Ec 
CheA must be reconciled with the ability of ATP and ADP to exchange in this state and the 

ability of P1 to access the P4 active center. Thus, array incorporation is likely doing more to 

the catalytic machinery than simply controlling binding of substrates to the ATP binding 

pocket. In the end, the next advance in understanding CheA regulation may come from 

determining structures of the kinase in array assemblies of defined activity at relatively high 

resolution – a formidable task, but not one out of reach.
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Highlights

• The histidine kinase CheA is five-domain dimeric enzyme that is central to 

the signal transduction pathway that underlies bacterial chemotaxis.

• Transmembrane chemoreceptors assemble with CheA and the coupling 

protein CheW to form extended molecular arrays that allow for integration of 

signals and cooperative responses.

• In recent years, cellular activity assays, nanodisc reconstitution and in vivo 
cryo-electron tomography have revealed much new information regarding 

how receptors regulate CheA activity.

• Plausible models for CheA regulation involve domain sequestration and 

release mechanisms as well as direct modulation of the kinase active site by 

conformational switching of structural elements.

• Whereas studies of the E. coli chemotaxis system have defined the 

fundamental principles of array architecture and CheA regulation, other 

bacterial species display interesting variations of array composition and 

function.

Muok et al. Page 23

Biochim Biophys Acta Biomembr. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The bacterial chemotaxis system of E. coli. Attractants and repellents stimulate 

transmembrane chemoreceptors that function in a trimer-of-dimers. Binding of ligands to the 

extracellular domain elicits a conformational change in the receptor that is propagated 

through the HAMP to the intracellular protein interaction region (PIR) where the receptor 

directly interacts with the adaptor protein CheW (yellow) and the dimeric histidine kinase 

CheA (green, purple, orange). CheA has five domains (P1–P5) and once activated by 

receptors, the P4 kinase domain (orange) will trans phosphorylate the P1 substrate domain. 

CheA binds the response regulator CheY through the P2 domain (purple) and activates 

CheY by phospho-transfer. Phospho-CheY interacts directly with the flagellar motor at the 

Muok et al. Page 24

Biochim Biophys Acta Biomembr. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C-ring to induce clockwise rotation of the flagella and cell tumbling. The concentration of 

phospho-CheY is modulated by the phosphatase CheZ. CheA also phosphorylates the 

methyl-esterase CheB, which removes methyl groups on glutamate residues located at the 

receptor adaptation region. The SAM-dependent methyltransferase CheR adds methyl 

groups to glutamate residues to reactivate receptors inhibited by attractant.
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Fig 2. 
The chemosensory arrays. (A) Schematic of the bacterial chemotaxis transmembrane array 

viewed from the membrane. CheA P5 (blue) and CheW (green) interact to form hexagonal 

rings that are linked together by dimerization of the CheA P3 domain (dark blue). One CheA 

dimer is shown in the dashed circle. The rings are anchored to the membrane and further 

stabilized by direct interaction with chemoreceptors (grey), which form a trimer-of-dimer 

oligomeric state. Within the trimer-of-dimer module, the subunits of the receptor dimer 

either interact with an adjacent receptor subunit within the trimer or with P5/CheW. In areas 

of the lattice where there is no CheA P5 domain, CheW assembles into all-CheW rings. (B) 

ECT of Ec in vivo arrays show trimer-of-receptor dimers; crystal structures of chemotaxis 

protein fragments are fit into the electron density [27].
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Fig 3. 
Crystal structures of Tm CheA domains. (A) Crystal structures of CheA fragments P1 (PDB 

ID: 1TQG), P2 (PDB ID: 1U0S), and P3P4P5 (PDB ID: 1B3Q) arranged to represent a full-

length kinase. Dashed lines denote flexible linkers between the P1/P2 and P2/P3 domains 

with undetermined structure. (B) The P1 structure (PDB ID:1TQG) consists of helices A-D. 

Residues D93, M94 and R97 (red) participate in non-product interactions with P4. Residues 

near the H45 substrate residue (green) mediate productive interactions with P4. E67 (cyan) 

activates H45 for phosphorylation.
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Fig. 4. 
The core complex and key interactions of the chemosensory array. (A) Model of the P4 

kinase domain (grey) bound to the P1 substrate domain (purple) [37]. The ATP lid (orange) 

shown in an open configuration may mediate interactions among nucleotide and substrate. 

(B) Crystal structures of P5 bound to CheW (PDB ID:3UR1) reveals conserved hydrophobic 

interfaces (1 and 2) that form hexagonal rings that are apparent in vivo [35]. (C) View from 

the membrane of a core complex composed of one CheA dimer, 2 CheW molecules and two 

receptor trimmers of dimers. Chemoreceptors interact with both CheA P5 and CheW at the 

junction between two β-barrels. (D) Side view of (C). The P4 domain resides below the 

P5:CheW ring and is relatively mobile [27]. P4 may move in the different activation states of 

CheA and perhaps interact with the P5-CheW layer to modulate access of substrates to the 

nucleotide-binding site. P1 and P2 are not shown.
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Fig. 5. 
Electron density maps of the Ec chemotaxis core complex in a kinase-off state generated by 

ECT [102]. Increased density that resembles a ‘keel’ resides below the receptor tips in a full-

length kinase (grey) but is no longer present when the arrays are generated from a CheA 

variant that does not contain the P1 and P2 domains (teal).
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Fig. 6. 
A hypothetical cartoon model for regulation of the CheA kinase. Two trimers-of-receptor 

dimers (magenta) are shown bound to an extended core complex of one CheA, 2 CheWs 

proteins, plus additional CheW and P5 domains that extend the array through interface 2. 

CheA P3 resides between the receptors. For detailed molecular interactions, see Fig. 4. (A) 

In the kinase-off state, interactions within the P5-CheW layer are relatively weakened and 

encourage greater interactions of P4 within the core complexes, causing either occlusion of 

the ATP pocket (orange) or interference with ATP binding determinants, such as the ATP-

lid. P1 and P2 also associate with P3 and P4 in the sequestered conformation with P1 

forming self-interactions or docking to an inhibitory site on P4 (arrows and dashed linker 

indicate alternative P1 docking sites). (B) In the kinase-on state, conformational signals from 

the receptor are transmitted through the receptor:CheW interface and perhaps the 

P3:receptor interface to alter the P5-CheW layer and increase interactions within both 

interface 1 and interface 2. Effects on the P3–P4 and P4–P5 linkers release the P4 domain, 

increase mobility of P1 and P2, and expose the ATP binding pocket and/or release of the lid 

(orange) to facilitate ATP binding (blue diamond) and P1 trans autophosphorylation (red 

circle).
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