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Cardiovascular disease (CVD) remains a leading cause of morbidity and 
mortality for all regions of the world. In 2015, there were an estimated 422.7 
million prevalent cases of CVD (95% CI: 415.5 to 427.9) and 17.9 million CVD 
deaths (95% CI: 17.6 to 18.3) (1). Despite this substantial health loss, we should 
recognize that identification of causal risk factors for atherosclerosis throughout 
the past century has enabled us to make great strides in tackling CVD occurrence 
through preventive strategies.

The significance and role of cholesterol in the formation of atherosclerosis 
was first described in 1913 by Anichkov, who observed that feeding rabbits 
cholesterol induced the development of aortic atheromatous plaques (2). Shortly 
thereafter, Bacmeister and Henes demonstrated that elevated cholesterol 
concentrations associated with atherosclerosis, diabetes, and kidney disease 
in humans (3). Since then, observational studies have repeatedly shown that 
particularly low-density lipoprotein (LDL) cholesterol concentrations positively 
associate with CVD risk. For example, among 44,234 individuals without initial 
vascular disease, the hazard ratio for coronary heart disease (adjusted for 
several conventional factors) was observed to be 1.38 (95% CI 1.09-1.73) per 
standard deviation (0.85 mmol/L) increase in directly measured LDL cholesterol 
(4). 

A multitude of interventional studies of LDL cholesterol lowering strategies 
across the spectrum of baseline cardiovascular risk have provided compelling 
evidence that LDL cholesterol has a causal effect on CVD risk. Amongst the 
pharmacological interventions, HMG-CoA reductase inhibitors, more commonly 
known as statins, are perhaps the most well-established and well-tolerated class 
of LDL cholesterol lowering drugs, having shown their worth both in primary and 
secondary prevention settings (5,6). As a result, statins were the drug class of 
choice for over 95% of the 2.1 million individuals who used cholesterol level-
lowering drugs in the Netherlands in 2016 (7). It is likely that the introduction 
and proliferation of statin treatment can be counted among the key drivers of the 
serum total cholesterol-decreasing trend found in Australasia, North America, 
and western European countries between the 1980s and 2000s (8), notably 
coinciding with decreasing age-specific rates of CVD occurrence.

However, there exists a large inter-individual variability in response to statin 
therapy. For example, 13% of the subjects allocated to statin treatment within 
the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) did not 
reach >10% LDL cholesterol lowering after 36 months of pravastatin treatment 
(9). Similarly, a cross-sectional study of 57,885 statin-treated outpatients 
demonstrated that only 21.7% of the patients classified at very high risk for 
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cardiovascular disease attained their LDL cholesterol goals (10). Possible 
drawbacks regarding statin therapy have also been reported, including a 
modestly increased risk of new-onset type 2 diabetes (T2D) (11). Finally, it was 
recently reported that intra-individual variability in LDL cholesterol may associate 
with risk for both coronary and cerebrovascular events, and that adherence to 
statin treatment may play a key role (12, 13). 

Genetic epidemiology may contribute to our understanding of these issues. 
For example, it is increasingly recognized that genetic factors also contribute to 
(non-)response to statin therapy, in addition to (in)adequate dosing and (non-)
adherence to treatment (14-16). Pharmacogenomics is a promising research field 
aimed at discovering genetic variation related to intended and/or unintended 
drug effects. The large international Genomic Investigation of Statin Therapy 
(GIST) consortium aims to accomplish this for both lipid and non-lipid response 
to statin treatment. This collaboration between investigators from different statin 
trials and prospective population-based cohorts has already led to the discovery 
of multiple genetic loci of importance to statin-induced LDL cholesterol lowering 
response (17). Furthermore, methods have been developed to utilize summary 
level data from genome-wide association studies (GWAS) to estimate causal 
effects through Mendelian randomization studies, in which germline genetic 
variants are proposed as proxies (‘instruments’) for typically modifiable 
exposures or disease risk factors. This approach, which aims to avoid issues 
difficult to fully take into account in conventional observational epidemiology 
(most notably residual confounding and reverse causality), might also be applied 
to predict unintended drug effects (18). 

ouTline of This Thesis

In this thesis, we delve both into genetic and methodological aspects of research 
on statin-induced lipid response, taking a closer look at some of the issues 
raised above. In chapter 2 in Part i of this thesis, we provide an introduction 
to the principles behind Mendelian randomization studies. In Part ii of this 
thesis we look at statin pharmacogenomics and how Mendelian randomization 
studies might complement this field of research. In chapter 3 we first describe 
considerations and assumptions of different response phenotypes and study 
designs popular in pharmacogenetic research. In chapter 4 we present 
the results of the largest pharmacogenetic meta-analysis of GWAS of high-
density lipoprotein (HDL) cholesterol response to statins to date within the 
GIST consortium. In chapter 5 we combine data from the GIST consortium’s 
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previously published pharmacogenetic meta-analysis on statin-induced LDL 
cholesterol response with publicly available data from the Global Lipids Genetics 
Consortium (GLGC) in a two-sample Mendelian randomization study, to examine 
whether overall genetic predisposition to LDL cholesterol has a causal effect 
on LDL cholesterol response to statin therapy. In chapter 6 we subsequently 
combine summary-level data from the GIST- and DIAbetes Genetics Replication 
And Meta-analysis (DIAGRAM) consortia to perform a bidirectional two-sample 
Mendelian randomization study, examining whether the presence of T2D has a 
causal effect on LDL cholesterol response to statin therapy, and vice versa. 

Although often assumed to give a valid causal estimate, it has been argued 
that Mendelian randomization studies can give biased results when performed 
in selected subgroups. For example, older populations necessarily consist of 
the non-random subset of individuals who have survived until study inclusion. 
Therefore, in chapter 7 we explore the problem of survival bias in Mendelian 
randomization studies through simulations of simple causal structures. In Part 
iii of this thesis, we turn our attention to the interaction between statins and visit-
to-visit lipid variability. In chapter 8, using data from the PROSPER trial, we 
perform cross-sectional analyses to examine whether intra-individual variability 
in LDL cholesterol concentrations associates with cognitive test performance 
and magnetic resonance imaging outcomes in an older population at high risk 
for vascular disease. Given the possible influence of treatment adherence, we 
performed these analyses stratified by statin use. In chapter 9 we provide an 
overview of the current evidence linking visit-to-visit lipid variability to (sub)clinical 
outcomes, discuss its interplay with lipid-lowering treatment, and describe the 
existing literature into possible genetic factors of interest. We supplement this 
discussion with an explorative GWAS on visit-to-visit variability of LDL- and HDL 
cholesterol. Finally, in chapter 10 in Part iV the main findings are presented and 
discussed, and we offer some future perspectives for the field. 
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absTracT

Cardiovascular disease (CVD) remains the leading cause of death in developed 
countries, despite the decline of CVD mortality over the last two decades. From 
observational, predictive research, efforts have been made to find causal risk 
factors for CVD. However, in recent years some of these findings have been 
shown to be mistaken. Possible explanations for the discrepant findings are 
confounding and reverse causation. Genetic epidemiology has tried to address 
these problems through the use of Mendelian randomization. In this paper we 
discuss the promise and limitations of using genetic variation for establishing 
causality of cardiovascular risk factors.
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Cardiovascular disease (CVD) remains the leading cause of death in developed 
countries. This is unlikely to change within the near future, despite the decline 
of CVD mortality over the last two decades (1). One of the pivotal studies that 
broadened our understanding of cardiovascular risk is the Framingham Heart 
Study. Since its inception in 1948, this study has identified various major 
risk factors contributing to CVD, including hypertension and elevated lipid 
concentrations (2). Moreover, the Framingham Study has generated one of the 
first multivariate cardiovascular risk prediction scores (3). From observational, 
predictive research, efforts have been made to also assess likely causal 
relationships. However, in recent years some of these findings have been called 
into question and ultimately proven wrong. 

One of the most profound examples of such high-profile misidentification is the 
risk-lowering effect of hormone-replacement therapy on coronary heart disease 
found in observational studies, leading to widespread prescription of hormones 
for post-menopausal women. Subsequent randomized controlled trials (RCTs) 
showed that hormone therapy not only fails to lower cardiovascular risk, it may 
even increase mortality risk and lead to other adverse clinical outcomes (4, 5). 
Similar over-turnings were seen for vitamins E and C after RCTs disproved any 
cardioprotective effects (6). It has been argued that the most likely explanations 
for these discrepancies have been confounding by environmental and behavioral 
factors, baseline health status and prescription policies, combined with reverse 
causation and selection bias (7). This shows that observational studies have 
certain weaknesses. Similar limitations might be present for RCTs, which are still 
viewed as the gold standard in estimation of causality. Firstly, it is sometimes 
unethical or impractical to allocate participants to exposures of interest (e.g. 
elevated blood pressure or physical inactivity). Additionally, participants are 
often relatively healthy with few co-morbidities which limits the applicability of the 
study findings to the general population, worsened by the possibility of consent 
bias. Lastly, trials may need significant follow-up time to produce meaningful 
results, which means RCTs are relatively resource-intensive and expensive. 

Genetic epidemiology has tried to address these concerns through the use 
of Mendelian randomization studies. While this term was introduced by Gray 
and Wheatley in 1991 (8), the underlying principles have long been recognized 
and applied in the field of econometrics, taking the form of instrumental variable 
analysis. An instrumental variable (or instrument) is a variable associated with 
the exposure, but not with the outcome of interest except through its association 
with the exposure (9). The application of Mendelian randomization in biomedical 
research, credited to Katan (10), is based on the concept that inheritance 
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of germline genetic variants is subject to the random allocation of alleles at 
conception, more commonly known as Mendel’s second law or the law of 
independent assortment (11). As the associations between genotype and clinical 
outcome are generally unrelated to environmental or behavioral exposures, 
use of single nucleotide polymorphisms (SNPs) known to be associated with 
modifiable risk factors makes it possible to avoid possible confounding or reverse 
causality (fig. 1). In other words, causality of these risk factors can accurately 
be estimated using observational data in a research design resembling an RCT 
(fig. 2) (12).

A clear example where Mendelian randomization was successfully used to 
prove the causality of a possible risk factor is the secretory phospholipase A2 
(sPLA2) story. Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme 
activity have been associated with increased risk of cardiovascular events in 
observational studies (13). However, a recent RCT with Varespladib, a sPLA2 
inhibitor, was stopped because of lack of efficacy. Subjects randomized 
to Varespladib had an increased risk for cardiovascular events compared 
with subjects receiving placebo (14). A Mendelian randomization study was 
conducted to investigate the causality of sPLA2 in cardiovascular disease. The 
polymorphism rs11573156, which was associated with significantly lower sPLA2 
levels, was not associated with coronary events (OR 1.02 (95% CI 0.98-1.06)). 
The conclusion from this Mendelian randomization study was that sPLA2-
lowering therapy would not be a useful therapeutic tool to prevent cardiovascular 
disease (15). 

fig. 1 Causal relationships which satisfy the core assumptions of Mendelian randomization: 
(1) genotype is associated with phenotype, (2) genotype is independent of confounding 
factors, (3) genotype is associated with outcome, but only through phenotype
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fig. 2 Comparison of randomized controlled trial and Mendelian randomization study 
designs

To test whether elevated levels of C-reactive protein (CRP) are causally 
associated with ischemic vascular disease, Zacho et al. conducted genotyping 
for four CRP polymorphisms. They found that the risk of ischemic heart disease 
and ischemic cerebrovascular disease was increased by a factor of 1.6 and 
1.2, respectively, in persons who had CRP levels above 3 mg/l, as compared 
with persons who had CRP levels below 1 mg mg/l. Polymorphisms in the CRP 
gene were associated with considerable increases in CRP levels and thus 
with a theoretically predicted increase in the risk of ischemic vascular disease. 
However, these polymorphisms were not associated with an increased risk of 
ischemic vascular disease, thereby demonstrating that a causal relationship of 
CRP levels with adverse cardiovascular outcome is unlikely (16). 

Another example of a Mendelian randomization, originating from Katan’s 
original hypothesis, used apolipoprotein E (ApoE) genotype to infer causality 
between cholesterol and cancer (10, 17). The background for this was the 
uncertainty whether the associations found between low plasma cholesterol 
levels and increased risk of cancer might actually reflect a hypocholesterolemic 
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effect of cancer in preclinical stages (10). Trompet et al. reported that subjects 
within the lowest third of plasma cholesterol levels had increased risk of cancer 
incidence (HR 1.9 (95% CI 1.34-2.70)) and cancer mortality (HR 2.03 (95% 
CI 1.23-3.34)), when compared with those within the highest third of plasma 
cholesterol levels. However, they also found that carriers of the ApoE2 genotype, 
who had 9% lower plasma cholesterol than carriers of the ApoE4 genotype, did 
not have increased risk of cancer incidence (HR 0.86 (95% CI 0.50-1.47)) or 
cancer mortality (HR 0.70 (95% CI 0.30-1.60) compared with ApoE4 carriers. 
These findings suggested that low cholesterol levels are not causally related to 
increased cancer risk (17). 

An important limitation of Mendelian randomization is that genetic variants 
generally explain a modest amount of the variation in exposure levels, which 
means large sample sizes are needed to obtain valid results. It has been 
suggested that combining multiple SNPs into an allele score increases power 
and facilitates avoidance of weak instrument bias (18, 19). Genome-wide 
association studies (GWAS), which scan large numbers of genetic markers in 
genomes of different individuals to find genetic variations associated with a 
particular disease or trait, have made construction of these genetic risk scores 
feasible. Teslovich et al. found 95 loci associated with plasma lipids in more 
than 100,000 individuals, explaining 9.6-12.4% of total variance of lipid levels 
in the Framingham Heart Study and corresponding to ~25-30% of the genetic 
variance for each trait (20). Other large-scale GWAS have examined traits of 
blood pressure (21), body mass index (22) and CRP (23), providing more insight 
into the genetics and biology of these possible risk factors. 

Various studies have applied GWAS findings to examine causality of 
cardiovascular risk factors. For example, Voight et al. constructed a genetic 
risk score comprising 14 SNPs known to be associated with HDL cholesterol 
but not with other lipid traits. While observational epidemiology showed that an 
increase of 1 SD in HDL cholesterol was associated with decreased occurrence 
of myocardial infarction (OR 0.62 per SD (95% CI 0.58-0.66)), genetically raised 
HDL was not associated with risk of myocardial infarction (OR 0.93 per SD 
(95% CI 0.68-1.26)), thereby challenging the concept that raising plasma HDL 
cholesterol leads to reductions in risk of myocardial infarction. In contrast, the 
estimate from observational epidemiology for LDL cholesterol (OR 1.54 per 
SD (95% CI 1.45-1.63)) was concordant with that from genetically raised LDL 
(OR 2.13 per SD (95% CI 1.69-2.69)) (24). In another recent study, a total of 30 
SNPs were combined by Lieb et al. to evaluate whether hypertension truly acts 
as a causative factor for coronary artery disease, finding that those individuals 
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carrying most systolic and diastolic blood pressure raising risk alleles had the 
highest odds of having coronary artery disease (25).

Most research has been performed using data from Caucasian populations 
only, which illustrates one of the limitations to the application of genetic risk 
scores in clinical practice. It is unlikely that Mendelian randomization findings 
will uniformly translate into treatment effects as clinical interventions may have 
additional biological and biochemical pathways through which they affect clinical 
outcome, though the findings will generally be informative for the direction of 
effect and may further the design of an intervention study. In general, Mendelian 
randomization studies must examine the possibility of potential confounders to 
genotype. This includes confounding through multiple functions of a genotype 
(pleiotropy), the non-random association of alleles at two or more loci (linkage 
disequilibrium), population stratification and canalization, which describes a fetal 
developmental change in response to a potentially harmful genetic variant (12). 

Despite its current challenges, genetic epidemiology has great potential 
for extending the knowledge base of cardiovascular risk assessment. With 
increasing sample sizes and next-generation sequencing, GWAS will be able 
to detect increasing numbers of trait- and disease-associated genetic variants. 
Recently, the Global Lipids Genetics Consortium identified 157 loci associated 
with lipid levels, including 62 loci not previously associated with lipid levels in 
humans, thereby extending the findings of Teslovich et al. and opening up new 
possibilities for construction of genetic risk scores (26). Moreover, in coming years 
academic cooperation through international research consortia (e.g. CHARGE, 
GIANT, IDEAL) will present unprecedented possibilities for translational and 
(pre)clinical research. 
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absTracT

In essence, pharmacogenetic research is aimed at discovering variants of 
importance to gene-treatment interaction. However, epidemiological studies 
are rarely set up with this goal in mind. It is therefore of great importance that 
researchers clearly communicate which assumptions they have had to make, 
and which inherent limitations apply to the interpretation of their results. This 
review discusses considerations of, and the underlying assumptions for, utilizing 
different response phenotypes and study designs popular in pharmacogenetic 
research to infer gene-treatment interaction effects, with a special focus on 
those dealing with of clinical effects of drug treatment.

Graphical abstract
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inTroducTion

Pharmacogenetics can be thought of as a classic example of gene-environment 
interaction. Namely, in the search for genetic variation which can explain inter-
individual drug response variability, researchers typically aim to answer the 
question whether a treatment effect differs between subjects with different 
genotypes. In other words, whether an inherited genetic variant acts as an effect 
measure modifier for a certain (drug) treatment.

Although the term pharmacogenetics was coined halfway through the 20th 
century by Fredrich Vogel (1), widespread interest into the field truly emerged 
with the completion of the Human Genome Project (2) (figure 1). There now 
exist large publicly available web resources and pharmacogenetic databases, 
made possible by methodological advances in sequencing technology and the 
emergence of genome-wide testing strategies (3, 4). Regrettably, contemporary 
pharmacogenetic research often depends on the type of study data readily 
available, as most epidemiological studies are not developed with pre-specified 
pharmacogenetic research questions in mind. Therefore, a heterogeneous 
body of literature exists. Collective interpretation can be difficult, as limitations 
and assumptions inherent to different epidemiological study designs must be 
recognized. Unfortunately, there also exist notable examples in the literature 
where authors overextend the scope and significance of their findings. 

figure 1. Appearance of the terms pharmacogenetic(s) or pharmacogenomic(s) in 
PubMed-indexed publications across the past 25 years. The Human Genome Project 
was completed in 2003.
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Here, we discuss considerations relating to different response phenotypes 
and study designs typically found throughout the pharmacogenetic literature. 
Though many of the considerations and pitfalls described in this paper will also 
apply to other types of pharmacogenetic investigations (e.g. those focusing on 
ADME properties), we will especially focus on studies dealing with clinical effects 
of drug treatment, an area where we feel invalid inference is more prevalent or 
at least more visible. We will clarify which conclusions may be drawn and which 
limitations naturally follow from which methodological approach. Where applicable 
we provide illustrative examples from the field of statin pharmacogenetics, in 
which a diverse range of phenotypes and study designs have been combined 
and investigated (5). Here, we will focus specifically on investigations into the 
intended effects of cholesterol reduction, on the prevention of vascular events, 
or on the unintended occurrence of myopathy-related complaints after starting 
statin therapy. 

resPonse PhenoTyPes

Except for sharply defined clinical outcomes such as mortality, effects of treatment 
can often be visualized as lying on a possible spectrum of outcomes. For example, 
the clinical spectrum of statin-induced myopathy ranges from commonly occurring 
myalgia to very rare incidents of life threatening rhabdomyolysis (6). The narrow 
approach of dichotomization will thus lead to a loss of information and possibly 
reduced statistical power (7). This may particularly be the case for drug efficacy 
or toxicity phenotypes related to drug dosage. Furthermore, dichotomizing 
outcomes may induce unnecessary phenotypic heterogeneity between studies 
(complicating systemic reviews and meta-analyses), and might conceal possible 
non-linearity in the associations under investigation. Therefore, continuously 
distributed outcome-traits are often preferable when available. However, these 
outcomes come with their own challenges (e.g. non-normal distributions), and 
may hinder translating the results to clinically meaningful findings. For example, 
prior knowledge of clear clinical bimodality (e.g. disease remission) may guide 
researchers in choosing a response phenotype which most closely aligns with 
the biology of interest. In addition, dichotomous outcomes more often allow for 
simple visual presentation of results and categorization may mitigate the effects 
of including significant outliers in your analysis.

Most pharmacogenetic investigations of interest are inherently longitudinal in 
nature, as one wishes to measure a phenotype just before and then after a drug 
treatment has started. This goal corresponds to a criterion essential to causal 
inference, namely temporality: that exposure preceded the outcome (i.e. onset 
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of disease or change over time in a trait) (8). Even for binary outcomes (e.g. 
clinical or adverse events) it will be essential to compare incidence between 
drug exposure categories, including the absence of drug exposure. Whenever 
possible, incorporating both on- and off-treatment observations into the data 
analysis is therefore considered superior to solely basing conclusions on data 
from one or more observations made on-treatment. There exist additional 
reasons why utilizing repeated measurements is often preferable for quantitative 
traits. Firstly, a single measurement is merely a snapshot of the underlying 
response-curve, not representative of the true response characteristics over 
the whole treatment phase, which is likely to differ per individual (9). Secondly, 
methods that do involve baseline values can eliminate much of the between-
subject variability from the treatment comparison, and are therefore typically 
more powerful. Thirdly, limiting the analysis to a single on-treatment value 
ignores possible baseline imbalances between the groups, which are likely to 
occur in non-randomized studies. Taking these into account may help to control 
for confounding by (contra)indication and in distinguishing genetic effects on the 
response phenotype from those on off-treatment levels. Finally, having both on- 
and off-treatment measurements allows for the calculation of change over time, 
which is easy to communicate to a broad non-statistical audience. 

A further consideration is the selection of a valid time interval to assess 
treatment response, which should be based on clinical experience. For example, 
a steady-state in low-density lipoprotein cholesterol (LDL-C) may be expected 
4-6 weeks after start of statin treatment (10). However, when one is interested 
in onset of myopathy symptoms a longer period should be considered, e.g. 
the mean duration of statin therapy before onset of symptoms was 6.3 months 
(range 0.25-48.0) in a retrospective study of 45 patients (11). 

For adverse drug reactions, response phenotypes suitable for pharmacogenetic 
research will generally be those which appear to be strongly tied to the drug 
exposure. This will often depend on baseline disease incidence, whether relative 
effect sizes observed in large-scale studies are of apparent clinical importance, 
but also whether sufficient evidence supports a causal link between the drug 
exposure and the adverse event. Additional practical considerations such 
as data availability may guide or limit researchers in their investigations. For 
example, while it has been reliably shown that new-onset diabetes mellitus 
may be caused by statin therapy (12), repeated glucose measurements have 
historically not been assessed within statin trials. This likely explains why statin-
induced glucose changes have not been examined in the pharmacogenetic 
setting to date.
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defininG TreaTMenT effecT

The observed average treatment response in a study does not always reflect the 
benefit of the treatment per se, as the context wherein this observation is made 
is of great importance (figure 2). This is because an individuals’ treatment 
response, defined here as the clinical outcome after starting the treatment, 
is not just a combination of the drug effect (i.e. the underlying (un)measured 
physiochemical response) and the natural course of the disease, but may also 
reflect secondary effects of initiating drug treatment (13, 14). Examples include 
placebo effects, the possibility that the individual may have been motivated to 
concurrently alter lifestyle habits of prognostic significance to the outcome of 
interest, or that the researcher or study participant may (un)knowingly influence 
the measurement of the endpoint if he/she is aware of the purpose of the study 
(i.e. observer bias) (14). The latter issue is more likely to occur with subjective 
outcomes, but may be avoided through blinding both researcher and study 
participants. 

A serious problem in non-randomized studies is the issue of confounding 
by (contra)indication. In routine healthcare the decision to initiate or refrain 
from drug treatment is based on the prognosis of the patient. Consequently, 
the prognoses of treated and untreated individuals in observational studies are 
typically not comparable. In other words, individuals with more indications for 
treatment are more likely to be treated, but also more likely to have a worse 
outcome. If this is not taken into account through study design or statistical 
adjustment, straightforward inference of treatment benefits may be invalid, as 
it could seem that treatment actually leads to worse outcomes (15). While no 
statistical adjustment method can fully resolve confounding by (contra)indication 
in observational studies if not all confounders are known, its effects should be 
minimized when possible. Given that genotype is set at conception and remains 
fixed throughout life, confounding by (contra)indication is unlikely to bias the 
effect estimate of a genetic variant on the outcome of interest. However, if 
confounding bias is present for the association between the drug exposure and 
the outcome of interest, this may in select cases carry over to the assessment of 
interaction between the genetic variant and this drug exposure (16).

In the next sections we show that the degree to which different study designs 
are able to avoid or disentangle these considerations is paramount to the 
interpretation of results and conclusions that can be drawn, also in the field of 
pharmacogenetics. 
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sTudy desiGns

Various studies are available and appropriate to answer different types 
of pharmacogenetic research questions, depending on the stage of drug 
development. Here we focus on those suitable to evaluate the effect of genetic 
variation on treatment efficacy and adverse drug reactions, questions which 
will typically be asked after a drug has already been approved for clinical use. 
In addition to post-hoc subgroup analyses within a randomized controlled trial 
(RCT), all traditional population-based epidemiological studies can be used in 
this phase.  However, all study designs come with underlying assumptions and 
limitations, and may not be able to answer all relevant questions (Table 1). 

Our discussion here focuses mostly on sources of bias general to all 
epidemiology. However, a source of confounding specific to genetic epidemiology 
concerns population stratification (17). If there exist subgroups of individuals within 
the study population which differ in terms of genotype frequency and disease 
risk, spurious associations may arise if this is not taken into account. Typically, 
this can occur when individuals from different ethnic backgrounds with limited 
admixture are included in the same analysis (18). However, even apparently 
homogenous populations may contain genetically distinct subgroups (19). As 
larger samples will likely be more heterogeneous, population stratification will be 
a larger problem here  (17).  This should be of particular concern to researchers 
involved in the field of drug-gene interaction, where large studies are typically 
necessary to find promising signals.

outcome-based designs

The case-control design is perhaps the most common approach for 
pharmacogenetic investigations into clinical effects, often focusing on adverse 
drug reactions. Sampling is based on the outcome, with individuals who did 
(cases) develop the outcome of interest being compared to those who did not 
(controls), with regard to drug exposure prevalence and genotype frequencies. 
Case-control studies can be used to assess both main effects of the genetic 
variant and drug exposure on the outcome, but may also assess interaction on 
the additive and multiplicative scale (20) (Table 2). 
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Table 1. Popular epidemiological study designs suitable for pharma cogenetic research 
questions on clinical effects of drug therapy

design Graphical representation Key assumptions for 
gene-treatment interaction

advantages limitations

outcome-based designs

Case- control Valid control selection Cost-effective; can 
evaluate rare events 
caused by rare variants; 
can assess both main and 
interaction effects

Prone to selection/
information bias and 
confounding due to 
observational design

Treated-only case-control As case-control; no association 
between genotype and outcome in 
untreated group

Genotyping untreated 
individuals not needed

See case-control; can 
only assess interaction on 
multiplicative scale 

Case-only, nested within RCT No association between genotype 
and drug exposure in source 
population

More efficient than case-
control in evaluating 
interaction effects; 
genotyping controls not 
needed

See case-control; can 
only assess interaction on 
multiplicative scale; gene-
treatment independence 
assumption unlikely to hold 
in non-randomised cohort

cohort-based designs

Cohort - Repeated measures; can 
study multiple outcomes 
and rare exposures; 
can evaluate both main 
and interaction effects, 
can assess population-
attributable risk

Subject-driven assignment 
of treatment; resource-
intensive; prone to 
differential loss-to-follow 
up (selection bias); prone 
to information bias and 
confounding; inefficient for 
rare outcomes

Treated-only cohort No association between genotype 
and outcome in untreated group

Avoids issue of 
confounding by 
contraindication; more 
efficient than cohort study 
in evaluating interaction 
effects

See cohort; can only 
assess interaction effects; 
prior knowledge necessary 
to make key assumption for 
gene-treatment interaction

Trial-based design

Subgroup analyses within 
RCT

Valid randomization procedure Random allocation 
of treatment assures 
comparability at baseline; 
regression-to-the-mean 
can be taken into account; 
allows for blinding

Resource-intensive; limited 
generalizability; inefficient 
for rare outcomes

RCT denotes randomised controlled trial
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There also exist case-control studies which solely include individuals with 
known drug exposure, in which the analysis is limited to comparing genotype 
frequency between cases and controls. For the purpose of simplicity we will 
assume throughout the manuscript and tables that a particular susceptibility 
genotype is classified as being either present or absent. If it can be assumed that 
genotype does not associate with the outcome of interest in the absence of drug 
exposure, potential differences in disease occurrence between genotype groups 
can be interpreted as gene-treatment interactions (21). Whether this assumption 
is valid is highly dependent on the outcome of interest and the observation 
window chosen to assess this outcome. For example, this assumption is likely 
to hold for LDL-C reduction after statin treatment, since genetic variants are 
unlikely to lead to such acute (i.e. within days/weeks) and significant LDL-C 
changes (~30%) in absence of the drug treatment. In contrast, a treated-only 
case-control study on the occurrence of coronary artery disease after statin 
use is likely to also turn up genetic variants affecting risk in absence of statin 
treatment, as the underlying atherosclerotic process has a much slower onset 
than statin-induced LDL-C reduction.  

Major benefits of the case-control design are its cost-effectiveness compared 
to large cohort studies, but more importantly that it is highly suited for rare (drug) 
outcomes. For severe adverse drug reactions, it may sometimes even form the 
only realistic approach to examine genetic contributions. When the outcome of 
interest has a continuous distribution, sampling individuals from the extremes 
of the outcome distribution (e.g. comparing high- with non-responders in LDL-
reduction after starting statin treatment) may greatly increase statistical power 
when faced with budgetary restrictions for genotyping (22). However, as shown 
for non-responders to statin therapy in the PROspective Study of Pravastatin 
in the Elderly at Risk (PROSPER) trial, issues of treatment non-adherence are 
especially important to consider here (23). This strategy may also be promising 
when rare variants are investigated, as their prevalence may be greater on the 
extreme ends of the outcome spectrum (24).

There are some notable challenges in performing case-control studies, the 
first and foremost being the selection of an appropriate control group. The control 
group should be representative of the source population in terms of exposure 
distribution and genetic ancestry (e.g. European, Asian or African ancestry), and 
should ideally consist of individuals who would be classified as cases if they 
had developed the outcome of interest. In other words, controls should meet the 
eligibility requirements for cases except for their outcome status (20). Preferably, 
a geographically defined population should be the source of sampling, so the 
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entire at-risk population can be enumerated. For hospital- or clinic-based case-
control studies it may be difficult to identify this source population, as it does 
not correspond to a specific geographical area. For example, trauma victims 
referred to the hospital could live nearby or have been flown in by helicopter. In 
general, the catchment area for a hospital or clinic is likely to differ for different 
diseases, which will need to be considered when sampling controls. Similarly, 
as the cases of outcome-based studies on adverse drug reactions are often 
identified through databases it may be difficult to recruit an appropriate control 
group, especially since these events are often underreported (25, 26). Case-
control studies nested within an existing cohort may fare better in this regard. 

Table 2. Comparison of effect estimators from outcome-based study designs

case-control setting (frequency data complete)

Drug (E) Genotype (G) Cases Controls Effect estimator

- - a b

- + c d ORG = b*c / a*d

+ - e f ORE = b*e / a*f

+ + g h ORGE = b*g / a*h

To assess for interaction on the multiplicative scale: ORGE / (ORG * ORE)

Treated-only case-control setting (subset of frequency data)

Drug (E) Genotype (G) Cases Controls Treated-only case-control OR = f*g / e*h

- - n/a n/a If the genetic variant G is not associated 
with the outcome among untreated 
individuals (ORG=1), the treatment-
only case-control OR will estimate 
the assessment of interaction on the 
multiplicative scale from the case-control 
setting.

- + n/a n/a

+ - e f

+ + g h

case-only setting (subset of frequency data)

Drug (E) Genotype (G) Cases Controls Case-only OR = a*g / c*e

- - a n/a If the drug treatment E and genetic variant 
G are not associated among controls (i.e. 
source population), the case-only OR will 
estimate the assessment of interaction 
on the multiplicative scale from the case-
control setting.

- + c n/a

+ - e n/a

+ + g n/a

OR denotes odds ratio. While the above table denotes genotype as the presence of absence of a certain susceptibility 
genotype, it will equally hold for more complex situations, including combinations of alleles at multiple loci.
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A further risk is that cases with short survival times may be underrepresented if 
collection of (genetic) data occurs sometime after the event of interest. 

