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Over the last decades, substrate-based approaches to ventricular tachycardia (VT) ablation have evolved into an important therapeutic
option for patients with various structural heart diseases (SHD) and unmappable VT. The well-recognized limitations of conventional elec-
troanatomical mapping (EAM) to delineate the complex 3D architecture of scar, and the potential capability of advanced cardiac imaging
technologies to provide adjunctive information, have stimulated electrophysiologists to evaluate the role of imaging to improve safety and
efficacy of catheter ablation. In this review, we summarize the histological differences between SHD aetiologies related to monomorphic
sustained VT and the currently available data on the histological validation of cardiac imaging modalities and EAM to delineate scar and
the arrhythmogenic substrate. We review the current evidence of the value provided by cardiac imaging to facilitate VT ablation and to ul-
timately improve outcome.
...................................................................................................................................................................................................
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Introduction

Over the last decades interventional treatment for monomorphic
sustained ventricular tachycardia (MSVT) has evolved into an impor-
tant therapeutic option for patients with structural heart disease
(SHD) and scar-related VT.1 Various image modalities, including car-
diac magnetic resonance (CMR), computed tomography (CT), nu-
clear imaging and intracardiac echocardiography (ICE) have been
used to facilitate catheter ablation in conjunction with electroana-
tomical mapping (EAM). Cardiac imaging has the potential advantage
to non-invasively delineate the arrhythmogenic substrate with a
higher degree of precision than EAM. Real-time imaging and accurate
image integration may pave the way for the precise application of
new energy sources and non-invasive ablative radiation. Real-time im-
aging may also allow for monitoring of lesion formation to optimize
acute procedural endpoints. However, to further improve and to re-
sponsibly use cardiac imaging in substrate-based ablation, knowledge

of the substrate for MSVT in various SHD, and the capability of image
modalities to visualize this substrate, is crucial.

This review will summarize the histological differences be-
tween SHD aetiologies related to MSVT and evaluate the histo-
logical validation of cardiac imaging modalities and EAM to
delineate both scar and the arrhythmogenic substrate. To this
end, we use ‘scar’ to refer to any pathological fibrosis and ‘sub-
strate’ to refer to specific areas related to MSVT. We review the
current evidence of the value provided by imaging and discuss
possible future uses of cardiac imaging in the interventional treat-
ment of MSVT. We performed a systematic search in medical
databases using multiple complex search terms, reviewed all
cross-references to relevant articles, and reviewed all published
literature from research groups who contribute to the field.
However, due to the complexity of the subject material, our ap-
proach did not fulfil the systematic review criteria as outlined by
PRISMA.2
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The histology of scar in structural
heart disease associated with
monomorphic sustained
ventricular tachycardia

Monomorphic sustained ventricular tachycardia occur in SHD
patients of varying aetiologies, including, but not limited to, ischae-
mic cardiomyopathy (ICM), arrhythmogenic right ventricular car-
diomyopathy (ARVC), hypertrophic cardiomyopathy (HCM), and
dilated cardiomyopathy (DCM).1 The latter encompasses a wide
range of aetiologies including inflammatory diseases (e.g. cardiac
sarcoidosis and post-myocarditis), and various genetic causes
(Lamin A/C (LMNA) mutation being the most widely recognized).3

Different genetic and acquired insults may result in different
degrees of cell injury, different repair mechanisms and different
amounts, patterns, and architectures of fibrosis (Figures 1 and 2).
As shown, the histological characteristics of scar vary significantly
depending upon the aetiology. These variations may impact on
both the resulting substrate and the ability of cardiac imaging to
delineate it.

Cardiac imaging to delineate scar
and their validation using
histology as the gold standard

Late gadolinium-enhanced (LGE)-CMR has become the preferred
imaging technique to delineate scar. Binary approaches categorize tis-
sue into scar vs. normal myocardium based on either the maximal

signal intensity (SI) of affected regions or on the SI of healthy remote
myocardium.39,40 Methods using three categories (dense fibrosis/scar
core, moderate fibrosis/scar border zone, and healthy myocardium)
based on two SI thresholds, are referred to as ternary methods.41–43

Importantly, there is no agreement on the optimal method and the
optimal thresholds to quantify scar core and border zone, and differ-
ent methods and thresholds will significantly affect the diagnostic
yield of LGE-CMR (Figure 3). Cardiac T1 mapping, T2 mapping, and
diffusion-weighted imaging (DWI) are other promising techniques
allowing assessment of the extracellular volume fraction as a poten-
tial measure of diffuse fibrosis, myocardial oedema and fibre orienta-
tion, respectively.44,45

Computed tomography has a significantly higher spatial resolution,
even if compared to modern isotropic 3D LGE-CMR. However, a
drawback is the unfavourable signal-to-noise ratio with suboptimal
results, particularly for chronic scars. Furthermore, the doses of
highly concentrated iodine-based contrast agents used in animals to
achieve acceptable results are much higher than those used in clinical
practice.46

Nuclear imaging, including positron emission tomography (PET)
and single-photon emission tomography (SPECT) can distinguish
non-viable scar, viable hibernating scar, and healthy myocardium by
changes in metabolism and/or perfusion, but are hampered by a poor
resolution.47

Intracardiac echocardiography has been used to delineate scar
based on wall-thinning, wall motion abnormalities,48 and occasionally
the heterogeneity in SI.49

Although widely used, different cardiac image modalities have not
been histologically validated for most aetiologies, as summarized in
Table 1 and visualized in Figure 1. Briefly, in ICM LGE-CMR
(both binary and ternary methods),4,39,40,50,51 contrast-enhanced

