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Abstract. We investigate equivalent-neighbor percolation models in two dimensions with a
variable interaction range, and include the mean-field limit. We employ a Monte Carlo algorithm
whose efficiency depends only weakly on the number of equivalent neighbors within the range
of the interactions. We consider 2 classes of models, one in which the interacting neighbors fill
a circle, and one in which they fill a square. We first determine the critical points, and then
determine the critical exponents. These are, for all finite ranges investigated, in agreement with
the exactly known exponents of the nearest-neighbor model.

1. Introduction

It is well known that the scaling properties of models with long-range interactions reveal some
aspects that are absent in short-range models, in particular the violation of hyperscaling. These
aspects were analyzed in detail by Knops et al. [1] for the Ising model, using position-space
renormalization. They found that these models can still be described by the renormalization
theory, by use of the mechanism of dangerous irrelevant variables, i.e., singular dependence of
the scaling function on these irrelevant fields.

In this work we place the percolation model in the wider context of the q-state Potts [2] model,
for which a general theoretical context is available, as well as numerical results for q = 2, 3 and
4. The crossover between the mean-field (MF) Ising model (q = 2) and the short-range Ising
model was numerically investigated by Luijten et al. [3]. It was found that, in two dimensions,
all equivalent-neighbor Ising models with a finite range belong to the short-range universality
class. Only the limit of infinitely many neighbors is mean-field-like. This result fits well with
the principle that the universal properties of a phase transition are typically independent on the
microscopic details of the Hamiltonian. Nevertheless, there are instances of models disobeying
this principle. For instance, a seemingly innocent increase of the range of interactions to

√
5

times the nearest-neighbor distance turns the critical transition of the two-dimensional, 4-state
Potts model into a discontinuous one [4]. Also the phase transition of the three-state Potts
model becomes discontinuous for a sufficiently long range. The critical and first-order ranges
are separated by a tricritical point located near the model with 80 equivalent neighbors [4].

These existing results for the q = 2 (Ising), and the q = 3 and 4 Potts models still have to be
supplemented with a numerical analysis for the q → 1 limit of the random-cluster model, i.e.,
the percolation model. In the present work, we investigate the role of the range of interactions
in the two-dimensional percolation model. More specifically we consider equivalent-neighbor
models, in which each site equally interacts with a local environment, i.e., a set of neighbors
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filling a region around that site. We distinguish two cases of such local environments: first, we
define the type-1 models, with local interactions between a site and all neighboring sites within
a circle of radius r; and second, we define type-2 models with interactions including all neigh-
boring sites within a 2r × 2r square. More precisely, in type-1 models a site i with coordinates
xi, yi couples to all sites j satisfying

√
(xi − xj)2 + (yi − yj)2 ≤ r, and in type-2 models to all

sites j simultaneously satisfying |xi − xj | ≤ r and |yi − yj| ≤ r.

We formulate this percolation problem using the language of the q-state Potts model and
the equivalent random-cluster model [5]. The Potts variables sk can, for all sites k assume the
values 1,2,. . . , q. The Potts Hamiltonian is

H = −K
∑

<i,j>

δ(si, sj)−H

N∑
k=1

δ(sk, 1) , (1)

where the sum on < i, j > is as defined above for cases 1 or 2. We restrict ourselves to the
ferromagnetic case K > 0. The Kasteleyn-Fortuin mapping [5] involves the definition of bond
variables with values bij = 0 or 1 between all site pairs i, j fitting within the interaction range
r. In the absence of the external field H, summation of the Potts partition sum on the Potts
variables then leads to the random-cluster partition sum

ZRC =
∑
G

(eK − 1)NbqNc , (2)

where the graph G is the set of bond variables with bij = 1, Nb is the sum over all bij , and Nc

the number of percolating clusters formed by the graph G. The connection with the percolation
problem is obtained by setting q = 1 and dividing out a factor e−KNe where Ne is the total
number of bond variables:

Zperc = e−KNeZRC

∑
G

pNb(1− p)Ne−NbqNc , (3)

with p = 1− e−K . This sum is trivial for q = 1, but it may serve as the generating function of
percolation configurations. Differentiation to q at q = 1 leads to the expectation value of the
number of clusters Nc. The relation between the Potts magnetic properties and the cluster-size
distribution of the percolation model also requires the q → 1 limit [6] of the random-cluster
model.

The physics of the medium-range percolation model was recently investigated by Ouyang et
al. [7], using a Monte Carlo method, and subsequent analysis of the Binder [8] ratio and the
wrapping probabilities. The present work includes several new models, and, in addition explores
the scaling behavior of the wrapping probabilities as defined by Scullard and Jacobsen [9]. These
wrapping probabilities display very favorable scaling properties for planar lattices. Furthermore,
it has been shown [10] that non-planar bonds introduce only rather weak corrections to scaling.
Therefore, it seems worthwhile to analyze the Scullard-Jacobsen wrapping probabilities in the
present non-planar medium-range models.