An alternative outcome-based design is the case-only study, wherein the 
analysis is restricted to cases (Table 1). This simple approach, which can 
evaluate gene-treatment interaction on the multiplicative scale, assumes that 
genotype and drug treatment are not correlated in the population that gave rise 
to the cases. Under this assumption this design increases power for the test of 
interaction, thereby lowering the number of cases needed to be genotyped (27). 
Not having or being able to find a suitable control group is another reason why 
this may be an attractive alternative to the conventional case-control study (28). 
If nested in a RCT the distributions of gene and treatment can be assumed to 
be independent by virtue of randomization, making the case-only odds ratio a 
valid measure of gene-treatment interaction (Table 2). The calculated odds ratio 
may however (slightly) differ between case-control and case-only studies, as 
case-control studies estimate different population parameters (odds-, rate-, or 
risk-ratio), depending on how the controls were sampled (29). An example of the 
case-only approach in the field of statin pharmacogenetics is that by Schiffman 
and colleagues, who performed a genome-wide association study on coronary 
heart disease risk reduction when being treated with pravastatin therapy (30). 
In the discovery phase they solely included coronary heart disease cases from 
the Cholesterol and Recurrent Events (CARE) trial and the West of Scotland 
Coronary Prevention Study (WOSCOPS) trial, finding that 79 common genetic 
variants were nominally (P<10-4) associated with differential event reduction by 
the therapy. To validate these results, these variants were then genotyped in an 
additional placebo-controlled pravastatin trial, and in all remaining patients from 
CARE and WOSCOPS (with or without event) (30). This study thereby exemplified 
how the case-only approach could be utilized as a cost-saving measure, by first 
screening the genome for promising signals, before including controls.

Nesting a case-only study within a cohort study can be problematic, as it 
is possible that genetic factors could influence the ability to tolerate therapy. 
Therefore, independence between genotype and treatment may not be a valid 
assumption. While this could also occur within an RCT, this experimental study 
design is more likely to have information on, and be able to include in the analysis, 
enrolled individuals who did not respond or had severe side effects. It has been 
argued that tests of gene-treatment association in controls may indicate whether 
genotype and treatment are truly independent in the source population, if the 
outcome is sufficiently rare (31). If however the assumption of gene-treatment 
independence is violated and ignored, the case-only approach will provide a 
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biased interaction effect and lead to increased false-negative results (32). 
Another limitation of the case-only design is that main effects of either genetic 
or drug treatment on the outcome cannot be estimated, and inference is limited 
to examining interaction on the multiplicative scale. More generally, all outcome-
based designs which cannot approximate risk ratios (rare disease assumption) 
or risk differences (due to knowing sampling fractions) are unable to examine 
interaction on the additive scale, which is often of greater public health relevance 
(33). Due to their observational nature, outcome-based studies are additionally 
highly prone to confounding, selection bias (i.e. that the association between 
(drug) exposure and disease differs for participants who were and  were not 
included in the study) and information bias (i.e. systematic error in the approach 
adopted for measuring or collecting data from a study) (20). For the last category, 
especially recall bias can pose an issue, which will not apply to genotype but 
might to drug history.

cohort-based designs

Cohort-based designs include the cohort and treated-only designs (Table 1). 
Typically, the rate of occurrence (or recurrence) is compared between individuals 
with different drug exposures levels. Increasingly, population-based cohort 
studies are undertaken, in which an ideally random sample or even the entirety of 
a defined population is included in which multiple hypotheses can be evaluated. 
Though these relatively expensive and time-consuming studies aim to answer 
the same questions of causality that outcome-based designs do, the extensive 
and repeated phenotyping and follow-up allows for more flexibility in investigating 
multiple outcomes and recent, prior and repeated drug exposure (21). In addition, 
studying a cohort representative of a defined population allows for the calculation 
of population attributable risks. While this type of study typically includes more 
participants than outcome-based studies, it is unlikely that a single study would be 
able to overcome the power and sample size issues associated with genome-wide 
testing. Considerations of sample size are discussed in detail in a separate section 
below. As cohort-based designs do not typically allow for blinding of researchers 
and participants, it is very likely that observer effects will not be equal between 
the treatment groups. In addition, if genetic testing was not undertaken close to 
commencement of treatment, selection bias may occur when non-responders or 
those with severe side effects are absent from the population. 

Of greater issue is that the assignment of drug therapy is likely to have been 
subject driven. This means that the prognoses of the treated and untreated 
subjects will generally not be alike. In addition to this previously discussed 
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confounding by (contra)indication, the issue of regression-to-the-mean may be 
problematic here. This occurs because the group of subjects at the extremes of 
the response distribution at baseline not just consists of those who consistently 
have more extreme values compared to the population average, but also 
those who simply by chance had an extreme value at baseline. Subsequent 
measurements of those who fall in the second category will therefore tend to 
be closer to the population mean thereof. Observed phenotypic changes over 
time may thus (partially) represent this regression-to-the-mean, which can 
occur when participants and/or treatment are selected on phenotypic cut-offs at 
baseline. This statistical phenomenon has been demonstrated for a wide range 
of biological measures, including lipid levels (34). Therefore, in non-randomized 
studies, it should be considered to combine multiple baseline measurements to 
reduce measurement error when selecting subjects, or to use suitable statistical 
methods (35, 36). 

The treated-only design essentially tries to limit the issue of confounding by 
contraindication whilst improving statistical efficiency (37). As the name suggests, 
this design limits the analysis to those exposed to the drug, thereby leaving 
out the subjects who might have had a pertinent contraindication to treatment. 
This contrasts with cohorts which do include an untreated control group, in 
which confounding by (contra)indication is more commonly addressed through 
statistical adjustment, although applying stricter inclusion criteria at enrolment 
may also limit this issue (14). A clear benefit of the treated-only approach is that 
less individuals are required for the analysis, which can be highly advantageous 
when genotyping study participants. As noted for the treated-only outcome-
based design, the central assumption for inferring gene-treatment interaction 
effects here is that the genetic variant is unlikely to explain change in outcome in 
absence of the drug exposure (21). A clear drawback are that the main effects of 
genetic variants on the outcome are inseparable from drug-treatment interaction 
effects. Observed loci may thus be associated with the natural course of the 
disease (37). In these cases, leveraging publicly available data from genome-
wide association studies (GWAS) may help to substantiate the claim of absence 
of a main effect of a genetic variant on the outcome of interest. This approach 
will however require these GWAS to have taken into account possible effects of 
drug treatment and to have a similar outcome definition.

Of special note, an increasing number of researchers are utilizing (singular 
or repeated) cross-sectional data from cohort studies to perform genome-wide 
gene-treatment interaction analyses for quantitative traits (38). These efforts 
have largely been motivated by the issue that the design of many cohorts is not 
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ideal for measuring longitudinal drug-induced changes. Specifically, assessment 
may be problematic when drug exposures are rare, when large intervals of time 
separate repeat drug exposure assessment, and when outcome phenotypes 
are not collected at each study visit. Therefore, the use of repeated exposure 
cross-sections allows for more cohorts to contribute, noting that increases in 
power from including more participants has been shown to be larger than the 
modest increase in power from making use of repeat cross-sectional measures 
in the same participants (39).  To date, this approach has particularly been 
applied to questions of gene-treatment interaction for different drug classes 
on electrocardiography-markers (39, 40). Similar research efforts are currently 
underway for the field of statin pharmacogenetics. 

As study information on exposure and outcome is typically determined at 
the same time, or at least analyzed without regard for differences in time, the 
temporal relationship between exposure and outcome remains unclear in these 
cross-sectional analyses. In fact, making a distinction between exposure and 
outcome will generally not be possible, unless a well-established drug response 
phenotype is available (20). Furthermore, aside from the issues discussed 
previously concerning the use of a single on-treatment measurement, care must 
be taken to differentiate effects from those on off-treatment values. Therefore, 
formal comparison with an untreated group is to be advised. Alternative 
explanations for detected associations between genotype and outcome may be 
differences in number and duration of previous treatment(s) and differences in 
severity of disease. Using data from established cohorts may greatly facilitate the 
execution of these investigations. Nonetheless, due to their inherent limitations, 
cross-sectional studies are most suitable as hypothesis-generating tools for 
slowly developing diseases without sharp onset times, rather than for making 
solid pharmacogenetic inferences of gene-treatment interaction.

randomized controlled Trial 

While similar in design to a cohort with a control group, the key difference for 
the RCT is that drug treatment is randomly allocated. As this ensures that the 
predictors of the outcome are equally distributed between the treated and 
untreated group, we can assume that: “the treated, had they remained untreated, 
would have experienced the same average outcome as the untreated did, and 
vice versa” (41). In addition, this strategy enables blinding of researcher and 
participant, which aims to prevent subsequent differential co-interventions or 
biased assessment of outcomes (42). As previously noted, if the trial is of adequate 
size the distributions of genotype and exposure will be independent. Due to these 
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study characteristics, it is possible to either avoid or account for regression-to-
the-mean, confounding by (contra)indication, and selection bias. Consequently, 
it is possible to make more firm conclusions regarding the underlying treatment 
effects than is possible in non-randomized studies (figure 2). While reducing 
the likelihood of selection bias is a major appeal of RCTs, it should be noted that 
genotyping in blood samples taken after study completion may still introduce this 
problem.

Subgroup analyses in trials have also been criticized (43), but “breaking” the 
randomization will typically only occur if researchers condition on a variable 
that occurs after treatment, which will not apply to genotype. Though RCTs 
are considered the gold standard to estimate unbiased drug-SNP interaction 
effects, a variety of reasons exist which explain why researchers may prefer 
observational study settings instead. Trials will typically have included a select 
number of participants, thus leading to reduced statistical power compared to 
large observational cohorts. In addition, the relative limited number and narrow 
definition of exposures and outcomes under investigation may allow for less 
flexibility for pharmacogenetic enquiries. For example, both drug exposures 
and outcomes may be more clinically meaningful when examined as classes 
not envisioned when designing the trial. Other considerations include concerns 
of generalizability due to RCTs often having strict exclusion criteria, and 
that the RCT approach is even less suited than the cohort-based designs to 
investigate rare adverse outcomes. This results from individuals with relevant 
co-morbid conditions or with severe side effects typically being excluded before 
randomization (e.g. during a run-in phase), in addition to trials often not having 
adequate follow-up to investigate outcomes which can occur long after the 
invention (44). 

An approach analogous to that of the RCT, known as Mendelian 
randomization, is increasingly being used in the context of pharmacogenetics 
and pharmacovigilance. These investigations, in which the causal effect of an 
exposure on an outcome is assessed by using a genetic proxy (e.g. one or 
multiple genetic variants) instead of the exposure (45), have been applied to 
a range of different types of questions. For example, summary level statistics 
from a large-scale pharmacogenetic meta-analysis of GWAS of statin-induced 
lipid response were recently used to demonstrate that genetic predisposition 
for increased LDL-C levels may decrease efficacy of statin therapy if effects on 
off-treatment lipid levels are taken into account (46). Mendelian randomization 
might alternatively be used to predict unintended drug effects. For example, 
Swerdlow and colleagues used SNPs in the HMGCR (i.e. the enzyme targeted by 
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statins) gene to demonstrate that the increase in new-onset type 2 diabetes risk 
is “at least partially” explained by HMGCR inhibition (47). In theory, Mendelian 
randomization investigations could reveal these effects prior to drugs licensing, 
potentially preventing exposure of large groups of patients to unnecessary 
risks (48). Lastly, stratifying Mendelian randomization analyses could provide 
evidence which subpopulations are likely to derive greater benefit from a drug, 
which could guide future RCTs (49).

consideraTions of saMPle size

A major issue in pharmacogenetic research has been the poor reproducibility 
of promising signals, likely in part due to underestimation of the sample 
sizes necessary to examine gene-treatment interaction. It has previously 
been demonstrated that study sizes for investigations into interaction on the 
multiplicative scale should be over four times as large as those necessary 
to detect main effects of the same magnitude (50). Given the relatively small 

figure 2. Non-randomized study on treatment response. The observed treatment 
response to drug X depends not just on the underlying physiochemical response and 
natural course of the disease process, but also on secondary effects of being allocated 
drug X. Moreover, confounding by (contra)indication may occur if reasons to initiate or 
refrain from drug treatment also associate with the outcome of interest. Pharmacogenetic 
research aims to answer which, if any, inherited genetic factors explain variation in the 
outcome of interest in the presence of a certain (drug) treatment (i.e. drug-gene interaction 
effects), distinguishing these effects from direct (i.e. main genetic effects) on the outcome. 
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effect sizes involved, it should therefore not come as a surprise that necessary 
sample sizes can run into the tens of thousands when genome-wide strategies 
are considered, where one must not just account for multiple testing but also 
consider the necessity of replicating ones results (51). Programs for sample 
size and power calculations for gene-treatment interaction have also been used 
to estimate sample size requirements for investigations into clinical effects of 
statin therapy (5). In addition to study design, researchers must consider the 
expected sizes of both the genetic effect and the drug response, the size of their 
interaction effects, allele frequencies, mode of inheritance, and the prevalence 
of the drug treatment and outcome. Moreover, studies are likely to genotype 
variants in linkage disequilibrium with the true causal variant, which will also 
influence sample size requirements (52).

In recent years, data from mega-biobanks have been become increasingly 
available, which will provide unprecedented possibilities for pharmacogenetic 
enquiries. It should however be noted that participation rates have been relatively 
low, which will pose unique challenges when interpreting results. For example, 
only 5.2% of the 9.2 million individuals invited to enter the population-based 
UK Biobank actually participated in the baseline assessment (53). Similarly, in 
mid-2015 the Million Veterans Program estimated their response rate at 13.2% 
of the first 3 million invited individuals (54). In addition, it is highly questionable 
whether signals which can only be detected under these increased sample sizes 
will actually translate into clinically meaningful results.

Further considerations must be made when multiple study designs are 
incorporated in the same analysis via a meta-analytic approach. In the next 
section we will examine some of these considerations, taking the largest 
pharmacogenetic meta-analysis of genome-wide association studies of statin-
induced LDL-C changes as an example (55).

GenoMic inVesTiGaTion of sTaTin TheraPy (GisT) 
consorTiuM

A major limitation of previously performed individual pharmacogenetic studies 
of statins was the lack of statistical power to detect small pharmacogenetics 
effects. To overcome this problem, a large meta-analysis of all available data 
on statin response was initiated, in which the investigators aimed to combine 
results from statin trials and large-scale cohorts. For their meta-analysis on 
differential response in LDL-C to statin therapy, the GIST consortium included 6 
statin-trials (n=8,421) and 10 observational studies (n=10,175) for the discovery 



3

A CRITICAL APPRAISAL OF PHARMACOGENETIC INFERENCE | 47

stage. Thereafter, the most promising signals were validated in a further 22,318 
subjects. Within this large GWAS effort, four loci were found to be associated 
with LDL-C lowering response to statin therapy. The most significant association 
was for a SNP on chromosome 6, at LPA (rs10455872, minor allele frequency 
(MAF)=0.08, beta=0.052, standard error (s.e.)=0.004, P=7.41x10-44), indicating 
that carriers of the rs10455872 SNP respond to statins with a 5.2% smaller 
LDL-C lowering effect per minor allele compared with non-carriers. The second 
strongest was a SNP at APOE on chromosome 19 (rs445925, MAF=0.11, beta=-
0.051, s.e.=0.005, P=8.52x10-29), indicating an additional 5.1% increase per allele 
in LDL-C lowering effect compared to non-carriers. In addition, SNPs at two 
novel GWAS loci were shown to be significantly associated with statin response: 
SORT1/CELSR2/PSRC1 at chromosome 1 (rs646776, MAF=0.22, beta=-
0.013, s.e.=0.002, P=1.05x10-9) and SLCO1B1 at chromosome 12 (rs2900478, 
MAF=0.16, beta=0.016, s.e.=0.003, P=1.22x10-9).

Notably, the consortium solely included statin-users, which made it possible 
to compare associations found in trials with those of observational studies. In 
addition, this approach made it possible to gather large enough numbers, given 
the necessity to account for multiple testing. To mimic the trial setting as close 
as possible, only incident statin users with a pre- and post-measurement were 
included from observational studies. 

As discussed previously, the central assumption for inferring gene-treatment 
interaction effects via this treated-only approach is that genotype should be 
unlikely to significantly correlate with the response in absence of drug exposure. 
Given that the underlying disease course (i.e. LDL-C levels) can be assumed to 
be quite stable in absence of lipid-lowering treatment, this assumption may very 
well be valid. In addition, placebo- and observer-effects will likely be near absent 
for statin-induced LDL-reduction, which will exist for more subjective complaints 
such as those seen within the field of psychiatric pharmacogenetics (56). The 
suitability of this approach was reinforced by the large homogeneity of estimates 
when RCTs and observational studies were separately considered. 

A major point of discussion however surrounded the question how to account 
for the possible effect of genetic variants on off-treatment values, which cannot 
simply be accounted for by taking the (fractional) difference between on- and 
off-treatment levels as the outcome. In the end, the researchers solely included 
participants with on- and off-treatment LDL-C levels. Each study independently 
performed a GWAS on the difference between the natural log-transformed 
LDL-C levels on- and off-treatment which can be interpreted as the fraction of 
differential LDL-C lowering in carriers versus non-carriers of a genetic variant. 
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These analyses were then adjusted for natural log-transformed off-treatment 
values to try to distinguish drug-treatment interaction effects from genetic 
effects on off-treatment LDL-C levels, a strategy for which there exists extensive 
debate, particularly for non-randomized studies (57, 58) By performing additional 
analyses, the researchers were however able to validate this approach. These 
included calculating formal gene-treatment interaction terms within a trial not 
involved in the first-stage meta-analysis for the genetic variants found to be 
genome-wide significant, but also by adjusting for the measurement error and 
intra-individual variation in off-treatment values in the only study which had 
multiple baseline measurements available (59). 

The main limitation of the analysis is the large degree of clinical heterogeneity. 
This is evidenced not only by differences in eligibility criteria of the original studies, 
leading to the inclusion of different patient groups, but also by differences in statin 
types (n=8) and dosages. While adjustment for statin dose was achieved by 
dividing the dose by the statin-specific dose equivalent based on daily dosages 
required to achieve mean 30% LDL-C reduction, changes in dose during follow-
up could not be taken into account.  Nonetheless, the project remains a clear 
example that if certain assumptions can be realistically met, inherent limitations 
to pharmacogenetic inference may be overcome. 

conclusion

Pharmacogenetic research is an expanding field, whose relevance is slowly 
becoming visible. While post-hoc subgroup comparisons in RCTs are still 
considered the gold standard in pharmacogenetic research of treatment efficacy, 
there exist many research questions for which RCTs cannot provide the solution. 
As all study designs and response phenotypes have their merits and problems, 
authors should be vigilant to avoid making conclusions which their methodology 
cannot back up. In particular, the assumptions needed to make inferences on 
gene-treatment interaction must be carefully considered, especially when case-
only or treated-only strategies are employed. These challenges to inference 
remain ever relevant as new avenues of pharmacogenetic investigations emerge, 
including those using epigenetics or mRNA, as these studies will typically be 
performed in similar research settings. 
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absTracT

Background: In addition to lowering low density lipoprotein-cholesterol (LDL-C), 
statin therapy also raises high density lipoprotein-cholesterol (HDL-C) levels. 
Inter-individual variation in HDL-C response to statins may be partially explained 
by genetic variation. 

Methods and Results: We performed a meta-analysis of genome-wide 
association studies (GWAS) to identify variants with an effect on statin-induced 
HDL-C changes. The 123 most promising signals with P<5x10-4 from the 16,769 
statin-treated participants in the first analysis stage were followed up in an 
independent group of 10,951 statin-treated individuals, providing a total sample 
size of 27,720 individuals. The only associations of genome-wide significance 
(P<5x10-8) were between minor alleles at the CETP locus and greater HDL-C 
response to statin treatment. 

Conclusion: Based on results from this study that included a relatively large 
sample size, we suggest that CETP may be the only detectable locus with 
common genetic variants that influence HDL-C response to statins substantially 
in individuals of European descent. Although CETP is known to be associated 
with HDL-C, we provide evidence that this pharmacogenetic effect is independent 
of its association with baseline HDL-C levels.
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inTroducTion

The drug class of 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase inhibitors, better known as “statins”, are widely prescribed and 
effective for the prevention and management of cardiovascular disease (CVD) 
(1). While the major CVD benefit of statins is due to reduction in plasma low 
density lipoprotein cholesterol (LDL-C) (2), statins also produce moderate 
increases, ranging from 4 to 10%, in levels of high density lipoprotein cholesterol 
(HDL-C) (3, 4). This is of particular interest since HDL-C levels are inversely 
related to CVD risk in the general population and in patients treated with statins 
(5, 6). However,  a causal role of low HDL-C as a determinant of increased CVD 
risk is controversial (7). 

The increase in HDL-C after statin therapy varies among individuals (3). This 
might be partly due to genetic variation. Previous studies that have investigated 
associations between genotype and statin-induced changes in HDL-C (8-10) 
have focused primarily on variants within the CETP gene that are known to affect 
circulating HDL-C levels (11) and risk of coronary artery disease (12). To address 
whether additional loci have an effect on statin-induced changes in HDL-C 
levels, we conducted a large-scale meta-analysis of genome-wide association 
studies (GWAS) using datasets from both randomized controlled trials (RCTs) 
and cohort studies in the large Genomic Investigation of Statin Therapy (GIST) 
consortium that previously identified four loci associated with LDL-C response 
to statins (13). 

MeThods

study populations

The GIST consortium assembled data from seven RCTs and eleven prospective 
population-based studies. The initial analysis (first stage) was performed in 16,769 
statin-treated individuals; 8,506 individuals from six RCTs (ASCOT UK, CARDS, 
CAP, PRINCE, PROSPER, and TNT) and 8,263 statin-treated individuals from 
ten observational studies (AGES, ARIC, ASCOT UK-observational, BioVU, CHS, 
FHS, Health ABC, HVH, MESA, and the Rotterdam Study). Further investigation 
(second stage) was performed in 10,951 statin-treated individuals from two 
RCTs (ASCOT Scandinavia and JUPITER) and two observational studies 
(ASCOT Scandinavia – observational and GoDARTS), which were used to test 
for replication of findings from the first stage. Details of the first and second 
stage studies, including their genotyping and quality control (QC) information, 
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can be found in the supplementary notes 1, 2 and 3 and supplementary 
tables 1 and 2.

subjects

Response to statin treatment was principally studied in statin-treated individuals 
only. Those treated with placebo were excluded from the analyses of RCTs and 
those not treated with statins were excluded from observational studies. HDL-C 
measurements were obtained before and after start of statin treatment. Only 
subjects with non-missing phenotypes and covariates were included. Those of 
reported or suspected non-European ancestry were excluded. 

outcome measurements

The response to statin treatment was defined as the difference between the natural 
log-transformed on- and off-treatment HDL-C levels (ln (on-treatment HDL-C) – 
ln (off-treatment HDL-C)). The corresponding linear regression coefficients thus 
reflect the fraction of differential HDL-C increase (relative increase) per copy of 
the coded allele in the additive genetic model. For observational studies, on-
treatment HDL-C levels were calculated for all different prescribed statins, at 
any dosage, for any indication, and for any treatment episode extending at least 
four weeks prior to on-treatment HDL-C measurement. Characteristics of on- 
and off-treatment HDL-C levels and statins used in each study are shown in 
supplementary Table 2. For each individual, at least one off-treatment HDL-C 
measurement and at least one on-treatment measurement were required. 
Subjects with missing on- or off-treatment measurements were excluded, with 
the exception of the GoDARTS study for which missing off-treatment HDL-C 
levels were estimated using imputation methods, as described previously (14). 
When multiple on- or off-treatment measurements were available, the mean of 
the measurements was used.

Genotyping and imputation

Genotyping, quality control, data cleaning and imputation were performed 
independently in each study using different genetic platforms and software as 
outlined in supplementary Table 3. In all studies, genotyping was performed 
using either Illumina, Affymetrix, or Perlegen genotyping arrays. Genotype data 
from each study had been imputed to the HapMap phase 2 reference panel 
(15), except for JUPITER which was imputed to the 1000genomes pilot data, 
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using either MACH, Impute, or BIMBAM software [16-18], resulting in a total of 
approximately 2.5 million SNPs for analysis.

GWas analysis

Each study independently performed the GWAS on the difference between natural 
log-transformed on- and off-treatment HDL-C levels, according to a common, 
central analysis protocol. To reduce confounding by possible association with off-
treatment HDL-C levels, analyses were adjusted for the natural log-transformed 
off-treatment HDL-C levels. Linear regression was used, with SNPs represented 
by an additive genetic model and with imputed SNPs represented by expected 
allele dosage. Analyses were additionally adjusted for age, sex, and study 
specific covariates (e.g. ancestry principal components (PCs), site, or country). 
FHS made use of a linear mixed effects model considering the kinship matrix 
in the analysis, hereby accounting for familial correlations within FHS. Analyses 
in the observational studies were, if the information was available, additionally 
adjusted for the time interval between on- and off-treatment HDL-C measures 
(mean follow-up times per study are provided in supplementary Table 2) and for 
the natural logarithm of the statin dose equivalent, as defined in supplementary 
Table 4. This table shows the dose for different statins for the LDL-C response; 
dividing the statin dosage for an individual drug by its dose equivalent shown in 
supplementary Table 4 gives the standardized statin dosage. 

Quality control and Meta-analysis

Within each study, SNPs with minor allele frequency <1% or imputation quality 
<0.3 were excluded from the analysis. QQ-plots were assessed for each study to 
check that there were no between study differences nor evidence for systematic 
bias within studies (supplementary figure 1). The software package METAL 
was used to perform the meta-analysis (19). A fixed effects, inverse variance 
weighted approach was used. To correct for possible inflation of the test statistic, 
e.g. due to small amounts of potential population sub-structure, genomic control 
was performed by adjusting the within-study findings and the meta-analysis 
results for the genomic inflation factor.

second stage

SNPs with p-values <1x10-4 in the first stage meta-analyses were selected for 
further investigation in the second stage. A maximum of two SNPs per locus 
(with a maximum 100 kB distance between SNPs) were selected, with the choice 
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based on statistical significance. A total of 123 SNPs in 83 loci were selected for 
the second stage, which was performed in the GoDARTS study, the JUPITER 
trial, and the RCT and observational arm of the ASCOT Scandinavia study. 
GWAS data and response to statin treatment were available for these studies. 
Analysis was performed as for the first stage. Results of the first and second 
stage were combined using a fixed effects, inverse variance weighted meta-
analysis using METAL. 

interaction analysis

The interaction effect of the lead CETP SNP rs247616 with the binary treatment 
indicator for statin versus placebo allocation was assessed in five of the 
participating RCTs (ASCOT Scandinavia, ASCOT UK, CARDS, JUPITER, and 
PROSPER). For these analyses, placebo treated individuals in the RCTs were 
included. The total sample size was 17,857, with 8,978 statin treated individuals 
and 8,879 placebo treated individuals. Regression models were applied to the 
combined population of statin and placebo treated subjects by adding to the 
model extra terms including treatment (statin (=1) or placebo (=0)) allocation and 
the product of treatment allocation with SNP minor allele dose (20). Interaction 
coefficients of the five studies were combined in a fixed effects, inverse variance 
weighted meta-analysis using METAL.
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effect of genetic determinants of hdl-c levels on statin-induced 
hdl-c response

We performed a look-up in our GWAS results for all known genome-wide 
significant genetic variants associated with HDL-C levels, obtained from the most 
recent Global Lipids Genetics Consortium (GLGC) paper (11). Of the 80 variants, 
78 were available in our GWAS on statin induced HDL-C response. Subsequently, 
we examined whether a multi-SNP genotypic risk score constructed from these 
GLGC variants was associated with the level of statin induced HDL-C response, 
using publicly available summary level data from the GLGC (http://csg.sph.umich.
edu//abecasis/public/lipids2013/). The joint effect of the 78 genetic variants 
on statin-induced HDL-C response was examined by means of a data-driven 
inverse-variance weighted approach, described previously by Dastani et al (21), 
and accomplished through the gtx-package (22) (Genetics ToolboX, http://cran.r-
project.org/web/packages/gtx) in the R statistical software environment (23). 
Analogous to deriving a pooled estimate from the results of individual studies 
in conventional meta-analysis, this approach combines the causal estimates of 
multiple genetic variants, defined as the ratio of their association with statin 
response to their association with HDL-c levels.

conditional analysis

Conditional analysis was conducted within GCTA software (24), using the –cojo 
method, which performs conditional and joint analysis with model selection. The 
genome-wide meta-analysis summary statistics from the combined analysis of 
both first-stage and second-stage data were used as the input data. Analysis 
was restricted to chromosome 16, containing the only genome-wide significant 
result from the meta-analysis, in order to determine whether the CETP region 
contains more than one independent signal of association. Within the GCTA 
analysis, MAF was restricted to ≥1% and a p-value cut-off of 5x10-7 was used 
as the selection threshold. LD was calculated between pairwise SNPs, but any 
SNPs further than 10 Mb apart were assumed to be in linkage equilibrium. 

Variance explained

Two secondary analyses were performed to investigate the heritability of this 
pharmacogenetic trait. Firstly, the genome-wide heritability was calculated in 
GCTA (24) by estimating h2 using GREML analysis, according to all HapMap 
SNPs with MAF ≥ 1%, with reference to the genomic relatedness matrix generated 
within GCTA. Secondly, the percentage variance explained of the HDL response 
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adjusted for baseline HDL-C to statins trait was calculated specifically for the 
lead CETP SNP rs247616 using R software (23), by including the dosage data for 
this SNP as a continuous predictor variable within the model. The R2 calculated 
from the fitted linear regression model was used to estimate the percentage of 
the trait variance explained. Both analyses were performed using the ASCOT-
UK dataset only, as individual level raw genotype data are required. The 
combination of both the RCT and observational sub-cohorts of ASCOT-UK gave 
a total sample size of N = 2,055 statin-treated patients. The linear regression 
model used exactly the same data and covariates as from the primary GWAS 
analysis, including the top 10 PCs.

resulTs

first-stage meta-analysis

In the first stage of this analysis, six randomized controlled trials (n=8,506 statin 
recipients) and ten observational studies (n=8,263 statin recipients) were included 
(supplementary notes 1 and 2 and supplementary Tables 1 and 2). Three 
SNPs at the CETP locus (chromosome 16) were identified as genome-wide 
significant (P<5x10-8) for their association with HDL-C response to statin treatment 
(figures 1 and 2 and Table 1). The most significant association was for SNP 
rs247616 (MAF=0.324, ß=0.011, SE=0.002, P=5.95x10-10) (figure 3), indicating 
that carriers of the minor allele of this SNP respond to statins with a 1.1% greater 
per-allele increase in HDL-C compared with non-carriers. This 1.1% per-allele 
increase in HDL-C is equivalent to a 0.014 mmol/L increase. We found no other loci 
associated with HDL-C response to statin treatment at a genome-wide significant 
level at this first stage.

second-stage meta-analysis

We selected 123 SNPs from 83 loci with P<1x10-4 in the first stage meta-analysis 
for further investigation in the second stage, which included 10,951 statin-treated 
individuals from two RCTs and two observational studies (supplementary 
note 3 and supplementary Tables 1 and 2). The second stage meta-analysis 
confirmed the significant association between genetic variants within 
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figure 1. Results of the GWAS meta-analysis. Manhattan plot presenting the –log10 
P-values from the combined stage 1 and 2 meta-analysis on HDL-C response to statin 
treatment. The top (red) line represents the P-value 5x10-8, the second (blue) line 
represents the P-value 1x10-4, the threshold for moving SNPs to the second stage.

Table 1. Association of CETP SNP rs247616 (chromosome 16, bp 55547091) with HDL-C 
response after statin treatment in the stage 1, stage 2, and combined GWAS meta-
analyses.