Figure 1 Overview of the available evidence on invasive and non-invasive methods of scar delineation in different aetiologies related to monomor-
phic sustained tachycardia. aAs determined by conventional methods (e.g. activation mapping, entrainment mapping, termination sites). ARVC, arrhyth-
mogenic right ventricular cardiomyopathy; CMR, cardiac magnetic resonance; CT, computed tomography; DCM, dilated cardiomyopathy; EAVM,
electroanatomical voltage mapping; HCM, hypertrophic cardiomyopathy; ICE, intracardiac echocardiography; ICM, ischaemic cardiomyopathy.
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CT,53–55 nuclear imaging,40,56–58,113 and ICE59 have been histologi-
cally validated to identify compact scar in animal models—and occa-
sionally in small human cohorts.56–58 However, although less
compact architectures of fibrosis are detectable in humans in vivo in
non-ischaemic aetiologies, their accurate delineation is still limited,
and data comparing imaging with full heart histology are sparse, ham-
pered by the lack of animal models. In ARVC and post-myocarditis, his-
tological validation of CMR is based solely on three explanted or
post-mortem hearts.76,77,107–109 In HCM, the total amount of fibrosis
in human septal myectomy specimens correlated to LGE on CMR,
using a binary method.89

In a mixed cohort of DCM patients a higher cut-off value (6SD in-
stead of the commonly used 2SD) has been proposed to delineate
scar on LGE-CMR.93 However, in a patient with DCM and a more
complex scar pattern, we could demonstrate that the application of
different LGE scar delineation methods (both binary and ternary)
resulted in markedly different estimates of scar location and size, and
none of the methods were able to delineate diffuse fibrosis as identi-
fied on histology (Figure 3). Other techniques, such as T1 mapping93

and DWI98 may be able to identify diffuse interstitial fibrosis, a pat-
tern which is more frequently observed in DCM. In cardiac sarcoido-
sis and LMNA-mutated patients, imaging has not been validated by
histology.

In conclusion, imaging is able to delineate compact scar, but cur-
rently applied binary or ternary methods to quantify and delineate

fibrosis may not reflect the complex architecture of fibrosis as ob-
served in different aetiologies.

Validation of electroanatomical
voltage mapping to delineate scar
using histology as the gold
standard

Electroanatomical voltage mapping (EAVM) is considered the gold
standard in electrophysiology for invasive scar identification. Areas of
low bipolar voltages (BV) <1.5 mV recorded with large tip electrodes
(3.5–4.0 mm) are usually considered scar. However, bipolar electro-
gram amplitudes depend on electrode size and spacing, orientation of
the catheter, and wavefront propagation. Therefore, new technolo-
gies, such as multielectrode mapping with small electrodes and
omnipolar electrogram recordings may improve near field resolution
and may allow orientation independent voltage mapping.65,114

Endocardial unipolar voltages (UV) <8.27 mV may be able to detect
intramural or epicardial scar.115 It should be pointed out, however,
that these cut-off values have not been validated against histology in
all aetiologies. Most of the data are extrapolated from patients with
ICM (Table 1 and Figure 1). In animal models of ICM areas of
BV < 1 mV59 or BV < 1.5 mV correlated well with areas of scar as

Figure 2 Examples of scar pattern in different aetiologies of structural heart disease. Stained with sirius red (fibrosis stains red, viable myocardium
yellow). Ischaemic cardiomyopathy (ICM): compact scar extending from the subendocardium to the epicardium with sparing of the endocardial rim.
Along the border, viable myocardium is interspersed by fibrous tissue.4–10 Arrhythmogenic right ventricular cardiomyopathy (ARVC): genetic dis-
ease,11,12 characterized by fibrofatty replacement of myocytes starting at the subepicardium,13–16 most frequently affecting the right ventricle with
biventricular disease in approximately half of the cases, whilst the septum is rarely involved.13,17 Hypertrophic cardiomyopathy (HCM): autosomal
dominant inherited disease,18,19 characterized by myocyte hypertrophy and disarray, starting at the subendocardium19–21 with interstitial collagen ex-
pansion, leading to interstitial fibrosis, preferentially involving the septum, followed by the lateral and apical left ventricular wall.19,21 Small vessel in-
volvement may cause myocardial ischaemia and replacement fibrosis.19 Idiopathic dilated cardiomyopathy (DCM): highly variable scar pattern,
including subendocardial, subepicardial, mid-wall, and transmural patterns; patchy or diffuse architectures are most frequently seen.22–28 Here, an ex-
ample of diffuse fibrosis extending transmurally is given. Cardiac sarcoidosis: demarcated areas of irregular non-necrotising granulomas leading to
patchy fibrosis,29–32 mainly affecting the left ventricle and the septum, followed by the right ventricle.29–31 LMNA-mutation: one example of a patient
with dominant, but not exclusively, mid-myocardial (predominantly interstitial) fibrosis, primarily involving the basal septum, the conduction system,
and the posterior left ventricular wall.33–36 Healthy control: minimal interstitial fibrosis between bundles of myocardium. Post-myocarditis (not
shown): heterogeneous disease,37 histologically defined by an inflammatory infiltrate with necrosis, leading to fibrosis.38
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identified by gross pathology, both endocardially and epicardially.60,61

In dogs, an inverse relation existed between average BV amplitude
and extent of scar transmurality.62 A case study of a patient with
MSVT showed a good correlation between the area of scar on EAVM
(<0.5 mV) and post-mortem scar size.63 In another case report, areas
with BV < 0.5 mV on EAVM corresponded to areas with >80% fibro-
sis, whilst regions with BV > 1.5 mV corresponded to <20% fibrosis in
post-mortem biopsies.64

In an ARVC patient, a correlation was found between low endocar-
dial BV (<1.5 mV) areas and gross pathological abnormalities in the
explanted heart if scar transmurality exceeded 60%.79 Others
reported a good correlation between low endocardial BV areas and
fibrofatty replacement identified on endomyocardial biopsy,
although the transmurality and size of scar was not quantified in the

biopsy.80–82 In a small series of three ARVC patients, endomyocardial
biopsies taken from areas with UV < 5.5 mV and BV > 1.5 mV showed
fibrofatty replacement on histology; implying that endocardial UV
amplitudes may be more sensitive to scar in ARVC than endocardial
BV amplitudes.83

