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STATISTICAL DEVELOPMENT AND APPLICATIONS

Rebutting Existing Misconceptions About Multiple Imputation as a Method for
Handling Missing Data

Joost R. van Ginkel1, Marielle Linting2, Ralph C. A. Rippe2, and Anja van der Voort2

1Department of Psychology, Methodology and Statistics, Leiden University, Leiden, The Netherlands; 2Center for Child and Family Studies,
Leiden University, Leiden, The Netherlands

ABSTRACT
Missing data is a problem that occurs frequently in many scientific areas. The most sophisticated
method for dealing with this problem is multiple imputation. Contrary to other methods, like list-
wise deletion, this method does not throw away information, and partly repairs the problem of
systematic dropout. Although from a theoretical point of view multiple imputation is considered
to be the optimal method, many applied researchers are reluctant to use it because of persistent
misconceptions about this method. Instead of providing an(other) overview of missing data meth-
ods, or extensively explaining how multiple imputation works, this article aims specifically at
rebutting these misconceptions, and provides applied researchers with practical arguments sup-
porting them in the use of multiple imputation.
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Goal and intended audience

This article addresses applied researchers within the field of
social and behavioral sciences (but possibly other fields as
well) facing the problem of missing data, who have heard of
multiple imputation as a method to deal with missing data,
but have concerns about actually using this method. These
concerns may be based on misconceptions implying that in
their specific situation multiple imputation should either not
be used at all, or only with much caution. This article col-
lects several of those misconceptions, and provides grounded
rebuttal—through theory and practical argumentation—to
ultimately support researchers in their deliberations regard-
ing their statistical analyses when faced with missing data.

Missing data

Missing data are a common problem in psychological
research and many other scientific areas (see studies by Van
Ginkel, Sijtsma, Van der Ark, & Vermunt, 2010, in the field
of psychology; Eekhout, de Boer, De Vet, & Heymans, 2012,
in the field of epidemiology; and Rombach, Rivero-Arias,
Gray, Jenkinson, & Burke, 2016, in the field of quality of life
research). Once confronted with missing data the question is
how they can be handled. The easiest way is to use listwise
deletion, which excludes all respondents with missing data
from the statistical analyses. In several statistical software
packages, such as SPSS 25.0 (SPSS, Inc., 2017), the most
widely applied analyses use listwise deletion by default.

Although easy to apply, listwise deletion has two import-
ant disadvantages. The first problem is wastefulness: It dis-
cards valuable information, which consequently leads to a
loss of power. The second disadvantage is more serious:
Results of statistical analyses may be biased. Whether or not
results will be biased after listwise deletion is dependent on
the underlying mechanism that caused the missing data, also
known as the missingness mechanism. Three different miss-
ingness mechanisms can be distinguished (e.g., Little &
Rubin, 2002; Van Buuren, 2012), which are discussed next.

Missingness mechanisms

The three different missingness mechanisms as defined by
Little and Rubin (2002, p. 10) and Rubin (1976) are missing
completely at random (MCAR), missing at random (MAR),
and not missing at random (NMAR). MCAR means that the
probability of a missing value neither depends on any
observed data, nor unobserved data. An example of MCAR
is a respondent accidentally skipping a question. Under
MCAR, cases with missing data are a simple random sub-
sample from all cases in the data. Consequently, when a
simple random subsample is removed from the total sample,
the resulting leftover sample is still as representative of the
population as the original sample was. In short, under
MCAR, listwise deletion reduces the sample size and by the
latter, power, but does not give any biased results.

CONTACT Joost R. van Ginkel jginkel@fsw.leidenuniv.nl Department of Psychology, Methodology and Statistics, Faculty of Social and Behavioral Sciences,
Leiden University, PO Box 9555, 2300 RB Leiden, The Netherlands.
This article was accepted under the editorship of Steven K. Huprich.
� 2019 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.
0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

JOURNAL OF PERSONALITY ASSESSMENT
https://doi.org/10.1080/00223891.2018.1530680

http://crossmark.crossref.org/dialog/?doi=10.1080/00223891.2018.1530680&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1080/00223891.2018.1530680
http://www.tandfonline.com


Under MAR, missing data depend on observed data but
not on unobserved data. For example, suppose that females
skip a question about income more frequently than males,
and gender is observed for all respondents. The missing data
on income are thus MAR. If listwise deletion is applied
under MAR, the leftover sample may not be representative
of the total population anymore, consequently leading to
biased results. In the preceding example, females are under-
represented in the leftover sample. As a result, statistical
inferences from analyses that include gender or variables
that are related to gender may be biased.

Finally, under NMAR, the probability of missingness
depends on data that are not observed. If, for example,
respondents with higher incomes are more inclined to skip
a question about income compared to those with low
incomes, the missing data on income are NMAR. In general,
under NMAR, listwise deletion has the same problem as it
has under MAR, because there are systematic differences
between the deleted cases and the cases that are left
(respondents with systematically higher incomes in the pre-
ceding example). However, under MAR the causes of this
systematic dropout can be traced, whereas under NMAR
they cannot. Only in very specific and rare cases of NMAR
(Van Buuren, 2012, p. 48; see also Vach, 1994; White &
Carlin, 2010) does listwise deletion give unbiased results of
statistical analyses. For a more formal explanation of miss-
ingness mechanisms, see Van Buuren (2012) and Little and
Rubin (2002).

It is important to realize that the term missing at random
does not mean that the missing data are a simple random
subsample of all the data points. That scenario is MCAR.
Under MAR, missing data may be more frequent in some
subgroups in the data than in others, but information defin-
ing the subgroups is observed for all respondents (gender in
the example). However, because of its name, MAR may eas-
ily be misinterpreted as what would technically be MCAR
(see, e.g., Baraldi & Enders, 2010, p. 7; Schafer & Graham,
2002, p. 152).

Testing which of the three missingness mechanisms apply
Several statistical tests can be used to test the MCAR
assumption. First, suppose that we have a group of respond-
ents with observed values on a variable X and another group
with missing values on this variable X. Using a t test or a
chi-square test it can be tested whether these two groups
differ significantly in means or frequency distribution on
another variable Y. Such t and chi-square tests can be per-
formed for all variable pairs. Additionally, Little (1988) pro-
vided an overall test that can test the assumption of MCAR
for the whole data set at once.

