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1 
Introduction 

Inflammatory arthritis 
Inflammatory arthritis comprises a group of diseases in which the immune system 

attacks the body’s own tissues. The precise cause of these diseases is not yet fully 

understood. However, combinations of genetic and environmental risk factors have 

been identified [1,2]. Inflammation can occur as a result of the body producing 

antigens that trigger an autoimmune response, or as a result of increased production 

of pro-inflammatory cytokines mistakenly signaling the innate immune system to 

attack healthy tissues. Two prevalent types of inflammatory arthritis are 

rheumatoid arthritis and spondyloarthritis [3,4].  

Rheumatoid arthritis 
Rheumatoid arthritis (RA) primarily manifests itself as inflammation of the 

synovial joints (Figure 1), especially in the hands, wrists, and feet. Synovial joints 

are the most common type of joint in the human body, allowing for movement and 

comprising of two bones covered with articular cartilage and separated by a 

lubricating fluid called the synovial fluid. The bone surfaces and the fluid are 

encapsulated by the synovial membrane (also known as synovium), which provides 

nutrients for the cartilage and produces the synovial fluid. Early inflammation often 

affects the synovial membrane and the bone marrow, ultimately leading to cartilage 

loss, bone erosions, and joint deformity if left untreated.  
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Figure 1. Depiction of changes observed in a synovial joint affected by rheumatoid 
arthritis. Early inflammation often affects the synovial membrane (synovium) and the bone 
marrow, ultimately leading to cartilage loss, bone erosions, and joint deformity. (Adapted 
from Wikimedia [5]) 

Spondyloarthritis 
Spondyloarthritis (SpA) represents an inter-related group of conditions of which 

ankylosing spondylitis is considered the prototype disease [6], characterized by  

inflammation in the sacroiliac (SI) joints (Figure 2a) and the vertebrae (Figure 2b). 

These anatomically axial manifestations give rise to the term axial SpA. Early 

signs of inflammation often occur in the bone marrow. Long-term inflammation 

can lead to bone erosion followed by formation of bony bridges that result in fusion 

of bones in the SI joints and adjacent vertebrae in the spine, severely impairing 

mobility.  

 
(a) 
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(b) 

Figure 2. Pathology of axial spondyloarthritis. Inflammation in the sacroiliac joints (a) can 
lead to fusion of the sacrum and the ilium bones of the pelvis. Inflammation in the vertebrae 
of the spine (b) can lead to formation of bony bridges called syndesmophytes, resulting in 
fusion of adjacent vertebrae (b). (Source: Wikimedia [7,8])  

Diagnosis and treatment 
Clinical diagnosis of RA and SpA typically involves a combination of tests, such as 

physical examination by a rheumatologist, assessment of symptom history, X-ray 

imaging, and blood tests. Traditionally, the first line of treatment has consisted of 

physiotherapy, painkillers, and non-steroidal anti-inflammatory drugs (NSAIDs). 

Exercise strengthens muscles around joints and helps maintain mobility, while 

painkillers and NSAIDs reduce pain for a limited time period. More recently,  

advances in disease-modifying anti-rheumatic drugs (DMARDs) and biological 

DMARDs have allowed for long-term reduction of inflammation and joint damage 



Chapter 1 

4 
 

and even a possibility of drug-free sustained remission [9,10]. However, research 

findings point to the importance of early diagnosis, as treatment in the early stages 

of the disease increases chances of better outcome and improved quality of life for 

patients [9,11]. Therefore, much effort is presently being devoted to early diagnosis 

of RA and SpA. To this end, the diagnostic potential of imaging modalities 

sensitive to local inflammation is of great interest. 

Magnetic resonance imaging 
Imaging plays an important role in diagnosis and monitoring of inflammatory 

arthritis. However, most clinical practices rely on X-ray imaging [12,13], which is 

limited to depicting structural changes that occur at later disease stages. Over the 

past two decades, extensive research has been conducted on the use of magnetic 

resonance imaging (MRI) as means of detecting inflammation in early disease 

stages before clinical arthritis becomes evident. MRI is sensitive to local 

inflammation [14], allowing for detailed joint-level assessment of inflammatory 

changes such as bone marrow edema (feature of inflammation of the bone marrow, 

also known as osteitis), synovitis (inflammation of the synovial membrane), and 

tenosynovitis (inflammation of the synovial lining of the sheath surrounding 

tendons).  

In axial SpA patients, the main inflammatory feature of interest is bone 

marrow edema (BME), since it plays an important role in early diagnosis [15]. It 

can be visualized using a T2-weighted sequence with fat-saturation or a short tau 

inversion recovery (STIR) sequence. These acquisition sequences suppress fat 

signal, forcing healthy bone marrow to appear dark, while bringing out BME as 

regions of high intensity (Figure 3a). 

In RA patients, BME is also an important inflammatory feature, since it is a 

strong predictor of erosive progression [16]. In addition to that, synovitis and 

tenosynovitis are frequently observed in patients with early disease [17]. 

Furthermore, tenosynovitis has been found to be predictive of progression from  
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(a) 

 
(b) 

 

Figure 3. MRI-detected inflammatory features seen in axial SpA and RA. Axial SpA (a): 
STIR sagittal MRI of the lower spine, fat suppression forces healthy bone marrow to appear 
dark, while bone marrow edema in the vertebra appears as a region of high intensity 
(arrow). RA (b): T1-Gd axial MRI of the wrist, combination of fat suppression and post-
contrast enhancement reveals bone marrow edema (B arrow), synovitis (S arrows), and 
tenosynovitis (T arrows) as regions of high intensity. 

arthralgia to clinical arthritis [18,19]. This is highly relevant for early diagnosis of 

RA because arthralgia is the earliest phase at which symptoms of joint pain may 

prompt a patient to seek medical attention. As in the case of SpA, either a T2-

weighted fat-saturated sequence or a STIR sequence can be applied to visualize 

BME in RA patients. However, these sequences do not allow for accurate 

evaluation of synovitis and tenosynovitis [20]. On the other hand, a T1-weighted 

fat-saturated sequence acquired after intravenous injection of a gadolinium contrast 

agent (T1-Gd) enables the visualization of all three inflammatory features [21] 

(Figure 3b). 

Visual scoring and its limitations 
At present, the most common approach to assessing inflammation on MRI of 

patients with RA and axial SpA is through visual scoring. Several scoring systems 
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have been proposed and validated over the past two decades [22–25]. The scoring 

is done semi-quantitatively, in the sense that readers visually approximate the 

volume of inflammation and assign an integer grade corresponding to that volume. 

In RA patients, for example, BME is scored on a 0–3 scale: 0, normal; 1, 1–33% of 

bone edematous; 2, 34–66%; 3, 67–100%. In axial SpA patients, one approach is to 

evaluate BME per vertebral unit (region between the mid-points of two adjacent 

vertebrae) on a 0–3 scale: 0, normal; 1, < 25% vertebral unit edematous; 2, 25–

50%; 3, > 50%. 

One common challenge of current scoring frameworks is that visual 

assessment is a laborious, time-consuming task, often involving a long list of 

anatomical locations viewed in multiple imaging planes, slices, and acquisition 

sequences – all of which requires the availability of trained, experienced readers. 

Visual scoring is also inherently subject to the simultaneous contrast effect [26] of 

the human visual system, which causes readers to perceive the same image 

intensity differently depending on the surrounding background intensities. This can 

introduce intra- and inter-reader variability in the perceived extent of inflammation. 

Furthermore, in a setting where follow-up and baseline scans are compared side by 

side, patient posture differences between scanning sessions complicate the 

comparison and do not allow for a simple voxel-wise overlay of images. 

Computer-aided techniques may help overcome these limitations. 

Automating the evaluation of inflammation with quantitative measurements 

derived directly from the image data can standardize interpretation and alleviate the 

time burden and cost associated with visual scoring. Application of image 

registration techniques can offer new interactive ways of comparative visualization 

of baseline and follow-up scans. Ultimately, computer-aided evaluation would 

allow clinical researchers to dedicate more resources to analysis of the dynamics 

and pathology of the disease and may help make MRI screening more widely 

available as part of early identification of inflammatory arthritis.  
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Outline of this thesis 
The main goal of this thesis is to develop computer-aided methods for assessment 

of MRI-detected inflammation with the aim of aiding early diagnosis of 

inflammatory arthritis. In particular, we address the tasks of comparative 

visualization, automatic quantification, and feature selection, as described in the 

following chapters: 

Chapter 2 presents an interactive scoring tool for evaluation of 

inflammatory changes over time in patients with axial SpA. We use locally-rigid 

image registration to fuse baseline and follow-up MR scans of the spine into a 

single color-encoded image, allowing for direct visualization and assessment of 

inflammatory changes. 

Chapter 3 investigates the feasibility of automatic quantification of bone 

marrow edema on MRI of the wrist in patients with early arthritis. We develop an 

atlas-based framework that segments the carpal bones of the wrist joint and 

measures the presence of signal associated with bone marrow edema within the 

bones. Correlation between quantitative measurements and visual scores is 

assessed in a large cohort of early arthritis patients. 

Chapter 4 investigates the feasibility of automatic quantification of 

tenosynovitis by extending and further developing the framework of chapter 3 to 

measure tenosyovial inflammation around the extensor and flexor tendons of the 

wrist.  

Chapter 5 sets out to identify MRI-detected inflammatory features specific 

to RA by comparing the difference in frequency of joint-level inflammation in RA 

patients and symptom-free volunteers. The identified subset of features is then used 

to predict progression from clinically suspect arthralgia to clinical arthritis. 

Chapter 6 summarizes the findings of this thesis and discusses possible 

directions of future work. 
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2 
Computer-aided evaluation of inflammatory 

changes over time on MRI of the spine in 

patients with suspected axial spondyloarthritis: 

a feasibility study 
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O. Dzyubachyk, B.P.F. Lelieveldt, “Computer-aided evaluation of inflammatory 

changes over time on MRI of the spine in patients with suspected axial 

spondyloarthritis: a feasibility study,” BMC Medical Imaging, 17:55, 2017. 
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Abstract 

Purpose: Evaluating inflammatory changes over time on MR images of the spine 
in patients with suspected axial Spondyloarthritis (axSpA) can be a labor-intensive 
task, requiring readers to manually search for and perceptually align a set of 
vertebrae between two scans. The purpose of this study was to assess the feasibility 
of computer-aided (CA) evaluation of such inflammatory changes in a framework 
where scans from two time points are fused into a single color-encoded image 
integrated into an interactive scoring tool. 
 
Methods: For 30 patients from the SPondyloArthritis Caught Early (SPACE) 
cohort (back pain ≥ 3 months, ≤ 2 years, onset < 45 years), baseline and follow-up 
MR scans acquired 9–12 months apart were fused into a single color-encoded 
image through locally-rigid image registration to evaluate inflammatory changes in 
23 vertebral units (VUs). Scoring was performed by two expert readers on a (-2, 2) 
scale using an interactive scoring tool. For comparison of direction of change 
(increase/decrease) indicated by an existing reference, Berlin method scores ((-3, 3) 
scale) of the same MR scans from a different ongoing study were used. The 
distributions of VU-level differences between CA readers and between the CA and 
Berlin methods (sign of change scores) across patients were analyzed descriptively. 
Patient-level agreement between CA readers was assessed by intraclass correlation 
coefficient (ICC). 
 
Results: Five patients were excluded from evaluation due to failed vertebrae 
segmentation. Patient-level inter-reader agreement ICC was 0.56 (95% CI: 0.22 to 
0.78). Mean VU-level inter-reader differences across 25 patients ranged (-0.04, 
0.12) with SD range (0, 0.45). Across all VUs, inter-reader differences ranged (-1, 
1) in 573/575 VUs (99.7%). Mean VU-level inter-method differences across 
patients ranged (-0.04, 0.08) with SD range (0, 0.61). Across all VUs, inter-method 
differences ranged (-1, 1) in 572/575 VUs (99.5%). 
 
Conclusion: Fusion of MR scans of the spine from two time points into a single 
color-encoded image allows for direct visualization and measurement of 
inflammatory changes over time in patients with suspected axSpA. 
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Introduction 
Evaluating inflammatory changes over time on magnetic resonance (MR) images 

of the spine in patients with suspected axial Spondyloarthritis (axSpA) can be a 

labor-intensive task. Depending on the rheumatologic scoring method that is used, 

readers are often required to assess a set of vertebral units (VUs) in several slices 

[1,2], manually searching for and perceptually aligning the vertebrae between two 

scans. It would be of great benefit to have a computer-aided (CA) method capable 

of automatically localizing and labeling the VUs and spatially aligning scans from 

two time points, so voxel-wise intensity differences could be visualized in a single 

image. 

CA methods involving alignment between multiple images for voxel-wise 

analysis have been extensively applied in the fields of neuroimaging and radiation 

therapy. Examples include voxel-based morphometry for comparison of local 

concentration of gray matter between subjects [3], analysis of multi-subject 

diffusion data for studying brain connectivity [4], and adaptive radiotherapy [5]. 

These studies have demonstrated that CA alignment of medical images can aid 

clinicians with automated biomarker quantification and treatment replanning based 

on anatomical changes that occur over time.  

Spatial alignment of scans from two time points compensates for patient 

posture differences between scanning sessions and allows to overlay the two 

images for visual assessment of changes over time. This is done by computing a 

spatial coordinate mapping between corresponding locations in the two scans, a 

process known as image registration [6]. Generally, this mapping involves a 

geometrically non-rigid correspondence between voxels. This may cause 

physically implausible deformations in rigid anatomical structures, such as bones. 

An efficient solution to this problem was proposed by Dzyubachyk et al. [7] and 

applied to comparative visualization of whole-body MR scans in patients with 

multiple myeloma lesions. The highlight of this approach is that, following a global 

alignment of two time points, a locally rigid (rotation and translation only) 
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alignment is derived for selected regions of interest (ROIs) within bones. This 

ensures that bone rigidity is preserved in the final alignment.  

In the work presented here, we applied the framework of Dzyubachyk et al. 

[7] to comparative visualization of MR images of the spine in patients with 

suspected axSpA. The aim of our study was to assess the feasibility of CA 

evaluation of axSpA inflammatory changes in the spine. This included fusion of 

scans from two time points into a single color-encoded image vividly 

distinguishing areas of increase versus decrease in inflammation over time, 

automatic labeling of VUs, and an interactive scoring module whose entry fields 

are activated/deactivated in synchronization with the VU selected by the reader in 

the image. 

Methods 
Patients 

A total of 30 patients from the SPondyloArthitis Caught Early (SPACE) cohort 

were included in this feasibility study. The SPACE cohort has been described 

extensively before [8]. In short, the SPACE cohort is an ongoing cohort started in 

January 2009, including patients aged 16 years and older with chronic back pain 

(duration ≥ 3 months, ≤ 2 years, onset < 45 years). All patients underwent a 

diagnostic work-up at baseline, consisting of history taking, physical examination, 

laboratory tests, and imaging (MR imaging (MRI) and plain radiographs). Patients 

fulfilling the Assessment of SpondyloArthritis (ASAS) axSpA criteria [9,10] and 

patients with possible axSpA were included for follow-up visits after 3 and 12 

months (including MRI). Possible axSpA was defined as the presence of at least 

one specific SpA-feature with a high positive likelihood ratio (LR+ above 6) or at 

least two less specific SpA-features (LR+ below 6), but not fulfilling the ASAS 

axSpA criteria [10,11]. 
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MRI sequences 

Patients underwent MRI of the complete spine in two stages (upper and lower 

spine) on a 1.5T MR system (Philips Medical Systems, The Netherlands). The 

acquired sequences were Short Tau Inversion Recovery (STIR) with repetition time 

(TR) 2500 ms, echo time (TE) 60 ms, inversion time 165 ms, acquisition matrix 

304×300, echo train length (ETL) 25, number of averages 3 and T1-weighted 

Turbo Spin-Echo (TR 550/TE 10, acquisition matrix 512×305, ETL 5, number of 

averages 3). Imaging was performed in the sagittal plane with a field of view of 

380×380 mm, slice thickness of 4 mm, and a slice gap of 0.4 mm.  

Vertebrae localization/segmentation/labeling 

For each patient, 23 VUs were automatically localized, segmented, and labeled. A 

VU is defined as the region between the mid-points of two adjacent vertebral 

bodies. For example, VU1 consists of the lower endplate of vertebra C2 and the 

upper endplate of vertebra C3. Hence, VU levels 1–23 cover 24 vertebral bodies 

(C2–S1). Localization and segmentation were carried out using atlas-based 

segmentation [12]. The atlas set consisted of 11 patients from the SPACE cohort 

(no overlap with patients included in evaluation). For each atlas patient, 24 

vertebral bodies (C2 to S1) were manually outlined in the slice closest to the mid-

sagittal plane and the two adjacent slices (a total of three slices). The procedure 

was carried out separately for upper and lower spine images, producing a total of 

two manually segmented images per atlas patient. We chose to approximate each 

vertebral body with a simple polygonal region within the vertebral borders, taking 

the cortex as an anatomical boundary. This choice was motivated by the fact that 

for successful locally rigid alignment of two time points it is preferable to have a 

ROI estimate that under-segments the bone, rather than an estimate that spills over 

into inherently non-rigid neighboring soft tissue. 

The first phase of atlas-based segmentation consisted of image registration 

between each of the 11 atlas patients and the target patient being segmented. Image 

registration was performed using the Elastix software package [13,14]. After 
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spatially mapping vertebrae ROIs from every atlas image onto the target image, a 

majority vote was applied across all mappings to determine whether a voxel was 

part of the background or of one of the vertebrae.  

Labeling of vertebrae voxels in the upper spine image was done sequentially 

from top to bottom, over connected components, with the top-most connected 

component receiving the label “C2,” the following “C3,” etc. Similarly, labeling in 

the lower spine image was done sequentially from bottom to top, with the bottom-

most connected component receiving the label “S1,” the following “L5,” etc. We 

used a 26-connected neighborhood definition for connectivity in 3D. Connected 

components less than 20 voxels in size were considered to be noise and were 

removed. 

Locally rigid inter-time point alignment 

In what follows, let us consider a pair of MR scans of a single patient and, without 

loss of generality, refer to one of the scans as “Time Point 1 (TP1)” and the second 

scan as “Time Point 2 (TP2).” According to the framework proposed by 

Dzyubachyk et al. [7], locally rigid alignment of two images is derived from a 

global non-rigid alignment of this image pair. We used the Elastix software 

package [13,14] to globally align TP2 to TP1. The registration yielded a 

deformation field specifying for each physical position in TP1 the corresponding 

physical position in TP2. Next, for each VU, the landmark transform [15] was used 

to estimate a locally rigid alignment between the VU region in TP1 (specified by 

the atlas-based segmentation result) and the corresponding physical region in TP2 

(specified by the deformation field) [7]. This ensured that spatial correspondence 

between voxels within the VU in TP1 and TP2 was restricted to translation and 

rotation, preserving bone rigidity.  

