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For high contrast imaging systems, the time delay is one of the major limiting factors for the performance
of the extreme adaptive optics (AO) sub-system and, in turn, the final contrast. The time delay is due to
the finite time needed to measure the incoming disturbance and then apply the correction. By predict-
ing the behavior of the atmospheric disturbance over the time delay we can in principle achieve a better
AO performance. Atmospheric turbulence parameters which determine the wavefront phase fluctuations
have time-varying behavior. We present a stochastic model for wind speed and model time-variant at-
mospheric turbulence effects using varying wind speed. We test a low-order, data-driven predictor, the
linear minimum mean square error predictor, for a near-infrared AO system under varying conditions.
Our results show varying wind can have a significant impact on the performance of wavefront prediction,
preventing it from reaching optimal performance. The impact depends on the strength of the wind fluc-
tuations with the greatest loss in expected performance being for high wind speeds. © 2019 Optical Society of

America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Since the first direct image of an exoplanet [1], high contrast
imaging (HCI) has been rapidly advancing. Capable of provid-
ing insight into planet formation, characterizing an exoplanet’s
atmosphere, and searching for signs of habitability, HCI spatially
separates the planet’s photons from the ones emitted by the host
star. With multiple dedicated instruments such as SPHERE on
the VLT [2], GPI on Gemini South [3], and SCExAO on Subaru [4]
many new observing techniques, better coronagraphs, and low
noise detectors have been developed and tested. These efforts
have resulted in processed contrast levels of 10−4 − 10−5 at
0.5”− 1” separation in the near infrared[5]. To find cold jupiters,
neptunes, and rocky planets, we need improve the contrast lev-
els for HCI systems; aiming for 10−7 − 10−9 at separations of
0.05”− 1” at visible wavelengths.

Currently, one of the most significant limiting factors of a
HCI system is the performance of the adaptive optics (AO) sub-
system[6]. Specifically, the time delay (which leads to the servo-
lag error) prevents us from observing at small separations as
a halo of speckles builds up close to the host star during a sci-
ence exposure [7]. In order to improve the performance of the
HCI system, the servo-lag error needs to be reduced [6]. One
approach to do this is to run the AO system faster, requiring
higher speed deformable mirrors, fast wavefront sensors, and
bright guide stars, thereby reducing the length of the lag . Alter-

natively, one can focus on understanding how the phase evolves
during the delay and subsequently account for the dynamic
behavior during the servo-lag. This is done through predictive
control methods, where recent and/or nearby wavefront sensor
measurements are used to predict the disturbance over the time
lag.

A. Predictive control in adaptive optics

Predictive control to mitigate the effect of time delays in AO
systems has been worked on for many years. Outside of HCI,
predictive control has been studied to improve the performance
of flux-limited laser guide star AO, increase sky coverage for
natural guide stars [8], as well as many other AO applications.
Linear prediction has been very successful for tip-tilt compen-
sation, especially when induced by structural vibrations [9],
using Linear Quadratic Gaussian control (LQG). Work on the
LQG controller for full atmospheric disturbance compensation
has also been done [10]. Different predictors, closely related
to the Kalman filter, have allowed for filtering in real time and
are now being used in laboratory testing as well as in on-sky
testing [10–15]. The closely related data-driven H2 optimal con-
troller [16–18] was also tested on-sky, for tip/tilt modes, showing
a reduction in the temporal error. More recently, the Empirical
Orthogonal Functions as a predictor has been shown in theory
to improve the contrast of a HCI system by a couple orders of
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magnitude [19]. Many of these approaches are based on the as-
sumption that atmospheric turbulence induced wavefront phase
fluctuations are a stationary stochastic process. However, as the
turbulence parameters have time-varying behavior, the mean
and variance of the wavefront phase are also time-varying, lead-
ing to a time-variant process. Adaptive predictors have been
proposed to track the time-varying behavior of statistics of at-
mospheric turbulence [20]. Although some predictors might be
robust against time-varying behavior, none have been rigorously
tested. Therefore, in this work, we look at basic data-driven pre-
diction and test different implementations under time-varying
conditions.

B. Time-variant Atmospheric Turbulence

Predictive controllers inherently depend on knowledge of tur-
bulence parameters, as well as the dynamical behavior of the
AO system. We know the relevant turbulence parameters such
as coherence length, outerscale, and wind speed vary, result-
ing in variations of the mean and variance of phase aberrations.
Atmospheric turbulence induced phase fluctuations are essen-
tially time-variant. If we account for this behavior in simulation,
we will be able to determine the behavior of a predictor under
time-varying conditions.

