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Abstract 23 

A polyphasic study was designed to establish the taxonomic status of a Streptomyces strain 24 

isolated from soil from the QinLing Mountains, Shaanxi Province, China, and found to be the 25 

source of known and new specialized metabolites. Strain MBT76T was found to have 26 

chemotaxonomic, cultural and morphological properties consistent with its classification in the 27 

genus Streptomyces. The strain formed a distinct branch in the Streptomyces 16S rRNA gene 28 

tree and was closely related to the type strains of Streptomyces hiroshimensis and 29 

Streptomyces mobaraerensis. Multi-locus sequence analyses based on five conserved house-30 

keeping gene alleles showed that strain MBT76T is closely related to the type strain of 31 

S.hiroshimensis, as was the case in analysis of a family of conserved proteins. The organism 32 

was also distinguished from S. hiroshimensis using cultural and phenotypic features. Average 33 

Nucleotide Identity and digital DNA-DNA hybridization values between the genomes of strain 34 

MBT76T and S. hiroshimensis DSM 40037T were 88.96 and 28.4+/-2.3%, respectively, which 35 

is in line with their assignment to different species. On the basis of this wealth of data it is 36 

proposed that strain MBT76T (=DSM 106196T = NCCB 100637T), be classified as a new 37 

species, Streptomyces roseifaciens sp.nov.  38 

  39 
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Strain MBT76T is an actinomycete isolated from a soil sample taken from the QinLing 40 

mountains in China. Many actinobacteria isolated from this niche turned out to be rich sources 41 

of bioactive compounds effective against multi-drug resistant bacterial pathogens [1]. Based 42 

on its genome sequence, MBT76 was positioned within the genus Streptomyces [2]. 43 

Streptomyces sp. MBT76T is a gifted strain that produces various novel antibiotics and 44 

siderophores [2-5], its genome contains at least 44 biosynthetic gene clusters (BGCs) for 45 

specialized metabolites as identified by antiSMASH [6]. ]The importance of validly naming 46 

novel industrially important streptomycetes is often overlooked despite improvements in the 47 

classification of the genus Streptomyces [7-9] and adherence to the rules embodied in the 48 

International Code of Nomenclature of Prokaryotes [10].  49 

Actinobacteria are Gram-positive often filamentous bacteria that are a major source of 50 

bioactive natural products [11, 12]. The genus Streptomyces, the type genus of the family 51 

Streptomycetacae within the actinobacteria [13], encompasses over 700 species with valid 52 

names (http://www.bacterio.net/streptomyces.html), many of which have been assigned to 53 

multi- and single-membered clades in Streptomyces 16S rRNA gene trees [7, 9]. Despite being 54 

the largest genus in the domain Bacteria, a steady stream of new Streptomyces species are 55 

being proposed based on combinations of genotypic and phenotypic features [14, 15]. It is 56 

particularly interesting that multi-locus sequence analyses (MLSA) of conserved house-57 

keeping genes are providing much sharper resolution of relationships between closely related 58 

Streptomyces species than corresponding 16S rRNA gene sequence studies [8, 16]. Labeda 59 

and his colleagues observed correlations between certain morphological traits of 60 

streptomycetes and phylogenetic relationships based on MLSA data, as exemplified by the 61 

clustering of whorl-forming (verticillate) species (formerly Streptoverticillium) into a single well 62 

supported clade. Similarly, the sequences of highly conserved proteins (SALPS) have been 63 

used to resolve relationships between morphologically complex actinobacteria, including 64 

streptomycetes and closely related taxa classified in the family Streptomycetaceae [17, 18].  65 

The aim of the present study was to establish the taxonomic status of Streptomyces sp. 66 

MBT76T using a polyphasic approach. The resultant data show that the strain forms the 67 

http://www.bacterio.net/streptomyces.html
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nucleus of a novel verticillate Streptomyces species for which we propose the name 68 

Streptomyces roseifaciens sp.nov. 69 

Streptomyces sp. MBT76T was isolated from a soil sample (depth 10-20 cm), collected 70 

from Shandi Village in the QinLing mountains, Shaanxi Province, China (34˚03’28.1”N, 109˚ 71 