It is important to note that the described method can be equivalently applied 

in the reverse direction, by globally aligning TP1 to TP2, and subsequently using 

VU segmentations from TP2. Thus, in order to align two scans in a locally rigid 

manner, it is sufficient to segment and label vertebrae in one of the two scans.  
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Color-encoded fusion of time points 

After locally aligning two time points on the VU level, differences in intensity (e.g. 

inflammation) between corresponding voxels were visualized through color-

encoded fusion of the two scans. First, intensity values of TP1 were color-mapped 

to orange color space (RGB triple {255,128,0}), and intensity values of TP2 were 

color-mapped to light blue color space (RGB triple {0,127,255}). The fusion image 

was then obtained by voxel-wise superposition of the two color-mapped images 

[7]. Since orange and light blue are complementary colors, areas where no changes 

occurred between the two time points (TP2 intensity = TP1 intensity) are displayed 

in shades of gray. On the other hand, an increase in inflammation over time (TP2 

intensity > TP1 intensity) is displayed in shades of light blue (Figure 1). In the 

opposite case, a decrease in inflammation over time (TP2 intensity < TP1 intensity) 

is displayed in shades of orange. In addition to its complementary nature, the 

choice of orange and light blue is motivated by the fact that these two colors can be 

perceived even by readers with color vision deficiency [7]. No intensity 

standardization was applied to original images prior to color-encoded fusion. 

Evaluation of inflammatory changes 

Two experienced readers (RvdB and ZEZ) independently evaluated inflammatory 

changes between MR scans of the spine (STIR only), acquired 9–12 months apart, 

directly from the color-encoded fusion image. The choice of using only STIR 

images for CA scoring was motivated by our focus on inflammatory lesions and 

the fact that automatic alignment of T1 images to STIR images requires additional 

image registration steps, which would introduce additional sources of error. The 

readers were blinded to the original images and their time order, as well as patient 

and clinical characteristics. Each VU was assigned a score ranging from -2 

(dramatic decrease of inflammation), via 0 (no change), to +2 (dramatic increase of 

inflammation), reflecting net change in the degree of inflammation within the VU. 

Navigation through the images and evaluation were carried out using an interactive 

software tool that we implemented in MeVisLab 2.7.1 (MeVis Medical Solutions,  
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Figure 1. Color-encoded fusion of two MR scans of the same subject acquired at two 
different time points. Inflammation increase (blue arrow) in VU21 and decrease (orange 
arrow) in VU22 in the second time point (c) compared to first time point (b) are displayed 
in blue and orange, respectively, in the color-encoded fusion image (a). In this example, the 
locally rigid alignment is applied to VU21, indicated by the yellow line in (a). 

Germany) [16]. The tool consists of two windows: the comparative visualization 

module (Figure 2) and the scoring module (Figure 3). 

For comparison of direction of change (increase/decrease) indicated by an 

existing reference, Berlin method [1] scores of the same pair of MR scans from a 

different ongoing SPACE cohort study at our institution were used. The MR scans 

(STIR and T1) were independently evaluated by two experts (MdH and PACB) 

according to the Berlin method [1], yielding status scores for each of the time 

points. Each VU was assigned a score ranging from 0 to 3 reflecting the fraction of 

bone volume affected by bone marrow edema: 0, normal; 1, < 25% VU edematous; 

2, 25–50%; 3, > 50%. The readers were blinded to the time order of the images, as 

well as patient and clinical characteristics. Changes in inflammation over time were 

calculated as differences in status scores after de-blinding the time order of the MR 

scans. 
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Figure 2. Comparative visualization module. The module displays the color-encoded 
fusion image and allows the user to specify the VU of interest in the VU selection field at 
the bottom left of the window, which will trigger locally rigid alignment of two time points 
for that VU. A visual indication for the position of the VU in the image is provided to aid 
navigation (yellow line next to VU 21). 

Statistical analysis 

For each of the 23 VU levels, the distributions of VU-level inter-reader and inter-

method differences across patients were analyzed descriptively. For inter-reader 

differences, the VU-level difference was computed between change scores 

assigned to the VU by the two CA readers. For inter-method differences, the focus 

was on the direction of change indicated by each method, and therefore, VU-level 

difference was computed between the sign of the CA change score (mean of two 

readers) and the sign of the Berlin change score (mean of two readers), where the 

sign function takes the value -1 in case of negative change, +1 in case of positive 

change, and 0 in case of no change.  

Agreement between CA readers was assessed on the patient level (change 

summed across VUs of each patient) by computing intraclass correlation 

coefficient (ICC, two-way mixed, single measures, absolute agreement definition). 
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The statistics were computed using MATLAB R2015b (The MathWorks, Inc., 

USA) and IBM SPSS Statistics 23 (IBM Corporation, USA). 

 

Figure 3. Scoring module. The module acts as an interactive scoring sheet, consisting of 23 
panels representing the VUs. Every panel contains a group of option buttons (only one of 
the options can be selected) through which the reader assigns a change score to the VU, as 
well as a checkbox to indicate the presence of inflammation in cases of no net change. Only 
one VU panel is active at any given moment. The choice of VU in the comparative 
visualization module activates the corresponding panel in the scoring module, while 
deactivating panels of the remaining 22 VUs. This ensures that one VU is not mistaken for 
another while filling out the interactive scoring sheet. 

Results 
In 18/30 patients, atlas-based segmentation provided satisfactory segmentation and 

correct labeling of all 23 VUs in at least one of the time points (as explained above, 

in order to align two scans in a locally rigid manner, it is sufficient to segment and 

label vertebrae in one of the two scans). In seven patients, failure to segment the 

lowest vertebra in the upper spine image and/or the highest vertebra in the lower 

spine image, resulted in lack of segmentation for one VU (frequently 

corresponding to the levels Th9–Th11). The segmentations for these VUs were 

added by manual correction. Five patients were excluded from further evaluation 

due to inaccurate alignment with atlas images that led to missing vertebrae 

segmentations and incorrect labeling of VUs. Thus, a total of 25 patients (and 
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hence 575 VUs) were evaluated. Baseline patient characteristics and descriptive 

statistics of Berlin and CA scores at baseline and over time are presented in Table 

1. As demonstrated by baseline characteristics, it should be pointed out that most 

patients had low levels of inflammation. 

Table 1. Baseline patient characteristics and descriptive statistics of Berlin and CA scores 

of the 25 patients evaluated in the study 

Baseline patient characteristics   

Characteristic 

 

Patients (𝒏𝒏 = 25)  

Age at inclusion in years, mean (SD) 31.7 (8.3)  

Male, n (%) 12 (48)  

Duration of back pain in months, mean (SD) 14.4 (8.0)  

IBP, n (%) 19 (76)  

HLA-B27 positivity, n (%) 15 (60)  

Elevated CRP, n (%) 6 (24)  

Sacroiliitis on MRI (ASAS definition), n (%) 8 (32)  

Sacroiliitis on radiograph, n (%) 3 (12)  

Positive MRI (ASAS definition), n (%) 2 (8)  

ASAS classification positive, n (%) 14 (56)  

   

Berlin and CA scores descriptive statistics   

Variable 

 

Berlin method 

(reader 1 / reader 2) 

CA method 

(reader 1 / reader 2) 

VU-level score at baseline, median (range) 0 (0,1) / 0 (0,1) NA 

VU-level score at follow-up, median (range) 0 (0,1) / 0 (0,1) NA 

Patient-level score at baseline, median (range) 0 (0,5) / 0 (0,3) NA 

Patient-level score at follow-up, median (range) 1 (0,5) / 0 (0,4) NA 

Change in VU-level score, median (range) 0 (-1,1) / 0 (-1,1) 0 (-1,2) / 0 (-2,2) 

Change in patient-level score, median (range) 0 (-2,3) / 0 (-1,2) 0 (-3,3) / 0 (-11,5) 
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Inter-reader differences between CA readers 

VU-level differences between CA readers’ change scores are shown in Figure 4a. 

Mean VU-level differences across patients ranged from -0.04 to 0.12 with standard 

deviation (SD) range (0, 0.45). Most differences were observed in the lower 

thoracic spine and the lumbar spine. In 21/23 VU levels, differences ranged 

between -1 and 1 across all patients. In 2/23 VU levels, a difference of 2 was 

observed in one patient. In total, across all patients, VU-level differences ranged (-

1, 1) in 573/575 VUs (99.7%). On the patient level, the ICC between the two CA 

readers was 0.56 (95% confidence interval (CI): 0.22 to 0.78), indicating moderate 

agreement between readers. 

 
Figure 4. VU-level difference between CA readers’ change scores (a) and VU-level 
difference between sign of CA and Berlin change scores (b). Exact difference values are 
shown in blue (size of bubble data points is proportional to the occurrence of the difference 
value across 25 patients). Mean VU-level differences across 25 patients are shown in red. 
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Inter-method differences between CA and Berlin methods 

VU-level differences between the direction of change indicated by the CA and 

Berlin methods are shown in Figure 4b. Mean VU-level differences across patients 

ranged from -0.04 to 0.08 with SD range (0, 0.61). Most differences were observed 

in the lower thoracic spine and the lumbar spine. In 21/23 VU levels, differences 

ranged between -1 and 1 across all patients. In 1/23 VU levels, a difference of 2 

(positive Berlin change, negative CA change) was observed in one patient. In 1/23 

VU levels, a difference of -2 (negative Berlin change, positive CA change) was 

observed in one patient. In total, across all patients, VU-level differences ranged (-

1, 1) in 572/575 VUs (99.5%). Differences of precisely -1 or 1 (change detected 

only by one of the two methods) were observed in 40/575 VUs, and among those in 

33/40 VUs the change was detected by the CA method while Berlin score indicated 

zero change. Figure 5 shows examples of VU-level differences between the two 

methods.  

 

Figure 5. Examples of VU-level inter-method differences. Top row: lesion area (orange 
arrow) received a CA change score of −1, but a Berlin change score of 0, because of being 
considered a degenerative lesion (status scores = 0). Bottom row: lesion area (blue arrow) 
received a CA change score of 1, but a Berlin change score of 0, because of zero Berlin 
status scores. 
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Discussion 
In this study, we assessed the feasibility of CA evaluation of inflammatory changes 

on MR scans of the spine in patients with suspected axSpA. Readers agreed that a 

key advantage of CA evaluation is that fusion of two scans acquired at different 

time points into a single color-encoded image allows for direct visualization and 

measurement of inflammatory changes, as opposed to derivation of change scores 

from status scores that measure presence and extent of lesions separately for each 

time point. The results indicate that in nearly all VUs of all patients, VU-level 

differences between CA readers and between the CA and Berlin methods were 

bounded between -1 and 1, ensuring that scores do not offer opposing opinions on 

the direction of inflammatory change (increase versus decrease). The fact that most 

differences occurred in the lower thoracic spine and the lumbar spine is consistent 

with the observation that most inflammatory activity in the spine of early disease 

patients takes place in these regions [17,18]. The majority of non-zero differences 

between the CA and Berlin scores were observed when change was detected by the 

CA method while zero change was indicated by the Berlin method. These 

quantitative results support our qualitative observation that small gradual changes 

in an existing lesion are often not reflected in Berlin status scores, but can be 

readily visualized and measured by the CA method.  

The moderate inter-reader patient-level agreement and difference in the 

range of readers’ scores suggest that the CA grading scale may be defined too 

loosely with respect to affected bone volume, making the score more susceptible to 

subjective interpretation of the degree of change. Readers pointed out that a 

challenging aspect of the CA method is estimation of net inflammatory change in 

VUs with multiple inflammatory lesions. For example, one such VU exhibited 

increase in one quadrant, while exhibiting decrease in another quadrant. The two 

readers had different opinions as to which change was stronger, resulting in 

opposing scores and thus a mean change of zero. One way to overcome such 

discrepancies would be to score change separately for each of the four quadrants, 



Inflammatory changes in SpA 

25 
 

akin to scoring in the Spondyloarthritis Research Consortium of Canada 

(SPARCC) method [2].  

For the purpose of this feasibility study, we made a deliberate decision to 

measure change based only on the color-fused image, while blinding readers to the 

original images. However, the readers noted that in daily practice it would be 

helpful to have the original images (STIR and T1) available next to the color-fused 

image, as this would contribute to a more informative scoring decision. The color-

fused image could then be used as a map that directs the reader’s attention to 

locations of potential inflammatory changes, while the original images would be 

used to make the final judgement about the type and degree of observed change. 

The reader would still benefit from locally rigid alignment between the two time 

points while assessing original images, since the two scans will be aligned such 

that the VU of interest has identical viewing points in both images. Another feature 

that would enhance user experience is stitching of upper and lower spine images 

into a single image. This would offer a more natural workflow, without the need to 

load two separate images for every patient. A simultaneous view of the complete 

spine would also facilitate a more holistic assessment of disease activity.  

This study has several important limitations. The SPACE cohort consists 

only of early disease patients with low levels of inflammation, making it harder to 

study inflammatory changes, since changes were infrequent. Another limitation is 

that it was not possible to provide patient-level inter-method agreement statistics, 

as the scoring methodology and scale range are different, and this would result in 

uninterpretable results. However, the CA method was not designed with the aim of 

replicating the Berlin method, but rather as an independent scoring framework. It is 

of interest to compare the responsiveness of the two methods by quantifying 

sensitivity to change in a population with treatment and placebo patient groups, as 

was previously done for other scoring methods [19]. Assessing responsiveness 

after an effective intervention could provide information on differences in the 

psychometric characteristics of the two scoring methods. This could be addressed 

in a follow-up study. The definition of the CA change score should also provide 
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clear guidelines for the case of degenerative lesions to avoid discrepancies with 

existing methods that do not score these lesions (Figure 5). The lack of intensity 

standardization prior to color-encoded fusion is a potential source of error. 

However, we should note that standardization is also not applied in the long-

established procedure of Berlin method scoring. We sought to explore the 

feasibility of color-encoded fusion without additional image post-processing steps 

that are not present in the Berlin method workflow. Future studies should indeed 

investigate the effect of intensity standardization on change scores of both 

methods. An additional limitation is that CA scoring was performed only using 

STIR images. This differs from the common clinical approach of confirming 

inflammatory lesions observed in STIR images as low intensity areas in T1 images. 

Inclusion of T1 images may improve the robustness of the scoring method. 

Furthermore, it might allow visualization of changes in structural lesions, such as 

fatty lesions. Finally, it should be recognized that since 5/30 patients had to be 

excluded due to failed segmentation and 7/30 segmentations had to be manually 

adjusted, the method is not yet sufficiently robust to be used in practice. We should 

stress, however, that this study did not attempt to solve the problem of vertebrae 

segmentation in MRI. Our goal was to explore the prospect of CA assessment of 

patients with suspected axSpA and thereby provide yet another stimulus for 

development of robust vertebrae segmentation methods for MRI. 

Although this study does not focus on the topic of vertebrae segmentation, 

we can note potential directions for improving the atlas-based segmentation 

framework used in this study. To ensure the applicability of this segmentation 

framework to a variety of MRI acquisition protocols and scanners, it would be 

helpful to construct an atlas consisting of sub-atlases of MR images acquired under 

similar echo/repetition times and magnetic field strengths. Then, prior to 

segmenting a target image, the system would automatically identify the most 

appropriate sub-atlas based on acquisition parameters recorded in the image’s 

DICOM data. Additional improvement in segmentation might be achieved by 

operating with stitched images of the spine, as opposed to separate upper/lower 
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spine images. We have observed that in some cases segmentation was successful in 

one part of the upper/lower pair but failed in the other. Therefore, we hypothesize 

that the more easily matched spine region can “pull” the second spine region into 

its correct position in the target image when stitched. 

Conclusion 
This feasibility study has demonstrated that fusion of MR scans of the spine from 

two time points into a single color-encoded image allows for direct visualization 

and measurement of inflammatory changes over time in patients with suspected 

axSpA. A future study, with similar design to that of Lukas et al. [19], should 

assess the performance of the CA method in patients with a wide range of activity 

at baseline and follow-up, quantifying inter-reader reliability, sensitivity to change, 

and time needed to score each set of MR images. This would also provide a 

comprehensive comparison of the CA method to the Berlin and SPARCC methods.  
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3 
Automatic quantification of bone marrow 

edema on MRI of the wrist in patients with 

early arthritis 
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Abstract 

Purpose: To investigate the feasibility of automatic quantification of bone marrow 
edema (BME) on MRI of the wrist in patients with early arthritis. 
 
Methods: For 485 early arthritis patients (clinically confirmed arthritis of ≥ 1 joint, 
symptoms for < 2 years), MR scans of the wrist were processed in three automatic 
stages. First, super-resolution reconstruction was applied to fuse coronal and axial 
scans into a single high-resolution three-dimensional image. Next, the carpal bones 
were located and delineated using atlas-based segmentation. Finally, the extent of 
BME within each bone was quantified by identifying image intensity values 
characteristic of BME by fuzzy clustering and measuring the fraction of voxels 
with these characteristic intensities within each bone. Correlation with visual BME 
scores was assessed through Pearson correlation coefficient. 
 
Results: Pearson correlation between quantitative and visual BME scores across 
485 patients was 𝑟𝑟 = 0.83, 𝑃𝑃 < 0.001. 
 
Conclusion: Quantitative measurement of BME on MRI of the wrist has potential 
to provide a feasible alternative to visual scoring. Complete automation requires 
automatic detection and compensation of acquisition artifacts. 
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Introduction 
The presence of bone marrow edema-like abnormalities (BME) has been shown to 

be a strong predictor of radiographic progression in rheumatoid arthritis (RA) 

patients [1–4], and is therefore an important biomarker in early arthritis. Evaluation 

of BME is done on MRI, where it is visually scored based on the Outcome 

Measures in Rheumatology RA-MRI Scoring (RAMRIS) system [5,6]. This 

scoring method requires a trained reader to visually estimate the volume of BME. 

Such estimates are challenging and time-consuming because of the need to assess 

multiple imaging planes and slices and are inherently undermined by the 

simultaneous contrast effect [7–9] of the human visual system, which causes the 

reader to perceive the same image intensity value differently depending on 

surrounding background intensities. 

An automatic and quantitative approach to evaluating BME on MR scans 

could overcome the limitations of visual scoring by offering high-precision 

measurements derived directly from three-dimensional (3D) image data. It could 

alleviate the time burden of training and manual scoring for clinical researchers and 

could facilitate the use of MRI in drug evaluation studies, where employing a 

trained team of readers is costly.  

Several previous studies on BME quantification in the wrist joint [10–12] 

relied on a semi-automatic method proposed by Li et al. [13]. However, this 

technique requires an expert to manually delineate non-edema and edema regions 

of interest within every bone that needs to be evaluated. These studies were also 

limited to a small sample size of fewer than 20 subjects. One related study focuses 

on fully automatic BME quantification in the knee joint [14], but it is not directly 

clear how to extend the bone segmentation method [15] to a joint with more than 

two bones, as is the case in the wrist.  