C. Simulating atmospheric phase
The most recent algorithms for generating atmospheric phase
disturbance in simulation have been proposed to minimize com-
putation time [21] as well as include the effects of boiling [22].
They also have flexible architectures that allow for the wind
speed, outerscale and Fried parameter to vary at each time step.
However, they do not propose how these parameters should
vary in time. Without information on how these parameters
vary, we are unable to test new control techniques in a simula-
tion environment that reflects all the behavior of the disturbance
seen on-sky and instead can only test them under the average
behavior.

D. Outline
In this paper, we focus on understanding the atmospheric wave-
front phase fluctuations of an AO system on short time scales
and how the disturbance’s time-varying behavior affects a data-
driven prediction algorithm. In Sect. 2, we look at the dynamical
behavior of relevant turbulence parameters - including the wind
vector, outerscale, and the Fried parameter - used to describe
atmospheric wavefront phase fluctuations. We then present our
simulation environment in Sect. 3 and introduce a data-driven
prediction algorithm in Sect. B. We present our results for vary-
ing wind in Sect. 4 and discuss their impact in Sect. 5. Our future
work is proposed in Sect. 6.

2. DESCRIBING WAVEFRONT PHASE FLUCTUATIONS

In AO the atmospheric wavefront phase fluctuations are often
described as a stationary process with a given variance repre-
sented by a spatial covariance function. By assuming Taylor’s
Frozen Flow hypothesis, we can extend this spatial covariance
function to a temporal covariance function through relation with
a constant wind speed. Within this framework we can test many
different atmospheric turbulence conditions.

Extending the above to time variant wavefront phase fluctua-
tions, we vary the wind speed (v), the Fried parameter (r0), and
outerscale (L0).

Fig. 1. Histograms of wind direction and wind speed for three
different nights that correspond to the cases in Tab. 1.

A. Atmospheric Covariance function
We can describe the spatial covariance of atmospheric phase
fluctuations, α, by the von Karman model [23] as in Eq. 1.

Cα(r) =
(

L0
r0

)5/3 Γ(11/6)
25/6π8/3

(
24Γ(6/5)

5

)5/6 (2πr
L0

)5/6

· K5/6(2πr/L0) (1)

where Γ(x) is the gamma function and Ku(x) is the modified
Bessel function of order u.

Using the Frozen Flow hypothesis, we can describe a spatial
separation, r, as a shift over a short period of time, t, due to v.
The temporal covariance follows when this is applied to Eq. 1.

The wind speed then influences the temporal covariance func-
tion. The spatial and temporal covariances are both influenced
by L0 and r0. We therefore turn our attention to understanding
how these three parameters change in time. First we present a
model for the wind vector, then we briefly discuss the behavior
of the r0 and L0 as they are understood in the above covariance
functions.

A.1. Wind Vector

Taking wind data from the Thirty Metre Telescope (TMT) site
testing campaign at Mauna Kea [24] we look at the temporal
behavior of the wind speed. The data is from a sonic anemometer
at a height of 7 m above the summit of Mauna Kea, with a
variable sampling frequency between 10-60 Hz. We look at the
wind speed and direction fluctuations over a period of three
years (2006-2008).

From this data set we are able to define a stochastic model
that describes the averaged power spectral density (PSD) from
night time wind speed data for the ground layer. For each
night we look at wind speeds faster than 1 m/s. We observe
substantial fluctuations in wind speed (greater than 1 m/s) and
wind direction (tens of degrees) at frequencies of 1 Hz or greater.
We observe 3 types of wind behavior from our analysis that
represent a large portion of the data (Fig. 2). In general, over the
course of the night either the wind direction or the wind speed
can be the dominate source for the fluctuating wind vector. We
do not observe nights where both change by large amounts at
the same time. Besides these two cases we also have nights
where the mean wind speed and wind direction as well as their
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Fig. 2. Raw time series for three different nights showing the
classification in Tab. 1. The data is first filtered using a Butter-
worth filter to remove a measurement artifact at 20 Hz due
to the sonic anemometer electronics before feeding into our
simulations.

variances stay the same throughout the night. We consider this to
be a realistic Frozen Flow case. These 3 wind behaviors observed
is summarized in Tab. 1. We chose to ignore wind direction the
remainder of this work due to large fluctuations in direction for
slow wind speeds [25].