Recently, post-mortem and post-transplant whole human heart
histology from patients with DCM was used to validate EAVM. A lin-
ear relationship between the amount of viable myocardium and both
BV and UV could be demonstrated, but no singular voltage cut-off
value, which identifies pathological amounts of fibrosis, could be
found.22 In a doxorubicin cardiomyopathy sheep model dividing the
left ventricle into nine segments, a cut-off of 7.5 mV for UV and
2.7 mV for endocardial BV mapping was proposed to distinguish be-
tween segments containing <5% fibrosis and >10% fibrosis, with

Figure 3 Reprinted with permission from EHJ.22 Different scar delineation techniques applied in dilated cardiomyopathy: different LGE-CMR scar
delineation methods applied to one patient with DCM with corresponding histology. Red dotted line: ICD artefact. Red: scar core. Yellow: scar bor-
der zone according to different methods. Green squares: locations of high-resolution histology inserts from non-ablation locations. Areas of dense
mid-septal fibrosis surrounded by viable myocardium corresponded well with areas of LGE on CMR (insert 2). Despite high quantity, less well delin-
eated fibrosis (insert 1) was only identified as core scar when using the 2–3SD method; as border zone when using the SImax or modified full width
at half maximum method. Despite comprising more than 50% fibrosis, a diffuse pattern was not detected on LGE-CMR irrespective of method used
(insert 3). CMR, cardiac magnetic resonance; FWHM, full width at half maximum; LGE, late gadolinium enhancement; SD, standard deviation.
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modest sensitivity and specificity.99 Electroanatomical voltage map-
ping has not been histologically validated in HCM, cardiac sarcoidosis,
post-myocarditis, or LMNA-mutated patients.

Although EAVM is frequently used as the gold standard to delin-
eate scar, it is poorly validated against the true gold standard (histol-
ogy) in most aetiologies. Similar to the imaging modalities, currently
applied binary or ternary voltage cut-off values to delineate (hetero-
geneous) scars are unlikely to reflect the complex histology.

Comparison between cardiac
imaging and electroanatomical
voltage mapping to delineate scar

As human histological data to validate either EAVM or imaging are
sparse, the two indirect methods for scar delineation are frequently
used to ‘validate’ each other (Table 1 and Figure 1).

In ICM, LGE-CMR scar delineation methods have been compared
to EAVM data. In animal infarct studies, LGE-CMR scar core corre-
lated well with BV < 0.5 mV and scar core and border zone together
corresponded to BV < 1.5 mV, when using the 3SD methods for scar
delineation.116 In humans, 60% of SImax on LGE-CMR yielded the
highest correlation to distinguish scar core (<0.5 mV) and border
zone (0.5–1.5 mV) on EAVM.70 Dense (SI >_ 50% of SImax), transmural
scars corresponded well with BV < 1.5 mV; however, this cut-off
could not accurately detect non-transmural, small subepicardial scar,
nor transmural border zone (SI 35–50% of SImax).

43 Several studies
have shown a moderate correlation between areas of wall-thinning
(<5 mm) on contrast-enhanced CT and low voltages
(BV < 1.5 mV).68,69,71,72 A few studies have compared nuclear imaging
to EAVM in ICM. BV < 0.5 mV could be predicted by PET with 89%
sensitivity using a threshold of 50% metabolic activity to define scar.73

When PET-CT data were integrated with EAVM, the surface area of
BV < 0.9 mV correlated best with the PET-defined scar
(uptake <50%).74 Of interest, integrating FDG-PET-CT with EAVM
revealed metabolically active channels within EAVM scar
(BV < 0.5 mV).73 Electroanatomical voltage mapping findings have
also been compared to areas of cardiac denervation using 123I-MIBG-
SPECT. The area of EAVM scar (BV < 0.5 mV) was 2.5 times smaller
than 123I-MIBG-denervated areas, whereas the EAVM border zone
(BV 0.5–1.5 mV) was similar to the 123I-MIBG transition zone.75

Akinetic and thinned areas on ICE corresponded with electroana-
tomical low BV areas in a pig infarct model (<2 mV)59 and in a series
of 15 patients after myocardial infarction (<1.5 mV).48 Of interest, in
a mixed cohort of 22 patients (10 ICM, 12 DCM), 83 myocardial seg-
ments were analysed by ICE and EAVM. Low BV areas (<0.5 mV)
showed significantly higher ICE derived SI (mean pixel SI unit) com-
pared to areas with border zone voltages (0.5–1.5 mV) and normal
myocardium areas, whereas EAVM border zone areas showed higher
SI heterogeneity on ICE (SD of SI).49

In ARVC, both wall motion abnormalities and LGE on CMR have
been compared with EAVM data. A good correlation between dyski-
netic regions on CMR and low BV areas (<1.5 mV) has been
reported.84,85 However, reports on the association between LGE-
CMR and EAVM in ARVC are conflicting. Two studies report a poor
association, with an underestimation of scar size on LGE-CMR

compared to areas of BV < 1.5 mV, especially when low BV areas
comprised <20% of the right ventricle.80,86 Another study reported a
strong correlation between LGE-CMR and low voltage areas.85

Intramyocardial right ventricular fat infiltration derived from CMR
was poorly associated with low voltage areas.85 In contrast, CT-
derived intramyocardial fat and EAVM showed a good association in
ARVC. A high agreement between right ventricular fat on CT (<-10
HU) and epicardial BV <1.0 mV87 or <1.5 mV69,88 or endocardial
UV <5.5 mV has been reported.87,88 The association was weaker for
endocardial BVs,69,87,88 probably due to the dominant subepicardial
involvement in ARVC.13,83

In HCM, comparison between EAVM and imaging data has not
been reported.