In the work presented here, we developed an automatic framework for 

measuring the fraction of bone volume affected by BME in the eight carpal bones 

of the wrist joint. In contrast to previous methods, we used atlas-based 

segmentation to automatically locate and delineate the carpal bones. Our aim was 
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to investigate the feasibility of BME quantification through such atlas-based 

approach and assess the correlation between quantitative measurements and visual 

BME scores in a large cohort of early arthritis patients. 

Methods 
Patients 

A total of 573 early arthritis patients from the Leiden Early Arthritis Clinic (EAC) 

cohort [16] (mean age, 54.7 years; age range, 18.1–87.9 years) were studied: 354 

female (mean age, 53.0 years; age range, 18.7–85.3 years) and 219 male (mean 

age, 57.5 years; age range, 18.1–87.9 years) patients. Inclusion required clinically 

confirmed arthritis by physical examination in ≥ 1 joint and symptom duration of 

< 2 years. MR scans were obtained for the wrist joint of the most painful side (or 

the dominant side in cases of equally severe symptoms on both sides). The study 

was approved by the institutional medical ethics committee and all participants 

provided written informed consent. 

MRI sequences 

The wrist joint was scanned with an ONI MSK Extreme 1.5T extremity MR 

scanner (GE, Wisconsin, USA) with a 100 mm coil. Before contrast agent 

injection, T1-weighted fast spin-echo (FSE) sequence (T1) was acquired in the 

coronal plane with repetition time (TR) of 650 ms, echo time (TE) of 17 ms, 

acquisition matrix 388×288, echo train length (ETL) 2. After intravenous injection 

of Gd-chelate (gadoteric acid, Guerbet, Paris, France, standard dose of 0.1 

mmol/kg), T1-weighted FSE sequence with frequency-selective fat saturation (T1-

Gd) was obtained in the coronal plane (TR 650/TE 17, acquisition matrix 

364×224, ETL 2) and the axial plane (TR 570/TE 7, acquisition matrix 320×192, 

ETL 2). Coronal sequences were acquired with a slice thickness of 2 mm and a 

slice gap of 0.2 mm. Axial sequences were acquired with a slice thickness of 3 mm 

and a slice gap of 0.3 mm. The use of a T1-Gd sequence instead of a T2-weighted 

fat-saturated sequence is a validated modification that has been shown to perform 
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equally well in the depiction of BME and allows for a faster scanning protocol 

[17,18], which in turn reduces patient discomfort. Safety risk was minimized to the 

degree possible by the use of a macrocyclic contrast agent [19,20].  

Visual scoring of BME 

BME was assessed in line with the definitions proposed by RAMRIS [5] with 

validated modification of substituting T2-weighted fat-saturated sequence with T1-

Gd sequence [17,18]. BME was independently scored by two trained readers who 

were blinded to clinical data on a 0–3 scale based on the estimated fraction of 

affected bone volume: 0, no BME; 1, 1–33% of bone edematous; 2, 34–66%; 3, 

67–100%. The within-reader intra-class correlation coefficients (ICCs) for the total 

inflammation score were 0.98 and 0.93; the between-reader ICC was 0.95. The 

mean BME score of the two readers was considered.  

Patients for which at least one reader marked one or more bones as 

unscorable (typically due to fat suppression issues) were excluded (𝑛𝑛 =11). 

Patients whose T1-Gd images suffered from incomplete fat suppression, but still 

considered scorable by readers based on T1 images showing low signal intensity in 

the matching areas with BME on T1-Gd were retained. 

Quantitative image analysis framework 

Our automatic framework consisted of three stages. First, super-resolution 

reconstruction was applied to fuse coronal and axial T1-Gd scans into a single 

high-resolution 3D image. Next, the carpal bones were located and delineated 

using atlas-based segmentation. Finally, the extent of BME within each bone was 

quantified by identifying image intensity values characteristic of BME by fuzzy 

clustering and measuring the fraction of voxels with these characteristic intensities 

within each bone. Note that since the super-resolution reconstruction step requires 

a coronal and axial scan of the same sequence as input, this stage, and therefore the 

entire framework, could only be applied to T1-Gd scans. Therefore, pre-contrast T1 
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images, which were acquired only in the coronal plane, were not used in the 

quantitative image analysis framework.  

Super-resolution reconstruction 
When readers evaluate BME visually, they make use of two complementary scans: 

one acquired in the coronal plane and the second in the axial plane. This is due to 

the fact that slice thickness in each of the scans (2 mm in coronal; 3 mm in axial) is 

much larger than the in-plane spacing between voxels (~0.2 mm). Therefore, one 

scan compensates for anatomical detail lost in the other scan, allowing the reader to 

perceptually form a more complete assessment of the anatomy. Naturally, this 

raises the question how to simulate such perceptual fusion of two images on the 

computer, in order to obtain a single 3D image with isotropic voxels and high 

resolution in all three viewing planes. This type of problem, reconstruction of a 

high-resolution image of an object from multiple low-resolution images of the 

same object, is commonly referred to as super-resolution reconstruction (SRR).  

A variety of SRR methods have been proposed for MRI [21–24]. In this 

study, we applied the method developed by Poot et al. [24]. This algorithm belongs 

to the family of spatial domain SRR methods, which construct a linear model of the 

image acquisition system and reconstruct the high-resolution image by solving a 

system of linear equations. This system is often underdetermined, as in our case, 

and is solved by applying regularization. We used Laplacian regularization with 

parameter 𝜆𝜆 = 0.05. This value was optimized in an experiment by two expert 

radiologists (MR and JLB) to provide satisfactory balance between image 

noise/artifacts and visual clarity of BME, synovial tissue, cartilage, and fluid 

around tendons. Prior to applying SRR, the axial scan was spatially aligned to the 

coronal scan using the Elastix software package [25,26], axial image intensity was 

linearly matched to the coronal image intensity, and the field of view of both 

images was restricted to the overlapping physical space between the two scans. 

Figure 1 shows an example of applying SRR to a pair of coronal and axial scans. 
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Figure 1. Coronal, axial, and super-resolution images (top to bottom rows, respectively) 
and their coronal, axial, and sagittal viewing planes (left to right columns, respectively). 
The original scans exhibit high resolution only in one plane, while the super-resolution 
image exhibits high resolution in all three planes. 

Segmentation of carpal bones 
The carpal bones were located and delineated using atlas-based segmentation 

(ABS) [27]. The atlas consisted of 13 early arthritis patients. For each atlas patient, 

the carpal bones were manually segmented in the coronal and axial T1-Gd images, 

yielding two segmentation images. The voxels of these manual segmentation 

images were assigned an integer bone label value ranging from 1 to 8 in locations 

corresponding to one of the eight carpal bones, or otherwise the value 0 in 

locations outside the bones. Then, separately for each bone, the two manual 

segmentation images were fused using SRR. Voxels with values above 78% of the 
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bone label value were assigned the bone label value, and the remaining voxels were 

zeroed to discard noise. The resulting eight images were superimposed to obtain 

the complete segmentation image in high-resolution space.  

The first phase of the ABS routine consisted of image registration between 

each of the 13 atlas images and the target image being segmented. Image 

registration (using Elastix [25]) was done in two stages [28]: first, a similarity 

mapping to account for global translation, rotation, and scaling, followed by a B-

spline mapping to account for local deformations. After spatially mapping carpal 

bone segmentations from every atlas image onto the target image, a majority vote 

was applied across all mappings, determining whether a voxel was labeled as 

background or as one of the carpal bones.  

It should be noted that all atlas images contained the right wrist joint. For 

segmentation of the left wrist, atlas images were horizontally mirrored prior to 

registration. In order to avoid biased measurements, patients that were part of the 

ABS atlas were excluded from optimization and validation phases. 

Assessment of segmentation accuracy 
To assess the accuracy of ABS, a leave-one-out cross-validation was performed. In 

each of the 13 runs, 12 out of 13 atlas images would constitute the atlas set, and the 

remaining image would be used as the target image to be segmented. The result 

was validated against manual segmentation of the coronal T1-Gd image. 

Segmentation accuracy was evaluated by computing precision and recall rates for 

each carpal bone. Here, precision rate refers to the fraction of voxels segmented by 

ABS that overlap with the manual bone segmentation, while recall rate refers to the 

fraction of voxels within the manual bone segmentation that were correctly 

segmented by ABS. 

BME quantification 
BME is characterized by high signal intensity on T1-Gd images due to contrast 

enhancement and the suppressed normal fatty bone marrow. The precise intensity 

values vary per acquisition, depending on the strength of contrast enhancement and 
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fat suppression. The variation of these values is further broadened by inherent 

magnetic field inhomogeneities of the MR scanner. To account for these 

acquisition-specific intensity ranges of edematous vs. non-edematous bone 

marrow, fuzzy C-means clustering [29,30] was applied to the intensity values of all 

voxels in each image, assuming two clusters. This yields two probability map 

images (one per cluster) where each voxel contains the probability of that voxel 

belonging to the respective cluster. Let C2 be the cluster whose center value is the 

higher of the two computed cluster centers. As Figure 2 illustrates, high 

probabilities (bright voxels) within the C2 probability map correspond to locations 

of high fluid content, such as BME and synovium. 

For each carpal bone, the fraction of bone affected by BME was estimated as 

the fraction of voxels (out of the total number of voxels within the bone’s 

segmentation) whose probability of belonging to C2 was higher than the threshold 

value 𝑇𝑇𝐶𝐶2 (numeric value optimized below). The resulting quantitative BME 

measurement (BME-QM) takes any fractional values between 0 and 1. 

Optimization 

In order to optimize the 𝑇𝑇𝐶𝐶2 threshold parameter based on correlation with visual 

BME scores, a training set of patients was defined. The number of patients with 

low-moderate BME in our cohort is much larger than the number of patients with 

severe BME. Therefore, random sampling of the cohort does not guarantee 

inclusion of patients with severe BME in the population sample. To ensure that 

patients with high degree of BME were represented in the training set, we 

categorized a set of 468 patients by the maximum visual BME score (𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥) across 

the carpal bones. Four sampling categories were defined corresponding to four 

intervals within 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 range. Table 1 lists the defined categories and the number of 

patients that fall into each category. Next, 15 patients were randomly selected from 

each category to form a training set of 60 patients.  
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Table 1. Training set sampling categories 

Patient category index 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎 interval Number of patients 

0 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 0 189 

1 0 < 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1 208 

2 1 < 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 2 42 

3 2 < 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 3 29 

Note: Random sampling across all categories would form a training set that mainly consists 
of patients with 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1. In contrast, randomly selecting 15 patients from category 3, for 
example, guarantees that the training set will include 15 patients in which at least one bone 
received a visual BME score greater than 2. Thus, random sampling from individual 
categories helps ensure 𝑇𝑇𝐶𝐶2 is optimized with respect to the entire range of the visual BME 
score. 
 

 
Figure 2. SRR image of the wrist (a), its C2 probability map image (b), and C2 image with 
carpal bone segmentation overlay from ABS (c). 
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To minimize the influence of acquisition artifacts and segmentation errors on 

threshold optimization, three patients whose MR scans suffered from incomplete 

fat suppression and one patient for which ABS failed were excluded from the 

obtained training set. This brought the final training set size to 56 patients. The 

optimal value of 𝑇𝑇𝐶𝐶2 was found by maximizing the Pearson correlation coefficient 

𝑟𝑟 between the sum of visual BME scores across all carpal bones and the sum of 

BME-QM across all carpal bones. 

Validation 

After optimizing and locking the value of 𝑇𝑇𝐶𝐶2, the method was validated on 502 

patients that were not part of the training set. 

Statistical analysis 

The Pearson correlation coefficient 𝑟𝑟 between the sum of visual BME scores across 

all carpal bones and the sum of BME-QM across all carpal bones was evaluated. 𝑃𝑃-

values below 0.05 were indicative of statistical significance. MR scans that 

suffered from incomplete fat suppression were noted and excluded from the 

correlation computation. Scans with other acquisition artifacts, such as noise 

patterns and incomplete field of view were excluded from the analysis. Patients in 

which one or more bones were not segmented by ABS yielded undefined values for 

BME-QM. Since undefined values cannot be included in the correlation 

computation, these patients were excluded from statistical analysis. The statistics 

were computed using MATLAB R2015b (MathWorks, Inc.). 

Results 
Assessment of segmentation accuracy 

The mean bone-level recall and precision rates of ABS with respect to manual 

segmentations across 13 patients are shown in Figure 3. Recall rates were lowest in 

the pisiform (mean of 0.58 ± 0.09 SD) and highest in the capitate (mean of 0.82 ± 

0.03 SD). Precision rates were high in all bones, with mean values ranging from 

0.92 to 0.96 and SD values ranging from 0.02 to 0.05. 
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Figure 3. Mean (± SD) bone-level recall and precision rates of ABS with respect to manual 
segmentations across 13 patients. 

Optimization 

The maximum Pearson correlation (𝑟𝑟 = 0.86, 𝑃𝑃 < 0.001), over 56 training set 

patients, between the sum of visual BME scores across all carpal bones and the 

sum of BME-QM across all carpal bones was achieved at threshold value 𝑇𝑇𝐶𝐶2 = 

0.83 (Figure 4). The scatter plot of the data is shown in Figure 5.  

 
Figure 4. Pearson correlation coefficient 𝑟𝑟, over 56 training set patients, between the sum 
of visual BME scores across all carpal bones and the sum of BME-QM across all carpal 
bones, as a function of 𝑇𝑇𝐶𝐶2. 
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Figure 5. Scatter plot of sum of BME-QM across all carpal bones vs. sum of visual BME 
scores across all carpal bones for 56 training set patients. Each data point represents a 
single patient. 𝑟𝑟 = 0.86, 𝑃𝑃 < 0.001, 𝑇𝑇𝐶𝐶2 = 0.83. Dashed black line represents linear 
regression fit. 

Validation 

Out of 502 patients, BME-QM was undefined in six patients due to failed 

segmentation. Three patients were excluded due to noise artifacts (𝑛𝑛 = 2) and 

incomplete field of view (𝑛𝑛 = 1) in their images. MR scans of eight patients 

suffered from incomplete fat suppression. For the remaining 485 patients, the 

Pearson correlation between the sum of visual BME scores across all carpal bones 

and the sum of BME-QM across all carpal bones was 𝑟𝑟 = 0.83, 𝑃𝑃 < 0.001. The 

scatter plot of the data is shown in Figure 6. Most patients formed clusters of 

steadily increasing BME-QM values, as the visual score value increased. Some 

outliers from this general trend were clearly visible for visual score value of 0 and 

BME-QM values between 1 and 2. These high quantitative values were due to 
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inaccurate segmentation of the carpal bones. Several patients whose images 

suffered from incomplete fat suppression produced BME-QM values that were 

largely deviating from the observed regression fit. 

 
Figure 6. Scatter plot of sum of BME-QM across all carpal bones vs. sum of visual BME 
scores across all carpal bones for 493 validation set patients. Each data point represents a 
single patient. Linear regression fit (dashed black line) and Pearson correlation 𝑟𝑟 were 
computed over 485 patients whose MR scans did not suffer from incomplete fat 
suppression (circular data points): 𝑟𝑟 = 0.83, 𝑃𝑃 < 0.001, 𝑇𝑇𝐶𝐶2 = 0.83. 

Discussion 
In this study, we investigated the feasibility of automatic quantification of BME on 

MRI of the wrist in patients with early arthritis through an atlas-based approach. 

We chose to focus on the carpal bones, since they provide a complex multi-object 

scenario for exploring the feasibility of an atlas-based quantification framework. 

The advantage of this framework is that it can be straightforwardly expanded to 

other areas of the wrist and other joints by adding these areas of interest to the 

atlas. Validation results across 485 early arthritis patients indicated good 
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correlation between BME-QM and visual BME scores. It should be noted that 

perfect correlation is inherently not achievable because of the coarse grading scale 

of the visual score and the fine grading scale of BME-QM.  

Our training strategy helped ensure that during validation BME-QM 

correlated well across the entire range of the visual BME score. The fact that the 

correlation curve in Figure 4 is relatively flat for 𝑇𝑇𝐶𝐶2 values between 0.75 and 0.9 

suggests that there is a range of 𝑇𝑇𝐶𝐶2 values in this interval that result in good 

agreement between quantitative and visual scores. Furthermore, since BME-QM 

measures the fraction of voxels with C2 probability above 𝑇𝑇𝐶𝐶2, this seems to 

indicate that locations considered as BME in visual scoring often result in C2 

probability values around 0.9. We also examined the effect of a smaller training set 

on 𝑇𝑇𝐶𝐶2 optimization (data not shown), with five patients randomly selected from 

each 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 category forming a training set of 20 patients. We observed a similarly 

stable high correlation for 𝑇𝑇𝐶𝐶2 values between 0.75 and 0.9, suggesting that the 

optimization step is not overly sensitive to training set size, as long as patients from 

all categories of BME severity (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) are represented in the training data. 

The time required to execute the BME-QM framework for one patient on an 

Intel® Xeon® E5-1620 v3 CPU was ~58 min (SRR, ~20 min; ABS, ~35 min; 

BME quantification ~3 min). ABS is the most time-consuming step, but it can be 

accelerated 10-fold by running image registrations between all atlas images and the 

target image in parallel. Since registrations are independent of each other, this can 

be easily achieved given sufficient computing power. However, in large cohort 

studies, where evaluation of image data is often carried out days or weeks after the 

image is acquired, such acceleration may be irrelevant; an automatic framework 

can be executed immediately after image acquisition in an integrated fashion, thus 

ensuring quantitative results are available by the time a research project enters the 

evaluation phase. 

ABS provided satisfactory segmentation for the vast majority of patients. In 

practice, failed segmentation cases will require manual adjustment by an expert in 

order for BME-QM to be computed. Over-segmentation of bones or shifted 
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segmentations that include synovium voxels increase the value of BME-QM due to 

contrast enhancement in the synovium. It is preferable to slightly under-segment 

the bone to ensure the exclusion of synovium while retaining most of the bone 

marrow within the segmentation. That said, significant under-segmentation may 

lead to an upward bias in BME-QM. Quantitative assessment of ABS accuracy in 

13 patients revealed the tendency of ABS to under-segment bones (mid-range 

recall rates and high precision rates). Therefore, the current framework may raise 

false alarms when bone volume is under-estimated in the presence of moderate 

BME. The mid-range recall rates also suggest unwanted variability in BME-QM 

due to incomplete bone segmentation. The fact that the lowest recall rates were 

observed in the pisiform while the highest in the capitate, is likely due to the fact 

that the pisiform is the smallest of the carpal bones while the capitate is the largest 

of the carpal bones. An additional challenge during registration is the varied 

intensity and pattern of BME across patients. It is therefore advisable to avoid 

using very fine grid spacing during the B-spline registration step, since alignment 

between images on a coarser scale should be less sensitive to these local variations. 

Another potential pitfall is inclusion of erosions in the segmentation result. 