To estimate a wind speed PSD we split the night into shorter
time segments of 10 minutes. We estimate the PSD using the
Lomb-Scargle approach for each segment after de-trending and
then take the average to determine the overall PSD for that night.
We do this for all nights available, determining an average PSD
for the wind speed during the period of observations, Fig. 3. A
more in-depth study of the wind statistics and how we estimated
the wind’s power spectral density is in van Kooten et al. [25].
Here we extend the stochastic model we previously found to
capture the roll-off at low frequencies by extending the order
of the model proposed to include a tempering component. The
resulting stochastic model is a tempered fractionally integrated
autoregressive moving average model (ARTFIMA) [26]. Eq. 2
shows the PSD for our model.

Φ(k) = | (1− 1.0047e−ik)

(1− 0.999e−ik)
|2|(1− e−0.016−ik)|−2(0.91) (2)

with the angular frequency k = 2π f / fs with f the frequency
ranging from 0.002 Hz to 10 Hz and fs=20 Hz.

We present this model for ground layer wind speed on Mauna
Kea for the TMT site location to be used to generate time variant
turbulence simulations via varying wind. This model provides
a good fit to the individual nightly PSD as well as the averaged
PSDs, as the overall shape of the PSDs remains constant. The
gain of the nightly PSD does vary by one order of magnitude
throughout the data set.

Fig. 3. Fit of the ARTFIMA model. The black line shows the
averaged PSD determined from the data while the red shows
the PSD from the ARTFIMA model.

A.2. Fried Parameter

The Fried parameter (r0) is considered the main turbulence pa-
rameter in astronomy that directly influences the achievable
imaging resolution. In reality, r0 varies in time with the C2

n
profile in the atmosphere.

A dynamic r0 model [16] was determined from 18 nights of
data from La Palma. The model was estimated from data with
sampling times ranging from 80s to 120s. This model, therefore,
does not include how r0 behaviors at sub-second timescales and
we do not know how it varies on AO timescales, as no other
data is available. Therefore, we do not include time-varying r0
in our simulations.

A.3. Outerscale

Many efforts have focused on accurately determining L0 of tur-
bulence with estimations ranging from 5-300 m [27]. From ob-
servational campaigns, average values, probability density func-
tions (PDF), and even a time series over the course of a night
have been reported. However, the insights only apply to longer
timescales, meaning we do not have sufficient knowledge to
model the behavior of L0 for AO control loop timescales.

3. METHODS

A. Turbulence simulation

We use the method developed by Assemat et al. [21] to generate
phase screens with von Karman statistics. It has been included in
the HCI Python package, HCIPy [28] being developed at Leiden
Observatory. At each time step, the phase screen is updated
by the algorithm, allowing for infinite phase screen generation
as well as continuous updating of the wind vector (speed and
direction), r0, and L0. This framework allows for time-variant
behavior to be simulated in an efficient way.

We chose our AO system configuration to be representative of
an Extremely Large Telescope (ELT) scale system for HCI based
on the planned METIS system for the ELT [29]. We model a
single layer atmosphere. See Tab. 2 for configuration details. We
assume a idealized wavefront sensor where each sub-aperture
measures a phase point of the wavefront at a given point in time
and space. The total additional noise not due to the servo-lag
error has a variance 50 times smaller than the full wavefront
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Classification Wind Speed Wind direction Example nights

Varying wind direction Slow (<5 m/s) Large variance (+/- 100 /de-
grees)

2006.11.22

Realistic Frozen Flow Fast (>8 m/s) with medium
variance

Small variance 2008.05.09

Varying wind speed Large variance (0-20m/s) Small variance 2007.06.15

Table 1. Three classifications of wind vector behavior seen in our data.

phase variance. These choices allow us to focus on the effects of
the delay and how a predictor performs.

For the remainder of this work we assume a constant Fried
parameter of 13 cm at 500 nm. For stationary wind cases we
use a constant wind speed of 12 m/s unless indicated other-
wise. Finally, we assume a constant L0 of 24 m unless indicated
otherwise.