When one of these tests is significant, the MCAR
assumption may have been violated. However, significance
of these tests does not say anything about whether the miss-
ingness is MAR or NMAR. Moreover, when none of the
tests are significant, it does not automatically mean that the
missingness is MCAR, either. Although unlikely, theoretic-
ally it is possible that the missing values are completely ran-
domly scattered across the data, but that they would still

have systematically lower or higher values than the observed
data if they had been observed. Because under NMAR the
missing data depend on unobserved information, there is,
by definition, no way of knowing whether they are NMAR,
unless information about the population is available to the
researcher. The only thing these statistical tests tell us is that
when significant, the null hypothesis of the missing data
being randomly scattered across the data has been rejected.
Assuming, for the sake of argument, that no Type I error
has been made, this rejection implies either MAR or
NMAR. When nonsignificant, the null hypothesis of the
missing data being randomly scattered has not been rejected.
Assuming that no Type II error has been made here, this
excludes missingness mechanism MAR but not necessarily
NMAR, as NMAR is unverifiable without additional infor-
mation about the population.

Because listwise deletion is very wasteful and could lead
to bias in statistical analyses under MAR and NMAR, alter-
native methods to deal with missing data are necessary. In
the next section, a number of alternatives are discussed.

Alternatives to listwise deletion

Pairwise deletion
One way to resolve the wastefulness of listwise deletion is to
use pairwise deletion. For analyses that use a covariance
matrix or correlation matrix as input for the computations
(e.g., a principal component analysis [PCA] or a regression
analysis), pairwise deletion computes each covariance or cor-
relation from the cases with observed values on both varia-
bles for which the specific covariance or correlation is
computed. Consequently, each covariance or correlation can
be computed for different cases and different numbers of
cases. The same can be done for other statistics, such as
variable means, where for each variable the mean can be
computed across a different number of cases.

Although pairwise deletion is less wasteful than listwise
deletion, its applicability is limited to analyses that can work
around the missing values by using a variable-by-variable
basis. To illustrate, the commonly used statistical package
SPSS 25.0 only has a pairwise deletion option for correlation
procedures (e.g., correlations, partial correlations), linear
regression, descriptive statistics procedures, PCA and its
related techniques (e.g., principal axis factoring, maximum
likelihood), and K-means clustering. Additionally, like listwise
deletion, pairwise deletion may give bias in statistical analyses
when the missing data are not MCAR. Furthermore, as each
covariance or correlation could be based on a different num-
ber of cases, it is not clear what sample size to use when calcu-
lating standard errors. Finally, the fact that different cases are
used for each covariance or correlation may also cause com-
putational problems, such as negative variances or correla-
tions outside the range of [–1, 1] (Van Buuren, 2012, pp.
9–10). In short, pairwise deletion only resolves the problem of
wastefulness that listwise deletion has, but comes with several
additional problems, so we would generally not recom-
mend it.
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Imputation
Another way to remedy the wastefulness of listwise deletion
is to fill in plausible values for the missing data. This is also
known as imputation. Examples of imputation are variable
mean imputation (filling in the variable mean for each miss-
ing value) or regression imputation (filling in the predicted
values from a regression model with other variables as pre-
dictors). Although these methods solve the wastefulness
from listwise deletion and computational problems from
pairwise deletion, they create another problem: Filling in
variable means will bias the variances and covariances
downward, and predicted values from a regression model
will bias variances downward and covariances upward.
Consequently, subsequent statistical analyses will be biased
as well.

Rather than filling in predicted values of a regression
model or the variable mean for a missing value, one could
also impute a predicted value from a regression model plus
a random error term, drawn from a normal distribution
with a variance that equals the error variance of the specific
regression model. This is also known as stochastic regression
imputation (e.g., Little & Schenker, 1995, p. 60; Van Buuren,
2012, p. 13). Stochastic regression imputation resolves the
problem of biased variances and covariances. However, in
the subsequent statistical analyses the imputed values are
treated as if they are real values. Consequently, more cer-
tainty about the imputed values is assumed in the analyses
than there actually is, which will bias both p values and
widths of confidence intervals downward.

In short, simple imputation methods resolve the problem
of wastefulness but they introduce additional bias in statis-
tical analyses, regardless of the missingness mechanism.
Thus, despite its wastefulness, listwise (and pairwise) dele-
tion will still give the most guarantee of obtaining unbiased
results in statistical analyses of all the methods discussed
so far.

Multiple imputation

A method that resolves all of the previously mentioned
problems (wastefulness, computational problems, biased
[co]variances, and biased p values and confidence inter-
vals), is multiple imputation (Rubin 1987). Multiple imput-
ation works in three steps. In the first step, several
plausible complete versions of the incomplete data sets are
created. This is done by drawing several values for each
missing data point, using a statistical model that accur-
ately describes the data, plus a random error component.
In the second step, the different complete versions of the
incomplete data set are analyzed using standard statistical
procedures. This will consequently result in multiple
(slightly) different outcomes of the statistical analyses. In
the final step, these results are combined into an overall
statistical analysis in which the uncertainty about the
missing data is incorporated in the standard errors and
significance tests.

Considering its advantages compared to listwise deletion,
pairwise deletion, and (single) imputation methods, one

would expect that since its invention (Rubin, 1987) research-
ers would have started using multiple imputation frequently.
However, Rombach et al. (2016), Eekhout et al. (2012), and
Van Ginkel et al. (2010) found that listwise deletion was by
far the most frequently used method for dealing with miss-
ing data in the studies that report the presence of missing
data. Multiple imputation was either rarely used (Eekhout
et. al., 2012; Rombach et al., 2016) or not used at all (Van
Ginkel et al., 2010). Although the most recent of these stud-
ies (Rombach et al., 2016) reported an increase in multiple
imputation compared to the earlier studies, the size of this
increase does not suggest that multiple imputation will be
the most frequently used method any time soon.