Erosions may contain high intensities that will mistakenly contribute to the value of 

BME-QM. To address these possible pitfalls and improve bone-level recall rates, 

an automatic refinement step should follow ABS in the future. In addition, to 

ensure robustness of the atlas to variations in MRI acquisition protocols and 

scanners at different sites, it may be necessary to form a larger atlas set consisting 

of sub-atlases of wrist scans acquired under different echo/repetition times and 

magnetic field strengths. The most suitable sub-atlas can then be automatically 

identified based on the acquisition parameters of a specific target image. 

Incomplete fat suppression during acquisition of MR scans has an adverse 

effect on the accuracy of BME-QM. Bone marrow fat signal that is not properly 

suppressed results in high intensities that are mistaken for edema voxels by the 

clustering algorithm. Fat suppression quality requirements for BME-QM are higher 

compared to visual scoring. This is due to the availability of pre-contrast image 
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data in visual scoring and pattern recognition during visual assessment of increased 

signal intensity secondary to insufficient fat suppression. Although fat suppression 

issues are relatively rare, they must be identified prior to applying BME-QM to 

reduce false positives. The possibility of identifying and compensating fat 

suppression issues automatically should be investigated. In addition, more robust 

fat suppression techniques that are less sensitive to bulk susceptibility, such as 

Dixon techniques, may be beneficial when BME-QM is used. 

A limitation of the current study is that the quality of carpal bone 

segmentation in training and validation set patients was judged subjectively. 

Quantitative assessment of segmentation accuracy was not possible, since no 

ground truth, manual segmentations were available for these patients. 

Quantification of segmentation accuracy would allow to supplement the BME 

measurement with a confidence measure. Another limitation is that pre-contrast 

image data could not be included in the framework, since pre-contrast T1 scans 

were acquired only in the coronal plane, while SRR requires a coronal and axial 

scan of the same sequence as input. Therefore, a straightforward voxel-to-voxel 

comparison between SRR T1-Gd images and pre-contrast T1 images was not 

possible. Inclusion of pre-contrast data would allow to explore a subtraction 

methodology as means of quantifying BME and could also facilitate the detection 

of fat suppression issues.  

Recently, another framework aimed at automatically quantifying RA-related 

biomarkers, called quantitative RAMRIS (RAMRIQ), was proposed by Bowes et 

al. [31,32] and employed in a treatment effects study by Conaghan et al. [33]. 

These studies focus on measuring change over time, demonstrating higher 

sensitivity of quantitative measurements compared to RAMRIS. In contrast, we 

focused on validation of quantitative measurements at a single time point. In the 

future, it would be interesting to employ BME-QM for measuring change over time 

and evaluate its sensitivity.  
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Conclusion 
We conclude that BME-QM has potential to provide a feasible alternative to visual 

scoring of BME on MRI of the wrist in patients with early arthritis. Complete 

automation requires further refinement of carpal bone segmentation and automatic 

detection and compensation of acquisition artifacts. Future work should also add 

more locations of interest relevant to RA to the atlas and extend this framework to 

other types of inflammation, such as synovitis and tenosynovitis. These 

developments can save time and manual effort for clinical researchers and help 

assess the value of MRI both for diagnosing RA and monitoring its treatment.  
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Automatic quantification of tenosynovitis on 

MRI of the wrist in patients with early arthritis 
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Abstract 

Purpose: Tenosynovitis (inflammation of the synovial lining of the sheath 
surrounding tendons) is frequently observed on MRI of early arthritis patients. 
Since visual assessment of tenosynovitis is a laborious task, we investigated the 
feasibility of automatic quantification of tenosynovitis on MRI of the wrist in a 
large cohort of early arthritis patients.  
 
Methods: For 563 consecutive early arthritis patients (clinically confirmed arthritis 
≥ 1 joint, symptoms < 2 years), MR scans of the wrist were processed in three 
automatic stages. First, super-resolution reconstruction was applied to fuse coronal 
and axial scans into a single high-resolution three-dimensional image. Next, 10 
extensor/flexor tendon regions were segmented using atlas-based segmentation and 
marker-based watershed. A measurement region of interest (ROI) was defined 
around the tendons. Finally, tenosynovitis was quantified by identifying image 
intensity values associated with tenosynovial inflammation using fuzzy clustering 
and measuring the fraction of voxels with these characteristic intensities within the 
measurement ROI. A subset of 60 patients was used for training and the remaining 
503 patients for validation. Correlation between quantitative measurements and 
visual scores was assessed through Pearson correlation coefficient. 
 
Results: Pearson correlation between quantitative measurements and visual scores 
across 503 patients was 𝑟𝑟 = 0.90, 𝑃𝑃 < 0.001. False detections due to blood vessels 
and synovitis present within the measurement ROI contributed to a median offset 
from zero equivalent to 13.8% of the largest measurement value. 
 
Conclusion: Quantitative measurement of tenosynovitis on MRI of the wrist is 
feasible and largely consistent with visual scores. Further improvements in 
segmentation and exclusion of false detections are warranted. 
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Introduction 
Initiation of treatment in the early stages of rheumatoid arthritis (RA) has been 

associated with higher chances of drug-free sustained remission and improved 

quality of life [1]. Therefore, it is important to recognize patients who are at risk of 

progressing to RA as early as possible, either in the symptomatic phase of 

arthralgia, which precedes clinical arthritis, or in the earliest phases of clinically 

detectable arthritis. Recent studies suggest that MRI-detected inflammation can aid 

this task [2–4], especially in combination with serological markers [2]. Among the 

different types of inflammation observed on MRI of hands and wrists, it has been 

shown that tenosynovitis (inflammation of the synovial lining of the sheath 

surrounding tendons) is independently predictive of RA development, both in 

patients presenting with early arthritis and with arthralgia [2–5]. In addition, 

changes in MRI-detected tenosynovitis may be of interest in treatment response 

evaluation. 

Assessment of tenosynovitis on MRI is commonly done according to the 

scoring method of Haavardsholm et al. [6], in which a reader examines multiple 

tendon regions and estimates the thickness of peritendinous effusion or synovial 

proliferation with contrast enhancement. This is a laborious task, which requires 

the availability of trained, experienced readers. Automating the evaluation of 

tenosynovitis could offer standardized, high-precision measurements derived 

directly from the image data and alleviate the time burden and cost associated with 

visual scoring. To date, limited research is available on this topic. Bowes et al. 

have published a conference abstract on quantifying change in tenosynovitis over 

time in 34 RA patients receiving treatment [7], but data on single time point 

validation of these quantitative measurements with respect to visual scores are not 

publicly available. 

In a recent study, we developed an automatic framework for measuring bone 

marrow edema (a strong predictor of radiographic progression in RA patients [8]) 

on MR images of the wrist [9]. In the work presented here, we sought to extend 

that framework to measure tenosynovitis of the extensor and flexor tendons of the 
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wrist. Our aim was to investigate the feasibility of tenosynovitis quantification and 

assess the correlation between quantitative measurements and visual scores in a 

large cohort of early arthritis patients. 

Methods 
Patients 

A total of 563 early arthritis patients consecutively included in the Leiden Early 

Arthritis Clinic cohort [10] were studied. Mean age (±SD) was 54.9 (±15.4) years, 

350 patients (62.2%) were female. Inclusion required clinically confirmed arthritis 

by physical examination in ≥ 1 joints and symptom duration < 2 years. The cohort 

study was approved by the medical ethics committee of Leiden University Medical 

Center (Leiden, The Netherlands). All participants provided written informed 

consent. 

MRI scanning and visual scoring 

The wrist joint of the most painful side (or the dominant side in cases of equally 

severe symptoms on both sides) was scanned with a 1.5T extremity MR scanner 

(GE Healthcare, Waukesha, WI, USA) using a 100 mm coil, with contrast 

enhancement and frequency-selective fat saturation (T1-Gd). Table 1 summarizes 

the acquisition parameters. In line with the definitions proposed by Haavardsholm 

et al. [6], tenosynovitis was evaluated in six extensor compartments and four flexor 

regions within the wrist joint (Figure 1). Visual scoring was independently 

performed by two trained readers blinded to clinical data. For each anatomical 

region, the readers provided a grade on a 0–3 scale based on the estimated 

maximum width of peritendinous effusion or synovial proliferation with contrast 

enhancement, as follows: grade 0, normal; grade 1, < 2 mm; grade 2, ≥ 2 mm and 

< 5 mm; grade 3, ≥ 5 mm. The scoring region was bounded by the distal 

radius/ulna proximally and the hook of the hamate distally. The intra-reader intra-

class correlation coefficients (ICCs) of the two readers for the total tenosynovitis 

score (sum across all tendon regions), based on 40 MRIs scored twice, were 0.99 
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and 0.83. The inter-reader ICC for the total tenosynovitis score, based on all 563 

MRIs, was 0.87. In what follows, the mean score of the two readers was always 

considered. 

Table 1. MRI sequences 
 Coronal scan Axial scan 
Repetition time (ms) 650 570 

Echo time (ms) 17 7 

Acquisition matrix 364×224 320×192 

Echo train length 2 2 

Slice thickness (mm) 2 3 

Slice gap (mm) 0.2 0.3 

Described are the acquisition parameters of T1-weighted fast spin-echo sequences with 
frequency-selective fat saturation obtained after intravenous injection of Gd-chelate 
(gadoteric acid, Guerbet, Paris, France, standard dose of 0.1 mmol/kg). 
 
 

 
Figure 1. Tendon regions (compartments) scored for tenosynovitis, shown on axial MR 
image of the wrist (T1, post-gadolinium, fat-saturated). The six defined extensor 
compartments contain: abductor pollicis longus, extensor pollicis brevis (I); extensor carpi 
radialis longus, extensor carpi radialis brevis (II); extensor pollicis longus (III); extensor 
digitorum communis, extensor indicus proprius (IV); extensor digiti quinti proprius (V); 
extensor carpi ulnaris (VI). The four flexor regions contain: flexor carpi ulnaris (1); ulnar 
bursa, including flexor digitorum profundus and superficialis tendon quartets (2); flexor 
pollicis longus (tendon) in radial bursa (3); flexor carpi radialis (4). Note: the flexor carpi 
ulnaris does not have a tenosynovial sheath; nevertheless, inflammation around this tendon 
is also observed, and therefore enhancement of tissue surrounding this tendon is scored 
[11]. 
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Quantitative image analysis framework 

Super-resolution reconstruction 
The coronal and axial MR scans compensate each other in terms of anatomical 

detail, since the slice thickness in each of the scans (2 mm in coronal; 3 mm in 

axial) is much larger than the in-plane spacing between voxels (~0.2 mm). In order 

for a quantitative framework to make use of all available image data in a compact 

and efficient manner, it is desirable to fuse the two scans into a single 3D image 

using super-resolution reconstruction (SRR). The application of SRR to MR 

images of the wrist has been detailed in our previous work [9]. We applied the 

method of Poot et al. [12] with Laplacian regularization (𝜆𝜆 = 0.05). 

Measurement region of interest 
The computation of the ROI required automatically segmenting the tendons, carpal 

bones, distal radius/ulna, and the image region bounded by skin. The bones and 

initial landmarks for the tendon regions were obtained using atlas-based 

segmentation [13]. The atlas consisted of 13 early arthritis patients (separate 

dataset, excluding patients evaluated visually and quantitatively in this study). For 

each atlas patient, the tendon regions and bones were manually segmented in the 

axial T1-Gd images and then extended to SRR space by nearest neighbor 

interpolation. After spatially mapping every atlas image onto the target image using 

the Elastix toolbox [14–16], a majority vote was applied across all mappings, 

determining whether a voxel would be labeled as one of the tendons, bones, or 

neither. It should be noted that all atlas images contained the right wrist joint. For 

segmentation of the left wrist, atlas images were horizontally mirrored prior to 

registration. 

Having obtained initial landmarks for the tendon regions, the tendons were 

segmented by a similar approach to Chen et al. [17] using marker-based watershed 

segmentation [18–20], followed by removal of segmented regions whose intensity 

was > 75 (tendons are characterized by low image intensities on T1-Gd images) or  
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Figure 2. SRR image of the wrist (a), segmented tendon regions and bones (b), the 
resulting measurement ROI (c) in which tenosynovitis is quantified (𝐷𝐷 = 3 mm), C2 
probability map (d), ROI locations included in the quantitative measurement marked in red 
(e). Image depicted in the figure received a total visual score of 1: grade 1 tenosynovitis in 
flexor region 3. Some of the voxels identified in neighboring flexor region 2 corresponded 
to a low grade enhancement, but were not picked up in visual scoring. Several blood vessels 
located within the ROI were also included, introducing a number of false detections that 
counted towards the quantitative measurement. 

whose volume was < 0.01 ml. An example of the resulting segmentations is shown 

in Figure 2(b).  

In order to segment the image region bounded by skin, the entire image 

extent of the hand was approximated. First, the background was segmented by 

performing region growing with seeds placed at the four corners of each image 

slice. Then, the resulting binary image was inverted and the largest connected 

component was retained. 

Finally, for each segmented tendon, a distance transform was performed and 

voxels within a fixed distance (𝐷𝐷) of the tendons were included in the measurement 

ROI as long as these voxels were not part of other labeled structures. The distal 

radius/ulna boundary of the ROI was determined by identifying the axial slice 

where the two bones were closest to each other. The hook of the hamate boundary 
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was determined by searching for the axial slice with the largest number of 

segmented hamate voxels. An example of the resulting measurement ROI is shown 

in Figure 2(c). As detailed in the optimization section, the value of distance 

parameter 𝐷𝐷 was obtained by maximizing correlation with visual scores on a 

training set of patients. 

Assessment of tendon segmentation accuracy 
To assess the accuracy of tendon segmentation, a leave-one-out cross-validation 

was performed. In each of the 13 runs, 12 out of 13 atlas images would constitute 

the atlas set, and the remaining image would be used as the target image to be 

segmented. The result was validated against manual segmentation of the axial 

image. Segmentation accuracy was evaluated by computing precision and recall 

rates for each of the 10 tendon regions. Here, precision rate refers to the fraction of 

voxels segmented by the algorithm that overlap with the manual segmentation, 

while recall rate refers to the fraction of voxels within the manual segmentation 

that were correctly segmented by the algorithm. 

Tenosynovitis quantification 
Tenosynovitis is characterized by high signal intensity on T1-Gd (fat-suppressed) 

images due to contrast enhancement. Intensity values vary per acquisition, 

depending on the relative strength of contrast enhancement, the homogeneity of the 

fat suppression, and the inherent magnetic field inhomogeneities of the MR 

scanner. To account for these acquisition-specific intensity ranges of tenosynovitis, 

fuzzy C-means clustering [21,22] was applied to the intensity values of all voxels 

in each image, assuming two clusters. This yields two probability map images, 

where each voxel contains the probability of that location belonging to the 

respective cluster. Let C2 be the cluster whose center value is the higher of the two 

computed cluster centers. As Figure 2(d) illustrates, high probabilities (bright 

voxels) within the C2 probability map correspond to locations of healthy synovial 

tissue. Since our focus is on regions of inflammation, where image intensity is 

expected to be higher compared to healthy synovium, voxels whose intensity was 
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lower than the value of C2 cluster center were removed, resulting in a one-sided C2 

probability map. 

Tenosynovitis was then quantified by computing the fraction of voxels 

within the measurement ROI whose one-sided C2 probability values 𝑝𝑝𝐶𝐶2 were 

bounded by 𝑇𝑇𝐿𝐿 ≤ 𝑝𝑝𝐶𝐶2 < 𝑇𝑇𝐻𝐻. As detailed below, the numeric values of the lower 

and upper thresholds (𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻) were optimized on a training set of patients to 

maximize correlation with visual scores.  

Optimization 

In order to optimize the (𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻) thresholds and distance parameter 𝐷𝐷 based on 

correlation with visual scores, a training set of patients was defined. The number of 

patients with low tenosynovitis (grades 0 and 1) in our early arthritis cohort was 

much larger than the number of patients with moderate-severe tenosynovitis 

(grades 2 and 3). Therefore, a random sampling of the cohort would not guarantee 

inclusion of patients with severe tenosynovitis in the training sample. In order to 

produce a more balanced training set representing the full range of tenosynovitis 

severity, we used a similar sampling approach as in our study on bone marrow 

edema [9]. We categorized 563 patients by the maximum visual score (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚) 

across the scored tendon regions. Three sampling categories were defined 

corresponding to three severity intervals within 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 range (0–3): 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0; 0 <

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1; 1 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 3. Table 2 lists the defined categories and the number of 

patients that fall into each category. Next, 20 patients were randomly selected from 

each category to form a training set of 60 patients. The optimal distance and 

threshold values were found by computing the quantitative measurement for 𝐷𝐷 = 

1, 2, 3, 4, 5, 6 mm and all possible combinations (step size 0.01) of (𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻) and 

determining which set of parameters maximized the Pearson correlation coefficient 

𝑟𝑟 between the total visual score of tenosynovitis (sum across all tendon regions) 

and the total quantitative tenosynovitis measurement. 
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Table 2. Training set sampling categories 

Severity category index 𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 interval Number of patients 

0 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0 200 

1 0 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1 261 

2 1 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 3 102 

Note: Random sampling across all categories would form a training set that mainly consists 
of patients with 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1. In contrast, randomly selecting 20 patients from category 2, for 
example, guarantees that the training set will include 20 patients in which at least one 
tendon region received a visual score greater than 1. Thus, random sampling from each 
severity category helps ensure 𝐷𝐷, 𝑇𝑇𝐿𝐿, and 𝑇𝑇𝐻𝐻 are optimized with respect to the entire range 
of tenosynovitis severity. 

Validation 

After optimizing and locking the values of 𝐷𝐷, 𝑇𝑇𝐿𝐿, and 𝑇𝑇𝐻𝐻, the method was validated 

by computing the quantitative tenosynovitis measurement for the 503 patients that 

were not part of the training set and evaluating the Pearson correlation coefficient 

between the total visual score and the total quantitative measurement. 

Statistical analysis 

When assessing the Pearson correlation coefficient between visual scores and 

quantitative measurements, 𝑃𝑃-values below 0.05 were considered to be statistically 

significant. Statistics were computed using MATLAB R2015b (The MathWorks 

Inc, Natick, MA, USA). 

Results 
Assessment of tendon segmentation accuracy 

The median and interquartile range (IQR) of recall and precision rates of tendon 

region segmentation across 13 atlas images are shown in Figure 3. Flexor regions 

exhibited high precision rates (median values ranging from 0.92 to 0.97) and 

moderate-high recall rates (median values ranging from 0.85 to 0.90). The rates 

were generally lower for extensor regions and exhibited more variability (median 

precision ranging from 0.78 to 0.94 and median recall ranging from 0.32 to 0.85). 
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The lowest recall (including 3 failed segmentations) was observed for extensor 

region III. 

 
Figure 3. Median and interquartile range of recall and precision rates of tendon region 
segmentation across 13 atlas images. 