In our simulations, we predict using the open-loop phase
and estimate the error at each time step for our predictor. An
open-loop or closed-loop setting would make no difference with
respect to the predictor performance only. In practice , the de-
formable mirror and wavefront sensor response can affect the
residual wavefront error when predicting in closed-loop. This
must be considered in the AO control design.

A.1. Wind

Since we have real wind time series available, we use this in our
simulations. From the site testing data from TMT, we classify
the behavior of the wind vector into three classes as shown in
Tab. 1. Six 5 s sections (separated by at least 10 minutes in time)
for each case are chosen for three days that are representative
cases of our classification. The data are linearly interpolated to
the AO loop speed allowing the wind speed to be updated at
each time step in the simulation.

B. Data-driven prediction
In section 2 the time-varying behavior of v, r0, and L0 are de-
scribed and well as the difficulties in developing a time variant
model for atmospheric turbulence. Currently, we only have a
model for ground layer v which is site dependent. We, therefore,
turn to data-driven methods which use on-sky data to determine
the predictor; specifically the linear minimum mean square error
(LMMSE) predictor. In this section, we present the framework
for the LMMSE predictor and in Sect. E we place our work in
relation to other prediction methods for AO.

We denote the phase at a single point i of a phase screen at
time t, yi(t), and ~u(t) a P×1 column vector containing a col-
lection of P phase values on a discrete spatial grid at time t
(therefore P is the spatial order). We then assume that the future
value of a given phase point, ŷi at the discrete time index t + d,
is a linear combination of the most recent phase values (our re-
gressors) at time t. Note that we do not have to use all the phase
values on our spatial grid but are able to select the spatial order
by choosing a region around our point of interest (changing P).
We use~ai to represent the predictor coefficients. With the above,
we define the following where we use T to denote the transpose:

ŷi(t + d) =~aT
i · ~u(t) (3)

~u(t) =
(

y0(t) y1(t) y2(t) ... yP(t)
)T

(4)

We can expand this to include a set of Q most recent measure-
ments and thereby including more temporal information.

~w =
(
~u(t)T ~u(t− 1)T ~u(t− 2)T ... ~u(t−Q)T

)T
(5)

We therefore allow for both spatial and temporal regressors
through Eq. 5, where w is a vector of PQ×1. We have a spatial
order of P and a temporal order of Q resulting in the total of PQ
regressors.

With <>t being the time average operator, we minimize the
cost function:

min~ai
< ||yi(t + d)−~aT

i ~w(t)||2 >t (6)

finding the vector of predictor (filter) coefficients, ~ai, now a
PQ×1 vector. Eq. 6 represents the time-averaged mean square
prediction error.

The strength of this method is that the algorithm immediately
extracts any spatio-temporal information from the data - the
regressors - provided. It is important to realize for AO that
the temporal sampling is much finer than the spatial sampling.
Solving Eq. 6 for our zero-mean stochastic process, the solution
can be written in terms of the inverse of the auto-covariance
matrix and cross-covariance vector [30].

~ai = C+
~w~w~c~wyi

(7)

where + denotes a pseudo inverse. C~w~w is the auto-covariance
matrix of ~w, the vector containing the regressors, and c~wyi

is the
vector containing the cross-correlation between the true phase
value, yi and ~w.

Looking at Eq. 7 the optimal AO predictor based on the
spatial covariance (Eq. 1) can be derived for stationary turbu-
lence [31]. However, we choose a data-driven approach where
we estimate the covariances using measured data collected over
a short period. During the collection period (or training period),
this batch LMMSE predictor cannot be used (or we can use a
previously calculated solution) and is considered off-line.

In the batch-wise approach, once the prediction vector is
found it is fixed for the rest of the simulation. By making use of
the matrix inversion lemma, we can form a recursive solution
in which the pseudo-inverse of the auto-covariance is updated
according to Eq. 8.

C+
~w~w(t− d) = C+

~w~w(t− d− 1)−~k(t− d)~wT(t− d)C+
~w~w(t− d− 1)

(8)
with

~k(t− d) =
C+
~w~w(t− d− 1)~w(t− d)

1 + ~wT(t− d)C+
~w~w(t− d− 1)~w(t− d)

(9)
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λWFS D [m] NWFS S.A. size [m] r0 [m] Frame delay Loop speed

2.2 µ m 39 742 0.5 0.77 2 samples = 2
ms

1 kHz

Table 2. Simulation parameters for our AO system including the sub-aperture (S.A.) size.