22’39.0”E) at an altitude of 660 m [1]. The soil sample (1 g) was enriched with 6% yeast extract 72 

broth [19] and incubated at 370C for 2 h in a shaking incubator. 0.1 mL aliquots of 10-2 to 10-4 73 

dilutions of the resultant preparations were spread over selective agar plates [1] supplemented 74 

with nystatin (50 µg/ml) and nalidixic acid (10 mg/ml), that were incubated at 300C for 4 days. 75 

The colony of the test strain was subcultured onto Soy Flour Mannitol agar (SFM) [20]. The 76 

isolate and Streptomyces hiroshimensis DSM 40037T were maintained on yeast extract- malt 77 

extract agar slopes (International Streptomyces Project medium [ISP 2] [21]) at room 78 

temperature and as suspensions of spores and hyphae in 20%, v/v glycerol at -200C and -79 

800C. Biomass for the chemotaxonomic and molecular systematic studies was cultured in 80 

shake flasks (180 rpm) of ISP 2 broth after incubation at 300C for 2 days and washed with 81 

distilled water, cells for the detection of the chemical markers were freeze-dried and then 82 

stored at room temperature.  83 

The test strain was examined for chemotaxonomic and morphological properties known to be 84 

of value in Streptomyces systematics [7, 15]. Spore chain arrangement and spore surface 85 

ornamentation were determined following growth on oatmeal agar (ISP 3 [21]) for 14 days at 86 

280C, by scanning electron microscopy on a JEOL JSM-7600F instrument [22]. Key 87 

chemotaxonomic markers were sought using standard chromatographic procedures; the 88 

strain was examined for isomers of diaminopimelic acid (A2pm) [23], menaquinones and 89 

polar lipids [24] and whole-organism sugars [23]. In turn, cellular fatty acids were extracted, 90 

methylated and analysed by gas-chromatography (Hewlett Packard, model 6890) using the 91 

Sherlock Microbial Identification System [25] and the ACTINO version 6 database.  92 

Strain MBT76T was found to have chemotaxonomical and morphological properties 93 

consistent with its classification in the genus Streptomyces [7]. The organism formed 94 

branched substrate hyphae that carried filaments bearing short chains of oval to cylindrical, 95 
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smooth-surfaced spores arranged in verticils (Fig. 1). Whole-organism hydrolysate of the 96 

strain was rich in LL-diaminopimelic acid, glucose, mannose and ribose, the isoprenologues 97 

were composed of octahydrogenated menaquinone with nine isoprene units (MK-9[H8]) (47%) 98 

and lesser amounts of MK-9[H6] (8%) and MK-9[H4] (3%). The polar lipid pattern consisted of 99 

diphospatidylglycerol, glycophospholipid, phosphatidylethanolamine, phosphatidylinositol, and 100 

an unknown compound, as shown in Fig. S1. The cellular fatty acids of the organism contained 101 

major proportions (>10%) of anteiso- C15:0 (34.40%), and anteiso- C17:0 (10.92%), lower 102 

proportions (i.e. <10%) of iso-C14:0 (8.28%), iso-C15:0 (5.11%), iso-C16:0 (7.99%), anteiso-C16:0 103 

(2.54%), C16:1 ω9 (2.84%), C16:0 (5.64%), C18:1 ω9 (8.93%), C20:11 ω11 (4.53%) and summed 104 

features C18:2 ω9,12/C18:0 (8.81%). 105 

A 16S rRNA gene sequence (1,416 nucleotides [nt]) taken from the genome sequence 106 

of Streptomyces sp. MBT76T (Genbank accession number: LNBE00000000.1) was compared 107 

with corresponding sequences of the type strains of closely related Streptomyces species 108 

using the Eztaxon server [26]. The resultant sequences were aligned using CLUSTALW 109 

version 1.8 [27] and phylogenetic trees generated using the maximum-likelihood  [28], 110 

maximum-parsimony [29] and neighbour-joining [30] algorithms taken from MEGA 7 software 111 

package [31-33]; an evolutionary distance matrix for the neighbour-joining analysis was 112 

prepared using the model of Jukes and Cantor (1969) [34]. The topologies of the inferred 113 

evolutionary trees were evaluated by bootstrap analyses [35] based on 1,000 repeats. The 114 

root positions of unrooted trees were estimated using the sequence of Kitasatospora setae 115 