These findings raise the question of why multiple imput-
ation is used so rarely. Although to our knowledge there is
no research that investigates this question, we can think of
three possible explanations. The first two explanations are
unfamiliarity and user-unfriendliness (see, e.g., Baraldi &
Enders, 2010, who addressed the issue of user-unfriendli-
ness). For decades, multiple imputation was not imple-
mented in SPSS, the most frequently used statistical software
package among social scientists. Consequently, people were
dependent on less well-known or less user-friendly software
packages like NORM (Schafer, 1998), S-plus for Windows
(2001), or the procedure PROC MI in SAS (Yuan, 2000),
which may have posed too high a threshold for many
researchers to start applying multiple imputation.

However, with the release of SPSS version 17.0 (PASW at
the time; SPSS, Inc., 2009) multiple imputation became
available for SPSS users as well. It is therefore our prediction
that in time the unfamiliarity will diminish or even dis-
appear. On the other hand, the procedure in SPSS lacks
some important options that are available in less user-
friendly software, such as the mice procedure (Van
Buuren & Groothuis-Oudshoorn, 2011) in R (R
Development Core Team, 2013), the mi procedure in Stata
14.0 (StataCorp, 2015), and the PROC MI procedure (Yuan,
2011) in SAS 9.4 (SAS Institute, 2013). Thus, to solve more
complex missing-data problems, users will still need more
complex software.

The third possible explanation for why multiple imput-
ation is still rarely used nowadays is a heterogeneous set
of misunderstandings of the procedure, which may cause
researchers to distrust it. As statistical advisors to applied
researchers we have heard many misconceptions about
multiple imputation expressed by both colleagues and
reviewers throughout the years. This article focuses on the
most common of these misconceptions, because this gen-
eral distrust in multiple imputation will not simply dis-
appear by making the procedure more user-friendly and
more widely available. For people to start accepting mul-
tiple imputation as a reliable method for handling missing
data, it has to be explained why there is no reason to
distrust it.

In the next section the method of multiple imputation is
explained in more detail. In the sections that follow the
most frequently heard misconceptions about multiple imput-
ation held by applied researchers are rebutted. In the
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conclusion, it is argued that from a theoretical point of
view, multiple imputation is practically always to be pre-
ferred over listwise deletion. As an aside it should be noted
that apart from listwise deletion, pairwise deletion, single
imputation, and multiple imputation, various other methods
for handling missing data exist. These methods are briefly
commented on in the discussion.

Multiple imputation explained

In general there are two main approaches for generating
multiply imputed data sets, namely the joint modeling
approach (Schafer, 1997; Van Buuren, 2012, pp. 105–108)
and the fully conditional specification approach (Van
Buuren, 2012, pp. 116–118; Van Buuren, Brand, Groothuis-
Oudshoorn, & Rubin, 2006). Within the fully conditional
specification approach one can further make a distinction
between the regression approach and predictive mean
matching. Because the joint modeling approach is not used
frequently nowadays, the focus is on the two varieties of
fully conditional specification.

Regression

The regression approach imputes missing data as random
draws from a conditional distribution based on a linear
regression model when variables are continuous, or a (multi-
nomial) logistic regression model when variables are cat-
egorical. The algorithm works as follows:

1. Starting values based on the variables’ marginal distri-
butions are filled in for the missing data on each vari-
able (for details, see Van Buuren et al., 2006).

2. For a variable X with missing values the parameters of
the (logistic) regression model for predicting its missing
values are calculated.

3. The current estimates of the missing data on variable X
are replaced with new random values using the (logis-
tic) regression model with the model parameters calcu-
lated in Step 2.

4. Steps 2 and 3 are carried out for all variables with miss-
ing data.

5. Step 4 is repeated until properties of the imputed values
such as means and standard deviations, stabilize.

6. Finally, to obtain M multiply imputed data sets, Step 5
is repeated M times.

More technical explanations of fully conditional specifica-
tion are described in Van Buuren (2012), Van Buuren et al.
(2006), and Van Buuren, Boshuizen, and Knook (1999).

Predictive mean matching

Like the regression approach, predictive mean matching
(PMM; Rubin, 1986; Van Buuren, 2012, pp. 68–74; Van
Buuren, Boshuizen, and Knook, 1999; Van Buuren et al.,
2006) uses a linear regression model to impute continuous
missing data, and a (multinomial) logistic regression model

for categorical variables. However, for continuous variables
the imputed values in Step 3 are not random draws from
the conditional distribution based on the regression model.
Instead, the regression model is used to find cases with
observed values on the outcome variable with predicted val-
ues that closely resemble the predicted values of the
respondents with missing values. For each person with a
missing value on a particular variable, a matching respond-
ent is (randomly) selected and the observed value of this
matching respondent is used for imputation. For categorical
variables, PMM works in the same way as the regres-
sion approach.

One advantage of this approach over the regression
approach is that it imputes values that are actually observed
for other respondents, so that values outside the range of
the data cannot occur. A second advantage is that it is more
robust to violations of normality than the regression
approach (Marshall, Altman, & Holder, 2010; Marshall,
Altman, Royston, & Holder, 2010). Both the regression
approach and PMM are implemented in SPSS 25.0 (SPSS
Inc., 2017), the mice package in R (Van Buuren &
Groothuis-Oudshoorn, 2011), Stata 14.0 (StataCorp, 2015),
and in SAS 12.1 in the procedure PROC MI (Yuan, 2011).

Misconceptions about multiple imputation

Van Buuren (2012) argued that multiple imputation is a bet-
ter alternative than both listwise deletion and single imput-
ation, and gave an overview of many simulation studies that
confirm this. However, misconceptions about the method
may stand in the way of its frequent application. Next, we
describe and rebut the most common of these
misconceptions.

1. Multiple imputation should only be used when the
missingness is MAR.

2. Multiple imputation should only be used when too few
cases are left after listwise deletion.

3. If results from statistical analyses obtained from mul-
tiple imputation differ from those of listwise deletion,
the results of multiple imputation must be wrong.