Phase n coding 

allele

non-

coding 

allele

frequency 

coding 

allele

beta* se % extra 

increase#

P-value

Stage 1 14693 T C 0.324 0.011 0.002 1.1 5.95x10-10

Stage 2 10961 T C 0.327 0.005 0.001 0.5 1.59x10-5

Combined 25654 T C 0.326 0.007 0.001 0.7 8.52x10-13

*Beta for difference between the natural log transformed on- and off-treatment HDL-C levels, adjusted for natural 
log transformed off-treatment HDL-C, age, sex, and study specific covariates. The beta reflects the fraction of 
differential HDL-C lowering in carriers vs. non-carriers of the SNP; a positive beta indicates a better statin response 
(larger HDL-C increase). #This percentage reflects the % extra HDL-C increase in carriers vs. non-carriers of the 
SNP.
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figure 2. Forest plot showing the association in each study and overall  association of 
the lead CETP SNP rs247616 with HDL-C response to statin treatment. Beta represents 
fractional HDL-C change for each copy of the minor allele.

the CETP loci and HDL-C response from the first stage meta-analysis (rs247616: 
MAF=0.327, ß=0.005, SE=0.001, P=1.59x10-5) as P<6x10-4, the Bonferroni 
p-value threshold for testing 123 SNPs (Table 1, figure 2, and supplementary 
Table 5). The combined effect from the first and second stage meta-analysis for 
the CETP rs247616 SNP was genome-wide significant (MAF=0.326, ß=0.007, 
SE=0.001, P=8.52x10-13) (Table 1, figure 2, and supplementary Table 5). No 
other locus reached statistical significance (P<4x10-4) in the second stage meta-
analysis or in the combined meta-analysis (P<5x10-8) for association with HDL-C 
response to statin treatment (figure 1 and supplementary Table 5). Indeed, 
supplementary Table 5 (ordered by the combined meta-analysis p-values) 
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shows that the three SNPs within CETP which were genome-wide significant in 
the first stage, were the only SNPs that reached Bonferroni significance in the 
second stage and genome-wide significance in the combined meta-analysis

interaction analysis

To exclude the possibility of confounding in the association between CETP and 
HDL-C response to statin treatment, we tested for interaction between the CETP 
lead SNP rs247616 and randomized statin or placebo allocation using data from 
five of the participating RCTs. Table 2 shows a significant P-value for interaction 
(P-3.52x10-3, ß=0.007, SE=0.002) for the CETP SNP, indicating that genetic 
effects of CETP on baseline HDL-C contribute at most only in part to genetic 
effects on HDL-C response in the statin-treated group, as the genetic effect is 
modified by the use of statin treatment. 

figure 3. Regional association plot of the CETP region that was genome-wide significant 
for association with HDL-C response to statin treatment, using the results of the combined 
meta-analysis (generated using LocusZoom (37)). The color of each SNP is based on the 
LD (r2) with the lead SNP rs247616 (shown in purple). The RefSeq genes in the region are 
shown in the lower panel.
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Table 2. Interaction between CETP rs247616 and statin vs. placebo allocation on HDL-C 
response. 

snP n
coding 

allele

non-

coding 

allele

frequency 

coding allele

interaction 

beta

interaction 

se

interaction 

P-value

rs247616 17857 T C 0.341 0.007 0.002 3.52x10-3

Meta-analysis of data from 5 RCTs. Interaction beta and SE refer to statistics from linear regression modelling 
the difference between the natural log transformed on- and of-treatment HDL-C levels adjusted for natural log 
transformed off-treatment HDL-C, age, sex, and study specific covariates, and including an interaction term 
between SNP and statin or placebo allocation. The interaction p-value refers to the significance of the SNP-by-
statin or placebo allocation interaction term in the regression model.

effect of genetic determinants of hdl-c levels on statin-induced 
hdl-c response

SNPs previously shown to be associated with HDL-C levels (n=78)11 were 
assessed for their association with statin-induced HDL-C response in our 
meta-analysis. After Bonferroni correction, rs3764261 (CETP) was the sole 
genetic variant associated with statin-induced HDL-C response amongst the 
78 examined variants (supplementary Table 5). Joint analysis of the HDL-C 
associated variants demonstrated that predisposition to high HDL-C levels is 
associated with increased statin-induced HDL-C response (figure 4). This 

figure 4. Plot of the per-allele association of genetic variants with HDL-C levels (x-axis, 
per allele in SD units, as reported by Willer et al. (11)) against the association with HDL-C 
response to statin treatment (y-axis, percentage) (generated using (22)). The regression 
line shows the linear relationship between these two, with 95% confidence boundaries.
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amounted to a 2.9% fractional increase (ß=0.029, SE=0.003, P=1x10-19) in statin-
induced HDL-C response per SD increase in genetically raised HDL-C levels. 
Excluding the CETP SNP (rs3764261) from the model did not materially change 
the results (ß=0.029, SE=0.005, P=1x10-8). Testing for heterogeneity did not 
reveal any indication of pleiotropic effects (P=0.64). 

conditional analysis

The conditional analysis within GCTA resulted in only one remaining SNP 
selected in the model, namely the lead SNP rs247616 within the CETP locus, 
with a joint p-value of 9.96x10-10 and joint ß=0.0104, equal to its unconditional 
effect size estimate. As can be seen from the locus zoom plot in figure 3, the 
other two genome-wide significant hits are in high LD with the lead SNP, and 
after conditioning on the lead SNP, the GCTA conditional analysis results show 
that no other SNPs within chromosome 16 have significant residual association, 
with the minimum conditional p-value being p~3x10-5. Hence we conclude that 
there is only one independent signal within the CETP association.

Variance explained

From genome-wide data of the ASCOT-UK datasets, the trait heritability for HDL-C 
response to statins was estimated as h2 = 17.8% (SE = 0.154). The trait variance 
explained by the lead CETP SNP rs247616 alone was calculated to be 7.8%.

discussion

In this study we have performed a meta-analysis of GWAS including over 27,700 
statin-treated individuals, investigating genetic variants associated with variation 
in HDL-C response to statin treatment. We identified three genetic variants in 
the CETP locus that were highly significantly associated with a larger HDL-C 
response to statin treatment. No other SNPs met the genome-wide criterion for 
association of HDL-C change with statin use.

CETP plays an important role in HDL-C metabolism by promoting the exchange 
of cholesteryl esters in HDL particles with triglycerides in apolipoprotein 
B-containing particles, leading to increased HDL catabolism and lower HDL-C 
levels. Increases in HDL-C levels after statin treatment are probably partly 
the result of a reduction in CETP mediated lipid transfer (25). Statin treatment 
decreases CETP activity up to 30% (26, 27). Previously it has been shown 
that genetic variants within CETP are associated with differences in CETP 
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concentration (28). The three SNPs associated with HDL-C response to statins 
in the present study are located 2.5-7 kb upstream of the CETP gene and are 
in high linkage disequilibrium (figure 3) (29).  The minor alleles of these SNPs 
have been shown to be associated with lower CETP mRNA expression levels in 
liver tissue and with higher HDL-C levels (29, 30). 

Previous studies investigating the association between SNPs in the CETP 
locus and the  HDL-C response to statin treatment have yielded inconsistent 
results. Several studies showed associations with a greater HDL-C response 
(8, 10), whereas others showed no significant associations (12, 31-33). These 
discrepancies could be explained by limited sample sizes and by the investigation 
of different genetic variants in these studies. An alternative explanation could 
be the fact that the effect of statins on HDL-C response is relatively small and 
depends on statin dose and type (3, 4). Since the power to detect genetic effects 
on these small variations is low in single studies, the results from the present 
large meta-analysis, with replication, provide strong evidence that genetic 
variation at the CETP locus is associated with HDL-C response.

The results of six randomized clinical trials and ten observational studies 
were combined in the first stage of the current study. Different statins were 
investigated in the trials and used within the observational studies, resulting 
in combining several types of statins in our analysis. This and the variation in 
statin dosages during follow-up for an individual are a limitation of the current 
study, since the pharmacogenetic impact might be dependent on specific statin 
types and dose. To address this possible limitation, the individual study analyses 
were adjusted for statin equivalent dose based on effect on LDL-C levels, 
making the different statin types likely more comparable with respect to clinical 
effectiveness on HDL-C levels. Combining RCTs and observational cohort might 
also result in heterogeneity between the study types. However no heterogeneity 
was observed between the groups within the current study (p=0.761).

Another possible limitation of the current study is the association of the identified 
genetic variant with baseline HDL-C concentration. As shown in previous large 
GWAS studies, the CETP SNP rs3764261 is strongly associated with HDL-C 
levels (11, 30). In pharmacogenetic studies investigating lipid responses to drug 
exposure, it is important to eliminate the effect of the association between baseline 
lipid levels and the investigated genetic variants (13). To reduce the impact of 
these possible confounding effects, our response to treatment analyses were 
adjusted for baseline HDL-C levels. In addition, interaction analyses in five of the 
RCTs, with direct modeled comparison with a random assignment to a placebo 
group, suggested little or no influence of the association between the CETP 
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SNPs and baseline HDL-C levels on the genetic effect on HDL-C response to 
statin treatment. It is, however, possible that mechanisms underlying the effects 
of CETP on HDL-C levels are also involved in mediating statin effects on HDL-C.

All genetic data in the current study was imputed up to 2.5 million autosomal 
SNPs based on data from the HapMap project (15). Imputation based on the more 
recent 1000 Genomes project might have revealed more associations with less 
common genetic variants (34). In addition, in our analysis we excluded genetic 
variants with a minor allele frequency <1%, restricting our analysis to common 
genetic variants. Future studies using exome sequencing data and investigating 
rare variants may identify new association between genetic variants and statin-
induced HDL-C response. 

The implications of the present findings regarding genetic effects on the 
efficacy of statins for reductions in risk of CVD are uncertain. Based on the 
strong inverse relationship of HDL-C with CVD, the greater statin-induced 
increase in HDL-C among carriers of the minor vs. major alleles of the three 
CETP SNPs reported here may confer a greater protective effect of statins on 
CVD in patients carrying the minor allele. However, a recent study employing 
Mendelian randomization found that genotypes associated with plasma HDL-C 
levels were not associated with the impact on CVD risk that would be predicted 
by the magnitude of the genotypic effects on HDL-C (7). Moreover, two large 
clinical trials have failed to show reduction of CVD events by nicotinic acid-
induced increases in HDL-C in patients with well-controlled LDL-C levels (35, 
36). Hence, whether greater genetically-mediated HDL-C increases with statin 
treatment confer increased protection from CVD remains unknown.

In conclusion, this study is the largest meta-analysis of GWAS for HDL-C 
response to statin treatment conducted to date. The findings suggest that 
CETP may be the only locus in which common genetic variants are significantly 
associated with a substantial HDL-C response to statin treatment in individuals 
of European descent. 

supporting information

The Supplementary Material for this article can be found online at:
https://jmg.bmj.com/content/53/12/835.long 
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absTracT

Aim: To utilize previously reported lead SNPs for LDL-c levels to find additional loci 
of importance to statin response, and examine whether genetic predisposition to 
LDL-c levels associates with differential statin response. 

Patients/methods: We investigated effects on statin response of 59 LDL-c 
SNPs, by combining summary level statistics from the Global Lipids Genetics 
and Genomic Investigation of Statin Therapy consortia.

Results: Lead SNPs for APOE, SORT1, and NPC1L1 were associated 
with a decreased LDL-c response to statin treatment, as was overall genetic 
predisposition for increased LDL-c levels as quantified with 59 SNPs, with a 
5.4% smaller statin response per standard deviation increase in genetically 
raised LDL-c levels.

Conclusion: Genetic predisposition for increased LDL-c level may decrease 
efficacy of statin therapy.
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inTroducTion

HMG-CoA reductase inhibitors, also known as statins, have proven themselves 
as a highly effective treatment option in the management and prevention of 
cardiovascular disease, both in research and clinical settings (1, 2). Their effect 
is thought to primarily result from reducing low-density lipoprotein cholesterol 
(LDL-c) levels by up to 50% (3), thereby achieving a 20-30% reduction of  
cardiovascular events. However, substantial interindividual variability exists in 
the LDL-c response to statins, in part due to genetic factors, which influences 
their efficacy in reducing the occurrence of major adverse events.

Recently, through the largest pharmacogenomic meta-analysis for differential 
LDL-c response to statin therapy to date, the Genomic Investigation of Statin 
Therapy (GIST) consortium identified four loci (APOE, LPA, SORT1/CELSR2/
PSRC1, and SLCO1B1) at a genome-wide significant level, whose effect on 
statin response was independent of off-treatment LDL-c levels (4). With the 
exception of SLCO1B1, these loci have previously been independently reported 
to associate with LDL-c levels by the Global Lipids Genetics consortium (GLGC) 
(5). As loci associated with LDL-c homeostasis are strong mechanistic candidates 
for differential LDL-c response to statin therapy, we performed a look-up of the 
previously reported lead SNPs for loci associated with LDL-c levels by the GLGC 
in the GIST consortium, to examine whether additional loci of importance to 
differential LDL-c statin response could be identified. Furthermore, we examined 
whether overall genetic predisposition to higher LDL-c levels (i.e. having more 
alleles associated with higher LDL-c levels) is associated with differential LDL-c 
response to statins, by combining summary level statistics from our GIST 
consortium with publicly available data from the GLGC for all lead SNPs through 
an inverse-variance weighted approach.

MeThods

selection of single nucleotide Polymorphisms (snPs) associated 
with ldl-c levels

In the most recent and largest genome-wide association study (GWAS) for 
blood lipid levels, which examined up to 188,577 European-ancestry individuals, 
157 nearly independent loci (r2 < 0.10) were found to associate with lipid levels 
at p-values lower than 5 x 10-8 (5). Of the reported 157 lead SNPs, 60 were 
associated with LDL-c levels (supplementary Table 1). Summary level data of 
the associations of these 60 lead SNPs with LDL-c levels was downloaded from 
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the University of Michigan GLGC webpage (http://csg.sph.umich.edu//abecasis/
public/lipids2013/). Effects on lipid levels were reported in standard deviations. 
We excluded rs9411489 (ABO) from our analyses, as the genotype could not 
be imputed in our populations, and therefore included the remaining 59 lead 
SNPs in our analyses. To further isolate the effects on LDL-c levels from those 
of other lipids, we repeated all analyses with a restricted SNP list, excluding the 
17 variants which also associated with either high-density lipoprotein cholesterol 
(HDL-c) or triglycerides (TG) levels at a genome-wide significant level. Of these, 
5 associated solely with HDL-c, 4 solely with TG, and 8 with both lipid traits. 
As LDL-c is closely linked to total cholesterol (TC), we did not exclude variants 
which also associated with TC at a genome-wide significant level. The restricted 
list therefore included the remaining 42 LDL-c specific SNPs.

description of pharmacogenetic meta-analysis

The GIST consortium included 6 randomized controlled statin trials (ASCOT, 
CARDS, CAP, PRINCE, PROSPER, and TNT) and 10 prospective, population-
based studies (AGES, ARIC, BioVU, CHS, FHS, GoDARTS I, GoDARTS II, 
Health ABC, HVH, MESA) for the first stage, comprised of up to 18,596 statin 
recipients. In addition, 246 SNPS with p<5x10-4  were further investigated in 
three additional studies (HPS, JUPITER, Rotterdam Study), contributing up to 
22,318 additional statin-treated subjects to the meta-analysis. Of the 59 lead 
SNPs for LDL-c levels reported by the GLGC, only one (rs4420638, APOE) was 
included amongst these 246 SNPs. The GWAS was performed on the difference 
between natural log-transformed on- and off-treatment LDL-c levels, adjusting 
for the natural log-transformed off-treatment LDL-c level to control for possible 
mediation through off-treatment genetic effects. The beta of the corresponding 
regression therefore represents the fraction of differential LDL lowering in 
carriers versus non-carriers of each SNP. For observational studies, this meant 
that subjects with missing on- or off-treatment measurements were excluded, 
with the exception of the GoDARTS cohorts for which off-treatment LDL-C 
levels were imputed. In addition, analyses in the observational studies were, 
if available, additionally adjusted for statin dose through the use of the natural 
logarithm of the equivalent dose taken from the literature. Details on included 
studies, genotyping and GWAS analyses have been described previously (4).
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look-up of single snPs

We performed a look-up of all 59 candidate LDL-c markers within the 
pharmacogenetic meta-analysis performed by the GIST consortium, assessing 
their effect on differential LDL-c response to statin therapy adjusted for off-
treatment LDL-c values. Adjusted unstandardized beta-coefficients are given for 
the LDL-c-increasing alleles reported by the GLGC. Multiple testing was taken 
into account by means of a Bonferroni-corrected p-value threshold of 8.5x10-4 
(i.e. 0.05/59). 

summary data methods for overall effect of ldl-c predisposition

Next, we investigated whether overall genetic predisposition for LDL-c levels was 
associated with statin response, making use of summary level data from both 
the GLGC and GIST consortia. All analyses were carried out separately for the 
full (n=59) and restricted (n=42) SNP lists. Analogous to pooling estimates from 
different studies in conventional meta-analysis using inverse-variance weighting 
(IVW), we pooled the causal estimates from the different genetic variants, 
defined as the ratio of each SNP’s per-allele effect on response to statin therapy 
to its per-allele effect on LDL-c levels. The average of these ratio estimates was 
weighted by the inverse of the variance of the per-allele effect on response to 
statin therapy, and can be visualized as a regression line constrained to pass 
through the origin (6, 7). As this approach may be biased by the inclusion of 
genetic variants violating the underlying assumptions of instrumental variable 
(IV) methods (8), most notably by the presence of unbalanced pleiotropic effects 
on phenotypes other than LDL-c, we performed two additional analyses which 
should be considered as sensitivity analyses for Mendelian randomization (MR) 
investigations with multiple genetic variants (9).

We first employed the recently published MR-Egger method (10), which 
provides a formal test of the presence of directional (i.e. unbalanced) pleiotropy 
from separate genetic variants by introducing an intercept term to the IVW 
method and determining whether this term deviates significantly from zero. 
Based on the Egger test (11), which assesses the presence of small study bias in 
meta-analysis, this intercept term can be interpreted as the average pleiotropic 
effect across the genetic variants. After taking these effects into account, the 
Egger-regression slope reflects the strength of any residual dose-response 
relationship. Under the assumption that the strength of the association of each 
variant with LDL-c levels is independent of the pleiotropic effects of the variant 
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(i.e. not via LDL-c), MR-Egger regression gives a valid causal effect estimate 
even when all the genetic variants are invalid instrumental variables (10). 

Secondly, we calculated the weighted median estimator, defined as the 
50% weighted percentile of the distribution of causal estimates given weights 
proportional to the inverse of their variance (9). As the median of any distribution 
is less susceptible to outliers, this method provides a consistent causal estimate 
under the assumption that over 50% of the weight in the analysis is due to valid 
instruments. We also provide the penalized weighted median estimate, which 
severely limits the contribution of heterogeneous (i.e. outlying) variants, which 
are more likely to represent invalid instrumental variables. This penalty is based 
on the heterogeneity between estimates as quantified by Cochran’s Q statistic. 
We considered p-values of 0.05 or smaller statistically significant for these 
summary data methods. 
Finally, to examine whether the use of epidemiological cohort data by the GIST 
consortium might have introduced imprecision to the causal estimates, we 
repeated the summary data methods whilst solely including the data from the 
randomized controlled trials participating in the first-stage GIST meta-analysis. 
All analyses were performed with R software version 3.1.1. (12), utilizing the R 
code provided by the corresponding methodology papers on MR-Egger and 
median-based methods (9, 10). 

resulTs

look-up of single snPs

After correction for multiple testing, three SNPs were found to have attained a 
statistically significant association with LDL-c response to statins (all p-values 
< 8.5x10-4, Table 1). The results indicate that carriers of these SNPs have a 
smaller LDL-c response to statin therapy when compared with non-carriers. 
The magnitudes of these per-allele proportional decreases were 2.5% (APOE, 
95% CI: 1.8-3.1), 1.5% (SORT1, 95% CI: 0.9-2.1), and 1.8% (NPC1L1, 95% 
CI: 0.8-2.7) respectively. When restricting the SNP list to those 42 variants 
primarily associated with LDL-c, which did not include the lead SNPs for APOE 
and SORT1, NPC1L1 was the sole statistically significant finding (p=2.1x10-4), 
also after adjusting the Bonferroni-corrected p-value threshold to 1.2x10-3 (i.e. 
0.05/42).
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summary results for overall effect of ldl-c predisposition

As shown in figure 1 and Table 2, the conventional inverse-variance weighted 
method revealed strong evidence that overall genetic predisposition for higher 
LDL-c levels associates with a decreased LDL-c response to statin therapy. For 
the full list (all LDL-c associated variants), this amounted to a 5.4% (95% CI: 4.2-
6.7, p=8.4x10-12) smaller response per standard deviation increase in genetically 
raised LDL-c levels. Despite the effect being slightly reduced, the direction of the 
association was similar for the restricted list (excluding HDL-c and TG-associated 
variants), showing a 3.2% (95% CI: 1.2-5.1, p=2.1x10-3) decreased response per 
standard deviation increase in genetically raised LDL-c levels. 

Results from both sensitivity analyses were largely consistent with those seen 
for the IVW approach, with regard to magnitude and direction of the association, 
especially for the restricted SNP-list (Table 2). The MR-Egger results indicated 
the presence of unbalanced pleiotropy for the full list of variants, as the 
intercept deviated significantly from zero (p=7.6x10-5), which was not present 
when analyses were restricted to those variants primarily associated with LDL-c 
(p=0.40). Though inconclusive, further attempts to disentangle the influence of 
HDL-c and TG-associated variants suggested that the variants associated with 
HDL-c were especially influential with regard to possible unbalanced pleiotropic 
effects on statin response, as their exclusion led to the greatest decrease in 
the MR-Egger intercept term (supplemental Table 2). Of the median-based 
methods, the penalized estimator was the most consistent with the IVW-
estimate, for both SNP lists. As shown in supplemental Table 3, there was 
large homogeneity between the causal estimates obtained from the full sample 
and when restricting the analyses to the data from the randomized controlled 
trials participating in the first-stage GIST meta-analysis. 
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discussion

Within the present study, we aimed to examine whether additional loci of 
importance to LDL-c response to statin therapy could be identified by focusing 
our efforts on previously reported lead SNPs explaining variation in LDL-c levels. 
In addition to reconfirming the previously described associations of APOE and 
SORT1 with LDL-c response to statin therapy, we found suggestive evidence 
that NPC1L1 is of importance to statin pharmacogenetics. Of note, our previously 
reported association of LPA with statin response was not among these results, 
reflecting the different lead SNP reported by the GLGC, which also explains 
why the association with statin response was not genome-wide significant for 
SORT1. Consistent with the results for the individual lead SNPs, we found strong 
evidence that overall genetic predisposition for higher LDL-c levels is associated 
with a decreased LDL-c statin response, and robustly quantified this association 
using summary level data from the largest and most recent GWA studies on 
lipid levels and LDL-c response to statin therapy. In addition, MR-Egger and 
median-based estimators showed largely consistent results, both in direction 
and magnitude, thereby strengthening the findings of the IVW approach.

figure 1. Scatter plots of the genetic associations with LDL-c against genetic associations 
with differential LDL-c response to statin therapy, both plotted as per-allele effects. In 
addition, 95% CI’s are presented for the genetic associations with statin response. The 
blue (dashed) and red (dotted) line correspond to the inverse-variance weighted and MR-
Egger estimators respectively, and are shown for the full (59 SNPs) and restricted (42 
SNPs) lists, with a positive slope reflecting a worse statin response.
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Localized to gastrointestinal tract epithelial cells as well as hepatocytes, 
the Niemann-pick C1-like 1 (NPC1L1) protein is a key regulator of cholesterol 
absorption (13), and is the drug target of ezetimibe (14). Shown to associate 
with interindividual variation in response to ezetimibe treatment (15, 16), genetic 
variation in NPC1L1 has also been previously linked to LDL-c response to statin 
therapy in smaller studies. In 37 men with central obesity, Chan and colleagues 
found that subjects with the NPC1L1 2/2 haplotype had a greater reduction 
in LDL-c levels than non-2/2 haplotype subjects, independent of their higher 
baseline LDL-c levels (17). Moreover, in the PROSPER trial, the NPC1L1 -133A>G 
variant was found to associate with greater 6-month change in lipid levels in 
pravastatin-treated individuals, but also with higher baseline LDL-c levels, which 
were not adjusted for in the analyses (18). 

In contrast, our findings are unlikely to be explained by differences in off-
treatment LDL-c levels, as these were statistically accounted for in the GIST 
meta-analysis. Rather, the genetic associations with LDL-c levels reflect lifelong 
effects on lipid metabolism, which we now show may influence the efficacy of 
clinical interventions later in life. Unfortunately, our use of summary level data 
precludes providing more detailed mechanistic insights, though there exists 
some evidence that statin therapy efficacy interacts with cholesterol synthesis 
and absorption, possibly in part through changes in intestinal expression of 
NPC1L1 (19, 20).

While the MR-Egger test did not show evidence for directional pleiotropy after 
excluding variants associated with HDL-c or TG at a genome-wide significant 
level, it is possible that the remaining variants are not solely of importance to LDL-c 
homeostasis, as meaningful sub-threshold associations may exists for HDL-c or 
TG. Similarly, we cannot be certain that the associations with HDL-c and TG of 
the excluded genetic variants reflected true biological pleiotropy, or merely down-
stream effects of LDL-c on other phenotypic traits (lipid or otherwise), which are 
specifically the effects of interest in MR investigations (21). However, by creating 
a restricted list we attempted to isolate variants more specific to LDL-c levels, 
as has previously been done when constructing genetic risk scores consisting 
of large numbers of genetic variants (22). In line with this, the consistency of the 
different methods for the restricted score indicates that this score is less likely to 
contain invalid instruments. Furthermore, the relatively large difference in mean 
estimates between the MR-Egger and median-weighted methods for the full list 
of variants possibly reflects violation of MR-Egger’s underlying assumptions, as 
variants associated with LDL-c levels might be proportionally associated with 
HDL-c and TG levels. 
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As we included summary level data from partially overlapping data sources, 
our findings may have been influenced by weak IV bias (24). More specifically, of 
the 10 prospective, population-based studies which contributed to the first-stage 
meta-analysis of GIST, 6 (AGES, ARIC, CHS, FHS, Go-DARTS I, Go-DARTS II) 
also contributed to the GLGC meta-analysis. With the exception of rs4420638 
(APOE), which was validated in additional populations in the second-stage meta-
analysis of GIST, this means that up to 43% of GIST participants included in the 
first-stage meta-analysis were possibly also included in the GLGC analyses. 
However, the median F-statistic of our instruments for LDL-c levels was 58.35 
(IQR 42.51-118.59), making it unlikely to have substantially influenced our results, 
as instruments with F-statistics over 10 are generally considered sufficiently 
strong (24). The homogeneity between the causal estimates obtained from the 
full GIST sample and those generated when solely including data from the GIST 
randomized controlled trials strengthens this claim, as these trials were not 
included in the GLGC meta-analysis.

In summary, we investigated whether 59 lead SNPs known to associate with 
LDL-c levels also associate with differential LDL-c response to statin therapy. 
After taking multiple testing into account, we found that three lead SNPs (for 
APOE, SORT1, and NPC1L1) were associated with smaller LDL-c response 
to statin treatment, thereby identifying one new locus of importance to statin 
response, namely NPC1L1. In addition, our findings indicate that individuals with 
overall genetic predisposition for high LDL-c levels are less likely to respond well 
to statins.

fuTure PersPecTiVe

To date, pharmacogenetic research on statin therapy has identified genetic 
variants with only modest effect sizes and therefore limited clinical utility (25). 
Recently, Leusink et al. generated a genetic risk score based on previously 
reported genetic variants of importance to statin response in ABCG2, LPA and 
APOE. However, the small effect size (roughly 2% of average LDL-C reduction) 
suggests that the applicability of this score in clinical practice would be limited (25). 
While the main aim of our study was to examine whether overall predisposition 
to LDL-C level associates with statin response, our results suggest that risk 
stratification based on a LDL-c genetic risk score might identify individuals most 
likely to benefit from combination therapy of statin and non-statin lipid-lowering 
medication, as genetic predisposition to higher LDL-c levels may not affect 
their efficacy to the same degree. However, as the various summary method 
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effect estimates observed in our study varied between 3 and 9% reduced LDL-C 
response to statin therapy per standard deviation increase in genetically raised 
LDL-C levels, clinical utility will likely be limited. If genetic information becomes 
available, large experimental studies such as the recently completed IMPROVE-
IT trial (26) would be most suited to determine possible clinical significance. In 
addition, pharmacogenetic studies of non-statin LDL-lowering therapies should 
also consider examining the role of genetic predisposition for higher LDL-c 
levels. Finally, it would be of great interest for future studies to examine whether 
NPC1L1-dependent compensatory mechanisms to lipid-lowering treatment exist, 
which could add to the rationale behind combination therapy with ezetimibe.

execuTiVe suMMary

background

•	 There exists substantial interindividual variation in low-density lipoprotein 
cholesterol (LDL-c) response to statin treatment, in part due to genetic 
factors. Several genetic loci have been found to associate with differential 
LDL-c response to statins, independent of off-treatment LDL-c levels.

•	 The majority of these loci have additionally been found to associate with 
LDL-c levels. LDL-c level-associated loci may therefore represent strong 
candidates for pharmacogenetic studies on statin therapy.

Patients & methods

•	 To identify additional loci of importance to statin response, we performed 
a look-up of 59 lead SNPs for LDL-c levels in the pharmacogenetic meta-
analysis of the GIST consortium.

•	 We further examined whether overall genetic predisposition for higher LDL-c 
levels associates with statin response, by combining summary statistics 
from the GLGC and GIST consortia for 59 lead SNPs for LDL-c levels from 
the GLGC, through an inverse-variance weighted approach. MR-Egger 
regression and median-based methods were then performed as sensitivity 
analyses.

results: main findings

•	 Lead SNPs for APOE, SORT1, and NPC1L1 were associated with diminished 
statin response, as was overall genetic predisposition for increased LDL-c 
level.
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supplemental Table 1. Candidate markers known to associate with LDL-c levels at a 
genome-wide significant level (p<5x10-8)

snP chr locus other lipids* included in 

restricted 

list

P-value 

GlGc*

P-value GisT

rs4420638 19 APOE HDL-c, TG, TC 1.5 x 10-178 3.9 x 10-15

rs629301 1 SORT1 HDL-c, TC 5.4 x 10-241 9.4 x 10-7

rs2072183 7 NPC1L1 TC x 7.1 x 10-16 0.0002099

rs314253 17 DLG4 TC x 3.4 x 10-10 0.003703

rs3757354 6 MyLIP TC x 2.1 x 10-17 0.006422

rs1367117 2 APOB HDL-c, TG, TC 9.5 x 10-183 0.008034

rs4299376 2 ABCG5/8 TC x 3.9 x 10-72 0.0123

rs11136341 8 PLEC1 TC x 7.1 x 10-12 0.01421

rs6511720 19 LDLR TC x 3.9 x 10-262 0.01442

rs4722551 7 MIR148A TG, TC 4.0 x 10-14 0.01664

rs12748152 1 PIGV-NR0B2 HDL-c, TG 3.2 x 10-12 0.02199

rs12916 5 HMGCR TC x 7.8 x 10-78 0.04682

rs2328223 20 SNX5 none x 5.6 x 10-09 0.07138

rs2479409 1 PCSK9 TC x 2.5 x 10-50 0.08195

rs2954029 8 TRIB1 HDL-c, TG, TC 2.1 x 10-50 0.08733

rs492602 19 FLJ36070 TC x 9.4 x 10-14 0.1075

rs174546 11 FADS1-2-3 HDL-c, TG, TC 1.6 x 10-39 0.1083

rs1564348 6 LPA TC x 2.8 x 10-21 0.1144

rs1883025 9 ABCA1 HDL-c, TC 6.1 x 10-11 0.1315

rs7640978 3 CMTM6 TC x 9.8 x 10-09 0.1333

rs12670798 7 DNAH11 TC x 4.8 x 10-14 0.1591

rs2030746 2 LOC84931 TC x 8.6 x 10-09 0.2212

rs364585 20 SPTLC3 none x 4.3 x 10-10 0.2212

rs5763662 22 MTMR3 none x 1.2 x 10-8 0.2358

rs11065987 12 BRAP HDL-c, TC 1.2 x 10-11 0.2694

rs3764261 16 CETP HDL-c, TG, TC 2.2 x 10-34 0.2844

rs2902940 20 MAFB TC x 1.7 x 10-11 0.2857

rs2255141 10 GPAM HDL-c, TG, TC 1.3 x 10-13 0.2869

rs964184 11 APOA1 HDL-c, TG, TC 2.0 x 10-26 0.296

rs6029526 20 TOP1 TC x 4.8 x 10-18 0.3202

rs4253776 22 PPARA TC x 3.4 x 10-8 0.3304

rs12027135 1 LDLRAP1 TC x 2.3 x 10-14 0.3605

rs2642442 1 MOSC1 TC x 5.3 x 10-11 0.3942

rs267733 1 ANXA9-

CERS2

none x 5.3 x 10-9 0.4107
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rs4942486 13 BRCA2 none x 2.3 x 10-11 0.4742

rs514230 1 IRF2BP2 TC x 9.2 x 10-12 0.4914

rs2000999 16 HPR TC x 4.2 x 10-41 0.4944

rs4530754 5 CSNK1G3 TC x 3.6 x 10-12 0.5247

rs10401969 19 CILP2 TG, TC 2.7 x 10-54 0.5301

rs1250229 2 FN1 none x 3.1 x 10-8 0.5373

rs11220462 11 ST3GAL4 TC x 6.6 x 10-21 0.5911

rs1801689 17 APOH-

PRXCA

none x 9.8 x 10-12 0.7205

rs6818397 4 LRPAP1 TC x 1.7 x 10-08 0.7226

rs6882076 5 TIMD4 TG, TC 3.3 x 10-31 0.7504

rs8017377 14 NyNRIN TC x 2.5 x 10-15 0.7597

rs1169288 12 HNF1A TC x 6.4 x 10-21 0.7684

rs2710642 2 EHBP1 none x 6.1 x 10-9 0.7684

rs3177928 6 HLA TC x 3.1 x 10-17 0.791

rs1800562 6 HFE TC x 8.3 x 10-14 0.8186

rs10102164 8 SOX17 TC x 3.7 x 10-11 0.8474

rs17404153 3 ACAD11 none x 1.8 x 10-09 0.8474

rs9987289 8 PPP1R3B HDL-c, TC 8.5 x 10-24 0.8715

rs1800961 20 HNF4A HDL-c, TC 6.0 x 10-10 0.8834

rs10128711 11 SPTy2D1 TC x 9.2 x 10-13 0.891

rs2131925 1 ANGPTL3 TG, TC 3.0 x 10-32 0.9087

rs7570971 2 RAB3GAP1 TC x 6.3 x 10-11 0.9208

rs11563251 2 UGT1A1 TC x 4.5 x 10-8 0.928

rs3780181 9 VLDLR TC x 1.8 x 10-9 0.9689

rs10490626 2 INSIG2 TC x 1.7 x 10-12 0.982

*As reported in the Global Lipids Genetics consortium summary files at http://csg.sph.umich.edu//abecasis/public/
lipids2013/
This list does not include rs9411489 (ABO), as genotype could not be imputed.
GIST, Genomic Investigation of Statin Therapy consortium; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-
density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol

snP chr locus other lipids* included in 

restricted 

list

P-value 

GlGc*

P-value GisT
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absTracT

Background: Following observations that statin treatment appears to modestly 
increase the risk of type 2 diabetes (T2D), various studies have shown that 
genetic predisposition to low LDL cholesterol (LDL-C) levels associates with 
increased T2D risk. However, it remains unclear whether the increased risk 
seen in statin users is due to low LDL-C concentrations, or due to the statin-
induced proportional change in LDL-C. In addition, whether the greater absolute 
cardiovascular disease risk reduction benefit from statin therapy observed in 
T2D is due to differential LDL-C lowering has not been investigated using genetic 
tools. 
Methods and results: We assessed the genome-wide genetic correlation 
between statin-induced LDL-C response and T2D using LD score regression, 
and performed a two-sample bidirectional Mendelian randomization analysis 
by combining summary level statistics from the Genomic Investigation of Statin 
Therapy (GIST, nmax=40,914) and DIAGRAM (nmax=159,208) consortia. We found 
a positive genetic correlation between LDL-C statin response and T2D using LD 
score regression (rgenetic=0.36, s.e.=0.13). The Mendelian randomization analysis 
results did not provide support for statin response having a causal effect on T2D 
risk (OR 1.00 (95%CI: 0.97,1.03) per 10% increase in statin response), nor that 
liability to T2D has a causal effect on statin-induced LDL-C response (0.20% 
increase in response (95%CI: -0.40,0.80) per doubling of odds of liability to T2D).
Conclusions: Liability to T2D is unlikely to influence LDL-C response to a statin. 
Although we found no evidence to suggest that proportional statin response 
influences T2D risk, a definitive assessment should be made in populations 
comprised exclusively of statin-users. 
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inTroducTion

3-Hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase inhibitors, 
also known as statins, have demonstrated consistent benefits to cardiovascular 
disease risk reduction, while being safe and well-tolerated for most people.1 
also known as statins, have demonstrated consistent benefits to cardiovascular 
disease risk reduction, while being safe and well-tolerated for most people (1). 
However, statin treatment has been linked to a modestly increased risk of new-
onset type 2 diabetes (T2D), an observation first noted in the JUPITER trial (2) 
which has since been replicated in large-scale meta-analyses of randomized 
controlled trials (3-5). As promising novel strategies for lowering low-density 
lipoprotein cholesterol (LDL-C) such as proprotein convertase subtilisin–kexin 
type 9 (PCSK9) inhibitors emerge, the safety of lipid-modifying treatments with 
regard to diabetes risk remains an important question.