KM 6054T (Genbank accession number: AP010968) .  116 

Streptomyces sp. MBT76T formed a distinct phyletic line in the Streptomyces 16S rRNA gene 117 

tree (Fig. 2; see also Fig. S2-S3). It was found to be most closely related to the type strains 118 

of Streptomyces hiroshimensis [36, 37], Streptomyces mobaraensis [36, 38] and Streptomyces 119 

cinnamoneus [36, 39] sharing 16S rRNA gene sequence similarities with them of 99.37% (9 nt 120 

differences), (99.24%) (= 11 nt differences) and 99.17% (=12 nt differences), respectively. The 121 

corresponding 16S rRNA gene sequence similarities with the remaining strains fell within the 122 
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range 98.13 to 99.10%. The test strain was also found to form a distinct phyletic line in the 123 

analysis based on the maximum-parsimony and neighbour-joining algorithms.  124 

The partial sequences of five house-keeping genes: atpD (encoding ATP synthase F1, 125 

β-subunit), gyrB (for DNA gyrase B subunit), recA (for recombinase A), rpoB (for RNA 126 

polymerase β-subunit) and trpB (for tryptophan synthase, β-subunit) were drawn from the 127 

full genome sequence of strain MBT76T and from corresponding sequences on the 128 

Streptomyces type strains used to generate the 16S rRNA gene tree (Fig. 3; sequences 129 

presented in Table S1). The multilocus sequence analysis was based on the procedure 130 

described by Labeda [40], the sequences of the protein loci of the strains were concatenated 131 

head-to-tail and exported in FASTA format, yielding a dataset of 33 strains and 2351 132 

positions. The sequences were inferred using MUSCLE [41] and phylogenetic relationships 133 

defined using the maximum-likelihood algorithm from MEGA 7 software [31, 33] based on 134 

the General Time Reversible model [42]. The topology of the inferred tree was evaluated in 135 

a bootstrap analysis as described above. Phylogenetic trees were also generated using the 136 

maximum-parsimony [29] and neighbour-joining [30] algorithms. Pairwise distances between 137 

the sequences of each locus were established using the two parameter model [43]. Strain 138 

pairs showing MLSA evolutionary distances <0.007 were taken to be conspecific as 139 

determined by Rong and Huang [44], a value that corresponds to the 70% DNA-DNA 140 

threshold recommended for the discrimination of prokaryotic species [45].  141 

MLSA have clarified relationships between closely related streptomycetes, thereby 142 

reflecting the strong phylogenetic signal provided by partial sequences of single copy house-143 

keeping genes [8, 9, 40, 44]. In the present study all of the verticillate-forming streptomycetes 144 

fell into a single clade that is sharply separated from associated clades composed of strains 145 

that form spores in straight, looped or spiral chains (Fig. 3). Strain MBT76T and the type strain 146 

of S. hiroshimensis were found to form a distinct phyletic line supported by all of the tree-147 

making algorithms and a 100% bootstrap value. It can also be seen from Figure 3 that these 148 

strains are at the periphery of a well-supported branch composed of an additional eight 149 

Streptomyces type strains that produce verticillate spore chains. The discovery that the strain 150 
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can be separated from its closest phylogenetic neighbours by MLSA distances well above 151 

0.007 threshold (Table 1) indicates that it forms a distinct phyletic line within the evolutionary 152 

radiation of the genus Streptomyces [16]. The results of this study underpin those presented 153 

by Labeda et al. [8] by showing that streptomycetes which produce verticillate spore chains 154 

form a recognizable group in the Streptomyces gene tree that can be equated with the genus 155 

“Streptoverticillium” [46, 47]. 156 

The SsgA-like proteins (SALPs) have recently been proposed as phylogenetic markers 157 

for the accurate classification of Actinobacteria [17]. Members of the SALP protein family are 158 

typically between 130 and 145 amino acids (aa) long, and are unique to morphologically 159 

complex actinobacteria [18]; they coordinate cell division and spore maturation [48, 49]. SsgB 160 

shows extremely high conservation within a genus, while there is high diversity even between 161 

closely related genera [17]. Genes encoding SALPs were drawn from the genomes of strains 162 