4. Outcome variables must not be imputed.
5. Predictor variables must not be imputed.
6. Multiple imputation must not be used because you will

end up with several different outcomes of your statis-
tical analysis.

It should be noted that this selection of misconceptions
has been solely based on our own experience as statistical
advisors. When applied researchers have misconceptions
about multiple imputation, they will simply refrain from its
use, without further mentioning any rationale for their deci-
sion. Explicit references to misconceptions are therefore not
expected to occur in the literature, as supported by finding
zero hits in an extensive literature search. We have, how-
ever, been able to find literature from authors with a statis-
tical background that expresses similar experiences with
applied researchers as ours (Schafer & Graham, 2002).
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Furthermore, we have found references (e.g., Von Hippel,
2008) that do not express a misconception but that could
easily be misinterpreted by researchers, causing misconcep-
tions to form or persist. This literature is discussed in more
detail in the rebuttals of the misconceptions, which fol-
low next.

Multiple imputation should only be used when the
missingness is missing at random

The misconception
It is our experience that researchers often refrain from using
multiple imputation because statistical tests indicated that
the MAR assumption had been violated. Similarly, we have
had experiences with reviewers criticizing the use of multiple
imputation because it had not been checked whether the
assumption of MAR was met.

Rebutting the misconception
Under which missingness mechanisms does multiple
imputation work? MCAR. Like listwise deletion, multiple
imputation will give unbiased results under MCAR. Multiple
imputation under MCAR imputes the data such that proper-
ties like means and covariances of the observed cases are
simply extrapolated to cases with missing data.
Consequently, the cases with multiply imputed data have
similar properties as the cases with complete data. An
advantage of multiple imputation over listwise deletion in
the case of MCAR, however, is that multiple imputation
does not throw away information, whereas listwise deletion
does. Although the problem of throwing away information
could be reduced by using pairwise deletion rather than list-
wise deletion, using pairwise deletion comes with other
problems, as mentioned earlier.

MAR. Another advantage of multiple imputation over
listwise deletion, apart from not throwing away useful infor-
mation, is that it is capable of correcting the bias that list-
wise deletion suffers from when the missing data are MAR.
Consider the example where females tend to leave a ques-
tion measuring someone’s income open more often than
males. If in the imputation model gender is used as a
(dummy) predictor for the imputation of income, then the
dependence of the missingness on gender is incorporated in
the imputed values for income. In short, when used prop-
erly, multiple imputation will give valid results of statistical
analyses under both MCAR and MAR.

NMAR. Because multiple imputation only uses observed
information from other variables to predict the missing data
on a specific variable, it will only give unbiased results as
long as the missingness can be explained completely from
the observed variables. When missingness depends on infor-
mation that is not observed, as is the case in NMAR,
unbiased results are no longer guaranteed.

However, under NMAR, listwise deletion will yield biased
results as well (Baraldi & Enders, 2010, pp. 8, 21), except in
the cases described by White and Carlin (2010) and by
Vach (1994), where listwise deletion may outperform

multiple imputation. Because these exceptions are very spe-
cific cases that may occur only incidentally in practice, we
do not further address these exceptions in the remainder of
the discussion.

Given that listwise deletion gives biased results under
NMAR as well, a violation of MAR in itself is no reason to
prefer listwise deletion over multiple imputation. Moreover,
Schafer (1997, pp. 26–27) argued and showed that even
under NMAR, multiple imputation gives less biased results
than listwise deletion. There are two reasons for this. First,
contrary to listwise deletion, multiple imputation still picks
up dependencies of the missing data on observed informa-
tion, so that at least dependencies of the missingness on
observed variables are accounted for. Second, as far as miss-
ing data depend on unobserved information, these depend-
encies can partly be accounted for by relations with
observed variables that may also be related to the unob-
served variables on which the missingness depends. This
implies that the more variables are included in the imput-
ation model, the less residual dependence of the missingness
on unobserved variables or information remains.1 In short,
although multiple imputation is not guaranteed to produce
unbiased results under NMAR, the MAR assumption
becomes more plausible as more observed variables are
included in the imputation model (Schafer, 1997, p. 28).2

Preferring multiple imputation over listwise deletion is not
dependent on the acting missingness mechanism. When
researchers or reviewers say that an assumption of multiple
imputation is that the missing data are MAR, they are only
partly right. It is not true that multiple imputation works
under MAR only. MAR is the least restrictive assumption
under which multiple imputation works. Because it works
under MAR, it also works under the more restrictive
assumption MCAR.

Furthermore, researchers and reviewers are wrong when
they say that the use of multiple imputation is unjustified
when statistical tests testing the MCAR assumption are sig-
nificant. As pointed out earlier, these procedures test the
null hypothesis that the missing data are randomly scattered
across the data set, which could indicate MCAR. When sig-
nificant, the missing data are thus probably not MCAR but
they could still be MAR. As MCAR is a sufficient but not
necessary condition for multiple imputation, a significant t
test, chi-square test, or MCAR test does not automatically
invalidate multiple imputation. What it does invalidate is
listwise deletion, as MCAR is a necessary assumption of list-
wise deletion. In other words, an MCAR test should be used

1Note that, as in any regression model, the number of predictors in multiple
imputation models should not be too large compared to the sample size to
avoid overfitting.
2It should be noted that methods for modeling NMAR have been proposed as
well (e.g., Fay, 1986; Galimard, Chevret, Protopopescu, & Resche-Rigon, 2016;
Heckman, 1976; Moustaki & Knott, 2000). Schafer (1997, p. 28) however, noted
that such models require more parameters than can be estimated from the
data alone, so to make them identifiable, restrictions must be imposed on the
parameters. Furthermore, the current implementation in software packages of
such NMAR models is limited.
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for determining whether it is safe to use listwise deletion,
not for determining whether multiple imputation is justified.