In DCM different BV and UV EAVM cut-off values to detect LGE-
CMR derived scar have been suggested, likely due to differently ap-
plied algorithms in heterogeneous and small patient populations. The
best endocardial cut-off values to detect LGE-CMR derived scar de-
fined as SI >_ 30% of SImax were BV < 2.04 mV and UV < 8.01 mV, re-
spectively.103 Using the same CMR method, epicardial voltage
mapping with cut-offs of BV < 1.81 mV and UV < 7.95 mV could delin-
eate LGE-CMR derived scar in areas devoid of epicardial fat.102 In a
heterogeneous group of patients (10 DCM and 5 cardiac sarcoido-
sis), endocardial BV < 1.78 mV and UV < 5.64 mV were able to iden-
tify areas of LGE (>6SD above remote myocardium).101 In another
heterogeneous series (11 DCM and 4 cardiac sarcoidosis), endocar-
dial cut-off values of BV < 1.55 mV and UV < 6.78 mV were reported
to identify scar on LGE-CMR (full width at half maximum method).100

There is little data on contrast-enhanced CT findings in DCM with
contradictory reports regarding the relationship between (rarely ob-
served) wall thinning (<5 mm) and low voltage areas.68,69,71,104 One
study reported a poor (13%) agreement between wall-thinning and
endocardial BV < 1.5 mV,69 whilst another reported an agreement of
63%.68,104 Delayed enhancement on CT could predict low voltage
areas (BV < 1.5 mV and UV < 8.0 mV) with a sensitivity of 78% in a
heterogeneous series of 19 patients with DCM.71 There is sparse
data comparing ICE and EAVM in DCM. In a small and pre-selected
series of 18 patients with DCM and increased echogenicity of the
mid/subepicardial lateral wall on ICE, echogenic areas corresponded
to epicardial BV areas < 1.0 mV.105

With regard to the more specific DCM-aetiologies, one cardiac sar-
coidosis report suggested a good correlation between areas of active in-
flammation by PET-CT and low voltage zones.106 In patients with
presumed post-myocarditis subepicardial LGE on CMR showed a rea-
sonable overlap of 76–83% with epicardial BV < 1.5 mV areas.68,110,111

Using CT data, the agreement between wall-thinning (<5 mm) and
BV < 1.5 mV was 29% for the endocardium, but 80% for the epicar-
dium in 11 patients, likely due to the dominant subepicardial involve-
ment in post-myocarditis.104 In a LMNA patient, a case report showed
good correlation between EAVM and LGE-CMR.112

Although most reports showed a good correlation between
EAVM-derived scar delineation based on BV and cardiac imaging for
transmural post-infarct scars, there are inconsistent data concerning
non-transmural and non-ischaemic scars. LGE-CMR seems to be su-
perior to EAVM in detecting localized fibrosis in humans with DCM,
at least if a single voltage cut-off value is applied, regardless of the vari-
ation in wall thickness.22 In contrast, in ARVC, EAVM seems to be
currently superior to any image modality in detecting right ventricular
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involvement (Table 1). Whether functional image modalities provide
supplementary information to EAVM that might be important for in-
terventional VT treatment, requires further studies.

The arrhythmogenic substrate for
monomorphic sustained
ventricular tachycardia

Scar in SHD is not the same as the substrate for MSVT. The presumed
dominant mechanism for MSVT in patients with SHD is myocardial
re-entry facilitated by slow conduction and areas of fixed or func-
tional conduction block. The only human histological data on MSVT
isthmuses come from activation mapping and histological examina-
tion of the diastolic pathway in infarcted, explanted, Langendorff-
perfused hearts from patients who underwent heart transplanta-
tion.5,6 Branching and merging surviving myocardial bundles, with a
range in diameter from that of a single cell to a few millimetres, sepa-
rated by collagenous septa, provided the histological substrate for
slow conduction during VT, typically located in the subendocardium.
The smallest described widths of a diastolic pathway of fast VT with a
short diastolic interval traversing the infarct, was �250 lm.5 There
are no human or animal model data on the specific histological char-
acteristics of the arrhythmogenic substrate for MSVT in non-
ischaemic aetiologies (Figure 1).

Activation mapping has evolved as the current clinical gold stan-
dard to identify the underlying mechanism and to localize the isthmus
of macro-reentrant VT. It aims to localize low amplitude diastolic
electrograms of surviving bundles. Although left ventricular assist
devices may allow for activation mapping of poorly tolerated VT,
detailed human data on entire re-entry circuits, particularly for non-
ischaemic aetiologies, are meagre. In addition, focal MSVT mechanism
have been reported in both ischaemic and non-ischaemic
aetiologies.23

Accordingly, substrate mapping has become an important strategy
which relies on scar delineation based on voltages and, additionally,
on the identification of electrograms potentially consistent with
(delayed) activation of ‘channels of surviving bundles’ during stable
rhythm. Poorly coupled, fractionated, split, and late potentials are
considered as surrogate for VT substrate. Fractionated electrograms
have been recorded from areas of scar (defined by histology) in ani-
mal infarct models.59 In DCM, fragmented electrograms were related
to fibrotic barriers in human explanted papillary muscles.117 Notably,
the architecture of fibrosis was more important than its density to
generate conduction disturbances.6,118

More recently, broader definitions of abnormal electrograms [lo-
cal abnormal ventricular activities (LAVA)] have been suggested.119

Local abnormal ventricular activities corresponded to areas of scar
(on LGE-CMR and CT) in ICM68,69,72 and intramyocardial fat (on CT)
in ARVC.69,88 The correlation between LAVA and scar in DCM is
less favourable and inconsistent (overlap 29–72% on CT and 37–88%
on LGE-CMR),68,69,104 and there is a paucity of data on the underlying
tissue architecture and specificity and sensitivity of LAVAs for the
critical VT substrate.