Optimization 

The highest Pearson correlation value (𝑟𝑟 = 0.93, 𝑃𝑃 < 0.001) between the total 

visual score of tenosynovitis and the total quantitative measurement over 60 

training set patients was observed with distance parameter 𝐷𝐷 = 3 mm and threshold 

values 𝑇𝑇𝐿𝐿 = 0.82, 𝑇𝑇𝐻𝐻 = 0.94. As illustrated by the scatter plot in Figure 4, 

increasing levels of tenosynovitis severity were fairly consistently matched with 

increasing values of the quantitative measurement. The measurements of patients 

with total visual score 0 had a median offset from zero of 0.04 (IQR 0.03–0.05), 

constituting 14.8% of the largest observed value of 0.27 for the most severely 

affected patients. Figure 2(e) shows an example of measurement ROI locations that 

were counted towards the quantitative measurement. 
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Figure 4. Scatter plot of total quantitative measurements of tenosynovitis versus total visual 
scores for 60 training set patients. Each data point represents a single patient. Pearson 
correlation 𝑟𝑟 = 0.93, 𝑃𝑃 < 0.001, (𝐷𝐷 = 3 mm, 𝑇𝑇𝐿𝐿 = 0.82, 𝑇𝑇𝐻𝐻 = 0.94). Dashed black line 
represents linear regression fit. 

Validation 

Having obtained the optimized parameter values, the quantitative measurement was 

computed for 503 patients, and correlation was assessed. The resulting Pearson 

correlation coefficient was 𝑟𝑟 = 0.90, 𝑃𝑃 < 0.001. The scatter plot in Figure 5 shows 

that majority of patients exhibited a consistent trend of increasing quantitative 

measurements with increasing levels of tenosynovitis severity. The measurements 

of patients with total visual score 0 had a median offset from zero of 0.04 (IQR 

0.03–0.05) (same as in training), constituting 13.8% of the largest observed value 

of 0.29. Visual inspection of results indicated that blood vessels and synovitis 

present within the measurement ROI were often mistakenly counted as 

tenosynovitis by the quantitative measurement, increasing its numeric value. The 

strongly outlying case of a patient with visual score 0 and a quantitative 
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measurement of 0.15 was caused by a failed tendon segmentation due to an 

unusually low intensity distribution of healthy synovium. 

 
Figure 5. Scatter plot of total quantitative measurements of tenosynovitis versus total visual 
scores for 503 validation set patients. Each data point represents a single patient. Pearson 
correlation 𝑟𝑟 = 0.90, 𝑃𝑃 < 0.001, (𝐷𝐷 = 3 mm, 𝑇𝑇𝐿𝐿 = 0.82, 𝑇𝑇𝐻𝐻 = 0.94). Dashed black line 
represents linear regression fit. 

Discussion 
In this study, we investigated the feasibility of automatic quantification of 

tenosynovitis on MRI of the wrist in a large cohort of early arthritis patients. The 

presented method extended our previously developed atlas-based framework [9] to 

the extensor and flexor tendons of the wrist, providing the landmarks necessary for 

tendon segmentation and definition of the ROI in which tenosynovitis was 

measured. The results exhibited strong correlation between quantitative 

measurements and visual scores. Quantitative measurements should not be viewed 

as a replication of visual scoring and therefore this study assessed consistency and 

correlation, rather than absolute agreement. The observed correlation is especially 

encouraging considering that there is an inherent degree of variability within visual 



Chapter 4 

66 
 

scores due to the interval-based definition of the visual grades. These findings 

indicate that automatic quantification of tenosynovitis on MRI of early arthritis 

patients is feasible, and that quantitative measurements are largely consistent with 

visual scoring. However, this study also brings out multiple challenges pertinent to 

the quantification task, such as moderate segmentation performance and sources of 

false detections. As detailed in the following discussion, these are important issues 

that will need to be addressed on the path to a robust quantification framework.  

Interestingly, the overall moderate tendon segmentation recall rates did not 

seem to have a strong adverse effect on correlation between quantitative 

measurements and visual scores. This can be explained by the fact that even if a 

tendon is partially segmented, the measurement ROI around the segmentation is 

still likely to include the tendon’s synovial lining. Although the ROI will then also 

include voxels inside the tendon, on T1-Gd images tendons are characterized by 

low image intensities which do not contribute towards the inflammation 

measurement; one exception is enhancement due to concomitant tendinitis. It 

should be recognized, however, that in this study we measured the total 

inflammation across all evaluated tendon regions, which may have reduced 

sensitivity to errors made on the individual region level. This is particularly 

relevant when considering the low recall rates for extensor region III. The 3/13 

failed cross-validation cases indicate that reliable quantification of inflammation 

around this tendon was not always feasible. A likely reason for this is that extensor 

region III is the smallest of the 10 tendon regions and exhibits higher curvature, 

making the placement of atlas-based landmarks more challenging. One type of 

segmentation error that had no effect on total measurements was mislabeling of one 

tendon region as another; however, future studies must thoroughly assess 

mislabeling errors if evaluation of tenosynovitis on individual region level is of 

interest. More generally, it should be noted that inaccuracies in tendon 

segmentation do affect the total number of voxels included in the measurement 

ROI and thereby introduce some variability in the quantitative measurement. 

Therefore, improving segmentation accuracy is an important direction of future 
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work both for measurement precision and accurate evaluation of tenosynovitis on 

the individual region level. 

As illustrated by Figure 2(e), locations counted towards the quantitative 

measurement did not always include all voxels within the inflammation, but most 

voxels along the boundary of the inflammation were typically included. One 

possible reason for this is that the threshold parameters (𝑇𝑇𝐿𝐿 ,𝑇𝑇𝐻𝐻) were optimized 

with respect to scores that reflect the maximum thickness of peritendinous effusion 

or synovial proliferation in each tendon region. Maximum thickness is not 

equivalent to total volume, and therefore it is plausible that some voxels within the 

inflammation were not included in the measurement. Figure 2(e) also illustrates 

that one drawback of the current method is that blood vessels introduce false 

detections that contribute towards the quantitative measurement. This observation 

explains one of the factors behind the consistent offset from zero both during 

training and validation. Future improvements should include detection of blood 

vessels and their exclusion from the measurement ROI. 

Visual inspection of quantification results indicated that synovitis present 

within the measurement ROI (for example, between carpal bones and tendons) was 

mistakenly counted as tenosynovitis by the quantitative measurement. In visual 

scoring, trained readers employ their expertise and pattern recognition to classify 

the observed inflammation as either synovitis or tenosynovitis. The presented 

method did not include such classification, and therefore it is not surprising that it 

counted all inflammation detected within the measurement ROI as tenosynovitis. 

This is another contributing factor to the offset observed in training and validation. 

Since synovitis is often present in joints in the vicinity of tendons affected by 

tenosynovitis [11], a more specific definition of the measurement ROI is 

warranted.  

Conclusion 
In conclusion, the presented method provides a reference on the path to automatic 

quantification of tenosynovitis on MRI and lays out possible directions for future 
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improvements. The common presence of tenosynovitis in RA and its association 

with RA development in arthralgia and early arthritis patients motivate the 

development of quantitative measurement techniques. These advances would aid 

clinical researchers by standardizing interpretation and allowing them to dedicate 

more resources to analysis rather than visual scoring, facilitating both research and 

potential clinical implementation.  
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Abstract 

Purpose: MRI-detected inflammation is considered of diagnostic value for 
rheumatoid arthritis (RA), but its evaluation involves a time-consuming scoring of 
61 joint-level features. It is not clear, however, which of these features are specific 
for RA and whether evaluating a subset of specific features is sufficient to 
differentiate RA patients. This study aimed to identify a subset of RA-specific 
features in a case-control setting and validate them in a longitudinal cohort of 
arthralgia patients.  
 
Methods: The difference in frequency of MRI-detected inflammation (bone 
marrow edema, synovitis, tenosynovitis) between 199 RA patients and 193 controls 
was studied in 61 features across the wrist, metacarpophalangeal, and 
metatarsophalangeal joints. A subset of RA-specific features was obtained by 
applying a cutoff on the frequency difference while maximizing discriminative 
performance. For validation, this subset was used to predict arthritis development 
in 225 clinically suspect arthralgia (CSA) patients. Diagnostic performance was 
compared to a reference method that uses the complete set of 61 features 
normalized for inflammation levels in age-matched controls. 
 
Results: Subset of 30 features, mainly (teno)synovitis, was obtained from the case-
control setting. Validation in CSA patients yielded an area of 0.69 (95% CI: 0.59–
0.78) under the ROC curve and a positive predictive value (PPV) of 31%, 
compared to 0.68 (95% CI: 0.60–0.77) and 29% PPV of the reference method with 
61 features. 
 
Conclusion: Subset of 30 MRI-detected inflammatory features, dominated by 
(teno)synovitis, offers a considerable reduction of scoring efforts without 
compromising accuracy for prediction of arthritis development in CSA patients. 
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Introduction 
MRI-detected inflammation has been shown to predict erosive progression in early 

rheumatoid arthritis (RA) [1] and contribute to prediction of arthritis development 

in patients presenting with clinically suspect arthralgia (CSA) [2,3]. However, 

evaluating MR scans for bone marrow edema (BME), synovitis, and tenosynovitis 

across the wrist, metacarpophalangeal (MCP), and metatarsophalangeal (MTP) 

joints commonly amounts to a time-consuming scoring of 61 joint-level features in 

line with the RA MRI scoring system (RAMRIS) [4]. Yet, it is not clear which of 

these features are specific for RA and whether evaluating a subset of specific joint-

level features would provide a similar or improved diagnostic performance when 

predicting progression from CSA to RA. Recent studies by Van Steenbergen et al. 

[3], Kleyer et al. [5], and Mangnus et al. [6] suggest that while certain anatomical 

locations and types of inflammation exhibit stronger association with arthritis 

development, others are also prevalent among symptom-free persons. 

Identification of RA-specific features could both simplify the use of MRI in 

practice and advance the understanding of arthritis pathogenesis. Patients with 

CSA are a population of special interest in this context. CSA is a symptomatic 

phase preceding clinical arthritis, and therefore, it provides opportunity to clinically 

recognize patients who are at risk of progression to RA. The study of Van 

Steenbergen et al. [3] in 150 CSA patients found that 20% of these patients 

developed clinically detectable arthritis within two years of being recognized as 

having CSA by the treating rheumatologist. Furthermore, identifying patients at 

risk of progression to RA in the pre-arthritis phase would allow to study whether 

earlier treatment can increase chances of improved outcome [7].  

Considering on the one hand the high sensitivity of MRI in measuring local 

inflammation in patients who already progressed from CSA to clinical arthritis [8], 

but on the other hand the presence of some inflammatory features in symptom-free 

persons [6], we suspect that comparing the frequency of inflammation across 

established RA patients and symptom-free persons may help identify features that 

would be most predictive of progression from CSA to clinical arthritis. This study 
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aimed to 1) determine the difference in frequency of joint-level inflammation 

between RA patients (cases) and symptom-free persons (controls), 2) identify a 

subset of features that, on the one hand, are specific for RA based on the difference 

in case-control frequency of inflammation, and on the other hand maximize 

discriminative ability compared to the complete set of features, and 3) validate the 

identified subset of features for prediction of progression from CSA to clinical 

arthritis within a 2-year follow-up period in a longitudinal cohort of CSA patients. 

Methods 
Subjects 

Three groups of individuals from previously reported cohorts were studied, as 

detailed below: patients with established RA, symptom-free persons, and patients 

with CSA. All cohort studies were approved by the medical ethics committee of 

Leiden University Medical Center (Leiden, The Netherlands). All participants 

provided written informed consent. 

Cases: rheumatoid arthritis patients from the Leiden Early Arthritis Clinic 

cohort 

The Leiden Early Arthritis Clinic (EAC) cohort [9] is a longitudinal inception 

cohort that includes patients with arthritis clinically confirmed by physical 

examination and symptom duration of less than two years. The cohort was initiated 

in 1993 at Leiden University Medical Center (Leiden, The Netherlands). Baseline 

MRI was added to the study protocol in August 2010. Consecutive patients that 

presented with RA meeting the 1987 American College of Rheumatology (ACR) 

criteria [10] at 1-year follow-up, between August 2010 and October 2014, were 

studied (𝑛𝑛 = 199) and are subsequently referred to as cases. 

Controls: symptom-free volunteers 

Symptom-free volunteers from a previously reported study [6] served as controls 

(𝑛𝑛 = 193). Volunteers were recruited via advertisements in local newspapers and 

websites and had no history of inflammatory rheumatic diseases, no 
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musculoskeletal symptoms during the month preceding the study, and no evidence 

of arthritis at physical examination. 

Clinically suspect arthralgia patients from the Leiden CSA cohort 

The CSA cohort [11] is a population-based inception cohort that started in 2012 at 

Leiden University Medical Center (Leiden, The Netherlands) with the aim of 

studying the symptomatic phase of RA that precedes clinical arthritis. Inclusion 

required the presence of arthralgia of the small joints for less than a year that was at 

increased risk of progressing to RA according to the patient’s rheumatologist’s 

clinical expertise. General practitioners in our region rarely perform autoantibody 

testing before referral [12]; hence, rheumatologists included patients based on the 

clinical presentation [11]. This approach to identifying CSA was proven accurate in 

clinical practice [13], but contains a certain degree of subjectivity. To harmonize 

inclusion in future studies, an EULAR taskforce recently developed a definition of 

arthralgia suspicious for progression to rheumatoid arthritis [2]. This definition is 

based on 7 parameters: symptom duration < 1 year, symptoms located in MCP 

joints, morning stiffness duration ≥ 60 min, most severe symptoms in early 

morning, presence of first-degree relative with RA, difficulty with making a fist, 

and positive squeeze test of MCP joints. The EULAR taskforce did not provide a 

single recommended cutoff point for the number of positive parameters that define 

CSA, but it was noted that a high sensitivity (> 90%) with respect to patients 

identified as CSA was obtained if  ≥ 3 out of 7 parameters were present.  

Following admission to the cohort, patients’ baseline assessment included 

the Health Assessment Questionnaire (HAQ), a 66-swollen joint count (SJC) and 

68-tender joint count (TJC), blood samples (including C-reactive protein (CRP), 

IgM rheumatoid factor (RF), ACPA (anti-cyclic citrullinated peptide 2, 

Eurodiagnostica, The Netherlands)), and acquisition of MRI. Treatment with 

disease-modifying anti-rheumatic drugs (DMARDs) was not allowed. Non-

steroidal anti-inflammatory drugs (NSAIDs) were allowed, but stopped 24 hours 
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prior to MRI in order to prevent the suppression of subclinical inflammation at the 

moment of MR imaging. 

Patients included between April 2012 and March 2015 with available 

baseline MRI data were studied (𝑛𝑛 = 225). Among these patients, 162 (72%) 

exhibited presence of ≥ 3 of the CSA parameters defined by EULAR [2]. Follow-

up ended when clinical arthritis had developed or else after two years. Positive 

outcome was defined as arthritis development within two years of baseline MRI, 

identified at joint examination by an experienced rheumatologist. Out of the 225 

studied patients, 41 (18.2%) patients progressed to clinical arthritis within the 2-

year follow-up period. 

MRI scanning and scoring 

For all patients in the three cohorts, contrast-enhanced MRI was performed in the 

wrist, MCP(2–5), and MTP(1–5) joints of the most painful side (or the dominant 

side in case of equally severe symptoms on both sides). The joints were scanned 

with a 1.5T extremity MR scanner (GE Healthcare, Waukesha, WI, USA) using a 

100 mm coil for the hand and a 145 mm coil for the foot. In the hand, a T1-

weighted fast spin-echo (FSE) sequence was acquired before contrast injection in 

the coronal plane (repetition time (TR) of 575 ms, echo time (TE) of 11.2 ms, 

acquisition matrix 388×288, echo train length (ETL) 2). After intravenous injection 

of gadolinium contrast (gadoteric acid, Guerbet, Paris, France, standard dose of 0.1 

mmol/kg), a T1-weighted FSE sequence with frequency-selective fat saturation 

(T1-Gd) was acquired in the coronal plane (TR/TE 700/9.7 ms, acquisition matrix 

364×224, ETL 2) and the axial plane (wrist: TR/TE 540/7.7 ms, acquisition matrix 

320×192, ETL 2; MCP joints: TR/TE 570/7.7 ms, acquisition matrix 320×192, 

ETL 2). The obtained sequences for the forefoot were a T1-Gd sequence in the 

axial plane (TR/TE 700/9.5 ms, acquisition matrix 364×224, ETL 2) and the 

coronal plane (perpendicular to the axis of the metatarsals) (TR/TE 540/7.5 ms, 

acquisition matrix 320×192, ETL 2). Coronal sequences of the hand had 18 slices 

with a slice thickness of 2 mm and a slice gap of 0.2 mm. Coronal sequences of the 
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foot had 20 slices with a slice thickness of 3 mm and a slice gap of 0.3 mm. All 

axial sequences had a slice thickness of 3 mm and a slice gap of 0.3 mm with 20 

slices for the wrist, 16 for the MCP joints, and 14 for the foot. Further information 

about the MRI protocol and some exceptions are described in the Supplementary 

Material. 

Bone marrow edema (BME) and synovitis were scored in line with the 

definitions proposed by the RAMRIS method [4]. The BME score was based on 

the fraction of affected bone volume: 0, no BME; 1, 1–33% of bone edematous; 2, 

34–66%; 3, 67–100%. Histopathology studies of lesions defined as BME by 

RAMRIS have shown that these lesions contain lymphocytic infiltrates; therefore, 

the imaging feature BME in RA has been also called osteitis [14–16]. The synovitis 

score was based on the volume of enhanced tissue in the synovial compartment: 0, 

none; 1, mild; 2, moderate; 3, severe. Since the carpometacarpal (CMC)-1 joint 

(base metacarpal-1 and trapezium) does not communicate with the intercarpal joint, 

and it is a prediction site for arthrosis, it was excluded.  

Tenosynovitis in the wrist and MCP joints was scored in line with 

Haavardsholm et al. [17]. The score was based on the estimated maximum width of 

peritendinous effusion or synovial proliferation with contrast enhancement: 0, 

normal; 1, < 2 mm; 2, ≥ 2 mm and < 5 mm; 3, ≥ 5 mm. 

