
The merits of Universal Language Model Fine-tuning for Small Datasets –
a case with Dutch book reviews

Benjamin van der Burgh
Leiden Institute of Advanced Computer Science

Leiden University

b.van.der.burgh@liacs.leidenuniv.nl

Suzan Verberne
Leiden Institute of Advanced Computer Science

Leiden University

s.verberne@liacs.leidenuniv.nl

Abstract

We evaluated the effectiveness of using lan-
guage models, that were pre-trained in one do-
main, as the basis for a classification model
in another domain: Dutch book reviews. Pre-
trained language models have opened up new
possibilities for classification tasks with lim-
ited labelled data, because representation can
be learned in an unsupervised fashion. In
our experiments we have studied the effects of
training set size (100–1600 items) on the pre-
diction accuracy of a ULMFiT classifier, based
on a language models that we pre-trained on
the Dutch Wikipedia. We also compared
ULMFiT to Support Vector Machines, which
is traditionally considered suitable for small
collections. We found that ULMFiT outper-
forms SVM for all training set sizes and that
satisfactory results (~90%) can be achieved us-
ing training sets that can be manually anno-
tated within a few hours. We deliver both our
new benchmark collection of Dutch book re-
views for sentiment classification as well as
the pre-trained Dutch language model to the
community.

1 Introduction

Typically, results for supervised learning increase
with larger training set sizes. However, many real-
world text classification tasks rely on relatively
small data, especially for applications in specific
domains. Often, a large, unlabelled text collec-
tion is available to use, but labelled examples re-
quire human annotation. This is expensive and
time-consuming. Since deep and complex neural
architectures often require a large amount of la-
beled data, it has been difficult to significantly beat
the traditional models – such as Support Vector
Machines – with neural models (Adhikari et al.,
2019).

In 2018, a breakthrough was reached with the
use of pre-trained neural language models and

transfer learning (Howard and Ruder, 2018; Peters
et al., 2018; Devlin et al., 2018; Liu et al., 2019).
Transfer learning no longer requires models to be
trained from scratch but allows researchers and de-
velopers to reuse features from models that were
trained on different, much larger text collections
(e.g. Wikipedia). For this pre-training, no ex-
plicit labels are needed; instead, the models are
trained to perform straightforward language mod-
elling tasks, i.e. predicting words in the text.

Even though the models are trained on these
seemingly trivial predictive tasks, transfer learn-
ing with these models is highly effective: the pre-
trained language models can be fine-tuned to per-
form classification tasks with a relatively small
amount of labelled task-specific data. Thus, pre-
trained language models can alleviate the small la-
belled data size for domain-specific data sets.

In their 2018 paper, Howard and Ruder show
the success of transfer learning with Universal
Language Model Fine-tuning (ULMFiT) for six
text classification tasks. They also demonstrate
that the model has a relatively small loss in accu-
racy when reducing the number of training exam-
ples to as few as 100 (Howard and Ruder, 2018).

In this paper we further address the use of
ULMFiT for small training set sizes. We consider
the case of data from a new domain, where we
have a large amount of unlabelled data, but lim-
ited labelled data. Given the vast number of net-
work parameters and the limited number of train-
ing instances (100 to 1600), we expect to quickly
overfit on the training data if all parameters are
optimized using the small labelled data, often re-
ferred to as catastrophic forgetting. Alternatively,
we ‘freeze’ the parameters of the language model,
which means that we fix all network parameters
except for the parameters of the final layer. In do-
ing so, we limit the ability of the model to adapt
to the target domain, but in return avoid the prob-

ar
X

iv
:1

91
0.

00
89

6v
1 

 [
cs

.I
R

] 
 2

 O
ct

 2
01

9
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388641876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


lem of catastrophic forgetting, since the language
model parameters are untouched.

In this paper, we evaluate ULMFiT with a pre-
trained language model and fixed hyperparameters
for the representation layers. We only tune the
drop-out multiplier and learning rate for the linear
layers.

For our experiments on Dutch texts, we cre-
ated a new data collection consisting of Dutch-
language book reviews. We fine-tune a general
pre-trained Wikipedia model on the reviews col-
lection. We then take various-sized labelled por-
tions of the book review data to (a) investigate
the effect of training set size, and (b) compare the
accuracy of ULMFiT to the accuracy of Support
Vector Machines (SVM).

The contributions of this paper compared to pre-
vious work are: (1) We deliver a new benchmark
dataset for sentiment classification in Dutch; (2)
We deliver pre-trained ULMFiT models for Dutch
language; (3) We show the merit of pre-trained
language models for small labeled datasets, com-
pared to traditional classification models.