In recent years, genetic epidemiology has started to untangle the complex 
link between LDL-C lowering and T2D risk. For example, analyses of patients 
with familial hypercholesterolemia have shown that the prevalence of T2D is 
significantly lower than among unaffected relatives, with variability by underlying 
mutation type (6). Furthermore, apparent causal effects on T2D have been shown 
both for overall genetic predisposition to lower LDL-C concentrations (7-9) as well 
as for HMGCR-, NPC1L1-, and PCSK9-gene specific (i.e. on target) mechanisms 
of lowering LDL-C (9-13). These findings, and recent reanalysis of statin trial 
data using Egger regression (14), suggest that statin-related dysglycaemia might 
be mediated largely through LDL-C lowering mechanisms rather than through 
proposed pleiotropic mechanisms of statins (15). 

However, meta-regression approaches modeling heterogeneity among 
treatment effects from statin trials have produced conflicting results as to whether 
statin-induced proportional change of LDL-C influences T2D risk (3-5). Previous 
Mendelian randomization (MR) studies have been unable to directly answer this 
question, as genetic instruments solely proxying lifelong lower levels of LDL-C 
have been utilized. In addition, genetic instruments have not been proposed 
before to examine whether the greater absolute cardiovascular disease (CVD) 
risk reduction conferred by statin therapy in individuals with T2D could result from 
greater proportional statin-induced LDL-C lowering. Findings from the largest 
pharmacogenomic meta-analysis for differential LDL-C response to statin therapy 
to date by the Genomic Investigation of Statin Therapy (GIST) consortium might 
be used to investigate these questions. We therefore aimed to use these data 
to examine the causal direction of the relationship between proportional statin 
response and T2D using a bidirectional two-sample MR approach.
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MeThods

To assess the likelihood of a shared etiology between statin response and T2D 
we assessed their genetic correlation using cross-trait linkage disequilibrium 
(LD) score regression. Furthermore, to detect potential direct causality we 
performed a bidirectional two-sample MR analysis, combining summary level 
statistics from the GIST (16) and DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) (17) consortia (figure 1), to estimate: (1) the causal effect 
of statin-induced LDL-C response on T2D risk, and (2) the causal effect of 
liability to T2D on statin-induced LDL-C response. We refer to liability to T2D in 
this second analysis as it is not possible to determine whether individuals in the 
GIST dataset have been diagnosed with T2D.

figure 1. Overview of two-sample Mendelian randomization (MR) study on the bidirectional 
association between statin-induced LDL cholesterol response and type 2 diabetes (T2D). 
Top panel shows direction of statin response to T2D, bottom panel liability to T2D to statin 
response. Layout of figure based upon the work by Taylor et al. 2016 (PMID 27215954). 
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causal effect of statin-induced ldl-c response on T2d risk

The GIST consortium’s 2014 meta-analysis on statin-induced LDL-C response 
included up to 18,596 statin-treated subjects in the discovery stage, of whom 
9,064 (48.7%) were known to have a history of diabetes (type unspecified). The 
most promising signals (n=246) were taken forward to a subsequent replication 
phase, to be validated in an additional 22,318 statin recipients (16). Statin 
response had been defined as the difference between natural log-transformed 
on- and off-treatment LDL-C levels. Linear regression analyses using this statin 
response phenotype as dependent variable and genetic variant as independent 
variable were adjusted for natural log-transformed off-treatment LDL-C level, 
age, sex, and study-specific covariates including principal components of 
ancestry. Observational studies had additionally adjusted for statin type-specific 
equivalent dose in their regression models. The resulting regression coefficient 
thus approximates the fraction of differential LDL lowering in carriers versus 
non-carriers of the SNP. While lead variants for four independent loci (APOE, 
LPA, SLCO1B1, SORT1/CELSR2/PSRC1) were presented as the top genome-
wide significant hits for statin response in the GIST paper16, 63 correlated 
variants attained a p-value lower than 5x10-5 in a combined meta-analysis of the 
discovery and replication stage results. 

To assess the effects of these instruments on T2D, we extracted discovery 
stage summary statistics for these 63 variants from DIAGRAM’s 2017 meta-
analysis of genome-wide association data from 26,676 T2D case and 132,532 
control subjects of European ancestry after imputation using the 1000 Genomes 
all ancestries reference panel (March, 2012 release) (17). Contributing studies 
had performed logistic regression association analysis of T2D against each 
genetic variant, adjusted for age, sex, and principal components of ancestry. 
The summary statistics were extracted from the publicly available summary 
statistics dataset on the DIAGRAM website (http://www.diagram-consortium.
org/). All variants were available in the DIAGRAM dataset, except two, for 
which we could not find suitable (i.e. high-LD) proxies. We subsequently LD 
clumped the set of variants using 0.001 as the maximum LD r2 value to ensure 
that the remaining instruments were essentially independent. This reduced the 
set of statin response instruments from 61 to 35 (supplemental Table 1). We 
separately examine the effects of the full set of 35 statin response instruments 
and of the four top hits together.
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causal effect of liability to T2d on statin-induced ldl-c response

As candidate genetic instruments for liability of T2D we selected 128 genetic 
instruments at 113 loci. These 128 variants represent the established loci from 
the literature before the DIAGRAM’s 2017 publication as well as the novel 
signals detected therein, with 42 being genome-wide significant (p<5x10-8) in 
this DIAGRAM dataset. Discovery stage regression coefficients and standard 
errors for a total of 128 single nucleotide polymorphisms (SNPs) at 113 loci 
were extracted from the publicly available summary statistics dataset on the 
DIAGRAM website (http://www.diagram-consortium.org/). 

Next, we extracted summary statistics for the identified T2D liability instruments 
from GIST’s 2014 genome-wide meta-analysis on statin-induced LDL-C response. 
Of note, none of the identified T2D liability instruments were among those SNPs 
carried forwards to the replication stage of the GIST meta-analysis. In total, 
78 of the 128 instruments were available in the discovery GIST dataset. We 
subsequently LD clumped the set of variants, again using 0.001 as the maximum 
LD r2 value. This reduced the set of instruments from 78 to 62 (including 24 
genome-wide significant instruments), which include 19 proxies with an r2≥0.8 
with the original variant in 1000 Genomes European samples (supplemental 
Table 2). To tease out possible bias from using weaker instruments, we aimed 
to examine the combined effects of the T2D liability instruments before and after 
restricting the analysis to the genome-wide significant instruments.

sample overlap

Of the ten prospective, population-based studies that contributed to the discovery-
stage meta-analysis of GIST, four (Atherosclerosis Risk in Communities Study 
(ARIC), Framingham Heart Study, Genetics of Diabetes Audit and Research in 
Tayside Scotland (GoDARTS) I and II) also contributed to the DIAGRAM meta-
analysis. Of the studies contributing to the replication-stage meta-analysis of 
GIST, one (Rotterdam Study) also contributed to the DIAGRAM meta-analysis. 
We were unable to precisely determine the overlap between the datasets. 
However, if we assume that all participants from these five studies contributed 
to both analyses, up to 5% (with respect to the larger dataset, i.e. DIAGRAM) of 
overlap in participants may be present for our analyses. 

statistics - ld score regression

In essence, MR studies use variants significantly associated with an exposure 
to interrogate genetic correlation (i.e. genetic overlap) between the exposure 
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and an outcome. If present, this is then interpreted as evidence for a causal 
relationship. A complementary, non-directional approach is to estimate genetic 
correlation between the exposure and outcome traits of interest by considering 
variants across the whole genome, including those that do not reach a certain 
significance threshold. Therefore, the genome-wide summary-level datasets of 
both GIST (discovery stage, including only variants with N>5000, and without 
genome control-correction) and DIAGRAM’s 2012 GWAS18 were used to 
estimate the genetic correlation of statin-induced LDL-C proportional response 
with T2D through LD score regression19 using the LD Hub platform (http://
ldsc.broadinstitute.org/ldhub/).20 After QC, 1,039,702 genetic variants which 
overlapped between the two GWAS datasets were included for this analysis.

statistics – Mr analysis

Partial F-statistics were calculated per instrument as measure of instrument 
strength (21). For each of the four sets of instruments separately (i. statin 
response-all (n=35), ii. statin response-restricted (n=4 genome-wide significant 
instruments), iii. T2D liability-all (n=62), iv. T2D liability-restricted (n=24 
genome-wide significant instruments) a MR analysis was performed using an 
inverse-variance weighted (IVW) linear regression, with instrument-outcome 
associations as dependent variable, instrument-exposure associations as 
independent variable, and with the intercept constrained to zero (22). Estimates 
of the causal effect of statin response on T2D are presented as odds ratio for 
T2D per 10% increase in statin response. For examining the effects of liability to 
T2D on statin response we rescaled effect estimates such that they represent 
increase in statin response (% extra lowering of LDL-C) per doubling of the odds 
of liability to T2D in the population, by multiplying the causal estimate by 0.693 
(i.e. loge 2) prior to exponentiating. 

Instrument-outcome associations were plotted against instrument-exposure 
associations to visualize the resulting regression line from the IVW analysis 
using the full and restricted sets of instruments. Furthermore, causal effect 
estimates for the individual instruments (i.e. Wald ratios) were plotted against the 
inverse of their standard error to facilitate visual detection of possible horizontal 
pleiotropy (i.e. a direct effect on the outcome rather than via the exposure). We 
subsequently performed three complementary sensitivity analyses which relax 
the assumption of no horizontal pleiotropy amongst the genetic variants. First, 
MR-Egger regression, of which the intercept formally tests for the presence of 
unbalanced horizontal pleiotropy, and the slope reflects the causal effect estimate 
after adjusting for this pleiotropy by adding an intercept to the IVW method (23). 
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Additional approaches that are similarly more robust to potential violations of the 
instrumental variable assumptions than the conventional (i.e. IVW) MR analysis 
were the weighted median- and the weighted mode-based estimator (24, 25), 
which respectively use the weighted median of, and the highest density of, the 
ratio estimates across the individual instruments as estimate of the true causal 
effect. Finally, as several of the proposed instruments for statin-induced LDL-C 
response are known to independently associate with fasting LDL-C levels, we 
performed a multivariable MR analysis for the analysis of statin-response to 
T2D, adjusted for effects on fasting LDL-C levels (26). This multivariable analysis 
included 32 out of the 35 statin response instruments, and 64 instruments for 
fasting LDL-C concentrations from the Global Lipids Genetics Consortium 
2013 GWAS on blood lipid levels (27). The number of instruments used for 
the multivariable MR analysis differ from the other MR-analyses due to not all 
instruments being available in all three GWAS datasets. All MR-analyses were 
carried out in R version 3.4.2 (28), using the TwoSampleMR R-package which 
accompanies the MR-base analytical platform, and the sample code provided by 
the methodology paper on multivariable MR (26, 29). 

resulTs

We found a statistically significant positive genetic correlation of statin-induced 
LDL-C response with type 2 diabetes (rgenetic (s.e.) = 0.36 (0.13), p = 0.0071) using 
LD score regression.

The median F-statistic (25, 75th percentile) was 23.2 (16.3, 37.8) for the full 
set of statin response instruments, and 18.1 (16.2, 20.9) for the full set of T2D 
liability instruments. These respectively increased to 44.8 (35.5, 70.7) and 73.1 
(38.8, 120.3) for the restricted sets of instruments. As shown in figure 2 and 
the Table, we did not find statistical evidence that statin-induced differential 
LDL-C response has a causal effect on T2D risk, nor that liability to T2D has a 
causal effect on statin-induced differential LDL-C response. This held true for 
both the full and restricted sets of instruments, and results from all sensitivity 
analyses were consistent with these findings. More specifically, our results for 
the full sets of instruments indicate the OR of T2D is 1.00 (95% CI: 0.97, 1.03) 
per 10% increase in statin-induced LDL-C response, and that statin-induced 
LDL-C response is increased by 0.20% (95% CI: -0.40, 0.80) per doubling of the 
odds of T2D liability. Evidence of unbalanced horizontal pleiotropy was present 
only for the restricted set of statin response instruments, as indicated by the 
MR-Egger intercept (intercept (95% CI): 1.04 (1.01, 1.07)) and figure 3, but 
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this is likely an artefact of including such a small number of instruments (n=4). 
Finally, a multivariable MR analysis where we adjust for effects of all SNPs on 
fasted LDL-C did not lead to different conclusions regarding the effect of statin 
response on T2D risk (OR 1.02 (95% CI: 0.97, 1.07 per 10% increase in statin-
induced LDL-C response).

discussion

Using LD score regression we found a positive genetic correlation of proportional 
statin response with T2D using genome-wide data, pointing to shared genetic 
determinants between these traits.

figure 2. Scatter plots of instrument-outcomes (y-axis) against individual instrument-
exposure (x-axis) per-allele effects, shown separately for statin response (left panel) and 
liability of type 2 diabetes instruments (T2D, right panel). The blue dots correspond to the 
restricted lists of variants (see text), while the full set included both the red and blue dots. 
The lines correspond to the inverse-variance weighted combined MR estimator, for the 
restricted (blue line) and full (red line) set of instruments.
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figure 3. Funnel plots of individual causal effect estimates (Wald ratios) for statin 
response on type 2 diabetes (T2D, left panel), and liability to T2D on statin response 
(right panel). The blue dots correspond to the restricted lists of variants (see text), while 
the full set included both the red and blue dots. The lines correspond to the inverse-
variance weighted combined MR estimator, for the restricted (blue line) and full (red line) 
set of instruments.

However, our bi-directional MR analyses did not provide evidence of direct 
causal mechanisms of either statin-induced LDL-lowering on risk for T2D, nor 
liability to T2D on statin response. Sensitivity analyses of these MR analyses 
showed consistent results, suggesting that the issue of horizontal pleiotropy is 
unlikely to substantially influence our results. 

The findings from the MR analyses suggest that statin-induced proportional 
change of LDL-C is unlikely to influence T2D risk. If true, this would indicate that 
it is not the degree of proportional lowering of LDL-C levels in response to statin 
therapy which increases the risk for diabetes, but the low levels in an absolute 
sense which may result from this transition. Indeed, results from the JUPITER trial 
have shown that achieving LDL-C concentrations <30 mg/dl with high-intensity 
statin therapy was associated with more physician-reported diabetes (30), 
which was not observed when a threshold of <50 mg/dl was considered (31). Of 
further note here is a recent comparison of the risk of T2D in a large electronic 
health record database between individuals with low and normal LDL-C levels, 
which showed that LDL-C levels below 60 mg/dl occurring in absence of statin 
therapy are also associated with higher T2D risk (32). Moreover, also in line with 
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our results, researchers using data from 129,170 participants free from T2D at 
baseline from 20 statin trials did not observe evidence of a clinically relevant 
association between LDL-C proportional lowering at 1 year and within-trial odds 
ratios for new-onset type 2 diabetes (log-odds per 1% reduction in LDL-C: 0.004 
(95% CI -0.001, 0.009)) (10). 

However, we cannot exclude the possibility that a direct causal effect of 
statin-induced proportional LDL-C response on T2D may exist, but was diluted 
by the presence of non-statin users in the DIAGRAM dataset. This is because 
proposed genetic instruments for pharmacological response phenotypes can 
only exert their effect in the presence of (i.e. are conditional on) drug usage. 
More intuitively, if this type of instrument were to associate with an outcome in a 
population which includes no relevant drug users, this must reflect an alternative 
pathway unrelated to that specific drug response (i.e. horizontal pleiotropy), or at 
least a shared genetic etiology between the two traits. Therefore, assessment of 
any causal effect of instruments derived from pharmacogenetic studies should 
ideally also be examined in populations composed solely of individuals using 
the drug of interest. An analogous dilemma has been described in the context 
of smoking heaviness, where a SNP which strongly predicts cigarettes per day 
was detected in a GWAS sample including daily smokers, and found to exert an 
effect only after a person has become an established smoker (33, 34). Due to our 
use of summary statistics, we were unable to stratify our analyses on statin use. 
In addition, it was not possible to weight for the prevalence of statin use, as this 
is unknown for the DIAGRAM consortium, where statin use is additionally likely 
to be differential by case/control status. Therefore, given our null results, it is 
more appropriate to conclude that our MR analyses did not provide evidence for 
a shared genetic etiology between statin-induced proportional LDL-C response 
and T2D. 

Furthermore, our observation that liability to T2D does not associate with 
LDL-C response resulting from statin treatment is consistent with previous studies 
showing that, while individuals with type 2 diabetes are likely to gain greater 
clinical benefit from statin therapy in terms of absolute CVD risk reduction, this 
does not result from differential lowering of their LDL-C concentrations when 
compared with non-diabetics (35). 

While an important strength of our analyses is the use of large-scale GWAS 
data, increasing the power of our investigations for both directions of causality, we 
purposely included instruments which did not attain genome-wide significance 
in their corresponding GWAS to increase the number of instruments. Though 
instrument-exposure associations will have been estimated with less precision 
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for the weaker (i.e. sub-threshold) instruments, we considered this issue 
analogous to possible misspecification of weights in allele scores, which causal 
estimates have been shown to be generally robust to (36). However, we cannot 
exclude the possibility of weak instrument bias, particularly for the full set of 
T2D liability instruments, which included several instruments with an individual 
F-statistic below 10 (21). Given the relatively small overlap between the GWAS 
datasets, it is likely that any weak instrument bias would be towards the null (37). 
However, the analysis using the restricted list of strong instruments reassuringly 
showed similar results. 

In conclusion, our results suggest that liability to T2D is unlikely to influence 
LDL-C response to a statin, but provided some evidence of a shared genetic 
etiology between statin-induced LDL-C response and T2D. Future studies 
should make a definitive assessment of direct causal effects of statin-induced 
proportional LDL-C response on T2D in populations of statin users. This analysis 
could employ novel two-sample MR methods which allow for the inclusion of 
even weaker instruments than we currently considered (38). 
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absTracT

It has been argued that survival bias may distort results in Mendelian 
randomization studies in older populations. Through simulations of a simple 
causal structure we investigate which factors influence the extent of this bias 
in the context of exposures which affect survival. We observed that selecting 
on survival may decrease instrument strength and will, for exposures with 
directionally concordant effects on survival (and the outcome), introduce bias 
towards the null for the instrument-outcome association if the true causal effect 
is not equal to null, and bias from the null if the true causal effect is null. Stronger 
selection effects and higher ages at study inclusion generally increased this 
bias when the true causal effect was not equal to null. Moreover, the impact of 
this bias may differ depending on the distribution of the exposures. The bias 
in the estimated exposure-outcome relation depended on whether Mendelian 
randomization estimation was conducted in the one- or two-sample setting. 
Finally, we discuss how survival bias may be detected in epidemiological 
cohorts, and which statistical approaches might help to alleviate this and other 
types of selection bias.
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inTroducTion

An increasing number of studies are proposing genetic instruments to examine 
the causal effect of (typically modifiable) exposures on health states or disease. 
This approach is known as Mendelian randomization. The basic idea is that a 
genetic marker (polymorphism or haplotype) serves as a proxy for a particular 
exposure, under the assumption that the potential effect of the genetic marker 
on the outcome of interest is only through this exposure. Given the continued 
methodological developments in the field of Mendelian randomization (1), and 
that summary level statistics from genome-wide association studies (GWAS) are 
increasingly made publicly available, it is expected that this trend will continue 
for the foreseeable future. Considerable efforts are being made to facilitate and 
standardize this advance in Mendelian randomization studies (2-4). 

Although often assumed to give a valid causal estimate in contexts where 
observational evidence might be biased due to residual confounding or reverse 
causation, Mendelian randomization studies can give biased results when 
analyses are performed in selected subgroups, as spurious associations may 
emerge when selection is performed on a common effect of two variables – 
“one of which is either the treatment or a cause of treatment, and the other is 
either the outcome or a cause of the outcome” (5). Formally known as collider-
stratification bias in causal graph theory, this specific form of selection bias has 
been suggested to contribute to several counterintuitive phenomena in the clinical 
literature. These include observations that maternal smoking is associated with 
lower infant mortality amongst low birthweight infants (the ‘birthweight paradox’) 
(6, 7), that obesity is associated with greater survival in individuals with certain 
chronic diseases (the ‘obesity paradox’) (8), and that higher levels of serum 
cholesterol and blood pressure appear protective in the oldest old (9-12). The 
latter examples are thought to exemplify a subtype of selection bias, known as 
survival bias, caused by only recruiting or analyzing the non-random subset of 
the population who have survived long enough to be included. 

It has been argued that in Mendelian randomization studies in older 
populations, survival bias may distort results (13, 14). While this issue has 
received limited attention in the literature, some researchers have recognized 
this potential source of bias. For example, Østergaard and colleagues noted 
that the protective associations of systolic blood pressure with Alzheimer’s 
disease observed in their Mendelian randomization study might arise as a result 
of differential survival bias (15). Another notable discussion of survival bias 
followed the observation that variants known to increase BMI associated with 
a lower risk of Parkinson’s disease (16), which contrasted with the null effect 
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observed in a large meta-analysis of cohort studies on the topic (17). We aimed 
to investigate the impact of survival bias on Mendelian randomization analyses 
through a simulation study. In this paper, we will describe which factors influence 
the extent of this bias. We will also discuss how to determine whether survival 
bias is present in epidemiological cohorts, and which (statistical) approaches 
may help to minimize or address this bias.

MeThods

review of the theory

We define X as the exposure and Y as the outcome of interest (figure 1). Drawing 
valid conclusions from a Mendelian randomization analysis requires using a 
genetic instrument G (e.g. a single-nucleotide polymorphism) that meets three 
key assumptions: i.) G explains variation in exposure X, ii.) G is independent of 
the (known and unknown) confounders U of the association between X and the 
outcome Y, and iii.) G is independent of Y given X and U (18). In addition, in order 
to obtain a point estimate of a causal estimate, a fourth assumption is required. 
This may either be the assumption of homogeneity, or the sometimes more 
plausible, alternative assumption of monotonicity (19). If these assumptions 
hold, a causal effect of X on Y can be reliably estimated, as the association 
between G and Y should be essentially free from reverse causality and residual 
confounding (20). 

Consider the following example where we are interested in a causal effect of 
X (e.g. cholesterol) on a continuous outcome Y (e.g. cognitive test performance)  
(figure 2). The inherent concept of Mendelian randomization, that alleles are 
randomly assigned at conception, would normally ensure that the association 
measure between G and Y can be attributed solely to the effect of the exposure X 
on Y. However, we must consider that for older populations the study population 
is restricted by design, including only those who have survived until a certain 
age. 

In this situation, survival until study inclusion (S) is influenced by the exposure 
of interest X  and a second exposure R (e.g. smoking) (figure 2a). For the 
purpose of simplicity we assume that these two exposures are uncorrelated in 
the unselected population. However, if we condition on a common effect of X and 
R, i.e. survival (S=1), we induce an association between X and R, and therefore 
also between G and R. More intuitively, if someone survives until study inclusion 
with risk factor R (i.e. smokes), they are less likely to also have high levels of 
risk factor X (i.e. hypercholesterolemia), and in extension less likely to have 
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figure 1. Schematic outline of the Mendelian randomization approach

figure 2. In the example of two exposures affecting probability of survival, conditioning 
on survival (S) may induce an association between previously uncorrelated risk factors 
X (and its genetic proxy G) and R (dashed lines shown in A). More intuitively, if you are 
a smoker and still alive at study inclusion, you are less likely to also have a high level 
of LDL-cholesterol (LDL-C), and vice versa. Additionally, conditioning on survival may 
induce an association between the genetic instrument G and any confounders U of the 
X-Y association (dashed line shown in B), even in the absence of risk factor R. In both 
situations, the association between the genetic instrument and the outcome of interest 
might thus become biased. Please note that while we did not include a line from X to Y in 
either causal structure, we also simulate scenarios where X does have a causal effect on 
Y. Adapted from Boef AG, et al. (13)
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inherited trait G that causes hypercholesterolemia. We therefore expect that the 
previously uncorrelated, competing variables will become negatively associated 
when restricting the analyses to the ‘survivors’. It follows that the estimated G-Y 
association can therefore no longer be solely attributed to the effect of exposure 
X on outcome Y (i.e. will become biased), as conditioning on the common effect 
of X and R has opened an indirect path from G to Y going through R (21). 

In the example above we have assumed no confounders exist of the X-Y 
association. However, their presence may be problematic (figure 2b). This is 
because restricting the analysis to survivors means that entry into the study 
becomes conditional upon the value of X. As X in turn depends both on the 
genetic instrument G and the confounder U (e.g. alcohol intake), G and U may 
become correlated. 

In essence, the third assumption described at the start of this paragraph has 
become violated through survival bias in both examples. While our simulations 
will primarily focus on the causal structure shown in figure 2a, we present 
simulations on figure 2b and on a combination of these causal structures in the 
supplemental material.

data generation

All simulation scenarios assume the basic causal structure shown in figure 2a. 
All causal associations between variables are chosen such that an increase 
in cause will lead to an increase in the consequence, except for the effect on 
survival where higher values in exposure, confounder or risk factor correspond 
to lower survival times. In addition, our simulations assumed constant treatment 
effects. For each scenario we generated a dataset of 10 million observations 
with multiple randomly generated variables: a binary genetic instrument (G), a 
continuous exposure (X) influenced by G, a second exposure (R), a continuous 
outcome (Y) principally influenced by R and in later scenarios also by X, and 
finally an age of death influenced by both X and R. In secondary analyses 
we additionally generate a continuous confounder (U) with equal effects on 
X and Y (appendix). All simulations were performed separately for binary and 
continuously distributed R’s. 

Details of data generation and parameters values are presented in Table 
1. Of note, X was standardized to have a mean of 0 and standard deviation 
of 1. The effect of G on X was chosen such that the corresponding strength 
of the instrument, measured by the partial R2, equaled 1, 5, 10, and 15%. In 
addition, while the per-unit effect size was the same for the two types of R, 
the different scales of measurement (dichotomous (e.g. presence or absence 
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of hypercholesterolemia) against per standard deviation increase) means their 
impact on other variables will differ.

Table 1. Parameters values and details of data generation

Parameter (scale) data generation and alternative values standard 
value

G (binary) Prevalence of 25, 50, 75% 50%

X (continuous)
Normally distributed with mean 0 and var(X|G)=1, 
with varying contribution of G (and if applicable U)

Variance of X explained by G 1, 5, 10, 15% of X 5%

U (continuous)
Normally distributed with μ=0, σ=1. Only included 
in scenarios in appendix

Effect of U on X Increase of 0.5 per one unit increase in U None

R (binary) Prevalence of 12.5, 25, 50% 25%

R (continuous) Normally distributed with μ=0, σ=1

Age of death
Gompertz distributed with baseline parameters 
a=4.59053×10-5 and b=8.76978320×10-2, with 
varying (additional) contribution of X and R

Effects of X on age of death HR of 1.1, 1.25, or 1.5 per one unit increase in X HR 1.25

Effects of R on age of death
HR of 1.25, 1.5, 2, or 4 if R=1 (binary R) or per 
one unit increase in R (continuous R)

HR 1.5

S (binary)
Indicates whether age of death is larger than age 
at inclusion

y (continuous)
Normally distributed with mean 0 and 
variance(y|X,R)=1, with varying contribution of X 
and R (and if applicable U)

Effects of X on y
Increase of 0, 0.5, 1, or 2 per one unit increase 
in X

0

Effects of R on y
Increase of 0.25, 0.5, or 1 if R=1 (binary R) or per 
one unit increase in R (continuous R)

0.5

Effect of U on y Increase of 0.5 per one unit increase in U None

Number of observations 10.000.000 in all scenarios

S.D. denotes standard deviation.

