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Nanoparticles: what they are and where they come from 

Nanomaterials have been present since the beginning of the Earth. Main sources of 

naturally occurring colloids (suspensions of nanoparticles) are dust of volcano 

eruptions and bush fires, and corrosion of river beddings and sea floors. In early 

civilization, men began to use these extraordinary and very small particles, without 

extensive knowledge about their characteristics. In the fourth century A.D. the ancient 

roman glass industry produced for instance the famous Lycurgus Cup: a ruby red cup 

colored with colloidal gold1. In the 19th century, modern technologies such as 

microscopes allowed for the rise of the nanotechnology: the production of well-defined 

and well-characterized nanomaterials2. Through the development of advanced 

techniques, the production of colloids started to become more sophisticated.  

In nanotechnology, nanomaterials are defined as being materials that have one 

or more dimension within the 1 to 100 nm size range3. More specifically, if the 

nanomaterial has three dimensions within the nano range, it is classified as 

nanoparticle (NP)4. Although these definitions remained the same, different 

generations of nanotechnologies have been developed. The first generation of 

technologies (pre 2005) can be found on the market, with products containing particles 

either as individual nanomaterials or as mixtures with other materials. Examples of 

products are antibacterial socks (silver)5, sunscreen (titanium dioxide and zinc oxide)5 

and solar cells (e.g. copper and silicon)6. Because they are widely used on the market, 

most research has been done and is still being done on these particles. Technologies 

developed from 2005 until 2010 are considered second generation: functional 

structures of products as based on nanoscale elements. The third generation 

technologies (2010-2015) start to layer their materials, making a combination of 

macro-, meso-, micro- and nano-scales. This can also be in a three-dimensional setting. 

Finally, the fourth generation (from 2015 onward) focuses on so called ‘molecular 

manufacturing’: multi-functionality and control of function at molecular level.5 

Due to their unique properties, nanomaterials have gained interest from 

producers and entered the global market. Potentials that are ascribed to 

nanotechnology are: stronger, more efficient, cleaner and compact materials that allow 

for small yet complex products5. Currently, nanomaterials are used in numerous 

products, although exact numbers are lacking. In 2014, it was estimated that the market 

contains more than 13000 nano-based products7. The variety of products is large, 
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ranging from sunscreens and paint, to textiles, medicines, electronics and many 

more5,8,9, covering many sectors.  

With more and more nanotechnology entering the market, the amount of waste 

increases as well. Since most of the products are still in use, only an estimation can be 

made about the impact of all the nanomaterials in waste. The most important route 

from nanoparticles to the environment is via wastewater, with different types of 

nanoparticles released to water7. Man-made nanoparticles have already been detected 

in wastewater10 and waste leachate11. With the fast growing nanotechnology, the 

amount of new and unknown materials that are introduced into the environment will 

increase concomitantly, which may lead to unpredictable long-term consequences on 

human and environmental health12.  

 

Nanoparticles in the aquatic environment 

Once nanomaterials have entered the environment, a multitude of effects can occur. 

Nanoparticles are fairly small, and with decreasing size their surface to volume ratio 

increases rapidly (see Figure 1). Due to their large surface to volume ratio, the 

nanomaterial surface becomes more reactive in itself and to its contiguous 

environment13. However, the size of the particles can change over time. In the aquatic 

environment, non-stable metallic nanoparticles dissolve slowly over time, releasing 

ions to the environment while simultaneously the particle decreases in size14. On the 

other hand, agglomeration (loose clusters) and aggregation (irreversible clustering) 

processes result in an increase in size15. 

  Furthermore, with their relative large surface area, nanoparticles are prone to 

react with organic and inorganic materials. These interactions influence the stability of 

the particles in the water, which in turn influences whether the particles remain in the 

water column and thereby determining which type of organism faces the highest 

exposure. For instance, when particles sediment and settle down, bottom dwellers are 

much more exposed than organisms that live at the water surface.  
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Figure 1. Most important aspects of nanoparticles. Different aspects of nanoparticles are 
important for their uptake in and toxicity to cells and organisms. Besides size and shape, which are 
the focus points of this thesis, surface charge (negative, positive or neutral) influences the uptake op 
particles.  

 

Uptake of nanoparticles 

Once organisms are surrounded by particles, the impact is based on the effective 

exposure: the fraction of the nanoparticles that is accessible for the organism. More 

importantly: the effective exposure determines whether the particles are taken up. 

With the large surface to volume ratio, membranes can attach to the relative large 

surface area, wrap around the particle and transport it inside the cell16,17. In general, 

the surface charge also influences the uptake of the particles (Figure 1). This charge is 

based on the material properties, as well as the layer (corona) formed by organic 

materials18. Different charges have been found to behave differently: positively charged 

particles are in general found to be taken up much faster than negative or neutral 

charged particles. The reason for this is supposedly the slightly negative charge of the 

cell membrane, causing uptake by electrostatic attractions19. The surface charge also 

results in the adhesion of proteins to the particle. Particles with surface ligands (e.g., 

peptides, antibodies, etc.) are able to target specific organs20. The amount of proteins 

that absorb onto the surface can for instance be reduced by decorating the particle with 
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a coating21. This layer improves stability and therewith prolongs the in vivo circulation 

time and subsequently the duration of the effective exposure21. 

Besides size, the surface to volume ratio is also influenced by shape (Figure 

1)22. The surface to volume ratio (which is related to the aspect ratio) has large 

influences on the membrane wrapping22,23. Flat, disc-like shapes adhere to the outside 

of the membrane, forming aggregated rather than internalized particles24. For other 

shapes, rotation during endocytosis is important in order to find the most optimal 

position for cell entry22,25,26. With increasing aspect ratio (i.e. with increasing particle 

length), cellular uptake becomes more difficult26,27. This also explains why the flat 

particles remain on the outside of the cell membrane. Therefore, on average, small and 

elongated particles are easily taken up by cells, whereas big, long and flat particles are 

a much bigger challenge for cells to internalize28. Even within the cell, the shape of the 

particle influences its position29. 

Due to the difference in cellular uptake of nanoparticles and larger mixed 

materials of metallic compositions (from now on called bulk), different exposure routes 

are possible. The bulk form (for metals) tends to dissolve in free ions, which can only 

pass certain ion channels and or ion pumps30. However, nanoparticles can, as 

previously discussed, either pass through membranes or enter the cell via membrane 

wrapping. In nanoparticle grouping efforts, a distinction is made between metallic 

particles that are either stable (inert) or non-stable (dissolving ions)31. At this point, 

non-stable nanoparticles start to act like a Trojan horse being an uptake route for 

colloid metals (see Figure 2): while dissolving, their shed ions reach places that they 

would have never reached when present in their ion form30,32. Another type of Trojan 

horse principle can also occur: not the shedding of ions, but other molecules that adhere 

on the surface of the particle accompany the particle inside the cell (Figure 2)33. This 

mechanism of co-exposure is beneficial for medicines delivered to cancer cells34,35, but 

can result in unpredicted exposures of organisms in the environment.  
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Figure 2. Trojan horse principles. Metallic nanoparticles can shed of their ions in their 
surrounding media, from where they can enter the cell via channels. However, the particle itself can 
also work as a Trojan horse: either it can shed of ions once it is inside the cell, resulting in much 
higher concentrations of ions, or the particle carries adhesive molecules inside the cell, where they 
are released. 

Besides effects of the material, the particle itself can induce effects as well. Once 

the particles are inside the cell, interactions with the biological processes can occur. If 

the particles are small enough, they can enter the nucleus and bind to the DNA, causing 

DNA damage36. Moreover, their presence in the nucleus may also interfere with the DNA 

replication37. Particles that are not entering the nucleus, might bind to proteins and 

disrupt their function by protein unfolding, fibrillation, thiol cross-linking and 

enzymatic activity loss37–39. For instance, thiol groups in enzymes like NADH 

dehydrogenase are popular binding places, causing disruption of the respiratory chain 

and subsequently generate reactive oxygen species (ROS)36. This in turn can induce 

oxidative stress, cell damage and eventually cell death40–42. Both in vitro and in vivo 

studies have shown that particle toxicity might be related to ROS formation43–45. Since 

particles induce toxicity via other pathways than the ions of the core material, distinct 

adverse outcomes can be found for the particles and the ions38.  
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The effects of nanoparticles on organisms 

Cellular uptake gives an indication of the possible effects induced by nanoparticles, but 

the picture is incomplete. With regard to upscaling of in vitro results to effects on whole 

organisms, the key issue is that particles do not induce effects at only one location. 

Epithelial tissues like skin and intestine generally protect organisms from hazardous 

materials. However, nanoparticles are small enough to penetrate into cells46. Once they 

are inside the cells of the barrier tissue, they may start to distribute throughout the 

body47,48. Because of this biodistribution, particles can accumulate in secondary 

organs12,49: accumulation in the body. Besides the biodistribution, the time that the 

particle stays within the organism also influences nanoparticle toxicity: the residence 

time. This duration is most importantly influenced by size: particles smaller than 6nm 

can quickly be excreted by the kidneys, whereas particles with a size larger than 200nm 

accumulate in spleen and liver, after which they are processed by mononuclear 

phagocyte system (MPS) cells19. This knowledge emphasizes the importance of 

understanding the factors that determine whether particles cross membrane barriers 

and subsequent distribute throughout the body. Therefore, if we want to know where 

the particle ends up irrespective of the material, in vitro studies can provide only half of 

the story. 

Just as for particle uptake, shape is also an important factor for uptake, 

biodistribution and toxicity. Particle shape has been found to influence both the 

circulation time of the particles, as well as their distribution. Wires, discs and lamella, 

compared to spherical nanoparticles, were found to have a longer circulation time in 

the body, whereas cylindrical shapes display the longest circulation time50. With regard 

to the distribution, rod shaped particles distribute much further inside the tissue, 

whereas spheres and disk-like particles stay on the edge of the tissue51. Furthermore, 

the length of the rod is important for biodistribution: short rods are trapped in the liver, 

bigger rods are trapped in the spleen52. This knowledge is gathered in cancer research, 

where the study is performed by injecting rodents: biodistribution via the blood and / 

or lymphatic system is guaranteed. Studies in which environmentally relevant exposure 

routes are used still focus mainly on the effect of size. However, examples like given by 

Dai et al., (2015) provide nice evidence that also in environmentally relevant exposures, 

rod shaped nanoparticles display much higher uptake rates than plates and spheres.  
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Different types of organisms result in different types of exposure routes and 

biodistribution. In the animal kingdom, there is a division made in two distinct types of 

organisms: invertebrates and vertebrates (representatives can be found in Figure 3, top 

left + bottom right and top right + bottom left respectively). In general, invertebrates 

are smaller than vertebrates. This results in a larger surface to volume ratio and 

subsequent more relative exposure than animals with a smaller surface to volume ratio. 

Additional organs like gills may increase the amount of surface even further. However, 

not only do their sizes differ. Especially insects and arthropods exhibit different 

external properties compared to vertebrate species. Where vertebrate species obtain 

their name from their spine (consisting of vertebra), invertebrates usually have an 

exoskeleton that supports their body. This exoskeleton is for instance composed of 

chitin, and is much harder to penetrate by chemicals than the soft surface burdens of 

vertebrates. Therefore, hard-body invertebrates are usually exposed via specific 

structures like pleopods or via the digestive tract54. 

Figure 3. Model species. In (eco)toxicology, model species are used to test chemicals. In this picture, 
an overview of two vertebrate species (Zebrafish larvae: Danio rerio; Mouse: Mus musculus) and two 
invertebrate species (Waterflea: Daphnia magna; Woodlice: Porcellio scaber). The top represents 
aquatic organisms, whereas the bottom row represents terrestrial organisms. Note: animals are not 
on scale. 

Not only does the uptake route differ between vertebrates and invertebrates, 

but also their accumulation pattern. Structural and functional differences in organs for 

instance modify the biodistribution pattern. For instance, most invertebrates have a 

hepatopancreas where (bulk) metals accumulate54. In vertebrates however, this 
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structure continued to develop in two individual organs: the liver and the pancreas55. 

Indeed, a large number of particles have been found to accumulate in the liver and are 

being excreted in the bile32,56–60. Other specific excretion routes that can occur are for 

instance via the kidneys for vertebrates61–63 and via the maxilla gland for invertebrate 

species54. 

As we have seen up to now, most of our knowledge on nanoparticle 

(eco)toxicity on vertebrate species is based on in vitro studies or in vivo injection 

studies. However, these studies do not provide information about the effective 

exposure in the environment, and do not answer the key question: are particles able to 

penetrate and enter the organism (uptake) at realistic environmental exposure 

conditions? As mentioned above, knowledge obtained on particle uptake in 

invertebrate species might not be applicable to vertebrate species due to their 

morphological differences. It is therefore important to assess the ability of particles to 

penetrate the borders of vertebrate species (epidermis, gut lining, etc.) under 

environmentally relevant conditions. By doing so, more relevant information about 

potential hazard for both ecological vertebrate species and for humans can be obtained. 

After particles have crossed the exterior borders of the organism, particles will 

distribute throughout the organism. Although in vivo injection studies provide 

information on where particles distribute to once they have entered the blood stream, 

it is not warranted that every internalized particle travels through the blood stream. 

For instance, distribution via the lymphatic system is also a possibility. Additionally, 

most in vivo injection studies deal with induced tumor tissue, which influences the 

accumulation of the particles and the focus area of the researchers. It furthermore is 

known that size and shape influence the in vitro uptake of the particles, but it is largely 

unknown how these characteristics influence the particle distribution inside the 

healthy organism. Knowing where particles accumulate (biodistribution) may provide 

an indication of long-term effects.  

Besides the usually stable nanoparticles used for imaging, nanoparticles can be made 

from various materials. Within the aim of the 3Rs, to Reduce, Replace or Refine animal 

testing, understanding the effect of particle shape on toxicity irrespective of the core 

material may provide valuable knowledge for modeling purposes. If there is a shape 

related effect irrespective of the core material, then the (eco)toxicological effects of an 

unknown/untested shape of a known material can be modeled rather than tested using 

animal tests. 
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The zebrafish as an example 

A suited vertebrate model organism to screen for uptake and effect of nanoparticles is 

the zebrafish (Danio rerio; Figure 3, top right). This sub-tropical fish is due to its size (2-

3 cm) easy to maintain. With 100 eggs or more in a clutch of one female, this model 

organism is ideal for high-throughput screening. The life-stages of the zebrafish 

embryos are well documented and therefore uniform to use for each researcher64. 

During the first 24 hours of development (see Figure 4), when the majority of the organs 

are formed, the embryos are transparent. This makes the embryos ideal for monitoring 

developmental processes. After the first day, pigmentation starts and the embryos lose 

their transparency. However, transparent fish lines, called Caspers, do not develop this 

pigmentation and are therefore ideal for imaging for instance uptake of particles at later 

life stages.  

  Although zebrafish are cold-blooded, they are well suited as a vertebrate 

model. With the full genome known, it has been found that at least 71% of the human 

proteins have a zebrafish orthologue65. This indicates that numerous genes are well 

conserved among the vertebrate group66. With a fully known genome and a generation 

time of 3 months, the zebrafish is an ideal model organism for mutant and transgenic 

fish lines. Moreover, transgenic fish lines with fluorescent-labeled proteins or cell types 

are enabling targeted screenings67. For instance, with the first innate immune system 

cell present after 24 hours post fertilization, immune system responses can be easily 

monitored using fluorescent microscopy.  

1 



Chapter 1 ‖ General introduction 

 

19 

 

  

Figure 4. Embryonic development. In this picture, the developmental stages of a zebrafish embryo 
during the first 25 hours post fertilization (hpf) are depicted. Reprinted from Kimmel et al., 1995.  

Zebrafish, both larvae and adults, have been used in (bio)medical and 

toxicological research for a while. Early medical researcher Dr. George Streisinger 

started using the zebrafish as a model in the 1970’s68. With the establishment of the 

zebrafish as a (medical) model organism, the zebrafish became also a representative for 

the aquatic vertebrates in toxicological assessments69,70. Standardized tests were 

developed to be used for systematic testing of chemicals under the European REACH 

initiative71,72. With a variety of endpoints ranging from lethality to malformations to 

behavioral effects73,74, the zebrafish presents itself as a diverse model for toxicity 

testing. Due to the high rate of conservancy in the genome of vertebrate species, adverse 

outcome pathways for emerging contaminants in the environment can be extrapolated 

from zebrafish to different species of ecological relevance75.  

 

Outline of this Thesis 

The work described in this thesis focusses on the uptake and biodistribution of 

nanoparticles in zebrafish larvae (up to 5 days post fertilization). For this, we covered 

different characteristics of the nanoparticles and studied the corresponding influence 
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on the uptake in and also their effect on the zebrafish larvae. The aim of this thesis is to 

understand the main drivers behind uptake and the subsequent biodistribution of 

nanoparticles, and how the effects they induce translates to ecotoxicological effects.  

Chapter 2 focusses on the influence of the size of particles on the uptake and 

subsequent biodistribution in zebrafish larvae. In addition, we studied the importance 

of the exposure route on the uptake of particles. Using fluorescent polystyrene 

nanoparticles, we investigated where the particles were located inside the organisms 

after waterborne exposure. 

Continuing on uptake, we shifted in Chapter 3 our focus from size to shape. 

Using the exposure route that resulted in the highest uptake in Chapter 2, we continued 

our work with differently shaped particles. Since shaped polystyrene particles are not 

commercially available, we used gold nanoparticles that we imaged using two photon 

multi-focal laser microscopy and we imaged the subsequent immune response with 

stereo fluorescence microscopy. 

In Chapter 4, we took a closer look at the impact of differently shaped particles 

on zebrafish fitness. By testing different shapes of silver nanoparticles for toxicity 

effects, we determined the effect of particle shape. In addition, by combining our data 

with existing data, we made an effort to model the particle effect irrelative to the core 

material. 

Until now, we have focused on the uptake and induced effects of mono-material 

nanoparticles. However, as described earlier in this introduction, nanotechnology is 

advancing and building multi-material nanoparticles. For this reason, we investigated 

in Chapter 5 what the interaction effects between TiO2 nanoparticles and differently 

dissolving nanoparticles are on the mixture toxicity. 

In Chapter 6 the main findings of this thesis are summarized and discussed in context 

of environmental safety and future perspectives for nanotechnology. 
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Abstract  

In ecotoxicology, it is continuously questioned whether (nano)particle exposure results 

in particle uptake and subsequent biodistribution or if particles adsorb to the epithelial 

layer only. To contribute to answering this question, we investigated different uptake 

routes in zebrafish embryos and how they affect particle uptake into organs and within 

whole organisms. This is addressed by exposing three different life stages of the 

zebrafish embryo in order to cover the following exposure routes: via chorion and 

dermal exposure; dermal exposure; oral and dermal exposure. How different 

nanoparticle sizes affect uptake routes was assessed by using polystyrene particles of 

25, 50, 250 and 700 nm.  

In our experimental study, we showed that particle uptake in biota is restricted to oral 

exposure, whereas the dermal route resulted in adsorption to the epidermis and gills 

only. Ingestion followed by biodistribution was observed for the tested particles of 25 

and 50 nm. The particles spread through the body and eventually accumulated in 

specific organs and tissues such as the eyes. Particles larger than 50 nm were 

predominantly adsorbed onto the intestinal tract and outer epidermis of zebrafish 

embryos. Embryos exposed to particles via both epidermis and intestine showed 

highest uptake and eventually accumulated particles in the eye, whereas uptake of 

particles via the chorion and epidermis resulted in marginal uptake. Organ uptake and 

internal distribution should be monitored more closely to provide more in depth 

information of the toxicity of particles. 
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1. Introduction 

Nano- and microparticles of varying sizes are increasingly detected in aquatic 

ecosystems1. Once in the environment, biota are exposed to particles and may 

subsequently be adversely affected, although field studies about these effects are scarce 

and complicated to perform2. To assess the origin of the effects from small particles, a 

better understanding of uptake routes and internalization is required. 

Particles can enter organisms via various ways: via the epidermis and/or gills 

(dermal exposure), via the gastrointestinal tract (oral exposure) or via inhalation. This 

latter exposure route is only applicable for organisms with lungs, whereas the first two 

apply to all multicellular organisms. To our knowledge, it is still unknown whether in in 

vivo exposures particles cross one of these barriers and which barrier they cross most 

effectively. Forced uptake routes via injection directly in the blood system3 or in 

muscles4 as used e.g. in cancer-research, can lead to metallic particle distribution 

through the whole body. This knowledge about biodistribution emphasizes the 

importance of understanding the factors that determine whether or not (metallic and 

polystyrene) particles cross the cell membrane barrier of the epithelial layer. 

Studies linking waterborne exposure of whole organisms to target organs and 

biodistribution report that particles in the GI tract are common5. Particles are not only 

taken up from the surrounding medium, but can also accumulate from the food. Based 

on their experimental data, Kalman et al. (2015)6 even stated that in freshwater 

exposures, uptake of metallic nanoparticles (MNPs) via ingestion of exposed food can 

have major effects on higher organisms and induces more severe effects than via 

waterborne exposure. This was also argued by Jackson et al. (2012)7 when the 

amphipod Leptocheirus plumulosus fed on Cd/Se quantum dot exposed algae showed 

more severe lethal effects of Cd/Se quantum dots as compared to waterborne exposure. 

