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We investigate the turbulent dynamics of a two-dimensional active nematic liquid crystal constrained to a
curved surface. Using a combination of hydrodynamic and particle-based simulations, we demonstrate that
the fundamental structural features of the fluid, such as the topological charge density, the defect number
density, the nematic order parameter, and defect creation and annihilation rates, are approximately linear
functions of the substrate Gaussian curvature, which then acts as a control parameter for the chaotic flow.
Our theoretical predictions are then compared with experiments on microtubule-kinesin suspensions
confined on toroidal droplets, finding excellent qualitative agreement.
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Experimental studies on active liquid crystals [1–19]
have opened, in the past decade, a Pandora’s box of novel
hydrodynamic phenomena with no counterparts in passive
complex fluids. Active liquid crystals are orientationally
ordered fluids consisting of self and mutually propelled
rod-shaped constituents, generally of biological origin.
Examples include in vitro mixtures of microtubules and
kinesin [1–4,6–8], actomyosin gels [9,10], suspensions of
motile cells, such as flagellated bacteria [11–16] and sperm
[17,18], and “living liquid crystals” [19]. Depending on the
abundance of biochemical fuel as well as the system
density and geometry, these active liquids have been
observed to self-organize into an extraordinary variety of
spatiotemporal patterns, including traveling bands [9] and
vortices [16], oscillating textures [4,9], ordered arrange-
ments of topological defects [6,17] and turbulent flows at
low Reynolds number [2,11,12,14,15,18,19].
Starting from the pioneering work by Keber et al. [4] on

active nematic vesicles, unraveling the interplay between
substrate geometry and the collective motion of active
fluids has surged as one of the fundamental challenges in
the physics of active materials. In spite of the variety of
interesting phenomena discussed in the literature [20,21]
and with special emphasis in the case of spherical active
fluids [4,22–25], a coherent theoretical picture, which
accounts for the threefold coupling between substrate
geometry, orientational dynamics, and hydrodynamic flow,
is still lacking.
In a recent work, we have investigated the dynamics

of a turbulent active nematic suspension of microtubules
and kinesin confined to the surface of a toroidal droplet [5].
Using a combination of experiments and a Coulomb gas
model of active defects [26–28], we demonstrated that,

because of passive elastic interactions [29,30], defects in
active nematics are sensitive to the Gaussian curvature of the
substrate. As turbulence progresses toward fully developed,
this effect becomes weaker and weaker, but never com-
pletely disappears. However, the Coulomb gas model
abstracts the full active nematic to a collection of point
particles, thus providing no information on the effect of the
hydrodynamic flow, beside the active propulsion of the
defects.
In this Letter, we overcome this limitation and generalize

the hydrodynamic theory of active nematics to arbitrarily
curved substrates. By focusing on the fully developed
turbulent regime, we demonstrate that topological defects
can be controlled through the substrate geometry. For the
specific case of axisymmetric tori, we show that this
behavior originates from the interplay between passive
elastic interactions, driving the defects toward regions of
like-sign Gaussian curvature, and active hydrodynamical
effects, which result into a nonuniform defect-creation rate.
Finally, we compare our predictions with experiments on
microtubule-kinesin suspensions confined to the surface of
toroidal droplets, finding excellent qualitative agreement.
Let r ¼ rðx1; x2Þ be the position of a generic surface

embedded in R3 and parametrized by the coordinates
ðx1; x2Þ. Furthermore, let gi ¼ ∂ir be a basis of covariant
vectors on the tangent plane, so that gij ¼ gi · gj is the
surface metric tensor. A configuration of an active nematic
monolayer constrained to lie on the surface can be described
in terms of the local velocity field v ¼ vigi and nematic
tensor Q ¼ Qijgigj, where Qij ¼ Sðninj − gij=2Þ, with S
the nematic order parameter and n ¼ nigi the nematic
director, such that nini ¼ 1. Incompressibility requires
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∇ivi ¼ 0, with ∇i the covariant derivative. The hydro-
dynamic equations governing the evolution of the active
nematic fluid of density ρ and viscosity η can be expressed in
covariant form as follows [31]:

ρ
Dvi

Dt
¼ ηðΔB þ KÞvi −∇iP − ζvi þ α∇jQij; ð1aÞ

DQij

Dt
¼ λSuij −

1

2
ωðϵikQkj þ ϵjkQ

kiÞ þ 1

γ
Hij; ð1bÞ

where D=Dt ¼ ∂t þ vk∇k is the covariant material deriva-
tive, ΔB ¼ gij∇i∇j is the covariant (or Bochner) Laplacian,
and P the pressure. The term ηKvi, with K the Gaussian
curvature, represents the additional shear force arising from
the fact that streamlines inevitably converge or diverge on
surfaces with nonzero Gaussian curvature, whereas −ζvi,
with ζ a friction coefficient, is the damping force arising
from the possible interaction with the external environment.
The last term in Eq. (1a) arises from the divergence of the
active stress σactive ¼ αQ, where the constant α embodies
the biochemical activity of the system. In Eq. (1b), λ is the
flow-alignment parameter, uij ¼ ð∇ivj þ∇jviÞ=2 is
the strain-rate tensor, ω ¼ ϵij∇ivj is the vorticity, with ϵij
the antisymmetric Levi-Civita tensor and ϵji ¼ gjkϵik, γ is
the rotational viscosity, andHij ¼ −δF=δQij is the molecu-
lar tensor describing the orientational relaxation of the
system, with F the free energy. Following Kralj et al.
[32], we express F as

F ¼
Z

dA

�
a2t
2

QijQij þ a4
4
ðQijQijÞ2 þ k

2
∇iQjk∇iQjk

−
k24
2

KQijQij þ keQijKjkKi
k

�
; ð2Þ

where a2 and a4 are constants, t is the reduced temperature
and is negative in the nematic phase, Kij ¼ −gi · ∂jN, with
N the normal vector, is the extrinsic curvature tensor, and k,
k24 and ke are phenomenological elastic constants detailing
the cost of distortions in Q, the cost of forming an ordered
phase where K ≠ 0, and the coupling between the order and
the extrinsic curvature, respectively [33–35].
Equation (1) describes the dynamics of an active nematic

monolayer on a generic curved surface. To provide an
example and make contact with experiments, we have
considered the specific case of an active nematic con-
strained on an axisymmetric torus (Fig. 1). Unlike the
sphere, the torus is a closed surface having nonuniform
Gaussian curvature. The latter is positive and maximal on
the outer equator, negative and minimal on the inner
equator, and varies smoothly over the surface, resulting
into a vanishing Euler characteristic: χ¼1=ð2πÞR KdA¼0.
When a torus is coated with a nematic liquid crystal,
this property implies global topological charge neutrality,

i.e.,
P

nsn ¼ 0, with sn the topological charge, defined as
the winding number of the nematic director along a path
encircling the nth defect. In practice, sn ¼ �1=2, due to the
prohibitive energetic cost of higher-charge disclinations in
two dimensions [5].
Equation (1) has been numerically integrated using the

vorticity or stream-function approach [31]. To make Eq. (1)
dimensionless, we rescale length by the cross-sectional
radius of the torus, b, time by the relaxational time scale
k=ðγb2Þ of the Q tensor, and mass by ρb2. In these units, we
set k ¼ 1, ke ¼ 0, k24 ¼ 0, η ¼ 0.1, ζ ¼ 0.1, and λ ¼ 0.5.
The torus aspect ratio is ξ ¼ a=b ¼ 2, with a the radius of
the central ring.
Figures 1(a) and 1(b) illustrate a typical configuration of

the nematic director and the vorticity. As in the case of a flat
substrate, active nematics are found in a turbulent regime
when the active length scale la ¼