In short, neither the outcome of the statistical tests for
testing MCAR, nor the actual underlying missingness mech-
anism are relevant for deciding whether or not to use mul-
tiple imputation. The reason many researchers use listwise
deletion instead of multiple imputation when some of the
tests for testing MCAR are significant is probably that they
are not aware that MCAR and MAR are two different con-
cepts. When they read or hear that MAR is a necessary
assumption for multiple imputation, they think that a sig-
nificant MCAR test invalidates the use of multiple imput-
ation. Next, they use listwise deletion because they may
think that doing nothing at all about the missing data han-
dling is still better than doing something incorrect.

To conclude, regardless of the missingness mechanism,
multiple imputation is always to be preferred over listwise
deletion. Under MCAR it is preferred because it results in
more statistical power, under MAR it is preferred because
besides more power it will give unbiased results whereas list-
wise deletion may not, and under NMAR it is also the pre-
ferred method because it will give less biased results than
listwise deletion. See also Baraldi and Enders (2010, p. 8).

Multiple imputation should only be used when too few
cases are left after listwise deletion

The misconception
In our experience, applied researchers often turn to multiple
imputation only after attempted analyses using listwise dele-
tion failed because there were too few cases left for any use-
ful statistical analysis. This suggests that these researchers
think that multiple imputation should only be used if list-
wise deletion is infeasible.

Rebutting the misconception
Missing data are not only a problem of power reduction.
Under both MAR and NMAR, the dropout that results from
listwise deletion will be systematic. Consequently, results of
statistical analyses could be biased if incomplete cases are
dropped from the statistical analysis. Multiple imputation on
the other hand, will completely eliminate this bias under
MAR, and partly eliminate it under NMAR. Again, the con-
clusion is that multiple imputation is to be preferred over
listwise deletion, even when after listwise deletion enough
cases are left for statistical analysis.

If results from statistical analyses obtained from
multiple imputation differ from those of listwise
deletion, the results of multiple imputation must
be wrong

The misconception
This misconception especially applies when the results
obtained from listwise deletion are in accordance with the
expectations of the researcher and the results obtained from
multiple imputation are not. In our experience, applied

researchers are inclined to unjustly distrust the results from
multiple imputation when they are not in accordance with
their own expectations or with the results from listwise dele-
tion, and rely on listwise deletion instead.

Rebutting the misconception
We start with a very obvious point: As multiple imputation
has been developed to solve problems involved in listwise
deletion, the conclusions obtained from these methods can-
not always be the same. When conclusions obtained from
multiple imputation differ from those obtained from listwise
deletion, this is not necessarily caused by things that go
wrong in multiple imputation, and even when it is, this is
still no reason to automatically turn to listwise deletion
instead. As already pointed out, results from listwise deletion
suffer from a loss of power, but more important, they may
be biased under MAR and NMAR. When carried out cor-
rectly, multiple imputation results in more power than list-
wise deletion, it completely corrects for bias under MAR,
and partly corrects for bias under NMAR. This increase in
power and correction for bias could explain possible differ-
ences in results between multiple imputation and list-
wise deletion.

However, results obtained from multiple imputation and
listwise deletion could also differ as a result of incorrectly
applying multiple imputation. Van Buuren (2012, pp.
250–251) provided a number of dos and don’ts in multiple
imputation. When these guidelines are not followed, the
procedure could easily impute nonsensical values and conse-
quently, results of statistical analyses cannot be trusted.

The question is what should be done when the results
obtained from listwise deletion and from multiple imput-
ation differ. First, it is important to check the imputed val-
ues for anomalies. For example, check whether there are
imputed values far beyond the minimum and maximum
observed values of the variables, and check whether the
imputed values follow substantially different patterns in scat-
ter plots or histograms than the observed values do. If such
anomalies occur, the imputation model should be adjusted
(rather than putting multiple imputation aside as a whole).
For example, for a specific variable with missing data, use
more or fewer variables in the imputation model, include
interaction or nonlinear (e.g., quadratic) terms, or, if you
have not already done so, use PMM rather than the regres-
sion approach. It should be noted that this adjustment of
the imputation model can be a complicated process, and
help from a statistician may be needed. Furthermore, it
should be noted that when following Van Buuren’s guide-
lines the risk of diverging results due to anomalies in the
imputed values is largely reduced, as these guidelines include
checking the imputed values prior to carrying out any statis-
tical analysis.

Second, when there are no anomalies in the imputed val-
ues, the next step is to check the MCAR assumption in the
original sample without imputed data. If Little’s MCAR test
and some of the t or chi-square tests for testing MCAR are
significant, the MCAR assumption may have been violated.
This violation of MCAR could explain the differences in
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results between listwise deletion and multiple imputation, and
the results obtained from listwise deletion should be mis-
trusted, not the results obtained from multiple imputation.

Outcome variables must not be imputed

The misconception
Some of the applied researchers that we have advised to use
multiple imputation have agreed on using this procedure,
but were reluctant to impute the outcome variable or varia-
bles of their intended statistical analyses. When discussing
their reasons, they would reply that if an outcome variable
were imputed using predictors that were used as predictors
in the subsequent analysis as well, the imputed values would
only confirm the model that they wanted to use for
their analysis.

Rebutting the misconception
If a linear regression model is used to analyze the data, and
the relations of the predictors with the outcome variable are
all linear, there is nothing to be incorrectly confirmed,
because the imputation model (which in its standard form is
based on linear regression), the model used for analysis, and
the model that generated the data are the same.
Consequently, this misconception only applies when the
researcher has opted to use a linear regression model on
data in which (some of) the predictors have a nonlinear
relationship with the outcome variable. In rebutting this
misconception, we thus focus on a bivariate situation where
predictor X is nonlinearly related to outcome variable Y.

In Figure 1, a number of graphs are shown of simulated
data with a nonlinear relationship between X and Y. Figure
1A shows a scatter plot of simulated bivariate data according
to a nonlinear regression model where outcome variable Y is
quadratically related to X. Figure 1B shows the same simulated
data but with 40% of the values of Y removed according to
MCAR (corresponding cases are not shown in the plot).