To generate survival time we obtained the 2016 mortality data of the United 
States from the Human Mortality Database (22). Using the MortalityLaws 
R-package (23) we estimated the parameters of the Gompertz model (24) within 
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this real-world dataset (efigure 1), which were subsequently used to generate 
survival times for our simulated population. Effects of both X and R on age of 
death were modelled as hazard ratios, with having higher levels of X and/or R 

translating into an earlier death (on average), and lower levels of X and/or R in a 
later death (on average). Subsequently, we considered different age boundaries 
for study inclusion, from 75-95 years, thereby steadily decreasing the number 
of surviving participants (S=1). We used R (version 3.4.1) for all data generation 
and analyses (25). Sample code is provided as supplemental material.

effects on instrument strength

Firstly, we examined whether selecting on survival may influence the strength 
of instrument G, reflected by the squared correlation between G and X (R2), 
which indicates how much variance of X is explained by G. Given that selecting 
on survival will yield smaller data sets, and that the F-statistic strongly depends 
on sample size, we did not consider the F-statistic as a measure of instrument 
strength (26). We chose different strengths of the instrument, while all other 
parameter values were kept fixed at a standard value given in Table 1. No effect 
of X on Y  was assumed.

effects on association between the genetic instrument G and 
exposure r

Secondly, we considered the effect of different parameters on the induced 
correlation between G and R within an increasingly selected population. Effects 
of changing the following parameters were considered: 
i. variance of X explained by G (R2);
ii. effects of X on age at death;
iii. effects of R on age at death;
iv. effects of R on Y;
v. prevalence of G;
vi. prevalence of R (for dichotomous R).
In each simulation, the other parameters were held at their standard values, and 
no effect of X on Y was assumed. Accompanying confidence intervals for the 
correlation between G and R were calculated using Fisher’s z-transformation. (27)
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effects on association between genetic instrument G and outcome 
of interest y

Thirdly, we examined how this induced correlation between G and R influences 
the Y~G association, estimated with linear regression. Different true effects of 
X on Y were assumed (Table 1). Other parameters were again held at their 
standard value.

effects on instrumental variable (iV) estimators

Finally, we considered how the induced correlation between G and R might 
influence an IV-estimator. In its simplest form this estimator equals the ratio of 
regression coefficients, known as the Wald ratio (28), defined for our continuous 
outcome Y as

The Wald ratio thus quantifies the causal effect of the exposure on the outcome 
and estimates the mean increase in outcome per unit increase in exposure. 
Increasingly, summarized data (coefficients and standard errors) from large 
genome-wide association study (GWAS) consortia are made publicly available, 
which enable researchers to perform two-sample Mendelian randomization even 
if their own study does not allow for estimation of both coefficients necessary to 
calculate the Wald ratio (29). These external datasets are generally more likely to 
have primarily included middle-aged participants (30-32), and thus less likely to 
be affected by survival bias. Therefore, under the assumption of no age-related 
effect modification, we not only considered the scenario where both coefficients 
are estimated with linear regression in the same increasingly selected dataset 
(i.e. ‘internal’ estimation), but also what happens if the association measure 
between G and X were to be taken from an external dataset not selected on 
survival (i.e. ‘external’ estimation, by taking the fixed value of our total population). 
Confidence intervals for the internally estimated Wald ratio were calculated using 
the tsls function from the sem R-package (33). 
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resulTs

instrument strength

As shown in the main plot of figure 3, the variance explained in exposure X by 
G decreases when higher ages-at-inclusion are considered. The decline in R2 
between age 75 and 95 years is greater in absolute terms, but comparable in 
relative terms, for stronger genetic instruments. For example, for the instrument 
explaining 1% of variance in X in the unselected (i.e. entire) sample R2 declined 
from 0.99% at 75 years to 0.90% at 95 years, set against a decline from 14.75% 
to 13.35% for the instrument originally explaining 15% of variance in X. Shown in 
the figure’s insets are the a) the change in prevalence of G and b) the survival 
curve for the population from 75 years until 95 years. The prevalence of G was 
observed to decline from 0.49 at age 75 years to 0.46 at age 95. Furthermore, of 
the population alive at 75 years, 15.6% was still alive at 95 years. Results for the 
continuously distributed R were comparable (efigure 2).

figure 3. Variance explained in the exposure of interest X by its genetic proxy G for an 
increasingly selected population, when incorporating a binary R. Shown in the insets are 
A) the prevalence of G and B) the accompanying survival curve, both with the true (i.e. 
unselected) R2 set at 5%. 
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correlation between G and r

The induced negative correlation due to selection on age between the causally 
independent variables G and R across different simulation scenarios is shown in 
figure 4. Keeping all other parameters constant, the correlation becomes more 
negative as i. the instrument is stronger (i.e. more variance in X is explained by G) 
(4a,b), ii. X has greater effects on age at death (4c,d), iii. R has greater effects 
on age at death (4e,f), and iv. as R’s prevalence becomes greater (dichotomous 
R) (4K). However, once the prevalence of R exceeds 0.5 the induced correlation 
between G and R decreases again. In contrast, the correlation remains constant 
for different effects of R on Y (4G,h), and is largely unchanged by changing the 
prevalence of G (4i,J). Of note, the association between age-at-inclusion and 
the induced G~R correlation attenuates at higher ages when the deleterious 
effect of R on S corresponds to an hazard ratio of 4 (4e), with the nadir of the 
curve occurring between 80 and 85 years of age. This specific example likely 
results from the rapid depletion of the R-carrying participant pool, an effect also 
visible but less extreme for the simulations incorporating a continuous R (4f).

bias to y ~ G association

Varying the true underlying effect of X on Y reveals how the association between 
G and Y is biased by selecting on S=1 (figure 5). In cases where the true 
effect ≠ 0, a bias towards the null is seen, underestimating the true effect. 
While this bias is greater in absolute terms, in relative terms we observe a slight 
attenuation across different effects of X on Y when considering a dichotomous 
R (at 95 years: 12.3% underestimation for true effect of 0.5 (5c) versus 10.1% 
for true effect of 2 (5e). A different pattern was observed for the situation where 
the true effect of X on Y is null. In this case, where the statistical association 
between the genetic variant and the outcome of interest is completely due to 
bias, the resulting association becomes nominally negative (5a). The same, but 
slightly exaggerated pattern occurs for a continuously distributed R. The Y~G 
association namely moves away from the null to a considerably greater extent 
when the true effect of X on Y is null (5b), and greater attenuation of the bias 
towards the null occurs for greater effects of X of Y when the true effect is not 
equal to 0 (5d,f). 

bias to iV estimator

The IV estimator is influenced by survival bias, where magnitude and direction 
of the bias are dependent on i. whether the association measure between G 
and X is estimated within the same selected dataset as the association measure 
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figure 4. Effect of varying different parameters on the induced correlation (95% CI) 
between the genetic instrument G and the second exposure R for an increasingly selected 
population. Shown for binary (left column) and continuously (right column) distributed R. 
S.D. denotes standard deviation.
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figure 5. Effect of survival bias on the association between the genetic instrument G 
and the outcome of interest Y, for different true effects of exposure X on Y. Data are 
presented as regression coefficients (95% CI) estimated with linear regression. The true 
(i.e. unselected) regression coefficient for G on Y is shown as a dashed line in each plot. 
Shown for binary (left column) and continuously (right column) distributed R. 



126 | CHAPTER 7 SURVIVAL BIAS IN MENDELIAN RANDOMIZATION | 127

figure 6. Wald ratios (95% CI) based on internally (white ribbon) versus externally (grey 
ribbon) estimated association between exposure X and the outcome Y, for different true 
effects of exposure X on Y. Shown for binary (left column) and continuously (right column) 
distributed R. Dashed lines denote the true (i.e. unselected) Wald ratio, which equals the 
true causal effect of X on Y. 
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between G and Y was, or within an external source not selected on age, and ii. 
whether the true effect of X on Y is null or not (figure 6). When both the numerator 
(Y~G) and denominator (X~G) of the Wald ratio (i.e. our causal effect estimate) 
are taken from the same selected dataset, we observe that they will be similarly 
biased. Taking the ratio of these two therefore seemingly cancels out much of 
the bias to the IV estimator, compared to the situation where only the numerator 
is taken from a population selected on survival. In this latter situation, the relative 
degree of the bias equals that seen for the association measure between G 
and Y. The two IV estimators diverge more strongly as stronger true effects of 
X on Y are considered. This is more clearly observed when a dichotomous R is 
considered. For a continuously distributed R, selection bias partially persists for 
the internally estimated IV estimator (6b,d,f).

alternative causal structures

Simulation results for the causal structure depicted under figure 2b, and 
for the combination of 2a and 2b, did not show markedly different results 
(efigures 4-10).

discussion

In this paper we show that previously uncorrelated, competing risk factors may 
become associated due to selection on survival, consequently biasing estimates 
from Mendelian randomization studies. More specifically we observed that, if the 
effect of the exposure of interest on the outcome of interest is genuinely non-null 
and the selection-related exposures have directionally concordant effects on 
the outcome, the association measure between genetic proxies of that exposure 
and the outcome will become biased towards the null. Of further importance 
is the observation that as the population size decreases instrument strength 
also weakens, as measured by R2. The combination of a smaller population 
size with a weaker instrument strength will be detrimental to statistical power 
in hypothesis testing. It should be noted here that the decrease in instrument 
strength not just results from the decreasing prevalence of the genetic instrument, 
but also due to the genetic instrument becoming associated with the random 
noise contributing to the exposure (efigure 3). We additionally observed that 
the induced correlation between G and R is greater for stronger instruments. 
However, as bias amplification is smaller for stronger instruments, we expect 
that instrument strength will not substantially affect the degree of bias of either 
Y~G or IV estimators. 
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A fundamental assumption in inferring causality using Mendelian randomization 
is that the genetic instrument should not independently associate with traits of 
aetiological significance to the outcome other than the exposure of interest. 
In the simple causal structure considered in our simulations, we observe that 
this assumption is violated by selection on survival. While we solely explored 
scenarios with one genetic instrument, this problem will also occur for any 
combination of genetic instruments for exposures which jointly influence the 
probability of surviving until study inclusion. In essence, quasi-pleiotropic effects 
are induced by conditioning on survival till study inclusion. More specifically, 
given that these pleiotropic effects are unlikely to average to zero across a 
combination of genetic instruments proxying the same exposure, survival bias 
is equivalent to introducing directional pleiotropy into Mendelian randomization 
analyses. To our knowledge it has not been examined whether robust analysis 
methods specifically aimed at correcting for bias due to unbalanced directional 
pleiotropy, such as MR Egger regression (34), would be able to cope with this 
problem. Of particular interest would be whether sets of polygenic instruments, 
whose individual metabolic pathways to the intermediate phenotype may differ, 
might be differentially affected by survival bias. 

While our simulations specifically examined age-related selection, researchers 
with data on (younger) populations selected on alternative characteristics (e.g. 
disease status) will similarly have to consider the possible influence of selection 
bias in genetic analyses, including genome-wide association testing (35-37). 
This also holds for investigations within increasingly popular mega-biobanks 
such as population-based UK Biobank and the Million Veterans Program, both 
of which have had relatively limited response rates (38-40). Alternative causal 
structures which might give rise to selection bias in Mendelian randomization 
studies have been presented elsewhere (40). 

There exist several ways for researchers to substantiate the claim that 
survival bias may be present in their study population, most of which require 
individual level data. One approach is to examine the associations between the 
genetic instrument(s) and confounders of the association between exposure and 
outcome of interest (X and Y), and/or with variables upon which the population 
was selected. A key point here is that no association should be present in younger, 
less-selected populations. Theoretically, if no trends across age are found, it 
is unlikely that the genetic variant significantly influences mortality. However, 
this approach will generally only be feasible if large-scale data across different 
age groups is available on a variety of phenotypic traits, or if the population is 
strongly enriched or depleted for the trait of interest (35). Leveraging summary 
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statistics from genome-wide testing performed in large-scale population-based 
studies may make it possible to differentiate between survival bias-induced 
associations and alternative pleiotropic mechanisms. Alternatively, researchers 
can examine whether the strength of the instrument (i.e. the explained variance 
in the exposure of interest by the instrument) is significantly lower in older than 
that reported in younger populations. In extension, allele frequencies of high-risk 
variants are likely to decline in an age-dependent manner, as observed in our 
simulations, as individuals with a substantially deleterious genetic predisposition 
will gradually be phased out of the population. This is in line with previously 
described observations of a large-scale genetic risk score for low-density 
lipoprotein cholesterol decreasing with increasing age (41). However, it should be 
noted there does not exist a failsafe method of ruling out survival bias, nor were 
the above approaches developed for the IV-context under bias amplification. 
In addition, these methods assume that cohort effects are not present, with 
younger and older populations coming from the same source population.

Recent work by Canan and colleagues suggests that for the causal structure 
under investigation in our simulations, selection bias may be corrected via inverse 
probability weighting (14). In general, we expect that if the selection gradient 
solely depends on measured variables which are available for the entire original 
study population (i.e. also for those individuals who are not selected in the study 
sample), and assuming a constant treatment effect, both inverse probability 
weighting and multiple imputation could be suitable solutions for selection bias. 
If data are  only available for the selected individuals, but a sufficient set of 
selection-related variables are precisely measured, then inclusion of these 
selection-related variables in multivariable regression models may resolve the 
bias if the models are well-specified. The value of representative cohorts with 
little selection (e.g. birth cohorts) cannot be overstated in this context (40, 42), 
though genotyping genetically informative family members may hold promise 
as well (43). Alternative strategies have been proposed in the context of hazard 
models (44-46), which may fare better when selection depends on (partially) 
unobserved variables. In addition, methods of using covariate balance to detect 
dependent censoring in longitudinal studies exist, though these approaches 
have not been extended to IV-analysis where bias amplification may occur (47, 
48).

We must acknowledge several limitations of our study. In our simulations we 
made a number of assumptions, due to which caution must be taken in making 
generalizations. These include that exposures but also genotypes had constant 
effects during life, ignoring possible antagonistic pleiotropy (49), and that 
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survival bias would similarly affect different components of the causal structure 
(e.g. both the numerator and denominator of the Wald ratio). In addition, we 
solely considered one commonly occurring genetic instrument and uncorrelated 
exposures with directionally concordant effects on survival (and the outcome of 
interest). R could however be considered a combined vector for many possible 
competing causes of death before study inclusion. Furthermore, we did not 
consider a binary outcome of interest, to avoid the issue of non-collapsibility, 
and restricted our investigations to a linear instrument-exposure association. 
We also did not examine the effect of possible effect modification between the 
two exposures, which might lead to stronger correlations between the genetic 
instrument and exposure R and therefore increased bias (50). These choices 
were aimed at examining the basic underpinnings of survival bias in the context 
of Mendelian randomization studies, in absence of real-world complexities. 

In conclusion, using a simple causal structure we were able to demonstrate that 
survival bias may lead to biased estimates in Mendelian randomization studies. 
It will be of interest to examine more detailed simulations in the future, using 
greater numbers of instruments and exposures to derive bias formulas (as others 
have done for collider bias in binary variable structures (51)), ideally coupled with 
comparing the performance of the possible correction methods for survival bias 
described above. Finally, future work should explore the implications of using 
different instrumental variable assumptions such as monotonicity, instead of the 
assumption of homogenous treatment effects of our simulations.
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supplemental Material

efigure 1. Results of fitting Gompertz-model using mortality-data (USA 2016)
efigure 2. Variance explained in X by G for continuously distributed R, for causal 
structure presented under Figure 2A (main text)
efigure 3. Genetic instruments and noise in X
efigure 4: Causal structure also presented in Figure 2B (main text)
efigures 5-6: Results of simulations for causal structure shown in eFigure 4
efigure 7: Causal structure combining those presented in Figure 2 (main text)
efigures 8-10: Results of simulations for causal structure shown in eFigure 7

efigure 1. Results from fitting the Gompertz-model (a*eb*age) onto the 2016 mortality data 
of the United States (age range 35-95) obtained from the Human Mortality Database 
(www.mortality.org), using the MortalityLaws R-package. Estimated model parameters: 
a, 0.0000459053; b, 0.0876978320.
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efigure 2. Variance explained in the exposure of interest X by its genetic proxy G for an 
increasingly selected population, for a continuously distributed R. Shown in the insets are 
A) the prevalence of G and B) the accompanying survival curve, both with the true (i.e. 
unselected) R2 set at 5%. 

efigure 3. Genetic instruments for exposures which affect the likelihood of surviving until 
study inclusion will become weaker if only due to becoming increasingly associated with 
the random noise in the exposure.
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efigure 4. Causal structure in which selection bias occurs in the presence of confounder 
U. Conditioning on survival S induces an assocation between genetic instrument G and 
confounder U. Also presented in Figure 2B.
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efigure 5. Effect of varying different parameters on the induced correlation (95% CI) 
between the genetic instrument G and the confounder U for an increasingly selected 
population. 
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efigure 6. Effect of survival bias on the association between the genetic instrument 
G and the outcome of interest Y (left panels), and on the Wald ratio IV-estimator (right 
panels), for different true effects of exposure X on Y. The true (i.e. unselected) regression 
coefficient for G on Y, and of true (i.e. unselected) Wald ratio, are shown as a dashed line 
in each plot. 
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efigure 7. Causal structure in which selection bias occurs in the context of both a second 
exposure R and confounder U.
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efigure 8. Effect of varying different parameters on the induced correlation (95% CI) 
between the genetic instrument G and the second exposure R for an increasingly selected 
population. Shown for binary (left column) and continuously (right column) distributed R. 
S.D. denotes standard deviation.



7

SURVIVAL BIAS IN MENDELIAN RANDOMIZATION | 141

efigure 9. Effect of survival bias on the association between the genetic instrument G 
and the outcome of interest Y, for different true effects of exposure X on Y. Data are 
presented as regression coefficients (95% CI) estimated with linear regression. The true 
(i.e. unselected) regression coefficient for G on Y is shown as a dashed line in each plot. 
Shown for binary (left column) and continuously (right column) distributed R. 
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efigure 10. Wald ratios (95% CI) based on internally (white ribbon) versus externally 
(grey ribbon) estimated association between exposure X and the outcome Y, for different 
true effects of exposure X on Y. Shown for binary (left column) and continuously (right 
column) distributed R. Dashed lines denote the true (i.e. unselected) Wald ratio, which 
equals the true causal effect of X on Y. 
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absTracT

Background: Recently it was shown that intra-individual variation in low-density 
lipoprotein cholesterol (LDL-c) predicts both cerebro- and cardiovascular events. 
We aimed to examine whether this extends to cognitive function, and examined 
possible pathways by using an MRI substudy.
Methods and results: We investigated the association between LDL-c variability 
and four cognitive domains at month thirty in 4428 participants of the PROspective 
Study of Pravastatin in the Elderly at Risk (PROSPER). Additionally, we assessed 
the association of LDL-c variability with neuroimaging outcomes in a subset of 
535 participants. LDL-c variability was defined as the intra-individual standard 
deviation over four post-baseline LDL-c measurements, and all analyses were 
adjusted for mean LDL-c levels and cardiovascular risk factors. We observed 
that higher LDL-c variability was associated with lower cognitive function in 
both the placebo and pravastatin treatment arm. Associations were present for 
selective attention, processing speed, and memory. Furthermore, higher LDL-c 
variability was associated with lower cerebral blood flow in both trial arms, and 
with greater white matter hyperintensity load in the pravastatin arm. No evidence 
was found for interaction between LDL-c variability and pravastatin treatment for 
both cognitive and MRI outcomes.  
Conclusions: We found that higher visit-to-visit variability in LDL-c, independent 
of mean LDL-c levels and statin treatment, is associated with lower cognitive 
performance, lower cerebral blood flow, and greater white matter hyperintensity 
load.
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inTroducTion

Over eighty-five years ago, Cannon hypothesized that loss of physiological 
homeostasis, for instance through disease or the ageing process, would lead to 
disturbances in intrinsic variability (1). This intra-individual variability in various 
physiological measures has become of increasing interest in recent years, as 
both lowered heart rate variability and increased blood pressure variability have 
been repeatedly linked to adverse outcomes such as vascular events, impaired 
cognition, and mortality (2-6). However, little is known about cholesterol 
variability, which may be considerable even on a day-to-day basis (7, 8). Recent 
evidence indicates that, in subjects with coronary artery disease, greater visit-
to-visit variability in low-density lipoprotein cholesterol (LDL-c) is associated with 
higher risks of coronary and other cardiovascular events, stroke, and mortality, 
independent of mean LDL-c levels (9). Whether visit-to-visit variability in LDL-c is 
associated with cognitive performance is currently unknown.

Here, we assessed whether visit-to-visit variability in LDL-c is associated with 
cognitive function, independent of mean LDL-c levels, in 4428 participants of the 
PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Additionally, 
to assess potential mechanisms behind this association, we examined the link 
between LDL-c variability and hippocampal volume, cerebral blood flow, and 
white matter hyperintensity load in an MRI substudy.

MeThods

study population

All subjects were participants of the PROSPER study, of which the study 
design has been described in detail elsewhere (10). In short, this multicentre, 
randomized, placebo-controlled trial aimed to determine whether pravastatin 
reduces the risk of major cardio- and cerebrovascular events in participants aged 
70-82 years with pre-existing vascular disease (coronary, cerebral, or peripheral) 
or at higher risk for developing vascular disease due to a history of hypertension, 
cigarette smoking or diabetes mellitus. To be eligible for enrolment, plasma total 
cholesterol was required to be 4.0-9.0 mmol/L, with triglyceride concentrations 
lower than 6.0 mmol/L. Participants were recruited in Scotland, Ireland, and the 
Netherlands. The study was approved by the institutional ethics review boards of 
each center, and all participants gave written informed consent. LDL-c variability 
and cognitive measures were available for 4428 participants. In addition, MRI 
measurements at end of study were available for 535 participants.
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assessment of ldl-c variability

Lipid levels were assessed after an overnight fast, and LDL-c was measured 
directly. Lipoprotein profiles were quantified at the Centre for Disease Control 
certified central lipoprotein laboratory in Glasgow. Visit-to-visit variability of 
LDL-c was calculated by means of the intra-individual standard deviation over 
each individual’s measurements, using post-baseline measurements after 3, 
6, 12 and 24 months. The coefficient of variation, another measure for LDL-c 
variability but standardized to the intra-individual mean LDL-c level over the same 
measurement period, was highly correlated with the intra-individual standard 
deviation (Pearson’s r = 0.87). Baseline measurements were excluded to avoid 
including artificially induced variability from commencement of statin therapy or 
as an initial response to dietary and lifestyle advice given to all participants at 
baseline. Throughout the trial, subjects received nutritional advice and health 
counselling, and were stimulated to follow the National Cholesterol Education 
Program Step 1 diet or a local equivalent that provided <30% of total calories 
from fat (<10% as saturated fat) and a cholesterol intake of <300 mg/day. 

assessment of cognition

Subjects with poor cognitive function (Mini Mental State Examination (MMSE) 
score < 24) were excluded from enrolment in the main PROSPER study. Serving 
as outcome variables, cognitive function was evaluated through four cognitive 
measures (11). The Stroop-Colour-Word-Test (Stroop) was employed to test 
selective attention, with total number of seconds needed to complete the third 
test part used as the outcome parameter. The Letter-Digit Coding Test (LDT) 
assessed information processing speed, taking the number of correct digits 
filled in within 60 seconds, with higher scores denoting better performance. The 
Picture-Word Learning Test (PLT) was used as a verbal memory test, separately 
assessing immediate (number of recalled pictures over three learning trials) 
and delayed recall after twenty minutes, with higher scores denoting better 
performance. All cognitive outcomes were assessed at month thirty to maximize 
the availability of cognitive outcomes following the measurement of LDL-c 
variability.

Magnetic resonance imaging substudy

Of the eligible Dutch participants of the main PROSPER study, 646 consented 
to participate in a nested MRI substudy, of which the methods and results 
have been published previously (12). Subjects with intraorbital vascular clips, 
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collagen disease, cardiac pacemakers, hearing implants, multiple sclerosis, 
or claustrophobia were excluded from participating. In the current study, we 
examined results from imaging performed after a mean±SD follow-up of 33±1.4 
months. Data on visit-to-visit LDL-c variability and MRI outcomes were available 
for 535 participants.   

A clinical MR-system operating at a field strength of 1.5 Tesla was employed 
for all imaging (Philips Medical Center, Best, the Netherlands). The Oxford Centre 
for Functional MRI of the Brain’s integrated registration and segmentation tool 
(FIRST) was utilized to estimate the hippocampal volume (13). Using the phase 
contrast technique, cerebral blood flow was calculated by adding the flow from 
the left and right internal carotid arteries to the flow in both vertebral arteries, 
and was subsequently standardized to whole-brain parenchymal volume (12). 
Quantification of white matter hyperintensity load was performed using Software 
for Neuro-Image Processing in Experimental Research (SNIPER), an in-house 
developed fully automatic segmentation method combining information from 
proton density, T2-weighted and fluid-attenuated inversion recovery (FLAIR) 
images (14).  

demographic and clinical characteristics

Participant characteristics were assessed at baseline. These included age, 
education (age of leaving school), body-mass index, current smoking status 
(yes/no), alcohol intake (measured in units per week), and history of various 
clinical diseases. 

statistical analyses

All analyses were conducted separately for the placebo and pravastatin arm. 
Demographic and clinical characteristics are presented as numbers with 
percentage, means with standard deviations, or medians with interquartile range 
when appropriate. Participant characteristics were compared over tertiles of 
LDL-c variability using analysis of variance and Pearson’s chi-square test. Using 
multivariable linear regression models, the association between post-baseline 
LDL-c variability and cognitive performance at month 30, and MRI measures at 
end of study, was determined. Subjects with a minimum of two out of four LDL-c 
measurements were included. While reporting mean (SE) cognitive scores and 
MRI measures over tertiles of LDL-c variability to gain insight into the underlying 
distribution of neurocognitive function, intra-individual variability was used as a 
continuous covariate in the linear regression models. Adjusted unstandardized 
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regression coefficients, 95% confidence intervals, and p-values were reported. 
Covariate adjustments were made based on their biological plausibility as 
potential confounders for the association between LDL-c variability and 
neurocognitive outcomes. These covariates consisted of diseases and factors 
that are known to influence LDL-c levels, and have been linked to either cognitive 
or neurovascular impairment. For the minimally adjusted model we included 
age, gender, country, education, average LDL-c, and cognitive test version 
and whole-brain parenchymal volume where appropriate. The fully adjusted 
model additionally included body-mass index, current smoking status, alcohol 
intake, and history of diabetes, hypertension, and vascular disease. Data on 
these baseline covariates was complete for all participants. Possible violations 
of the assumptions of multiple linear regression were examined by visually 
inspecting the distribution of residuals through both histograms and normal 
P-P plots. We further checked for deviations of linearity and homoscedasticity 
by visually inspecting scatterplots of standardized residuals by standardized 
predicted values. In addition, we assessed Variance Inflation Factors to examine 
the possibility of multicollinearity. We considered p-values of 0.05 or smaller 
statistically significant. All analyses were conducted using IBM SPSS Statistics 
version 20.0.

sensitivity analyses

Several sensitivity analyses were conducted in order to measure how robust 
the findings were to different subsets of the data, and to elucidate possible 
mechanisms through which LDL-c variability might associate with cognitive 
function. First, the association with cognitive performance at end of study was 
assessed, rather than cognition at month thirty, whilst using the same exposure 
measurement period. On average, this meant cognitive performance was 
assessed 9 months later. A further consideration was possible influence of the 
number of lipid measurements. Therefore, we restricted our analyses to those 
participants with all four measurements. We additionally performed separate 
analyses excluding history of, and incident events of, cerebro- and cardiovascular 
disease. As both cancer and serious infection may influence levels of LDL-c, we 
also carried out analyses excluding these incident disease states. Furthermore, 
blood pressure variability has been shown to associate with cognition in recent 
years (4). As variability in LDL-c and blood pressure could arise from a common 
cause, we adjusted for systolic blood pressure (SBP) variability to distinguish 
effects of LDL-c variability from those mediated by blood pressure variability. 
SBP variability was defined as the intra-individual standard deviation over 
months 3-24, with blood pressure measured every three months, and these 
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analyses were additionally adjusted for mean SBP over the same measurement 
period. Further, it is possible that LDL-c variability reflects consistent trends over 
time rather than an undulating pattern, e.g. due to progressively reduced dietary 
intake in the context of overall decline in health status. Therefore, we carried out 
analyses whilst adjusting for the average slope of LDL-c during the measurement 
period. Finally, as concomitant medication usage may underlie differences in 
lipid variability, we performed analyses adjusting for baseline medication usage 
of diuretics, ACE I- or II-inhibitors, beta-blockers, calcium channel blockers, 
nitrates, anticoagulants, anti-arrhythmic medication, and glucose-lowering 
medication (insulin and non-insulin separately). For all sensitivity analyses, we 
report the results from the fully adjusted model only, which were similar to those 
seen for the minimally adjusted model.

resulTs

demographic and clinical characteristics

Participant characteristics are described in Table 1. In both the placebo and 
pravastatin arms, participants in higher tertiles of visit-to-visit LDL-c variability 
had a higher SBP variability (p=0.003, p=0.006, respectively), higher average 
LDL-c (both p<0.001), were more often female (p=0.001, p=0.002), and less likely 
to be Dutch rather than Scottish or Irish when compared to the other tertiles 
(p=0.047, p=0.014). However, the difference in the proportion of females and 
males disappeared after standardizing variability to the intra-individual mean 
LDL-c, by means of the coefficient of variation, in both trial arms (p=0.67, p=0.23, 
respectively). As shown in supplemental Table 1, the participants of the MRI 
substudy were largely representative of the Dutch participants.

effect of pravastatin on ldl-c

Statin therapy was associated with a reduction of both average LDL-c (-1.18 
mmol/L, 95% CI: -1.14 to -1.22) and mean visit-to-visit LDL-c variability (-0.02 
mmol/L, 95% CI: -0.01 to -0.04), as measured by the intra-individual standard 
deviation.

association between ldl-c variability and cognitive performance

In both the placebo and pravastatin group, higher LDL-c variability was 
significantly associated with lower cognitive test scores (Table 2). While most 
consistent for the memory measures 
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Table 1. Baseline characteristics over tertiles of LDL-c variability

Placebo (n=2226) Pravastatin (n=2202)

lowest 
tertile
n=742*

Middle tertile
n=742†

highest 
tertile
n=742‡

p-value lowest tertile
n=734§

Middle tertile
n=735||

highest tertile
n=733#

p-value

Continuous variables (mean ± 
SD)

  Age (years) 75.3 ± 3.4 75.1 ± 3.2 74.9 ± 3.3 0.10 75.4 ± 3.3 75.0 ± 3.4 75.1 ± 3.2 0.13

  Education (age left school, years) 15.3 ± 2.3 15.0 ± 1.9 15.2 ± 2.0 0.15 15.3 ± 2.2 15.3 ± 2.3 15.2 ± 2.1 0.76

  Alcohol intake (units/month) 5.4 ± 8.7 5.1 ± 8.7 5.2 ± 9.6 0.79 4.8 ± 8.4 5.5 ± 8.4 5.9 ± 11.1 0.07

  Body mass index (kg/m2) 26.9 ± 4.2 27.0 ± 4.4 27.1 ± 4.1 0.79 26.8 ± 1.8 26.8 ± 3.9 26.9 ± 4.0 0.89

  Mean SBP (mmHg)** 153.9 ± 16.0 153.4 ± 17.2 153.8 ± 16.1 0.82 153.0 ± 16.4 153.7 ± 17.4 153.7 ± 16.4 0.62

  SBP variability (mmHg)** 13.8 ± 5.0 14.2 ± 5.4 14.8  ± 14.8 0.003 13.7 ± 5.3 14.0 ± 5.2 14.6 ± 5.5 0.006

  Mean LDL cholesterol (mmol/L)** 3.5 ± 0.7 3.7 ± 0.7 3.9 ± 0.8 <0.001 2.3 ± 0.5 2.5 ± 0.6 2.8 ± 0.7 <0.001

Categorical variables (n, %)

  Female 350 (47.2) 368 (49.6) 420 (56.6) 0.001 364 (49.6) 360 (49.0) 419 (57.2) 0.002

  History of hypertension 462 (62.3) 458 (61.7) 464 (62.5) 0.95 480 (65.4) 450 (61.2) 467 (63.7) 0.25

  History of diabetes mellitus 88 (11.9) 84 (11.3) 70 (9.4) 0.29 83 (11.3) 76 (10.3) 58 (7.9) 0.08

  History of stroke or TIA 87 (11.7) 82 (11.1) 72 (9.7) 0.44 86 (11.7) 78 (10.6) 72 (9.8) 0.50

  History of myocardial infarction 101 (13.6) 104 (14.0) 91 (12.3) 0.58 84 (11.4) 101 (13.7) 91 (12.4) 0.41

  History of vascular disease 320 (43.1) 301 (40.6) 330 (44.5) 0.30 310 (42.2) 342 (46.5) 323 (44.1) 0.25

  Current smoker 190 (25.6) 187 (25.2) 189 (25.5) 0.98 172 (23.4) 170 (23.1) 192 (26.2) 0.32

  

Country of origin (n, %)

  Scotland 296 (39.9) 300 (40.4) 301 (40.6) 0.047 287 (39.1) 296 (40.3) 311 (42.4) 0.014

  Ireland 261 (35.2) 288 (38.8) 301 (40.6) 259 (35.3) 278 (37.8) 290 (39.6)

  The Netherlands 185 (24.9) 154 (20.8) 140 (18.9) 188 (25.6) 161 (21.9) 132 (18.0)

P-values calculated using analysis of variance and Pearson’s chi-square test when appropriate. LDL-c denotes 
low-density lipoprotein cholesterol; SBP, systolic blood pressure; TIA, transient ischemic attack.
LDL-c variability ranges (mmol/L): *0.02-0.22, †0.22-0.35, ‡0.35-1.71, §0.00-0.18, ||0.18-0.30, #0.30-1.56; ** calculated 
over months 3 to 24, similar to LDL-c variability.
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Table 1. Baseline characteristics over tertiles of LDL-c variability

Placebo (n=2226) Pravastatin (n=2202)

lowest 
tertile
n=742*

Middle tertile
n=742†

highest 
tertile
n=742‡

p-value lowest tertile
n=734§

Middle tertile
n=735||

highest tertile
n=733#

p-value

Continuous variables (mean ± 
SD)

  Age (years) 75.3 ± 3.4 75.1 ± 3.2 74.9 ± 3.3 0.10 75.4 ± 3.3 75.0 ± 3.4 75.1 ± 3.2 0.13

  Education (age left school, years) 15.3 ± 2.3 15.0 ± 1.9 15.2 ± 2.0 0.15 15.3 ± 2.2 15.3 ± 2.3 15.2 ± 2.1 0.76

  Alcohol intake (units/month) 5.4 ± 8.7 5.1 ± 8.7 5.2 ± 9.6 0.79 4.8 ± 8.4 5.5 ± 8.4 5.9 ± 11.1 0.07

  Body mass index (kg/m2) 26.9 ± 4.2 27.0 ± 4.4 27.1 ± 4.1 0.79 26.8 ± 1.8 26.8 ± 3.9 26.9 ± 4.0 0.89

  Mean SBP (mmHg)** 153.9 ± 16.0 153.4 ± 17.2 153.8 ± 16.1 0.82 153.0 ± 16.4 153.7 ± 17.4 153.7 ± 16.4 0.62

  SBP variability (mmHg)** 13.8 ± 5.0 14.2 ± 5.4 14.8  ± 14.8 0.003 13.7 ± 5.3 14.0 ± 5.2 14.6 ± 5.5 0.006