In total, 61 features were evaluated: 31 bones for BME (distal radius, distal 

ulna, 7 carpal bones, base metacarpal(2–5), proximal/distal MCP(2–5), 

proximal/distal MTP(1–5)), 12 joints for synovitis (intercarpal, radiocarpal, distal 

radioulnar, MCP(2–5), MTP(1–5) joints), and 18 tendon regions (compartments) 

(Figure 1) for tenosynovitis (6 extensor compartments and 4 flexor regions in the 

wrist, 4 flexor and 4 extensor tendons at the MCP level). Note that although 

extensor tendons at the MCP level and the flexor carpi ulnaris at the wrist do not 

have a tenosynovial sheath, inflammation around these tendons is also observed 

[18], and therefore enhancement of tissue surrounding these tendons is scored. 
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Figure 1. Tendon regions (compartments) scored for tenosynovitis in the wrist (a) and the 
MCP joints (b), shown on axial MR images (T1, post-gadolinium, fat-saturated). In the 
wrist, the six defined extensor compartments contain: abductor pollicis longus, extensor 
pollicis brevis (I); extensor carpi radialis longus, extensor carpi radialis brevis (II); extensor 
pollicis longus (III); extensor digitorum communis, extensor indicus proprius (IV); extensor 
digiti quinti proprius (V); extensor carpi ulnaris (VI). The four flexor regions in the wrist 
contain: flexor carpi ulnaris (1); ulnar bursa, including flexor digitorum profundus and 
superficialis tendon quartets (2); flexor pollicis longus (tendon) in radial bursa (3); flexor 
carpi radialis (4). In the MCP joints, the four extensor regions (ext. 2–5) contain the 
extensor tendons of the fingers, and the four flexor regions (flex. 2–5) contain the paired 
flexor tendons, corresponding to MCP joints 2–5. Note: extensor tendons at the MCP level 
and the flexor carpi ulnaris at the wrist do not have a tenosynovial sheath; nevertheless, 
inflammation around these tendons is also observed, and therefore enhancement of tissue 
surrounding these tendons is scored [18]. 

 

Scoring was performed by a total of four independent experienced readers 

(two per each cohort) blinded to clinical data. The readers were physicians and 

active as researchers in the field of rheumatology, more specifically RA research. 

They received training for several months under the supervision of an experienced 

reader in order to learn the RAMRIS scoring system and had to achieve intraclass 

correlation coefficients (ICC) of 0.90 or higher on an MRI training set before they 

were allowed to score for research purposes. The inter-reader and intra-reader ICCs 

are reported in Supplementary Table A.1. In what follows, the mean score across 

readers was always considered. 
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Difference in joint-level frequency of inflammation between cases and controls 

For each of the 61 inflammatory features, the frequency of presence of MRI-

detected inflammation was computed separately across cases and controls. 

Presence of MRI inflammation in a given feature was defined as a visual score 

greater than 0. Next, the feature-wise frequency values obtained for controls were 

subtracted from the frequency values obtained for cases. The resulting values are 

referred to as control-adjusted frequency of inflammation. High values of control-

adjusted frequency would reveal features that are specific for RA, while low values 

would indicate features that are either non-specific or have low prevalence of 

inflammation in RA patients. 

Feature identification and prediction of outcome in the case-control setting 

With the knowledge of difference in frequency of MRI-detected inflammation 

between cases and controls for each of the 61 features, we sought to identify a 

subset of features that would be specific for RA and, at the same time, would 

maximize discriminative ability compared to the complete set of features. Subsets 

of features of different specificity can be explored by varying a cutoff (threshold) 

value on the control-adjusted frequency and retaining features whose control-

adjusted frequency is above that cutoff value. Lower cutoff values would produce 

larger subsets containing more non-specific features, while higher cutoff values 

would produce smaller subsets with more specific features. The discriminative 

ability of each such subset can be assessed by computing the total inflammation 

score across the retained features for every patient and measuring the area under 

the receiver operating characteristic curve (ROC). Consequently, our goal was to 

find the smallest subset that would yield an area under the curve (AUC) that was 

closest (or higher) to the AUC yielded by the complete set of 61 features. Thus, our 

feature identification method consisted of the following four stages: 
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1) Vary the value of control-adjusted frequency cutoff with a step size of 

0.05; for  each cutoff value, form a subset of features whose control-

adjusted frequency of inflammation is above the cutoff value.  

2) For every case and control subject, compute the total inflammation score 

across the obtained subset of features. Here, raw scores are considered, 

representing the severity of inflammation for each feature. 

3) Assign positive outcome (RA) if the total inflammation score is greater 

than the value of a total inflammation threshold TInfl. Construct an ROC 

curve by varying the value of TInfl and compute the area under the curve. 

4) Determine the smallest subset of features that yielded an AUC that is 

closest (or higher) to the AUC of the complete set of 61 features.  

Sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV) were computed for the obtained subset of features at the ROC point 

closest to (0,1). 

Validation in CSA patients based on the subset of features obtained from the 

case-control setting 

The ultimate stage of the study was to validate the subset of inflammatory features 

obtained from the case-control setting for prediction of arthritis development in 

CSA patients. An underlying assumption made here is that features yielding good 

predictive performance on the case-control population would also yield good 

diagnostic performance on the CSA population, where positive outcome was 

defined as progression from CSA to clinical arthritis within two years of baseline 

MRI. 

For every patient, the total inflammation score across the identified subset of 

features was computed. Once again, here the raw scores are considered, 

representing the severity of inflammation for each feature. Positive outcome was 

assigned if the total inflammation score was greater than the value of a total 

inflammation threshold TInfl. An ROC curve was constructed by varying the value 
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of TInfl. Diagnostic performance was quantified by AUC, sensitivity, specificity, 

PPV, and NPV. The latter four measures were computed for the TInfl value obtained 

from the case-control setting. For comparison of diagnostic performance, the 

method of Van Steenbergen et al. [3] was applied to the same data and its AUC, 

sensitivity, specificity, PPV, and NPV were computed. In brief, the method assigns 

positive outcome if the inflammation score (i.e. severity of inflammation) of at 

least one of the 61 features was observed in less than 5% of age-matched controls. 

Since readers are blinded to patient age when evaluating the MR scans, all 61 

features must be scored, so that outcome can be assigned after de-blinding of age 

and referencing with respect to age-matched controls.  

Finally, recognizing that the total inflammation threshold obtained from the 

case-control setting might be too high for CSA patients, since inflammation levels 

are generally less severe in early disease patients, the test characteristics were 

computed again for the point on the CSA ROC curve that was closest to (0,1). This 

was performed as a sub-analysis to further explore the ROC curve produced by the 

identified subset of features. It should be clearly pointed out that this sub-analysis 

was subject to overfitting, because in this case the total inflammation threshold was 

optimized using validation data. 

Results 
Clinical characteristics 

Baseline characteristics of studied subjects from the three cohorts are shown in 

Table 1. Among cases (127 females and 72 males), the mean age (± SD) was 56.1 

(± 14.4) years, and among controls (136 females and 57 males) the mean age (± 

SD) was 49.8 (± 15.8) years. The mean age (± SD) of CSA patients (174 females 

and 51 males) was 44.2 (± 13.0) years. At baseline, 28 out of 225 (12.4%) CSA 

patients tested positive for anti-citrullinated peptide antibodies (ACPA). Within the 

2-year follow-up period, 41 (18.2%) CSA patients progressed to clinical arthritis. 

Among these 41 patients, 17 patients (41.5%) were ACPA-positive at baseline. 
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Table 1. Baseline characteristics of subjects in the three cohorts 
 RA patients 

(𝑛𝑛 = 199) 

Symptom-free persons 

(𝑛𝑛 = 193) 

CSA patients 

(𝑛𝑛 = 225) 

Age in years, mean (SD) 56.1 (14.4) 49.8 (15.8) 44.2 (13.0) 

Female, n (%) 127 (63.8) 136 (70.5) 174 (77.3) 

BMI in kg/m2 *, mean (SD) 26.6 (4.3) 24.8 (3.9) 27.0 (4.9) 

Elevated CRP, n (%) 129 (64.8) Not assessed 49 (21.8) 

HAQ score *, median (IQR) 1.0 (0.63–1.50) Not assessed 0.50 (0.25–0.88) 

IgM-RF positive, n (%)  121 (60.8) Not assessed 46 (20.4) 

ACPA positive, n (%) 108 (54.3) Not assessed 28 (12.4) 

TJC *, median (IQR) 5 (4–7) 0 6 (3–10) 

SJC, median (IQR) 6 (3–10) 0 0 

Legend:  
ACPA = anti-citrullinated peptide antibody; BMI = body mass index; CRP = C-reactive protein; 
CSA = clinically suspect arthralgia; HAQ = Health Assessment Questionnaire; IgM-RF = 
immunoglobulin M rheumatoid factor; IQR = interquartile range; RA = rheumatoid arthritis; SD = 
standard deviation; SJC = swollen joints count; TJC = tender joint count.  

* Missing data were as follows: BMI in CSA calculated for 224 patients, TJC in CSA calculated 
for 222 patients, HAQ in the RA patients calculated for 187 patients, TJC in the RA patients 
calculated for 192 patients, SJC in the RA patients calculated for 192 patients. 
 

Difference in joint-level frequency of inflammation between cases and controls 

The feature-wise frequency of MRI-detected inflammation in cases and controls is 

shown in Figure 2. After subtraction of control frequencies, several notable 

deviations from case values were observed. In particular, the frequency value 

reduced significantly for BME in the lunate and synovitis in the distal radioulnar, 

radiocarpal, and intercarpal joints. In contrast, control-adjusted frequency values 

remained close to case values and simultaneously high on the absolute scale for 

tenosynovitis in wrist flexor regions 2–4. 
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Figure 2. Frequency of MRI-detected inflammation across cases and controls in 61 
inflammatory features, shown separately for the identified subset of 30 features (a) and 31 
features that were not part of the identified subset (b). Control-adjusted frequency 
computed as feature-wise difference between cases and controls. 
Feature abbreviations: 

BME = bone marrow edema MT = metatarsal HA = hamate 
SYN = synovitis MTD = MT distal CA = capitate 
TSY = tenosynovitis MTP = MT proximal TD = trapezoid 
 MC = metacarpal PI = pisiform 
 MCD = MC distal TQ = triquetrum 
 MCP = MC proximal LU = lunate 
 MCF = MC flexor SC = scaphoid 
 MCE = MC extensor UL = ulna 
 WR = wrist RA = radius 
 WR*(I-VI) = WR extensor 

compartments I-VI 
RU = distal radioulnar joint 

 WR*(1-4) = WR flexor regions 
1-4 

RC = radiocarpal joint 

  IC = intercarpal joints 
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Feature identification and prediction of outcome in the case-control setting 

Figure 3(a–b) displays the AUC for prediction of outcome (RA) in the case-control 

setting under different feature subsets, produced by varying the cutoff value on 

control-adjusted frequency with a step size of 0.05. The complete set of 61 features 

(cutoff value = 0) yielded an AUC of 0.91 (95% confidence interval (CI): 0.89 to 

0.94). The smallest subset of features that yielded a similar (and higher) AUC of 

0.93 (95% CI: 0.90 to 0.95), which was effectively comparable to that of the 

complete set, was observed at cutoff value 0.2 and consisted of 30 features (listed 

in Table 2). Most identified features were locations of tenosynovitis and synovitis, 

in addition to two BME locations (MTP5 and the triquetrum). Among features that 

were left out, 29/31 (94%) were locations of BME and 2/31 were tenosynovitis of 

wrist flexor region 1 and extensor compartment III. The total inflammation 

threshold corresponding to the ROC point closest to (0,1) was TInfl = 4.5, with a 

sensitivity of 79%, specificity of 92%, PPV of 91%, and NPV of 81%. 

Validation in CSA patients based on the subset of features obtained from the 

case-control setting 

Applying the subset of 30 features obtained from the case-control setting to 

prediction of arthritis development in CSA patients yielded an AUC of 0.69 (95% 

CI: 0.59 to 0.78). The ROC curve is shown in Figure 3(c) together with the 

diagnostic test characteristics plotted as a function of the total inflammation 

threshold TInfl in Figure 3(d). The threshold value derived from the case-control 

setting (TInfl = 4.5) produced a sensitivity of 37%, specificity of 82%, PPV of 31%, 

and NPV of 85%. The method of Van Steenbergen et al. [3] (61 features with age-

referencing) was applied to the same data, yielding an AUC of 0.68 (95% CI: 0.60 

to 0.77), sensitivity of 80%, specificity of 56%, PPV of 29%, and NPV of 93%. 

The diagnostic test characteristics of both methods are summarized in Table 3.  

As a sub-analysis, to further explore the ROC curve produced by the subset 

of 30 features, the test characteristics were computed again for the point on the 

CSA ROC curve that was closest to (0,1), which corresponded to TInfl = 2.5. This  
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Table 2. Subset of 30 inflammatory features obtained from the case-control setting 

Feature Location  Control-adjusted frequency 
BME MTP5  0.22 
 Triquetrum  0.26 
Synovitis MTP5  0.37 
 MTP4  0.25 
 MTP3  0.25 
 MTP2  0.26 
 MTP1  0.31 
 MCP5  0.41 
 MCP4  0.35 
 MCP3  0.35 
 MCP2  0.42 
 Distal radioulnar joint  0.33 
 Radiocarpal joint  0.42 
 Inter-carpal joints  0.32 
Tenosynovitis  MCP5 flexor  0.42 
 MCP4 flexor  0.21 
 MCP3 flexor  0.29 
 MCP2 flexor  0.38 
 MCP5 extensor  0.22 
 MCP4 extensor  0.22 
 MCP3 extensor  0.29 
 MCP2 extensor  0.31 
 Wrist extensor compartment: VI 0.51 
  V 0.31 
  IV 0.28 
  II 0.34 
  I 0.29 
 Wrist flexor region: 2 0.48 
  3 0.47 
  4 0.46 
Control-adjusted frequency computed as feature-wise difference in frequency of MRI-
detected inflammation between cases and controls. 
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Figure 3. Feature identification and validation. Identification: by varying the cutoff value 
on control-adjusted frequency of inflammation (a), feature subsets of different sizes are 
produced (b), with corresponding AUC values for prediction of outcome (RA) in the case-
control setting. The smallest subset of features yielding an AUC comparable to the 
complete set was observed at cutoff value 0.2 and consisted of 30 features. Validation: 
ROC curve (c) and diagnostic test characteristics (d) for prediction of arthritis development 
in CSA patients, based on the subset of features obtained from the case-control setting. 

configuration produced a sensitivity of 66%, specificity of 70%, PPV of 33%, and 

NPV of 90%. As recognized above, this sub-analysis was subject to overfitting, 

because in this case the total inflammation threshold was optimized using 

validation data. 
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Table 3. Diagnostic test characteristics for prediction of arthritis development in CSA 
patients 

 Sens. 
(95% CI) 

Spec.  
(95% CI) 

PPV 
(95% CI) 

NPV 
(95% CI) 

AUC  
(95% CI) 

30 features  
subset 
(TInfl=4.5) 
 

37%  
(22%-51%) 

82% 
(77%-88%) 

31% 
(18%-44%) 

85%  
(80%-91%) 

0.69 
(0.59-0.78) 

Van Steenbergen 
et al.  
61 features with  
age-referencing 
 

80% 
(68%-93%) 

56% 
(49%-63%) 

29% 
(21%-37%) 

93% 
(88%-98%) 

0.68 
(0.60-0.77) 

Sub-analysis:  
30 features 
subset 
(TInfl=2.5) 
 

66% 
(51%-80%) 

70% 
(63%-77%) 

33% 
(23%-43%) 

90% 
(85%-95%) 

0.69 
(0.59-0.78) 

Presented are the diagnostic test characteristics for prediction of arthritis development within 
two years of baseline MRI in 225 patients with clinically suspect arthralgia. Sens. = sensitivity; 
Spec. = specificity; PPV = positive predictive value; NPV = negative predictive value; AUC = 
area under the curve; TInfl = total inflammation threshold. 
 

Discussion 
This study identified a subset of RA-specific joint-level MRI-detected 

inflammatory features in a case-control setting and validated them for prediction of 

progression to clinical arthritis in patients with CSA. The comparable AUCs of the 

presented method and the reference method of Van Steenbergen et al. [3] suggest 

that it is possible to preserve discriminative ability while scoring only half (30/61) 

of the features that are typically scored, mainly focusing on locations of 

(teno)synovitis and leaving out the majority of BME locations. Furthermore, the 

presented method does not require referencing inflammation levels with respect to 

age-matched controls during the scoring process, meaning that outcome can be 

assigned even when a reader is blinded to patient age. These findings indicate that 

the scoring of MR scans can be significantly simplified and encourage further 

research into the identified inflammatory features in the broader context of arthritis 

pathogenesis. 
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We have made an underlying assumption that a subset of features yielding 

good predictive performance on the case-control population (cases being RA 

patients) can also yield good diagnostic performance on the CSA population, with 

progression to arthritis within two years of baseline MRI as the outcome. Our 

results confirm this assumption. The quality of diagnostic performance in CSA 

patients should be judged in comparison to the method of Van Steenbergen et al. 

[3], since it exploits the entire set of 61 features. To that end, comparison between 

AUCs is more informative than comparison between sensitivity/specificity pairs, 

since the latter depend on the definition of the optimal point on the ROC curve. As 

Figure 3(d) illustrates, a range of combinations of test characteristic values are 

achievable depending on the choice of the total inflammation threshold TInfl. The 

choice of the optimal TInfl value would depend on the objective of the diagnostic 

test. Lower thresholds provide better trade-off between sensitivity and specificity, 

but result in moderate PPV. On the other hand, higher thresholds yield higher PPV 

and specificity, but result in low sensitivity.  

In practice, a diagnostic test for progression from CSA to clinical arthritis 

would combine any MRI-detected inflammatory features with other RA 

biomarkers, such as ACPA and C-reactive protein. MRI-detected inflammation 

should be seen as a potential complement to other features, not as a substitute. The 

discovery of a smaller subset of joint-level features that capture the overall 

diagnostic capacity of MRI-detected inflammation with respect to arthritis 

development raises questions about whether the underlying biological processes 

driving the inflammation at the identified anatomical locations can lead to a better 

understanding of arthritis pathogenesis and, ultimately, improved early diagnosis 

and treatment of the disease.  

The identified subset of features is dominated by tenosynovitis and synovitis. 

This bridges earlier findings about the role of these features in early arthritis 

patients, CSA patients, and symptom-free persons [3,6,18] and extends the findings 

of Kleyer et al. [5] about tenosynovitis and its association with arthritis 

development. Interestingly, the only BME locations included in the subset were 
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MTP5 and the triquetrum. The location of MTP5 is known to show the first erosion 

in RA patients, before an erosion can be identified in the hand or wrist [19]. The 

BME in the triquetrum is less easily explained. Insertion of intercarpal ligaments 

might play a role. This study shows that commonly seen subtle BME in the carpal 

bones and heads of metacarpal bones is not specific for RA patients. Also, BME 

secondary to arthrosis (e.g. the scaphotrapeziotrapezoidal joint), subchondral cysts, 

and avascular necrosis of the lunate are common findings that are frequently not 

secondary to RA. It is important to underline that here we examine features with 

the purpose of differentiating RA patients from subjects without clinical arthritis. 

BME remains an important predictor of erosive progression in patients with 

established RA. 