Both Cedervall et al. (2012)8 and Mattsson et al. (2015)9 exposed fish to polystyrene 

nanoparticles (PS NPs) by feeding them Daphnia magna, which in turn were fed NP 

contaminated algae. These studies showed that polystyrene NPs administered via the 

food altered brain texture and water content indicating biodistribution towards the 

brain. Also for TiO2 NPs and carbon nanotubes it was found that accumulation occurred 

within multiple consumer species10.  

The route of particle uptake and subsequent target organ are hitherto 

uncertain, and especially the impact of exposure route on uptake is to be further 

substantiated. In this study, we investigated if polystyrene (nano)particles adsorb to 
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the intestine or epidermis, or if the particles are taken up and internalized. Thereby we 

explore if this is related to different sizes of PSPs. We defined internalization as 

absorption, thus cellular uptake of particles. Uptake is defined as particles being found 

within the organs and/or tissue of the organism. The word ‘biodistribution’ is used to 

describe the process of particles trafficking through cells and organisms. Ingestion is 

not considered uptake inside the body, only presence in the GI tract. 

We investigated the major uptake routes that determine uptake into organs 

and biodistribution within whole organisms. In this experiment we use the 

development of zebrafish embryos to obtain 3 different uptake routes: uptake via 

chorion and epidermis; uptake via epidermis; and uptake via epidermis and intestine 

due to ingestion of the particles, to answer the following research questions: 

(1) Is the exposure route important for (nano)particle uptake in zebrafish embryos and 

is this influenced by size? And (2) does the uptake route dictates the target organ? 

For the first research question, we hypothesize that oral uptake plays an 

important role, since uptake over an internal mucosal membrane occurs faster than 

over an intact dermal epithelial membrane. On the other hand, the chance of particle 

penetration is proportional to the surface area of the epidermis. Based on previous 

observations5,11,12 we hypothesize that uptake of particles increases with decreasing 

particles size. 

The second research question is based on previously detected target organs of 

particles in fish. Particles that enter the blood stream via the intestine pass the hepatic 

portal vein and are often detected in the liver5,13–15, Therefore we hypothesize that 

particles taken up via oral exposure target the liver, whereas particles taken up via 

dermal exposure might target other organs.  

 

2. Materials and Methods 

2.1 Preparation of particle suspensions 

Fluorescent polystyrene particles (PSPs) of 25 and 50 nm in H2O were purchased from 

ThermoFisher Scientific (Catalog number R25 and R50 resp.; Waltham, USA) and 

particles of 250 and 700 nm in H2O were purchased from Corpuscular Inc. (Catalog 

number 103127-05 and 103129-05 resp.; Cold spring, USA), both with a density of 

1.05 g/cm3. Exposure solutions were prepared by adding the purchased stock solutions 
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to egg water (60 μg/ml Instant Ocean Sea Salt, Sera GmbH, Heinsberg, Germany). 

Immediately before exposure, the solutions were freshly prepared and sonicated for 10 

min using an ultrasonic water bath (USC200T, VWR, Amsterdam, The Netherlands). 

 

2.2 Physicochemical characterization 

Transmission electron microscopy (TEM; JEOL 1010, JEOL Ltd., Tokyo, Japan) was used 

to characterize the size and morphology of the PSPs after 1 hour of incubation in egg 

water. Due to the chemical properties of polystyrene, the contrast of especially the 25 

nm PSP TEM images was limited. Dynamic light scattering (DLS) assessments were 

performed on a Zetasizer Nano-ZS instrument (Malvern Instruments Ltd, Malvern, UK) 

to detect the size distribution and zeta-potential of PSP suspensions in egg water at 0 h 

and 24 h.  

 

2.3 Experimental setup 

2.3.1 Zebrafish husbandry 

Zebrafish were handled as described by animal welfare regulations and maintained 

according to standard protocols (http://ZFIN.org). Adult zebrafish were maintained at 25 

± 0.5 ˚C in a 14 h light : 10 h dark cycle. Fertilized zebrafish eggs were obtained from an 

AB/TL wild-type zebrafish.  

 

2.3.2 Exposure of zebrafish embryo life stages to PSPs 

In order to test the importance of different uptake routes, three different exposure 

starting points were tested. Developing zebrafish embryos undergo different stages: at 

first the embryo is protected by the chorion, followed by the second stage in which the 

mouth of the hatched embryo is closed until the third stage in which the morphogenesis 

is completed and oral uptake and excretion are fully functioning. This provides the 

opportunity to test the three uptake routes as mentioned in the introduction. This can 

also be seen in Table 1. Zebrafish embryos were exposed in 24-well plates and an 

exposure regime of 48 hours was maintained within each group (n=10). Particle 

suspensions and egg water were renewed every 24 hours. Particle concentrations were 

selected based on pilot tests (data not shown) and are given in Table 1. The 

concentration selected showed clear visibility of the particles without observations of 
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negative effects in the embryos. Temperature was maintained at 28 ± 0.8 °C during the 

experiments.  

Table 1. Overview of the different exposure regimes indicating the age of the embryos expressed in 
hours post fertilization (hpf), the targeted uptake routes and nominal concentrations used. 
‘Dechorionated’ indicates that the embryos were manually dechorionated before exposure.  

Regime Developmental stage 

(hpf) 

Uptake route Nominal concentration 

(mg/L) 

25/50 nm 250/700 nm 

1 0 - 48 
Chorion and dermal 

uptake 
25 5 

2 24 - 72 (dechorionated) Dermal uptake 50 5 

3 72 - 120 Oral and dermal uptake 50 5 

 

2.3.3 Microscopy 

Prior to the experiments, pilot studies were executed with a 2 photon confocal laser 

microscope and a stereo fluorescent microscope (Supplementary material, SM) in order 

to determine the most suited method for visualizing adsorbed, ingested or 

biodistributed particles. Since the visualization of the 2 photon confocal laser 

microscopy was limited to a few cell layers hampering NP tracking, the experiment was 

conducted with a stereo fluorescent microscope capturing the whole embryo.  

Zebrafish embryos were examined and imaged daily during the exposure to 

check fitness (malformations and mortality) using a fluorescence stereo microscope 

(M205 FA, Leica). During the final examination, embryos were rinsed three times with 

egg water and kept under anesthesia (0,02% Tricaine, Sigma) in egg water. Fitness was 

not affected during this inspection. Embryos exposed until 48 hours post fertilization 

(hpf) were manually dechorionated prior to examination (Henn and Braunbeck, 2011). 

 

2.3.4 Eye size measurement 

From exposure regime 3, a minimum of 4 zebrafish embryos were imaged per exposure 

group using the fluorescence stereo microscope. Eye width and length were measured 

using the image processing package Fiji16. 
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2.4 Statistical analysis 

Significance (p<0,05) for effects on eye-size among the different treatments was tested 

using a one way ANOVA using the SPSS 23 software package. Results are given as mean 

± standard deviation (SD).  

 

3. Results 

3.1 Physico-chemical characterization of polystyrene particles 

TEM images showing the size of the PSPs after 1 h of incubation in egg water are given 

in Figure 1. All PSPs were spherical, and only small clusters of less than 4 particles were 

detected in the samples.  

              
Figure 1. TEM image of a) 25 nm, b) 50 nm, c) 250 and d) 700 nm PSPs. 

According to the TEM pictures, actual and nominal sizes of the particles at T0 

deviated less than 2-5%. The 25 nm particles had an actual average size of ca. 27 nm. 

The average size of the 50 nm NPs was measured to be 50 nm. The 250 and 700 nm 

particles had a diameter of 217 and 727 nm respectively. From the DLS measurements 

(Table 2) it can be concluded that the 25 and 700 nm particles behaved slightly different 

in the exposure medium of the zebrafish embryos as compared to the behavior of the 

a b

dc
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50 and 250 nm particles. The 25 nm NPs tended to form agglomerates over time. 

Suspensions of the 50 and 250 nm particles appeared stable, whereas the suspensions 

of the 700 nm PSPs were found to agglomerate directly after preparation. The clusters 

of PSPs formed declined in size over time. It is also apparent that the 25 and 50 nm NPs 

were present in clusters of a few particles within the samples at both T0 and T24, 

whereas the DLS measurements of the 250 and 700 nm PSPs indicated that only single 

particles were present after 24 hour. It should be noted that due to the fluorescent 

properties of the particles, the DLS measurements might be less accurate than for non-

fluorescent particles. The zeta potential measurements indicated that the 25 and 50 nm 

particles were negatively charged and maintained the zeta potential over time. In 

contrast, 250 nm particles became less negatively charged over time, and the 700 nm 

particles became more negatively charged. These zeta potentials indicate that the 25 

and 50 nm particles will form agglomerates within 24 h, whereas the 250 and 700 nm 

particles will remain a stable particle at 24 h which is also shown in the DLS results. 

Table 2. Overview of the zeta potential and size distribution after 0 and 24 h of exposure. In case of 
size distribution, the two dominant peaks in size are given with the first peak representing the 
highest number of counts. 

Particle 

Zeta potential (mV ± SD)   Size distribution by DLS (nm± SD) 

0 h 24 h 
 0 h 24 h 

 Peak one Peak two Peak one Peak two 

25 nm -5.1 ± 2.0 -6.1 ± 1.1  38.1 ± 7.1.. 134.8 ± 53.9…. 125 ± 5.4 .. 32.0 ± 1.0 

50 nm -15.8 ± 5.2.. -19.5 ± 1.5..  70.6 ± 18.1 3408.3 ± 2952.0 67.0 ± 1.7 5338.3 ± 118.4 

250 nm -20 ± 1.4….. -9.7 ± 2.9  298.4 ± 24.7.. - 277.7 ± 13.6 - 

700 nm -17.4 ± 8.9.. -31.9 ± 2.2..  943.6 ± 108.2 - 735 ± 57.6… - 

 

3.2 Uptake and biodistribution of PSPs 

Uptake and biodistribution of the differently sized PSPs were monitored after 48 h of 

exposure starting at three different time points (based upon hpf), of which 

representative pictures are shown in Figure 2. Per group, all embryos (n=10) showed 

the same degree of uptake. The embryos exposed directly after fertilization (regime 1) 

had no particles taken up. In fact, all NPs were adsorbed to the chorion. The embryos 

exposed after 24 hpf (regime 2) displayed particle adsorption to the epidermis and no 

uptake of PSPs was observed (Figure 2). As can be seen from Figure 2, uptake of PSPs 

was observed only when the exposure started at 72 hpf (third exposure regime, at 

which oral and dermal exposure is possible). The smallest particles of 25 and 50 nm 
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were taken up by the embryo between 72 and 120 hpf, as shown by their accumulation 

in the eye (Figure 3). The 250 and 700 nm PSPs were found only in the digestive tract 

and absorbed to the gills of the exposed zebrafish embryos and were not found in the 

eye.  2 
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Figure 3. Images of fluorescent PSPs in the eye of zebrafish embryos after exposure to 25 nm and 
50 nm PSPs exposed from 72 till 120 hpf. The inset is providing further details using 10 times 
magnification. 

 

3.3 Eye size measurement 

 
Figure 4. Eye size measurement of embryos exposed to different sized PSPs from 72 till 120 hpf 
(n=4). Vertical and horizontal refer to the measurement direction. 

The eye size of embryos in which PSPs were present in the eye was compared with the 

eye size of embryos in which PSPs were absent in the eyes. No significant difference in 

eye size was found between any of the treatments and the control (see Figure 4). Thus, 

the PSPs present in the eye did not affect ocular development.  
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4. Discussion 

In this contribution, the first question we aimed to answer is whether the exposure 

route is important for the uptake of particles. Differentiation between uptake routes in 

nanotoxicology is a yet unexplored avenue of research and only a few studies 

distinguish oral uptake from other uptake routes. Since exposure via food (here defined 

as oral exposure) also resulted in metallic particles in the gills13, the difference between 

oral exposure and full body exposure becomes undistinguishable. Irrespective of the 

exposure route, only particles adsorbed in the intestine were further biodistributed5,13–

15, suggesting that the epithelial layer is an important route for particle uptake and 

biodistribution. Our results underline the importance of the oral exposure route and its 

impacts on internalization of particles. When embryos were exposed solely via the 

dermal route, PSPs adsorbed on the epidermis and gills. However, no PSPs were 

detected inside the embryos, indicating that oral exposure is the most important route 

for PSP uptake in zebrafish. Subsequently this means that embryonic stages after 72 hpf 

are most suited for studying internalization and uptake of particles from waterborne 

exposures. The results indicate that especially for higher organisms, oral exposure is 

the major route of uptake and source for subsequent internal distribution of particles. 

Besides the exposure route, other factors are found to be important for particle 

uptake. Most commonly, size is reported to influence uptake, with a restricted particle 

size of maximal 50 nm12,17. This is confirmed by the results of our experimental study 

as only the tested particles equal to or smaller than 50 nm were taken up into the 

embryos and particles equal or larger than 250 nm were not found to be taken up in the 

eye of embryos. The larger particles (≥250 nm) were not able to penetrate body tissue 

in any of the exposure scenarios. Even more, large particles cannot cross the epidermis-

barrier or intestine lining and are also often too large to be consumed by the 

organisms18–20. Here we show that particles of up to 700 nm can be ingested by 

zebrafish embryos. 

Not only size, but also other factors can influence uptake of particles, such as 

the surface characteristics of the particle21,22. In our experiments, the negative surface 

charge of the PSPs might have prevented uptake via the relatively large pore channels 

(500 to 700 nm23) of the chorion, since the chorion showed to be an effective barrier to 

all sizes of our PSPs. Also the chorion of the Japanese medaka (Oryzias latipes) is capable 

of protecting recently fertilized embryos from intruding polystyrene NPs smaller than 

50 nm5. Also other studies found only size-dependent effects after hatching, with no 

effects prior to hatching23. Surface charge of the PSPs might have resulted in large 
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adsorption to the chorion. It can be speculated that transport of particles over the 

chorion occurs only when the chorion has reached its adsorption maximum (maximum 

strength to bind particles). Another possibility is that large clusters of particles, which 

were adsorbed to the chorion, hampered passage through the pore channels. Yet, at a 

later stage of development, while still being protected by the chorion, particles were 

found internalized in the medaka5. Since medaka embryos have a longer developmental 

time whilst still being in the chorion (hatching around 216 hpf24) than zebrafish 

embryos (hatching around 72 hpf), exposure over a longer time period might allow NPs 

to cross the more slowly thinning chorion and to enter the organism.  

The second question we aimed to answer in this article is whether the uptake 

route influences the target organ. In our study we show an exposure route dependent 

effect on uptake. Our tested particles larger than 50 nm were not taken up, even though 

they were found to distribute through the intestine when the mouth opens. In contrary, 

accumulation of small PSPs (≤50 nm) in the eyes was observed. This was only observed 

after exposure of embryos via the dermal + oral route (while the mouth was open), 

whereas this accumulation was not observed when the mouth was still closed i.e. under 

conditions of dermal uptake only. Although particles might have been taken up via the 

maturing epidermis of the zebrafish, the exposure route is most likely via the 

gastrointestinal tract as direct dermal exposure induced no uptake of particles. 

Particles tend to accumulate in specific organs after uptake25,26. In general, 

most particles are found to accumulate in the liver of fish5,13–15. This observation is 

according to expectation, since the liver is primarily used to clear the body from 

toxicants. Other organs are also targeted by particles, since particles were found to be 

distributed throughout the whole body – including the brain – once the particles have 

entered the blood stream or lymphatic system of vertebrates27–29. In our experiments, 

particle exposure via the intestine and epidermis led to accumulation in the eye of the 

zebrafish. It is not clear if transport occurred via the blood stream or via the lymphatic 

system, or that uptake occurred after epidermal exposure, since there were no particles 

detected in both systems. Over time, the free PSPs might be further distributed through 

the body at a later stage of development and accumulate in other organs such as the 

brain. This distribution of particles was found for other particles, and for instance Ag 

NPs were located in both the eye and the brain of zebrafish embryos30. However, for 

metallic NPs that dissolve in aquatic and biological media it is hard to distinguish 

between the biodistribution of the NPs and the ions. Lee et al. (2012)30 focused at the 

signal of the particles, but often total internal Ag concentrations are measured with no 
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distinction between ions and particles14. Not only particles shedding off ions, but also 

stable NPs were found to be distributed within an organism. For instance presence of 

polystyrene NPs altered the structure of the brain from adult rainbow trout and 

subsequently influenced their behavior9 indicating that NPs not only have short term 

effects, but also long term behavioral effects31. 

An important part in understanding the significance of uptake and 

internalization of PSPs are the biodistribution and elimination possibilities32. 

Investigation of clearing mechanisms in zebrafish embryos is limited due to short assay 

time span of 120 h. However, in adult zebrafish most particles are excreted from the 

body via the liver, spleen and gall bladder5,27,33,34. Excretion from cells and subsequently 

from tissues occurs at a much slower rate than uptake, which can occur within half an 

hour (particles found intracellular35). For carbon quantum dots, the fastest excretion 

time (in which all of the particles were cleared from the body) of internalized particles 

was 56 hours28. Thus it can be expected that once accumulated, PSP may be excreted 

again. However, if this is actually the case and in what time span remains to be 

investigated. 

 

5. Conclusions 

The exposure route influences the uptake and target organ of particles in zebrafish 

embryos. The three different uptake routes we tested (chorion and epidermis; 

epidermis; epidermis and intestine via ingestion) provided insight in the contribution 

of uptake routes to actual uptake. Our data suggest that the predominant uptake route 

of PSPs was the oral route, while dermal uptake only marginally contributed to uptake 

and subsequent biodistribution. Therefore, the time window between 72 and 120 hpf 

is of importance in zebrafish embryo exposure. The main physicochemical factor 

accounting for uptake, internalization and further distribution was particle size. 

Particles with a diameter of 25 and 50 nm were the largest particles found to be taken 

up in the eye. Accumulation in the eye might either originate from outer epidermal 

exposure or from uptake through the intestinal epidermis and subsequent internal 

biodistribution. Organ uptake and internal distribution should be monitored more 

closely to provide more in depth information of the toxicity of particles. As a future 

perspective, we suggest that measurements of the biodistribution and depuration of 

NPs may become a useful sub-lethal endpoint. Simultaneous examination of 
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biodistribution and depuration endpoints will provide insight in the bioaccumulation 

capacity of particles by biota. 
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X-ray tomography image of a control ZF embryo (top) and a ZF embryo exposed to gold NPs (bottom) 
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Abstract  

Important questions raised in (nano)ecotoxicology are whether biodistribution of 

nanoparticles is affected by particle shape and to what extend local adverse responses 

are subsequently initiated. For nanomedicine, these same questions become important 

when the labeled nanoparticles lose the labeling. In this study, we investigated the 

biodistribution patterns of gold nanoparticles (Au NPs) as well as immune-related local 

and systemic sub-lethal markers of exposure and behavioral assessment. Hatched 

zebrafish embryos were exposed to four differently shaped non-coated Au NPs with 

comparable sizes: nanospheres, nanorods, nano-urchins, and nano-bipyramids.  

Shape-dependent trafficking of the particles resulted in a different distribution of the 

particles over the target organs. The differences across the distribution patterns 

indicate that the particles behave slightly different, although they eventually reach the 

same target organs – yet in different ratios. Mainly local induction of the immune 

system was observed, whereas systemic immune responses were not clearly visible. 

Macrophages were found to take Au NPs from the body fluid, be transferred into the 

veins and transported to digestive organs for clearance. No significant behavioral 

toxicological responses in zebrafish embryos were observed after exposure. 

The trafficking of the particles in the macrophages indicates that the particles are 

removed via the mononuclear phagocytic system. The different ratios in which the 

particles are distributed over the target organs, indicate that the shape influences their 

behavior and eventually possibly the toxicity of the particles. The observed shape-

dependent biodistribution patterns might be beneficial for shape-specific targeting in 

nanomedicine and stress the importance of incorporating shape-features in nanosafety 

assessment. 
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1. Introduction 

A central paradigm of toxicology is that toxic effects induced by a xenobiotic are due to 

a cascade of processes including Adsorption at sites of uptake, Distribution to target 

organs where the toxicant potentially induces a response, and ultimate storage in 

either the target organ or in any other organ, followed by Metabolization and 

Excretion (ADME)1. To make the chain of events even more complicated, it is to be 

acknowledged that different chemicals commonly follow different pathways, although 

they might end up in the same storage organ or tissue2. The myriad of processes may 

lead to various adverse effects, which makes it important to understand the 

mechanistic pathways and the main parameters affecting toxicity. While in vitro 

assays provide only limited information about the ADME of compounds, in vivo 

studies such as with zebrafish embryos provide more in depth insights3 because cells 

in living organisms communicate and are specialized to perform specific essential 

functions. Using either in vitro or in vivo methods, it is key to understand the factors 

influencing (parts of) the ADME of xenobiotic compounds. 