ffiffiffiffiffiffiffiffiffiffi
k=jαjp

, resulting from
the balance between active and passive stresses [36], is
much smaller than the torus cross-sectional radius b and
the frictional screening length lf ¼

ffiffiffiffiffiffiffi
η=ζ

p
. In this regime,

the flow is organized in vortices of average size la and the
director is decomposed in domains surrounded by �1=2
disclinations. Although on the plane these structures are
uniformly distributed, Fig. 1 shows a higher density of
vortices in the interior of the torus. These simple obser-
vations already suggest a correlation between the substrate
geometry and the spatial organization of the coherent
structures emerging within the active flow. In order to
quantify this effect, we have measured the time-averaged
topological charge density ρc of the defects as a function of
the Gaussian curvature K [Fig. 2(a)]. We find that ρc
increases monotonically with K and attains its largest
magnitudes along the equators. This behavior originates
from the elasticity of the nematic phase. Assuming the
nematic order parameter is constant outside the core of the
defects, Eq. (2) approximates the one-elastic-constant
Frank free energy. In the presence of a distribution of
topological defects, the latter is given by FF ¼
k=2

R
dAj∇φj2 [29,30], with φ a geometric potential given

by ΔLBφ ¼ ρc − K, with ΔLB the Laplace-Beltrami oper-
ator [31]. This implies that the lowest energy state is

(a) (b)

FIG. 1. (a) Schlieren texture and (b) flow on a toroidal active
nematic obtained from a numerical integration of Eq. (1). Dark
regions correspond to local configurations of the director parallel
or perpendicular to the meridians of the torus, whereas red (blue)
indicates regions of positive (negative) vorticity.
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attained when ρc ¼ K and φ ¼ const. Although in the
turbulent regime investigated here the system is well away
from its lowest free energy state, topological defects are
still subject to elastic forces attracting them to regions of
like-sign Gaussian curvature, thus ρc ∼ K.
This result is consistent with prior experiments and

numerical simulations using a Coulomb gas model [5]
and can be understood based on the mechanical properties
of nematic liquid crystals at equilibrium. Hydrodynamics,
however, enables us to go beyond this and shed light on the
nonequilibrium nature of defect proliferation. Figure 2(b)
shows the number density n� of positive (solid line) and
negative (dashed line) defects, such that ρc ¼ ðnþ − n−Þ=2.
Both densities are essentially linear function of K but,
surprisingly, both have negative slope. This implies that
positive defects are denser in the negative Gaussian
curvature region, in direct contrast to the passive case, in
which the positive defects are only found in the positive
Gaussian curvature region [37,38]. At K ¼ 0, nþ and n−
crossover, so that, at K ¼ 0, the topological charge
density vanishes, as observed in Fig. 2(a). This behavior
is, in turn, correlated with the configuration of the shear rate
[Fig. 2(c)] and the defects creation and annihilation rate
[Fig. 2(d)], which are both monotonically decreasing with
the distance from the inner equator of the torus.
Given that the passive elastic forces always drive the

positive defects toward the regions of positive Gaussian

curvature, the increased density of the positive defects in
regions of negative K must originate from nonequilibrium
effects. We conjecture that the higher normal curvature in
the interior of the torus results into a higher shear rate in
the flow [Fig. 2(c)], which, in turn, leads to a stronger
distortion of the nematic director and a larger defect
creation rate [Fig. 2(d)]. On the other hand, the geometrical
forces due to the Gaussian curvature biases the positive
(negative) topological charge toward the exterior (interior)
of the torus, but, because of the short mean-free path of the
defects, this does not lead to a complete segregation of the
topological charge. As a consequence, the density of both
positive and negative defects is larger in the interior of the
torus, although their difference is proportional to K.
To test this hypothesis, we use a variant of the Coulomb

gas model of active nematic defects [4,5,26–28], aug-
mented with a nonuniform defect creation distribution
reproducing the outcome of the hydrodynamic simulations.
Defects are modeled as massless particles on the torus,
whose position rn and orientation pn are governed by the
following equations of motion

drn
dt

¼ v0pn þ μFn þ ζ tn;
dpn
dt

¼ ζrnp⊥n ; ð3Þ

where v0 is the speed at which defects are propelled
by their self-generated flow and is nonzero only for
þ1=2 defects [27], μ is a mobility coefficient, ζ tn and
ζrn are uncorrelated translational and rotational noises,
and pn · p⊥n ¼ 0. In addition, Fn ¼ −∇rnFF, where FF ¼
−4π2k