MBT76T, S. cinnamoneus (NZ_MOEP01000440.1), S. mobaraensis (NZ_AORZ01000001.1) 163 

and S. hiroshimensis (NZ_JOFL01000001.1) and from those of non-verticillate reference 164 

organisms, namely “Streptomyces coelicolor” A3(2) (NC_003888.3), S. griseus subspecies 165 

griseus NBBC 13350T (NC_010572.1) and “Streptomyces lividans” TK24 (NZ_GG657756.1). 166 

A second BLAST search was undertaken based on a low cut-off value (e-value 10-5) to 167 

interrogate the genome sequence of “S. coelicolor” M145 (NC_003888.3) to verify that the 168 

initial hits were bona fide SALPs. Sequences showing their best reciprocal hits against SALPs 169 

were aligned using MUSCLE [41] and trees generated using the maximum-likelihood algorithm 170 

with default parameters as implemented in MEGA 7 software [31], the robustness of the 171 

resultant trees was checked in bootstrap analyses [35] based on 1000 replicates.  172 

The maximum-likelihood tree (Fig. 4) shows that all of the strains have genes that 173 

encode for the cell division proteins SsgA, SsgB, SsgD and SsgG [18, 48]. It is also evident 174 

that the SsgB-protein, which mediates sporulation-specific division in Streptomyces strains [49] 175 

encodes for identical proteins in both the verticillate and reference strains. The sequences of 176 

the SALP proteins, SsgA and SsgG, underpin the close relationship between the test strain 177 

and S. hiroshimensis and separate them from the type strains of S. cinnamoneus and S. 178 
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mobaerensis. It is particularly interesting that the verticillate strains lack an orthologue of SsgE, 179 

which is fully conserved in non-verticillate streptomycetes. SsgE proteins are considered to 180 

have a role in morphogenesis and the length of spore chains in “S. coelicolor” [48]. Further 181 

comparative studies are needed to determine whether the absence of SsgE in the genomes 182 

of verticillate streptomycetes is correlated to their different mode of sporulation.  183 

Strain MBT76T and S. hiroshimensis DSM 40037T were examined for cultural and 184 

phenotypic properties known to be of value in the systematics of the genus Streptomyces [15, 185 

50]. The cultural properties were recorded from tryptone-yeast extract, yeast extract-malt 186 

extract, oatmeal, inorganic-salt starch, glycerol-asparagine, peptone- yeast extract-iron and 187 

tyrosine agar (ISP media 1-7, [21]) plates following incubation as 280C for 14 days. Aerial and 188 

substrate mycelium colours and those of diffusible pigments were determined by comparison 189 

against colour charts [51]. The strains grew well on all of the media forming a range of pigments 190 

(Table 2). In general, strain MBT76T produced a pink aerial spore mass, dark red substrate 191 

mycelia and pale brown diffusible pigments, black melanin pigments were formed on ISP 6 192 

agar. In contrast, S. hiroshimensis formed a white aerial spore mass, cream, pink or white 193 

substrate mycelia and, when produced, a brown diffusible pigment, it also formed melanin 194 

pigments on ISP 6 agar.  195 

The enzyme profiles for the test strain and S. hiroshimensis were determined using 196 

API-ZYM kits (BioMerieux) and a standard inoculum corresponding to 5 on the Mc Farland 197 

scale [52] and by following the protocol provided by the manufacturer. Similarly, a range of 198 

biochemical, degradative and physiological properties were acquired using media and 199 

methods described previously [50]. Identical results were obtained for all of the duplicate 200 

cultures.  201 

The full genome sequence of strain MBT76T (GenBank accession number 202 

GCF_001445655) was elucidated using Illumina sequencing. The sequences assembled into 203 

18 contigs, giving a total genome size of 8.64 Mb with a G+C content of 72.1%, with an N50 204 

of 2,514,044 and a 200x genome coverage. The genome is predicted to encode 73 RNAs and 205 