We can then update the prediction coefficients,~ai(t):

~ai(t) =~ai(t− 1) +~k(t− d)
(

yi(t)−~ai(t− 1)T~w(t− d)
)

(10)

The recursive solution goes on-line immediately with the ini-
tial covariance being set to diagonal matrices with large values
(as done with recursive least-squares methods). The solution is
quick to converge compared to gradient-based methods. The re-
cursive solution depends on all previous measurements finding
the optimal solution for all previous data.

C. The effect of atmospheric parameters on prediction

As mentioned above, using the covariance in Sect. A we can de-
rive our optimal predictor in terms of the theoretical covariance.
We can then see how the predictor depends on the atmospheric
parameters.

For example, the diagonal elements in C~w~w [23] are given by:

Cα(0) =
L0
r0

5/3 Γ(11/6)
2π8/3

(
24Γ(6/5)

5

)5/6
(11)

while the off-diagonal elements are given by Eq. 1. We can then
represent C~w~w as a matrix F~w~w multiplied by the scalar Cα(0).
Therefore:

C+
~w~w =

1
Cα(0)

F+
~w~w (12)

Similarly, we can represent the cross-covariance vector as:

~c~wyi
= Cα(0) f~wyi

(13)

Inserting Eqs. 13 and 12 into Eq 7 we obtain the following:

~ai = F+
~w~w f~wyi

(14)

Eq. 14 does not depend on r0 (only present in Cα(0)), but is
instead dependent on L0 and v (applying Frozen Flow approx-
imation). Therefore, when v or L0 vary our optimal predictor
changes as well.

D. Dealing with time-varying behavior

Both the batch and recursive methods are originally designed
for stationary problems and so we apply them to our stationary
case. To make these methods suitable for time varying cases, the
batch can be retrained and reset as frequently as needed. We
can introduce a forgetting factor for the recursive LMMSE that
is applied during the predictor update, Eq. 8. This allows for the
recursive method to ignore the previous states of the turbulence
by gradually reducing the weighting of old observations in the
prediction.

E. Comparison to other predictors
Before looking at the performance and behavior of the LMMSE
predictor we first put our work in context of prediction for AO.
We aim to give a brief overview of most prediction methods
in AO with particular attention to the predictor structure. The
batch LMMSE is very similar to the Empirical Orthogonal Func-
tion [19] approach with a slightly different implementation for
the matrix inversion. Many other data-driven predictors have
been proposed including the traveling wave predictor [32] that
makes use of the Frozen Flow hypothesis. By knowing the wind
vector, one can spatially shift the current phase measurements;
predicting what the wavefront will look like at the time of our
correction. We can therefore represent the traveling wave pre-
dictor in our own framework where we do not need knowledge
of the wind speed but instead it is extracted intrinsically in
the LMMSE algorithm. More specifically, if we choose our re-
gressors such that we only allow the most recent measurement,
our LMMSE will find a pure spatial solution that is equivalent
to the traveling wave predictor. Finally, we can have a pure
temporal solution that only uses recent measurements for the
phase point of interest. When we limit ourselves to the most
recent measurement only for the batch-wise LMMSE predictor,
we get the equivalent of the closed-loop integrator with some
gain. The integrator and our s1t1 are often not classified as a
predictor; however, they are sometimes considered zero order
predictors [32]. If we include multiple previous measurements,
we can form a higher order temporal predictor that is similar to
an AR-structure approach [10] (that might be used in the optimal
control framework). Within the multi-congugate AO (MCAO)
community, the inclusion of a prediction step has result in the
spatial angular (SA) predictor [8, 15] as well as a moving grid
prediction included in the DM fitting step [33]. The essence
of these approaches are similar to the LMMSE, making use of
either temporal or spatial regressors.

4. SIMULATION EXPERIMENTS

In this section, we present and discuss a number of different
simulation results, starting with the case of stationary turbulence
in order to gain intuition on how the LMMSE behaves under
these conditions. We then present the results for time variant tur-
bulence, applying the LMMSE predictor for the case of varying
wind speed from field measurements.