This study was limited to populations in our region, and therefore, further 

replication studies are needed to confirm the findings in other populations. Another 

limitation is that in the first 78 patients in the CSA cohort and in 114 patients from 

the EAC cohort, MRI of the feet was acquired without contrast enhancement and 

only in the axial plane (relative to the anatomical position). Since no coronal scans 

of the foot were available for these patients, MTP tenosynovitis features were not 

scored, and therefore not included in this study. In the absence of post-contrast 

MRI, scoring was done conservatively, which may have resulted in 

underestimation of inflammation for MTP synovitis features [20]. In EAC patients, 

this could have resulted in a lower estimate of the case frequency of inflammation 

presence. However, since all MTP synovitis features were included in the 

identified subset, this did not influence final results. On the other hand, in CSA 

patients, underestimation of severity of MTP synovitis could have resulted in a 

lower estimate of the method’s sensitivity. With regard to feature selection and 

outcome prediction, the total inflammation score across the subset of identified 

features assumed equal weighting of all features. However, considering the non-

uniformity of control-adjusted frequency across features, it is possible that a non-

uniform weighting of features could improve diagnostic performance. This can be 

explored in future studies. Finally, only patients meeting the 1987 ACR criteria 
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were selected as cases. The 1987 classification criteria for RA are quite stringent, 

which has to be considered for generalizability of our results to all patients with 

inflammatory arthritis. 

We believe that the use of MRI in research setting has important strengths, 

such as reproducibility and generally being well tolerated by our patients, which 

combined with its sensitivity to inflammation justify the acquisition of MR images 

in patients with imminent RA and established RA. To assess the potential value of 

MRI in daily practice for prediction of progression from CSA to RA, further 

replication studies in other CSA populations are needed. Comparison of 

inflammation on MRI and ultrasound imaging should also be investigated, as this 

could have implications for the need of MR imaging (which is both more 

expensive and laborious than ultrasound). Future studies will also need to look into 

the added value of acquiring images of both hands and feet. It has been shown that 

MRI-detected inflammation in the feet is common among early RA patients [21], 

and that a combined evaluation of hands and feet can help identify patients with 

continuing disease activity which would have been missed when considering 

clinical response in hands alone [22]. Larger studies replicating these findings are 

warranted.  

Conclusion 
In conclusion, our results indicate that a reduced subset of 30 out of 61 commonly 

evaluated MRI-detected inflammatory features achieves comparable diagnostic 

performance in prediction of arthritis development in patients with CSA. This 

finding suggests a considerable reduction of scoring efforts, facilitating further 

studies into the diagnostic value of MRI in CSA. In addition, the reduced subset of 

joint-level features opens new research questions about the processes driving the 

inflammation at the identified anatomical locations and whether this can help gain 

better understanding of arthritis pathogenesis.   
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Supplementary Material 
Notes on MRI protocol 

In the first 78 patients in the CSA cohort and 114 patients from the EAC cohort, 

MRI of the forefoot was acquired only in the axial plane (relative to the anatomical 

position) using a T1-weighted FSE sequence (TR/TE 400/12.5 ms, acquisition 

matrix 388×256, ETL 2) and a T2-weighted FSE fat-saturated sequence (TR/TE 

3300/53 ms, acquisition matrix 300×252, ETL 7). In the remaining 147 patients in 

the CSA cohort and 85 patients from the EAC cohort, the T1-Gd sequences listed 

in the main text were acquired in both the axial and coronal planes.  

According to the RAMRIS method [4], T2-weighted fat-suppressed 

sequences, or when this sequence is not available a short tau inversion recovery 

(STIR) sequence, should be used to assess bone marrow edema (BME). Previously, 

three studies have demonstrated that a contrast-enhanced T1-weigthed fat-

suppressed sequence has a strong correlation with T2-weighted fat-suppressed 

sequences [23–25]. A T2-weighted image shows increased water signal and a 

contrast-enhanced T1-weighted sequence shows increased water content and the 

increased perfusion and interstitial leakage. A strong correlation has been shown in 

arthritis patients but also in patients without inflammatory diseases such as bone 

bruises, intraosseous ganglions, bone infarcts, and even nonspecific cases [24,25]. 

We used the contrast-enhanced T1-weighted fat-suppressed sequence as it allowed 

for a shorter scan time. 
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Supplementary Table A.1.  

Inter-reader and intra-reader intraclass correlation coefficients (ICC) for MRI 

scoring 

Inter-reader ICC for the 
CSA cohort 

Reader 1  Reader 2    

Reader 1  x 0.97   

Reader 2  0.97 X   

     

Inter-reader ICC for the 
EAC cohort 

Reader 3  Reader 4   

Reader 3  x 0.95   

Reader 4  0.95 X   

     

Inter-reader ICC for the 
symptom-free controls 

Reader 1  Reader 2    

Reader 1  x 0.96   

Reader 2  0.96 X   

     

Intra-reader ICC Reader 1  Reader 2  Reader 3  Reader 4  

 0.98 0.99 0.98 0.93 
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6 
Summary and general discussion 

In this thesis, we developed several computer-aided methods for assessment of 

MRI-detected inflammation in patients with inflammatory arthritis. The described 

studies focused on the tasks of comparative visualization, automatic quantification, 

and feature selection, with the underlying aim of aiding early diagnosis of 

spondyloarthritis (SpA) and rheumatoid arthritis (RA).  

Chapter 2 presented an interactive scoring tool for evaluation of 

inflammatory changes over time in patients with axial SpA. Locally-rigid image 

registration was applied to compensate for patient posture differences between 

scanning sessions and fuse baseline and follow-up MR scans into a single color-

encoded image. The resulting visualization offered vivid distinction between areas 

of increase versus decrease in inflammation over time, coupled with automatic 

labeling of vertebral units (VUs) and an interactive scoring module whose entry 

fields were activated in synchronization with the VU selected by the reader in the 

image. Expert readers found that a key advantage of such computer-aided scoring 

was that it allowed for direct visualization and measurement of inflammatory 

changes from a single image, as opposed to two separate images. In addition, the 

synchronization between the image and the scoring module significantly decreased 

the chance of mistyping errors while filling out the digital scoring form. At the 

same time, the moderate inter-reader agreement on the degree of inflammatory 

change pointed to the need of further standardizing interpretation of such color-

encoded visualization. To this end, automatic quantification of the degree of 

change could be the ultimate desirable goal. 
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Chapter 3 proposed a framework for automatic quantification of bone 

marrow edema on MRI of the wrist, for early detection of RA. To combine image 

data from the coronal and axial sequences into a single 3D image, super-resolution 

reconstruction was applied. The carpal bones were located using atlas-based 

segmentation and signal associated with bone marrow edema was identified by 

fuzzy clustering. Correlation between quantitative measurements and visual scores 

was assessed in a large cohort of early arthritis patients. The resulting 

measurements were largely consistent with visual scores, indicating that automatic 

quantification of bone marrow edema on MRI of the wrist is feasible. It was 

observed, however, that incomplete fat suppression during MRI acquisition can 

have an adverse effect on measurement accuracy, resulting in false detections. 

Solving this requires further improvement of the quantification method. 

Chapter 4 extended and further developed the method of Chapter 3 to 

measure tenosynovitis of the extensor and flexor tendons of the wrist. Atlas-based 

segmentation was used to locate the bones and place initial landmarks for tendon 

regions. These initial landmarks were then used as inputs for marker-based 

watershed segmentation. A measurement region of interest was defined around the 

tendons. As in Chapter 3, signal associated with inflammation was identified 

using fuzzy clustering, with the modification of obtaining a one-sided probability 

map. Correlation between quantitative measurements and visual scores was 

assessed in a large cohort of early arthritis patients. Strong correlation was 

observed, indicating that automatic quantification of tenosynovitis on MRI of the 

wrist is feasible. The study also brought out multiple challenges pertinent to the 

quantification task, such as moderate segmentation performance and sources of 

false detections. In particular, blood vessels and synovitis present with the 

measurement region of interest were two strongly contributing factors to a 

consistent offset in quantitative measurements.  

Chapter 5 sought to identify whether the common set of 61 MRI-detected 

inflammatory features visually graded across the wrist, metacarpophalangeal, and 

metatarsophalangeal joints can be reduced to a smaller set of features specific for 
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RA, given the knowledge that some features are also frequently present in 

symptom-free persons. The difference in frequency of inflammation presence was 

studied between 199 RA patients and 193 controls. A subset of 30 RA-specific 

features (mainly locations of tenosynovitis and synovitis) was obtained by applying 

a cutoff on the frequency difference while maximizing discriminative performance. 

For validation, this subset was used to predict arthritis development in 225 

clinically suspect arthralgia (CSA) patients. The smaller subset demonstrated 

comparable predictive accuracy to the original set. These results suggest that it is 

possible to preserve the diagnostic capacity of MRI with regard to prediction of 

progression from CSA to clinical arthritis while scoring only half of the features 

that are typically scored. In addition, this leads to new research questions about the 

processes driving the inflammation at the identified anatomical locations and 

whether this can help gain better understanding of arthritis pathogenesis. 

General discussion 
This thesis contributed towards computer-aided assessment of MRI-detected 

inflammation in patients with inflammatory arthritis. The feasibility studies of 

Chapters 2–4 provide reference points for interactive comparative visualization in 

axial SpA and automatic quantification of inflammation in RA, while Chapter 5 

further elucidates the diagnostic role of individual inflammatory features in 

prediction of RA development. Results showcase the promise of computer-aided 

techniques to overcome the limitations of visual scoring discussed in Chapter 1. In 

particular, on the automatic quantification front, the observed correlations between 

quantitative measurements and visual scores are encouraging considering that the 

methods were validated in a large cohort of early arthritis patients. Nevertheless, 

these techniques are not yet sufficiently robust and precise to be used in clinical 

practice. We identified a number of key challenges that must be addressed on the 

path to achieving this goal. 

First, improving segmentation accuracy is an important direction of future 

work, as it is an essential component of the presented image processing 
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frameworks. In comparative visualization of MRI of the spine, the accuracy of 

locally-rigid registration is directly dependent on the precision of vertebrae 

segmentation. Furthermore, the labeling of VUs and consequently the interactive 

scoring features are entirely dependent on whether all evaluated vertebrae were 

detected. Within the context of automatic quantification, segmentation accuracy 

affects the variability and reliability of quantitative measurements. In addition to 

overall accuracy improvements, mislabeling errors should be investigated in detail. 

To ensure wide applicability in clinical practice, segmentation and quantification 

should also be robust to variations in MRI acquisition protocols and scanners. One 

possible way to account for this, as part of an atlas-based framework, could be to 

form sub-atlases of images acquired under a range of echo/repetition times and 

magnetic field strengths. Then, prior to segmenting a target image, the most 

appropriate sub-atlas would be identified based on acquisition parameters recorded 

in the image’s DICOM data. It should be noted that the underlying approach of 

segmenting by drawing on knowledge accrued in a set of annotated images that 

constitute an atlas, or more generally a training set, is not unique to atlas-based 

segmentation. The atlases of the methods presented in this thesis can be used with 

other knowledge-based techniques, such as active appearance models or 

convolutional neural networks. 

The presented quantification methods for RA focused on bone marrow 

edema and tenosynovitis in the wrist joint. However, as indicated by the results of 

Chapter 5, features that are predictive for progression to clinical arthritis also 

include synovitis and are spread not only across the wrist joint, but also the 

metacarpophalangeal joints in the hand and metatarsophalangeal joints in the foot. 

Therefore, it is important to expand the quantification framework to these joints 

and include the measurement of synovitis. The atlas-based nature of the framework 

provides a straightforward path for including additional joints by adding manually 

annotated atlases of these joints to the wrist atlas. To incorporate synovitis 

measurements, inflammation could be measured in the anatomical regions bounded 

by bones and tendon regions, which are already segmented.  
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In this thesis, we assessed the consistency between quantitative 

measurements and semi-quantitative visual scores by evaluating the correlation 

between these measures. This allowed us to establish that automatic quantification 

of MRI-detected inflammatory features frequently seen in RA patients is feasible 

and is largely consistent with visual scoring. To go beyond feasibility and towards 

rigorous evaluation of true positive versus false positive detections of 

inflammation, it is important that future studies assess absolute agreement between 

regions identified as inflammation by quantitative measurements and ground truth 

manual segmentations of inflammatory features by human experts. This would 

demand a large investment of resources, since human experts would need to 

manually segment all voxels considered to be part of each inflammatory feature. 

However, such studies may be essential to demonstrate a convincing level of 

agreement between automatic techniques and human experts, in order to facilitate 

the use of such computer-aided methods in clinical practice. 

Ideally, application of automatic methods as part of a future clinical routine 

should be possible directly after acquisition of an MR scan, as soon as the DICOM 

image is stored in the patient database. However, at the present this would not be 

possible due to a number of artifacts that occur during acquisition and require 

correction prior to running quantitative analysis. For example, form entry errors 

can be made in the DICOM fields with regard to which location was scanned (e.g. 

wrist, foot) and on which side (left, right). A mistake in one of these fields will 

cause the atlas-based frameworks to use the wrong atlas for segmentation and 

result in failed quantification. Another issue is that MR scans acquired with a 

frequency-selective fat-saturated sequence sometimes suffer from fat suppression 

inhomogeneity, which may cause quantitative measurements to confuse regions of 

fat tissue for inflammation. There can be two general approaches to addressing 

these acquisition issues: 1) improve acquired image quality requirements and 

systematically minimize the possibility of DICOM field errors through stricter 

protocols and software interface, or 2) develop automatic methods for handling 

acquisition issues as part of the overall computer-aided framework. The choice 
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boils down to resource management. As computer-aided techniques become more 

integrated in clinical practice, a balanced approach could be to let operating 

technicians manage those acquisition issues that can be fixed with minimal 

additional inconvenience and cost for patients at acquisition time. On the other 

hand, correction of acquisition issues that would substantially increase patient 

inconvenience, cost, and procedure time can be delegated to the image processing 

engineers.  

In conclusion, this thesis has explored the prospect of computer-aided 

assessment of MRI-detected inflammation for early identification of inflammatory 

arthritis. The presented studies showcase the potential of comparative visualization 

and automatic quantification to overcome the limitations of visual scoring and lay 

out a fertile ground for future improvements. Additionally, the understanding of the 

diagnostic role of individual inflammatory features in prediction of RA 

development is further advanced. Collectively, these findings can help facilitate the 

use of MRI for early diagnosis of inflammatory arthritis and potentially increase 

chances of better outcome and quality of life for patients. 
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7 
Samenvatting en algemene discussie 

In dit proefschrift hebben wij verschillende methoden ontwikkeld voor de 

beoordeling van MRI-gedetecteerde ontstekingen in patiënten met inflammatoire 

artritis. De beschreven onderzoeken zijn erop gericht om taken uit te voeren voor 

de vergelijkende visualisatie, automatische kwantificatie en kenmerkextractie, met 

het onderliggende doel om de vroegdiagnostiek van spondylartritis (SpA) en 

reumatoïde artritis (RA) te ondersteunen. 

Hoofdstuk 2 presenteerde een interactieve beoordelingsmethode voor de 

evaluatie van inflammatoire veranderingen over de tijd in patiënten met axiale 

SpA. Lokaal-rigide beeldregistratie was toegepast om te compenseren voor 

verschillen in houding van de patiënt tussen scansessies en om de baseline en 

follow-up MR-scans te fuseren tot één kleur-gecodeerd beeld. De resulterende 

visualisatie gaf een duidelijk onderscheid weer tussen gebieden van verhoogde en 

verlaagde ontstekingsgraad over de tijd, gekoppeld aan het automatisch labelen van 

de werveleenheid (WEs) en een interactieve scoringsmodule, waarvan de 

invulvelden synchroon werden geactiveerd corresponderend met door de 

beeldbeoordelaar geselecteerde WE. Expert beoordelaars verklaarden dat het 

belangrijkste voordeel van zo’n computerondersteunde beoordeling ligt in de 

mogelijkheid om direct de inflammatoire veranderingen te visualiseren en te 

beoordelen in één enkel beeld, in plaats van twee aparte beelden. Daarnaast zorgde 

de synchronisatie tussen het beeld en de beoordelingsmodule ervoor, dat de kans 

op typefouten bij het invullen van het digitale invulformulier was verminderd. 

Tegelijkertijd toonde de matige overeenstemming tussen beoordelaars v.w.b. de 

mate van inflammatoire veranderingen aan, dat verdere standaardisatie van de 
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interpretatie van dergelijke kleur-gecodeerde visualisaties nodig is. Daarom zou 

een automatische kwantificatie van de mate van veranderingen het uiteindelijke 

gewenste doel zijn. 

Hoofdstuk 3 stelde een raamwerk voor om beenmergoedeem in MRI van de 

pols automatisch te kwantificeren, voor de vroege detectie van RA. Voor het 

combineren van beelddata van coronale en axiale sequenties tot één enkel 3D beeld 

was super-resolutie-reconstructie toegepast. De carpale botten werden 

gelokaliseerd door gebruik te maken van atlas-gebaseerde segmentatie en de 

signalen, die geassocieerd zijn met beenmergoedeem, werden geïdentificeerd door 

fuzzy-clustering. De correlatie tussen kwantitatieve metingen en visuele scores was 

vastgesteld in een groot cohort van patiënten met vroege artritis. De resulterende 

metingen waren grotendeels consistent met de visuele scores, hetgeen aangeeft dat 

automatische kwantificatie van beenmergoedeem in MRI van de pols haalbaar is. 

Er werd echter opgemerkt dat onvolledige vetsuppressie tijdens de MRI acquisitie 

een nadelig effect kan hebben op de meetnauwkeurigheid. De oplossing hiervoor 

vergt een verdere verbetering van de acquisitiemethode. 

Hoofdstuk 4 breidde de methode van Hoofdstuk 3 uit en ontwikkelde hem 

verder om tenosynovitis van de extensor- en flexorpezen in de pols te meten. Atlas-

gebaseerde segmentatie was gebruikt om de botten te lokaliseren en initiële 

oriëntatiepunten voor de peesgebieden te plaatsen. De initiële oriëntatiepunten 

werden vervolgens gebruikt als invoer voor marker-gebaseerde ‘watershed’-

segmentatie. Een meetgebied was gedefinieerd rond de pezen. Zoals in Hoofdstuk 

3, het signaal dat geassocieerd is met ontstekingen was geïdentificeerd door fuzzy-

clustering met de aanpassing dat een afbeelding van enkelzijdige kansen was 

verkregen. De correlatie tussen de kwantitatieve metingen en visuele scores was 

vastgesteld in een groot cohort van patiënten met vroege artritis. Het feit dat een 

sterke correlatie was gevonden geeft aan dat automatische kwantificatie van 

tenosynovitis in MRI van de pols mogelijk is. De studie bracht ook verschillende 

uitdagingen aan het licht die betrekking hebben op het kwantificeren, zoals het 

beperkte succes van de segmentatie en oorzaken van onjuiste detectie. In het 
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bijzonder waren bloedvaten en synovitis, die aanwezig waren in het meetgebied, 

twee belangrijke bijdragen aan de consequente afwijkingen in de kwantitatieve 

metingen. 