  Mean LDL cholesterol (mmol/L)** 3.5 ± 0.7 3.7 ± 0.7 3.9 ± 0.8 <0.001 2.3 ± 0.5 2.5 ± 0.6 2.8 ± 0.7 <0.001

Categorical variables (n, %)

  Female 350 (47.2) 368 (49.6) 420 (56.6) 0.001 364 (49.6) 360 (49.0) 419 (57.2) 0.002

  History of hypertension 462 (62.3) 458 (61.7) 464 (62.5) 0.95 480 (65.4) 450 (61.2) 467 (63.7) 0.25

  History of diabetes mellitus 88 (11.9) 84 (11.3) 70 (9.4) 0.29 83 (11.3) 76 (10.3) 58 (7.9) 0.08

  History of stroke or TIA 87 (11.7) 82 (11.1) 72 (9.7) 0.44 86 (11.7) 78 (10.6) 72 (9.8) 0.50

  History of myocardial infarction 101 (13.6) 104 (14.0) 91 (12.3) 0.58 84 (11.4) 101 (13.7) 91 (12.4) 0.41

  History of vascular disease 320 (43.1) 301 (40.6) 330 (44.5) 0.30 310 (42.2) 342 (46.5) 323 (44.1) 0.25

  Current smoker 190 (25.6) 187 (25.2) 189 (25.5) 0.98 172 (23.4) 170 (23.1) 192 (26.2) 0.32

  

Country of origin (n, %)

  Scotland 296 (39.9) 300 (40.4) 301 (40.6) 0.047 287 (39.1) 296 (40.3) 311 (42.4) 0.014

  Ireland 261 (35.2) 288 (38.8) 301 (40.6) 259 (35.3) 278 (37.8) 290 (39.6)

  The Netherlands 185 (24.9) 154 (20.8) 140 (18.9) 188 (25.6) 161 (21.9) 132 (18.0)

P-values calculated using analysis of variance and Pearson’s chi-square test when appropriate. LDL-c denotes 
low-density lipoprotein cholesterol; SBP, systolic blood pressure; TIA, transient ischemic attack.
LDL-c variability ranges (mmol/L): *0.02-0.22, †0.22-0.35, ‡0.35-1.71, §0.00-0.18, ||0.18-0.30, #0.30-1.56; ** calculated 
over months 3 to 24, similar to LDL-c variability.
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Table 2. Cognitive function, at month thirty, over tertiles of LDL-c variability

lowest tertile Middle tertile highest tertile beta (95% ci) p-value

Placebo (n=2226)

  Stroop card III, seconds needed
Model 1 62.25 (0.91) 65.16 (0.93) 65.12 (0.94) 6.24 (0.92, 11.56) 0.021

Model 2 65.06 (1.21) 68.00 (1.23) 68.00 (1.23) 6.44 (1.13, 11.75) 0.017

  LDT, digits coded correctly
Model 1 23.67 (0.24) 22.93 (0.24) 22.99 (0.25) -0.92 (-2.32, 0.48) 0.196

Model 2 23.05 (0.32) 22.29 (0.32) 22.39 (0.32) -0.91 (-2.30, 0.49) 0.204

  PLTi, pictures remembered 
Model 1 9.72 (0.07) 9.51 (0.07) 9.48 (0.07) -0.68 (-1.09, -0.27) 0.001

Model 2 9.60 (0.10) 9.38 (0.10) 9.36 (0.10) -0.66 (-1.07, -0.25) 0.002

  PLTd, pictures remembered 
Model 1 10.56 (0.10) 10.24 (0.10) 10.16 (0.10) -1.02 (-1.60, -0.44) 0.001

Model 2 10.36 (0.13) 10.03 (0.13) 9.97 (0.13) -1.00 (-1.58, -0.42) 0.001

Pravastatin (n=2202)

  Stroop card III, seconds needed
Model 1 62.39 (0.90) 61.77 (0.88) 64.66 (0.94) 3.94 (-0.88, 8.75) 0.109

Model 2 65.17 (1.21) 64.70 (1.20) 67.54 (1.23) 3.89 (-0.92. 8.70) 0.113

  LDT, digits coded correctly
Model 1 23.35 (0.25) 23.80 (0.25) 22.69 (0.27) -1.51 (-2.86, -0.15) 0.030

Model 2 22.41 (0.34) 22.81 (0.34) 21.72 (0.34) -1.51 (-2.86, -0.15) 0.029

  PLTi, pictures remembered 

Model 1 9.66 (0.07) 9.65 (0.07) 9.37 (0.08) -0.56 (-0.95, -0.16) 0.006

Model 2 9.38 (0.10) 9.36 (0.09)
  

9.08 (0.10)
-0.55 (-0.94, -0.15) 0.006

  PLTd, pictures remembered 
Model 1 10.54 (0.10) 10.42 (0.10) 9.87 (0.11) -1.22 (-1.78, -0.66) <0.001

Model 2 10.14 (0.14) 10.00 (0.14) 9.46 (0.14) -1.20 (-1.76, -0.64) <0.001

Data are presented as mean cognitive test scores (SE). The adjusted unstandardized regression coefficient and 
p-value for trend were calculated using LDL-c variability (mmol/L) as a continuous measure.
LDT denotes Letter-Digit Coding test; PLTi, 15-Picture Learning test immediate; PLTd, 15-Picture Learning test 
delayed.
Model 1: adjusted for age, gender, country, education, mean LDL cholesterol, and test version where appropriate.
Model 2: as model 1, additionally for BMI, smoking status, alcohol intake, history of diabetes mellitus, hypertension, 
and vascular disease.
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Table 2. Cognitive function, at month thirty, over tertiles of LDL-c variability

lowest tertile Middle tertile highest tertile beta (95% ci) p-value

Placebo (n=2226)

  Stroop card III, seconds needed
Model 1 62.25 (0.91) 65.16 (0.93) 65.12 (0.94) 6.24 (0.92, 11.56) 0.021

Model 2 65.06 (1.21) 68.00 (1.23) 68.00 (1.23) 6.44 (1.13, 11.75) 0.017

  LDT, digits coded correctly
Model 1 23.67 (0.24) 22.93 (0.24) 22.99 (0.25) -0.92 (-2.32, 0.48) 0.196

Model 2 23.05 (0.32) 22.29 (0.32) 22.39 (0.32) -0.91 (-2.30, 0.49) 0.204

  PLTi, pictures remembered 
Model 1 9.72 (0.07) 9.51 (0.07) 9.48 (0.07) -0.68 (-1.09, -0.27) 0.001

Model 2 9.60 (0.10) 9.38 (0.10) 9.36 (0.10) -0.66 (-1.07, -0.25) 0.002

  PLTd, pictures remembered 
Model 1 10.56 (0.10) 10.24 (0.10) 10.16 (0.10) -1.02 (-1.60, -0.44) 0.001

Model 2 10.36 (0.13) 10.03 (0.13) 9.97 (0.13) -1.00 (-1.58, -0.42) 0.001

Pravastatin (n=2202)

  Stroop card III, seconds needed
Model 1 62.39 (0.90) 61.77 (0.88) 64.66 (0.94) 3.94 (-0.88, 8.75) 0.109

Model 2 65.17 (1.21) 64.70 (1.20) 67.54 (1.23) 3.89 (-0.92. 8.70) 0.113

  LDT, digits coded correctly
Model 1 23.35 (0.25) 23.80 (0.25) 22.69 (0.27) -1.51 (-2.86, -0.15) 0.030

Model 2 22.41 (0.34) 22.81 (0.34) 21.72 (0.34) -1.51 (-2.86, -0.15) 0.029

  PLTi, pictures remembered 

Model 1 9.66 (0.07) 9.65 (0.07) 9.37 (0.08) -0.56 (-0.95, -0.16) 0.006

Model 2 9.38 (0.10) 9.36 (0.09)
  

9.08 (0.10)
-0.55 (-0.94, -0.15) 0.006

  PLTd, pictures remembered 
Model 1 10.54 (0.10) 10.42 (0.10) 9.87 (0.11) -1.22 (-1.78, -0.66) <0.001

Model 2 10.14 (0.14) 10.00 (0.14) 9.46 (0.14) -1.20 (-1.76, -0.64) <0.001

Data are presented as mean cognitive test scores (SE). The adjusted unstandardized regression coefficient and 
p-value for trend were calculated using LDL-c variability (mmol/L) as a continuous measure.
LDT denotes Letter-Digit Coding test; PLTi, 15-Picture Learning test immediate; PLTd, 15-Picture Learning test 
delayed.
Model 1: adjusted for age, gender, country, education, mean LDL cholesterol, and test version where appropriate.
Model 2: as model 1, additionally for BMI, smoking status, alcohol intake, history of diabetes mellitus, hypertension, 
and vascular disease.
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(immediate recall: p=0.002, p=0.006; delayed recall: p=0.001, p=<0.001), 
statistically significant associations were also seen for Stroop (p=0.017, p=0.11) 
and LDT (p=0.20, p=0.029) test scores. These fully adjusted associations were 
essentially unchanged from those seen for the minimally adjusted model. We 
found no evidence for interaction between LDL-c variability and pravastatin 
treatment, for all cognitive outcomes (supplemental table 2). 

sensitivity analyses for cognitive outcomes

As shown in figure 1, the associations between LDL-c variability and cognitive 
performance were essentially unchanged by restricting the analyses to different 
subsets, c.q. adjusting for various possible common causes of LDL-c variability 
and cognitive performance, in both trial arms. 

association between ldl-c variability and Mri measures

We found no evidence for an association between LDL-c variability and 
hippocampal volume (p=0.779, p=0.864, respectively). However, higher LDL-c 
variability was associated with lower total cerebral blood blow in the fully 
adjusted model (Table 3), in both placebo and pravastatin group (p=0.031, 
p=0.050, respectively). Furthermore, higher LDL-c variability was associated 
with greater white matter hyperintensity load in the pravastatin group (p=0.046), 
but this association did not reach statistical significance in the placebo group 
(p=0.184). Additionally, no interaction was observed between LDL-c variability 
and pravastatin treatment, for all MRI measures (supplemental table 3). Further 
adjustments for whole-brain, or grey-matter specific, atrophy did not markedly 
change any of the results (data not shown). 
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figure 1. Sensitivity analyses of the association between LDL-c variability and 
cognitive performance. Consecutively listed, these are: (S1) assessing cognition 
at end of study, (S2) only subjects with four (complete) LDL-c measurements, (S3) 
excluding history of cerebro- and cardiovascular disease, (S4) excluding incident 
cerebro- and cardiovascular disease, (S5) excluding incident serious infection and 
cancer, (S6) adjusting for visit-to-visit systolic BP variability, (S7) adjusting for mean 
LDL-c slope during measurement period, (S8) adjusting for concomitant baseline 
medication usage. Results are presented as adjusted unstandardized regression 
coefficients with 95% confidence intervals. LDT denotes Letter-Digit Coding test; 
PLTi, 15-Picture Learning test immediate; PLTd, 15-Picture Learning test delayed.
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Table 3. MRI measures, at end of study, over tertiles of LDL-c variability

lowest tertile Middle tertile highest tertile beta (95% ci) p-value

Placebo (n=269) n=89* n=90† n=90‡

  Hippocampal volume (ml)
Model 1 9.21 (0.13) 9.26 (0.13) 9.15 (0.13) 0.19 (-0.57, 0.95) 0.622

Model 2 9.14 (0.15) 9.08 (0.16) 9.07 (0.16) 0.11 (-0.66, 0.88) 0.779

  Cerebral blood flow (ml/min/100 ml)
Model 1 48.09 (1.10) 48.43 (1.14) 45.30 (1.14) -6.39 (-13.13, 0.34) 0.063

Model 2 46.95 (1.33) 47.21 (1.44) 44.12 (1.40) -7.66 (-14.61, -0.70) 0.031

  WMHL (ml)
Model 1 7.79 (1.35) 7.06 (1.34) 8.56 (1.33) 4.74 (-3.33, 12.80) 0.249

Model 2 7.76 (1.62) 7.10 (1.71) 8.75 (1.66) 5.69 (-2.72, 14.09) 0.184

Pravastatin (n=266) n=88§ n=89|| n=89#

  Hippocampal volume (ml)
Model 1 9.31 (0.13) 9.34 (0.12) 9.36 (0.11) -0.19 (-0.83, 0.45) 0.557

Model 2 9.17 (0.17) 9.18 (0.16) 9.27 (0.15) -0.06 (-0.72, 0.61) 0.864

  Cerebral blood flow (ml/min/100 ml)
Model 1 48.19 (1.05) 49.17 (1.02) 46.93 (1.09) -6.17 (-12.78, 0.44) 0.067

Model 2 48.80 (1.38) 49.89 (1.46) 47.33 (1.40) -6.82 (-13.63, -0.01) 0.050

  WMHL  (ml)
Model 1 5.21 (1.30) 7.54 (1.22) 8.47 (1.26) 5.62 (-1.50, 12.75) 0.121

Model 2 4.50 (1.69) 6.88 (1.71) 8.43 (1.62) 7.42 (0.15, 14.69) 0.046

Data are presented as mean MRI measure (SE). The adjusted unstandardized regression coefficient and p-value 
for trend were calculated using LDL-c variability (mmol/L) as a continuous measure. 
WMHL denotes white matter hyperintensity load.
Model 1: adjusted for age, gender, education, mean LDL cholesterol, and whole-brain parenchymal volume.
Model 2: as model 1, additionally for BMI, smoking status, alcohol intake, history of diabetes mellitus, hypertension, 
and vascular disease.
LDL-c variability ranges (mmol/L): *0.05-0.20, †0.20-0.32, ‡0.32-1.18, §0.03-0.16, ||0.16-0.25, #0.25-1.52
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Table 3. MRI measures, at end of study, over tertiles of LDL-c variability

lowest tertile Middle tertile highest tertile beta (95% ci) p-value

Placebo (n=269) n=89* n=90† n=90‡

  Hippocampal volume (ml)
Model 1 9.21 (0.13) 9.26 (0.13) 9.15 (0.13) 0.19 (-0.57, 0.95) 0.622

Model 2 9.14 (0.15) 9.08 (0.16) 9.07 (0.16) 0.11 (-0.66, 0.88) 0.779

  Cerebral blood flow (ml/min/100 ml)
Model 1 48.09 (1.10) 48.43 (1.14) 45.30 (1.14) -6.39 (-13.13, 0.34) 0.063

Model 2 46.95 (1.33) 47.21 (1.44) 44.12 (1.40) -7.66 (-14.61, -0.70) 0.031

  WMHL (ml)
Model 1 7.79 (1.35) 7.06 (1.34) 8.56 (1.33) 4.74 (-3.33, 12.80) 0.249

Model 2 7.76 (1.62) 7.10 (1.71) 8.75 (1.66) 5.69 (-2.72, 14.09) 0.184

Pravastatin (n=266) n=88§ n=89|| n=89#

  Hippocampal volume (ml)
Model 1 9.31 (0.13) 9.34 (0.12) 9.36 (0.11) -0.19 (-0.83, 0.45) 0.557

Model 2 9.17 (0.17) 9.18 (0.16) 9.27 (0.15) -0.06 (-0.72, 0.61) 0.864

  Cerebral blood flow (ml/min/100 ml)
Model 1 48.19 (1.05) 49.17 (1.02) 46.93 (1.09) -6.17 (-12.78, 0.44) 0.067

Model 2 48.80 (1.38) 49.89 (1.46) 47.33 (1.40) -6.82 (-13.63, -0.01) 0.050

  WMHL  (ml)
Model 1 5.21 (1.30) 7.54 (1.22) 8.47 (1.26) 5.62 (-1.50, 12.75) 0.121

Model 2 4.50 (1.69) 6.88 (1.71) 8.43 (1.62) 7.42 (0.15, 14.69) 0.046

Data are presented as mean MRI measure (SE). The adjusted unstandardized regression coefficient and p-value 
for trend were calculated using LDL-c variability (mmol/L) as a continuous measure. 
WMHL denotes white matter hyperintensity load.
Model 1: adjusted for age, gender, education, mean LDL cholesterol, and whole-brain parenchymal volume.
Model 2: as model 1, additionally for BMI, smoking status, alcohol intake, history of diabetes mellitus, hypertension, 
and vascular disease.
LDL-c variability ranges (mmol/L): *0.05-0.20, †0.20-0.32, ‡0.32-1.18, §0.03-0.16, ||0.16-0.25, #0.25-1.52
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Multiple linear regression assumptions

We found no evidence of non-normality, curvilinearity, heteroscedasticity, or 
multicollinearity in any of our models. This held true for all cognitive tests and 
magnetic-resonance imaging outcomes.

discussion

We found that higher visit-to-visit variability in LDL-c is robustly associated with 
lower cognitive performance, independent of mean LDL-c levels. While most 
consistent for both immediate and delayed memory-related outcomes, similar 
trends were present for selective attention and processing speed. In addition, we 
observed that higher variability is associated with lower cerebral blood flow and 
greater white matter hyperintensity load within an MRI substudy. All associations 
were independent of clinically overt cerebro- and cardiovascular disease 
and comorbidities. Of particular importance is that these associations were 
present within both placebo and pravastatin treatment arm, with no evidence 
for interaction by pravastatin treatment. This advocates against increased 
LDL-c variability purely reflecting the known beneficial and harmful pleiotropic 
effects of statins, or behavioral factors which may undermine response to lipid 
lowering treatment, most notably non-adherence. Nonetheless, our findings that 
higher LDL-c variability associates with lower neurocognitive function highlight 
the need for further investigations into the potential influence of lipid-lowering 
treatment on LDL-c variability and consequent adverse events. While it should 
be noted that these events are uncommon, and the adverse event reporting not 
part of a systematic evaluation of neurocognitive function, currently available 
trial evidence suggests that neurocognitive adverse events may occur more 
frequently in individuals receiving proprotein convertase subtilisin-kexin type 9 
(PCSK9) inhibitors, independent of on-treatment LDL levels (15). At the same 
time, high-dose monthly regimens of PCSK9 monoclonal antibodies are known 
to produce substantial fluctuations of LDL-c between doses (16). Based on our 
results, this increased variability could possibly contribute to the observed higher 
rate of neurocognitive events, and should be examined by currently ongoing 
PCSK9 trials. To our knowledge, this is the first study examining the association 
between lipid variability and cognitive performance, and provides further 
evidence that lipid variability could be of clinical significance. The implications 
of our findings are thus in line with those from the recently published results 
from the Treating to New Targets trial (9), but extending these to cognitive and 
neuroimaging outcomes. 
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Major strengths of the current study are its size, with over 4400 participants 
providing data on lipid variability and cognitive performance, and the opportunity 
to perform these analyses both in the presence, and absence, of lipid-lowering 
therapy. Moreover, due to the exclusion of participants with MMSE scores 
lower than 24 we were able to examine a fairly homogenous population with 
regard to cognitive function. A limitation of the current study is the observational 
nature of the data, due to which we are unable to infer causal relationships. 
Furthermore, our ability to look at cognitive performance at different time points 
and perform longitudinal analyses was limited by the number of, and varying 
time intervals between, post-baseline LDL-c measurements. In addition, we 
included a limited neurocognitive test battery, which did not provide information 
on various important cognitive domains such as visual-constructive function or 
language. A further possible limitation could be that we did not adjust for multiple 
testing. However, we did not consider our analyses to be hypothesis-free, as we 
included neurocognitive tests specifically known to be affected by neurovascular 
impairment, which are additionally known to be correlated. Applying multiple 
comparison methods like Bonferroni in this case would therefore yield too 
conservative results. Finally, though lipid levels were measured after an overnight 
fast, we did not have data on the exact nature and timing of last consumed meal. 
While this might have influenced our results, it is very likely that any potential 
dietary effect would be random in nature. 

There are several explanations for our findings, which roughly fall within 
two categories. First, it is possible that LDL-c variability is causally related to 
cognition function. Histological studies have demonstrated that lipid-lowering 
treatments such as statins may lower the lipid content of human carotid plaques 
(17), with recent animal studies suggesting that complete atherosclerotic 
regression of early lesions is possible through the lowering of lipid levels (18). 
As such, varying levels of LDL-c could theoretically lead to fluctuations in the 
composition of atherosclerotic plaques, possibly inducing plaque instability and 
thereby increasing the risk of (sub)clinical cerebrovascular damage (19). Another 
pathway might be through endothelial dysfunction, which can be caused by 
many of the risk factors that predispose to atherosclerosis (20). As individuals 
with elevated serum markers of endothelial dysfunction are at higher risk for 
developing cognitive impairment (21), possibly through changes in cerebral blood 
flow (22, 23), increased LDL-c variability might lead to cognitive impairment. In 
line with this hypothesis, we observed that higher LDL-c variability associated 
with lower cerebral blood flow, but also with greater white matter hyperintensity 
load, which has been linked to endothelial (dys)function (24). 
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Explanations within the second category dismiss a causal role for LDL-c 
variability. Here, visit-to-visit variability would rather reflect other processes 
leading to cognitive dysfunction. For example, despite excluding participants 
with a diagnosis of cancer or serious infection from the analyses in a sensitivity 
analysis, undetected subclinical disease might have led both to increased lipid 
variability and cognitive impairment. This also holds true for liver disease, though 
participants with clinically significant liver damage were explicitly excluded from 
enrolling in the trial. Exploratory analyses with inflammatory markers (fibrinogen, 
IL-6, IL-10, CRP) measured at baseline did not reveal evidence of an association 
with LDL-c variability (all p-values > 0.1, data not shown). Furthermore, numerous 
drugs may have unintended effects on lipid levels (25). While adjusting for 
baseline medication usage did not materially change our findings, exact timing 
of new drug commencement, although known to be few, was unfortunately not 
available within our study, and it was therefore not possible to take this into 
account. The observation that the associations were independent of blood 
pressure variability might imply that loss of homeostatic function does not 
underlie our current findings. However, more likely, it may signify that the different 
regulatory systems involved in homeostasis may be affected through different 
pathological pathways. Finally, due to the cross-sectional design of our analyses 
we cannot rule out that subclinical cerebrovascular damage, for which cognitive 
dysfunction may be a marker, leads to increased LDL-c variability.

In conclusion, we showed for the first time that in older participants at risk 
for vascular disease, higher visit-to-visit LDL-c variability is associated with 
lower cognitive performance, lower cerebral blood flow and greater white matter 
hyperintensity load. Our findings underscore the potential of LDL-c variability 
being a useful prognostic marker for different clinical outcomes. Future 
replication studies are needed to corroborate these findings, and should ideally 
also employ longitudinal assessments of neuroimaging to further elucidate the 
possible relationship between LDL-c variability, cerebral blood flow, and white 
matter hyperintensities.  
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supplemental table 1. Characteristics of study participants included in the whole group, 
Dutch subsample, and magnetic resonance imaging (MRI) substudy.

overall cohort 
(n=4428)

dutch subsample 
(n=960)

Mri substudy 
(n=535)

Continuous variables (mean ± SD)

  Age (years) 75.2 (3.3) 75.1 (3.3) 75.0 (3.2)

  Education (age left school, years) 15.2 (2.1) 15.4 (2.9) 15.5 (2.9)

  Alcohol intake (units/month) 5.3 (9.2) 6.9 (8.3) 6.7 (8.2)

  Body mass index (kg/m2) 26.9 (4.1) 26.8 (3.8) 26.7 (3.7)

  Mean SBP (mmHg)* 153.6 (16.6) 156.6 (16.8) 156.6 (17.4)

  SBP variability (mmHg)* 14.2 (5.4) 13.2 (5.2) 13.2 (5.4)

  Mean LDL cholesterol (mmol/L)* 3.1 (0.9) 3.2 (0.9) 3.2 (0.9)

  LDL-c variability (mmol/L)* 0.31 (0.21) 0.28 (0.20) 0.28 (0.20)

  Stroop card III, seconds needed † 64.5 (26.1) 55.2 (20.0) 54.8 (20.0)

  LDT, digits coded correctly † 22.9 (7.8) 26.7 (7.3) 27.1 (7.1)

  PLTi, pictures remembered † 9.5 (2.0) 10.2 (2.1) 10.3 (2.0)

  PLTd, pictures remembered † 10.2 (2.9) 11.3 (2.8) 11.3 (2.8)

Categorical variables (n, %)

  Female 2281 (51.5) 461 (48.0) 233 (43.6)

  History of hypertension 2781 (62.8) 619 (64.5) 339 (63.4)

  History of diabetes mellitus 459 (10.4) 158 (16.5) 88 (16.4)

  History of stroke or TIA 477 (10.8) 158 (16.5) 87 (16.3)

  History of myocardial infarction 572 (12.9) 144 (15.0) 64 (12.0)

  History of vascular disease 1926 (43.5) 407 (42.4) 234 (43.7)

  Current smoker 1100 (24.8) 228 (23.8) 113 (21.1)

LDL-c denotes low-density lipoprotein cholesterol; SBP, systolic blood pressure; TIA, transient ischemic attack; 
LDT, Letter-Digit Coding test; PLTi, 15-Picture Learning test immediate; PLTd, 15-Picture Learning test delayed.
* calculated over months 3 to 24, † at month 30. 
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supplemental Table 2. Cognitive function, at month thirty, over treatment-specific tertiles 
of LDL-c variability (n=4428)

lowest 
tertile

Middle 
tertile

highest 
tertile

beta  
(95% ci)

Ptrend Pinteraction

  Stroop card III, 
seconds

65.09  
(0.85)

66.34  
(0.86)

67.77  
(0.86)

5.10  
(1.59, 8.62)

0.004 0.504

  LDT, digits coded
22.73  
(0.23)

22.56  
(0.23)

22.06  
(0.23)

-1.26  
(-2.22, -0.31)

0.010 0.549

  PLTi, pictures 
remembered 

9.39  
(0.07)

9.38  
(0.07)

9.22  
(0.07)

-0.63  
(-0.91, -0.35)

<0.001 0.730

  PLTd, pictures 
remembered 

10.26  
(0.10)

10.03  
(0.10)

9.72  
(0.10)

-1.12  
(-1.52, -0.73)

<0.001 0.790

Data are presented as mean cognitive test scores (SE). The adjusted unstandardized regression coefficient, 
p-value for trend, and p-value for interaction between treatment and LDL-c variability were calculated using 
variability (mmol/L) as a continuous measure. LDT denotes Letter-Digit Coding test; PLTi, 15-Picture Learning test 
immediate; PLTd, 15-Picture Learning test delayed.
Adjusted for age, gender, country, education, mean LDL cholesterol, pravastatin use, test version where appropriate, BMI, 
smoking status, alcohol intake, history of diabetes mellitus, hypertension, and vascular disease.

supplemental Table 3. MRI measures, at end of study, over treatment-specific tertiles of 
LDL-c variability (n=535)

lowest 
tertile

Middle 
tertile

highest 
tertile

beta  
(95% ci)

Ptrend pinteraction

  Hippocampal volume 
(ml)

9.16  
(0.11)

9.14  
(0.11)

9.22  
(0.11)

0.11  
(-0.38, 0.61)

0.646 0.848

  Cerebral blood flow 
(ml/min/100 ml)

47.70 
(0.96)

48.37  
(1.01)

45.60  
(0.97)

-6.13  
(-10.80,-1.47)

0.010 0.746

  WMHL (ml)
6.20  
(1.15)

7.02  
(1.18)

8.71  
(1.13)

6.64  
(1.36, 11.93)

0.014 0.840

Data are presented as mean MRI measure (SE). The adjusted unstandardized regression coefficient, p-value for 
trend, and p-value for interaction between treatment and LDL-c variability were calculated using variability (mmol/L) 
as a continuous measure. WMHL denotes white matter hyperintensity load. Adjusted for age, gender, education, 
mean LDL cholesterol, whole-brain parenchymal volume, pravastatin use, BMI, smoking status, alcohol intake, 
history of diabetes mellitus, hypertension, and vascular disease.
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absTracT

In recent years, visit-to-visit variability of serum lipids has been linked to both 
clinical outcomes and surrogate markers for vascular disease. In this article, 
we present an overview of the current evidence connecting this intra-individual 
variability to these outcome measures, discuss its interplay with lipid-lowering 
treatment, and describe the literature regarding genetic factors of possible 
interest. In addition, we undertook an explorative genome-wide association 
analysis on visit-to-visit variability of LDL-C and HDL-C, examining additive 
effects in 2,530 participants from the placebo-arm of the PROSPER trial. While 
we identified suggestive associations (p<1x10-6) at 3 different loci (KIAA0391, 
ACCN1, DKK3), previously published data from the GWAS literature did not 
suggest plausible mechanistic pathways. Given the large degree of both clinical 
and methodological heterogeneity in the literature, additional research is needed 
to harmonize visit-to-visit variability parameters across studies and to definitively 
assess the possible role of (pharmaco)genetic factors.
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inTroducTion

There is a growing body of evidence showing that, in addition to average 
levels, fluctuations in various traditional risk factors may be of importance to 
cardiovascular risk assessment. For example, it is now well-established that 
higher intra-individual variability of blood pressure (BP) (1-3) and lower variability 
in heart rate (4, 5) associate with various adverse outcomes. However, lipid 
concentrations are also known to fluctuate substantially, even on a day-to-day 
basis (6, 7). 

Modulated by a myriad of factors including biological, sampling, analytical, 
and clinical conditions (8), this measurement ‘noise’ may lead to uncertainty 
in clinical practice, making repeated lipid measurements necessary before 
determining that a patient is above a disease or risk threshold, or when evaluating 
the efficacy of lipid-level altering treatments. 

Recent evidence suggests that visit-to-visit variability of lipids may 
independently associate with adverse outcomes. Here, we present an overview 
of the current literature linking this intra-individual variability of lipids to clinical 
outcomes, describe its relation to lipid-lowering treatment, and briefly summarize 
which genetic variants have previously been found to contribute to increased lipid 
variability. In addition, we present data from the first genome-wide association 
study (GWAS) on visit-to-visit variability of low-density lipoprotein cholesterol 
(LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels, using data from 
the PROspective Study of Pravastatin in the Elderly at Risk for vascular disease 
(PROSPER).

clinical siGnificance 

In 1960 an interesting collection of observations was published by Groover et 
al., who examined 177 military personnel over 5 years. Comparing cholesterol 
fluctuations over this period, it appeared that the group of individuals who 
had developed clinical manifestations of coronary artery disease had greater 
fluctuations in the preceding years (though no formal statistical testing 
was performed) (9). It wasn’t until 34 years later that researchers from the 
Framingham study reported that greater long-term intra-individual variability in 
total cholesterol (TC) associates with all-cause mortality over a 24-year period 
in men, and with cardiovascular and coronary disease incidence and mortality 
in both sexes (10). 

Only recently has an interest in the clinical impact of visit-to-visit variability of 
lipids re-emerged, with a number of studies showing that various metrics of higher 
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variability also associate with clinical outcomes over shorter periods of follow-
up (Table 1). Of these, five studies have reported that higher intra-individual 
lipid variability is predictive of higher occurrence of adverse cardiovascular 
events. First, researchers from the Treating to New Targets (TNT) study found 
that variability of LDL-C is a predictor of cardiovascular events and mortality, 
independent of statin treatment, average LDL-C levels, and medication adherence 
as determined through pill count in individuals with stable coronary artery disease 
(11). These findings were recently replicated for measures of variability in HDL-C 
and triglycerides in the same population, additionally showing evidence that both 
LDL-C and triglyceride variability associate with incident diabetes (12). Similar 
findings between LDL-C variability and vascular events and all-cause mortality 
were shown in post-hoc analyses of the Incremental Decrease in End Points 
Through Aggressive Lipid-Lowering (IDEAL) trial of 8,658 patients with previous 
MI (13). In addition, Boey et al. observed that variability of LDL-C and HDL-C 
levels associated with 5-year occurrence of major adverse cardiac events after 
surviving ST-segment elevation myocardial infarction (14). Lastly, a recent large-
scale investigation of over 3.5 million individuals from the Korean National Health 
Insurance System (NHIS) cohort without a history of MI and stroke showed that 
higher TC variability linearly associated with greater incidence of MI, stroke and 
all-cause mortality (15). 

Visit-to-visit variability of lipids has also been demonstrated to associate 
with other outcomes. Chang et al. found that fluctuations of HDL-C, but not 
LDL-C, associate with a higher risk of diabetic nephropathy progression in type 
2 diabetes patients (16). Both LDL-C and HDL-C variability have additionally 
been shown to associate with decline in glomerular filtration rate, but not with 
incidence of albuminuria (17). Findings from the Korean NIHS also suggest that 
lipid variability is related to change in kidney function, as analyses in almost 
8.5 million individuals showed that increasing TC variability associated with 
progression to end-stage renal disease (18). Furthermore, higher variability 
of LDL-C was shown to cross-sectionally associate with lower cognitive test 
performance in four cognitive domains, lower cerebral blood flow, and greater 
white matter hyperintensity volume, in older individuals at high risk for vascular 
disease, independent of average LDL-C levels and statin treatment (19). In 
addition, relatively smaller studies have shown cross-sectional associations 
between higher LDL-C variability and obstructive sleep apnea (20) and maximum 
carotid intima-media thickness (21). 