P
n≠msnsmGðrn; rmÞ þ 2πk

P
nsn

R
dAGðrn; rÞKðrÞ,

with Gðrn; rmÞ the Laplacian Green function on the torus
(see the Supplemental Material [31]), is the elastic force
resulting from the interdefect interactions and the inter-
action between the defects and the local Gaussian
curvature.
Equation (3) is solved numerically for fixed number of

defects. Every time two oppositely charged defects come
within a distance rc ¼ 2a × 10−3, representing the defect
core radius, they annihilate and a new pair is created at a
random position. Consistent with the outcome of our
hydrodynamic simulations [Fig. 2(d)], the probability
distribution for pair creation is chosen to be a linearly
decreasing function of K: namely, ρcreation ∼ 1 − b2K (up to
normalization factors). We plot ρc, n�, and the creation and
annihilation rate densities obtained from an integration of
Eq. (3) in Fig. 3. Comparing with the hydrodynamic results
in Fig. 2, we see remarkable agreement. As in our hydro-
dynamics simulations, the topological charge density ρc
from the Coulomb gas model is monotonically increasing
with the Gaussian curvature [Fig. 3(b)] and essentially
unaffected by the system activity. Nevertheless, the number
density of both positive and negative defects, n�, is higher
in the interior of the torus [Fig. 3(c)], in spite of the elastic
interaction between the defects and the substrate forcing the

(a) (b)

(c) (d)

FIG. 2. Structural properties of toroidal active nematics vs
Gaussian curvature, obtained from a numerical integration of
Eq. (1). (a) Topological charge density ρc. When turbulence is
fully developed, increasing the activity has little effect on ρc,
but causes a linear increase in the number of defects (inset).
(b) Number density of þ1=2 (nþ) and −1=2 (n−) disclinations.
In contrast to passive liquid crystals on curved surfaces, both
densities are larger in the interior of the torus, where the
Gaussian curvature is negative. All quantities are rescaled as
explained in the main text. (c) Shear-rate uθϕ, with θ and ϕ the
coordinates along the meridian and parallel, respectively.
(d) Annihilation and creation rate densities are both increased
in the interior of the torus.
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þ1=2 defects toward the exterior of the torus. The defects
annihilation and creation rates match each other exactly
and are increasingly larger in the region of negative K
[Fig. 3(d)] as activity increases. Consistent with our
hypothesis, a higher pair creation rate inside the torus
leads to a larger density of positive defects in regions of
negative Gaussian curvature, even though ρc ∼ K. As
elasticity-driven defect unbinding preferentially occurs in
regions of vanishing Gaussian curvature [37] and is
independent on activity, the origin of this process is
ultimately hydrodynamical.
To further test the relevance of our theoretical predic-

tions, we turn to experiments on microtubule-kinesin
suspensions constrained to the surface of toroidal droplets
[5,39]. The kinesin motors are powered by 36 μM of
adenosine triphosphate (ATP). In addition, we include an
ATP regeneration system, phosphoenolpyruvate, and pyr-
uvate kinase/lactic dehydrogenase, and a depletant, poly-
ethylene glycol, which causes the microtubules to assemble
on the surface, where they form a nematic liquid crystal
(see the Supplemental Material [31]). We then image the
lower half of the toroidal droplet using confocal micros-
copy and project a region along the gravitational direction
onto the plane [Fig. 4(a)]. The local Gaussian curvature and