2. Computational aspects

2.1. Simulation method

All simulations were performed on square lattices with periodic boundary conditions. The Monte
Carlo generation of bond percolation configurations involves the placing of bond variables with
probability p. This can be done by computing a uniformly distributed random number X, for
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instance in the range 0 < X ≤ 1, and placing a bond if X < p. Typical values of p are p ≈ 1/z.
For models with a large number z of interacting neighbors, for instance z = 4016, one thus
would typically have to compute thousands of random numbers before a bond can be placed. A
more efficient approach is to analytically compute the probability P (j) = (1 − p)j−1p that the
jth interacting neighbor is the first one to be connected by the bond selection process [11]. The
cumulative distribution of the first selected neighbor is then

C(k) =

k∑
j=1

P (k) = 1− (1− p)k (4)

The number k can thus be obtained from X by the condition

C(k − 1) ≤ X ≤ C(k) , (5)

which requires a number of operations of order 1 instead of z.

2.2. Sampled quantities

After completion of the random process of defining the bond variables bij , the graph G is
decomposed in disconnected clusters. For each graph G thus generated, we sampled the density
cl of the largest cluster, the sum

∑
i c

2
i of the squared cluster densities, and

∑
i c4

i of the fourth
powers. The cluster decomposition allows the sampling of magnetic quantities in the random-
cluster model. In the Ising case q = 2, the expectation values of the second and fourth moments
of the magnetization density satisfies

〈m2〉 = 〈
∑

i

c2
i 〉 , 〈m4〉 =

〈
3

(∑
i

c2
i

)2

− 2
∑

i

c4
i

〉
, (6)

and thus the Binder ratio of an L × L system, at a distance t to the critical point, can be
expressed as

Q(t, L) = 〈m2〉2/〈m4〉 = 〈
∑

i

c2
i 〉2/

〈
3

(∑
i

c2
i

)2

− 2
∑

i

c4
i

〉
. (7)

This definition can also be used for q �= 2 Potts and random-cluster models, including the
percolation model. In the scaling limit, it converges to a q-dependent universal constant. For
the percolation case q = 1 its value has been numerically determined as Q = 0.87057(1) [7].

For each bond percolation configuration, we test whether there exists closed loops wrapping
around the torus defined by the periodic boundary conditions. We thus sample three wrapping
probabilities Rb, Re and R1. R1 is the probability that there is a cluster connection to itself
spanning the x direction but not the y direction. Rb is the probability that the configuration
percolates in the x and the y direction. This includes the case of percolation in a diagonal
direction. Re is the probability that the configuration wraps at least once around the torus in
any direction. The universal values of these quantities are exactly known in the scaling limit as
Rb = 0.351642855, Re = 0.690473725 and R1 = 0.169415435 [14].

Scullard and Jacobsen [9] used instead wrapping probabilities R0 (no wrapping) and R2

(wrapping in two independent directions) which are dual in self-dual lattices, so that the
difference Rd ≡ R2 − R0 vanishes at the critical point. For non-self-dual planar lattices, Rd

still displays rapid finite-size convergence to zero at the critical point [9].
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Figure 1. Typical critical configuration of the largest cluster in a 480×480 percolation model
of type 1 with z = 4 (r = 1) interacting neighbors.

2.3. Finite-size scaling

According to finite-size scaling, the Binder ratio behaves as

Q(t, L) = Q +
∞∑

j=1

qjt
jLjy

t + biL
yi + bl ln(L)Lyi + b3L

d−2yh + b4L
yt−2yh + · · · (8)

which may serve as a basis for least-squares fits to the Monte Carlo results for Q. To this
purpose, we compute a set of Q(t, L) data for a number of finite sizes L near the critical point.
The fit may yield estimates of the critical point (t 
 Kc −K), Q and yt. It is helpful that the
critical exponents are exactly known [12, 13]. Somewhat better results for the critical point may
be obtained from similar fits to the results for the wrapping probabilities, because the terms
with exponents d− 2yh and yt− 2yh are absent, and the universal wrapping probabilities in the
scaling limit are exactly known.

3. Results

3.1. Remarks on the nature of percolation configurations

Typical configurations of the largest cluster for lattices with size 480× 480 are shown in figures
1, 2, 3 and 4, for type-1 systems with z = 4, 60, 4016, and the mean-field limit respectively.
These figures illustrate the crossover between the uniformly distributed clusters of the mean-
field model and the more sharply defined clusters of the short-range model. The density of the
largest cluster decreases considerably with increasing range of interactions.
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Figure 2. Typical critical configuration of the largest cluster in a 480×480 percolation model
of type 1 with z = 60 (r = 4.3) interacting neighbors.

Figure 3. Typical critical configuration of the largest cluster in a 480×480 percolation model
of type 1 with z = 4016 (r = 35.8) interacting neighbors.
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Figure 4. Typical critical configuration of the largest cluster in a 480×480 percolation model
on the complete graph, i.e., the mean-field limit r →∞.