A. Stationary turbulence
We limit the input data into the LMMSE algorithms by selecting
a grid size of 5-by-5 phase points (regressors) of the most recent
measurement to predict the central phase point 2 time steps into
the future. For ease, we abbreviate our LMMSE with spatial
order 5 and temporal order 1 to s5t1 (see Sect. B). We then define
our ‘s1t1’ solution as our classical solution. For this case, the
algorithm only sees the most recent measurement of one spatial
point. This is a pure temporal solution with a history of 1 frame
(the most recent measurement). We simply train it with a few
frames and keep the solution static. Looking at the pure spatial
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Fig. 4. Left: The prediction coefficients for one phase point (outlined in red) for both the batch (top) and recursive (bottom) solu-
tions. The arrow indicates the wind direction. Right: The mean residual wavefront error for multiple simulations as a function
of time for our s1t1 classical solution (red line), batch LMMSE (green line), and recursive LMMSE (blue line). The shaded regions
indicate the 1-sigma levels.

LMMSE we see the prediction coefficients found by the LMMSE
in a Frozen Flow case with a r0 = 0.13 m (at 500 nm) and v = 10
m/s, Fig. 4. Both the batch and recursive solutions show that the
phase value at the yellow grid point has been identified as the
largest contributor to the behavior of the central phase (outlined
in red) at the next time step. Here the phase itself is the largest
contributor. However, they both give a slight weighting (∼0.1)
to the neighboring point, indicating that the wind is shifting
horizontally. The solution is not spread over many spatial points
because the sub-apertures are so large and we are sampling the
atmosphere at 1 kHz, with the phase screen traveling less than
0.5 sub-aperture per sample interval.

On the right in Fig. 4 we plot the results for the stationary
case. We run 10 simulation experiments with the same input
parameters (for all future runs as well). We calculate the root-
mean-square (RMS) for the 10 residual phase screens at the same
time instance. We shaded regions indicate the 1-sigma level.
We see that s5t1 performs better than our s1t1 for a single layer
Frozen Flow atmosphere. This behavior holds true under a
variety of turbulence conditions (different values of v, r0, and
L0). This validates our LMMSE algorithms; under stationary
conditions, we can use prediction to increase our performance
compared to the static pure temporal solution s1t1.

In the first 5 seconds of Fig. 5 we show how different spatio-
temporal predictors with different orders converge differently
and are even able to achieve different final performance levels
despite having converged fully for different amounts of spatio-
temporal information. The amount of data in the solution con-
trols how fast the solution fully converges as well as the residual
variance. For higher order spatio-temporal solutions, the con-
vergence rate is slower but the residual variance is smaller. It is
important to note that the amount of input data increases much
more for increases in spatial information as we radially increase
the spatial information (as opposed to temporal information) as
to not be biased towards a specific wind direction. The LMMSE
is convenient in that it allows us to choose the amount of input
data used for prediction to minimize computation time - either
through an identification routine (i.e., single value decomposi-

Fig. 5. Error and convergence of linear predictors with various
regressor orders (top) before and after a jump in wind speed
(bottom). The shaded regions indicate the 1-sigma levels.

tion while finding the batch solution or manually based on prior
knowledge). We choose to limit the amount of information by
knowledge of the physical constraints of the AO system such
as the spatial sampling of the wavefront sensor and the tempo-
ral resolution as well as wind conditions. For example, for our
system we expect a maximum of 14 m/s winds, therefore, our
turbulence induced phase, in one time step, does not move more
than one subaperture. Hence, we need one spatial subaperture
minimum to capture most of the effects. We chose to increase
this to two subapertures to provide edge information. However,
to maintain symmetry as to not have preference to a wind direc-
tion, we land up with a 3-by-3 grid. Not only is this attractive to
reduce computation but for recursive methods, allows for the
solution to converge faster.

B. Effects due to time-varying wind speed
With knowledge of how the LMMSE behaves under stationary
conditions, we can study the effects of time varying atmospheric
turbulence on our predictors. For this work we set the regressors
to be a 3-by-3 spatial grid for 5 previous measurements for each
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Fig. 6. Wind jump of 7 m/s on a METIS scaled system show-
ing the convergence of the recursive LMMSE (blue) and the
forgetting LMMSE (black) as well as the resetting of the batch
LMMSE (green) for s3t5.

phase point (s3t5). We focus our attention on the effect of a
varying wind.