In the case of nanoparticles (NPs), uptake across epithelial membranes is 

dictated (among other factors) by size, shape and surface charge4. Just as for size4, both 

the shape of particles as well as the accessory surface area influence how particles 

behave in exposure media5. Particle aggregation and dissolution for those particles that 

can dissolve (which is not the case for gold nanoparticles (Au NPs)) are in general the 

most important fate-determining processes. While size has been shown to influence 

uptake and biodistribution in zebrafish embryos6,7, the impact of different nano-shapes 

on biodistribution is less investigated. Particle shape can be an important factor for 

cellular uptake, circulation time within the organism, and subsequently the 

biodistribution of nanoparticles5.In general, small, elongated nanoparticles are more 

easily taken up by cells than large and flat individual, non-aggregated particles8. This 

same tendency was found for the endpoint of biodistribution, as nanorods distributed 

throughout tumor tissues, whereas gold spheres and discs were located only at the 

surface of the tumor9. In addition, nanorods showed the fastest uptake and clearance 

over spherical and star shaped nanoparticles10. Moreover, the aspect ratio of rods was 

found to determine uptake and internal distribution: short rods were taken up faster 

and were trapped in the liver, while longer rods with a smaller aspect ratio showed 

lower uptake efficiency and were trapped in the spleen of mice11–13. Additionally, sharp 

gold nanostars can pierce the membranes of endosomes and escape to the cytoplasm 

regardless of their surface chemistry, size or composition12,14. 

3 



Through the magnifying glass: the effect of size and shape 

54 

 

As a noble metal with low toxicity, gold has been an ideal material in 

nanomedicine for diagnostic and therapeutic purposes such as imaging agents and 

drug-delivery systems12,15,16. Specifically coating/labeling the gold nanoparticles 

enables researchers to guide the particles to the desired target9. What happens to the 

gold nanoparticle when the coating or labeling is released is hardly studied, although 

some studies found that the coating can change17 and even separate from the particles 

18 under in vivo conditions. Gold is found to be biocompatible16,19, and its nanoform is 

categorized as an active and insoluble material which promotes cellular effects and/or 

mobility in organisms20. Therefore, it can be used as a platform for delivery in 

nanomedicine and for in vivo imaging experiments without major adverse effects. Due 

to their distinctive plasmonic resonances21, high Rayleight scattering19, and resistance 

against photo-bleaching and photo-blinking21, are gold particles very suitable for a 

variety of imaging techniques. Additionally, gold particles can be synthesized relatively 

easily, with control of their size and shape21. The fact that gold nanoparticles are 

synthesized in different shapes, combined with their inert properties makes gold the 

perfect material for testing the effect of shape on particle toxicity.  

In this study, we aimed to determine the biodistribution and subsequent 

adverse responses to differently shaped, non-modified gold particles in zebrafish 

embryos. We used the word trafficking for active movement across the body of the 

organism, and the word biodistribution for where the Au NPs are located in the ZF 

embryo at a given time (static measurement 48 hours after exposure). The underlying 

research questions were: 

(1) Do differently shaped Au NPs induce different biodistribution patterns and 

hence do they accumulate in different target organs?  

To answer this research question, the biodistribution of Au NPs was measured 

after 2 days of NP exposure. Our assumption is that once particles are accumulated in 

organs, due to agglomeration they are no longer available for biodistribution since 

biodistribution is limited to particles and agglomerates smaller than 250 nm22. By 

imaging after 2 day of exposure the Au NPs can be visualized in the target organs as 

sufficient uptake of Au NPs is expected to have taken place after this exposure duration 

without experiencing any morphological malformation15,21. 

(2) What type of trafficking can we identify for Au NPs? 

In general, nanoparticle clearance can occur via the hepatobiliary pathway or 

via the kidneys23. For the first pathway, uptake by macrophages is essential, whereas 
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clearance via the urine occurs without intervention of macrophages. By tracking the 

movement of particles directly after internalization (simulated by microinjection), the 

initial clearance mechanism of the organism can be visualized. 

(3) Is the difference in biodistribution patterns also reflected in different 

response patterns?  

As shown by previous research24, immune responses, both local and systemic, 

are valuable endpoints for monitoring biodistribution. We therefore investigated the 

extent of recognition of the particles by neutrophils and macrophages.  

(4) Is the exposure to Au NPs also translated into effects on the behavior of 

hatched zebrafish embryos?  

In ecotoxicology, assessment of the behavioral response of hatched zebrafish 

embryos after exposure is a commonly used sub-lethal and sensitive apical endpoint 25. 

By investigating sensitive sub-lethal endpoints, early signs of toxicity can be detected.  

 

2. Material and methods 

2.1 Preparation of particle suspensions 

Gold nanospheres and nano-urchins with nominal sizes of 60 nm were purchased from 

Sigma Aldrich (Zwijndrecht, The Netherlands). The particles were suspended in 0.1 mM 

phosphate buffered saline. Gold nanorods with a nominal size of 40 x 60 nm, stabilized 

with polyvinylpyrrolidone and suspended in water, were purchased from Nanopartz 

Inc. (Loveland, USA). Gold nano-bipyramids with a nominal size of 45 x 140 nm were 

purchased from Nanoseedz, ltd. (Hong Kong, China). The bipyramids were stabilized 

with polyethylene glycol in water and rinsed before use with demineralized water. 

Exposure suspensions were prepared by adding the purchased stock suspensions to 

egg water (60 μg/ml Instant Ocean Sea Salt, Sera GmbH, Heinsberg, Germany). All 

dilutions were freshly prepared and sonicated for 10 minutes in an ultrasonic water 

bath (USC200T, 45kHz,  VWR, Amsterdam, The Netherlands), after which the embryos 

were immediately exposed. For each shape, we selected the diameter (for the urchin 

from one spike to the opposite spike) as the dimension to be similar in size, namely a 

range of 45-60nm. 
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2.2 Physicochemical characterization 

The size and morphology of the suspended AuNPs at test concentrations were 

characterized using transmission electron microscopy (TEM; JEOL 1010, JEOL Ltd., 

Tokyo, Japan) after 1 hour of incubation in egg water. Dynamic light scattering 

assessments were performed on a Zetasizer Nano-ZS instrument (Malvern Instruments 

Ltd, Malvern, UK) to detect the size distribution and zeta-potential of Au NP 

suspensions in egg water at 0 h, 1 h and 24 h, treating them as if they were spherical 

particles. 

 

2.3 Experimental setup 

2.3.1 Zebrafish husbandry 

Zebrafish were handled as described by animal welfare regulations and maintained 

according to standard protocols (http://ZFIN.org). Adult zebrafish were maintained at 

25 ± 5 ˚C in a 14 h: 10 h light-dark cycle. Fertilized zebrafish eggs were obtained from 

Casper zebrafish (Danio rerio), MPEG1.4:mCherry/MPX:GFP zebrafish and KDRL:GFP 

zebrafish, dependent on the analysis.  

 

2.3.2 Waterborne exposure of zebrafish embryos to Au NPs 

The OECD guideline 157 for the standard ZebraFish Embryo Test-protocol26 was 

modified as described in Van Pomeren et al. (2017b). We used the exposure window 

from 3 days post fertilization (dpf) till 5 dpf, since this exposure window was found to 

be associated with the highest amount of uptake7. Embryos were exposed to nominal 

concentrations of 5 mg/L. At this concentration, we expect to obtain sufficient signal for 

imaging while not observing any morphological malformations15,21,28. As a result, the 

concentration applied is expected to be too low to observe any sub-lethal effects as well. 

2.3.3 Confocal microscopy 

During the exposure period, Casper zebrafish embryos were examined daily to check 

fitness (malformations and mortality) using a dissecting microscope. During the final 

examination, embryos were rinsed three times with egg water, kept under anesthesia 

(0.02% Tricaine, Sigma) in egg water and embedded with low melting agarose (CAS 

39346-81-1, Sigma Aldrich, Zwijndrecht). Fitness was not affected during this 

inspection. Final examination was performed using the reflection of Au NPs according 
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to the method described by Kim et al. (2015)29, using a confocal microscope (Zeiss LSM5 

Exciter).  

 

2.3.4 Stereo fluorescence microscopy 

Biodistribution and subsequent identification of target organs can be visualized by 

examination of the immune responses that are locally induced by the particles 91. 

Similar to the analysis described above and applying the same exposure period, 

transgenic MPEG1.4:mCherry/MPX:GFP zebrafish embryos were examined daily. 

During the final examination, embryos were rinsed three times with egg water, kept 

under anesthesia (0.02% Tricaine, Sigma) in egg water and imaged in an agarose (CAS 

9012-36-6, Sigma Aldrich, Zwijndrecht) covered Petri dish. Final examination was 

performed using the fluorescent signal of the fluorescent-labeled neutrophils (GFP) and 

the macrophages (mCherry) with a fluorescence stereo microscope (MZ 205 FA, Leica). 

Doing so, each image contains three channels: bright field, fluorescent green 

(GFPgreen/neutrophils), and fluorescent red (DRSred/macrophages). Using ImageJ 

software30, images were assessed for fluorescence intensity and a corrected total cell 

fluorescence (CTCF) value was calculated 31. 

 

2.3.5 Two photon multi-focal laser microscopy 

In order to investigate the clearance mechanism of the organism, the time dynamics of 

nanoparticles was tracked in order to follow the clearance. The time dynamics of 

particle trafficking was visualized with a two photon multi-focal laser microscope32. 

Using this method, single particles can be followed in vivo (supplementary materials 

(SM)). For this, the particle with the most optimal optical properties was chosen, as this 

method is only suited for particles with a plasma resonance close to 830 nm. For that 

reason, we use this method as a proof of principle for nanoparticle trafficking in 

macrophages. For our selection of particles, the nano-bipyramids showed to be best 

suited since their plasma resonance was 850 nm. A high, non-environmental relevant 

concentration (19 mg/L) was selected to guarantee good visibility. To assure high 

concentrations of particles present in the organism, 3 day old transgenic KDRL:GFP 

zebrafish embryos were injected in the duct of Cuvier with 2nL nano-bipyramid gold 

NPs using a Femtojet injector (Eppendorf), half an hour prior to scanning. During the 

scanning, embryos were kept under anesthesia (0.02% Tricaine) in egg water while 
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they were embedded in 0.4% low melting agarose. The success of the injections was 

assessed by looking at the absence of leakage to the yolk and the displacement of blood 

cells by injection-fluid. 

 

2.3.6 Behavioral analysis 

Since gold rarely induces lethal effects at the tested concentration, behavioral analysis 

was chosen as a more sensitive toxicity endpoint, as commonly used in neurotoxicity 25. 

Before behavioral analysis, all living embryos (120 hpf) were evaluated in terms of 

normal development, morphological defects and vitality using a stereo dissecting 

microscope. The behavioral analysis was performed by subjecting the embryos to the 

light–dark challenge test as modified according to Hua et al. (2014). Low locomotor 

activity of zebrafish embryos occurred under light exposure (basal phase). A sharp 

spike of fast swimming activity was induced by a sudden transition to dark, lasting less 

than 2 s (challenge phase33). A total of 22 min of recording was used: 10 minutes 

acclimatization, 4 minutes basal phase, 4 minutes challenge phase and 4 minutes 

recovery phase. The total distance moved and the velocity of each zebrafish embryo 

was tracked using the Zebrabox (Viewpoint, Lyon, France) and analyzed using 

EthoVision software (Noldus Information Technology, Wageningen, The Netherlands).  

 

2.3.7 Statistical analysis  

Data of the behavioral test and the immune responses (represented as CTCF) were 

presented as mean ± standard error of the mean (SEM). The homogeneity of variance 

was checked using the SPSS 23 software package. The significance level for all 

calculations was set at p<0.05. Significant differences between the different exposures 

within each phase were tested using an one-way analyses of variance (ANOVA) with 

Tukey’s multiple comparison post-test. 

 

3. Results 

3.1 Physicochemical characterization  

Using TEM images (Figure 1), size and shape of the particles were verified. According 

to the pictures, no large size deviations nor impurities were observed. This was in 

agreement with the information received from the producers.  
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Hydrodynamic size measurements obtained by means of DLS showed little 

variation over time (Table 1). This was with the exception of the nano-Au bipyramids 

as these particles did not follow this general pattern and formed 

aggregates/agglomerates immediately after preparation of the test suspension, which 

became even larger over time. This observation is probably related to the observation 

of the zeta potential being close to zero, which is indicative of lack of repulsive forces.  

Table 1. Zeta potential and size distribution as measured by DLS of the different gold 
nanoparticles over time.

 
 

      
Figure 1. TEM images of the four tested nanogold particles: a) nano-urchins b) nanorods c) 
nanospheres and d) nano-bipyramids. 
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3.2 Biodistribution of Au NPs 

Using a confocal laser-scanning microscope, clusters of nanoparticles could be 

visualized in exposed zebrafish embryos. Independent of the shape, every type of 

particle was observed to be present in the intestinal tract (examples of confocal images 

of particles in the intestinal tract can be found in the supplementary materials). 

Nanorods were found to efficiently distribute to other digestive organs of the embryo 

as well, such as the liver/gallbladder (Figure S1, SM). For most of the particle shapes, 

clusters were also found in most probably a blood vessel near the eye (Figure 2). 

Figure 2. Confocal images showing particle clusters in blood vessels near the eye of the zebrafish 
embryo (5 dpf) for different nanogold particles: a) nanorods b) nano-urchins c) nanospheres and d) 
nano-bipyramids. 
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3.3 Trafficking of Au NPs 

For the optical most optimal nanoparticles, the nano-bipyramids, the time dynamics of 

biodistribution were examined. After intravenous injection, the particles were found to 

be distributed throughout the tail of the embryo (Figure 3). As can be observed from 

Figure 3 or even more clearly from the movie (Movie S1, SM), free particles and clusters 

distributed through the bloodstream. Particles are thereafter phagocytosed by 

macrophages. A macrophage loaded with particles can be observed in the tissue 

(confirmed by the fluorescent signal), which moved over the tissue to the vein (Figure 

3 and Movie S1, SM). From there, it will go to the liver or spleen to be cleared from the 

organism 34. 

Figure 3. Macrophage filled with gold bipyramids moves along the artery wall after which it is 
released into the bloodstream. a) Transmission image with emission overlay (magenta) of the 
imaged region (scale bar 2 µm). b) Macrophage (white circle) moves along the artery wall, at t = 
519 seconds the macrophage releases from the artery wall into the bloodstream. 

 

3.4 Immuno-responses  

Upon inspection of the response of the immune system of the whole organism and of 

responses in specific regions (Figure 4 and Figure S2, SM), different response patterns 

were observed. In case of the neutrophils (Figure 4; a, c, e), the nano-urchins, nanorods 

and nano-bipyramids did not induce any visible effect on the immune system at the 

whole organismal scale (Figure 4a) and in the tail (Figure 4c). However, embryos 

exposed to spherically shaped gold particles induced a reduced amount of neutrophils 

at the whole organism scale and in the tail region. Examination of the intestine (Figure 
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4e) learned that more neutrophils were present in embryos that were exposed to rods 

compared to the control), whereas the embryos exposed to nanospheres again reduced 

the amount of neutrophils.  

Figure 4. Abundance (relative to control) of neutrophils (a, c and e) and macrophages (b, d and f) 
in 5 dpf zebrafish embryos after exposure to differently shaped nanogold particles. The abundance 
in three different sections is provided: Whole organism (a and b), tail section (c and d) and intestine 
region (e and f). Asterisks indicate statistically significant differences to controls (*p < 0.05, **p < 
0.01, and ***p < 0.001). Data are provided as mean and standard error of the mean (n=20). 

3 
a)                 b) 

c)                 d) 

e)                 f) 



Chapter 3 ‖ Biodistribution of gold particles 

 

63 

 

For the macrophages (Figure 4; b, d, f) at each examination level (whole body 

(b), tail (d) and intestine (f)) the embryos exposed to urchin shaped nanogold were 

observed to have a higher level of macrophages. For the embryos that were exposed to 

spherical nanogold particles, the overall abundance of macrophages was decreased for 

both the whole body and the tail region, whereas the intestine region had macrophages 

abundances that were comparable to the control.  

Table 2. Percentage of fish that showed high numbers of immune cells in the specified organs 
(n=19±1). Note that one single fish might be scored for multiple organs. 

 

The differently shaped particles showed different distribution patterns into the 

main digestive organs: gall bladder, pancreas and liver (Table 2). Embryos that had a 

high expression of either neutrophils or macrophages in the intestinal region, generally 

showed high abundance of immune cells in the gallbladder (Figure 5), pancreas and / 

or liver (Figure 6; different combinations have been observed). The majority of the 

particles were transported to the pancreas, except for the nanospheres. Nanospheres 

were predominantly found within the liver. Nanospheres and nano-urchins were 

thereafter mostly found in the gall bladder, whereas nanorods and nano-bipyramids 

distributed mostly to the liver. 
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Figure 5. Images of fluorescent neutrophils (green) and macrophages (red) in zebrafish embryos 
after exposure to gold nano-urchins. The inset is providing further details using 2 times 
magnification. 

The observed distribution patterns (Table 2) were consistent with the 

observed abundance of immune cells (expressed as CTCF value) in the embryos (Figure 

4): the nanorods and nano-urchins showed a high increase of the CTCF value in the 

intestine region and both shapes showed high abundancy of immune cells in the 

pancreas. In some cases, the immune cells accumulated more at the top of the pancreas, 

at the islets of Langerhans, rather than accumulating in the whole pancreas (Figure 6).  
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Figure 6. Images of fluorescent neutrophils (green) and macrophages (red) in zebrafish embryos 
after exposure to gold nano-bipyramids. The inset is providing further details using 6 times 
magnification. 

For the nano-bipyramids, no obvious relation between the total amount of 

immune cells and the presence of immune cells in specific organs was observed. 

Exposure to nanospheres induced a reduction in the total amount of immune cells in 

the body as well as a strong reduction in fluorescent signal in the tail. However, no 

difference compared to the control was observed in fluorescent signal in the intestine 

region. This suggests that there was an overall reduction in the amount of immune cells 

and that the majority of the immune cells were translocated from the tail to the 

digestive organs and intestine.  

 

3.5 Behavioral response 

In order to investigate induced toxic effects related to the shape dependent 

biodistribution, a behavioral test was performed. The results of the behavior test 

showed that in the base phase a slight difference was observable with regard to the total 

distance that the hatched embryo moved (Figure 7). For embryos exposed to urchin 
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shaped particles, the total distance moved was increased in the base phase whereas the 

other exposed groups did not show large differences, not even for the nano-bipyramids 

that also were predominantly found in the pancreas. In addition, accumulation of 

spherical particles in a high-energy demanding organ as the liver did not reduce the 

activity of the embryos. In the challenge phase, when stress was induced, embryos 

exposed to nano-bipyramids showed a reduced movement distance (Figure 7) and 

subsequent velocity (data not shown). On the other hand, the embryos exposed to 

nanorods traveled a longer distance per time interval and in total (Figure 7). In the 

recovery phase, the same tendency for the embryos exposed to nano-urchins as in the 

base phase was observed, although the effect is not that profound. 

 
Figure 7. Total distance moved of 5dpf embryos exposed to different nanogold particles. Results are 
provided per stage of the behavior test (mean and standard error of the mean). Asterisks indicate 
significant differences to controls (*p < 0.05, **p < 0.01, and ***p < 0.001). 

 

4. Discussion 

The first question we aimed to answer is whether differently shaped Au NPs are 

differently distributed within zebrafish embryos and whether the NPs reach different 

target organs. All shapes were found to accumulate on the intestinal mucosa. Yet 

adsorption to the intestinal mucosa is still not to be considered as either uptake or 

biodistribution. Evidence of the particles actually crossing the intestinal mucosa is 
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provided by their presence in other digestive organs (such as the liver and gall bladder) 

as proven by confocal imaging. It should be noted that all differently shaped gold 

particles were found to be present in a blood vessel near the eye of the embryo. This is 

in line with our previous study7, using fluorescent polystyrene (PS) particles with 

comparable size as the Au NPs tested in this study. Exposure to smaller (1.3 nm) Au NPs 

resulted in disruption of the growth and pigmentation of the eye of the embryos35. Due 

to high auto-fluorescence levels in the eye in our study, it was not feasible to examine 

the accumulation of gold in the eye. However, the presence and the mobility of the gold 

NPs in the blood veins, as shown by both our confocal imaging techniques, indicates a 

possibility of distribution throughout the organism and thus translocation to the eye. 

Typically, xenobiotic particles that are taken up in the blood system are 

distributed throughout the organism and inflict harm to their host. To reduce or 

prevent harm, organisms evolved mechanisms to remove these particles from their 

body. For our second research question, we aimed to identify the clearance mechanism 

of the particles. As we saw in the time dynamic recording of the nano-bipyramids 

(Movie S1, SM), particles are taken up by macrophages and thereafter trafficking via the 

mononuclear phagocytic system (MPS). In general, spherical shaped particles show the 

fastest clearance rate compared to rod shaped particles12, thereby favoring the 

hepatobiliary pathway over clearance via the kidneys23,28. Moreover, the clearance rate 

is further reduced when the particles are disk- or lamella-shaped12, become more 

elongated36, or develop sharp structures14. Once particles are taken up in macrophages, 

clearance via the MPS continues via the spleen, liver and eventually via bile trough the 

gallbladder into the digestive tract and feces34. In 5 dpf zebrafish embryos, the function 

of the spleen – which is not yet developed – is taken over by the pancreas37. Indeed, the 

pancreas, liver, gall bladder and digestive tract were found to contain nanoparticles. 