2 Data

Data set We released the 110k Dutch Book Re-
views Dataset (110kDBRD).1 This dataset con-
tains book reviews along with associated binary
sentiment polarity labels. It is inspired by the
Large Movie Review Dataset (Maas et al., 2011)
and intended as a benchmark for sentiment classi-
fication in Dutch. We scraped 110 thousand book
reviews from the website Hebban.2 These reviews
each consist of a text and a score from 1 to 5,
which we converted to categorical labels (1 and
2: negative; 3: neutral; 4 and 5: positive).

Data split For our experiments, we split the
110k documents as follows: 20k documents are
used in the classifier training and evaluation (posi-
tive and negative classes balanced). Of those 20k,
we reserve 5k documents as a held-out test set that
cannot be consulted during training nor language
model pre-training. The remaining 15k documents
are used for training the classifier.

Data sampling for training For the experi-
ments on dataset size we use the following training

1https://benjaminvdb.github.io/
110kDBRD/, also including the scripts used to scrape
the data from the review website.

2https://www.hebban.nl

set sizes m = {100, 200, 400, 800, 1600}. Each
experiment is trained 10 times to investigate model
stability. These 10 subsamples are chosen ran-
domly out of the complete 15k training set (not
balanced). Note that the same test set is used for
all experiments to make the results directly com-
parable.

3 Language model training

3.1 General-domain language model
pre-training

In order to learn text representations we use
the AWD-LSTM language modelling architecture
originally used by ULMFiT and implemented in
the Fast.ai Python library. This library also con-
structs a supervised dataset by randomly masking
out words in a text. We use a unidirectional lan-
guage model, i.e., the target word is predicted us-
ing words that precede it. Similarly to Howard
and Ruder (2018), we have chosen Wikipedia for
language modelling, because it provides a large,
freely available corpus of high quality. Moreover,
we found that the pre-processing scripts for the
English version of Wikipedia could be re-used for
the Dutch.

We used a recent dump of Wikipedia and con-
verted it to raw text, which was then split on white
spaces into tokens. After that, we replaced all
numbers with the same placeholder token, such
that the specific value is ignored, but the fact that
a number occurred can be used in the model. The
60k most frequent tokens were included in the vo-
cabulary V and the remaining out-of-vocabulary
words were replaced with a special ‘unknown’ to-
ken. An embedding layer of size 400 was used to
learn a dense token representation, followed by 3
LSTM layers with 1150 hidden units each to form
the encoder.

This is followed by a classification module that
maps each representation to a score 0 ≤ st ≤ 1,
for each token t ∈ V where

∑
st = 1 and can

as such be interpreted as a probability distribution
over the vocabulary. We used the reference im-
plementation of ULMFiT in the Fast.ai Python li-
brary. The entire Wikipedia dataset was split into
92M tokens for training and 185k for both testing
and validating the language model. A slanted tri-
angular learning rate (Howard and Ruder, 2018)
with a learning rate of 5 ∗ 10−3 was used for 20
epochs.

https://benjaminvdb.github.io/110kDBRD/
https://benjaminvdb.github.io/110kDBRD/
https://www.hebban.nl


3.2 Target task language model fine-tuning

After training the language model on Wikipedia,
we continued training on data from our target do-
main, i.e., the 110k Dutch Book Review Dataset.
The preprocessing was done similarly to the pre-
processing on Wikipedia, but the vocabulary of the
previous step was reused. We used all data except
for a 5k holdout set (105k reviews) to fine-tune
network parameters using the same slanted trian-
gular learning rates. However, this time we first
trained the parameters of the classification module
to convert the pre-trained features into predictions
for the new target dataset. After that all network
parameters were trained for 10 epochs.

3.3 Target task classifier fine-tuning

The goal is to predict the sentiment polarity (pos-
itive or negative) given a review text. Therefore,
the training dataset is constructed such that the
dependent variable represents a sentiment polar-
ity instead of a token from the vocabulary. The
encoder of the language model is kept, such that
a dense representation can be constructed given
an input text, and the classification module is re-
placed to adjust for the new target classes.

4 Experiments

4.1 Preprocessing

We applied the default text processing imple-
mented in the Fast.ai Python library by splitting
on whitespace and padding texts within a batch to
the same length. The amount of required padding
characters was reduced by grouping texts of sim-
ilar length together, while adding some random-
ness during training to avoid showing the network
with the same batches in each epoch.

4.2 Hyperparameters

We optimized hyperparameters for each training
set size and for each fold using HpBandster.3 A
one-cycle policy, as outlined in (Smith, 2018), was
used, which requires a lower and upper bound for
the momentum, describing its adaptive curve dur-
ing a single epoch. This resulted in five optimized
hyperparameters: learning rate, momentum lower
and upper, dropout and batch size. In the objective
function, we optimized for binary cross-entropy
loss.