Q are constructed using techniques from the computer
vision literature [5]. We consider various regions on the
surface of a given torus, calculate the mean Gaussian
curvature in each region, hKi, and correlate it with the
time-averaged ρc and the time-averaged S in the region, as
shown in Fig. 4(b) for the representative example toroid
in Fig. 4(a). We also consider the defect densities
individually and correlate n� with hKi [Fig. 4(c)].
Consistent with our theoretical results, we find that ρc
and S depend linearly on hKi with a positive slope. In
addition, we also observe that n� are linearly dependent
on hKi with a negative slope, corresponding to a higher
defect density in the interior of the toroidal droplet than
on the exterior. We observe this same behavior for other
toroids with relatively low aspect ratio..
At the ATP concentration used in our experiments, Q

evolves slowly enough to track the defects in time using a
combinatorics-based particle tracking algorithm [40]. The
individual trajectories for the s ¼ þ1=2 and s ¼ −1=2
defects allow us to determine the creation and annihilation
events; we consider the beginning and ending of a single
trajectory as one-half of a defect creation or annihilation
event, respectively. We then divide the number of creation
and annihilation events in a region by its area and the total
time of the experiment to get the creation and annihilation
rate density. We find that these rates are equivalent and that
they are larger in regions of negative hKi than in regions
with positive hKi, in agreement with the theoretical results.

(a) (b)

(c) (d)

FIG. 3. Structural properties of toroidal active nematics vs
Gaussian curvature, obtained from the Coulomb gas model,
Eq. (3). In all plots, length is rescaled by the cross-sectional
radius b, time by b2=ðμkÞ, and velocity by μk=b. Activity is
controlled by simultaneously varying the dimensionless defect
velocity v0 and the number N, taking advantage of the fact that
v0 ∼

ffiffiffi
α

p
and N ∼ α [Fig. 2(a) inset]. Specifically, we set

v0 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=500

p
. (a) Snapshot of a typical configuration (b) Topo-

logical charge density vs Gaussian curvature for varying v0 and
N. (Inset) The number of annihilations scales quadratically with
the number of defects, hence with α. (c) Number density ofþ1=2
(nþ) and −1=2 (n−) disclinations. (d) The annihilation and
creation rate density. In all simulations, ζrn ¼ 0.1 and jζ tnj ¼
0.1 in the units described above.

(a) (b)

(d)(c)

FIG. 4. Results from experiments with microtubules-kinesin
suspensions. (a) Snapshot of the experiment. (b) Topological
charge density and nematic order parameter (inset). (c) Number
density of þ1=2 (red) and −1=2 (blue) disclinations. (d) Anni-
hilation and creation rates. These results correspond to observa-
tions on a torus with aspect ratio 1.8 with minor radius 334 μm.
The error bars in (b)–(d) correspond to the standard error of the
mean. We note that the error in (c) is smaller than the plotted
points. Scale bar in (a): 200 μm.
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This is shown in Fig. 4(d) for the toroid in Fig. 4(a). This
agreement occurs without any dependence on the extrinsic
curvature (ke ¼ 0) or explicit coupling between S and K
(k24 ¼ 0), highlighting the primary role of the intrinsic
geometry and of the hydrodynamics.
In summary, we have introduced a generalization of the

hydrodynamic theory of active nematics to arbitrarily curved
surfaces. We applied this generalization to the specific case
of an extensile active nematic on the surface of a torus and
probed the effect of the substrate Gaussian curvature on the
active nematic. Thanks to a combination of numerical
simulations and experiments we have established that the
structure of the nematic phase is controlled by the substrate
curvature in a twofold way. First, the activity-induced
hydrodynamic unbinding of defect pairs is enhanced by
curvature, leading to nonuniform nematic order and defect
number density. Second, the passive elastic interactions
between the defects and the underlying substrate geometry
tend to bias the topological charge in regions of like-sign
Gaussian curvature. We emphasize that the hydrodynamic
approach developed here is general and applicable to
situations other than that we have focused in this Letter.
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