Just as for PS NPs24, gold particles induced intestinal inflammation. Even more, induced 

activity of the innate immune system in the digestive organs was observed, which 

confirms the presence of the particles in these organs. For more in-depth information 

on the immune response, it might be interesting for future studies to include the 

macrophage polarization and how this polarization influences the clearance of 

(differently shaped) particles. 

By using the immune response of the embryos, we aimed to answer our third 

research question: is the biodistribution reflected in different response patterns. 

Actually, a shape dependent pattern can be observed. Specifically focusing on the gall 

bladder, liver and pancreas, the distribution of the particles over these organs depends 
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on particle shape. The differences across the distribution patterns indicate that the 

particles behave slightly different, although they eventually reach the same target 

organs – yet in different ratios. In in vitro studies, the shape of the particle was shown 

to influence the rate of uptake and the circulation time, and subsequently the target 

organ12. Spherically shaped particles are most efficiently taken up compared to their 

rod and elliptical counterparts12, whereas particles with sharp edges are capable of 

escaping the endosome and therewith prolonging their retention time14. Having a 

higher circulation time results in a larger probability to reach other target organs rather 

than the most prominent clearing organ – the liver12.. As a matter of fact, the shape that 

was found to accumulate the most in the liver was the nanosphere. 

 

The fourth question we aimed to answer is whether the biodistribution is reflected in 

the organismal behavior responses. The observed differences in the behavior test were 

only marginally significant and not always repeatable. As stated earlier by Browning et 

al. (2009), random internal distribution of individual gold nanoparticles into vital 

organs of the zebrafish can result in effects on the individual level while this is not a 

concentration dependent effect. After long-term exposure to PS NPs, particles were 

found to distribute into the brain where they modified brain tissue and subsequently 

changed behavior38. For that reason, exposure for a longer period might result in the 

presence of gold NPs in the brain of zebrafish, resulting in abnormal behavior patterns. 

Additionally, gold particles affecting the eye in early development induced behavioral 

effects35. With our exposure concentration, we were not able to observe any strong 

effects on the behavior, indicating that for this exposure period the concentration is too 

low to induce any behavioral effects. However, the nano-bipyramids reduced the total 

distance moved in the challenge phase, indicating that the embryos lack the energy to 

produce the full energy burst as seen in the control group. At the same time, no visible 

in- or decreases in immune levels were observed. This combination of observations 

suggests that the total energy budget of the organism is decreased, where the organisms 

allocates most of their energy to the immune response leaving less energy for 

locomotive responses. Reduction in locomotive responses is detrimental for the 

survival of an individual and it might even indicate a possible reduced fecundity due to 

a lack in energy. So, although we did not find strong effects of any of the gold 

nanoparticles on the behavior in zebrafish embryos after short exposure time, such 

effects might occur at higher concentrations, after long-term exposure or after exposure 

from the fertilization onwards.  
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Although some minor effects were observed, the different distribution patterns 

per particle shape did not induce significant sub-lethal effects. Since most studies report 

no cytotoxicity39 nor toxicity40 of gold particles, the absence of significant effects is not 

surprising. Often within drug delivery systems in which gold nanoparticles are used, 

surface modifications of the nanoparticles or protein labels are used to assist delivering 

the particle to the target organ. Over time, it might be likely that those surface 

modifications become unstable, and fractions of bare particles appear. The absence of 

sub-lethal effects due to bare and differently shaped gold nanoparticles strengthens the 

justification for utilizing gold nanomaterials as tracing agents in biodistribution studies 

and nanomedicine. We echo the suggestion made by Truong et al. (2015), who stated 

on the basis of studying the biodistribution behavior more closely, that it will become 

possible to design particles that reach the desired target organ by choosing the 

appropriate particle shape. In this contribution, we showed that the biodistribution for 

all differently shaped gold NPs occurs rapidly via the circulatory system. However, 

harm remains limited, since the particles are distributed via the MPS towards the 

clearance organs where they are stored before elimination.  

 

Conclusions 

Internalized Au NPs were found to traffic throughout the blood system and reach via 

this medium most probably the whole organism. We observed presence of the particles 

in and trafficking via macrophages, indicating that the majority of the particles is 

removed via the MPS. Clearance via the MPS will result in biodistribution of particles in 

the digestive organs. In our study, exposure to differently shaped gold particles induced 

shape dependent biodistribution patterns. For each differently shaped particle, we 

found a different ratio in which they were distributed over the three assessed target 

organs: liver, gall bladder and pancreas. Although the particles were distributed 

differently over the examined digestive organs, in none of the cases major sub-lethal 

effects were observed. The biodistribution patterns indicated that long-term exposure 

might induce sub-lethal effects being shape-dependent. Finally, for nanosafety 

assessment, it is eminent that shape-features should be taken into account as a possible 

toxicity modifying factor as it affects the biodistribution patterns.  
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Abstract 

Metallic nanoparticles (NPs) differ from other metal forms with respect to their large 

surface to volume ratio and subsequent inherent reactivity. Each new modification to a 

nanoparticle alters the surface to volume ratio, fate and subsequently the toxicity of the 

particle. Newly-engineered NPs are commonly available only in low quantities whereas, in 

general, rather large amounts are needed for fate characterizations and effect studies. This 

challenge is especially relevant for those NPs that have low inherent toxicity combined with 

low bioavailability. Therefore, within our study, we developed new testing strategies that 

enable working with low quantities of NPs. The experimental testing method was tailor-

made for NPs, whereas we also developed translational models based on different dose-

metrics allowing to determine dose-response predictions for NPs. Both the experimental 

method and the predictive models were verified on the basis of experimental effect data 

collected using zebrafish embryos exposed to metallic NPs in a range of different chemical 

compositions and shapes. It was found that the variance in the effect data in the dose-

response predictions was best explained by the minimal diameter of the NPs, whereas the 

data confirmed that the predictive model is widely applicable to soluble metallic NPs. The 

experimental and model approach developed in our study support the development of 

(eco)toxicity assays tailored to nano-specific features. 
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1. Introduction 

Nowadays, the field of nanotechnology is accelerating in fabricating specifically engineered 

nanoparticles (NPs) which meet consumer needs. Economists predict, for the period from 

2015 to 2020, an annual medial turnover of up to $3 trillion1. Next to first-generation NPs 

consisting of mono-elemental single sized nanomaterials, nowadays, complex nano-sized 

compounds, such as composites or oddly-shaped nanoparticles, are synthesized. For all 

these emerging NPs, information on fate and toxicity is vital knowledge to warrant the 

design of NPs that are safe for humans and the environment. 

There are, nevertheless, concerns regarding NP-specific modifications needed for 

proper toxicity testing of NPs2,3. A first challenge with regard to NPs is that they often are 

synthesized in small quantities, especially in the design and testing phases of product 

development. Standard testing guidelines based on soluble chemicals, such as those 

prescribed by the OECD (Organization for Economic Co-operation and Development)4, 

typically prescribe a vast amount of compound to be used in at least five test 

concentrations having twenty replicates. In the case of zebrafish embryo testing, a 

minimum of 2 mL exposure medium per replicate is needed in common practice 

(guideline 236, 2013)4. The exposure medium should be refreshed daily during the 

testing, whilst the maximum test duration is six days. This sums up to 240 mL of exposure 

suspension for each concentration to be tested and implies that, for instance, for testing a 

concentration of 1000 mg/L only (as often done in toxicity testing 5), 240 mg of compound 

is needed. For a full range of five concentrations up to 1000 mg/L, this adds up to 720 mg 

of compound. On top of this, quite some additional material is needed for fate 

characterization and assessment of the physicochemical properties of the NPs. After all, 

not only the chemical fate of the NP should be determined, but also the colloidal and 

particle fate and behavior. Size determination of the colloids in solution (via dynamic 

light scattering assessment) commonly requires 10 mg of the NPs, including samples 

for transmission electron microscopy pictures. The measurements of the total 

concentration demands for a minimum of 25 mg of the NPs, followed by the same 

amount of the NPs needed to measure the ion concentration in the samples. This adds 

up to additional amount of at least 60 mg for chemical assessments. Overall, the amount 

of NPs needed to generate the very basic data regarding the fate and effect profile, 

strongly exceeds the quantities of material typically available in the initial research and 

development (R and D) phases. Hence, novel strategies are needed to reduce these 

amounts as much as possible. 
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The second challenge is the fact that debate is still ongoing regarding the question: 

which dose metric to use in order to properly express toxicity of NPs? Given the 

differences in size and shape of NPs and subsequent impacts of these properties on 

particle toxicity, it is unlikely that the mass of NPs administered is a proper descriptor 

of the actual dose causing toxicity6,7. 

The third challenge is that only rarely acute effects due to exposure to NPs are 

shown. Therefore, the determination of responses requires either availability of 

modified experimental protocols enabling to screen more sensitive sub-lethal 

endpoints, or increased modeling efforts that allow prediction of sub-lethal effects of 

hitherto non-tested NPs. With modeling effort, data gaps can be filled via interpolating 

approaches using similarity analysis8 and eventually extrapolated between species via 

toxicity relationship assessments9. 

In view of these challenges, the aim of our study was to develop novel testing strategies 

that allow for efficient fate and toxicity assessments that require only small amounts of 

testing materials whilst achieving the same sensitivity with regard to the assessment of the 

endpoints of toxicity as in the corresponding standardized OECD tests. Previously, attempts 

were already made to reduce the amount of material needed10,11, and these attempts are 

further improved in this study. Our study aimed to: (a) develop new experimental testing 

strategies enabling to work with low quantities of NPs; (b) determine the best dose-metric 

to describe the toxicity of particles, and (c) develop translational models for dose-response 

predictions for NPs even for those NPs that are classified as inducing low toxicity. 

Experiments were conducted using three differently shaped Ag NPs. Since Ag NPs 

were found to display relative high rates of ion release, they are a clear example of non-

stable metallic NPs. Ag NPs are classified as being toxic with LC50 values between 1 and 

10 mg/L12. Experiments were also conducted with TiO2 NPs. These NPs are known to 

be chemically inert, thus allowing to test suspensions of stable metallic NPs as opposed 

to the tests performed with metallic NPs that dissolve during testing (non-stable NPs). 

TiO2 is classified to be harmful to the ecosystem (LC50 value between 10 and 100 mg/L 

12). By comparing the predictive power of the translational models for non-stable NPs 

with predictions made for stable metallic NPs, the applicability of the model to a wide 

range of NPs was tested. The results obtained for non-spherical NPs are discussed in 

view of the development of a regulatory framework to assess the safety of 

manufactured nanomaterials. 
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2. Materials and Methods 

2.1. Preparation of Particle Suspensions 

Spherical Ag NPs with nominal size of 20 nm (nominal surface to volume ratio 0.3) were 

purchased from SkySpring Nanomaterials, Inc. (Houston, TX, USA). A suspension of Ag 

nanoplates was obtained from Moscow State University (Moscow, Russia). Elongated 

Ag rods with a nominal size of 50 nm × 0.6 to 12 μm (nominal surface to volume ratio 

of 0.08) in suspension were purchased from Fraunhofer ISC (Würzburg, Germany). 

Spherical TiO2 NPs with a nominal size of 20 nm (nominal surface to volume ratio 0.3) 

were obtained from Io-Li-Tec nanomaterials (Heilbronn, Germany). Bipyramidal TiO2 

NPs and TiO2 nanoplates were obtained from the Centre of BioNano Interaction 

(University College Dublin, Ireland). The Ag nanospheres and nanoplates were coated 

with PVP (polyvinylpyrrolidone), and all other NPs were uncoated. Stock solutions were 

prepared by weighing dry powdered Ag or TiO2 particles and adding them into egg water 

(consisting of 60 μg/mL Instant Ocean Sea Salt, Sera Marin, in Milli-Q water, pH 6.5–7.0). 

Ag+ solutions were obtained by adding silver nitrate (AgNO3: CAS 7761-88-8, Sigma 

Aldrich, Zwijndrecht, The Netherlands) to egg water. All stock solutions were freshly 

prepared and sonicated for 10 min in an ultrasonic water bath (USC200T, VWR, 

Amsterdam, The Netherlands). Prepared stock suspensions or manufactured 

suspensions were diluted using egg water and embryos were exposed immediately after 

preparation. 

 

2.2. Physicochemical Characterization 

The size and morphology of the suspended Ag NPs and TiO2 NPs were characterized 

using transmission electron microscopy (TEM; JEOL 1010, JEOL Ltd., Tokyo, Japan) 

after 1 h of incubation in egg water. Dynamic light scattering assessments were 

performed on a Zetasizer Nano-ZS instrument (Malvern Instruments Ltd., Malvern, UK). 

The assessments allowed detection of the size distribution and the zeta-potential of Ag 

and TiO2 suspensions in egg water at 1 h and 24 h. 

The concentrations of dissolved Ag ions and Ag NP(total) in egg water were analyzed 

using flame atomic absorption spectroscopy (AAS; Perkin Elmer 1100B, Waltham, MA, 

USA). Freshly-prepared dispersions (t = 0 h) and dispersions equilibrated for 24 h were 

used for this purpose. HCl (CAS 7647-01-0, Sigma Aldrich, Zwijndrecht, The Netherlands) 

was added to avoid loss of Ag due to precipitation and sorption to the wall of the vials. To 
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determine concentrations of dissolved Ag ions in the particle suspensions, 7.5 mL of the 

supernatant was sampled after centrifugation of Ag NP suspensions at 5000× g for 10 min 

to remove NPs and ultimately determine the soluble silver fraction in the solution 13. 

Titanium concentrations in the suspensions of nanoplates and nanobipyramids were 

analyzed following digestion with aqua regia (HCl: CAS 7647-01-0; HNO3: CAS 7697-37-2, 

Sigma Aldrich, Zwijndrecht, The Netherlands) and are determined using ICP-OES (Vista-

MPX, Varian Inc., Santa Clara, CA, USA). The centrifugation step to determine ion 

concentrations in suspension was not included for TiO2 NPs because TiO2 particles do not 

undergo dissolution in aquatic suspensions14. Ti concentrations were measured 

immediately after preparation of the suspensions (0 h) and 24 h after preparation. 

 

2.3. Experimental Setup 

The OECD guideline 236 was modified as described in detail below. The modified 

experimental design uses in total roughly 1% of the amount of chemical required by the 

standard zebrafish embryo test protocol4. 

 

2.4. Zebrafish Husbandry 

Zebrafish were handled as described by animal welfare regulations established in 2014 

and they were maintained according to standard protocols (http://ZFIN.org). Adult 

zebrafish were maintained at 25 ± 5 °C in a 14 h light: 10 h dark cycle. Fertilized 

zebrafish eggs were obtained from an AB/TL wild-type zebrafish. 

 

2.5. Toxicity Assay for Ag NPs 

An acute exposure regime of 120 h was used, from 24 h post fertilization (hpf) to 144 

hpf, thus including exposure during all major stages of embryonic development. The 

background mortality at 24 hpf was less than 10% (data not shown). The first 

adjustment to the OECD guideline is by following the protocol of Hua et al. (2014)15, 

starting the exposure at 24 hpf. Thereafter, instead of transferring one embryo per well 

of a 24-well plate, 10 zebrafish embryos were distributed into each well of a 24-well 

plate in 2 mL of freshly prepared egg water containing a negative control, various 

concentrations of AgNO3 or various concentrations of Ag NP suspensions. One well was 

used per concentration. The nominal concentration range for the spherical NPs was 5 
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to 100 mg/L; the dilution factors for plates and elongated rods ranged from three to 

30,000 times; the nominal concentration range for AgNO3 was 48 to 480 μg/L. 

Throughout the exposure, embryos and suspensions were kept at a temperature of 28 

± 0.8 °C. The exposure media were replaced with a freshly prepared suspension of NPs 

every day according to the OECD guideline 2364, except for days 4 (96 hpf) and 5 (120 

hpf). The renewal procedure was shown not to increase NP concentrations over time6. 

Before each renewal, and at the end of the experiment, embryos were evaluated for 

morphological defects and death. All experiments were performed in triplicate. To 

verify the validity of our results obtained with the modified experimental protocol 

enabling to work with small amounts, we compared Cu NP data acquired with the 

modified test protocol to results obtained using existing methods as described by Hua 

et al. (2014)15, see Supplementary material (SM, Figure S1). 

 

2.6. Toxicity Assay for TiO2 NP 

TiO2 NPs were tested at a nominal concentration range from 10 to 1000 mg/L, using the 

same exposure conditions as described above for Ag NPs. The experiments with TiO2 NPs 

were performed under a commonly-used light-dark regime (14:10 h) and in addition using 

UV-light illumination using ultraviolet-a light (350 nm) with an intensity of approximately 

1700 μW cm−3 for 14 h16. Temperature was maintained at 28 ± 0.8 °C during the 

experiments. All experiments were performed in triplicate. 

 

2.7. Behavioral Analysis for TiO2 NPs 

Before behavioral analysis, all living embryos (144 hpf) were evaluated in terms of normal 

development, morphological defects, and vitality using a stereo dissecting microscope. The 

behavioral analysis was performed by subjecting the embryos to the light–dark challenge 

test as modified according to Hua et al. (2014)10. Zebrafish embryos have a low locomotor 

activity under light exposure (basal phase). Sudden transition to dark induces a sharp 

spike of fast swimming activity lasting less than 2 s (challenge phase10). A total of 22 

min of recording was used (SI, Figure S3): 10 min acclimatization, 4 min basal phase, 4 

min challenge phase, and 4 min recovery phase. The total distance moved of each zebrafish 

embryo was tracked using the Zebrabox (Viewpoint, Lyon, France) and analyzed using 

VideoTrack software (Version 12, Viewpoint, Lyon, France). 
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2.8. Modeling 

2.8.1. Dose-Response Curves 

Observational data of the fish embryos as obtained at 144 hpf were used to determine dose-

response relationships—using mortality data and the sub-lethal malformation endpoints. 

For calculating lethal and sub-lethal effect concentrations, a sigmoidal dose-response model 

was used, available from the SPSS 23 software package (IBM, Armonk, NY, USA). 

 

2.8.2. Contribution to Toxicity of Ag Particles and Ions 

An AgNO3 solution was used to quantify the toxicity of Ag ions to zebrafish embryos. 

This allowed us to determine the effect of the dissolved ion fraction in the solution (Ag 

NPion; as measured with AAS. The toxicity of the suspension (Ag NPtotal) to zebrafish 

embryos was determined as being the sum of the response of the suspended particles 

(Ag NPparticle) and the response of the dissolved ions (Ag NPion). We applied the concept 

of response addition17 as already used by Hua et al. (2014)15 to compute the joint 

toxicity of metal ions shed from particles and nanoparticles. The response addition 

model is used because Ag ions and Ag NPs are assumed to elicit a response through 

different mechanisms. The model can be depicted as: 

Etotal = 1 − [(1 − Eion)(1 − Eparticle)] (1) 

where Etotal, Eion, and Eparticle represent the mortality of zebrafish embryos caused by the 

exposure to Ag NPtotal, Ag NPion, and Ag NPparticle (scaled from 0 to 1), respectively. 

 

2.8.3. Dose Metric Descriptors for the Translational Models 

Dose metrics to be used within the dose-response modelling were chosen to be: 

minimal diameter, surface area, effective diameter, and surface to volume ratio. In each 

case, actual size information (obtained via TEM images) of the metallic NPs was used. 

When agglomeration occurred, identifiable single NPs present as commonly present on 

the surface of the agglomerates were used for size measurements. Only pristine sizes 

as derived from the TEM images were used for modeling, as is common for i.e., nano-

QSAR (Quantitative Structure–Activity Relationship12) and nano-QRA (quantitative 

read-across8). For each dose metric, the parameter values were calculated based upon 

the diameter (d), length (l), and width (w) of the particles. For each metallic NP, 
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multiple particles (n = 15 to 25) were measured and average values were used. The 

formulas used for calculating surface area and volume of differently shaped NPs can be 

found in the supplementary material, Table S1. 

In order to use dose metrics in the translational models, we tested the following 

hypotheses: (i) NP toxicity increases with increasing total surface area; (ii) toxicity of the NP 

decreases upon increasing the smallest diameter as explained below (minimal diameter); 

(iii) toxicity decreases with increasing NP diameter calculated on the basis of the volume of 

the particles, independent of shape (effective diameter); and (iv) toxicity of NPs increases 

with increasing surface to volume ratio of the particles. 

 

2.8.4. Toxicity Prediction 

Experimentally-obtained response data were plotted against the four dose metrics 

used. At first, the dose metric was expressed based on the total surface area of the 

particle18, as based on the hypothesis that a higher total surface area represents more 

reactive surface area. 

Secondly, for spherical and non-spherical particles, the dose metric was expressed 

as the minimal diameter in any dimension of the particle. It is hypothesized that the 

ability to penetrate into cells increases with decreasing minimal diameter19,20. 

Thirdly, the dose metric of spherical and non-spherical particles was determined 

by using the volume of the particle to calculate a fictional spherical diameter21. This 

effective diameter is reflected by the diameter of a spherical particle with the same 

volume. Here, too, it was assumed that NPs with small diameters have a higher ability 

to penetrate cells. 