Of importance, high-resolution mapping data of VT circuits in a
chronic anterior infarct animal model could demonstrate that the

isthmus of infarct-related circuits was formed by functional rather
than fixed lines of block. Critical isthmus sites may therefore not be
evident during sinus rhythm (SR) as they depend on pacing rate, cou-
pling intervals, and vector of wavefront propagation.120

Capability of cardiac imaging to
detect the substrate of ventricular
tachycardia

Human data comparing the histology of VT substrate with cardiac imag-
ing are difficult to obtain (Figure 1). Therefore, most human studies have
validated the ability of imaging to detect sites related to VT re-entry cir-
cuits against EAM data. The VT-related sites were usually identified by
pacemapping during SR (electrophysiological surrogate for VT-related
sites) and less frequently by the gold standard activation mapping, en-
trainment mapping, or VT-termination (Supplementary material online,
Table S1). In some reports, the VT-related sites were defined using
LAVAs as surrogates for potential VT substrate.68,69,72,121

In three pig (ICM models) and 17 human studies, imaging was used
to investigate myocardial tissue characteristics at sites with confirmed
VT re-entry circuits or at sites with assumed VT substrate
(Supplementary material online, Table S1). These studies included in to-
tal 274 ICM, 124 DCM, and 19 ARVC patients. However, the individual
study populations were generally small (only five of the human studies
comprised >20 patients69,71,122–124), heterogeneous, and some patients
were likely included in multiple reports from the same group.

Although several imaging modalities were evaluated, most studies
used LGE-CMR (Supplementary material online, Table S1). The stud-
ies mainly employed 2D LGE-CMR with good in-plane resolution but
5–8 mm slice thickness. High-resolution isotropic 3D LGE-CMR was
performed in humans by two research groups.68–70,122,123

In general, the studies evaluated the spatial relationship between
binary-defined scar on imaging and VT isthmuses (or surrogates
thereof).43,47,68,69,71,72,101,102,116,125–127 A minority of the studies
aimed to identify the more complex characterization of scar, such as
delineation of scar core and border zone124,128–130 or provided data
on scar pattern and transmurality.101,124,131 The locations of scar (on
imaging) and VT-related sites (on EAM) were either evaluated by im-
age integration43,101,125,127–129,131 or by side-by-side comparison per
cardiac segment.47,71,128 Moreover, different groups used different
methods and thresholds to define scar (Supplementary material on-
line, Table S1), making comparisons between the studies difficult.

Despite the limitations, the studies have consistently shown that,
regardless of the aetiology and imaging modality used, virtually all VT-
related sites, electrophysiological surrogates for VT sites (e.g. pace-
mapping) or surrogates for potential VT substrate (e.g. LAVAs) were
located within the scar or close to its border (Supplementary mate-
rial online, Table S1).

Conflicting results have been reported regarding more specific
scar characteristics at the VT-related sites as derived from LGE-
CMR. While some authors found 71–100% of VT-related sites or
surrogates in areas of dense scar (defined by >3SD or >50% of SImax,
respectively),128,130 others have observed clustering of VT-related
sites (or their surrogates) around the border of the scar.47,72
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In contrast, two research groups have reported that 74–100% of
VT-related sites were located in LGE derived border zone channels
within dense scar.122,132 In both studies, LGE-derived border zone
channels were first compared to channels with intermediate BV within
low-voltage areas, referred to as conducting channels. Voltage chan-
nels were determined either by individually adapting the upper and
lower voltage threshold for scar132 or by using standard, fixed BV
thresholds.122 The LGE-CMR border zone channels were detected ei-
ther on raw LGE-CMR images in two layers70,132 or on projected SI
maps in five concentric layers (10%, 25%, 50%, 75%, and 90% of the
wall thickness),122,123 with border zone defined as 40–60% and scar
core as >60% SI of the SImax.

70,122,123 However, users were allowed, at
their discretion, to adjust the SI thresholds by±5%.122,123 In this con-
text, it is important to realize that even a minimal change in the defini-
tion of scar core and border zone can generate a different number and
orientation of channels within a layer (Figure 4).

Despite the different SI methods and EAVM thresholds, the major-
ity (81–100%) of EAVM conducting channels had a matching SI chan-
nel in orientation and involved left ventricular segment.70,122,123,132

However, not all matching channels were VT related and EAVM
seemed to be still superior to LGE-CMR as 23 of 23 VT isthmus sites

were related to EAVM conducting channels compared to 17 of 23
sites to border zone channel on CMR.122

There are limited studies that report on VT-related sites and LGE-
CMR scar characteristics in DCM patients. Including VT isthmuses
identified by activation mapping, entrainment and VT termination as
the gold standard, we could demonstrate that all concealed entrain-
ment sites, and 77% of VT termination sites were located in areas
with >_75% scar transmurality and in areas of transition from scar
core (SI >_ 50% of SImax) to border zone (SI 35–50% of SImax).

124

These results were comparable between DCM and ICM patients. In
contrast, in a heterogeneous group of DCM patients (5 cardiac sar-
coidosis and 10 idiopathic DCM), 15 of 18 VT-related sites, identified
mostly by pacemapping, occurred in scar (defined as SI >6 SD above
the mean SI of remote myocardium) with 25–75% transmurality.
Only one of the 18 VT-related sites occurred in transmural scar.101

These inconsistent results may be due to differently applied SI algo-
rithm for scar delineation.