Now suppose we incorrectly assume that X and Y are lin-
early related and that therefore we want to use a linear
regression model of X on Y for both multiple imputation
and the analysis. This situation is shown in Figure 1C. In
Figure 1C you see that the observed data (black dots) behave
according to a quadratic relationship, but that the imputed
values (white dots) show a linear relationship. Will this con-
firm the statistical model of interest (i.e., a linear regression
of X on Y) any more than when the outcome variable is not
imputed? The answer is no. When incorrectly assuming a
linear model in both the imputation model and in the ana-
lysis, you will reach biased conclusions about the relation
between X and Y, not because of multiple imputation, but
because a linear relation between X and Y is assumed.
When a linear relation between X and Y is assumed in both
the imputation process and in the statistical analysis, the
multiply imputed values will not bias the regression coeffi-
cient of X on Y and its standard error any more than not
imputing would do. The imputed values are in accordance
with the incorrectly assumed linear regression coefficient

that one would get when Y is not imputed, so they will give
a similar (biased) regression coefficient and a similar
(biased) standard error. The imputed values may not be in
accordance with the nonlinear patterns in the data, but in a
subsequent linear regression analysis of X on Y they will
behave neutrally.

One may argue that still the incorrect regression model
will be confirmed more quickly than when the outcome
variable is not imputed, because of increased power. In
other words, an incorrect model is estimated with more cer-
tainty. Technically speaking, someone who puts forward this
argument is right. However, the same reasoning could be
used for preferring a small sample size over a large sample
size in general (regardless of possible presence of missing
data). In practice, data never behave exactly according to the
statistical model that you use for analysis and yet large sam-
ple sizes are preferred over small sample sizes all the time.
In the end researchers always prefer more certainty of a not
entirely correct analysis model over less certainty. The actual
problem here is that there is a discrepancy between the
model that is assumed for the data and the way the data
actually behave in the population. Whether you assume this
incorrect model from the beginning of the process (the mul-
tiple-imputation phase), at the end (the statistical analysis
phase), or whether you assume it when there are no missing
data at all is irrelevant.

Additionally, one should keep in mind that the given
situation is rather an example of bad research practice. In
practice, a researcher should first check the scatter plot of X
and Y before carrying out any multiple imputation or linear
regression analysis. When researchers are confronted with a
plot that looks like Figure 1B, they should either include a
nonlinear term of X in the imputation model (the mice
package in R has options for this) or use PMM. As men-
tioned before, PMM uses observed data from other cases for
imputation, and keeps nonlinear relations more intact than
multiple imputation using regression. Figure 1D shows what
the imputed values (white dots) look like when the data are
imputed using PMM. The plot shows that the imputed val-
ues follow the same nonlinear pattern as the observed data
do (black dots).

Next, when the nonlinear relations among variables have
been taken into account in the imputation procedure, either
by means of using the same nonlinear term in the imput-
ation model, or by means of using PMM, the model used
for analysis should include a nonlinear (e.g., a quadratic)
term as well. In doing so there is no reason to fear that by
imputing outcome variable Y, the incorrect model will be
accepted more quickly than when there are no missing data.

Some researchers may still think that multiple imputation
of the outcome variable will confirm the model of interest
because they may think that the relationship between X and
Y for the cases with missing data on Y is different than for
the cases with observed values on Y. See, for example,
Figure 1E. This is the same graph Figure 1A, but here the
black dots are the cases with observed values on both X and
Y, and the white dots are the dots that would be removed in
Figure 1A if the cases with the 40% highest values on X had
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missing data on Y. If a missingness pattern like this occurs,
the researcher will see a plot like Figure 1E, but without the
white dots. From the remaining (black) dots the researcher
may get the impression that there is a weak linear relation
between X and Y. The regression line for this weak relation-
ship is displayed in Figure 1E as well.

When a missingness pattern like this occurs in highly
nonlinear data, a researcher may assume an incorrect statis-
tical model from the scatter plot and may both impute and
analyze the data using a linear regression model of X on Y.

Because there is only a weak and seemingly linear relation
between X and Y for the cases with no missing data on Y,
the imputation model will extrapolate the regression line
and the imputed values will indeed confirm the (incorrect)
statistical model of interest.

However, besides this hypothetical example being very
unlikely (how likely is it that all respondents above a certain
value of X have missing values on Y), this is actually an
example of NMAR. Van Buuren (2012, p. 34) argued that
an implication of MAR is that the multivariate distribution

Figure 1. Five graphs of simulated bivariate data with a nonlinear relationship. (A) Neither variables have missing data. (B) 40% of the values on Y have been ran-
domly removed. (C) White dots are imputed values using linear regression. (D) White dots are imputed values using predictive mean matching. (E) White dots are
the cases with the 40% highest values on X, and the regression line is the line that is obtained when the 40% highest values are missing and not imputed.
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of the data (X and Y in the example) given all observed data
is the same for respondents without missing data and for
respondents with missing data. For the missingness pattern
in Figure 1E this is clearly not the case because the bivariate
distribution of X and Y for the black dots is different than
for the white dots. The black dots behave like there is a
weak linear relation and the white dots behave like there is
a strong linear relation (and if you take them together the
relationship is actually quadratic).

As already argued, under NMAR neither multiple imput-
ation nor listwise deletion (which is what technically hap-
pens when in this example the outcome variable is not
imputed) are guaranteed to give unbiased results. In the spe-
cific example, both methods will incorrectly estimate a
regression line that looks similar to the line in Figure 1E,
only multiple imputation will extrapolate the regression line
to the 40% highest cases, and impute values that lie around
this regression line. In other words, in this situation all
methods for handling missing data will break down, and
multiple imputation of the outcome variable is not any
worse than no imputation.

Of course theoretically, this problem could be resolved by
using a quadratic term in the imputation model. This modi-
fication of the imputation model will cause the MAR
assumption to be met for the specific example. Also, see,
Schafer and Graham (2002, p. 153), who simulated MAR
missingness using the same mechanism (all cases with an X
above a specific threshold have missing data on Y). The dif-
ference between their example and the current one is that in
their example, the relationship was linear and could already
be derived from the observed part of the data, whereas in
this example no clear quadratic relationship is visible from
the observed part of the data alone.