Hoofdstuk 5 onderzocht de mogelijkheid of de gebruikelijke verzameling 

van 61 MRI-gedetecteerde inflammatoire kenmerken die visueel beoordeeld zijn in 

de pols, metacarpofalangeale en metatarsofalangeale gewrichten, zou kunnen 

worden versimpeld tot een kleinere deelverzameling van RA-specifieke 

eigenschappen, gezien het feit dat sommige eigenschappen vaak ook aanwezig zijn 

in symptoom-vrije personen. Het verschil in frequentie van aanwezige ontstekingen 

tussen 199 RA-patiënten en 193 controles was bestudeerd. Een deelverzameling 

van 30 RA-specifieke kenmerken was verkregen (vooral locaties met tenosynovitis 

en synovitis) door exclusie van kenmerken op grond van de frequentieverschillen, 

terwijl de onderscheidende waarde werd gemaximaliseerd. Voor de validatie was 

deze deelverzameling gebruikt om artritis te voorspellen in 225 klinisch verdachte 

artralgie (CSA) patiënten. De kleinere deelverzameling liet een 

voorspellingsnauwkeurigheid zien die vergelijkbaar was met de originele 

verzameling. Deze resultaten suggereren dat het mogelijk is om de diagnostische 

waarde van MRI te behouden met betrekking tot de voorspelling van de progressie 

van CSA naar klinische artritis, terwijl slechts de helft van de gebruikelijke 

kenmerken hoeft te worden gescoord. Daarnaast leidt dit onderzoek tot nieuwe 

onderzoeksvragen over de processen die ontstekingen in de geïdentificeerde 

anatomische locaties aansturen, en of dit kan helpen om een beter inzicht te 

verkrijgen in de pathogenese van artritis. 

 

Algemene discussie 
Dit proefschrift draagt bij aan de computerondersteunde beoordeling van MRI-

gedetecteerde ontstekingen in patiënten met inflammatoire artritis. De 

haalbaarheidsstudies van Hoofdstuk 2-4 geven referentiepunten voor interactieve 

visualisatie in axiale SpA en automatische kwantificatie van ontstekingen in RA, 

terwijl Hoofdstuk 5 de diagnostische rol duidelijk maakt van individuele 
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ontstekingseigenschappen in het voorspellen van RA ontwikkeling. De resultaten 

geven de belofte dat computerondersteunde technieken de beperkingen van het 

visueel scoren, zoals die in Hoofdstuk 1 zijn beschreven, kan overwinnen. In het 

bijzonder op het gebied van automatische kwantificatie zijn de gevonden 

correlaties tussen kwantitatieve metingen en visuele scores bemoedigend, gezien 

het feit dat de methoden waren gevalideerd in een groot cohort van patiënten met 

vroege artritis. Desondanks zijn deze technieken nog niet robuust en nauwkeurig 

genoeg om te worden gebruikt in de klinische praktijk. We hebben een aantal 

belangrijke uitdagingen geïdentificeerd die aangepakt moeten worden om dit doel 

te bereiken. 

Allereerst is de verbetering van de segmentatienauwkeurigheid een 

belangrijke richting voor toekomstig onderzoek, omdat het een essentieel onderdeel 

is van het gepresenteerde beeldverwerkings raamwerk. In de vergelijkende 

visualisatie van MRI van de wervelkolom is de nauwkeurigheid van de lokaal-

rigide registratie direct afhankelijk van de precisie van de wervelsegmentatie. 

Daarnaast zijn het labelen van de WEs en derhalve de interactieve 

scoringseigenschappen volledig afhankelijk van het garantie dat alle geëvalueerde 

wervels gedetecteerd zijn. Bij de automatische kwantificatie beïnvloedt de 

segmentatienauwkeurigheid de variabiliteit en betrouwbaarheid van de 

kwantitatieve metingen. Naast de algemene verbeteringen in nauwkeurigheid 

moeten de fouten bij het labelen gedetailleerd onderzocht worden. Om een 

uitgebreide toepasbaarheid in de klinische praktijk te garanderen, zouden de 

segmentatie en kwantificatie ook robuust moeten zijn tegen variaties in het MRI-

acquisitieprotocol en scanners. Om hiermee rekening te houden, als onderdeel van 

de atlas-gebaseerde raamwerk, zou het mogelijk kunnen zijn om, sub-atlassen te 

vormen van beelden die verkregen zijn met een reeks van echo/repetitietijden en 

magnetische veldsterktes. Voordat het betreffende beeld gesegmenteerd wordt, zou 

er dan eerst de meest geschikte sub-atlas geïdentificeerd worden, gebaseerd op de 

acquisitieparameters die zijn opgeslagen in de DICOM-gegevens van het beeld. Er 

moet worden opgemerkt dat de onderliggende segmentatieaanpak die de vergaarde 
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kennis weergeeft in een verzameling van geannoteerde beelden die samen een atlas 

(of meer algemeen een training set) vormen, niet uniek is voor atlas-gebaseerde 

segmentatie. De atlassen van de methoden die in dit proefschrift zijn gepresenteerd, 

kunnen worden gebruikt met andere kennis-gebaseerde technieken, zoals ‘active 

appearance’ modellen of convolutionele neurale netwerken. 

De gepresenteerde kwantificatiemethoden voor RA waren gericht op 

beenmergoedeem en tenosynovitis in de polsgewrichten. Echter zoals aangeven bij 

de resultaten van Hoofdstuk 5, omvatten de kenmerken die voorspellend zijn voor 

de progressie naar klinische artritis, ook synovitis en zijn die niet alleen over de 

polsgewrichten verspreid, maar ook over de metacarpofalangeale gewrichten in de 

hand en metatarsofalangeale gewrichten in de voet. Daarom is het belangrijk om 

het kwantificatie raamwerk uit te breiden met die gewrichten en een 

synovitismeting toe te voegen. Het atlas-gebaseerde karakter van het raamwerk 

verschaft een eenvoudig mogelijkheid om extra gewrichten toe te voegen door 

toevoeging van handmatig geannoteerde atlassen van deze gewrichten aan de 

polsatlas. Om synovitismetingen toe te voegen, zouden ontstekingen gemeten 

kunnen worden in het anatomische gebied begrensd door botten en pees-gebieden 

die reeds gesegmenteerd zijn. 

In dit proefschrift hebben wij de consistentie tussen kwantitatieve metingen 

en semi-kwantitatieve visuele scores vastgesteld door de correlatie tussen beide 

metingen te evalueren. Dit stelde ons in staat om vast te stellen dat automatische 

kwantificatie van MRI-gedetecteerde ontstekingskenmerken die vaak aangetroffen 

worden in RA-patiënten, haalbaar is en grotendeels consistent is met het visueel 

scoren. Om verder te gaan dan alleen haalbaarheid, naar een strikte evaluatie van 

‘true positive’ versus ‘false positive’ detectie van ontstekingen, is het van belang 

dat toekomstige studies de absolute overeenstemming vaststellen tussen de 

gebieden, die als ontsteking geïdentificeerd zijn door de kwantitatieve metingen, en 

de gouden standaard handmatige segmentaties van ontstekingen door menselijke 

experts. Dit zou een grote investering in middelen vragen, aangezien menselijke 

experts alle voxels die als onderdeel beschouwd worden van elk 
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ontstekingskenmerk, handmatig zouden moet segmenteren. Echter zulke studies 

zouden essentieel kunnen zijn om een overtuigende mate van overeenkomst aan te 

tonen, om het gebruik van zulke computerondersteunde methoden in de klinische 

praktijk te faciliteren.  

In het ideale geval zou de toepassing van automatische methoden als 

onderdeel van toekomstig klinische routine mogelijk zijn, direct na het verkrijgen 

van een MR-scan zodra het DICOM-beeld is bewaard in de patiëntendatabase. 

Echter, momenteel, zou dit niet mogelijk zijn vanwege het aantal artefacten die 

zich voordoen tijden de acquisitie en vereist correcties voorafgaand aan het 

uitvoeren van de kwantitatieve analyse. Bijvoorbeeld invoerfouten in een formulier 

zouden gemaakt kunnen worden in de DICOM-velden, bij de locatie dat gescand 

was (bijv. pols, voet) en bij welke zijde (links, rechts). Een vergissing in één enkel 

veld zal ervoor zorgen dat het atlas-gebaseerde raamwerk de verkeerde atlas 

gebruikt en resulteren in een mislukte kwantificatie. En ander kwestie is dat MR-

scans verkregen met een frequentie-selectieve ‘fat-saturated’ sequentie soms vet-

suppressie inhomogeniteiten ondervinden, die ervoor zorgen dat de kwantitatieve 

metingen vetweefselgebieden verwarren met ontstekingen. Er kunnen twee 

algemene benaderingen zijn om deze acquisitieproblemen aan te pakken: 1) 

verbeter de verkregen beeldkwaliteitseisen en minimaliseer systematisch de 

mogelijkheid van fouten in de DICOM-velden door striktere protocollen en 

software interface, of 2) ontwikkel een automatische methode om met 

acquisitieproblemen om te gaan als onderdeel van het algemene 

computerondersteunde raamwerk. De keuze komt neer op middelenbeheer. 

Aangezien computerondersteunde technieken steeds meer geïntegreerd worden in 

de klinische praktijk, zou het een evenwichtige aanpak kunnen zijn om de 

dienstdoende laborant deze acquisitieproblemen te laten hanteren, die opgelost 

kunnen worden tijdens de beeldacquisitie met minimale extra ongemakken en 

kosten voor de patiënt. Aan de andere kant zou de correctie van 

acquisitieproblemen overgelaten kunnen worden aan de beeldverwerkings-
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ingenieur, als die problemen het patiëntongemak, de kosten en proceduretijd 

substantieel zouden vergroten. 

Tot slot, heeft dit proefschrift het vooruitzicht van computerondersteunde 

beoordeling van MRI-gedetecteerde ontstekingen onderzocht voor de vroege 

identificatie van inflammatoire artritis. De gepresenteerde studies demonstreren de 

mogelijkheid van vergelijkende visualisatie en automatische kwantificatie om de 

beperkingen van visuele beoordeling te overwinnen en legt een vruchtbare grond 

neer voor toekomstige verbeteringen. Daarnaast is het inzicht in de diagnostische 

rol van individuele ontstekingskenmerken in de voorspelling van RA ontwikkeling 

verder verbeterd. Gezamenlijk kunnen deze bevindingen het gebruik van MRI bij 

de vroegdiagnostiek van inflammatoire artritis helpen vergemakkelijken en 

mogelijkerwijs de kansen op een betere uitkomst en kwaliteit van leven van 

patiënten verhogen. 





111 
 

List of publications 

E. Aizenberg, R. van den Berg, Z. Ez-Zaitouni, D. van der Heijde, M. Reijnierse, 

O. Dzyubachyk, B.P.F. Lelieveldt, “Computer-aided evaluation of inflammatory 

changes over time on MRI of the spine in patients with suspected axial 

spondyloarthritis: a feasibility study,” BMC Medical Imaging, 17:55, 2017. 

 

E. Aizenberg, E.A.H. Roex, W.P. Nieuwenhuis, L. Mangnus, A.H.M. van der 

Helm–van Mil, M. Reijnierse, J.L. Bloem, B.P.F. Lelieveldt, B.C. Stoel, 

“Automatic quantification of bone marrow edema on MRI of the wrist in patients 

with early arthritis: a feasibility study,” Magnetic Resonance in Medicine, vol. 

79(2), pp. 1127–1134, 2018. 

 

E. Aizenberg*, D.P. Shamonin*, M. Reijnierse, A.H.M. van der Helm–van Mil, 

B.C. Stoel, “Automatic quantification of tenosynovitis on MRI of the wrist in 

patients with early arthritis: a feasibility study,” European Radiology, doi: 

10.1007/s00330-018-5807-2, 2018. 
*Authors contributed equally. 

 

E. Aizenberg*, R.M. ten Brinck*, M. Reijnierse, A.H.M. van der Helm–van Mil, 

B.C. Stoel, “Identifying MRI-detected inflammatory features specific for 

rheumatoid arthritis: two-fold feature reduction maintains predictive accuracy in 

clinically suspect arthralgia patients,” Seminars in Arthritis and Rheumatism, doi: 

10.1016/j.semarthrit.2018.04.005, 2018. 
*Authors contributed equally. 

 





113 
 

Acknowledgements 

The PhD journey is full of ups and downs, and like any journey in life, the people 

you share it with can make all the difference in the world on how you come out at 

its end. I am very fortunate with the people I got to share my journey with. 

 

First of all, I would like to thank my supervisors, Boudewijn and Berend, for 

providing me with the opportunity to pursue my PhD at LKEB and their 

continuous support throughout the past four years. Berend, thank you for always 

being available for open-minded and frank discussions, for asking questions that 

encouraged me to think critically about my work, and for giving me the freedom to 

pursue this research creatively. I am also very thankful to you for volunteering your 

time and effort to translate the summary and discussion chapter into Dutch! 

 

This research would not be possible without the awesome, insightful, and fruitful 

collaboration with my co-supervisors and PhD colleagues from the departments of 

Rheumatology and Radiology. Annette and Monique, thank you so much for your 

guidance, support, and advice, for shaping and paving this research together. To 

my fellow PhDs, Rosaline, Freek, Zineb, Wouter, Lukas, Robin, it was a pleasure 

to work together. Thank you so much for your time, your insights, and your 

openness. Rosaline and Robin, I got to spend a lot of time with each of you, and I 

am so grateful for your patience and willingness to explore together. I would also 

like to thank Prof. Désirée van der Heijde for helping shape the first chapter of this 

thesis and our numerous discussions leading up to its publication. 

 

I could not have been more fortunate with the amazing fellow colleagues at LKEB 

who created a warm, welcoming, and engaging environment to work in every day. 

To my fellow Terminalzaal’ers, Baldur, Qian, Paulien, Ronald, Trung, Floris, 

Niels, Thomas, Qing, thank you for being the awesome office mates you are since 



114 
 

my first day at LKEB and throughout this whole journey. Baldur, thanks for 

sharing your knowledge and expanding my horizons during our many 

conversations, whether it was about programming, history, politics, or life. To 

Oleh, I am deeply grateful for your supervision during my first year at LKEB, your 

support and help during the PhD, and your warm friendship. Edgar, your work laid 

out important foundations for this research, and I am very thankful for the many 

productive and enlightening discussions we held. Denis, your vast knowledge and 

skills with programming were a life savior throughout these years, thank you so 

much for always willing to help out! I am happy we got to work a lot together and 

learn from each other during this project. To Leo, thanks for all the cool 

conversations we shared about many a curious topic and your sincerely welcoming 

attitude and support. Michèle, thank you so much for making it possible for us to 

have all the equipment we as PhDs need to do the job and always helping out to 

make sure it works smoothly. To all the great people of LKEB with whom I have 

been fortunate to share this journey together, thank you for making our team a 

diverse, creative, and most importantly warm and welcoming workplace for 

everyone.  

 

Moving to another country is hard, for a whole bunch of reasons. But I have been 

lucky to meet other wandering kindred spirits, here in the Netherlands, who 

became dear friends. Giorgos, Nefeli, Yannis, Alexia, Roberta, Eleni, Ángela, 

Aleix, Emilija, thank you for your honest friendship, support, and all the fun 

moments we shared here in our life travels in the Low Lands. 

 

Last but most certainly not least, I want to thank my family, my dear loved ones, 

for always being there for me no matter the distance between us, for believing in 

me, and for inspiring me to strive for something bigger than myself by being a 

citizen of this world. 

 

 



115 
 

Curriculum Vitae 

Evgeni Aizenberg was born in Moscow, USSR, on June 28, 1990. In 2012, he 

received his B.Sc. degree in Electrical Engineering from Boston University, USA, 

where he worked as an undergraduate researcher at the Biomedical Optics Lab and 

conducted his bachelor thesis on automated detection of colon pre-cancer based on 

in vivo endomicroscopy images. In 2014, he received his M.Sc. degree in Electrical 

Engineering from Delft University of Technology, The Netherlands. His master 

thesis on computer-aided evaluation of inflammatory changes on MRI of the spine 

in patients with suspected axial spondyloarthritis was carried out at the Division of 

Image Processing (LKEB) at Leiden University Medical Center, The Netherlands, 

and the same year he joined LKEB as a PhD researcher. The goal of his PhD work 

was development of computer-aided techniques for assessment of MRI-detected 

inflammation for early identification of inflammatory arthritis. The results of his 

research are published in various scientific journals and are included in this thesis. 

 

 




	firstPages
	Chapter1-Introduction
	Inflammatory arthritis
	Rheumatoid arthritis
	Spondyloarthritis
	Diagnosis and treatment
	Magnetic resonance imaging
	Visual scoring and its limitations
	Outline of this thesis
	REFERENCES

	EA_book_01
	EAizenberg_ThesisInside_0
	Chapter2-SpA
	Abstract
	Introduction
	Methods
	Patients
	MRI sequences
	Vertebrae localization/segmentation/labeling
	Locally rigid inter-time point alignment
	Color-encoded fusion of time points
	Evaluation of inflammatory changes
	Statistical analysis

	Results
	Inter-reader differences between CA readers
	Inter-method differences between CA and Berlin methods

	Discussion
	Conclusion
	Acknowledgements
	REFERENCES

	Chapter3-BME
	Abstract
	Introduction
	Methods
	Patients
	MRI sequences
	Visual scoring of BME
	Quantitative image analysis framework
	Super-resolution reconstruction
	Segmentation of carpal bones
	Assessment of segmentation accuracy
	BME quantification

	Optimization
	Validation
	Statistical analysis

	Results
	Assessment of segmentation accuracy
	Optimization
	Validation

	Discussion
	Conclusion
	Acknowledgements
	REFERENCES

	Chapter4-Teno
	Abstract
	Introduction
	Methods
	Patients
	MRI scanning and visual scoring
	Quantitative image analysis framework
	Super-resolution reconstruction
	Measurement region of interest
	Assessment of tendon segmentation accuracy
	Tenosynovitis quantification

	Optimization
	Validation
	Statistical analysis

	Results
	Assessment of tendon segmentation accuracy
	Optimization
	Validation

	Discussion
	Conclusion
	Acknowledgements
	REFERENCES

	Chapter5-Features
	Abstract
	Introduction
	Methods
	Subjects
	Cases: rheumatoid arthritis patients from the Leiden Early Arthritis Clinic cohort
	Controls: symptom-free volunteers
	Clinically suspect arthralgia patients from the Leiden CSA cohort
	MRI scanning and scoring
	Difference in joint-level frequency of inflammation between cases and controls
	Feature identification and prediction of outcome in the case-control setting
	Validation in CSA patients based on the subset of features obtained from the case-control setting

	Results
	Clinical characteristics
	Difference in joint-level frequency of inflammation between cases and controls
	Feature identification and prediction of outcome in the case-control setting
	Validation in CSA patients based on the subset of features obtained from the case-control setting

	Discussion
	Conclusion
	Supplementary Material
	Notes on MRI protocol
	Supplementary Table A.1.

	REFERENCES

	Chapter6-SummaryDiscussion
	General discussion

	SummaryDiscussion_NL
	Algemene discussie

	PublicationsList

	Acknowledgments
	CV