3.2. Numerical analysis of the type-1 models

The procedure used to determine the critical points, and its results for type-1 models were
described in Ref. [7]. That work also determined the critical exponents and other universal
quantities, and reported that all investigated models with finite z belong to the short-range
percolation universality class. In this work, we extend the series of finite-range models with
several additional values of the coordination number z, making use of the wrapping probability
Rd defined in section 1. The results are listed in table 1.

Table 1. Results for the percolation threshold zpc of type-1 models with several coordination
numbers z. Statistical uncertainties in the last decimal place given are shown between
parentheses.

z r zpc

148 7 1.234 704(2)
708 15 1.102 812(3)

1652 23 1.066 297(7)
3000 31 1.048 803(8)
4016 35.8 1.042 043(5)
6920 47 1.031 871(16)

12452 63 1.023 640(20)
50616 127 1.011 655(20)
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Figure 5. Percolation threshold pc(z) versus 1/
√

z for type-1 models. The dashed line
represents a straight line with slope 2.608, representing the first term in a fit according to
zpc − 1 = a1z

−1/2 + a2z
−1 + a3z

−3/2. The magenta curve includes all these terms.

The new data for zpc allow a more sensitive test of its linearity as a function of z−1/2 in
comparison with Ref. [7]. We plot these critical points in figure 5 accordingly. No deviation
from linearity is observable in the neighborhood of the MF point.

As a more quantitative test, we fitted the data by the expression

zpc − 1 ≈ (a1 + a2z
−1/2 + a3z

−1)(z−1/2)1/φ (9)

which did adequately describe the data for z ≥ 224, and yielded 1/φ = 1.002(2).

3.3. Numerical analysis of the type-2 models

Table 2. Results for the percolation threshold zpc of type-2 models with several coordination
numbers z. Statistical uncertainties in the last decimal place given are shown between
parentheses.

z r zpc

120 5 1.257 695(7)
224 7 1.184 443(5)
960 15 1.085 839(5)

2208 23 1.055 830(10)
3968 31 1.041 349(7)
9024 47 1.027 217(15)

16128 63 1.020 270(15)
65024 127 1.010 050(30)

Like for the type-1 models, the critical exponents appear to be in accurate agreement with
the short-range values for all z investigated. In figure 6, the critical points of the type-2 model
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Figure 6. Critical points zpc for type-2 equivalent-neighbor percolation models in two
dimensions, and illustration of the location of the fixed points. The stable fixed point is set
at the critical point pc = 2 sin(π/18) for the triangular-lattice bond percolation model. These
results are analogous to those for type-1 models as given in Ref. [7].
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Figure 7. Percolation threshold pc(z) versus 1/
√

z for type-2 models.. The dashed line
represents a straight line with slope 2.547, representing the first term in a fit according to
zpc − 1 = a1z

−1/2 + a2z
−1 + a3z

−3/2. The magenta curve includes all these terms.

zpc are shown as a function of 1/
√

z. Again, the critical points near the MF point in this figure
lie approximately on a straight line. An enlarged picture is shown in figure 7. We have also
fitted the type-2 critical points on the basis of Eq. (9), which yielded, after truncation, the same
result 1/φ = 1.002(2) as for the type-1 models.

Finally, we have constructed a data collapse of the Binder ratio Q versus L results at the
critical points of the type-2 models, using a z-dependent rescaling of L. These data, together
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Figure 8. Q(pc, L) vs. rescaled size Lr for z < ∞. The rescaling factor b(z) in Lr = b(z)L is
determined such as to collapse the finite-z data with z > 8 in this figure. The figure includes data
for the complete graph (CG), using the inverse finite size 1/LCG as the finite-size parameter.
Dashed lines in the figure indicate the limiting values of Q for L → ∞. These are 0.87057 for
short-range models, and 0.38126 for the MF limit.

with finite- size results for the complete graph, cover the entire range of Q between the MF
and 2D short-range fixed points. The procedure is entirely similar to that for the type-1 models
analyzed in Ref. [7]. The results are also similar, but the overlap with the finite-size regime of
the MF limit, while accidental and dependent on the rescaling procedure, is much larger because
of the larger coordination numbers used in the present work. These results are shown in figure
8 and clearly demonstrate the crossover from the MF to the short-range behavior.

4. Conclusion

The “square” type-2 models closely follow the crossover behavior between the mean-field limit
and the short-range fixed point as already found for the “almost circular” type-1 models. We
confirm, with much improved accuracy, that the crossover exponent φ at the mean-field fixed
point is equal to 1, corresponding with an exponent yr = 2/3 describing the scaling of the inverse
range parameter z−1/2 at the MF fixed point [20]. We find that for the non-planar cases (z ≥ 8),
finite-size corrections in the wrapping probability Rd are, although not absent, still so small
that Rd appears to be a useful quantity to determine critical points of non-planar models on
the basis of Monte Carlo simulations and finite-size scaling.
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