Functional imaging can provide additional information on metabo-
lism, perfusion and innervation. Using 82Rb-PET, 50% of VT exits
were found in extensions of viable hibernating myocardium.134 Of in-
terest, 123I-MIBG–SPECT showed that 36% of all ablation sites were

Figure 4 Impact of changes in scar delineation methods on LGE-CMR defined channels: a patient with anterior infarction. All images in modified su-
perior view. Left: channels calculated by an automated algorithm.133 The percentages represent arbitrary threshold definitions of scar border zone
and scar core, respectively (as % of SImax). A 1% change in the threshold definition resulted in a change of the number of channels (±1) and their ori-
entation within a layer, although the change in the extent of scar was visually almost indiscernible. Therefore, it is important to visualize the channels
also in a 3D-reconstruction from multiple layers and to use electrogram data during ablation. Right: endocardial bipolar voltage map of the same pa-
tient. White spheres mark exits of two clinical VTs (identified by pacemapping and confirmed by non-inducibility of the VTs after ablation at these
sites). It should be highlighted that this figure demonstrates only one case; the within-patient reproducibility and diagnostic accuracy of this promising
technique for identification of VT substrate needs to be determined by a systematic study. CMR, cardiac magnetic resonance; EAM, electroanatomical
mapping; LGE, late gadolinium enhancement; VT, ventricular tachycardia.
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in areas that had normal BV but abnormal sympathetic innervation.75

Whether nuclear imaging provides complementary information on
the arrhythmogenic substrate requires further studies.

In conclusion, there is unambiguous evidence that most VT-related
sites arise from scar as detected by imaging. In this regard, LGE-CMR
appears to be the superior and most studied modality. However, cur-
rently available in vivo imaging techniques seem to be insufficient to pre-
cisely delineate parts of the scar that are required to sustain MSVT.

Impact of cardiac imaging on
outcome of ablation

The impact of pre-procedural imaging and/or real-time image integra-
tion on the outcome of VT ablation has not been evaluated in
randomized trials. Nevertheless, small non-randomized studies sug-
gest that imaging may have a valuable adjunctive role to conventional
EAM-guided ablation (Supplementary material online, Table S2).

One group could demonstrate that pre-procedural evaluation of
scar transmurality in ICM patients may affect the choice of the most
effective approach to ablation. Patients with a transmural scar [which
was detected by LGE-CMR (56%), transthoracic echocardiography
(51%), CT (28%), or SPECT (8%)] had fewer VT recurrences after
ablation if they underwent first-line combined endo-epicardial abla-
tion compared to endocardial ablation only.135

Pre-procedural evaluation of scar may be even more valuable in
DCM patients with a wide range of scar patterns and locations. In a
retrospective analysis, a better acute outcome of VT ablation
could be observed in DCM patients who underwent pre-
procedural LGE-CMR and intraprocedural integration of the seg-
mented scar, compared to patients without imaging.136 In fact, the
use of pre-procedural LGE-CMR was the only independent deter-
minant of procedural success. The clinical benefit was attributed
to the fact that knowledge of the location and pattern of the scar
(which was intramural in 71% of the cases) resulted in a more

effective ablation strategy. The authors reported that imaging
helped to reveal intramural scars in areas with normal BV and
allowed for adaption of the ablation strategy accordingly; e.g. an
epicardial approach for epicardial and free-wall intramural scars, a
biventricular approach for septal intramural scars, and longer
radiofrequency applications at higher power for intramural scars.
However, neither a more frequent epicardial approach, nor differ-
ences in radiofrequency applications or mapping density were
reported in the imaging group.136

Two retrospective studies, which included predominantly ICM
patients, reported an independent association between real-time
integration of LGE-CMR and/or wall-thinning and long-term pro-
cedural success.121,133 In the first study, the strategy was to elimi-
nate all LAVAs,121 in the second the strategy was to target slow
conduction channels detected by EAM.133 While image integra-
tion helped to identify areas of interest and facilitated substrate
mapping, EAM characteristics were ultimately used to identify ab-
lation targets.

In a recent report, long-term VT recurrence was compared be-
tween 11 ICM/DCM patients who underwent LGE-CMR image inte-
gration and 11 non-randomized controls without pre-procedural
imaging.137 In the imaging group, all low-voltage areas and all areas of
LGE-CMR derived scar were targeted by ablation. The authors
found, by Cox regression, significant association between the use of
image integration and VT recurrence [HR 0.12 (95% CI 0.02–0.75)
adjusted for five covariates], even though the rate of VT recurrence
did not differ between the imaging and non-imaging group (7/11 vs.
9/11, P = 0.4). Details on the regression analysis were not provided.

To assess the true impact of cardiac imaging on procedural safety
and efficacy, a prospective randomized trial is needed. Such a trial
should include a comprehensive description of how cardiac imaging is
implemented in the workflow of mapping and ablation and, addition-
ally, time efficiency and cost effectiveness should be evaluated.138,139

Despite a lack of randomized, prospective data, there is increasing

Figure 5 Example of multimodal image integration to facilitate bailout treatment strategies: (A) pre-procedural LGE-CMR shows septal scar,
extending to left ventricular (LV) summit. (B) Integrated biventricular endocardial mapping (right ventricular (RV) and LV bipolar voltage maps, purple
indicates normal bipolar voltage) confirms that the scar is not accessible through epicardial approach. (C) LV unipolar voltage mapping (purple indi-
cates normal voltages) could not delineate the entire segmented scar (shown in orange), which was supplied by two septal branches (S1 and S2) as
evident from CT/CMR image integration, allowing for transcoronary ethanol ablation (D) and imaging guided bipolar ablation between two ablation
catheters located at the RV and LV site of the segmented scar (E). Bailout strategies reduced VT burden in this patient; after surgical resection patient
has been entirely VT free. CMR, cardiac magnetic resonance; LGE, late gadolinium enhancement.
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evidence that multimodal imaging plays an important role in patients
undergoing VT ablation.