Fourthly, the dose metric was expressed as the surface to volume ratio of the NP. 

Both decreasing size and differences in particle shape modify the surface to volume ratio. 

Similar to total surface area, here an increasing ratio implies a larger reactive surface and, 

hence, increased toxicity13. 

For each parameter, a linear regression model was developed for the Ag NPs used in 

this study. Similar to the Ag NPparticle data, secondary data10,15,22–24 collected for Ag NPparticle, 

Cu NPparticle, Ni NPparticle, and ZnO NPparticle were plotted as a function of the different dose 

metrics. The obtained linear dose metric relations for the non-stable metals Ag NP, Cu NP, 

Ni NP, and ZnO NP were used to calculate an overall linear regression coefficient ± 

standard deviation. Each regression line as obtained for the individual metallic NPs was 
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given equal weight. In addition, a p-value was calculated indicating whether the initial 

slopes of the regression lines obtained for the Ag NPs, Cu NPs, Ni NPs and ZnO NPs 

differed significantly. Similarity of slope is assumed to reflect the appropriateness of a 

dose metric to predict toxicity across metallic NPs. Thereupon, the intercepts of the 

individual regression equations were calculated as these reflect the intrinsic reactivity of 

metallic NPs. Using the overall linear regression coefficients thus obtained, and based 

upon the limited availability of experimental data on TiO2 toxicity, the intercept of the 

dose metric relation of TiO2 NPs was calculated, after which LC50-values of TiO2 

nanobipyramids and nanospheres were predicted. 

 

2.8.5. Statistical Analysis 

Significant differences between the newly-developed and already-existing testing 

protocols15 were tested using a two-tailed T-test. Data collected on the behavioral test 

were presented as mean ± standard error of the mean (SEM). The homogeneity of 

variance was checked using the SPSS 23 software package (Version 23, IBM, 

Amsterdam, The Netherlands). The significance level for all calculations was set at p < 

0.05. Significant differences between the different exposures within each phase were 

tested using a one-way analyses of variance (ANOVA) with Tukey’s multiple 

comparison post-test. Dose-metric linear regression modeling was performed using 

Prism (Version 7, GraphPad, La Jolla, California, USA), followed by comparison of the 

aligning of the regressions developed for the different metallic NPs (comparable with 

an ANCOVA), using the same software. The limit of significance was set at p < 0.01 to 

account for the low numbers of experimental data that were typically available for 

generating the regression lines. 

 

3. Results 

3.1. Physico-Chemical Characterization of Ag NPs and TiO2 NPs 

3.1.1. Transmission Electron Microscopy and Dynamic Light Scattering 

TEM images showing size, shape, and clustering of the NPs after 1 h of incubation in egg 

water are given in Figure 1.  

Large aggregates/agglomerates were formed immediately after the NPs were 

suspended in egg water. The PVP coated nanospheres aggregated/agglomerated to the 
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largest extent. This general behavior was also evident from the size distribution patterns, 

with an average size of the Ag NP aggregates/agglomerates that was 43 times larger than 

the actual size of the individual NPs (Table S2, SM). PVP-coated Ag nanoplates responded 

differently and showed an aggregation/agglomeration size of only three times the actual 

individual NP size. Aggregates/agglomerates of TiO2 NPs were even larger, with average 

aggregate/agglomerate sizes being 56 times the size of the individual NPs. The zeta-

potential of all NPs ranged between −30 to +0.6 mV over the test period and none of the 

zeta-potentials of the NPs changed significantly over time. Ag nanoplates appeared to 

contain Ag nanorods as well (see Figure 1b) in a number ratio of 10:90. Both shapes were, 

therefore, included into the calculation of the average surface to volume ratio. 
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Figure 1. TEM images of (a) Ag nanospheres; (b) Ag nanoplates; (c) Ag elongated nanorods; (d) 
TiO2 nanobipyramids; (e) TiO2 nanoplates; and (f) TiO2 nanospheres. 

3.1.2. Metal Concentrations and Ion Release 

As can be seen in Table 1, there was slight dissolution of Ag NPs after suspension. The 

amount of Ag ions released was related to the total concentrations measured (Table 1), 

and the shape of the Ag NPs was found to influence the extent of ion release. Nanoplates 

displayed the highest extent of dissolution, followed by nanospheres, whereas elongated 

nanorods released the lowest amount of Ag ions. 
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Table 1. Actual concentrations of Ag NPs and TiO2 NPs in suspension at 0 and 24 h. For each dilution 
step, total concentration (NPtotal), dissolved ion concentration (NPion) at 0 h, and total concentration 
(NPtotal) at 24 h are displayed for each NP tested. 

Particles Dilution 
NPtotal 

concentration 
0 h (mg/L) 

NPion 
concentration 

0 h (mg/L) 

NPtotal 

concentration  
24 h (mg/L) 

Ag nanospheres 1 17.20 0.83 2.28 

PVP coated 2 11.40 0.17 2.04 

  10 . 3.50 ≤ 0.016. 0.62 

Ag nanoplates 30 14.00 1.50 9.35 

PVP coated 100 . 0.06 ≤ 0.016. 0.02 

  3000 ≤ 0.016 ≤ 0.016. 0.09 

Ag elongated nanorods 30 328.00 .. 0.22 4.30 

  100 . 1.21 .0.028 0.10 

  3000 . 0.41 .0.028 0.19 

TiO2 nanoplates 1 22.7 . - 0.10 

  10 . 2.17 - 0.09 

  100 . 0.28 - 0.05 

TiO2 nanobipyramids 1 20.7 . - 0.08 

  10 . 0.70 - 0.15 

  100 . 0.18 - 0.08 

TiO2 nanospheres 1 50.9 . - 0.20 

  10 - - - 

  100 - - - 

 

3.2. Toxicity Evaluation 

Observations on mortality and developmental malformations of zebrafish embryos 

exposed to Ag NPs and TiO2 NPs were recorded. In addition, for TiO2 NPs exposures 

observations on behavioral movement (or swimming activity after light-dark challenge 

test) were also assessed and UV light was used to enlarge sub-lethal effects. 
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The results obtained using the modification of OECD test guideline 236, are given in 

Figure S1 of the SM. As can be deduced from this figure, implementation of this modification 

induced no statistically significant differences in toxicity between the original and the 

modified testing strategy (p > 0.05). 

 

3.2.1. Lethal and Sub-Lethal Effects of Ag NPs and TiO2 NPs 

In Figure 2, the dose-response curves of Ag NPs and TiO2 NPs after five days of exposure 

(six days post fertilization; dpf) are displayed (lethality and malformations). The dose 

was calculated using actual total concentrations of suspensions of NPs at time 0 (T 0). Ag 

ions (Figure 2a,b), as tested using the AgNO3 solution, induced the highest toxicity with 

up to a factor of 50 higher toxicity in comparison to any of the Ag NPs suspensions tested. 

Ag nanospheres and elongated Ag nanorods displayed almost similar toxicity and 

spherically shaped Ag NPs were found to be the least toxic of all Ag NPs tested. 

Interestingly, when examining mortality (Figure 2a), Ag nanoplates were more toxic than 

elongated Ag nanorods. However, the nanospheres and elongated nanorods induced sub-

lethal effects in up to 90% and 50% of the organisms, respectively, whereas the 

nanoplates and AgNO3 induced lower amounts of sub-lethal effects with 29% and 20% 

malformations, respectively (Figure 2b). 

All LC50 and EC50 values were calculated based on the actual average Ag NPtotal and 

TiO2 NPtotal concentrations as measured at 0 h and after 24 h (Table S3, SM). In case of 

effects in between 20 and 50%, LC50 and EC50 values were predicted by extrapolation 

of the dose response curve. Since the effects observed for TiO2 NP bipyramids and 

nanospheres (data not shown) remained below 20% at all concentrations tested 

(Figure 2), full dose-response curves could not be assessed. 
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Figure 2. Dose–response curves for Ag NPs (a,b) and TiO2 NP (c,d) based on mortality and on 
number of malformed organisms. The dose is expressed as the log-transformed actual total 
concentration at T 0. Response data relate to 6 dpf embryos after days of exposure and are presented 
as means of three independent replicates ± standard error of the mean (SEM). 

 

3.2.2. Behavioral Assessment of TiO2 NPs 

The results of the behavioral test using light-dark stress are displayed in Figure S2 (SM). 

In the behavioral test the total distance moved in mm is being used as a more sensitive 

sub-lethal endpoint compared to malformations. The results for embryos exposed to 

different concentrations of TiO2 NPs revealed lack of significant impact (p > 0.05 for all 

comparisons) of any of the TiO2 NPs tested. 

 

3.2.3. Relative Contribution to Toxicity of the Ag NP Particles and Ag Ions 

In Table 2 the relative contribution to toxicity of the ions versus the particles is shown 

at the experimental LC50 levels of the suspensions tested. According to Table 2, most of 

the toxicity is induced by the particles, except for the Ag nanospheres. The EC50 levels 

are in the same range as the LC50 levels (Tables S4 and S5), which is related to the shape 

of the dose-effect curves. For AgNO3, only lethality was found. Hence, no EC50 value 

could be determined for Ag ions. Therefore, quantification of the relative contribution 

of Ag NPs for morphological responses is not possible. 
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Table 2. Relative contribution (%) of Ag NPion and Ag NPparticle to toxicity at the LC50 (lethality) level. 
LC50 concentrations are presented as median concentration (95% confidence interval) and n = 3. 

Particles Median Concentration (mg Ag/L) 
Relative Contribution to Toxicity (%) 

NPion NPparticle 

LC50    

Ag ions 0.09 (0.08–0.10) 100 0 

Nanospheres 11.7 (9.9–13.6) 100 0 

Nanoplates 4.9 (4.8–5.0) 9.2 90.8 

Nanorods 9.2 (5.7–12.7) 3.8 96.2 

 

3.3. Similarity Modeling to Estimate TiO2 NP Toxicity 

In order to predict the missing LC50 values (i.e., the effect levels for which even at the 

highest dose tested, no adverse response was recorded) of TiO2 nanospheres and 

nanobipyramids, similarity modeling was applied using the newly generated data and 

the collected secondary data. LC50 values of Ag NPs, Cu NPs, Ni NPs, ZnO NPs, and, where 

relevant, LC50 values calculated by SPSS (Version 23, IBM, Amsterdam, The 

Netherlands) for TiO2 NPs were expressed as particle numbers and plotted against the 

different dose metrics (Figure 3). Thereupon, predicted LC50 values for TiO2 

nanospheres and nanobipyramids were plotted (Figure 3, open squares, the actual 

values are given in Table S4, SM). Reliability of these predictions was related to the 

predictive strength of each model. The predictive strength of each dose metric was 

assessed based upon the adjusted R2 values. The power of prediction decreased along 

the following dose-metrics: surface to volume ratio > minimal diameter > effective 

diameter > total surface area. 
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Figure 3. LC50 values of NPparticle (based on actual particle number concentrations at T 0) expressed 
using the following dose metrics: (a) surface to volume ratio; (b) total surface area; (c) minimal 
diameter; and (d) effective diameter. For each line the adjusted R2 is provided in the inserted table. 
Experimental LC50 values for TiO2 (filled squares) were calculated using SPSS. Predicted TiO2 values 
are shown by open squares with calculated standard error. 

The average slopes and the corresponding p-values that are used to indicate the 

significance of the deviation of the slopes of Ag NPs, Cu NPs, Ni NPs, and ZnO NPs are 

given in Table 3. In comparison to the adjusted R2 values, the aligning of the slopes and 

their variance in intercepts changed the order in which the strongest predictive power 

is ranked to: minimal diameter > effective diameter > surface to volume ratio > total 

surface area. The minimal diameter, as well as the effective diameter showed the lowest 

variance of the slope across the various types of particles tested and resulted in 

significant differences in the values of the intercept of the regression lines (Table 3). 

This indicates the highest level of parallelism of the regression lines when using any of 

these two dose metrics to express toxicity. This highest level of parallelism in 

combination with the highest values of the adjusted R2 values depicted in Figure 3 was 
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found for the case of the minimal diameter, indicating that the minimal diameter is the 

best descriptor of particle toxicity of metallic NPs like Ag, Cu, Ni, and ZnO, albeit with a 

marginal difference with the effective diameter. The differences in intercepts reflect 

differences in the intrinsic toxicity of metallic nanoparticles of similar volume. 

Table 3. Calculated average slope and corresponding standard deviation (SD) for effective 
diameter, surface to volume ratio, minimal diameter, and total surface area. For each parameter, 
the difference of the individual slopes of the metallic NPs is depicted by means of the p-value and the 
corresponding F-value in combination with the number of slopes (n), as well as the difference of the 
intercept (elevation) of the regression lines. For regression lines that are based on a maximum of 
five data points (see Figure 3), the significance level was set at p < 0.01. 

Parameter 
 

Average Slope  
 

SD Slope 
 

n  
 

Slope Intercept 

p-Value F p-Value F 

Minimal diameter −3.04 0.43 3 0.95 0.15 <0.0001 8.37 

Effective diameter −2.95 0.59 3 0.90 0.16 <0.0001 7.83 

Surface to volume 
ratio 

2.62 0.78 3 0.25 0.97 <0.0001 10.74 

Total surface area −1.91 1.17 3 0.49 0.73 0.0007 6.44 

 

4. Discussion 

There are at least two challenges to overcome when modifying conventional ecotoxicity 

assays to comply with nano-specific needs. The first challenge that we identified is the 

observation that, in the case of newly-synthesized nanoparticles, often only small 

amounts of materials are available for toxicity testing and fate assessment. The other 

challenge is that the dose metric to express toxicity is still under debate, which hinders 

the development of predictive models. 

 

4.1. Novel Experimental Setup 

Dealing with small amounts of NPs for testing implies that the required test volume is 

a limiting factor in testing full dose-response relationships. In recent publications, 

adjustments to the OECD guideline 2364 were proposed using a 96-well plate in order 

to limit the amounts of test chemicals to be used10,11. Our experimental test setup 

described here could even reduce the total amount from 720 mL, as required within the 

OECD standard test, to 8 mL of exposure medium for each concentration by lowering 
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the total test volume, combined with the addition of a higher number of embryos in a 

single well, without losing accuracy. In our case, this reduced the total amount of 

compound needed for the whole experiment (in triplicate) from 1900 mg to 66 mg. 

Although the setup of Lin et al. (2011)11 achieved a similar reduction, their method was 

not suited for nanoparticles. Nanoparticles typically tend to sediment, and frequent 

renewal of the medium is required in order to maintain the experimental concentration 

as renewal reduces the particle loss due to sedimentation. Unfortunately, medium 

renewal is not included in the modification proposed by Lin et al. (2011)11. The 

quantitative deviations between the outcomes of the regular and the novel testing 

strategy were found to not differ significantly (p > 0.05; Figure S1, SM). 

However, within the concentration range tested, response levels could not be 

determined for some of the nanoparticles (TiO2 nanospheres and nanobipyramids). In 

order to allow for testing of NPs with a low intrinsic toxicity, we used three differently-

shaped TiO2 NPs, since TiO2 NPs are classified as being moderately harmful with LC50 

values found to range between 10 and 100 mg/L 12). The TiO2 nanospheres (data not 

shown) and nanobipyramids showed no effects even at the highest concentration tested 

(Figure 2). Additional UV-irradiation of the TiO2 NPs5,14 increased the effects induced by 

nanoplates of TiO2, but this was not the case for the other two shapes. These two 

particles were not the only exception, since Faria et al. (2014)25 also report extremely 

low toxicity of TiO2 particles in 8 dpf larvae which were exposed under a series of 

illumination intensities. Thereupon, these results are in line with the findings of Bar-

Ilan et al. (2009)24 on acute toxicity, reporting 50% mortality after chronic exposure of 

zebrafish during 12 days to suspensions containing 0.1 mg/L nanospheres having a 

diameter of 21 nm. The observation of a lack of morphological effects at early life stages 

of TiO2 NPs is supported by other authors26,27 who report particle-dependent effects at 

the gene level only. This may eventually lead to reproductive effects28,29. 

In line with all previous studies on this topic23,25–29, our results showed that actual 

concentrations were significantly lower for all tested NPs compared to nominal 

concentrations. Especially for TiO2 NPs, it is noteworthy to mention that the actual 

concentration was only 2–3% of the nominal concentration, hence, the amount of 

bioavailable NPs is much lower than the nominal concentration. This observation can be 

attributed to the agglomeration and sedimentation processes that occurred extremely 

rapidly during the experimental course (Table 1), as also reported by Bar-Ilan et al. 

(2009)23. Sedimentation of TiO2 NPs was reported to increase in suspensions of high ionic 

strength30, which is the case in the exposure medium that we used for zebrafish embryo 
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testing (0.853 M). Overall, these observations imply that the fraction of TiO2 NPs that is 

available for uptake via the water phase is extremely low. Subsequently assuming that 

zebrafish embryos are exposed via the water phase only, well explains the observed 

absence of toxicity. 

 

4.2. Translational Modelling 

The highest predictive power was obtained when using either the minimal or the 

effective diameter as a dose metric. Due to the shapes of the particles, the smallest 

diameter can be much smaller at a certain amount of particles per volume, compared to a 

spherical particle. Various studies18,31 report that surface to volume ratio and total surface 

area16 are proper dose metrics for various nanomaterials. Our results did not confirm 

these general findings, as surface to volume ratio was found not to be the best predictor 

of toxicity across NPs and as use of the total surface area actually yielded the lowest 

predictive power. This lack of correlation between surface area and responses was also 

seen by Wittmaack (2007)32. Instead, other dose metrics, including the number of 

particles and joint length (product of number of particles and mean size) were found to 

be more suited to this study32. It should be noted that our study included a variety of 

differently shaped NPs and, thus, offers a larger variety of surface areas for analysis, 

while other studies18 covered spherical NPs only. 

 

4.3. Toxicity Prediction 

Our linear regression models were found to be good predictors for the toxicity of the 

metallic NPs Ag, Cu, Ni, and ZnO. Therefore, these models were used to calculate the 

effect levels for novel metallic NPs for which no adverse responses were observed even 

at the highest concentrations tested. In the suspensions used for toxicity testing of 

zebrafish embryos, no higher actual concentrations than 20.7 mg/L TiO2 NP for the 

nanobipyramids and 50.9 mg/L TiO2 NP for the nanospheres could be obtained. Based 

upon the model using the minimal particle diameter, all LC50 values for these TiO2 NPs 

are predicted to exceed 200.6 mg/L TiO2 NP, which is a concentration that is far above 

the maximum test concentration that we could achieve in the zebrafish medium 

employed in our study. Subsequently, these predictions nicely confirm the observed 

lack of effects. 
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The underlying reason as to why we were not able to observe any adverse effects 

in the case of testing of TiO2 NPs could be related to the fact that the mechanism of 

toxicity of TiO2 NPs, being stable metallic materials that do not release ions, differs from 

the mechanisms of toxicity of the labile metallic NPs tested in our study: Ag NPs, Cu NPs, 

Ni NPs, and ZnO NPs. The models developed for the labile metallic NPs are based on 

(acute) embryo mortality, whereas as stated previously, effects of TiO2 NPs were 

reported only after long-term exposure only25,29, and restricted to the effects on gene 

expression26,27 and reproduction28,29, rather than morphological and lethal effects. To 

determine sub-lethal responses, we performed a light-dark challenge test on top of the 

TiO2 NP exposure + UV illumination. As discussed above, UV illumination generally 

enhances the reactivity of TiO2, hence, enlarging the potential toxicity. Moreover, the 

light-dark challenge test allows determining sub-lethal stress on stress responses. In 

our experiment, these additional assessments did not induce the responses that were 

observed by other researchers25,29. 

 

5. Conclusions 

Fish embryo toxicity tests form an integral part of hazard identification within 

environmental risk assessment. To account for NP-specific issues to address in hazard 

testing of NPs, such as the availability of low amounts of testing material, novel 

experimental toxicity testing strategies are required. Our results show that 

modifications of the experimental setup assists in the development of testing 

approaches that allow applying smaller quantities of material. Toxicity was shown to 

be best described using the minimal particle diameter as a dose metric. A translational 

model could be developed on the basis of this dose metric that allows the prediction of 

effects for soluble metallic NPs. It is noteworthy that it is still a challenge to develop 

translational models for stable NPs that do not dissolve slowly. Given their low 

bioavailability, testing of stable NPs remains a challenge. Overall, it is to be concluded 

that translational modelling can assist in extrapolating the effects of non-stable metallic 

NPs towards effect prediction of stable NPs. 

 

 
Supplementary Materials 

 The following materials are available online at www.mdpi.com/link; Figure S1. 
Toxicity of 50 nm Cu NPs in 24- and 96-well plates; Figure S2. Behavioral performance 
in the light–dark challenge test; Figure S3. Example of light-dark challenge test 
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recording; Table S1. Formulas for calculating the surface area and volume of NPs for 
different shapes; Table S2. Size, surface to volume ratio, and Zeta-potentials for each 
NP tested; Table S3. Overview of LC50 and EC50 values calculated for Ag NPs and TiO2 
NPs, as well as the size and surface/volume ratio of the NPs; Table S4. Predicted 
particle number values and LC50 values for TiO2 nanospheres and nanobipyramids; 
Table S5. Overview of highest measured concentration, actual 50% effect 
concentrations, and predicted LC50 values. 
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Fluorescence image of ZF embryos exposed to 25nm green fluorescent polystyrene NPs 
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Abstract  

With the increasing numbers of products on the marked that contain mixtures of 

nanoparticles, the necessity to understand the toxicity of these mixtures becomes 

progressively important. With TiO2 nanoparticles being used in various nanoparticle 

mixtures, it is important to gain more insight into the role of TiO2 nanoparticles in 

mixture toxicity.  

