
AIP Conference Proceedings 2070, 020046 (2019); https://doi.org/10.1063/1.5090013 2070, 020046

© 2019 Author(s).

Towards multi-objective mixed integer
evolution strategies
Cite as: AIP Conference Proceedings 2070, 020046 (2019); https://doi.org/10.1063/1.5090013
Published Online: 12 February 2019

Koen van der Blom, Kaifeng Yang, Thomas Bäck, and Michael Emmerich

ARTICLES YOU MAY BE INTERESTED IN

Weighted ensembles in model-based global optimization
AIP Conference Proceedings 2070, 020003 (2019); https://doi.org/10.1063/1.5089970

Towards single- and multiobjective Bayesian global optimization for mixed integer problems
AIP Conference Proceedings 2070, 020044 (2019); https://doi.org/10.1063/1.5090011

Joint scheduling of production and transport with alternative job routing in flexible
manufacturing systems
AIP Conference Proceedings 2070, 020045 (2019); https://doi.org/10.1063/1.5090012

https://printorders.aip.org/?utm_source=Scitation&utm_medium=banner&utm_campaign=PDF%20Cover%20Page%20POD
https://doi.org/10.1063/1.5090013
https://doi.org/10.1063/1.5090013
https://aip.scitation.org/author/van+der+Blom%2C+Koen
https://aip.scitation.org/author/Yang%2C+Kaifeng
https://aip.scitation.org/author/B%C3%A4ck%2C+Thomas
https://aip.scitation.org/author/Emmerich%2C+Michael
https://doi.org/10.1063/1.5090013
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5090013
https://aip.scitation.org/doi/10.1063/1.5089970
https://doi.org/10.1063/1.5089970
https://aip.scitation.org/doi/10.1063/1.5090011
https://doi.org/10.1063/1.5090011
https://aip.scitation.org/doi/10.1063/1.5090012
https://aip.scitation.org/doi/10.1063/1.5090012
https://doi.org/10.1063/1.5090012


Towards Multi-objective Mixed Integer Evolution Strategies

Koen van der Blom1,a), Kaifeng Yang1,b), Thomas Bäck1,c) and Michael
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Abstract. Many problems are of a mixed integer nature, rather than being restricted to a single variable type. Although mixed
integer algorithms exist for the single-objective case, work on the multi-objective case remains limited. Evolution strategies are
stochastic optimisation algorithms that feature step size adaptation mechanisms and are typically used in continuous domains.
More recently they were generalised to mixed integer problems. In this work, first steps are taken towards extending the single-
objective mixed integer evolution strategy for the multi-objective case. First results are promising, but step size adaptation for the
multi-objective case can likely be improved.

INTRODUCTION

Multi-objective optimisation for either only continuous or only integer variables is widely studied, the mixed integer
case is however largely neglected. In single-objective optimisation the mixed integer case was successfully tackled by
algorithms such as the mixed integer evolution strategy (MIES) [1]. This paper takes first steps to extend the MIES al-
gorithm for the multi-objective case. It should be noted that other multi-objective mixed integer approaches exist, such
as the enhanced directed search method [2]. However, these do not distinguish between integer and nominal discrete
(encoded by integers) variables like MIES does. Naturally, handling these variables separately may be advantageous.

As in canonical evolution strategies (ES) [3, 4], one of the core principles of the MIES algorithm is automatic step
size adaptation, i.e., the online adaptation of the strength of the stochastic perturbations. However, step size adaptation
mechanisms for the single-objective case do not necessarily directly transfer to the multi-objective case. Furthermore,
in [5] the authors analysed step size adaptation in evolutionary multi-objective optimisation for continuous problems,
and reported the best performance when recombination is not used.

This paper analyses mutation only approaches and step size adaptation in multi-objective mixed integer evolution
strategies. To this end comparisons are made on both the performance in terms of diversity and convergence (combined
in the hypervolume) to the Pareto front, as well as in terms of step size adaptation for the different variable types.

ALGORITHMS

Firstly, an algorithm is considered that combines the canonical mixed integer evolution strategy (MIES) as proposed
in [1] with S-metric selection and non-dominated sorting as used in SMS-EMOA [6], as well as the (µ + 1) strategy
considered there. In the multi-objective case recombination may have a disruptive effect on the step size adaptation
mechanism. This is the result of different individuals navigating towards different parts of the Pareto front. However,
this first variant will retain recombination for comparison purposes.

Secondly, an alternative is considered that only uses mutation, but is otherwise equivalent to the first algorithm.
Instead of mutating the offspring resulting from recombination, mutation is applied to a randomly selected individual.

Thirdly, an approach is considered that uses a tournament between mutants of the same parent as a local selection
mechanism, but is otherwise equivalent to the second algorithm. In the tournament m mutants are generated for the
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TABLE 1. Settings of the benchmark functions
nr range nz range nd range

fsphere 5 [0, 20] 5 [0, 20] 5 [0, 20]
fbarrier 5 [0, 20] 5 [0, 20] 5 [0, 20]
fopt f ilt 11 [0, 1] N/A N/A 11 {0, 1}

selected individual, rather than one. The mutant with the greatest hypervolume contribution is chosen as the winner,
and enters S-metric selection as usual. The idea is that competition between offspring may benefit step size adaptation.