Finally, there is the argument that when using multiple
imputation, the power increases so that an incorrect model is
estimated with more certainty. However, that argument does
not hold here either, for the same reason as it did not hold for
the situation of Figure 1C. In the situation of Figure 1E, the
leftover sample after listwise deletion is a biased sample (only
cases with the 60% lowest values on X are sampled). However,
in practice (regardless of missing data), it is impossible to
draw a completely unbiased sample from a population, and
yet in practice, a large (biased) sample is preferred by
researchers over a small sample all the time. Again, the actual
problem is a discrepancy between the incorrectly assumed
model for the data (here, caused by a biased sample) and the
way the data actually behave in the population.

To conclude, using multiple imputation does not confirm
an incorrectly assumed linear model any more than analyz-
ing a data set without missing values. Neither does it con-
firm a linear relationship that only applies to the observed
part of the data any more than a biased sample without
missing data does. What is important is that, regardless of
whether there are missing data, data are inspected in
advance before blindly estimating a linear regression model
on highly nonlinear data. As previously stated, when this
data inspection reveals that there are nonlinear relations in
the data, it is important that this nonlinearity is accounted

for in both the analysis (by including nonlinear terms) and
the imputation process (by including the same nonlinear
terms as in the analysis, or by means of PMM).

On a final note, Von Hippel (2008) argued that outcome
variables are to be imputed because cases on missing Y may
contain useful information for imputing X in other cases.
However, he went on arguing that in the subsequent analysis
it is better not to use the cases with imputed values on Y
because it results in slightly less efficient estimates of the
model. Although Von Hippel made a valid argument, it may
still be justified to use the cases with imputed values on Y
because first, it does not give biased results, and second, all
analyses on the same multiply imputed data sets remain
comparable with respect to sample size. Whatever decision
one makes on this, it is important to realize that Von
Hippel explicitly said that imputing the outcome variable is
justified. However, in our experience, his advice not to use
the imputed values on Y in the analyses is occasionally mis-
interpreted by researchers as not to impute the out-
come variable.

Predictor variables must not be imputed

The misconception
Besides the misconception that outcome variables must not
be imputed, a misconception held by other researchers is
that predictor variables should not be imputed. In combin-
ation with the previous misconception, this misconception is
quite remarkable because when both ideas are true, this
would imply that multiple imputation should not be used at
all, prior to doing an analysis with both an outcome and
predictor variables.

The reason that applied researchers often give for not
wanting to impute predictor variables is that conceptually it
makes no sense to predict missing data on a variable that is
a predictor itself. For example, suppose that in a data set
someone’s age is missing and that the missing value on age
is predicted from someone’s income. It is logically impos-
sible that someone’s age is (partly) influenced by some-
one’s income.

Rebutting the misconception
What researchers holding this misconception do not realize
about multiple imputation is that the model used for mul-
tiple imputation is not meant as a conceptually meaningful
model. Multiple imputation is only used to accurately
describe the relations and structures found in the data, and
impute data with similar properties. As long as a variable
correlates with another variable with missing data, it is a
potential candidate for a predictor in the imputation model.
It does not matter that we are not interested in the predic-
tion of one variable from the other in the subsequent ana-
lysis, or that this prediction is even nonsensical. All an
imputation model does is (a) determine that in general a
high age coincides with a high income, (b) when age is
missing for someone with a high income, infer that this
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person’s age must probably be high as well, and (c) conse-
quently impute a high value for age.

Multiple imputation must not be used because you will
end up with several different outcomes of your
statistical analysis

The misconception
Many applied researchers are reluctant to use multiple
imputation because they have the idea that they will end up
with several results of the same analysis, rather than one.
Because they do not know what to do with that many
results, they are inclined to pick one of these results.
However, because they do not know which result to pick,
they ultimately decide to resort to something simpler
instead, such as listwise deletion or single imputation.

Rebutting the misconception
As explained before, in the process of multiple imputation
statistical analyses are not only carried out on each of the
multiply imputed data sets; the results of these analyses are
pooled into one overall analysis as well. In multiple imput-
ation you are not supposed to pick one of the results; it is the
pooled analysis that you interpret as the final results. Figure 2
displays the SPSS output of a linear regression analysis to a
simulated data set with a predictor X and an outcome variable
Y, after multiple imputation. In this example, the number of
times the data have been imputed is five. Normally this num-
ber should be larger (Graham, Olchowski, & Gilreath, 2007),
but to keep the output small it was set to five here.

As can be seen, the SPSS output displays seven results of
the same regression analysis, indicated by either a number
ranging from 0 to 5 (Rrows 1 to 6), or by “Pooled” (last
row). The first results, indicated by 0, are the results that
are obtained when data are not imputed, results indicated
by the numbers 1 to 5 are the results obtained from the five
imputed data sets, and the results indicated by “Pooled” are
the pooled results that should be used for interpretation. In

the same way, SPSS automatically pools results of many
other statistical analyses, such as correlations and their sig-
nificance tests, two-sample t tests, and regression coefficients
and their significance tests in logistic, ordinal, and multi-
nomial logistic regression, and multilevel models (the Mixed
Models procedure in SPSS).

Unfortunately, not all statistics are pooled by SPSS.
Examples are standardized regression coefficients (as can
actually be seen in Figure 2, where a pooled beta coefficient
for X is lacking), (pseudo) R2 in (logistic) regression, F tests
in (multivariate) analysis of variance ([M]ANOVA), overall
F tests testing the significance of R2 in regression,
Likelihood-Ratio (LR) tests testing the significance of pseudo
R2 in logistic regression, and component loadings in PCA.
For some of these statistics, pooling procedures have been
proposed, for example, F tests in ANOVA (Rubin, 1987;
Van Ginkel & Kroonenberg, 2014a), F tests for R2 in regres-
sion (Rubin, 1987; Van Ginkel, in press), LR tests in logistic
regression (Rubin, 1987), and component loadings in PCA
(Van Ginkel & Kiers, 2011; Van Ginkel & Kroonenberg,
2014b). However, these are not implemented in SPSS.