Several hypotheses have been put forward to explain these observational 
findings. On the one hand, lipid variability might simply be a risk marker for 
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distinct pathological processes leading to adverse outcomes. These include 
(sub)clinical disease (e.g. inflammation, cancer, kidney or liver disease), but also 
use of, or non-adherence to, various types of medication (22). If so, interventions 
specifically aimed at reducing variability are not likely to be effective. On the 
other hand, lipid variability might represent a novel modifiable risk factor. In 
the past, intermittent high-fat diets have been used to induce atherosclerotic 
lesions in animals (23, 24). Moreover, it has recently been shown that lipid 
lowering treatment in both animal models and humans may lead to changes 
of the cholesterol content of plaques (25, 26), which may have consequences 
for plaque stability (27, 28). These studies provide circumstantial evidence that 
fluctuations in lipid levels could also causally lead to a higher occurrence of 
adverse events. 

Current knowledge on lipid variability has important limitations. As recently 
argued for research on visit-to-visit variability of BP (29), standardized definitions 
should be developed to facilitate comparisons across studies and assess 
whether reduction of variability will improve outcomes. Much of the evidence 
in favour of clinical significance of lipid variability stems from post-hoc analysis 
of trials, or from research with participants at high risk for vascular disease. 
However, the recent studies performed within the nationwide Korean NIHS 
suggest that these relationships might also hold for the general population, and 
may even be more pronounced within low-risk groups (e.g. younger age, or in 
absence of comorbidities such as obesity and diabetes) (15, 18). To date, all 
studies have solely examined mid- to long-term lipid variability (i.e. months to 
years). While these studies have consistently shown that higher lipid variability 
associates with worse clinical outcomes, these investigations are largely 
incomparable due to the heterogeneity in chosen outcomes of interest and 
metrics of variability. More specifically, five different metrics have been used, 
though all are known to be susceptible to either trend effects or mean levels in a 
repeated measurements setting (supplemental Table 1). Moreover, there exist 
large differences in source population and study design, fasting status, number 
and regularity of lipid measurements, and selection of covariates. In addition, we 
should acknowledge the likely presence of submission and publication bias, as 
evidenced by the substantial publication time gaps between the Air Force and 
Framingham articles and the more recent publications. It therefore remains to 
be seen whether lipid variability truly reflects a reproducible phenomenon, and 
whether more short-term (e.g. daily or weekly) fluctuations also hold promise for 
clinical risk assessment. 
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Table 1. Chronologically listed studies which have reported on associations between 
visit-to-visit lipid variability and (sub)clinical outcomes

clinically oVerT cardioVascular disease

first author (year) study population/design lipid traits
Variability 
metric(s)

number of, and 
time between, 
measurements

Model covariates Main results

Groover9 (1960)

177 men aged 40 to 60 
years, comparison between 

individuals who did (n=16) and 
did not develop CAD, cross-

sectional analysis

TC (non-fasted)

% difference 
between highest 
and average of 

measurement(s)

≥6 yearly measurements 
for 5 consecutive years, 

time intervals unspecified

None (no formal 
statistical testing)

Greater deviations from 5-year average 
within CAD group

Kreger10 (1994)

1,505 women and 1,407 
men aged 30 to 62 years, 
population-based cohort, 

follow-up of 24 years

TC (non-fasted) RMSE 6 biennial measurements
Age, average slope of 

TC, mean TC

Higher variability associated with all-
cause mortality and cardiovascular and 
coronary incidence and mortality in both 

sexes

Bangalore11 (2015)#

9,572 patients aged 35 to 
75 years with known CAD, 

post-hoc analysis from RCT 
comparing atorvastatin 80 
versus 10 mg/day, median 

follow-up of 4.9 years

LDL-C (fasted)
s.d., ASV, CV, 

cVIM

At week 12, at 12 
months, thereafter 
annual, minimum 
of 2 post-baseline 

measurements

Age, adherence (pill 
count), mean LDL-C, 

treatment arm

Higher variability associated with 
higher incidence of any coronary 
or cardiovascular event, all-cause 

mortality, MI, and stroke

Boey14 (2016)

130 patients aged 54.1 ± 
9.3 years with ST-segment 

elevation myocardial infarction 
and surviving to discharge, 

mean follow-up of 62.4 ± 30.5 
months

LDL-C, HDL-C 
(non-fasted)

s.d., CV, cVIM

9.1 ± 4.5 LDL-C 
measurements, 
9.3 ± 4.5 HDL-C 

measurements, minimum 
of 3 from two months 
after discharge, with 

variable measurement 
schedules

Mean lipid levels, 
diabetes mellitus

Higher variability in both LDL-C and 
HDL-C associated with higher risk of 

major adverse cardiac event (death, MI, 
stroke, unplanned revascularization, 

heart failure admission)

Bangalore13 (2017)

8,658 patients aged 62 ± 
9.5 years with previous MI, 
post-hoc analysis from RCT 

comparing atorvastatin 80 mg/
day versus simvastatin 20 mg/

day, median follow-up 4.8 years

LDL-C (fasted)
s.d., ASV, CV, 

cVIM
At week 12, 24, year 1, 

thereafter yearly

Demographics, 
treatment arm, 
cardiovascular 

comorbidities, mean 
LDL-C

Higher variability associated with risk of 
any coronary or cardiovascular event, 

all-cause mortality, and MI
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Table 1. Chronologically listed studies which have reported on associations between 
visit-to-visit lipid variability and (sub)clinical outcomes

clinically oVerT cardioVascular disease

first author (year) study population/design lipid traits
Variability 
metric(s)

number of, and 
time between, 
measurements

Model covariates Main results

Groover9 (1960)

177 men aged 40 to 60 
years, comparison between 

individuals who did (n=16) and 
did not develop CAD, cross-

sectional analysis

TC (non-fasted)

% difference 
between highest 
and average of 

measurement(s)

≥6 yearly measurements 
for 5 consecutive years, 

time intervals unspecified

None (no formal 
statistical testing)

Greater deviations from 5-year average 
within CAD group

Kreger10 (1994)

1,505 women and 1,407 
men aged 30 to 62 years, 
population-based cohort, 

follow-up of 24 years

TC (non-fasted) RMSE 6 biennial measurements
Age, average slope of 

TC, mean TC

Higher variability associated with all-
cause mortality and cardiovascular and 
coronary incidence and mortality in both 

sexes

Bangalore11 (2015)#

9,572 patients aged 35 to 
75 years with known CAD, 

post-hoc analysis from RCT 
comparing atorvastatin 80 
versus 10 mg/day, median 

follow-up of 4.9 years

LDL-C (fasted)
s.d., ASV, CV, 

cVIM

At week 12, at 12 
months, thereafter 
annual, minimum 
of 2 post-baseline 

measurements

Age, adherence (pill 
count), mean LDL-C, 

treatment arm

Higher variability associated with 
higher incidence of any coronary 
or cardiovascular event, all-cause 

mortality, MI, and stroke

Boey14 (2016)

130 patients aged 54.1 ± 
9.3 years with ST-segment 

elevation myocardial infarction 
and surviving to discharge, 

mean follow-up of 62.4 ± 30.5 
months

LDL-C, HDL-C 
(non-fasted)

s.d., CV, cVIM

9.1 ± 4.5 LDL-C 
measurements, 
9.3 ± 4.5 HDL-C 

measurements, minimum 
of 3 from two months 
after discharge, with 

variable measurement 
schedules

Mean lipid levels, 
diabetes mellitus

Higher variability in both LDL-C and 
HDL-C associated with higher risk of 

major adverse cardiac event (death, MI, 
stroke, unplanned revascularization, 

heart failure admission)

Bangalore13 (2017)

8,658 patients aged 62 ± 
9.5 years with previous MI, 
post-hoc analysis from RCT 

comparing atorvastatin 80 mg/
day versus simvastatin 20 mg/

day, median follow-up 4.8 years

LDL-C (fasted)
s.d., ASV, CV, 

cVIM
At week 12, 24, year 1, 

thereafter yearly

Demographics, 
treatment arm, 
cardiovascular 

comorbidities, mean 
LDL-C

Higher variability associated with risk of 
any coronary or cardiovascular event, 

all-cause mortality, and MI
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Kim15

(2017)*

3,656,648 individuals aged 
44.9 ±12.6 years without history 

of MI and stroke, population-
based cohort, median follow-up 

of 8.3 years

TC (fasted) s.d., CV, VIM
3-6 measurements 

during 6 years (4.2±1.2), 
time intervals unspecified

Demographics, 
cardiovascular 

comorbidities, baseline 
and/or mean TC, lipid-

lowering treatment

Higher variability linearly associated 
with incidence of MI, stroke and all-

cause mortality

Waters12

(2017)#

9,572 patients aged 35 to 
75 years with known CAD, 

post-hoc analysis from RCT 
comparing atorvastatin 80 
versus 10 mg/day, median 

follow-up of 4.9 years

LDL-C, HDL-C, 
TG

(fasted)

s.d., ASV, CV, 
cVIM

At week 12, at 12 
months, thereafter 
annual, minimum 
of 2 post-baseline 

measurements

Demographics, 
cardiovascular 

comorbidities, mean 
lipid levels, treatment 
arm, change in lipid 

levels

Higher variability in each lipid trait 
associated with incidence of coronary 
and cardiovascular events. In addition, 

LDL-C and TG variability associated 
with incident diabetes.

oTher ouTcoMes

Chang16 (2013)
864 type 2 diabetic patients 

aged 62.7 ± 11.8 years, mean 
follow-up of 3.8 years

TC, LDL-C, 
HDL-C, TG 

(fasted)
s.d.

8.5 ± 1.5 measurements, 
measured either 

quarterly or every 6 
months

Demographics, smoking, 
disease duration, kidney 

function, ACEI/ARB, 
lipid-lowering treatment

Higher HDL-C variability associated 
with higher risk of diabetic nephropathy 

progression

Smit19 (2016)

4,428 patients aged 70 to 82 
years at high risk of vascular 
disease, post-hoc analysis 

from placebo-controlled RCT 
of pravastatin 40 mg/day, 
with MRI substudy of 535 

participants, cross-sectional 
analyses stratified by treatment 

arm

LDL-C (fasted) s.d.

4 post-baseline 
measurements at 

months 3, 6, 12, 24 
(92% with all 4)

Demographics, 
cardiovascular 

comorbidities, mean 
LDL-C

Higher variability associated with worse 
cognitive performance at month 30 for 
selective attention, processing speed, 
immediate and delayed recall, and with 
lower cerebral blood flow and greater 

white matter hyperintensity load at end 
of study, in both treatment arms

Ng20

(2017)

190 patients aged 54.0 ± 8.8 
years with known CAD, cohort 

followed up after overnight 
sleep study, cross-sectional 

analyses 

LDL-C (fasted) cVIM

8.1 ± 4.2 (minimum of 3) 
measurements during 

53.2 ± 25.3 months, time 
intervals unspecified

Diabetes mellitus, 
hyperlipidemia

Higher scores on apnea-hypopnea 
index associated with greater visit-to-

visit variability

clinically oVerT cardioVascular disease

first author (year) study population/design lipid traits
Variability 
metric(s)

number of, and 
time between, 
measurements

Model covariates Main results

Table 1. Continued
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Kim15

(2017)*

3,656,648 individuals aged 
44.9 ±12.6 years without history 

of MI and stroke, population-
based cohort, median follow-up 

of 8.3 years

TC (fasted) s.d., CV, VIM
3-6 measurements 

during 6 years (4.2±1.2), 
time intervals unspecified

Demographics, 
cardiovascular 

comorbidities, baseline 
and/or mean TC, lipid-

lowering treatment

Higher variability linearly associated 
with incidence of MI, stroke and all-

cause mortality

Waters12

(2017)#

9,572 patients aged 35 to 
75 years with known CAD, 

post-hoc analysis from RCT 
comparing atorvastatin 80 
versus 10 mg/day, median 

follow-up of 4.9 years

LDL-C, HDL-C, 
TG

(fasted)

s.d., ASV, CV, 
cVIM

At week 12, at 12 
months, thereafter 
annual, minimum 
of 2 post-baseline 

measurements

Demographics, 
cardiovascular 

comorbidities, mean 
lipid levels, treatment 
arm, change in lipid 

levels

Higher variability in each lipid trait 
associated with incidence of coronary 
and cardiovascular events. In addition, 

LDL-C and TG variability associated 
with incident diabetes.

oTher ouTcoMes

Chang16 (2013)
864 type 2 diabetic patients 

aged 62.7 ± 11.8 years, mean 
follow-up of 3.8 years

TC, LDL-C, 
HDL-C, TG 

(fasted)
s.d.

8.5 ± 1.5 measurements, 
measured either 

quarterly or every 6 
months

Demographics, smoking, 
disease duration, kidney 

function, ACEI/ARB, 
lipid-lowering treatment

Higher HDL-C variability associated 
with higher risk of diabetic nephropathy 

progression

Smit19 (2016)

4,428 patients aged 70 to 82 
years at high risk of vascular 
disease, post-hoc analysis 

from placebo-controlled RCT 
of pravastatin 40 mg/day, 
with MRI substudy of 535 

participants, cross-sectional 
analyses stratified by treatment 

arm

LDL-C (fasted) s.d.

4 post-baseline 
measurements at 

months 3, 6, 12, 24 
(92% with all 4)

Demographics, 
cardiovascular 

comorbidities, mean 
LDL-C

Higher variability associated with worse 
cognitive performance at month 30 for 
selective attention, processing speed, 
immediate and delayed recall, and with 
lower cerebral blood flow and greater 

white matter hyperintensity load at end 
of study, in both treatment arms

Ng20

(2017)

190 patients aged 54.0 ± 8.8 
years with known CAD, cohort 

followed up after overnight 
sleep study, cross-sectional 

analyses 

LDL-C (fasted) cVIM

8.1 ± 4.2 (minimum of 3) 
measurements during 

53.2 ± 25.3 months, time 
intervals unspecified

Diabetes mellitus, 
hyperlipidemia

Higher scores on apnea-hypopnea 
index associated with greater visit-to-

visit variability

clinically oVerT cardioVascular disease

first author (year) study population/design lipid traits
Variability 
metric(s)

number of, and 
time between, 
measurements

Model covariates Main results
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Takenouchi21

(2017)

162 type 2 diabetic patients 
aged 62 ± 10 years, cross-

sectional analyses
LDL-C (fasted) s.d.

94% had 6 
measurements measured 
during 12 month period, 

time intervals unspecified

Age, sex
Higher variability associated with 
maximum carotid intima-media 

thickness

Ceriello17

(2017)

Type 2 diabetes patients, 2 
cohorts: 4,231 with median age 

of 67.4 (IQR: 60.3-73.4) and 
normoalbuminuria, 7,560 aged 
65.0 (58.5-71.3) with eGFR ≥ 

60 mL/min/1.73 m2, 
median follow-up 3.4 years 

(range 1.7-4.2) 

TC, LDL-C, 
HDL-C, TG 

(fasting status 
unspecified)

s.d.
≥5 measurements over 
3 years, time intervals 

unspecified

Demographics, 
baseline lipid levels/

blood pressure/kidney 
function, glucose- and 

lipid-lowering treatment, 
ACEI/ARB, duration of 

diabetes

No associations with incident 
albuminuria. However, higher variability 

in LDL-C and HDL-C associated with 
increased risk for decline in eGFR 

below 60 mL/min/1.73 m2

Kim18

(2017)*

8,493,277 individuals aged 
48.5 ± 13.8 years and free 

from ESRD, population-based 
cohort, median follow-up 6.1 

years

TC (fasted) s.d., CV, VIM

3-5 measurements over 
6 years 

(3.5 ± 0.8), time intervals 
unspecified

Demographics, 
cardiovascular 

comorbidities, baseline 
and/or mean TC, lipid-

lowering treatment, 
baseline kidney function

Graded association between higher 
variability with incident ESRD

#/*: complete/partial overlap in study populations. RCT denotes randomized clinical trial; CAD, coronary artery 
disease; MI, myocardial infarction; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; 
TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; 
TG, triglycerides; RSME, square root of mean squared error ; s.d., standard deviation; ASV, average successive 
variability; CV, coefficient of variation; (c)VIM, (corrected) variation independent of mean; ACEI/ARB, angiotensin 
converting enzyme inhibitor or angiotensin receptor blocker.

oTher ouTcoMes

first author (year) study population/design lipid traits
Variability 
metric(s)

number of, and 
time between, 
measurements

Model covariates Main results

Table 1. Continued
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Takenouchi21

(2017)

162 type 2 diabetic patients 
aged 62 ± 10 years, cross-

sectional analyses
LDL-C (fasted) s.d.

94% had 6 
measurements measured 
during 12 month period, 

time intervals unspecified

Age, sex
Higher variability associated with 
maximum carotid intima-media 

thickness

Ceriello17

(2017)

Type 2 diabetes patients, 2 
cohorts: 4,231 with median age 

of 67.4 (IQR: 60.3-73.4) and 
normoalbuminuria, 7,560 aged 
65.0 (58.5-71.3) with eGFR ≥ 

60 mL/min/1.73 m2, 
median follow-up 3.4 years 

(range 1.7-4.2) 

TC, LDL-C, 
HDL-C, TG 

(fasting status 
unspecified)

s.d.
≥5 measurements over 
3 years, time intervals 

unspecified

Demographics, 
baseline lipid levels/

blood pressure/kidney 
function, glucose- and 

lipid-lowering treatment, 
ACEI/ARB, duration of 

diabetes

No associations with incident 
albuminuria. However, higher variability 

in LDL-C and HDL-C associated with 
increased risk for decline in eGFR 

below 60 mL/min/1.73 m2

Kim18

(2017)*

8,493,277 individuals aged 
48.5 ± 13.8 years and free 

from ESRD, population-based 
cohort, median follow-up 6.1 

years

TC (fasted) s.d., CV, VIM

3-5 measurements over 
6 years 

(3.5 ± 0.8), time intervals 
unspecified

Demographics, 
cardiovascular 

comorbidities, baseline 
and/or mean TC, lipid-

lowering treatment, 
baseline kidney function

Graded association between higher 
variability with incident ESRD

#/*: complete/partial overlap in study populations. RCT denotes randomized clinical trial; CAD, coronary artery 
disease; MI, myocardial infarction; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; 
TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; 
TG, triglycerides; RSME, square root of mean squared error ; s.d., standard deviation; ASV, average successive 
variability; CV, coefficient of variation; (c)VIM, (corrected) variation independent of mean; ACEI/ARB, angiotensin 
converting enzyme inhibitor or angiotensin receptor blocker.

oTher ouTcoMes

first author (year) study population/design lipid traits
Variability 
metric(s)

number of, and 
time between, 
measurements

Model covariates Main results
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Nonetheless, if it can be shown that appraisal of lipid variability could benefit 
risk assessment, this might influence ordering patterns of lipid levels in clinical 
practice. Researchers working with large-scale data from the Korean NHIS have 
recently shown that incorporating variability of different cardiovascular disease 
risk factors (including intra-individual variability of total cholesterol) substantially 
improved cardiovascular risk predictability compared with single measurement 
values or taking the average of repeated measurements (30), though this was not 
examined separately for lipid variability. These findings are in line with a previous 
simulation study showing that blood pressure and cholesterol variability may lead 
to substantial misclassification when cardiovascular risk assessment is based 
on single measurements (31), and with increasing evidence that incorporating 
repeated measurements can improve cardiovascular risk prediction (32). Based 
on the current literature it is however not yet possible to make recommendations 
on the necessity of repeated lipid measurements in clinical practice either before 
or after starting lipid lowering treatment, beyond which is already viewed as 
necessary to overcome short-term fluctuations in lipid levels.

inTerPlay WiTh liPid-loWerinG TreaTMenT

To date, few studies have systematically examined the effects of lipid-lowering 
treatment on intra-individual variability of lipids. Commencement of statin 
treatment has been shown to lead to a minor decline in absolute values of visit-
to-visit lipid variability in clinical trials (19), as measured by the intra-individual 
standard deviation, with more intensive statin treatment leading to even more 
stable LDL-C levels (11, 13). While these dose-dependent results are not always 
seen in observational studies, this may be due to different prescription patterns 
(14). It is currently unknown whether drug-class effects exist, which have been 
described in research on visit-to-visit BP variability (33, 34), though a cross-over 
study in 26 individuals with type 2 diabetes suggests that these might depend on 
the methods of measuring and calculating lipid profiles (35, 36).

Despite this absolute decrease, results (Table 2) from our PROSPER study 
suggest that statin therapy may also lead to an increase in relative measures of 
lipid variability. This likely occurs because declines in average levels of lipids 
will generally be larger than declines in variability, which will influence relative 
metrics such as the coefficient of variation. However, it is expected that absolute 
declines will be of greater importance in clinical settings, offsetting any relative 
increase. 

Another treatment-related factor contributing to intra-individual variability of 
lipids is non-adherence (37), as has similarly been shown for antihypertensive 
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medication and visit-to-visit variability of BP (38). While combined pharmacological 
treatment modalities may reduce adherence-associated variability (39), adjusting 
for non-adherence is often difficult due to the absence of reliable assessment 
methods (40, 41), which may limit which studies are best suited to investigate 
effects of visit-to-visit variability in absence of non-adherence. However, studies 
which have performed analyses stratified by use of lipid-lowering agents have 
shown either highly comparable (19) or more pronounced (15, 18) associations 
between variability and clinical outcomes in individuals not using lipid-lowering 
medication. It is therefore unlikely that, at least in those studies, the findings can 
be explained solely by non-adherence. Dosing schedules can also influence 
variability. While high-dose monthly dosing of PCSK9-inhibitors are known to 
produce substantial fluctuations of LDL levels in between injections (42, 43), 
there exists tentative trial evidence that adverse neurocognitive events may be 
more prevalent, independent of on-treatment lipid levels (44). It will therefore be 
of interest for PCSK9-trials to examine the possible influence of lipid variability 
on cognitive test performance in greater detail.

Table 2. Demographic characteristics and lipid parameters for the PROSPER study

Placebo 
(n=2,530)

Pravastatin 
(n=2,504)

p-value

Age at randomization 75.31 ± 3.35 75.33 ± 3.35 -

Females (%) 1309 (51.7) 1300 (51.9) -

Lipid parameters at baseline (mmol/L)

   LDL-C 3.79 ± 0.78 3.80 ± 0.81 -

   HDL-C 1.28 ± 0.34 1.29 ± 0.36 -

Lipid parameters during follow-up (mmol/L)*

   No. of measurements 4.39 ± 0.82 4.39 ± 0.81 0.98

   Average LDL-C 3.70 ± 0.76 2.56 ± 0.65 <0.001

   LDL-C variability (standard deviation) 0.33 ± 0.21 0.32 ± 0.24 0.02

   LDL-C variability (coefficient of variation) 0.09 ± 0.06 0.13 ± 0.13 <0.001

   Average HDL-C 1.33 ± 0.36 1.40 ± 0.38 <0.001

   HDL-C variability (standard deviation) 0.12 ± 0.08 0.13 ± 0.08 0.001

   HDL-C variability (coefficient of variation) 0.09 ± 0.05 0.09 ± 0.05 0.53

Unless otherwise specified, data are presented as mean ± standard deviation. P-values calculated using Student 
t-test and Pearson’s chi-square test when appropriate.
LDL-C denotes low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol
* calculated per-individual, over months 3 to 36
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GeneTic basis of VisiT-To-VisiT VariabiliTy of liPids

While over 157 loci associated with blood lipid levels have been identified and 
annotated through large-scale efforts (45), little is known about the genetic 
predisposition for intra-individual variability of lipids. The same applies to 
variability of other physiological measures. For example, to date just one GWAS 
has been published on visit-to-visit variability of BP (46), which many consider 
the poster child of intra-individual variability. 

Previously, Pereira et al. assessed the association between 11 genetic 
polymorphisms involved in lipid metabolism and intra-individual variability of 
total cholesterol and HDL-C in up to 458 men and women from 27 feeding or 
supplement trials designed to change serum cholesterol (47). The authors found 
evidence that two polymorphisms may increase the variability of total cholesterol 
(ApoA4 -347 (0.015 mmol/l higher geometric mean of the intra-individual 
standard deviations for genotype 12/22 versus genotype 11, p=0.02); MTP -493 
(0.017 mmol/l higher for genotype 11 versus genotype 12/22, p=0.004)). In a 
study of 117 men with peripheral arterial disease, it was reported that those 
heterozygous for the ApoB EcoRI polymorphism had higher within-individual 
variation of total serum cholesterol concentration over a period of 5-10 years 
using annual lipid measurements (48). Furthermore, Porkka et al. examined the 
influence of selected genetic markers on long-term variability of serum lipids in 
up to 320 subjects aged 3-18 years at baseline over 3-year intervals during a 
6-year follow-up period (49). They found that ApoB Xbal genotypes significantly 
influenced variability of TC and LDL-C levels in both sexes, and variability of 
triglycerides in males only. Moreover, ApoAI/CIII genotype influenced variability 
of TC and LDL-C levels but again, only in males. Finally, by comparing within-
pair differences in monozygotic twins, possible ‘variability gene effects’ on lipid 
levels of genes in the Kidd blood group locus and of the TaqIB polymorphism in 
the CETP gene have been demonstrated by Berg and colleagues (50, 51). 

As no other studies have examined whether commonly occurring genetic 
variants are of importance to visit-to-visit variability of lipids, we undertook 
an explorative genome-wide association study on intra-individual variability 
of LDL-C and HDL-C, as fluctuations in specifically these two lipid traits have 
recently been shown to associate with clinical outcomes.  

GWas

We included 2,530 individuals from the placebo-arm of the PHArmacogenetic 
study of Statin in the Elderly at risk (PHASE) (52, 53). Genotyping was conducted 
using Illumina 660-Quad beadchips and imputation with MACH imputation 
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software based on the Hapmap built II release 23. We excluded variants with a 
minor allele frequency below 1%, and those with an imputation quality below 0.3.
Lipid levels were assessed after an overnight fast. LDL-C was directly measured, 
and visit-to-visit variability of both LDL-C and HDL-C was defined as the intra-
individual standard deviation over each individual’s lipid measurements at 3, 6, 
12, 24, and 36 months after randomization. 
The association analyses were conducted using PROBABEL software (http://
www.genabel.org/). For both LDL-C and HDL-C variability, an additive linear 
regression model was used. Given the negligible difference in absolute values of 
visit-to-visit variability between the two trial arms, we did not undertake genome-
wide association analyses on the interaction terms with statin treatment. 
However, as non-adherence to pravastatin might influence the degree of visit-to-
visit lipid variability, the analyses presented here were conducted solely in the 
placebo group. All analyses were adjusted for age, gender, principal components 
of ancestry (n=4), and mean intra-individual lipid level during follow-up. The 
p-value threshold for genome-wide significance was set at 5x10-8. 
Known host genes for variants of note found in the GWAS were located via 
the SCAN database (http://www.scandb.org/) (54). Furthermore, we searched 
Phenoscanner (http://www.phenoscanner.medschl.cam.ac.uk) (55), a curated 
database holding publicly available results from large-scale GWAS, for evidence 
of plausible mechanistic pathways for these three variants. In addition, we 
examined our GWAS results for the lead SNPs for loci previously found to 
associate with either LDL-C or HDL-C levels at a genome-wide significant level 
in the largest lipid GWAS to date (45). As some lead SNPs were associated with 
both traits this list comprised 124 different lead SNPs. To account for multiple 
testing, the p-value threshold for statistical significance was set at 0.0002 (i.e. 
0.05/248 tests).

resulTs

We did not observe any genome-wide significant associations for additive effects 
on lipid variability (figure). However, we did detect two suggestive (p<1x10-6) 
signals for LDL-C variability (KIAA0391 and Amiloride-sensitive cation channel 
1 neuronal (ACCN1)) and one for HDL-C variability (Dickkopf WNT Signaling 
Pathway Inhibitor 3 (DKK3)), as shown in Table 3. Q-Q plots did not reveal 
evidence of systematic bias (supplementary figure). 

In order to examine possible mechanistic pathways leading to lipid variability, 
we queried the three suggestive lead SNPs shown in Table 3 in the Phenoscanner 
database. However, with the exception of nominal associations with body-mass 
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index and height (p-values between 0.05 and 0.001), no traits were shared by 
multiple variants (data not shown).

Finally, as shown in supplemental Table 2 and 3, no previously reported lead 
SNPs for loci associated with either LDL-C or HDL-C levels attained statistical 
significance after correction for multiple testing.

figure. Genome-wide Manhattan plots for visit-to-visit variability of low-density lipoprotein 
cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), as measured by 
the intra-individual standard deviation, in the placebo group (n=2,530) of the Prospective 
Study of Pravastatin in the Elderly at Risk (PROSPER). Individual –log10 p-values are 
plotted against their genomic position. Adjusted for age, gender, mean intra-individual 
lipid level during follow-up, and principal components of ancestry (n=4). 



9

REVIEW OF VISIT-TO-VISIT LIPID VARIABILITy | 187

Ta
b

le
 3

. G
en

et
ic

 v
ar

ia
nt

s 
in

de
pe

nd
en

tly
 a

ss
o

ci
at

ed
 w

ith
 li

pi
d 

va
ri

ab
ili

ty
 a

t p
 <

 1
x1

0
-6
 (

n
=

2,
53

0)

Tr
ai

t
l

ea
d

 s
n

P
c

h
r.

P
o

si
ti

o
n

G
en

e*
c

o
d

in
g

 
al

le
le

 (
c

a
)

n
o

n
co

d
in

g
 

al
le

le
f

re
q

. c
a

b
et

a 
†

s.
e.

p
-v

al
u

e

LD
L-

C
 v

ar
ia

bi
lit

y
rs

22
95

46
3

14
3

4
8

0
6

02
4

K
IA

A
0

39
1

C
T

0.
9

8
-0

.1
15

0.
02

2
1.

3 
x 

10
-7

rs
11

8
67

3
6

9
17

29
24

3
3

49
A

C
C

N
1

C
T

0.
0

9
0.

0
50

0.
01

0
3.

9 
x 

10
-7

H
D

L-
C

 v
ar

ia
bi

lit
y

rs
47

57
73

0
11

11
97

18
32

D
K

K
3

G
T

0.
9

0
0.

01
6

0.
0

03
3.

0 
x 

10
-7

C
hr

., 
ch

ro
m

os
om

e;
 L

D
L-

C
, l

ow
-d

en
si

ty
 li

po
pr

ot
ei

n 
ch

ol
es

te
ro

l; 
H

D
L-

C
, h

ig
h

-d
en

si
ty

 li
po

pr
ot

ei
n 

ch
ol

es
te

ro
l

* 
A

s 
re

po
rt

ed
 b

y 
th

e 
S

C
A

N
 d

at
ab

as
e 

(a
va

ila
bl

e 
at

 h
tt

p:
//w

w
w

.s
ca

nd
b.

or
g)

.
†  

B
et

a 
fo

r 
pe

r-
al

le
le

 a
d

di
tiv

e 
ef

fe
ct

 o
n 

lip
id

 v
ar

ia
bi

lit
y 

(in
tr

a-
in

di
vi

du
al

 s
ta

nd
ar

d 
d

ev
ia

tio
n,

 m
m

ol
/L

),
 a

d
ju

st
ed

 f
or

 a
g

e,
 s

ex
, 

m
ea

n 
in

tr
a-

in
di

vi
du

al
 li

pi
d 

le
ve

l, 
an

d 
pr

in
ci

pa
l 

co
m

po
ne

nt
s 

of
 a

nc
es

tr
y 

(n
=

4)
.



188 | CHAPTER 9

discussion

In this narrative review we have presented the literature on visit-to-visit lipid 
variability to date. While the exact role of lipid lowering treatment remains to 
be elucidated, it is evident that the substantial clinical and methodological 
heterogeneity among studies impedes drawing strong conclusions regarding 
possible clinical significance. Furthermore, our current genome-wide association 
results suggest that most genetic variants, including those that influence mean 
LDL-C or HDL-C levels, are not associated with intra-individual variability of 
lipids, or that their effects are too small to detect with our current sample size. 
Replication studies will therefore be necessary to determine whether these 
explorative findings reflect true associations or merely statistical noise. Given 
the negligible difference in absolute values of lipid variability between the 
two PROSPER trial arms, it appears unlikely or at least doubtful that clinically 
relevant pharmacogenetic-guided interventions will be based on common 
genetic variants. 

The major limitations of our association analysis were the relatively small 
sample size, though not dissimilar to the sole GWAS study on visit-to-visit 
variability of BP, and the inclusion of exclusively European-descent participants. 
Future studies on (pharmaco)genetic effects on intra-individual lipid variability 
should carefully consider issues of non-adherence. In addition, the influence 
of number of visits, the effect of duration of time between measurements, and 
the proximity of lipid measurements to drug administration may be important to 
consider (47, 56, 57). 

It should further be noted that intra-individual lipid variability will presumably 
vary within and among populations due to varying genetic and environmental 
factors, which could limit the generalizability of any given study (47). For example, 
it is likely that genetic factors of importance will differ between younger and older 
populations, as age- or clinical disease-related disturbances to homeostatic 
mechanisms will be of little significance to younger populations. This is supported 
by research on the heritability of intra-individual BP variability, as researchers 
from the Twins UK cohort found that environmental factors were responsible 
for over 80% of the variance in variability in older age groups, versus over 50% 
for twin pairs younger than 51 years (58). However, given that age-related loss 
of physiological homeostasis would presumably lead to greater overall intrinsic 
variability (59), there might exist genetic variants of importance to visit-to-visit 
variability of multiple physiological measures in older populations. 