To start, we look at a very simple case for varying wind. Fig. 5
shows the effect of an instantaneous wind speed jump of 7 m/s.
First, we note that as the wind speed increases, the benefit of our
predictor increases (i.e., the relative difference between the s3t5
solution and the classical solution). We can see that the recursive
algorithm takes a long time (a few seconds) to converge back to
its optimal solution after a change in wind speed.

In Fig. 6 we compare the three different types of LMMSE algo-
rithms for our s3t5 solution under a wind speed jump. The first
being the non-adaptive solution: the recursive LMMSE predictor.
The recursive LMMSE predictor updates the covariance estimate
when new data becomes available and in turn the prediction
coefficients (Eqs. 8 to 10). The estimation makes use of all pre-
vious data. Therefore, it will not be able to forget the data before
the jump and in this example it takes longer to converge after
the jump than its initial convergence. By knowing the moment
when the wind speed changes we are able to re-calibrate our
batch LMMSE predictor to minimize the loss in performance
and provide the optimal solution- this is one type of adaptive
solution. Finally, we show our second adaptive algorithm (and
third LMMSE algorithm), the forgetting LMMSE predictor. We
can see that after the wind jump the forgetting converges slightly
faster than the recursive due to the forgetting factor.

B.1. Wind speed fluctuations

We now look at the behavior for wind speed fluctuations, Fig. 7.
We do this for two different L0 values: one smaller than the tele-
scope diameter (24 m) and one larger than the telescope diameter
(80 m). We plot our adaptive LMMSE solutions: the forgetting
LMMSE and the resetting batch LMMSE. As in reality, the batch
has no knowledge of the wind speed behavior and therefore it is
arbitrarily reset. For the classical solution, we once again plot the
s1t1 solution. Finally, we plot our ideal s3t5 predictor. The ideal
predictor is the s3t5 solution under infinite tracking speed and
mimicking an instantaneous stationary case. We pre-determine
the s3t5 predictor for each potential wind speed assuming sta-
tionary conditions and then use a look-up table to find our ideal
predictor performance for Fig. 7. This provides us with a lower
bound of a s3t5 predictor’s performance. We run the simulation
for multiple cases of varying wind on the same night and aver-
age the results. This is done for the three different nights shown
in Sect. A.1. We plot the mean wind speed and 1-σ (standard
deviation) levels (shaded region) for the wind speed as well as

the different predictors.

5. ANALYSIS

We summarize the results of Sect. B and Fig. 7 in Tab. 3. We
arrive at the following conclusions:

1. All our LMMSE approaches lose performance when com-
pared to the ideal predictor under varying wind (the ratio
between the batch and forgetting LMMSE is greater than 1).

2. The forgetting implementation does better than the reset-
ting batch implementation (the forgetting LMMSE ratio is
smaller than the batch LMMSE ratio).

3. The difference between s3t5 and the classical solution be-
comes smaller under varying wind.

4. The optimal solution has a much smaller variance compared
to the other algorithms.

We conclude that a different predictive control approach (that
can either track faster or is less sensitive to time-varying fluc-
tuations) is needed to predict atmospheric turbulence in the
presence of time-varying turbulence as it is noticeably different
than the stationary case.

More specifically, from the plots in Fig. 7 we conclude that the
benefits of our LMMSE predictors are modest . From the optimal
solution, we not only lose in residual mean wavefront error (see
Tab. 3) but also have much larger variances for our LMMSE.
Ideally, a predictor would also provide a stable correction with
a small variance such as the optimal solution.

In all three wind cases, we see the forgetting LMMSE pre-
dictor is able to do fairly well for the first couple of seconds
for L0 = 24, reaching the ideal solution. However, the algo-
rithm is unable to handle the time-varying fluctuations as seen
by the increase in variance compared to the optimal solution
that has unlimited tracking capabilities. We attribute this to the
continuously changing wind. As we see in Fig. 6, the forgetting
algorithm needs between 0.5 s to 1 s to recover from a large
jump, in part due to the number of regressors, and in part due
to the magnitude of the change in wind speed. The forgetting
LMMSE predictor performs better for slowly evolving changes
than fast changes. From Tab. 3 we see that the forgetting LMMSE
does better than the resetting batch predictor and the classical
approach in every case.

A. Further Discussion
From the stationary tests we can conclude that the LMMSE
algorithms with higher order spatio-temporal solutions have a
benefit compared to a pure temporal solution making use of only
the most recent measurement as we would expect from using
Frozen Flow to generate our atmospheric turbulence phase. This
agrees with the literature that prediction (whether model-based
or data-driven) can provide a reduction in the servo-lag error
and the overall residual wavefront error.