In this study, we aim to understand the joint effects of soluble NPs with non-reactive 

NPs based on the fate of the nanoparticles. By focusing on the co-agglomeration 

behavior and the adsorption of ions to the TiO2 nanoparticles, we aim to distinguish the 

process with the highest contribution to the mixture toxicity. 

In our experimental study, co-aggregation as well as adsorption of free ions to TiO2 

nanoparticles occurred to a limited extent. Moreover, the adsorption capacity of TiO2 

nanoparticles was found to be limited, indicating that the concentration, as typically 

used in toxicity tests, of TiO2 nanoparticles in the mixtures was not sufficient to induce 

visible effects on mixture toxicity other than additivity. Thus, it is still unclear what the 

joint impact is that TiO2 NPs have on soluble and non-reactive nanoparticles, as there is 

still a need to confirm or reject multiple hypotheses concerning the importance of co-

agglomeration and adsorption of ions to TiO2 nanoparticles.  
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1. Introduction 

With the increase of nanotechnology, the use of nanomaterials in products has 

increased as well. Whereas at first only nanomaterials consisting of one type of 

nanoparticles (NPs) were used, current products commonly contain mixtures of NPs. 

For example, titanium dioxide nanoparticles (TiO2 NPs; exhibiting photocatalytic 

properties under ultraviolet light) are often combined with silver NPs (Ag NPs) in order 

to enhance the antimicrobial effect of the Ag NPs1. Another example are sunscreens: 

both TiO2 NPs and zinc oxide (ZnO) NPs are effective ultraviolet light (UV) blockers that 

do penetrate the skin2, yet these NPs together show enhanced UV blocking capacity3. 

With the use or disposal of products containing mixtures of NPs, the mixtures will 

eventually be released into the environment. With TiO2 NPs being used in a large variety 

of mixtures, it is important to gain more insight into the effects of TiO2 NPs within the 

toxicity of mixtures of NPs in the environment.  

Co-exposure of biota to two or more compounds may lead to either additive, 

antagonistic, or synergistic effects4,5. For TiO2 NPs, not only additivity in mixtures has 

been found, but they can also have antagonistic effects and reduce the toxicity of 

compounds. Being used as a oxidation agent in Waste Water Treatment Plants, it breaks 

down organic compounds under UV radiation6. Furthermore, TiO2 NPs appear the have 

an antagonistic effect on the toxicity of other nanoparticles7. In co-exposure, TiO2 NPs 

reduced the toxicity of ZnO and CuO to algal cells7. Since TiO2 is known to agglomerate 

quickly and subsequently settle efficiently8, this sedimentation process may cause other 

nanoparticles to be trapped in large aggregates typically formed after emission of TiO2 

NPs, after which the particles are no longer bioavailable to pelagic organisms. On the 

other hand, adsorption of ions to TiO2 NPs may also occur, reducing the amount of free 

ions and therewith decreasing the effective ionic concentration. 

Whether nanoparticles in the environment induce toxicity depends on many 

factors, such as chemical factors that influence the fate of particles, but also the 

presence of other NPs. The toxicity of nanoparticles is highly dependent on the fate of 

the particles, which in turn is influenced by numerous factors and properties, including 

the size, composition, surface charge, concentration and coating of the particle (Vijver 

et al, in press ES nano). In addition, NPs have a tendency to agglomerate at higher 

concentrations, which subsequently alters the bioavailable dose9. Nanotoxicology is 

complicated even further by the fact that effects are not necessarily linearly related to 

dose10. Besides, the presence of multiple NPs in the environment may lead to mixture 

interactions. 
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As we have seen in previous examples7, TiO2 NPs are capable of influencing the 

fate of other NPs when co-exposed. In this study, we aimed to understand the influence 

of TiO2 NPs on the toxicity of other NPs, considering their influence on the fate of the 

other NPs. Building upon the knowledge obtained in previous work11, where TiO2 

reduced the toxicity of ZnO to zebrafish embryos, we ask the question whether the 

toxicity reducing capacity of TiO2 NPs can be ascribed by enhancement of the 

aggregation/agglomeration and subsequent sedimentation of the co-exposed NPs or 

whether this capacity can be ascribed to reduction of the ion concentrations in 

suspension due to ion sorption to TiO2 NPs. To unravel these hypotheses, we exposed 

zebrafish embryos to mixtures of TiO2 NPs and a chemically inert NP (represented by 

polystyrene particles) as well as to TiO2 NPs and a slowly dissolving NP (represented 

by silver particles). 

Secondly, we aim to focus on the dissolution behavior of the non-stable ZnO 

particles. The question we asked is whether the toxicity-reducing capacity of TiO2 NPs 

is stronger when the dissolution of the non-stable particle is higher. It can be 

hypothesized that if the most dominant way of reducing toxicity is via the reduction of 

the concentration of free ions in suspension, the overall reduction in toxicity is higher 

when there are more free ions to be removed from the exposure medium. For this 

question, we manipulated the dissolution and aggregation/agglomeration behavior of 

zinc nanoparticles by adding a coating (hydrophobic and hydrophilic) to the particles. 

 

2. Materials and Methods 

2.1 Preparation of particle suspensions 

Elongated Ag rods with a nominal size of 50 nm × 0.6-12 µm suspended in H2O were 

purchased from Fraunhofer ISC (Würzburg, Germany). Spherical TiO2 NPs with a 

nominal size of 20 nm and ZnO nanosticks with a nominal size of 43 nm were obtained 

as powder from Io-Li-Tec nanomaterials (Heilbronn, Germany). Hydrophobic ZnO NPs 

were obtained in powder from the JRC repository (JRC NM01101a). Fluorescent 

polystyrene nanoparticles (PS NPs), internally dyed with FirefliTM Fluorescent Green 

(468/508nm), of size 25 nm suspended in H2O were purchased from ThermoFisher 

Scientific (Catalog number R25; Waltham, USA). 

Exposure suspensions were prepared either by adding the purchased stock 

suspensions to egg water (60 μg/ml Instant Ocean Sea Salt, Sera GmbH, Heinsberg, 
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Germany) or by weighing dry powdered TiO2 or ZnO particles into egg water. 

Thereafter, stock suspensions were diluted to obtain the desired concentrations. Zn2+ 

solutions were obtained by adding zinc nitrate (Sigma Aldrich, Zwijndrecht, The 

Netherlands) to egg water. The hydrophilic ZnO NPs were obtained by preparing a stock 

suspension in a 10 mg/L PVP (polyvinylpyrrolidone) solution. Immediately before 

exposure, the solutions were freshly prepared and sonicated for 10 min using an 

ultrasonic water bath (45kWh or 60W; USC200T, VWR, Amsterdam, The Netherlands). 

 

2.2 Physicochemical characterization 

Transmission electron microscopy (TEM; JEOL 1010, JEOL Ltd., Tokyo, Japan) was used 

directly after preparation (T0) to characterize the size and morphology of the particles 

in egg water. Additionally, a TEM image was obtained after 24 hours of incubation in 

egg water (T24). Using dynamic light scattering (DLS) assessments (Zetasizer Nano-ZS 

instrument; Malvern Instruments Ltd, Malvern, UK), the size distribution and zeta-

potential of the particle suspensions in egg water at 0 h, 1h and 24 h were assessed. 

Using atomic absorption spectroscopy (AAS; Perkin Elmer 1100B,Waltham, 

MA, USA), the actual total concentration of dissolved Ag ions as well as the total Ag 

concentration (Ag NP total) in egg water were analyzed. The same analysis was 

performed for the differently coated ZnO NPs. For this purpose, freshly prepared 

dispersions were measured at time point t= 0 h and after equilibration at t= 1 h and t= 

24 h. The concentration of dissolved ions was obtained by sampling the supernatant 

after centrifugation at 5000× g for 30 min to remove the nanoparticle fraction and 

ultimately determine the soluble fraction in the suspension. After preparation, samples 

were stored in 1M HCl (CAS 7647-01-0, Sigma Aldrich, Zwijndrecht, The Netherlands) 

in order to digest the sample for measurement. 

 

2.3 Experimental setup 

2.3.1 Zebrafish husbandry 

Zebrafish were handled as described by animal welfare regulations and maintained 

according to standard protocols (http://ZFIN.org). Adult zebrafish were maintained at 

25 ± 0.5 ˚C in a 14 h light : 10 h dark cycle. Fertilized zebrafish eggs were obtained from 

an AB/TL wild-type zebrafish.  
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2.3.2 Set up 

The tested mixtures were representing combinations of nanoparticles that show a high 

dissolution rate compared to those that are relatively non-reactive (Table 1). 

Table 1. Overview of the different mixture setups. 

NP Nominal dose  

(mg/L or x 
time dilution) 

Type of stability Dose of TiO2 

NPs 

 (mg/L) 

PS NP 0; 25; 32,5; 40; 
47,5; 55 

Non-reactive: 

No dissolution or 
aggregation/agglomeration 

0; 0.25; 1; 
2.5; 4; 10; 40 

Ag NP 0; 30x; 100x; 
300x; 1000x; 

3000x 

Non stable: 

High dissolution of Ag 

0; 2.5; 4; 10; 
25; 40 

ZnO NP 
uncoated 

0; 2; 4; 8; 16; 
32; 64 

Non stable: 

High dissolution of Zn and 
aggregation/agglomeration 

0; 1.5; 3; 6; 
12; 24 

ZnO NP 
hydrophilic 

coated 

0; 2; 4; 8; 16; 
32; 64 

Non stable: 

Dissolution of Zn, limited 
aggregation/agglomeration 

0; 1.5; 3; 6; 
12; 24 

ZnO NP 
hydrophobic 

coated 

0; 2; 4; 8; 16; 
32; 64 

Hardly reactive: 

Low dissolution, high 
aggregation/agglomeration 

potency 

0; 1.5; 3; 6; 
12; 24 

 

2.3.3 Toxicity assessment of zebrafish embryo life stages to different mixtures 

2.3.2.1 Toxicity tests with free-swimming embryos 

Free swimming embryo larvae (3dpf) were selected for this experiment, since this life 

stage has shown to be the most sensitive12. Per group, ten zebrafish embryos were 

exposed in 24-well plates and an exposure regime of 48 hours was maintained (see 

approach as described in Van Pomeren et al., (2017)8). Particle suspensions and egg 

water were renewed every 24 hours. At the final day of the experiment, the embryos 
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were screened for survival and malformations. Temperature was maintained at 28 ± 

0.8 °C during the experiments.  

 

2.3.2.2 Toxicity test on the hatching success of embryos 

As zinc is known to influence the hatching of zebrafish embryos 13, we aimed to include 

this feature as a more sensitive sub-lethal endpoint. For that reason, we adapted the 

exposure period from 4 hpf till 72 hpf. The remainder of the experimental setup was 

comparable to the previous mentioned setup, with the addition of hatching success as 

an extra sub-lethal endpoint.  

For all non-stable NPs, the relative contribution to toxicity of particles and ions 

was calculated as explained in Van Pomeren et al. (2017)8. 

 

2.4 Statistical analysis 

Significance (p<0,05) for effects on survival, hatching success and malformations 

among the different treatments was tested using a one way ANOVA using the SPSS 23 

software package. Results are given as mean ± standard deviation (SD).  

 

3. Results 

3.1 Physico-chemical characterization of polystyrene, silver and 

titanium dioxide particles 

TEM images showing the aggregation/agglomeration state of silver + TiO2 NPs and 

polystyrene + TiO2 NPs are provided in Figure 1. Over time, silver + TiO2 NPs form 

intertwined clusters, with TiO2 NPs accumulating at the tips of the elongated Ag 

nanorods (Figure 1, b). Remarkably, polystyrene does not form (large) 

aggregates/agglomerates with TiO2 NPs, also not over time (Figure 1, c and d). This 

same trend is nicely visible when considering the hydrodynamic sizes of the samples 

(Table S1 and S2). The silver + TiO2 NP mixture rapidly forms aggregates/agglomerates 

that increase in size over time (Table S1). Most of these aggregates/agglomerates settle 

out of the suspension, as can be deduced from the decreasing total concentrations as 

measured by AAS (Table S5). Yet the addition of TiO2 NPs does only marginal affect the 

decrease of the total concentration of silver in suspension. In contrast, the polystyrene 
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+ TiO2 NP mixture shows two individual peaks as measured by DLS: one peak 

representing the single polystyrene particles, and one peak representing the 

agglomerating TiO2 NPs (Table S2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the zeta potential of the mixtures (Table S3 and S4), we see indeed that the 

silver mixture is prone to agglomeration (zeta potential lies in between -30 and 30 mV; 

Table S3). In contrast, the polystyrene mixture is relatively stable, since the zeta 

potentials range from -25 till -35 mV (Table S4), even though the TiO2 NPs still form 

aggregates/agglomerates (Table S2).  

 

Figure 1. TEM images of Ag NPs (a, b) and PS NPs (c,d) in mixture with TiO2 NPs, at both 

T0 (a,c) and T24 (b,d). 
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3.2 Physico-chemical characterization of differently coated zinc and 

titanium dioxide particles 

Similar to the PS and Ag NP mixtures, Figure 2 shows TEM images of the 

aggregation/agglomeration state of the TiO2 NP mixtures with differently coated ZnO 

NPs. All differently coated ZnO NPs form aggregates/agglomerates with TiO2 NPs, the 

size of which increases over time (Figure 2). Morphologically, the 

aggregates/agglomerates of uncoated ZnO NPs (Figure 2, a and b) and the hydrophobic 

coated ZnO NPs (Figure 2, e and f) are relatively comparable. However, the hydrophilic 

coated particles (Figure 2, c and d) form aggregates/agglomerates with a much more 

open structure: there is more space around the particles. Evaluating the 

aggregate/agglomerate sizes obtained via the DLS measurements (Tables S6, S7 and 

S8) as well as the sedimentation as measured as decrease in total concentration (Table 

S9), it is to be concluded that only little differences are observable between the different 

coatings. Additionally, very little effect of the addition of TiO2 NPs has been observed 

on the total concentration in suspension as well as on the amount of free ions (Table 

S9). When testing the sorption capability of TiO2 NPs for Zn ions (Table S10), only minor 

differences were observed in the amount of free ions when TiO2 NPs were added. This 

indicates that the sorption capacity is relatively low and explains why almost similar 

ion concentrations were observed in the different combinations of TiO2 NPs and 

(coated) ZnO NPs.  
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Figure 2. TEM images of ZnO nanoparticles with different coatings in mixture with TiO2 

NPs, at both T0 (a,c,e) and T24 (b,d,f). The coatings were: uncoated (a,b), hydrophylic 

coated (c,d) and hydrophobic coated (e,f). 
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3.3 Mixture toxicity of titanium dioxide with stable and non-stable 

particles 

In Figures 3 and 4, the survival of zebrafish embryos is shown after 48h of exposure to 

suspensions of a mixture of TiO2 NPs and polystyrene (Figure 3) or Ag (Figure 4) NPs. 

For both mixtures, the organisms were exposed from 3 dpf till 5 dpf. While both 

particles show a clear effect on survival of the organism, the addition of non-toxic8 TiO2 

NPs was found not to significantly affect the toxicity of any of the particles. When 

further assessing the LC50 values for each treatment (Table 1 and 2), no statistically 

significant differences or patterns could be observed. Other endpoints such as 

malformations (Table S11) did not show any pattern linked to the addition of increasing 

concentrations of TiO2 NPs either.  

0 2 0 4 0 6 0

0

5 0

1 0 0

T o x ic ity  P S  N P s  in h ib ite d  b y  T iO 2 N P s

C o n c e n tra t io n  P S  N P  (m g /L )

S
u

r
v

iv
a

l 
(%

)

0  m g /L  T iO 2

0 .2 5  m g /L  T iO 2

1  m g /L  T iO 2

4  m g /L  T iO 2

2 ,5  m g /L  T iO 2

1 0  m g /L  T iO 2

4 0  m g /L  T iO 2

 

Figure 3. Survival of zebrafish embryos after exposure to PS NPs in combination with 
different concentrations TiO2 NPs after exposure from 3 dpf till 5 dpf. 
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Table 1. LC50 values of polystyrene NPs with different concentrations TiO2 NPs added. SE = Standard 
Error 
 

 

 

 

 

 

 

 

For the Ag NPs, we calculated the relative contribution of the ions (NPion) and the 

particles (NPparticle) to the overall toxicity observed. As can be seen in Table 2, the 

relative contribution did not show large differences as well, indicating that the addition 

of TiO2 to the exposure medium containing either PS or Ag NPs induced only additive 

toxicity, although minor effects that were not observable in this test cannot be excluded.  
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Figure 4. Survival of zebrafish embryos after exposure to Ag NPs in combination with 
different concentrations TiO2 NPs after exposure from 3 dpf till 5 dpf. 

 

Particle TiO2 (mg/L) 
LC50 value 

(mg/L) 
+ SE 

Polystyrene 0 35,9 1,3 
 0,25 36,3 1,0 
 1 37,0 1,2 
 2,5 37,4 0,8 
 4 36,8 1,4 
 10 38,5 1,5 
 40 34,8 1,4 
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Table 2. LC50 values of Ag NPs with different concentrations TiO2 NPs added. 

          Relative contribution (%) 

Particle TiO2 (mg/L) LC50 value (mg/L) + SE   NP ion Npparticle 

Silver 0 4,7 2,1   79,6 20,4 
 2,5 4,6 0,2   79,6 20,4 

  4 4,1 0,7   79,6 20,4 

  10 4,9 0,4   79,6 20,4 

  25 5,2 0,3   79,6 20,4 

  40 5,2 0,7   79,6 20,4 

 

3.4 Mixture toxicity of titanium dioxide with differently coated 

particles 

Figure 5 shows the survival and hatching success of zebrafish embryos after 3 days of 

exposure to differently coated ZnO NPs. As is apparent from the graph, no full dose-

response models could be drawn since the survival rate at this time point has not 

reached 0 % for any of the coating types and shows large variation (Figure 5). Hatching 

success provides a more robust endpoint.  
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Figure 5. Survival and Hatching success of 3 day old zebrafish embryos after exposure to 
differently coated ZnO NPs. 
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When comparing the EC50 of the different coatings, no clear difference could be 

observed (Table 3). Also apparent, is that the relative contribution of the ions is 100% 

for each of the coating types.  

Table 3. EC50 values of the hatching success of 3 dpf zebrafish embryos exposed to zinc 
ions and differently coated ZnO NPs. 

 

For each different coating type, we assessed the effect of additional TiO2 NPs in the 

medium. Looking at the most robust endpoint, hatching success, no clear effect could 

be observed (Figure 6). When we assessed the effect on the survival of the embryos, the 

variation in the data was found to be too large to see any pattern (Figure S1). 

Additionally, the relative contribution of the ions on the hatching success remained 

approximately 100% for each treatment (Table S12).  

        Relative contribution (%) 

Coating 
EC50 value 

(mg/L) + SE   NP ion Npparticle 

Zn2+ 1,6 1,3  100 -  

Uncoated 4,1 1,8   100,1 -0,1 

Hydrophilic 7,6 0,4   100,2 -0,2 

Hydrophobic 2,1 0,7   100,1 -0,1 
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Figure 6. Hatching success of zebrafish embryos at 3 dpf after exposure to a zinc-ion 
control (Zn(NO3)2; a) or differently coated ZnO NPs (b,c,d) in combination with different 
concentrations of TiO2 NPs.   

5 



Through the magnifying glass: the effect of size and shape 

116 

 

4. Discussion 

In this study, we aimed to understand the influence of TiO2 NPs on the toxicity of other 

NPs, considering the influence of TiO2 NPs on the fate of the other NPs. In order to tackle 

this aim, we formulated two research questions. Firstly, we asked the question whether 

the reducing capacity of TiO2 NPs can be ascribed by enhancement of the 

aggregation/agglomeration and subsequent sedimentation of the co-exposed NPs or 

ascribed to reduction of the ion concentrations in suspension due to ion sorption to TiO2 

NPs. Secondly, the question we asked is whether the toxicity-reducing capacity of TiO2 

NPs is related to the dissolution behavior of non-stable particles. 

Answering the first research question, we observed no interactive effects 

between PS NPs and TiO2 NPs when assessing the fate of the particles (Table S3). The 

PS NPs were stable in the suspension, and no interactions with the added TiO2 NPs were 

detected. The absence of interactions between the particles was also reflected in the 

toxicity experiments, as the toxicity of PS NPs was not affected by addition of TiO2 NPs 

(Figure 3). A similar pattern was observed for the mixtures of silver NPs and TiO2 NPs 

(Figure 4). Although there were indications of co-agglomeration based on TEM pictures 

and DLS measurements (Figure 1, Table S1), no clear effects of addition of TiO2 NPs 

were observed on the total Ag concentration nor on the ion concentration in suspension 

(Table S5). Thus there were either no interactions (PS NPs mixtures) or the interactive 

effects were too small to be detected in our experimental design (as is the case for the 

Ag NPs mixtures). 