In [1] no bounds were considered for continuous and integer step sizes. However, since these step size adaptation
mechanisms were not designed with multi-objective optimisation in mind, step sizes might behave erratically and
grow excessively. This could be one of the negative effects of recombining individuals that are navigating towards
different parts of the Pareto front. To prevent this, step sizes for continuous and integer variables are given an upper
bound equal to half the used variable range. Step sizes of nominal discrete variables were already bounded in [1].

EXPERIMENTAL SETUP

To evaluate the algorithms three problems are considered: the multi-sphere (msphere) function in Equation 1, the
multi-barrier (mbarrier) function in Equation 2, and the multi-objective optical filter (moptfilt) problem [7, 8]. For
the multi-objective case both the sphere and barrier functions can be adjusted with an offset for each term, such that
continuous, integer, and nominal discrete optima are different in the second objective. The settings considered for
each of these problems are shown in Table 1. Here r, z,d represent continuous, integer, and nominal discrete variables
respectively, and nr, ni, nd the dimensionality for each of them.

fsphere1 (r, z,d) =

nr∑
i=1

r2
i +

nz∑
i=1

z2
i +

nd∑
i=1

d2
i → min fsphere2 (r, z,d) =

nr∑
i=1

(ri−2)2+

nz∑
i=1

(zi−2)2+

nd∑
i=1

(di−2)2 → min (1)

fbarrier1 (r, z,d) =

nr∑
i=1

(
r2

i + θ sin(ri)2
)

+

nz∑
i=1

A [zi]2 +

nd∑
i=1

Bi [di]2 → min

fbarrier2 (r, z,d) =

nr∑
i=1

(
(ri − 2)2 + θ sin(ri − 2)2

)
+

nz∑
i=1

(A [zi] − 2)2 +

nd∑
i=1

(Bi [di] − 2)2 → min

(2)

For the barrier function θ = 1, A is generated by Algorithm 6 from [1] with the parameter C = 20, and Bi∈1,...,nd is
a set of nd random permutations of the integer sequence {0, 1, . . . , 20}. Both A and B remain fixed for all experiments.
Unlike in [1], here smooth wave-like barriers are used in the continuous part, rather than staircase-like barriers.

A variant of the optical filter problem from [7, 8] with mixed variables and a second objective is considered
here. Pairs of continuous and (binary) nominal discrete variables are used. When a binary variable is active, the
corresponding continuous variable is used in the objective functions, otherwise it is ignored. If all bits are inactive a
penalty of (250, 1250) is returned. The original objective considers the transformation of a light wave by means of a
filter that consists of layers of different materials from a limited set of materials (discrete variables). The layers can
have different widths (continuous variables). The transformed waveform is compared to a target waveform and the
root mean square error is measured and to be minimised. In addition we consider a second objective, the minimisation
of the filter thickness: fopt f ilt2 (r,d) =

∑nr
i=1 ridi → min.

Algorithm Settings
The canonical approach uses dominant recombination for the variables, and intermediate recombination for the step
sizes. All three approaches use single step size mode in all domains (continuous, integer, and nominal discrete),
meaning a single step size per domain. Furthermore, µ = 10, and a reference point (2500, 2500) are considered for
all approaches and objective functions. The tournament based approach uses a tournament of size 2. Step sizes are
initialised to 25% of the variable range for continuous and integer variables, and 1

nd
for nominal discrete variables.
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FIGURE 1. Mean hypervolume convergence over 25 repetitions.
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FIGURE 2. Median attainment curves over 25 repetitions.

Step sizes are bounded to [0, 10] for continuous, [1, 10] for integer, and [ 1
nd
, 0.5] for nominal discrete variables. To

be able to analyse the hypervolume and step size convergence during various phases in the optimisation process an
evaluation budget of 10,000 is used.

RESULTS

For both the msphere and mbarrier problems the canonical MIES with S-metric selection shows the fastest conver-
gence in Figure 1, and outperforms the other approaches throughout the optimisation process. The mutation only
approach has a slower start, but ultimately reaches only slightly worse hypervolume values. Any possible advan-
tages of the additional selection pressure in the tournament approach are clearly mitigated by the larger number of
evaluations used per generation. On the moptfilt problem all three approaches quickly converge to a stable situation.

The median attainment curves [9] in Figure 2 show that the canonical and mutation approaches find similar
Pareto front approximations on the msphere and mbarrier functions, with the canonical approach remaining slightly
better, as expected given the observed hypervolume convergence. All three approaches find very similar Pareto front
approximations for the moptfilt problem, which suggests that they are close to the true Pareto front.

From Figure 3 it appears that step sizes σ for continuous and ζ for integer variables stabilise reasonably well,
whereas step sizes p for the nominal discrete variables show more erratic behaviour. However, Figure 4 shows that
step sizes generated for the offspring vary widely. The exception is the step size for continuous variables where the
mutation only and tournament approaches do seem to stabilise. Although the tournament approach does so much
later, this is likely due to its slower convergence. Thus, it appears only using mutation does indeed contribute to step
size adaptation, but integer and nominal discrete step size adaptation have to be adjusted for the multi-objective case.
Further, despite step sizes not adapting well when using recombination, it does result in better algorithm performance.

The experiments in this work show that a multi-objective mixed integer evolution strategy converges to accurate
Pareto front approximations on two test problems, and a real world problem. However, step sizes do not adapt well in
most considered situations. Only step sizes for continuous variables stabilise, and only without using recombination.
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FIGURE 3. Mean step size in the population for each variable type, single run on the msphere problem
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FIGURE 4. Step size per generated individual for each variable type, single run on the msphere problem
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