Fortunately, the pooling of some of these statistics can be
done using other software packages, or additional tools in
SPSS. For example, F tests in ANOVA and regression can
be pooled using the MIANALYZE procedure in SAS 9.4
(2013), the XTMIXED procedure in Stata 14.0 (StataCorp,
2015), and an SPSS macro by Van Ginkel (2016). LR tests in
logistic regression can be pooled using the mice proced-
ure in R (Van Buuren & Groothuis-Oudshoorn, 2011). For
component loadings in PCA, the ‘shapes’ package in R
(Dryden & Mardia, 2016) may be used.

However, these procedures are less user-friendly than the
automatic pooling by SPSS. Additionally, the paper promot-
ing the SPSS macro for pooling the results of ANOVA (Van
Ginkel & Kroonenberg, 2014a) has been misquoted by many
authors, suggesting that combination rules for ANOVA are
either not available or too complicated. Van Ginkel and
Kroonenberg stated that the pooling of ANOVA results is
not available in SPSS and that therefore an SPSS macro

Imputation_ Model

Unstandardized 

Coefficients

Standardized 

Coefficients

t Sig.B Std. Error Beta

0 1 (Constant) .965 .091 10.564 .000

X .910 .074 .880 12.298 .000

1 1 (Constant) .949 .066 14.409 .000

X .960 .056 .890 17.198 .000

2 1 (Constant) 1.080 .072 14.907 .000

X .868 .061 .848 14.133 .000

3 1 (Constant) .950 .071 13.303 .000

X .972 .060 .876 16.071 .000

4 1 (Constant) .994 .064 15.509 .000

X .896 .054 .882 16.489 .000

5 1 (Constant) .929 .063 14.793 .000

X .925 .053 .891 17.366 .000

Pooled 1 (Constant) .980 .095 10.371 .000

X .924 .074 12.418 .000

Figure 2. SPSS output of a regression analysis with a single predictor (X) and an outcome variable (Y) on a multiply imputed data set. The pooled results are shown in bold.
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must be used. They admitted that the use of this macro is
quite involved, especially for repeated measures ANOVA,
and that therefore, implementation in future releases of
SPSS is desirable (p. 89). However, many authors citing this
paper state that according to Van Ginkel and Kroonenberg
(2014a) combination rules for ANOVA are not available in
SPSS, ignoring the fact that the very paper being referenced
provides a solution in the form of an SPSS macro (see Van
Ginkel & Kroonenberg, 2015, for an example). Other
authors focus on the statement that the procedure is quite
involved, using that as a reason not to use multiple imput-
ation at all. Such quotations perpetuate the misconception
that when doing multiple imputation you will end up with
several results of your statistical analysis.

Finally, for some analyses, such as MANOVA and stand-
ardized regression coefficients, combination rules have not
been developed at all, at least to our knowledge.

What should we do when combination rules are
not available?

Currently, as the multiple-imputation framework is not
complete, continued effort is required on developing and
implementing combination techniques. The question is what
to do when the MCAR assumption has been violated such
that discarding incomplete cases may result in serious bias,
or the percentage of missing data is so large that discarding
incomplete cases results in serious loss of power (or both),
and pooling methods are not readily available for the pre-
ferred analysis method. First, look for a statistical software
package that has more options for pooling results than the
one you are currently using. If necessary, support may be
provided by a statistician.

Second, one could consider using an ad hoc method for
pooling the specific statistic. For example, one could simply
pool standardized coefficients in regression by averaging the
values across multiply imputed data sets, or giving a range of
this statistic across imputed data sets. Although such ad hoc
methods may have no theoretical justification, the question is
to what extent this is harmful. Standardized regression coeffi-
cients are mainly used as measures of effect size in regression
analysis. Even without a theoretical justification, these ad hoc
solutions will still give you a rough but reasonable indication
of which variables make a large contribution to the prediction
of the outcome variable, and which variables do not. What is
essential is that when you are forced to report an ad hoc solu-
tion for pooling a statistic, you are transparent in that this
procedure is used because of a lack of a better alternative.

Conclusions

In this article a number of misconceptions about multiple
imputation that we have frequently heard from applied
researchers were discussed and rebutted. It was argued that
from a theoretical point of view, multiple imputation is
always to be preferred over listwise and pairwise deletion,
and that reasons of researchers to prefer listwise deletion are
based on misunderstandings about multiple imputation.

The remaining question is whether there are any reasons
left for not using multiple imputation after all. Yes, but
those reasons are practical ones. For example, suppose that
there are very few missing values and the statistical analysis
of interest is one for which pooled results are lacking. In
that case, the benefits of multiple imputation may not out-
weigh the costs. Furthermore, some statistical analyses
already have a built-in method for handling missing data.
Examples are item response theory (Birnbaum, 1968;
Masters, 1982; Rasch, 1960; Samejima, 1969), latent class
analysis (Goodman, 1974; Lazarsfeld, 1950a, 1950b), or
structural equation modeling (J€oreskog, 1969, 1977). All of
these statistical techniques rely on a method called full infor-
mation maximum likelihood (FIML). This method estimates
the statistical model of interest based on the observed data,
without deleting respondents with missing data. A built-in
method for dealing with missing data in PCA is missing
data passive (MDP; Takane & Oshima-Takane, 2003). This
method is available in SPSS 25.0, in the procedure CATPCA
(Meulman, Heiser, & SPSS, 2015). Although a disadvantage
of both FIML and MDP is that they can usually only handle
MAR mechanisms in which the missing data depend on var-
iables that are included in the targeted statistical model (and
ignore variables that have no part in the model), they are
still good alternatives to multiple imputation when one of
the previously mentioned statistical analyses is the analysis
of interest. However, when FIML and MDP are not possible
and you experience trouble with the multiple-imputation
process, do not resort to listwise deletion, but contact a stat-
istician first.

Finally, only the most frequently heard misconceptions
about multiple imputation have been rebutted in this article.
We do not know what other possible misconceptions may
be held by applied researchers that we have not heard about.
However, by means of this article we hope to have made
clear that in most cases, multiple imputation is to be pre-
ferred over listwise deletion and single-imputation methods,
as also argued by Van Buuren (2012, p. 48) and by Schafer
and Graham (2002).
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