7,598 proteins. Gene functions were distributed among different classes using the RAST 206 
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annotation tool (Fig. S4) [53]. A total number of 44 secondary metabolites are predicted by 207 

antiSMASH 4.2.0 [6], as shown in Table S2. Several genomic metrics are now available to 208 

distinguish between orthologous genes of closely related prokaryotes, including the calculation 209 

of average nucleotide identity (ANI) and digital DNA-DNA hybridization values [54, 55]. In the 210 

present study, ANI and dDDH values were determined from the genomes of strain MBT76T 211 

and S. hiroshimensis DSM 40037T using the ortho-ANIu algorithm from Ezbiotaxon [54] and 212 

the genome-to-genome distance calculator (GGDC 2.0) at http://ggdc.dsmz.de. The dDDH 213 

value between the genomes of the two strains was 28.4% ± 2.3 %, a result well below the 214 

70% threshold for assigning strains to the same species [45], the digital DNA G+C value 215 

recorded for strain MBT76T was 71.9 mol%. Similarly, a low ANI value of 88.96 was found 216 

between the two organisms, a result well below the threshold used to delineate prokaryote 217 

species [56, 57].  218 

It can be concluded from the chemotaxonomic, cultural, morphological and 219 

phylogenetic data that strain MBT76T belongs to the genus Streptomyces. It can be 220 

distinguished from the type strain, S. hiroshimensis, its closest phylogenetic neighbour using 221 

genotypic and phenotypic procedures, notably by low ANI and dDDH values. Consequentially, 222 

strain MBT76T should be recognised as a new Streptomyces species for this we propose the 223 

name Streptomyces roseifaciens sp.nov.  224 

 225 

Description of Streptomyces roseifaciens sp. nov. 226 

Streptomyces roseifaciens (ro.se.i.fa’ci.ens L. masc. adj. roseus rosy; L. pres. part. faciens 227 

producing; N.L. part. adj. roseifaciens producing rosy colour). Aerobic, Gram-stain positive 228 

actinobacterium which forms an extensively branched substrate mycelium that carries long 229 

straight filaments bearing at more or less regular intervals branches arranged in verticils. Each 230 

branch of the verticils produces at its apex short chains of 3-5 spores with smooth surfaces. 231 

Grows well on all ISP media. A red substrate mycelium, a pink aerial spore mass and a pale 232 

brown diffusible pigment are produced on oatmeal agar. Grows from 20-50˚C, optimally at 233 

~30˚C, from pH 5.0 to pH 11, optimally at pH ~7, and in the presence of 2% NaCl. Produces 234 

http://ggdc.dsmz.de/
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acid and alkaline phosphatase, α-chymotrypsin, α-cysteine arylamidase, esterase (C4), 235 

esterase lipase (C8), N-acetyl-β-glucosaminidase, α- and β-glucosidase, α-mannosidase, 236 

naphthol-AS-B1-phosphatase, trypsin and valine arylamidase, but not α-fucosidase, α- or β-237 

galactosidase or β-glucoronidase (API-ZYM tests). Degrades casein, gelatin, hypoxanthine, 238 

starch and L-tyrosine. Glucose, inositol and sucrose are used as sole carbon sources. 239 

Additional phenotype properties are given in Tables 1 and 2. Major fatty acids are anteiso-240 

C15:0, and anteiso-C17:0, the predominant menaquinone is MK-9 (H8), the polar lipid profile 241 

contains diphospatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, 242 

glycophospholipid, and an unidentified lipid, the DNA G+C composition is 71.9 mol% and the 243 

genome size 8.64 Mbp. The genome contains 44 biosynthetic gene clusters many of which 244 

encode for unknown specialized metabolites.  245 

The type strain MBT76T (=NCCB 100637T =DSM 106196T) was isolated from a soil 246 

sample from the QinLing mountains, Shaanxi Province, China. The species description is 247 

based on a single strain and hence serves as a description of the type strain. The GenBank 248 

accession number for the assembled genome of Streptomyces roseifaciens is 249 

GCA_001445655.1. 250 
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Table 1. MLSA distances between strain MBT76T and the type strains of closely related 401 

Streptomyces species. 402 

 Strain MLSA (Kimura 2-parameter) distance 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 

 