3https://github.com/automl/HpBandSter

4.3 Baselines
We compared our classification models to Lin-
ear Support Vector Machines (SVM) because it
is a commonly used and well performing classi-
fier for small text collections. We used the im-
plementation of LinearSVC in scikit-learn.4 Lin-
earSVC has one hyperparameter, C, which we op-
timized using HpBandster on the range of val-
ues from 10−4 to 104 with squared hinge loss as
optimization function (default for LinearSVC in
scikit-learn). For feature extraction we used the
CountVectorizer and TF-IDF transformer in scikit-
learn. TF-IDF weights were trained on the same
105k documents on which the ULMFiT model
was fine-tuned.

For comparison we also trained two models,
one SVM and one ULMFiT model, with manu-
ally tuned hyperparameters on all available book
reviews in the training set (15k). These models
achieved 93.84% (ULMFiT) and 89.16% (SVM).

5 Results

5.1 Effect of training set size
The results of the experiments described in Sec-
tion 4 can be found in Figure 1 (left). A few ob-
servations can be made from this plot. Firstly, for
the ULMFiT model, the accuracy on the test set
improves with each increase in the training dataset
size, as can be expected.

Secondly, both models behave rather unstable
for smaller training datasets, as can be seen by the
large deviation from the mean and the outliers: dif-
ferent random subsamples give deviant results for
the smaller training set sizes. Since the pre-trained
model is based on data from a different domain, it
can be expected that more than 100 instances are
needed to accommodate for the new domain.

5.2 Comparison to SVM
Figure 1 compares the prediction accuracies for
ULMFiT and SVM. We had expected the SVM
model to perform better for smaller training set
sizes, but it is outperformed by ULMFiT for each
size. Also, the ULMFiT models show smaller
deviations between random subsamples than the
SVM models.

We also found that the prediction accuracy of
the SVM model using all 15,000 training items

4https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

https://github.com/automl/HpBandSter
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html


100 200 400 800 1600
Size

0.65

0.70

0.75

0.80

0.85

0.90
Ac

cu
ra

cy
ULMFiT

100 200 400 800 1600
Size

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

SVM

Figure 1: Results for ULMFiT (a) and SVM (b) in terms of accuracy on the test set with varying training set sizes.
The boxes represent the deviation among the random subsample per training set size.

(89.16%) is surpassed by the ULMFiT model
when using only 1600 training instances: all 10
random subsamples for ULMFiT reach an accu-
racy of at least 89.54% (the left purple box in Fig-
ure 1). This could mean that the pre-trained model
captures many of the required characteristics of
Dutch such that they can be largely used without
modifications.

6 Conclusions

Pre-trained language models have opened up pos-
sibilities for classification tasks with limited la-
belled data. In our experiments we have studied
the effects of training set size on the prediction
accuracy of a ULMFiT classifier based on pre-
trained language models for Dutch. In order to
make a fair comparison, we have used state-of-the-
art optimization methods to optimize the hyperpa-
rameters of each model.

Our results confirm what had been stated in
(Howard and Ruder, 2018), but had not been veri-
fied for Dutch or in as much detail. For this partic-
ular dataset and depending on the requirements of
the model, satisfactory results might be achieved
using training sets that can be manually annotated
within a few hours.

Moreover, a large part of modeling effort lies
in the training of a language model on an – in
this case – generic corpus, which can be reused
for other domains. While the prediction accuracy
could be improved by optimizing all network pa-
rameters on a large dataset, we have shown that
training only the weights of the final layer outper-
forms our SVM models by a large margin.

ULMFiT uses a relatively simple architecture

that can be trained on moderately powerful GPUs.
This fact, combined with the general availability
of unlabeled data and the ability to share language
models, suggests that these methods could be ap-
plied in domains where manual labelling has tra-
ditionally been too expensive. Further research
should be conducted to compare how differences
between the source and target datasets affect the
prediction accuracy and whether more powerful
network architectures can also be used.

References
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Rethinking complex neural net-
work architectures for document classification. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
4046–4051, Minneapolis, Minnesota. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew Peters, and Noah A Smith. 2019. Linguis-
tic knowledge and transferability of contextual rep-
resentations. arXiv preprint arXiv:1903.08855.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of

https://doi.org/10.18653/v1/N19-1408
https://doi.org/10.18653/v1/N19-1408
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015


the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Leslie N. Smith. 2018. A disciplined approach to neu-
ral network hyper-parameters: Part 1 – learning rate,
batch size, momentum, and weight decay. CoRR,
abs/1803.09820.

http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820