For the second research question addressed in this study, we focused on the 

dissolution behavior of NPs and the subsequent effect on toxicity of mixtures of TiO2 

and ZnO NPs. By adding a hydrophobic or hydrophilic coating to the particles, we aimed 

to influence the dissolution behavior of the particles. Although the dissolution rate 

differed slightly after 1 hour of incubation, the total concentration and the percentage 

of ions in the suspension were similar at T24 (Table S9) in all mixtures. Due to the high 

dissolution rate of all differently coated NPs, the ionic form of Zn dominated the toxicity 

(Table 3). Most probably, this also explains why there was only a minor difference 

observable between the toxicity of the differently coated ZnO NPs. In addition it is to be 

noted that contradictory data concerning the effect of adding a coating to NPs are 

reported in literature. Coating NPs with PVP (which was in our study used as 

hydrophilic coating) was shown to reduce the toxicity of both Ag and ZnO NPs14,15, yet 

Species Sensitivity Distribution modeling showed that a PVP coating increased the 

toxicity of Ag NPs16. For the hydrophobic coating used in our study the same pattern 
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was observed: decreased17 as well as increased18 toxicity has been reported, and also 

no impacts on the toxicity compared to bare ZnO particles were reported19. These 

contradictory findings suggest that other chemical and environmental factors may play 

a much larger role in the effectiveness of coatings than previously thought. 

 

As we have built our research questions upon the knowledge obtained from 

previous work11, we wondered why we were not able to repeat the previous results. 

Whereas we observed high dissolution rates of the ZnO NPs, study of Hua et al (2014)11 

reported much lower rates of dissolution. This resulted in a relative contribution to 

toxicity of up to 38% for the ions, whereas we observed that toxicity was completely 

due to the presence of Zn2+-ions formed in suspension. Upon comparing the 

experimental design, we noticed that the embryo media used differed significantly. 

Whereas the previous study reported a concentration of Instant Ocean of 210 mg/L, the 

egg water in our study contained 60 mg/L Instant Ocean. This difference in salt 

concentration may probably influence the equilibrium between ZnO NPs and Zn ions, 

shifting the equilibrium to the particulate form upon increasing salt concentration. 

Since in in vitro experiments, the reduction of ZnO NP toxicity by TiO2 NPs was ascribed 

to the reduction of the concentration of Zn ions20, this shift towards the particle form 

may be crucial. As we have observed that TiO2 NPs can adsorb only limited amounts of 

ions, the added amount of TiO2 NPs in our experiments is probably not sufficient to 

observe reducing effects on the toxicity of the co-exposed NP. In contrast, the high salt 

concentration may saturate the TiO2 NPs, which makes them unable to adsorb Zn2+-

ions. This suggests that the observed reduction of toxicity in the study of Hua et al. 

(2014)11 can be ascribed to the co-agglomeration of ZnO NPs with TiO2 NPs. Since the 

observed toxicity in our experiment was fully due to the presence of Zn2+-ions formed 

in suspension, it is not possible to confirm this hypothesis. 

In our study, we observed that only limited interactive effects occurred in our 

experimental setups, whereas we expected to observe stronger interactions. For future 

research, it is worthwhile to explore which environmental factors have an influence on 

mixture interactions. Knowing which factors are driving mixture interactions may not 

only give an indication at which natural locations certain interactions may occur, but 

may also contribute to properly understanding and modeling mixture toxicity. 

In conclusion, all of our tested mixture combinations resulted in additive 

responses. Based on previous studies, antagonistic effects were expected, but 

antagonistic interactions were not visible in zebrafish embryo responses nor was the 
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fate of the NPs in the aquatic exposure medium modified upon addition of TiO2 NPs. Co-

agglomeration with stable PS NPs was not observed, whereas the Ag and the differently 

coated ZnO NPs showed some co-agglomeration. This suggests that adsorption of free 

ions to TiO2 NPs has the highest contribution to the mixture impacts. Yet, given the high 

dissolution rates observed in our experiments, the adsorption capacity of the added 

TiO2 NPs was not sufficient to diminish ion exposure. Conversely, reduction in toxicity 

ascribed to co-agglomeration could not be confirmed, since the observed toxicity was 

due to the ionic form of Zn. This means that there is still no conclusion to be drawn 

regarding the impact of TiO2 NPs on the toxicity of slowly dissolving nanoparticles. 
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Supplementary Materials  

Tables 

S1 Hydrodynamic size distribution (nM) + standard deviation of Ag and TiO2 NPs in eggwater 
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S2 Size distribution (nM) + standard deviation of PS and TiO2 NPs in eggwater 
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S10 Actual concentrations of Zn ions with and without TiO2 after 1-hour incubation in 

eggwater 

Nominal concentration Zn 
ions (mg/L) 

TiO2 
Difference 

0 mg/L   6 mg/L 

3 2,548   2,518 0,03 

1,8 1,552   1,540 0,012 

0,9 0,776   0,758 0,018 

0,3 0,262   0,258 0,004 

0,1 0,100   0,096 0,004 

 

S11 EC50 values of Ag NPs with different concentrations of TiO2 NPs added 

          

Endpoint TiO2 (mg/L) 
EC50 value 

(mg/L) + SE   

Malformations 0 2,2 0,7   

  2,5 4,6 1,3   

  4 7,1 8,7   

  10 3,0 0,6  

  25 3,4 0,5   

  40 2,7 0,4   

Non-inflated 
swimbladder 0 0,7 0,2   

  2,5 0,7 0,2   

  4 0,8 0,6   

  10 0,8 0,1   

  25 1,0 0,1   

  40 1,4 0,2   
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S12 EC50 values of differently coated ZnO NPs with different concentrations of TiO2 NPs 

added and the relative contribution of ions and particles 

          
Relative contribution 

(%) 

Coating 
TiO2 

(mg/L) 
EC50 value 

(mg/L) + SD 
 

NP ion Npparticle 

Uncoated 0 4,1 1,8   100,1 -0,1 

  1,5 7,2 1,9   99,8 0,2 

  3 7,6 1,4   99,8 0,2 

  6 2,2 1,6   100,5 -0,5 

  12 2,3 1,4   100,3 -0,3 

  24 2,0 0,6   100,4 -0,4 

Hydrophilic 0 7,6 0,4   100,2 -0,2 

  1,5 7,4 1,3   100,2 -0,2 

  3 6,1 10839,0   100,2 -0,2 

  6 ~ 8,12 
~ 
10315442 #VALUE! #VALUE! 

  12 6,1 12332,0   100,2 -0,2 

  24 4,07900 0,0   100,4 -0,4 

Hydrophobic 0 2,1 0,7   100,1 -0,1 

  1,5 3,1 0,6   100,0 0,0 

  3 3,6 0,5   100,0 0,0 

  6 2,56 0,42   100,1 -0,1 

  12 2,97 0,66   100,0 0,0 

  24 3,5 0,5   100,0 0,0 
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S1 Survival of zebrafish embryos at 3 dpf after exposure to a zinc-ion control (Zn(NO3)2; 

a) or differently coated ZnO NPs (b,c,d) in combination with different concentrations of 

TiO2 NPs. 

  

5 



Through the magnifying glass: the effect of size and shape 

132 

 

References  

(1)  Wilke, C. M.; Wunderlich, B.; Gaillard, J. F.; Gray, K. A. Synergistic bacterial stress 
results from exposure to nano-Ag and nano-TiO2 mixtures under light in environmental 
media. Environ. Sci. Technol. 2018, 52 (5), 3185–3194. 

(2)  Leite-Silva, V. R.; Liu, D. C.; Sanchez, W. Y.; Studier, H.; Mohammed, Y. H.; 
Holmes, A.; Becker, W.; Grice, J. E.; Benson, H. A.; Roberts, M. S. Effect of flexing and 
massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. 
Nanomedicine 2016, 11 (10), 1193–1205. 

(3)  Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact 
of nanoparticles on human and environment: review of toxicity factors, exposures, 
control strategies, and future prospects. Environ. Sci. Pollut. Res. 2015, 22 (6), 4122–
4143. 

(4)  Altenburger, R.; Backhaus, T.; Boedeker, W.; Faust, M.; Scholze, M. Simplifying 
complexity: Mixture toxicity assessment in the last 20 years. Environ. Toxicol. Chem. 
2013, 32 (8), 1685–1687. 

(5)  Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E.; Fernandes, T. F.; Handy, R. D.; Lyon, D. 
Y.; Mahendra, S.; McLaughlin, M. J.; Lead, J. R. Nanomaterials in the environment: 
behaviour, fate, bioavailabilty, and effects. Environ. Toxicol. Chem. 2008, 27 (9), 1825. 

(6)  Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in 
photocatalytic water treatment technology: A review. Water Res. 2010, 44 (10), 2997–
3027. 

(7)  Ko, K.-S.; Koh, D.-C.; Kong, I. Toxicity Evaluation of Individual and Mixtures of 
Nanoparticles Based on Algal Chlorophyll Content and Cell Count. Materials (Basel). 
2018, 11 (1), 121. 

(8)  van Pomeren, M.; Peijnenburg, W.; Brun, N.; Vijver, M. A novel experimental and 
modelling strategy for nanoparticle toxicity testing enabling the use of small quantities. 
Int. J. Environ. Res. Public Health 2017, 14 (11), 1348. 

(9)  Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; 
Biswas, P. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium 
Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 2011, 6 (1), 1–8. 

(10)  Auffan, M.; Rose, J.; Proux, O.; Borschneck, D.; Masion, A.; Chaurand, P.; 
Hazemann, J.-L.; Chaneac, C.; Jolivet, J.-P.; Wiesner, M. R.; et al. Enhanced Adsorption of 
Arsenic onto Maghemites Nanoparticles: As(III) as a Probe of the Surface Structure and 
Heterogeneity. Langmuir 2008, 24 (7), 3215–3222. 

(11)  Hua, J.; Peijnenburg, W. J. G. M.; Vijver, M. G. TiO2nanoparticles reduce the 
effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio rerio). 
NanoImpact 2016, 2, 45–53. 

(12)  van Pomeren, M.; Brun, N. R.; Peijnenburg, W. J. G. M.; Vijver, M. G. Exploring 
uptake and biodistribution of polystyrene (nano) particles in zebrafish embryos at 
different developmental stages. Aquat. Toxicol. 2017, 190 (June), 40–45. 

5 



Chapter 5 ‖ Mixture toxicity 

 

133 

 

(13)  Hua, J.; Vijver, M. G.; Richardson, M. K.; Ahmad, F.; Peijnenburg, W. J. G. M. 
Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish 
embryos (Danio rerio). Environ. Toxicol. Chem. 2014, 33 (12), 2859–2868. 

(14)  Poynton, H. C.; Lazorchak, J. M.; Impellitteri, C. A.; Blalock, B. J.; Rogers, K.; Allen, 
H. J.; Loguinov, A.; Heckman, J. L.; Govindasmawy, S. Toxicogenomic responses of 
nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver 
nanoparticles. Environ. Sci. Technol. 2012, 46 (11), 6288–6296. 

(15)  Bonfanti, P.; Moschini, E.; Saibene, M.; Bacchetta, R.; Rettighieri, L.; Calabri, L.; 
Colombo, A.; Mantecca, P. Do nanoparticle physico-chemical properties and 
developmental exposure window influence nano ZnO embryotoxicity in Xenopus 
laevis? Int. J. Environ. Res. Public Health 2015, 12 (8), 8828–8848. 

(16)  Chen, G.; Peijnenburg, W. J. G. M.; Xiao, Y.; Vijver, M. G. Developing species 
sensitivity distributions for metallic nanomaterials considering the characteristics of 
nanomaterials, experimental conditions, and different types of endpoints. Food Chem. 
Toxicol. 2018, 112, 563–570. 

(17)  Bermejo-Nogales, A.; Fernández-Cruz, M. L.; Navas, J. M. Fish cell lines as a tool 
for the ecotoxicity assessment and ranking of engineered nanomaterials. Regul. Toxicol. 
Pharmacol. 2017, 90, 297–307. 

(18)  Farcal, L.; Andón, F. T.; Di Cristo, L.; Rotoli, B. M.; Bussolati, O.; Bergamaschi, E.; 
Mech, A.; Hartmann, N. B.; Rasmussen, K.; Riego-Sintes, J.; et al. Comprehensive in vitro 
toxicity testing of a panel of representative oxide nanomaterials: First steps towards an 
intelligent testing strategy. PLoS One 2015, 10 (5), 1–34. 

(19)  Li, X.; Fang, X.; Ding, Y.; Li, J.; Cao, Y. Toxicity of ZnO nanoparticles (NPs) with or 
without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or 
oleate-BSA. Toxicol. Mech. Methods 2018, 28 (7), 520–528. 

(20)  Kathawala, M. H.; Ng, K. W.; Loo, S. C. J. TiO2 nanoparticles alleviate toxicity by 
reducing free Zn2+ ion in human primary epidermal keratinocytes exposed to ZnO 
nanoparticles. J. Nanoparticle Res. 2015, 17 (6), 263. 

 

  

5 



Through the magnifying glass: the effect of size and shape 

134 

 

 

 

  

Image of control ZF embryos illuminated under different angles 
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Safe by design Nanoparticles 

Nanomaterials have proven their advantage in both consumer products as well as in 

the medical world. However, our understanding of the (unwarranted and wanted) 

toxicity of these materials is limited. Despite the tremendous advantages that 

nanomaterials provide for both the manufacturing industry as well as the 

pharmaceutical industry, we have started to realize that we need to take care of the 

safety for environment and health. To fulfill this need, the idea of ‘safe by design’ 

nanoparticles (NPs) was introduced: building NPs that fulfil the wishes of the 

manufacturer/developer and that are at the same time the safest option1. Typically, 

there are two strategies for ‘safe by design’ nanoparticles: reduce the hazard of the 

particle, or reduce the exposure to the particle by limiting the release into the 

environment2. In this thesis, we focus on the hazard assessment of the particles. To 

prepare a hazard assessment, we need to figure out what particle characteristics can 

influence the toxicity of NPs. By providing manufacturers with detailed information on 

hazard, as derived from relevant parameters, they can make educated decisions. Ideally, 

this whole selection process for the safest NP should already occur during the Research 

and Development (R&D) phase. During this phase, generally only limited amounts are 

produced since the process is yet still small-scaled and costly. Since standardized OECD 

(standard Organization for Economic Co-operation and Development) tests typically 

require vast amounts of materials, testing during the R&D phase under the currently 

standardized methodologies is usually impossible. To contribute to the tackling of this 

hurdle, we modified the OECD ZebraFish Embryo Test (ZFET) in order to test small 

quantities (Figure 1; Chapter 4). With this, we made a first step towards more ‘safe by 

design’ NPs. 
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Figure 1. Schematic overview of the standard OECD Zebrafish Embryo Test (top right), the adjusted 
version proposed by Hua et al (2014; top left) and the method proposed in Chapter 4 (bottom left). 
The OECD test demands one 24-well plate per test-concentration with one individual per well (and 
40 ml per tested concentration), the method proposed in Hua et al (2014) uses sixteen wells of a 96 
well plate per test-concentration (again with one individual and uses 4 ml per concentration) and 
our method as described in Chapter 4 exposes one well with 10 individuals per test-concentration 
(and 2 ml per concentration). 

 

The effect of single particles  

In order to evaluate toxicity, the most standard way is to perform a dose-response test. 

By using a defined range of concentrations, the toxicity of a particular compound can 

for instance be addressed as a lethal or effect dose where 50% of the population 

responds to the exposure (LC50 and EC50, respectively). Knowing that NPs differ from 

soluble molecules, this approach might not be sufficient for all particles. It has to be 

borne in mind that single particles may induce more or other effects than expected from 

the concentration tested as compared to dissolved chemicals: if one soluble particle is 

capable of penetrating the organism and can shed of ions over there, toxicity is induced 

in a different way (different mode of action) and possibly at a lower concentration than 

what would have been expected from previous knowledge from the molecular-form. 

This indicates that NP toxicity is not always as strongly correlated with concentration 

as is the toxicity of dissolved chemicals3.  
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Nanotoxicology: a mixture of ions and particles 

Although nanoparticles can be made out of a large variety of materials, a large portion 

of the manufactured NPs consists of metallic nanoparticles. Most of these metallic NPs 

(except for e.g. gold and titanium dioxide) have one feature in common: they show 

dissolution behavior (i.e. non-stable particles). This dissolution behavior adds another 

dimension to the understanding of the NP toxicity, since now the suspension does not 

only include particles but also ions4. This mixture of particles and ions makes it also 

important to know the toxic effects of the ions alone: by knowing the ion-toxicity, the 

relative contribution of both the ions and subsequently the particles can be modeled 

(Chapter 4, Chapter 5). Since the dissolution behavior differs per specific core material 

as well as the characteristics of the particle, it is important to measure the dissolution 

of the NPs in the test medium in order to address the actual particle effect rather than 

the ion effect. 

 

General aims 

Since we have adjusted the standard toxicity tests in order to work with small amounts 

of materials, we are in a position to focus on defining the most important factors 

determining toxicity. In this thesis, the overall aim was to get more insights in the effect 

of nanoparticle characteristics on the biodistribution and the subsequent toxicity in 

zebrafish embryos. As with any exposure, there is a difference between the nominal 

exposure and the effective exposure. Questions that arose were: Are the particles taken 

up in the organism, or do they only adsorb to the outside of the organism? And if they 

are taken up, where do they go to into the organism? For that reason, we investigated 

the effect of size (Chapter 2) and shape (Chapter 3) on the biodistribution of NPs in 

zebrafish embryos. On top of that, we investigated what the effect of shape is on short-

term toxicity of zebrafish embryos (Chapter 4). In Chapter 4, we went even deeper 

into the topic of shape related toxicity. We asked ourselves the question: does the shape 

of particles induce a specific pattern in toxicity, irrespective of the core material? With 

this knowledge, we aim to predict the toxicity of a new shape, based on the information 

we have from other shapes. As a final step, we aimed to focus more on the interaction 

effects on the fate of nanoparticles in mixtures. Knowing that the dissolution behavior 

is important with regard to the overall toxicity of the particle suspension, we wondered 

what will happen when we add a stable nanoparticle to the suspension. The 

nanoparticles added, may interact with the dissolving particle (Chapter 5)?  
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Biodistribution and accumulation 

Short-term experiments do not always give definite answers in toxicity assays (hence 

environmentally relevant concentrations may not induce short-term effects), but 

knowing where particles accumulate may give an indication of where effects will occur 

on the long term. Therefore, accumulation can also be classified as a sub-lethal effect. 

By locating where particles accumulate, so which target organs the NPs have, we can 

obtain a sub-lethal endpoint that gives an indication of where effects eventually may 

occur and what type of long-term endpoint will be affected. For this reason, a large part 

of this thesis focusses on the biodistribution of particles: in which organ(s) do they 

accumulate?  

Knowing the biodistribution patterns of particles does not only give an idea 

about the possible long-term implications of NPs for that particular organism, but also 

provides a predictive tool for assessing the impacts of nanoparticles in the 

environment. Particle build-up in particular organs may result in effects once a 

threshold has been reached, or when the organ is overloaded with particles and is 

unable to perform its function. In order to evidence accumulation of nanomaterials, the 

uptake rate of the particle should be higher than the elimination rate. For that reason, 

it is important also to include the clearance capacity in the toxicity assessments. 

Unfortunately, it was not feasible within our experiments to include both an exposure 

period as well as a clearance period. However, the capability of organisms to clear 

certain particles influences the long-term toxicity of these particles. When particles are 

cleared within a short period of time, then the overall toxicity will be low, especially 

when the exposure was only for a short duration. In contrast, when the organisms 

cannot clear the particles, the internal concentration will continue to increase over 

time. Not only will the exposure concentration increase over time, causing much more 

toxicity after a longer period of exposure than expected, this build-op of particles will 

also have environmental consequences. The absence of clearance classifies the particles 

as persistent, causing them to transfer through the food chain and in some cases even 

to build-up along the food chain (biomagnification). Whereas the small (test) organisms 

may not perceive any toxic effects, the top predator may.  

 

Factors influencing biodistribution and the subsequent effects 

In this thesis, we focused on the two particle characteristics that are known to influence 

cellular uptake: size and shape5,6. As we saw in Chapter 2, size not only influences the 
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uptake, but also the biodistribution of particles. Whilst 50nm particles were able to 

distribute to the eye, 250nm particles remained in the gut system and adsorbed to the 

skin. This indicates that there is a size limit in between 50 and 250nm above which the 

particles become too large to be taken up by cells and subsequently by the organism. If 

the particles have reached this size (or beyond), then the toxicity will most likely 

decrease significantly: toxicity can now only be induced by hindering the organism 

(adsorption) or by release of ions from the NPs. In addition, also the shape of the 

particle influences the biodistribution. In Chapter 3, we saw the particles flowing 

through the blood vessels, after which they were removed via the mononuclear 

phagocyte system (MPS). Although all shapes were found in the same clearance organs, 

the ratio in which they were found over these organs differed. This indicates that some 

shapes are better in evading the immune system than others, prolonging their 

circulation time in the organism and therewith enabling themselves to reach other 

organs in higher quantities. 