Strain MBT76T -           

2 S. abikoensis  

AS 4.1662T 

0.056           

3 S. cuspidosporus 

 NRRL B-5620 T 

0.097 0.128 0.117         

4 S. griseocarneus 

 NRRL B-1350 T 

0.059 0.121 0.067 0.075        

5 S. hiroshimensis  

NRRL B-1823 T 

0.014 0.114 0.084 0.070 0.063       

6 S. kishiwadensis  

NRRL B-12326 T 

0.062 0.106 0.093 0.080 0.068 0.107 
 

    

7 S. lacticiproducens  

NRRL B-24800 T 

0.065 0.106 0.089 0.090 0.083 0.112 0.078     

8 S. lavenduligriseus  

NRRL B-3173 T 

0.055 0.115 0.090 0.086 0.079 0.117 0.077 0.052    

9 S. lilacinus  

NRRL B-1968 T 

0.038 0.109 0.075 0.081 0.054 0.115 0.060 0.066 0.109 
 

 

10 S. luteosporeus  

NRRL 2401 T 

0.079 0.106 0.080 0.084 0.092 0.104 0.066 0.088 0.117 0.074  

11 S. mashuensis  

DSM 40221 T 

0.062 0.106 0.093 0.081 0.069 0.107 0.001 0.078 0.104 0.060 
 

12 S. sparsogenes  

NRRL 2940 T 

0.100 0.130 0.119 0.123 0.112 0.133 0.102 0.108 0.122 0.097 0.102 

 403 

  404 
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Table 3. Phenotypic properties that distinguish strain MBT76 T from S.hiroshimensis 408 

DSM 40037T 409 

Characteristics Strain MBT76T S. hiroshimensis DSM 40037T 

Cultural characteristics on 

yeast extract-malt extract 

agar 

  

Aerial spore mass Pink White 

Substrate mycelium Dark red Cream 

Diffusible pigment Pale brown Brown 

API ZYM tests:   

α-Chymotrypsin + - 

β- Glucosidase + - 

Lipase (C14) + - 

α -Mannosidase + - 

Trypsin + - 

Degradation of:   

Xanthine  - + 

Growth on sole carbon 

source 

  

Sucrose + - 

Fructose  - + 

Growth in presence of: 

3% w/v sodium chloride - + 

  410 
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Legends for Figures:  411 

Figure 1. Scanning electron micrograph from a 14-day old culture of Streptomyces MBT76T 412 

grown on an ISP-3 agar plate showing the presence of smooth, round to cylindrical verticillate 413 

spores. A shows a full overview, the white and black arrows refer to the respective 414 

magnifications B and C. Scale bars 1 µM. 415 

 416 

Figure 2. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences, 417 

showing relationships between isolate MBT76T and the type strains of closely related 418 

Streptomyces species. Asterisks indicate branches of the tree that were also recovered using 419 

the neighbour-joining and maximum-parsimony tree-making algorithms. Numbers at the nodes 420 

indicate levels of bootstrap based on an analysis of 1,000 sampled datasets, only values above 421 

50% are given. The root position of the tree was determined using Kitasatospora setae KM-422 

6054T. GenBank accession numbers are given in parentheses. Scale bar, 0.005 substitutions 423 

per nucleotide position. 424 

 425 

Figure 3. Phylogenetic tree inferred from concatenated partial sequences of house-keeping 426 

genes atpD, gyrB, recA, rpoB and trpB using the maximum-likelihood algorithm, based on the 427 

general time reversible model. The final dataset consisted of 2351 positions and 33 strains. 428 

Asterisks indicate branches of the tree that were recovered using the maximum-parsimony and 429 

neighbor-joining algorithms. Percentages at the nodes represent levels of bootstrap support 430 

from 1,000 resampled datasets with values with less than 60% not shown. Streptomyces 431 

morphology: a: verticillate spore chains. b: not determined c: Streptomyces with canonical 432 

(apical) spore chains.  433 

 434 

Figure 4. A composite maximum-likelihood tree showing the relationships between strain 435 

MBT76T, the type strains of S. cinnamoneus, S. hiroshimensis, S. mobaraensis and reference 436 

strains “S. coelicolor”, “S. lividans” and S. griseus, based on the sequences of SALP proteins.  437 
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Figure 1. 439 
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Figure 2.  442 
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Figure 4.  446 