Pre-procedural and
intraprocedural multimodal
imaging: practical considerations

Pre-procedural transthoracic echocardiography is recommended to
evaluate cardiac and valvular function, and to exclude mobile intraca-
vitary thrombi, although in this regard, CMR may be more accu-
rate.1,140 Pre-procedural LGE-CMR and PET-CT can provide
important insights in the potential underlying aetiology and disease
activity (e.g. cardiac sarcoidosis), which may impact type and timing of
intervention.141–143

The most important information gained from pre-procedural
LGE-CMR is the location and pattern of scar (Figures 5 and 6).
Presence of a subepicardial, free-wall intramural, transmural, or
inferolateral scar may justify a first-line endo-epicardial ap-
proach.87,102,131,135,144,145 Absence of such scar distribution may help
prevent unnecessary epicardial access, thus avoiding an additional 4–
7% risk of associated major complications.146,147

Likewise, scar located in the recess of the mitral valve may be
more easily reached by a retrograde rather than transseptal ap-
proach.148 On the other hand, involvement of the interventricular
septum may require a biventricular approach and additional ablation
from the aortic root.69,102,136

Real-time integration of imaging-derived scar at the beginning of
the ablation procedure enables one to focus high-resolution EAM
on scar areas harbouring potential VT substrate, which likely
reduces procedure time (Figure 6).133 Visualization of scar may
also help to identify VT substrate in regions with ‘normal’
voltage,43,75 or reveal falsely low voltage due to poor catheter
contact.43 Intramural scar may require longer and more powerful
radiofrequency applications or alternative technologies [e.g.
bipolar ablation, transcoronary ethanol ablation (Figure 5), coil
embolization, needle catheter, half saline irrigation, or gadolinium-
facilitated radiofrequency ablation].136,149,150 Real-time integra-
tion of CT may be particularly helpful for epicardial VT ablation.102

Visualization of epicardial fat may help in interpretation of epicar-
dial low voltage during mapping and in adaptation of radiofre-
quency energy during ablation (Figure 7). It has been shown that a
layer of >2.8 mm of fat significantly attenuates BV102,152 and a layer
of 7–10 mm of fat may prevent effective ablation by conventional
techniques.152,153 Of note, a >4 mm thick layer of fat covers about
25% of epicardial surface, mainly located at the base of the ven-
tricles, acute margin, and interventricular grooves—locations
which are often targeted by ablation in patients with DCM.153

Another virtue of CT is the ability to accurately visualize the coro-
nary arteries and in 74–85% of the patients also the course of the
left-sided phrenic nerve.153–155 Imaging and accurate integration of
the coronary artery tree (Figure 8) can minimize coronary injections

Figure 6 Use of multimodal image integration to facilitate
epicardial ablation: (A) inferior-lateral intramural/subepicardial
scar with localized >_75% scar transmurality identified on LGE-
CMR pre-procedurally. (B) Multimodal image integration: left:
no coronary arteries extending over area of interest nor signifi-
cant epicardial fat layer (epicardial shell colour coded for fat
thickness according to bar). Right: transition between scar
core (orange) and border zone (yellow) and higher scar trans-
murality shown with grey overlay. (C) High density mapping of
area of interest (core—border zone transition, >_75% scar
transmurality), all VT-related sites were located in or near the
area of interest. CL, cycle length; VT, ventricular tachycardia.

14 M. Sramko et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/europace/advance-article-abstract/doi/10.1093/europace/euy150/5067839 by Leiden U
niversity / LU

M
C

 user on 24 D
ecem

ber 2018

Deleted Text: -
Deleted Text: -
Deleted Text: s
Deleted Text: ``
Deleted Text: '' 
Deleted Text:  
Deleted Text: (
Deleted Text: s
Deleted Text: )
Deleted Text: s
Deleted Text: -
Deleted Text:  &ndash; 
Deleted Text: s
Deleted Text: -
Deleted Text: s


Figure 8 Evaluation of the image integration accuracy using the left main as single landmark: (A) left main (LM) position confirmed by contrast injec-
tion through irrigation port of ablation catheter. LM position tagged and used to align images. (B, C) Unique anatomical features used to confirm accu-
racy of integration. Catheter located epicardially next to curvature (Patient 1) or bifurcation (Patient 2), as seen on coronary angiography. Location
of catheter as visualized on CARTO-software confirms location at same anatomical location relative to coronary anatomy without additional auto-
matic or manual adaption after single-landmark image integration. LAO, left anterior oblique; RAO, right anterior oblique.

Figure 7 Modified from JACC, reprinted with permission.151 CT-Image integration used to visualize epicardial fat thickness for interpretation of
epicardial BV: two endurance athletes with isolated epicardial scar in the anterior right ventricular outflow tract. Left: epicardial contours colour-
coded for epicardial fat thickness according to bar, together with coronary arteries in a modified right anterior oblique view, right: epicardial bipolar
voltage maps from the same two patients. Integration of epicardial fat images together with abnormal electrogram characteristics allows for classifica-
tion of electograms; (A) low-voltage electrogram with late potential in area without fat is due to scar (B) low voltage due to fat (C) low voltage, frag-
mented electrogram due to scar potentially attenuated due to fat (D) very low-voltage electrogram due to fat.
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during epicardial mapping/ablation, without concerns for coronary in-
jury.153 Whether visualization of the phrenic nerve by CT is sufficient
to prevent nerve injury without confirming its position by high-
output pacing has not yet been evaluated.