Based on our knowledge on how size (Chapter 2) and shape (Chapter 3) 

influences the biodistribution of particles, we aimed to assess the importance of these 

characteristics for NP toxicity (Chapter 4). By subtracting the effects induced by the 

ionic form from the total observed toxicity, we obtained the effect induced by the shape 

of the particle. Each differently shaped particle gave a different toxicity, which we tried 

to explain by different parameters. The parameter that explained the shift in toxicity 

the best was the minimal diameter of the particle: the smallest diameter that can be 

found on the particle. This is in line with our earlier findings that demonstrated that 

size is an important driver determining the efficiency of uptake of NPs (Chapter 2). To 

illustrate this: a rod with the same volume as a spherical particle will have a smaller 

diameter. Therefore, the rod might penetrate the membrane of a cell easier than its 

equally weighted spherical counterpart might. When particles can penetrate the 

membrane easier, the uptake in the organism will occur faster, which will lead to a 

higher internal concentration and thus higher internal exposure concentration within 

the same period.  

However, not only the minimal diameter influences the toxicity of the particles. 

While looking at the data generated for Ag NPs, we see that some data points (each 

representing another shape) deviate more from the modeled line than others do (Figure 

3c, Chapter 4). Whereas the possibility to penetrate is mostly dictated by the minimal 

diameter of the particle, sharp edges of the particles may also contribute to higher 

penetration rates. Since it is quite difficult to express this feature in a specific (numeric) 
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characteristic, we were not able to add this characteristic/dose-metric to our 

comparison. Nevertheless, it would be interesting to group particles in categories 

ranging from ‘very sharp’ to ‘blunt’ and see how these groups are distributed in Figure 

3c (Chapter 4). When the categories that lie close to ‘very sharp’ show the largest 

deviation from the model line, then this feature (as observable via TEM imaging) can be 

taken into account when predicting toxicity. On the other hand, particles with sharp 

edges might also show higher dissolution rates (which can be verified via chemical 

measurements). Our model is based on the particle-toxicity, so the toxicity of the 

material itself (induced by the released ions) is extracted. When the dissolution rate 

increases, the relative contribution of the particle might decrease, resulting in a lower 

suspension toxicity (so a higher LC50 value). The same might be true for other 

characteristics of the nanoparticles (e.g. coatings), which may influence the dissolution 

rate of the particles. Additionally, the shape may influence the mode of action of the 

particle, influencing the slope of the dose-response curve and therewith the relative 

contributions at different concentrations. Whereas at low concentrations the ions 

contribute the most to the total toxicity of the NP, at higher concentration the particle 

effect may have much more impact in a relative sense. 

Using this knowledge on the effect of size and shape on the uptake and 

biodistribution of particles, we aimed to contribute to the knowledge needed to obtain 

‘safe by design’ nanoparticles. With the knowledge that the size influences the uptake 

efficiency of particles (Chapter 2), it might be ideal to produce particles that are around 

250nm and therewith limiting the amount of particles taken up in the organism. 

However, this may result in particles being too big for the purpose of the manufacturer. 

In those cases, it is recommended to use particles that are as big as possible, while 

remaining within the useful range of the manufacturer. The same is true for the shape 

of the particle. As we saw that sharp edges of particles influences their uptake (Chapter 

3) and toxicity (Chapter 4), the safest choice would be for the particles to have the 

bluntest shape: spherical. However, sometimes the shape determines the functionality 

of the particle for the manufacturer. Therefore, the best option would be to opt for the 

bluntest shape that still provides the desired functionality. In general, based upon the 

knowledge we obtained, the particle most suited for the label ‘safe by design’ would be 

the largest and bluntest particle of the possible options suited for the manufacturer. 

 

 

6 



Through the magnifying glass: the effect of size and shape 

142 

 

The pace of technological innovations gives increased applicability  

In order to be able to visualize particles, they either need to be dyed/labeled, need to 

have optimal optical properties or need to be measured by using highly specialized 

equipment. Each of these requirements brings it owns restrictions. For instance, the dye 

or label of the particle should not get detached; otherwise, it is impossible to know 

whether one is imaging the particles or the detached dye/label. Additionally, attaching 

a label to a particle may influence its behavior inside the organism, resulting in a 

different biodistribution pattern as compared to the bare particle. To continue, optimal 

optical properties are spares among the full range of nanoparticle. This limits the 

amount of testable NPs significantly. In order to visualize the full range of available NPs, 

highly specialized equipment is needed. Unfortunately, this type of equipment is not 

always within reach, restricting researchers to the previous two options. Luckily, 

technology develops with an astonishing pace. Where we started to investigate the use 

of the two-photon confocal laser microscope at the beginning of this PhD project, only 

able to distinguish injected nanoparticles in the 3 cell-layers thick tailfin, we are able to 

fully visualize and track injected particles inside the whole organism (Chapter 3) just 

3 years later. Where most technologies are currently able to visualize clusters of 

particles, future technologies will enable researchers to track single particles inside 

living organisms. Development of faster microscopes with higher resolution, such as 

light-sheet microscopes, will further increase our knowledge on the biodistribution of 

particles in living organisms. Probably within even shorter time window, methods like 

single-particle ICP-MS will make it possible to routinuously measure very low amounts 

of particles in different organs, giving a quantitative image of the biodistribution. The 

largest benefit of all these new technologies is that we can gain more knowledge on 

single, non-modified particles.  

 

Key events and AOPs 

Knowledge on mode of action, or in mechanistic pathways ‘mechanisms of action’, of 

nanoparticles informs us on how the particles induce toxicity. In order to describe this 

mode of action, ‘key events’ are being formulated: measurable endpoints that are 

specifically linked to exposure7. Using these key events, Adverse Outcome Pathways 

(AOPs) can be build8. Within these AOPs, a chain of events is described that eventually 

results in the adverse effects observed in the organism. For instance, a disturbance at 

the molecular level might eventually lead to effects on the growth or survival of 

organisms9. With the knowledge obtained in this thesis on the biodistribution of 
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nanoparticles, building blocks were formed for further research and the eventually 

development of AOPs. For instance, the knowledge which size is small enough for 

uptake provides a first step in an AOP. This will answer the question whether there is 

actual internal exposure. 

Although we have obtained a glimpse of what can be important for developing 

key events and subsequent AOPs, there is still a lot of lacking knowledge. Most of our 

knowledge is built upon experiments with stable particles, especially concerning 

biodistribution. Yet, the dissolution behavior of particles plays also an important role 

in their toxicity. It is key to understand which characteristics of the particles influence 

the dissolution behavior, and how this subsequently influences the toxicity. Looking 

more into the effect of coatings may be an important aspect here, as well as how multi-

exposures (mixtures of different NPs) influence the particle. As seen in chapter 5 the 

relationships between NPs in co-exposure are then not always easy to explain. 

Obtaining more information about which characteristics influences the fate of the 

mixture and therewith the toxicity, showed to be a relative unexplored field. 

 

Read across from zebrafish embryos to humans 

When comparing zebrafish to humans, they have proven to be a relative good non-

mammalian model organism. From all the human genes, roughly 70% has an 

identifiable counter gene in the zebrafish model10. Not only is the zebrafish model fully 

sequenced and annotated, the zebrafish offers a wide repertoire of genetic, molecular 

and cellular manipulation tools11. These tools are used to answer various biomedical 

and toxicological research questions, such as within research on cancer and 

ecotoxicology 12. Additionally, due to the high conservancy between the molecular 

pathways, the development and internal structure of the zebrafish and mammalian 

species, the zebrafish provides a strong screening model in between cell/tissue cultures 

and higher animal models. For these reasons, knowledge obtained and the emergence 

of AOPs based upon zebrafish data can be used for the read-across from zebrafish to 

humans. During the exposures in Chapter 2, we noticed that the exposure route to a 

high extent determines the uptake of particles. Although the uptake of single particles 

cannot be excluded, no clear biodistribution pattern was observed until the mouth of 

the embryo opened at three days old. This indicates that (at least for the particles we 

tested) the addition of the intestine lining exposure route results in a much higher 

uptake than solely via the epidermal exposure route. Moreover, since the uptake via the 
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skin was limited, performing solely in vitro studies on dermal cell cultures might 

underestimate the uptake efficiency/capacity of particles. Due to these 

underestimations, particles may appear to be safe (for dermal exposure), while their 

uptake occurs somewhere else. Determining the most likely location for uptake will 

provide a more realistic view on the hazard of exposure. 

In Chapter 3, we concluded that the shape of the particle influenced the ratio 

in which the particles were distributed over three organs related to toxicant clearance. 

These same organs have been found to accumulate NPs in humans13, indicating that the 

same clearance processes (the MPS) are present in both zebrafish and humans. 

However, there are many more organs where particles can distribute to when the 

particles have escaped the immune system. Within cancer research, there has been a 

large emphasis on which particle shape is capable of evading the immune system in 

order to reach the highest accumulation rate of particles in tumors14. Since tumors are 

often tissues that demand high oxygen levels and usually contain relatively high 

amounts in capillary vessels, it is clear why tumors accumulate large quantities of NPs: 

large quantities of blood pass through this tissue over time, accelerating the 

accumulation of particles. However, healthy organisms in the environment do not 

contain tumor tissue. So the question remains: where do these particles go to when 

there is no tumor tissue present? And more specifically, how is the accumulation in 

other tissue/organs that are physiologically similar to tumor tissue (i.e. high in capillary 

vessels)? The brain is an organ that consumes a lot of oxygen and has therefor a high 

amount of capillary vessels. Obviously, it is unwarranted that NPs accumulate in our 

brain, where they might interfere with neurological and biological processes or even 

change the structure. The blood-brain barrier is effective in preventing most molecules 

from entering the brain. Important to know, is that molecules pass membranes via 

active uptake. In contrast, we do not know for sure which particles can cross the 

membrane barrier via passive diffusion. Particles that cross membranes via passive 

uptake are much more likely able to cross the blood-brain barrier. Fairly small particles 

can enter the brain15, but perhaps also particles with sharp edges. This relatively 

unexplored field may be of high interest, especially concerning long-term effects. 

 

Long-term testing and other experimental applications 

Within this thesis, we have obtained more insights in the factors that are important for 

the uptake and biodistribution of particles. Ideally, this type of test will substitute long-
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term tests, saving a lot of time, money and expensive materials. However, in order to 

make short-term tests a full substitute for long-term testing, it is important to 

understand the uptake and depuration efficiency, as stressed before. Without this 

knowledge, it is unsure whether the observed accumulation over short-term will lead 

to long-term effects. So, besides including an analysis of the depuration efficiency in the 

experiment, it should be validated whether the accumulation and biodistribution of 

nanoparticles is a genuine predictor of long-term effects and which endpoints are the 

best to predict. Furthermore, imaging techniques might be also interesting for other 

types of experiments. By using sensitive imaging techniques, it will be possible to 

examine the embryos for that have been taken up (internalized particles). Currently, it 

is impossible to distinguish quantitatively between internalized particles and particles 

that adhere to the outside of the organism. The benefit of imaging techniques is that 

they will enable researchers to distinguish between internal and external particles.  

Ultimately, building detailed AOPs on the knowledge obtained via improved 

biodistribution patterns will provide a more comprehensive view of the actual hazards 

posed by NPs. Using these AOPs, we will have a more refined knowledge of the toxic 

effects on both the environment and on humans. 
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Fluorescence overlay image of 25nm green fluorescent polystyrene nanoparticles in the intestine and gall 
bladder of a zebrafish embryo  
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Summary 

Nanoparticles (NPs) can be produced in a variety of sizes and shapes. Each little detail 

of these characteristics may influence the toxicity of the NPs. This thesis aims to gather 

more information about the importance of the size and shape of a particle on its toxicity. 

I not only focused at standard apical endpoints like lethality and mobility, but also 

aimed to gain more insight in the effective exposure of embryos to NPs. By focusing on 

the uptake and biodistribution of NPs, it can be examined where particles end up in the 

organism after short-term exposure and where long-term effects may be expected to 

occur. As a final step, it was aimed to focus on the interactions nanoparticles experience 

in mixtures that are determinative of their fate. Being aware that the dissolution 

behavior of NPs is important with regard to the overall toxicity of the particle 

suspension, I wondered what would happen when a stable nanoparticle is added to 

different NP suspensions.  

In Chapter 2, the aim was to investigate the effect of particle size on the uptake of the 

NPs, combined with an assessment of how the uptake route affects the uptake of NPs 

into the organism. It was found that only the small particles (≤ 50 nm) were able to 

penetrate the zebrafish embryos, spread through the body and eventually accumulate 

in specific organs and tissues such as the eyes. Particles larger than 50 nm were 

predominantly adsorbed onto the intestinal tract and outer epidermis of zebrafish 

embryos. Embryos exposed to particles via both epidermis and intestine showed the 

highest uptake and they eventually accumulated particles in their eyes, whereas uptake 

of particles via the chorion and epidermis resulted in marginal uptake. 

In Chapter 3, the effect of particle shape on NP biodistribution was assessed. By 

assessing both the trafficking of the particles as well as the immune response of the 

embryo, it was possible to observe a shape-dependent trafficking of the particles, which 

resulted in a different distribution of the particles over the target organs. The 

differences across the distribution patterns indicate that the particles behave slightly 

different, although they eventually reach the same target organs – yet in different ratios. 

Macrophages were found to take up Au NPs from the body fluid, to be transferred into 

the veins and to be transported to digestive organs for clearance. The trafficking of the 

particles in the macrophages indicates that the particles are removed via the 

mononuclear phagocytic system. The different ratios in which the particles are 

distributed over the target organs, indicate that shape influences the behavior and 

eventually the toxicity of particles. 
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Testing nanomaterials may imply working with small amounts of materials. In order to 

be able to test NPs in low quantities, an adaptation to the standardized zebrafish 

embryo test was proposed in Chapter 4. Using this method, a variety of differently 

shaped NPs was tested. With the data generated, in combination with existing data, it 

was aimed to determine the best dose-metric to describe the toxicity of NPs. 

Subsequently, the aim was to develop translational models for dose-response 

predictions for those NPs that showed low responses at the highest exposure levels 

possible. The modeling efforts in Chapter 4 indicated that there is indeed an influence 

of shape on the toxicity, irrespective of the core-material. The parameter that explained 

the shift in toxicity the best was the minimal diameter of the particle: the smallest 

diameter that can be found on the particle.  

In the study discussed in Chapter 5, the effect of TiO2 NPs on the fate and toxicity of 

other NPs was assessed. Given the common use of multiple NPs in nanomaterials, the 

urgency to investigate interaction effects in mixtures of NPs has increased as well. The 

aim of Chapter 5 was to investigate the joint effects of quickly dissolving NPs and 

chemically stable NPs based on the fate of the nanoparticles. No specific interactions 

between the particles were found and possible fate determining processes like co-

agglomeration and adsorption of free ions were found not to be affected by addition of 

stable NPs. 

In conclusion, it can be said that the studies in this thesis have yielded a more detailed 

knowledge about 1. Whether NPs adsorb or are being taken up, 2. How they distribute 

through the body of a zebrafish and into organs 3. Which characteristics the toxicity of 

NPs determine and 4. How NPs can be tested properly. This information is valuable for 

information for predicting long-term toxicity and for modeling efforts on predicting 

shape-related effects. These predictions are essential for the development of 'Safe by 

Design' nanoparticles, in which the planet is protected by means of preventive 

measures. 
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Samenvatting 

Nanodeeltjes kunnen in verschillende groottes en vormen worden gesynthetiseerd. 

Minuscule veranderingen in deze kenmerken kan de toxiciteit van de nanodeeltjes 

beïnvloeden. Dit proefschrift heeft tot doel meer informatie te verzamelen over het 

belang van de grootte en vorm van een deeltje op de opname en toxiciteit. Niet alleen 

wordt er gekeken naar standaard lethale eindpunten, maar wordt ook meer inzicht 

gezocht in de sub-lethale eindpunten waaronder opname en accumulatie scharen. Door 

te concentreren op de opname en de biodistributie van verschillende grootte en 

verschillende vormen van nanodeeltjes, kan een idee gekregen worden van de deeltjes 

die in het organisme terechtkomen na kortdurende blootstelling en waar in het lichaam 

verwacht kan worden dat er eventueel effecten optreden. Als laatste stap wordt meer 

gefocust op de effecten van interacties tussen nanodeeltjes, met nadruk op het gedrag 

van nanodeeltjes in mengsels. Wetende dat het oplossingsgedrag belangrijk is met 

betrekking tot de totale toxiciteit van een suspensie van langzaam oplossende deeltjes, 

was de vraag wat er gebeurt als een inert nanodeeltje aan de suspensie toevoegt wordt. 

In Hoofdstuk 2 werd het effect van de deeltjesgrootte op de opname van 

nanodeeltjes onderzocht waarbij expliciet de opname route meegenomen wordt. De 

resultaten laten zien dat alleen de kleine deeltjes (≤ 50 nm) in de zebravis embryo's 

konden doordringen, zich door het lichaam verspreidden en zich uiteindelijk 

ophoopten in specifieke organen en weefsels. Deeltjes groter dan 50 nm werden 

voornamelijk geadsorbeerd aan het darmkanaal en de epidermis van zebravis 

embryo's. Embryo's blootgesteld aan nanodeeltjes via zowel de epidermis als de darm 

vertoonden de hoogste opname en uiteindelijk een zichtbare accumulatie van deeltjes 

door het hele lichaam en zelfs in het oog. De opname van deeltjes via het chorion en de 

epidermis resulteerde in een marginale verhoging van de interne gehaltes. 

In Hoofdstuk 3 werd de invloed van vormen op de biodistributie van deeltjes 

beoordeeld. Door zowel de ophoping van de deeltjes als ook de immuunrespons van het 

embryo te beoordelen, kon een vorm-afhankelijk interne distributie van de deeltjes 

worden waarnemen. Meer concreet; de deeltjes verdeelden zich vorm afhankelijk over 

de doelorganen, maar wel in verschillende verhoudingen. De goud nanodeeltjes werden 

door macrofagen uit de lichaamsvloeistof gehaald, waarna ze via de bloedbanen naar 

de spijsverteringsorganen getransporteerd werden, zeer waarschijnlijk gevolgd door 

excretie. Het transport van de deeltjes via macrofagen geeft aan dat de deeltjes worden 
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verwijderd via het mononucleaire fagocytische systeem. De verschillende 

verhoudingen waarin de deeltjes worden verdeeld over de doelorganen, geven aan dat 

de deeltjesvorm het gedrag en uiteindelijk de toxiciteit van de deeltjes beïnvloedt. 

Het testen van nanomaterialen kan impliceren dat er met hele kleine 

hoeveelheden materiaal moet worden gewerkt. Om deze deeltjes ondanks de kleine 

hoeveelheid materiaal toch te kunnen testen, is in Hoofdstuk 4 een aangepaste versie 

van de gestandaardiseerde zebravis embryo-test voorgesteld. Met deze methode is een 

selectie aan nanodeeltjes getest, welke in combinatie met bestaande data gebruikt is 

om te bepalen wat de beste dosismetriek is om de toxiciteit van de deeltjes te 

beschrijven. Vervolgens werd geprobeerd translatie modellen te ontwikkelen, zodat 

dosis-respons voorspellingen gedaan konden worden voor nanodeeltjes die zeer 

weinig of geen effecten lieten zien op blootstellingsniveaus die praktisch nog haalbaar 

zijn om te maken. Onze modelleeractiviteiten gaven aan dat er inderdaad een invloed 

van deeltjesvorm op de toxiciteit is, ongeacht het kernmateriaal. De parameter die de 

toxiciteit het beste beschreef, was de minimale diameter van het deeltje. 

Met het toenemend gebruik van meerdere nanodeeltjes in nanomaterialen is 

de urgentie om interactie-effecten in mengsels te onderzoeken toegenomen. De 

doelstelling in Hoofdstuk 5 was om de gezamenlijke effecten van snel oplosbare 

nanodeeltjes met niet-reactieve nanodeeltjes te begrijpen op basis van het gedrag van 

de nanodeeltjes. De resultaten toonden aan dat er geen sterke interactie-effecten waren 

met betrekking tot het gedrag van de deeltjes (bijvoorbeeld co-agglomeratie en 

adsorptie van vrije ionen) wanneer stabiele nanodeeltjes toegevoegd werden. 

In conclusie kan gesteld worden dat de studies in deze thesis een meer 

gedetailleerde kennis hebben opgeleverd over 1. Of deeltjes adsoberen danwel opname 

hebben, 2. Hoe ze zich door het lichaam van een zebravis bewegen en in organen ze dan 

komen, 3. welke kenmerken de toxiciteit van nanodeeltjes bepalen en 4. Hoe die goed 

te testen zijn. Deze informatie is waardevol voor het voorspellen van de lange-termijn 

effecten. Daarbij kan het ook zeer waardevol zijn bij het ontwikkelen van modellen voor 

het voorspellen van vorm gerelateerde effecten. Deze voorspellingen zijn essentieel 

voor de ontwikkeling van ‘Safe by Design’ nanodeeltjes, waarbij de planeet beschermd 

wordt met preventieve maatregelen.  
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