Future studies could focus on overall genetic predisposition to lipid levels 
in greater detail, by examining loci previously found to associate with lipid 
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metabolism (45), as those individuals genetically predisposed to certain lipid 
levels might be less likely to vary from visit-to-visit. In addition, factoring in lipid-
lowering treatment may enhance power for the detection of genes of importance 
to intra-individual variability of lipids, especially if genetic loci have a differential 
effect conditional on the treatment. Gene-environment-wide interaction studies 
(GEWIS) using a joint meta-analysis (JMA) approach may therefore provide 
further insight into the (pharmaco)genetic background of visit-to-visit variability 
of lipids (60). While these methods are promising, there remains ample room 
for the development of methodology and statistical software packages to detect 
genetic loci affecting visit-to-visit variability, which account for phenotypic 
variability across individuals (61). 

In summary, while visit-to-visit variability could be a novel prognostic marker 
for clinical practice, additional efforts are needed to harmonize phenotype 
definitions across different studies, and replication studies are required to 
definitively assess the possible importance of (pharmaco)genetic factors. 
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supplemental Table 1. Metrics of lipid visit-to-visit variability used in the literature

Measure formula Properties

Square root of mean 
squared error (RSME)

With  obtained from fitting x 
against time

Takes (assumed to be linear) 
trend of repeated measurements 
into account, but is susceptible 
to differences in mean follow-up 

levels

Standard deviation 
(s.d)

Dependent on mean follow-up 
levels, and susceptible to trend 

across measurements

Coefficient of variation 
(CV)

Largely independent of mean 
follow-up levels, but susceptible 

to trend effects

Average successive 
variability (ASV)

Largely independent of trend 
effects, but susceptible to 

differences in mean follow-up 
levels

Corrected variation 
independent of mean 

(cVIM)

With beta obtained from fitting 
s.d. on , after natural log-

transformation.

Independent of mean follow-up 
levels, but susceptible to trend 

effects

 denotes the i-th measurement of a set of n-measurements
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supplemental figure. Q-Q plots for the two genome-wide association analyses. 
Corresponding λ’s: (A) 0.995; (B) 1.002 

supplemental Table 2. Lead SNPs for previously reported loci for LDL-C levels.

snP chr. locus ldl-c var. hdl-c var.

rs10102164 8 SOX17 0.03 0.66

rs10128711 11 SPTy2D1 0.56 0.56

rs10401969 19 CILP2 0.35 0.24

rs10490626 2 INSIG2 0.66 0.29

rs11065987 12 BRAP 0.51 0.89

rs11136341 8 PLEC1 0.92 0.55

rs11220462 11 ST3GAL4 0.9 0.21

rs11563251 2 UGT1A1 0.11 0.47

rs1169288 12 HNF1A 0.07 0.85

rs12027135 1 LDLRAP1 0.61 0.56

rs1250229 2 FN1 0.11 0.5

rs12670798 7 DNAH11 0.62 0.73

rs12748152 1 PIGV-NR0B2 0.12 0.44

rs12916 5 HMGCR 0.75 0.26

rs1367117 2 APOB 0.89 0.54

rs1564348 6 LPA 0.43 0.19
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rs17404153 3 ACAD11 0.54 0.27

rs174546 11 FADS1-2-3 0.25 0.55

rs1800562 6 HFE 0.55 0.49

rs1800961 20 HNF4A 0.03 0.57

rs1883025 9 ABCA1 0.39 0.78

rs2000999 16 HPR 0.76 0.31

rs2030746 2 LOC84931 0.85 0.26

rs2072183 7 NPC1L1 0.68 0.77

rs2131925 1 ANGPTL3 0.13 0.57

rs2255141 10 GPAM 0.42 0.38

rs2328223 20 SNX5 0.69 0.74

rs2479409 1 PCSK9 0.21 0.34

rs2642442 1 MOSC1 0.5 0.17

rs267733 1 ANXA9-CERS2 0.51 0.62

rs2710642 2 EHBP1 0.85 0.46

rs2902940 20 MAFB 0.28 0.3

rs2954029 8 TRIB1 0.05 0.72

rs314253 17 DLG4 0.94 0.43

rs3177928 6 HLA 0.05 0.63

rs364585 20 SPTLC3 0.16 0.72

rs3757354 6 MyLIP 0.42 0.93

rs3764261 16 CETP 0.05 0.48

rs3780181 9 VLDLR 0.65 0.06

rs4253776 22 PPARA 0.7 0.48

rs4299376 2 ABCG5/8 0.18 0.02

rs4420638 19 APOE 0.79 0.97

rs4530754 5 CSNK1G3 0.5 0.92

rs4722551 7 MIR148A 0.83 0.72

rs492602 19 FLJ36070 0.68 0.28

snP chr. locus ldl-c var. hdl-c var.

supplemental Table 2. Continued
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rs4942486 13 BRCA2 0.85 0.17

rs514230 1 IRF2BP2 0.16 0.1

rs5763662 22 MTMR3 0.41 0.92

rs6029526 20 TOP1 0.93 0.92

rs629301 1 SORT1 0.26 0.78

rs6511720 19 LDLR 0.38 0.61

rs6818397 4 LRPAP1 0.2 0.87

rs6882076 5 TIMD4 0.19 0.55

rs7570971 2 RAB3GAP1 0.34 0.65

rs7640978 3 CMTM6 0.42 0.57

rs8017377 14 NyNRIN 0.39 0.43

rs964184 11 APOA1 0.003 0.37

rs9987289 8 PPP1R3B 0.06 0.47

Data are presented as p-values for additive effects on visit-to-visit lipid variability as measured by the intra-
individual standard deviation. Lead SNPs as reported by Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and 
refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274-1283.

supplemental Table 3. Lead SNPs for previously reported loci for HDL-C levels.

snP chr. locus ldl-c var. hdl-c var.

rs10019888 4 C4orf52 0.19 0.2

rs11065987 12 BRAP 0.51 0.89

rs1121980 16 FTO 0.29 0.51

rs11246602 11 OR4C46 0.69 0.53

rs11613352 12 LRP1 0.48 0.43

rs11869286 17 STARD3 0.56 0.77

rs12145743 1 HDGF-PMVK 0.99 0.97

rs12328675 2 COBLL1 0.13 0.76

rs12678919 8 LPL 0.31 0.17

rs12748152 1 PIGV-NR0B2 0.12 0.44

rs12801636 11 KAT5 0.07 0.19

rs12967135 18 MC4R 0.41 0.27

snP chr. locus ldl-c var. hdl-c var.
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rs13076253 3 ACAD11 0.98 0.23

rs13107325 4 SLC39A8 0.54 0.01

rs13326165 3 STAB1 0.84 0.25

rs1367117 2 APOB 0.89 0.54

rs1532085 15 LIPC 0.14 0.78

rs1689800 1 ZNF648 0.04 0.84

rs16942887 16 LCAT 0.15 0.56

rs17145738 7 MLXIPL 0.65 0.78

rs17173637 7 TMEM176A 0.1 0.34

rs174546 11 FADS1-2-3 0.25 0.55

rs17695224 19 HAS1 0.55 0.9

rs1800961 20 HNF4A 0.03 0.57

rs181362 22 UBE2L3 0.33 0.63

rs1883025 9 ABCA1 0.39 0.78

rs1936800 6 RSPO3 0.42 0.86

rs2013208 3 RBM5 0.06 0.52

rs2255141 10 GPAM 0.42 0.38

rs2290547 3 SETD2 0.18 0.45

rs2293889 8 TRPS1 0.62 0.61

rs2412710 15 CAPN3 0.78 0.31

rs2602836 4 ADH5 0.04 0.91

rs2606736 3 ATG7 0.4 0.27

rs2652834 15 LACTB 0.62 0.69

rs2814982 6 C6orf106 0.89 0.22

rs2923084 11 AMPD3 0.09 0.88

rs2925979 16 CMIP 0.38 0.79

rs2954029 8 TRIB1 0.05 0.72

rs2972146 2 IRS1 0.59 0.05

rs3136441 11 LRP4 0.24 0.22

snP chr. locus ldl-c var. hdl-c var.

supplemental Table 3. Continued
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rs3764261 16 CETP 0.05 0.48

rs3822072 4 FAM13A 0.46 0.58

rs386000 19 LILRA3 0.72 0.12

rs4129767 17 PGS1 0.52 0.35

rs4142995 7 SNX13 0.25 0.87

rs4148008 17 ABCA8 0.31 0.92

rs4420638 19 APOE 0.79 0.97

rs442177 4 KLHL8 0.8 0.25

rs4650994 1 ANGPTL1 0.69 0.27

rs4660293 1 PABPC4 0.49 0.06

rs4731702 7 KLF14 0.64 0.81

rs4759375 12 SBNO1 0.02 0.61

rs4765127 12 ZNF664 0.83 0.31

rs4846914 1 GALNT2 0.13 0.003

rs4917014 7 IKZF1 0.92 0.81

rs4983559 14 ZBTB42-AKT1 0.63 0.41

rs499974 11 MOGAT2-
DGAT2

0.46 0.78

rs581080 9 TTC39B 0.94 0.88

rs605066 6 CITED2 0.45 0.27

rs6065906 20 PLTP 0.73 0.57

rs629301 1 SORT1 0.26 0.78

rs6450176 5 ARL15 0.55 0.8

rs645040 3 MSL2L1 0.65 0.95

rs6805251 3 GSK3B 0.97 0.39

rs702485 7 DAGLB 0.95 0.38

rs7134375 12 PDE3A 0.6 0.59

rs7134594 12 MVK 0.05 0.34

rs7241918 18 LIPG 0.52 0.96

snP chr. locus ldl-c var. hdl-c var.



200 | CHAPTER 9

rs7255436 19 ANGPTL4 0.83 0.55

rs731839 19 PEPD 0.54 0.46

rs737337 19 ANGPTL8 0.16 0.81

rs7941030 11 UBASH3B 0.84 0.48

rs838880 12 SCARB1 0.27 0.95

rs964184 11 APOA1 0.003 0.37

rs9686661 5 MAP3K1 0.37 0.78

rs970548 10 MARCH8-ALOX5 0.54 0.49

rs998584 6 VEGFA 0.42 0.52

rs9987289 8 PPP1R3B 0.06 0.47

Data are presented as p-values for additive effects on visit-to-visit lipid variability as measured by the intra-
individual standard deviation. Lead SNPs as reported by Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and 
refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274-1283.

snP chr. locus ldl-c var. hdl-c var.

supplemental Table 3. Continued
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The overall aim of this thesis was to describe how both genetic and more 
conventional epidemiological endeavors may complement research into effects 
of statin therapy. Without question, the introduction of statins has provided health 
care providers with an effective and generally well-tolerated pharmacological 
intervention to reduce excess cardiovascular risk due to hypercholesterolemia. 
However, given the widespread use of statins, even small unintended drug-
effects may lead to a significant number of adverse events at the population 
level (1). It therefore remains of importance to examine the validity and relevance 
of purported safety risks due to statin therapy.

A research approach which is increasingly used to help disentangle questions 
of causality – when randomized clinical trials are either impractical, unethical, or 
unlikely to demonstrate uncommon unintended effects of drugs – is Mendelian 
randomization (MR). However, as described in chapter 2, there are key 
assumptions which must be considered when interpreting results from this type 
of study. The same holds true when drawing conclusions from pharmacogenetic 
studies, where different study designs and response phenotypes come with 
implicit underlying assumptions. In chapter 3 we highlighted popular study 
designs for inferring gene-treatment interaction effects of clinical effects of drug 
treatment and the challenges accompanying the use of case-only (which assumes 
that the genotype and drug treatment are not correlated in the population that 
gave rise to the cases) or treated-only (which assumes that the genotype will not 
cause changes in the phenotype in absence of the treatment) study designs. We 
also discussed that a major issue in pharmacogenetic research has been the 
poor reproducibility of promising signals, with low statistical power being a likely 
contributing factor. This underscores the need to collaborate with other research 
groups when contemplating genome-wide approaches to pharmacogenetic 
research. Therefore, to identify novel genetic loci for statin-induced proportional 
HDL-C response, we participated in a large-scale initiative by the GIST 
consortium. As described in chapter 4, this effort included up to 27,720 statin-
treated individuals from 20 studies, with results indicating that CETP is likely the 
only detectable locus with common variants of importance to HDL-C response 
to statin therapy in individuals of European descent. While we provided evidence 
that CETP’s effect is independent of baseline HDL-C levels, we also showed 
that genetic predisposition to HDL-C concentrations positively associates with 
HDL-C response to statin therapy. In essence, those genetically predisposed 
to having higher HDL-C levels respond more favourably to statin therapy, with 
regard to attaining higher HDL-C levels. In contrast, we showed in chapter 5 
that those genetically predisposed to higher LDL-C concentrations tend to have 
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a lower differential LDL-C response, independent of their baseline LDL-C levels. 
Specifically, we estimated the effect to be a 5.4% (95%CI: 4.2–6.7) smaller 
statin response per standard deviation increase in genetically raised LDL-C 
concentrations. However, we should recognise that, given the low-cost threshold 
of remeasuring LDL-C concentrations and the relative ease of adjusting statin 
dosage, it is unlikely that this observation will alter current clinical practises. In 
chapter 6 we provided evidence that the presence of type 2 diabetes is unlikely 
to alter ones proportional LDL-C response to statin therapy. In addition, although 
we found no evidence to suggest that the proportional statin response influences 
the risk of developing new-onset type 2 diabetes, definitive assessment should 
be made in a population composed of statin-users. 

It has furthermore been argued that MR studies might also be affected by 
selection bias. In chapter 7 we focused specifically on survival bias, a subtype 
of selection bias, which may occur when studies include older individuals who 
must necessarily have survived until study inclusion. By simulating simple causal 
structures, we showed that selecting on survival may decrease instrument 
strength. In addition, we observed that the results from MR studies may become 
increasingly biased when the selection gradient is larger. To what degree may 
however depend on both the distribution of the exposures as well as whether 
one- or two-sample MR approaches are undertaken.  

In chapter 8 we examined whether the previously reported associations 
between visit-to-visit variability in LDL-C concentrations and vascular events 
also extend to neurocognitive outcomes. We observed that those individuals 
with greater intra-individual LDL-C variability are also those who tend to have 
worse cognitive test performance, lower cerebral blood flow, and greater white 
matter hyperintensity load. Of note, these associations did not markedly differ 
between statin and non-statin users. It is therefore likely that factors other than 
either non-adherence to statin therapy or known pleiotropic effects of statins 
can explain the previously reported findings in the literature. However, as 
demonstrated in chapter 9, there still remain a great number of unanswered 
questions regarding the clinical relevance of visit-to-visit lipid variability. While 
circumstantial evidence suggests that lipid variability may in itself have causal 
effects on clinical outcomes, it is equally likely to be a risk marker for underlying 
disease processes. In addition, we should recognise that the current literature is 
highly heterogeneous with regard to the populations investigated and variability 
measures utilized. It also remains unclear whether genetic factors may be of 
importance to intra-individual lipid variability, though our explorative GWAS did 
not provide evidence of common variants of importance.
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fuTure PersPecTiVes

The scope of genetic epidemiology is constantly shifting due to ongoing 
methodological development and ever-greater sample sizes, in part facilitated 
by ever-decreasing costs of genome-wide genotyping and whole-genome and 
-exome sequencing. The reference panels from the 1000 Genomes Project (2) 
and Haplotype Reference Consortium (3) have additionally allowed for denser 
genotype imputation of previously measured genome-wide SNP microarrays. 
Several projects using these reference panels are currently underway within 
the GIST consortium. However, while novel hits may be detected and previously 
detected signals refined, it has become clear that pharmacogenetic guidance 
of statin therapy is unlikely to be useful in clinical practice (4), though exploring 
possible pleiotropic effects of statins such as changes in CRP levels may still 
hold promise.

We are currently witnessing a near-exponential growth in MR studies in 
the literature, particularly of those taking a two-sample approach. This trend 
can be attributed to several factors, perhaps most significantly the increased 
availability of publicly available summary level datasets from large-scale GWAS 
combined with the development of methods to use this aggregated data in MR 
studies (5). Furthermore, while effects of common variants detected by GWAS 
tend to be small, increasing GWAS’ sample sizes keep uncovering additional 
potential instruments, of which the combined strength may dwarf those of single 
instruments. National mega-biobanks such as the UK Biobank (6) and the China 
Kadoorie biobank (7) also offer tremendous possibilities to perform research 
with genotypic information on large numbers of participants. In addition, 
association studies using traits derived from next generation characterization and 
quantification of pools of biological molecules (e.g. proteomics (8), metabolomics 
(9, 10)) are providing candidate instruments whose biological function can more 
readily be interpreted due to the molecules being fairly proximal consequences 
of natural genetic variation (11). 

There now exists an active community of methodologists, statisticians, and 
epidemiologists developing and applying novel extensions to, and sensitivity 
analyses for, the basic MR design (12). In recent years much of this effort has 
focused on the issue of pleiotropy (13-15), with several of these methods also 
being showcased in this thesis. A particularly laudable effort has been the 
creation of MR-base, a platform which links a curated database of publicly 
available GWAS results to both a web-app and R-packages that automate two-
sample MR studies (16). Together with i. recent initiatives providing guidance 
to the undertaking and interpretation of MR studies (17-19), ii. the perspective 
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of future methods which might allow the inclusion of many hundreds of weak 
candidate instruments (20), and iii. the biennial MR conference in Bristol (https://
www.mendelianrandomization.org.uk/), it is likely that the upsurge in MR studies 
will continue undiminished.

While these developments are promising, this thesis highlights potential 
problems and limitations of pharmacogenetic research, the MR approach, 
and applying MR research strategies to pharmacogenetic questions. It is 
particularly important that researchers recognize i. the implicit assumptions of 
pharmacogenetic study methodology lest they be violated, ii. that we often deal 
with selected study populations which may also affect the results of MR studies, 
and iii. that MR studies proposing genetic instruments for response phenotypes, 
as identified in pharmacogenetic research, are likely to only produce valid results 
under very specific conditions.

In addition, the recent developments in MR-methodology have also shone 
some light on commonly under-recognized assumptions of instrumental variable 
analyses with genetic instruments which already go beyond the findings and 
limitations described in this thesis. For instance, examination of the oft-made 
analogy between MR studies and randomized trials has shown that these 
designs differ in regards to key aspects. For example, the intervention under 
investigation in a randomized trial is often implemented for a short-term period 
at a particular point in the life course, e.g. rarely before adulthood in the case of 
statins, while MR studies aim to estimate causal effects of life-long interventions 
which theoretically ‘switch on’ at conception (21, 22). This also means that 
estimating period-specific effects in mid- or late-life are beyond the possibilities 
of MR, as effects of genotype on outcome will always represent the average 
effect from conception to end of follow-up. There is also increasing awareness 
that bias in MR studies may arise due to exposures varying over time (23). This 
is also relevant for statins, where dosage adjustment may be needed based on 
renal function or drug interactions. Moreover, it has been argued that instrumental 
variable analyses can only provide bounds when estimating a causal effect, with 
point estimates requiring additional unverifiable assumptions, and the relative 
ease with which assumptions of homogeneity and monotonicity are likely be 
violated in the context of MR studies (24). Finally, causal inference using data 
from large-scale biobanks of seemingly homogenous groups of individuals is 
likely to be more challenging than previously imagined (25, 26). Combined, 
these issues show that ample room exists for future methodological but also 
applied research in the field of MR, which will no doubt also benefit research into 
questions of causality for statin-associated outcomes.
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nederlandse saMenVaTTinG

Een belangrijk doel van dit proefschrift was het beschrijven hoe zowel genetische 
als meer conventionele epidemiologische inspanningen onze kennis over 
effecten van statinetherapie kunnen aanvullen. Ongetwijfeld heeft de introductie 
van statines zorgverleners voorzien van een effectieve, en over het algemeen 
goed verdragen, farmacologische interventie om overmatig cardiovasculair risico 
als gevolg van hypercholesterolemie te verminderen. Gezien het wijdverspreide 
gebruik van statines kunnen echter kleine onbedoelde bijwerkingen leiden tot een 
aanzienlijk aantal ongewenste voorvallen op populatieniveau. Het blijft daarom 
van belang om de validiteit en relevantie van vermeende veiligheidsrisico’s als 
gevolg van statinetherapie te onderzoeken.

Een onderzoeksbenadering die in toenemende mate wordt gebruikt 
om  vraagstukken van causaliteit  te ontrafelen  - wanneer gerandomiseerde 
klinische onderzoeken ofwel onpraktisch of onethisch zijn, of maar moeilijk 
zeldzame bijwerkingen van medicatie kunnen aantonen - is Mendeliaanse 
randomisatie (MR). Zoals beschreven in hoofdstuk 2 zijn er echter belangrijke 
assumpties waarmee rekening moet worden gehouden bij het interpreteren van 
resultaten van dit type onderzoek. Hetzelfde geldt voor het trekken van conclusies 
uit farmacogenetische studies, waarin verschillende onderzoeksontwerpen en 
responsfenotypen impliciete onderliggende assumpties hebben. In hoofdstuk 
3  hebben we  onderzoeksontwerpen besproken die populair zijn om gen-
behandelings effect-modificatie met betrekking tot klinische effecten van 
medicamenteuze behandeling aan te tonen, en de uitdagingen besproken die 
volgen uit het gebruik van case-only (waarin wordt verondersteld dat genotype 
en de medicamenteuze behandeling niet gecorreleerd zijn in de populatie 
die aanleiding gaf tot de cases) en treated-only (waarbij wordt aangenomen 
dat het genotype geen veranderingen in het fenotype zal veroorzaken in 
afwezigheid van de behandeling) onderzoeksontwerpen.  We bespraken 
daarnaast dat een groot probleem in farmacogenetisch onderzoek de slechte 
reproduceerbaarheid is, waaraan een tekort aan statistische power veelal 
bijdraagt.  Dit onderstreept de noodzaak om samen te werken met andere 
onderzoeksgroepen bij genoom-brede benaderingen van farmacogenetisch 
onderzoek. Om deze reden namen we deel aan een grootschalig initiatief van het 
GIST-consortium om genetische loci voor statine-geïnduceerde proportionele 
HDL-C-respons te identificeren. Zoals beschreven in hoofdstuk 4 includeerde 
dit project tot wel 27,720 met statine behandelde personen uit 20 studies. De 
resultaten tonen aan dat CETP waarschijnlijk de enige detecteerbare locus is 
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met veel voorkomende varianten die van belang zijn voor de HDL-C respons 
op statinetherapie bij personen van Europese afkomst.  Hoewel we bewijs 
leveren dat het CETP-effect onafhankelijk is van baseline HDL-C concentraties 
tonen we ook aan dat genetische predispositie voor HDL-C concentraties 
positief associeert met de HDL-C respons op statinetherapie.  In essentie 
reageren diegenen die een genetische aanleg hebben voor hogere HDL-C 
concentraties gunstiger op statinetherapie, wat betreft het bereiken van hogere 
HDL-C concentraties.  In  hoofdstuk 5  laten we zien  dat degenen met een 
genetische aanleg voor hogere LDL-C concentraties een lagere proportionele 
LDL-C-respons hebben, onafhankelijk van hun LDL-C waarden op baseline. 
Onze beste schatting van dit effect was een 5.4% (95% CI: 4.2-6.7) kleinere 
statine-respons per standaarddeviatie toename in genetisch verhoogde LDL-C 
concentraties. We moeten echter erkennen dat, gezien het relatieve gemak van 
het opnieuw meten van LDL-C concentraties en bijstellen van de statinedosering, 
het onwaarschijnlijk is dat deze waarneming de huidige klinische praktijk zal 
veranderen. In hoofdstuk 6 hebben we aangetoond dat het onwaarschijnlijk is 
dat de aanwezigheid van type 2 diabetes de proportionele LDL-C respons op 
statine-therapie zal beïnvloeden. Alhoewel we geen aanwijzingen vonden dat de 
proportionele statine-respons een effect heeft op het risico op het ontwikkelen 
van diabetes type 2, moet een definitieve beoordeling plaatsvinden in een 
populatie die volledig is samengesteld uit statine-gebruikers.

Verder is aangevoerd dat MR-studies ook beïnvloedt kunnen worden door 
selectiebias. In hoofdstuk 7 hebben we ons specifiek gericht op overlevingsbias, 
een subtype van selectiebias, wat kan voorkomen wanneer studies oudere 
personen includeren die noodzakelijkerwijs moeten hebben overleefd tot de 
studie is gestart.  Door eenvoudige causale structuren te simuleren hebben 
we aangetoond dat selecteren op overleving de instrumentsterkte kan 
verminderen.  Daarnaast hebben we vastgesteld dat de resultaten van MR-
studies mogelijk meer vertekend worden wanneer de selectiegradiënt groter 
is. De ernst van deze vertekening is echter zowel afhankelijk van de verdeling 
van de onderzochte risicofactoren als van de keuze voor de één- of twee-sample 
setting. 

In hoofdstuk 8 hebben we onderzocht of de eerder gerapporteerde associaties 
tussen intra-individuele variabiliteit in LDL-C concentraties en vasculaire events 
zich ook generaliseren tot neurocognitieve uitkomsten. We hebben vastgesteld 
dat die personen met een grotere intra-individuele LDL-C variabiliteit ook 
degenen zijn die slechter presteren op cognitieve testen, een lagere cerebrale 
bloedstroom hebben en meer witte stof afwijkingen hebben. Van belang is dat 
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deze associaties niet verschilden tussen statine- en niet-statine-gebruikers. Het 
is daarom waarschijnlijk dat andere factoren dan therapie(on)trouw of pleiotrope 
effecten van statines de eerder gerapporteerde bevindingen in de literatuur 
kunnen verklaren. Zoals echter aangetoond in hoofdstuk 9 zijn er nog steeds 
een groot aantal onbeantwoorde vragen met betrekking tot de klinische relevantie 
van intra-individuele variabiliteit van lipiden. Hoewel indirect bewijs suggereert 
dat deze variabiliteit causale effecten op klinische uitkomsten kan hebben, is 
het even waarschijnlijk een risicomarker voor onderliggende ziekteprocessen. 
Bovendien moeten we erkennen dat de huidige literatuur zeer heterogeen is wat 
betreft de onderzochte populaties en maten van variabiliteit. Het blijft daarnaast 
onduidelijk of genetische factoren van belang kunnen zijn voor intra-individuele 
variabiliteit van lipiden, hoewel onze exploratieve GWAS geen bewijs leverde dat 
veel voorkomende genetische varianten van belang zijn.

Toekomstperspectieven

De genetische epidemiologie is continu in beweging als gevolg van de voortdurende 
methodologische ontwikkeling en toenemende studiegroottes, deels gefaciliteerd 
door de alsmaar dalende kosten van genoom-brede genotypering en whole-
genome en -exome sequencing.  De referentiepanels van het 1000 Genomes 
Project en het Haplotype Reference Consortium hebben bovendien een dichtere 
genotype-imputatie van eerder gemeten genoom-brede SNP-microarrays 
mogelijk gemaakt.  Verschillende projecten die gebruik maken van deze 
referentiepanels zijn momenteel lopend binnen het GIST-consortium.  Hoewel 
dit onderzoekers toestaat nieuwe hits te identificeren en eerder gedetecteerde 
signalen te verfijnen, is het duidelijk geworden dat “farmacogenetische sturing” 
van statinetherapie niet nuttig is in de klinische  praktijk. Dit neemt niet weg 
dat het onderzoeken van  mogelijke  pleiotrope effecten van statines zoals 
veranderingen in CRP-niveaus nog steeds veelbelovend kan zijn.

We zijn momenteel getuige van een bijna exponentiële groei van MR-onderzoek 
in de literatuur, grotendeels bestaande uit studies die een twee-sample benadering 
volgen.  Deze trend kan worden toegeschreven aan verschillende factoren. 
Wellicht de meest significante factor is de toegenomen beschikbaarheid van 
publiekelijk beschikbare datasets van grootschalige GWAS, in combinatie met 
de ontwikkeling van methoden om deze geaggregeerde gegevens in MR-studies 
te gebruiken. Hoewel de effecten van veelvoorkomende varianten die in GWAS 
worden gevonden doorgaans klein zijn leveren de toenames in studiegrootte 
nog steeds additionele potentiële instrumenten op, waarvan de gecombineerde 
sterkte die van afzonderlijke instrumenten dikwijls overtreft.  Nationale mega-
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biobanken zoals de UK Biobank en de China  Kadoorie Biobank  bieden ook 
enorme mogelijkheden om onderzoek met genotypische informatie uit te voeren 
bij grote aantallen deelnemers.  Associatiestudies gebruikmakend van next-
generation karakterisering en kwantificatie van biologische moleculen (bijv. 
proteomics, metabolomics) leveren tevens potentiele instrumenten op waarvan 
de biologische functie makkelijker kan worden geïnterpreteerd, omdat de 
moleculen proximale gevolgen van natuurlijke genetische variatie zijn.

Er bestaat nu een actieve gemeenschap van methodologen, statistici en 
epidemiologen die uitbreidingen en sensitiviteitsanalyses ontwikkelen voor het 
basis MR-studieontwerp.  In de afgelopen jaren is veel van hun inspanningen 
gericht geweest op de kwestie van pleiotropie. Verschillende van deze methoden 
zijn ook belicht in dit proefschrift. Een bijzonder lovenswaardige inspanning 
was de oprichting van MR-base, een platform dat een database van publiek 
beschikbare GWAS-resultaten koppelt aan zowel een web-app als R-pakketten 
die two-sample MR-analyses automatiseren. Tezamen met i. recente initiatieven 
die richting geven aan de uitvoering en interpretatie van MR-studies,  ii.  het 
perspectief op toekomstige methoden die  het gebruik van vele honderden 
zwakke kandidaat-instrumenten mogelijk maken, en  iii. de tweejaarlijkse MR-
conferentie in Bristol (https://www.mendelianrandomization.org.uk/), is het 
aannemelijk dat de opleving van MR-studies onverminderd zal doorgaan.

Hoewel deze ontwikkelingen veelbelovend zijn, worden in dit proefschrift 
mogelijke problemen en beperkingen van farmacogenetisch onderzoek, de 
MR-benadering en MR-onderzoeksstrategieën voor farmacogenetische vragen 
behandeld.  Het is bijzonder belangrijk dat onderzoekers  zich bewust worden 
van i. de impliciete assumpties van farmacogenetische studiemethoden, ii. dat 
we vaak te maken hebben met geselecteerde onderzoekspopulaties die 
ook de resultaten van MR-studies kunnen beïnvloeden, en  iii.  dat MR-
studies  die  genetische instrumenten voor responsfenotypen gebruiken, 
zoals  geïdentificeerd in farmacogenetisch onderzoek,  waarschijnlijk alleen 
onder zeer specifieke omstandigheden valide resultaten zullen opleveren.

Daarnaast hebben de recente ontwikkelingen in MR-methoden ook licht 
geworpen op veelal onderkende aannames van instrumentele variabele analyses 
met genetische instrumenten die reeds verder gaan dan de bevindingen  en 
beperkingen die in dit proefschrift worden beschreven. Zo heeft onderzoek naar 
de vaak gemaakte analogie tussen MR-studies en RCT’s aangetoond dat deze 
ontwerpen verschillen met betrekking tot belangrijke aspecten. Interventies die in 
gerandomiseerde studies worden onderzocht worden vaak geïmplementeerd voor 
een korte periode  op een bepaald moment in de levensloop, zelden voor de 
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middelbare leeftijd in het geval van statines, terwijl MR-studies gericht zijn op 
het schatten van de causale effecten van levenslange interventies die theoretisch 
‘aangezet worden’ bij de conceptie.  Dit betekent ook dat het schatten van 
periode-specifieke effecten in het midden of het late leven de  mogelijkheden 
van MR te boven gaat, omdat geschatte effecten van genotype op een uitkomst 
altijd het gemiddelde effect zullen weergeven van de conceptie tot het einde 
van de follow-up. Er is ook een toenemend besef dat bias in MR-studies kan 
ontstaan als blootstellingen in de loop van de tijd veranderen. Dit is ook relevant 
voor statines, waar dosisaanpassing nodig kan zijn op basis van de nierfunctie 
of geneesmiddelinteracties.  Bovendien is beargumenteerd  dat instrumentele 
variabele analyses alleen grenzen (bounds) kunnen geven bij het schatten een 
causaal  effect, doordat puntschattingen extra niet-verifieerbare assumpties 
vereisen, en het relatieve gemak waarmee assumpties van homogeniteit 
en monotoniciteit waarschijnlijk worden geschonden in de context van MR-
studies. Ten slotte is causale inferentie op basis van gegevens van grootschalige 
biobanken van schijnbaar homogene groepen individuen waarschijnlijk een 
grotere uitdaging dan eerder werd gedacht. Tezamen tonen deze kwesties aan 
dat er ruimte is voor toekomstig methodologisch maar ook toegepast onderzoek 
op het gebied van MR, wat ongetwijfeld het onderzoek naar statine gerelateerde 
uitkomsten ook ten goede zal komen.
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