Intraprocedural guidance by ICE may be particularly helpful for
ablating intracavitary structures with complex anatomy such as
papillary muscles.156 Intracardiac echocardiography may also be
used to verify catheter contact and for real-time monitoring of le-
sion formation.157

Workflow of image integration

Although there are many ways to integrate images with
EAM data, there are basic principles common to all
(Figure 9).75,101,121,124,130,133,134,137 The first step is extracting ana-
tomical structures (e.g. chamber of interest with endocardial and
epicardial contours, coronary arteries, venous structures, epicar-
dial fat thickness, phrenic nerve) and tissue characteristics of inter-
est (e.g. scar core, border zone, SI channel) by manual and
semiautomated segmentation techniques. Segmentation of scar
and specific tissue characteristics from LGE-CMR requires single
SI thresholds. As outlined above, there is no consensus on the SI
algorithm that should be used and small changes in scar definition
impact segmentation results (Figures 3 and 4).

In the next step, the segmented structures are reconstructed and
exported as 3D meshes (most commonly as .vtk files). Various quan-
titative and qualitative tissue characteristics—such as scar transmur-
ality, wall thickness, or averaged SI—can be colour-coded and
projected on the surface of a 3D shell of the ventricles (Figure 9).43

The term SI map refers to a 3D shell, colour-coded for SI of all voxels
at a particular layer of the myocardium.133 Registration of the image-
derived 3D models (.vtk files) with EAM is usually done by landmark
registration, which is followed by an automatic registration algorithm,
and occasionally by manual correction. The technical aspects of the
image registration and the achieved accuracies are described in detail
elsewhere.158 Typical reported registration error (the mean distance
between the image mesh/surface and the EAM surface) is 2.0–
4.8 mm.158 However, a small registration error does not necessarily
imply good registration accuracy, especially if an automated registra-
tion algorithm permits rotation.159

We prefer a single-landmark registration, using the ostium of the
left main coronary artery. The ostium can be readily visualized by
injecting contrast dye through an open-irrigation tip ablation catheter
(Figures 8 and 9). The 3D images are then usually only translated to
the correct position, without the need for rotation. The accuracy of
the registration during epicardial mapping can be verified by placing
the tip of an ablation catheter on a distinct epicardial anatomical land-
mark which can be directly visualized by angiography. An example of
such validation landmark is the bifurcation of a major branch of the
left coronary artery (Figure 8).

After the procedure, the registration matrix used for the real-time
image integration can be utilized to project exported EAM points on
the original raw images (Figure 9). Such an approach provides a partic-
ularly productive framework for investigating the relationship be-
tween VT and complex scar characteristics.

Future perspectives

Image integration is routinely performed in only a few electrophysiol-
ogy labs in the world. One of the reasons is the lack of a universal,
user-friendly, yet user-adjustable software platform that would
streamline the laborious process. Development of such a platform
should be co-ordinated by a multicentre consensus. Moreover, to
generate reproducible results, there is a need for standardization of
definitions of tissue characteristics, such as scar core and border
zone, which would ideally be histologically validated for ischaemic
and non-ischaemic aetiologies.

Until recently, the presence of an implantable cardioverter-defi-
brillator (ICD) was considered to be a contraindication for CMR,
thus excluding most patients undergoing VT ablation. However,
emerging evidence indicated that CMR could be safely performed in
most patients with current generation ICD.160,161 In addition, promis-
ing CMR techniques, such as wideband LGE-CMR, are evolving which
minimize imaging artefacts caused by devices.162

To overcome the limitations of performing CMR in patients with
ICDs, there has also been rising interest in the detection of scar using
CT. Promising CT techniques are being developed that will hopefully
enable reliable delineation of myocardial scar. These techniques in-
clude delayed-enhancement CT and virtual monochromatic imag-
ing.46 Future CT scanners with dual energy sources will also likely
reduce contrast load.46

To improve imaging of the arrhythmogenic substrate there is a
need for scanners with better spatial resolution. Current state-of-
the-art navigator gated 3D LGE-CMR at 3T can generate continuous
in vivo images with voxel resolution of 1.4� 1.4� 1.4 mm.133 Such
resolution may be sufficient for quantification of a compact scar, but
it is suboptimal for accurate visualization of the intricate architecture
of fibrosis.5 Advanced cardiac T1 mapping techniques and acceler-
ated diffusion-weighted CMR acquisition sequences together with
improved post-processing techniques may allow detailed imaging of
the diseased myocardium. Although DWI may provide unique infor-
mation on structure and integrity of the myocardium, current acquisi-
tion times, and motion sensitivity require further improvements
before being used in clinical practice.45

One of the inherent limitations of integrating pre-acquired LGE
images, are the potential changes that may occur between the image
acquisition and ablation (e.g. due to change in volume load or heart
rhythm). This limitation can be overcome by performing CMR di-
rectly in the electrophysiology lab. Real-time CMR enables direct
tracking of catheters, avoids registration error, and provides feedback
on lesion formation.163,164 Promising results from animal studies indi-
cate that such real-time visualization of ablation lesions could be used
in the future for titrating radiofrequency energy.165

There are several other evolving technologies that might help in
the future in personalized VT ablation, including body surface map-
ping and image-based arrhythmia modelling. A detailed description of
these techniques is beyond the scope of this review, and we there-
fore refer to recent review articles.166,167

Finally, for further development of imaging modalities for non-
invasive identification of arrhythmogenic substrate, it is essential to
improve our understanding of its complex ultrastructural and func-
tional components. This will require close co-operation of basic re-
search scientists, clinical electrophysiologists, and cardiovascular
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Figure 9 Example of workflow for image integration using CARTOVR 3: see text for additional explanation. BZ, border zone; CMR, cardiac
magnetic resonance; CT, computed tomography; EAM, electroanatomical mapping; LGE, late gadolinium enhancement; SC, scar core.
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imaging specialists. It is also important to critically re-evaluate the ca-
pability of currently used imaging techniques. Concepts such as binary
or ternary division of scar based on arbitrary cut-offs may be clinically
appealing, but oversimplified.

Supplementary material

Supplementary material is available at Europace online.
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