The wind fluctuations reported by the TMT site testing group
adversely impact the basic predictor - the LMMSE - except for
the specific case of slowly moving wind speed. Wind speeds
can fluctuate by over 1 m/s on time scales less than 1 s. Under
time-varying conditions we would expect only a minor perfor-
mance improvement for a single conjugate AO system with a
low order LMMSE predictor compared to no prediction when
the system is dominated by the servo-lag error. It is important,
however, to note that due to the measurement height of 7 m
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(a) 2007.06.15, L0 = 24 m (b) 2007.06.15, L0 = 80 m

(c) 2008.05.09, L0 = 24 m (d) 2008.05.09, L0 = 80 m

(e) 2006.11.22, L0 = 24 m (f) 2006.11.22, L0 = 80 m

Fig. 7. The average response for our predictors (upper panel) for three different wind conditions corresponding to Tab. 1 (lower
panel), with L0 = 24 m (left column) and L0 = 80 m (right column). We plot the s1t1 predictor (red), the s3t5 resetting batch
LMMSE (green), the s3t5 forgetting LMMSE (black), and the s3t5 ideal LMMSE (blue). We first allow the batch to train on 2.5 s of
data and then reset it every 1s.
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Date 2007.06.15 (June) 2008.05.09 (May) 2006.11.22 (Nov)

Outerscale 24 m 80 m 24 m 80 m 24 m 80 m

Classical 1.42 1.40 1.96 1.59 1.19 1.49

Batch LMMSE 1.21 1.19 1.83 1.55 1.59 1.77

Forgetting LMMSE 1.08 1.13 1.47 1.35 1.04 1.36

Table 3. Summary of Fig 7 showing the ratio of the mean rms value of an algorithm to the optimal LMMSE.

Fig. 8. Prediction performance for the case of the noise being
0.5 times the turbulence variance.

these measurements might not reflect what is actually seen by
an AO system as the dome and other buildings will influence
the low layer winds. These fluctuations might also be extreme
when compared to other astronomical sites. Finally, by limit-
ing our analysis to the ground layer (due to available data), we
might be overestimating the strength and timescales of the wind
fluctuations and therefore the effect on prediction.

Assessing our prediction in the presence of our wind fluc-
tuations we quickly see why on-sky test campaigns for predic-
tive AO control are more challenging than common laboratory
tests. A single wind jump step already provides a challenge
for the LMMSE, moving it away from the ideal predictor so-
lution (Fig. 5). When we extend our simulation to real wind
data, the LMMSE has a harder time tracking the changes (Fig.
7). Therefore, time-variant behavior needs to be included both
in simulation and in the laboratory setting as well as predictor
design

In the above work we have looked only at the specific case
where the temporal delay is a main limiter in performance and
hence the use of a LMMSE as a predictor over the time delay
only. However, we can also benefit from using these algorithms
when we have other dominating error terms. For an increase
in a factor of 25 in measurement noise we plot the performance
of our high order LMMSE predictors in Fig. 8. We are able to
perform better than the classical solution for varying winds.

6. CONCLUSIONS

In this paper, we model dynamic wind behavior, based on the
TMT site testing data. We look at different implementations
of a low order LMMSE predictor to predict atmospheric phase
fluctuations over a time delay of two frames. For the stationary
case, both the batch and recursive implementations perform
better than a pure temporal predictor; i.e., that the current mea-
surement is the best prediction. Under time varying turbulence,
however, we loose performance due to wind speed fluctuations.
For slower wind speeds and L0 smaller than the telescope diame-
ter, we are able to approach ideal performance with our LMMSE.
The classical solution is also able to perform well under these
conditions. As the wind speed increases, we see a larger differ-
ence between the LMMSE and the ideal solution. For our given
spatial and temporal sampling there are conditions (smaller L0
and wind speeds approximately 8 m/s) in which we do reach
an optimal predictor solution.

This work demonstrates that for an AO system the process of
selecting and designing a predictive control framework for time
varying wavefront phase fluctuations is much different than for
the stationary case. In ongoing research, we are aiming at more
suitable predictive control schemes that will be better able to
deal with the statistical variability of atmospheric turbulence,
especially for cases of high wind speed variance.
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